xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 3932b9ca)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #define RCU_KTHREAD_PRIO 1
34 
35 #ifdef CONFIG_RCU_BOOST
36 #include "../locking/rtmutex_common.h"
37 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #else
39 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #endif
41 
42 #ifdef CONFIG_RCU_NOCB_CPU
43 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46 static char __initdata nocb_buf[NR_CPUS * 5];
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48 
49 /*
50  * Check the RCU kernel configuration parameters and print informative
51  * messages about anything out of the ordinary.  If you like #ifdef, you
52  * will love this function.
53  */
54 static void __init rcu_bootup_announce_oddness(void)
55 {
56 #ifdef CONFIG_RCU_TRACE
57 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #endif
59 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61 	       CONFIG_RCU_FANOUT);
62 #endif
63 #ifdef CONFIG_RCU_FANOUT_EXACT
64 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #endif
66 #ifdef CONFIG_RCU_FAST_NO_HZ
67 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #endif
69 #ifdef CONFIG_PROVE_RCU
70 	pr_info("\tRCU lockdep checking is enabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73 	pr_info("\tRCU torture testing starts during boot.\n");
74 #endif
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76 	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #endif
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #endif
81 #if NUM_RCU_LVL_4 != 0
82 	pr_info("\tFour-level hierarchy is enabled.\n");
83 #endif
84 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86 	if (nr_cpu_ids != NR_CPUS)
87 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 #ifdef CONFIG_RCU_NOCB_CPU
89 #ifndef CONFIG_RCU_NOCB_CPU_NONE
90 	if (!have_rcu_nocb_mask) {
91 		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
92 		have_rcu_nocb_mask = true;
93 	}
94 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
95 	pr_info("\tOffload RCU callbacks from CPU 0\n");
96 	cpumask_set_cpu(0, rcu_nocb_mask);
97 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98 #ifdef CONFIG_RCU_NOCB_CPU_ALL
99 	pr_info("\tOffload RCU callbacks from all CPUs\n");
100 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
101 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
103 	if (have_rcu_nocb_mask) {
104 		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105 			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106 			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107 				    rcu_nocb_mask);
108 		}
109 		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
110 		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
111 		if (rcu_nocb_poll)
112 			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
113 	}
114 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
115 }
116 
117 #ifdef CONFIG_TREE_PREEMPT_RCU
118 
119 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
120 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
121 
122 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123 
124 /*
125  * Tell them what RCU they are running.
126  */
127 static void __init rcu_bootup_announce(void)
128 {
129 	pr_info("Preemptible hierarchical RCU implementation.\n");
130 	rcu_bootup_announce_oddness();
131 }
132 
133 /*
134  * Return the number of RCU-preempt batches processed thus far
135  * for debug and statistics.
136  */
137 long rcu_batches_completed_preempt(void)
138 {
139 	return rcu_preempt_state.completed;
140 }
141 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142 
143 /*
144  * Return the number of RCU batches processed thus far for debug & stats.
145  */
146 long rcu_batches_completed(void)
147 {
148 	return rcu_batches_completed_preempt();
149 }
150 EXPORT_SYMBOL_GPL(rcu_batches_completed);
151 
152 /*
153  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
154  * that this just means that the task currently running on the CPU is
155  * not in a quiescent state.  There might be any number of tasks blocked
156  * while in an RCU read-side critical section.
157  *
158  * Unlike the other rcu_*_qs() functions, callers to this function
159  * must disable irqs in order to protect the assignment to
160  * ->rcu_read_unlock_special.
161  */
162 static void rcu_preempt_qs(int cpu)
163 {
164 	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
165 
166 	if (rdp->passed_quiesce == 0)
167 		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
168 	rdp->passed_quiesce = 1;
169 	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
170 }
171 
172 /*
173  * We have entered the scheduler, and the current task might soon be
174  * context-switched away from.  If this task is in an RCU read-side
175  * critical section, we will no longer be able to rely on the CPU to
176  * record that fact, so we enqueue the task on the blkd_tasks list.
177  * The task will dequeue itself when it exits the outermost enclosing
178  * RCU read-side critical section.  Therefore, the current grace period
179  * cannot be permitted to complete until the blkd_tasks list entries
180  * predating the current grace period drain, in other words, until
181  * rnp->gp_tasks becomes NULL.
182  *
183  * Caller must disable preemption.
184  */
185 static void rcu_preempt_note_context_switch(int cpu)
186 {
187 	struct task_struct *t = current;
188 	unsigned long flags;
189 	struct rcu_data *rdp;
190 	struct rcu_node *rnp;
191 
192 	if (t->rcu_read_lock_nesting > 0 &&
193 	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
194 
195 		/* Possibly blocking in an RCU read-side critical section. */
196 		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
197 		rnp = rdp->mynode;
198 		raw_spin_lock_irqsave(&rnp->lock, flags);
199 		smp_mb__after_unlock_lock();
200 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
201 		t->rcu_blocked_node = rnp;
202 
203 		/*
204 		 * If this CPU has already checked in, then this task
205 		 * will hold up the next grace period rather than the
206 		 * current grace period.  Queue the task accordingly.
207 		 * If the task is queued for the current grace period
208 		 * (i.e., this CPU has not yet passed through a quiescent
209 		 * state for the current grace period), then as long
210 		 * as that task remains queued, the current grace period
211 		 * cannot end.  Note that there is some uncertainty as
212 		 * to exactly when the current grace period started.
213 		 * We take a conservative approach, which can result
214 		 * in unnecessarily waiting on tasks that started very
215 		 * slightly after the current grace period began.  C'est
216 		 * la vie!!!
217 		 *
218 		 * But first, note that the current CPU must still be
219 		 * on line!
220 		 */
221 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
222 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
223 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
224 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
225 			rnp->gp_tasks = &t->rcu_node_entry;
226 #ifdef CONFIG_RCU_BOOST
227 			if (rnp->boost_tasks != NULL)
228 				rnp->boost_tasks = rnp->gp_tasks;
229 #endif /* #ifdef CONFIG_RCU_BOOST */
230 		} else {
231 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
232 			if (rnp->qsmask & rdp->grpmask)
233 				rnp->gp_tasks = &t->rcu_node_entry;
234 		}
235 		trace_rcu_preempt_task(rdp->rsp->name,
236 				       t->pid,
237 				       (rnp->qsmask & rdp->grpmask)
238 				       ? rnp->gpnum
239 				       : rnp->gpnum + 1);
240 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
241 	} else if (t->rcu_read_lock_nesting < 0 &&
242 		   t->rcu_read_unlock_special) {
243 
244 		/*
245 		 * Complete exit from RCU read-side critical section on
246 		 * behalf of preempted instance of __rcu_read_unlock().
247 		 */
248 		rcu_read_unlock_special(t);
249 	}
250 
251 	/*
252 	 * Either we were not in an RCU read-side critical section to
253 	 * begin with, or we have now recorded that critical section
254 	 * globally.  Either way, we can now note a quiescent state
255 	 * for this CPU.  Again, if we were in an RCU read-side critical
256 	 * section, and if that critical section was blocking the current
257 	 * grace period, then the fact that the task has been enqueued
258 	 * means that we continue to block the current grace period.
259 	 */
260 	local_irq_save(flags);
261 	rcu_preempt_qs(cpu);
262 	local_irq_restore(flags);
263 }
264 
265 /*
266  * Check for preempted RCU readers blocking the current grace period
267  * for the specified rcu_node structure.  If the caller needs a reliable
268  * answer, it must hold the rcu_node's ->lock.
269  */
270 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
271 {
272 	return rnp->gp_tasks != NULL;
273 }
274 
275 /*
276  * Record a quiescent state for all tasks that were previously queued
277  * on the specified rcu_node structure and that were blocking the current
278  * RCU grace period.  The caller must hold the specified rnp->lock with
279  * irqs disabled, and this lock is released upon return, but irqs remain
280  * disabled.
281  */
282 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
283 	__releases(rnp->lock)
284 {
285 	unsigned long mask;
286 	struct rcu_node *rnp_p;
287 
288 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
289 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
290 		return;  /* Still need more quiescent states! */
291 	}
292 
293 	rnp_p = rnp->parent;
294 	if (rnp_p == NULL) {
295 		/*
296 		 * Either there is only one rcu_node in the tree,
297 		 * or tasks were kicked up to root rcu_node due to
298 		 * CPUs going offline.
299 		 */
300 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
301 		return;
302 	}
303 
304 	/* Report up the rest of the hierarchy. */
305 	mask = rnp->grpmask;
306 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
307 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
308 	smp_mb__after_unlock_lock();
309 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
310 }
311 
312 /*
313  * Advance a ->blkd_tasks-list pointer to the next entry, instead
314  * returning NULL if at the end of the list.
315  */
316 static struct list_head *rcu_next_node_entry(struct task_struct *t,
317 					     struct rcu_node *rnp)
318 {
319 	struct list_head *np;
320 
321 	np = t->rcu_node_entry.next;
322 	if (np == &rnp->blkd_tasks)
323 		np = NULL;
324 	return np;
325 }
326 
327 /*
328  * Handle special cases during rcu_read_unlock(), such as needing to
329  * notify RCU core processing or task having blocked during the RCU
330  * read-side critical section.
331  */
332 void rcu_read_unlock_special(struct task_struct *t)
333 {
334 	int empty;
335 	int empty_exp;
336 	int empty_exp_now;
337 	unsigned long flags;
338 	struct list_head *np;
339 #ifdef CONFIG_RCU_BOOST
340 	bool drop_boost_mutex = false;
341 #endif /* #ifdef CONFIG_RCU_BOOST */
342 	struct rcu_node *rnp;
343 	int special;
344 
345 	/* NMI handlers cannot block and cannot safely manipulate state. */
346 	if (in_nmi())
347 		return;
348 
349 	local_irq_save(flags);
350 
351 	/*
352 	 * If RCU core is waiting for this CPU to exit critical section,
353 	 * let it know that we have done so.
354 	 */
355 	special = t->rcu_read_unlock_special;
356 	if (special & RCU_READ_UNLOCK_NEED_QS) {
357 		rcu_preempt_qs(smp_processor_id());
358 		if (!t->rcu_read_unlock_special) {
359 			local_irq_restore(flags);
360 			return;
361 		}
362 	}
363 
364 	/* Hardware IRQ handlers cannot block, complain if they get here. */
365 	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
366 		local_irq_restore(flags);
367 		return;
368 	}
369 
370 	/* Clean up if blocked during RCU read-side critical section. */
371 	if (special & RCU_READ_UNLOCK_BLOCKED) {
372 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
373 
374 		/*
375 		 * Remove this task from the list it blocked on.  The
376 		 * task can migrate while we acquire the lock, but at
377 		 * most one time.  So at most two passes through loop.
378 		 */
379 		for (;;) {
380 			rnp = t->rcu_blocked_node;
381 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
382 			smp_mb__after_unlock_lock();
383 			if (rnp == t->rcu_blocked_node)
384 				break;
385 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
386 		}
387 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
388 		empty_exp = !rcu_preempted_readers_exp(rnp);
389 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
390 		np = rcu_next_node_entry(t, rnp);
391 		list_del_init(&t->rcu_node_entry);
392 		t->rcu_blocked_node = NULL;
393 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
394 						rnp->gpnum, t->pid);
395 		if (&t->rcu_node_entry == rnp->gp_tasks)
396 			rnp->gp_tasks = np;
397 		if (&t->rcu_node_entry == rnp->exp_tasks)
398 			rnp->exp_tasks = np;
399 #ifdef CONFIG_RCU_BOOST
400 		if (&t->rcu_node_entry == rnp->boost_tasks)
401 			rnp->boost_tasks = np;
402 		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
403 		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
404 #endif /* #ifdef CONFIG_RCU_BOOST */
405 
406 		/*
407 		 * If this was the last task on the current list, and if
408 		 * we aren't waiting on any CPUs, report the quiescent state.
409 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
410 		 * so we must take a snapshot of the expedited state.
411 		 */
412 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
413 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
414 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
415 							 rnp->gpnum,
416 							 0, rnp->qsmask,
417 							 rnp->level,
418 							 rnp->grplo,
419 							 rnp->grphi,
420 							 !!rnp->gp_tasks);
421 			rcu_report_unblock_qs_rnp(rnp, flags);
422 		} else {
423 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
424 		}
425 
426 #ifdef CONFIG_RCU_BOOST
427 		/* Unboost if we were boosted. */
428 		if (drop_boost_mutex) {
429 			rt_mutex_unlock(&rnp->boost_mtx);
430 			complete(&rnp->boost_completion);
431 		}
432 #endif /* #ifdef CONFIG_RCU_BOOST */
433 
434 		/*
435 		 * If this was the last task on the expedited lists,
436 		 * then we need to report up the rcu_node hierarchy.
437 		 */
438 		if (!empty_exp && empty_exp_now)
439 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
440 	} else {
441 		local_irq_restore(flags);
442 	}
443 }
444 
445 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446 
447 /*
448  * Dump detailed information for all tasks blocking the current RCU
449  * grace period on the specified rcu_node structure.
450  */
451 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452 {
453 	unsigned long flags;
454 	struct task_struct *t;
455 
456 	raw_spin_lock_irqsave(&rnp->lock, flags);
457 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
459 		return;
460 	}
461 	t = list_entry(rnp->gp_tasks,
462 		       struct task_struct, rcu_node_entry);
463 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464 		sched_show_task(t);
465 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
466 }
467 
468 /*
469  * Dump detailed information for all tasks blocking the current RCU
470  * grace period.
471  */
472 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473 {
474 	struct rcu_node *rnp = rcu_get_root(rsp);
475 
476 	rcu_print_detail_task_stall_rnp(rnp);
477 	rcu_for_each_leaf_node(rsp, rnp)
478 		rcu_print_detail_task_stall_rnp(rnp);
479 }
480 
481 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482 
483 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484 {
485 }
486 
487 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488 
489 #ifdef CONFIG_RCU_CPU_STALL_INFO
490 
491 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492 {
493 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
494 	       rnp->level, rnp->grplo, rnp->grphi);
495 }
496 
497 static void rcu_print_task_stall_end(void)
498 {
499 	pr_cont("\n");
500 }
501 
502 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503 
504 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505 {
506 }
507 
508 static void rcu_print_task_stall_end(void)
509 {
510 }
511 
512 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513 
514 /*
515  * Scan the current list of tasks blocked within RCU read-side critical
516  * sections, printing out the tid of each.
517  */
518 static int rcu_print_task_stall(struct rcu_node *rnp)
519 {
520 	struct task_struct *t;
521 	int ndetected = 0;
522 
523 	if (!rcu_preempt_blocked_readers_cgp(rnp))
524 		return 0;
525 	rcu_print_task_stall_begin(rnp);
526 	t = list_entry(rnp->gp_tasks,
527 		       struct task_struct, rcu_node_entry);
528 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
529 		pr_cont(" P%d", t->pid);
530 		ndetected++;
531 	}
532 	rcu_print_task_stall_end();
533 	return ndetected;
534 }
535 
536 /*
537  * Check that the list of blocked tasks for the newly completed grace
538  * period is in fact empty.  It is a serious bug to complete a grace
539  * period that still has RCU readers blocked!  This function must be
540  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541  * must be held by the caller.
542  *
543  * Also, if there are blocked tasks on the list, they automatically
544  * block the newly created grace period, so set up ->gp_tasks accordingly.
545  */
546 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547 {
548 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
549 	if (!list_empty(&rnp->blkd_tasks))
550 		rnp->gp_tasks = rnp->blkd_tasks.next;
551 	WARN_ON_ONCE(rnp->qsmask);
552 }
553 
554 #ifdef CONFIG_HOTPLUG_CPU
555 
556 /*
557  * Handle tasklist migration for case in which all CPUs covered by the
558  * specified rcu_node have gone offline.  Move them up to the root
559  * rcu_node.  The reason for not just moving them to the immediate
560  * parent is to remove the need for rcu_read_unlock_special() to
561  * make more than two attempts to acquire the target rcu_node's lock.
562  * Returns true if there were tasks blocking the current RCU grace
563  * period.
564  *
565  * Returns 1 if there was previously a task blocking the current grace
566  * period on the specified rcu_node structure.
567  *
568  * The caller must hold rnp->lock with irqs disabled.
569  */
570 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571 				     struct rcu_node *rnp,
572 				     struct rcu_data *rdp)
573 {
574 	struct list_head *lp;
575 	struct list_head *lp_root;
576 	int retval = 0;
577 	struct rcu_node *rnp_root = rcu_get_root(rsp);
578 	struct task_struct *t;
579 
580 	if (rnp == rnp_root) {
581 		WARN_ONCE(1, "Last CPU thought to be offlined?");
582 		return 0;  /* Shouldn't happen: at least one CPU online. */
583 	}
584 
585 	/* If we are on an internal node, complain bitterly. */
586 	WARN_ON_ONCE(rnp != rdp->mynode);
587 
588 	/*
589 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
590 	 * this corner-case operation -- just put this node's tasks
591 	 * at the head of the root node's list, and update the root node's
592 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593 	 * if non-NULL.  This might result in waiting for more tasks than
594 	 * absolutely necessary, but this is a good performance/complexity
595 	 * tradeoff.
596 	 */
597 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
598 		retval |= RCU_OFL_TASKS_NORM_GP;
599 	if (rcu_preempted_readers_exp(rnp))
600 		retval |= RCU_OFL_TASKS_EXP_GP;
601 	lp = &rnp->blkd_tasks;
602 	lp_root = &rnp_root->blkd_tasks;
603 	while (!list_empty(lp)) {
604 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
606 		smp_mb__after_unlock_lock();
607 		list_del(&t->rcu_node_entry);
608 		t->rcu_blocked_node = rnp_root;
609 		list_add(&t->rcu_node_entry, lp_root);
610 		if (&t->rcu_node_entry == rnp->gp_tasks)
611 			rnp_root->gp_tasks = rnp->gp_tasks;
612 		if (&t->rcu_node_entry == rnp->exp_tasks)
613 			rnp_root->exp_tasks = rnp->exp_tasks;
614 #ifdef CONFIG_RCU_BOOST
615 		if (&t->rcu_node_entry == rnp->boost_tasks)
616 			rnp_root->boost_tasks = rnp->boost_tasks;
617 #endif /* #ifdef CONFIG_RCU_BOOST */
618 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
619 	}
620 
621 	rnp->gp_tasks = NULL;
622 	rnp->exp_tasks = NULL;
623 #ifdef CONFIG_RCU_BOOST
624 	rnp->boost_tasks = NULL;
625 	/*
626 	 * In case root is being boosted and leaf was not.  Make sure
627 	 * that we boost the tasks blocking the current grace period
628 	 * in this case.
629 	 */
630 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
631 	smp_mb__after_unlock_lock();
632 	if (rnp_root->boost_tasks != NULL &&
633 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
635 		rnp_root->boost_tasks = rnp_root->gp_tasks;
636 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637 #endif /* #ifdef CONFIG_RCU_BOOST */
638 
639 	return retval;
640 }
641 
642 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
643 
644 /*
645  * Check for a quiescent state from the current CPU.  When a task blocks,
646  * the task is recorded in the corresponding CPU's rcu_node structure,
647  * which is checked elsewhere.
648  *
649  * Caller must disable hard irqs.
650  */
651 static void rcu_preempt_check_callbacks(int cpu)
652 {
653 	struct task_struct *t = current;
654 
655 	if (t->rcu_read_lock_nesting == 0) {
656 		rcu_preempt_qs(cpu);
657 		return;
658 	}
659 	if (t->rcu_read_lock_nesting > 0 &&
660 	    per_cpu(rcu_preempt_data, cpu).qs_pending)
661 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662 }
663 
664 #ifdef CONFIG_RCU_BOOST
665 
666 static void rcu_preempt_do_callbacks(void)
667 {
668 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669 }
670 
671 #endif /* #ifdef CONFIG_RCU_BOOST */
672 
673 /*
674  * Queue a preemptible-RCU callback for invocation after a grace period.
675  */
676 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677 {
678 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
679 }
680 EXPORT_SYMBOL_GPL(call_rcu);
681 
682 /**
683  * synchronize_rcu - wait until a grace period has elapsed.
684  *
685  * Control will return to the caller some time after a full grace
686  * period has elapsed, in other words after all currently executing RCU
687  * read-side critical sections have completed.  Note, however, that
688  * upon return from synchronize_rcu(), the caller might well be executing
689  * concurrently with new RCU read-side critical sections that began while
690  * synchronize_rcu() was waiting.  RCU read-side critical sections are
691  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
692  *
693  * See the description of synchronize_sched() for more detailed information
694  * on memory ordering guarantees.
695  */
696 void synchronize_rcu(void)
697 {
698 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699 			   !lock_is_held(&rcu_lock_map) &&
700 			   !lock_is_held(&rcu_sched_lock_map),
701 			   "Illegal synchronize_rcu() in RCU read-side critical section");
702 	if (!rcu_scheduler_active)
703 		return;
704 	if (rcu_expedited)
705 		synchronize_rcu_expedited();
706 	else
707 		wait_rcu_gp(call_rcu);
708 }
709 EXPORT_SYMBOL_GPL(synchronize_rcu);
710 
711 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
712 static unsigned long sync_rcu_preempt_exp_count;
713 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714 
715 /*
716  * Return non-zero if there are any tasks in RCU read-side critical
717  * sections blocking the current preemptible-RCU expedited grace period.
718  * If there is no preemptible-RCU expedited grace period currently in
719  * progress, returns zero unconditionally.
720  */
721 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722 {
723 	return rnp->exp_tasks != NULL;
724 }
725 
726 /*
727  * return non-zero if there is no RCU expedited grace period in progress
728  * for the specified rcu_node structure, in other words, if all CPUs and
729  * tasks covered by the specified rcu_node structure have done their bit
730  * for the current expedited grace period.  Works only for preemptible
731  * RCU -- other RCU implementation use other means.
732  *
733  * Caller must hold sync_rcu_preempt_exp_mutex.
734  */
735 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736 {
737 	return !rcu_preempted_readers_exp(rnp) &&
738 	       ACCESS_ONCE(rnp->expmask) == 0;
739 }
740 
741 /*
742  * Report the exit from RCU read-side critical section for the last task
743  * that queued itself during or before the current expedited preemptible-RCU
744  * grace period.  This event is reported either to the rcu_node structure on
745  * which the task was queued or to one of that rcu_node structure's ancestors,
746  * recursively up the tree.  (Calm down, calm down, we do the recursion
747  * iteratively!)
748  *
749  * Most callers will set the "wake" flag, but the task initiating the
750  * expedited grace period need not wake itself.
751  *
752  * Caller must hold sync_rcu_preempt_exp_mutex.
753  */
754 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755 			       bool wake)
756 {
757 	unsigned long flags;
758 	unsigned long mask;
759 
760 	raw_spin_lock_irqsave(&rnp->lock, flags);
761 	smp_mb__after_unlock_lock();
762 	for (;;) {
763 		if (!sync_rcu_preempt_exp_done(rnp)) {
764 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
765 			break;
766 		}
767 		if (rnp->parent == NULL) {
768 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
769 			if (wake) {
770 				smp_mb(); /* EGP done before wake_up(). */
771 				wake_up(&sync_rcu_preempt_exp_wq);
772 			}
773 			break;
774 		}
775 		mask = rnp->grpmask;
776 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
777 		rnp = rnp->parent;
778 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
779 		smp_mb__after_unlock_lock();
780 		rnp->expmask &= ~mask;
781 	}
782 }
783 
784 /*
785  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786  * grace period for the specified rcu_node structure.  If there are no such
787  * tasks, report it up the rcu_node hierarchy.
788  *
789  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790  * CPU hotplug operations.
791  */
792 static void
793 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794 {
795 	unsigned long flags;
796 	int must_wait = 0;
797 
798 	raw_spin_lock_irqsave(&rnp->lock, flags);
799 	smp_mb__after_unlock_lock();
800 	if (list_empty(&rnp->blkd_tasks)) {
801 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
802 	} else {
803 		rnp->exp_tasks = rnp->blkd_tasks.next;
804 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
805 		must_wait = 1;
806 	}
807 	if (!must_wait)
808 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
809 }
810 
811 /**
812  * synchronize_rcu_expedited - Brute-force RCU grace period
813  *
814  * Wait for an RCU-preempt grace period, but expedite it.  The basic
815  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
817  * significant time on all CPUs and is unfriendly to real-time workloads,
818  * so is thus not recommended for any sort of common-case code.
819  * In fact, if you are using synchronize_rcu_expedited() in a loop,
820  * please restructure your code to batch your updates, and then Use a
821  * single synchronize_rcu() instead.
822  *
823  * Note that it is illegal to call this function while holding any lock
824  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
825  * to call this function from a CPU-hotplug notifier.  Failing to observe
826  * these restriction will result in deadlock.
827  */
828 void synchronize_rcu_expedited(void)
829 {
830 	unsigned long flags;
831 	struct rcu_node *rnp;
832 	struct rcu_state *rsp = &rcu_preempt_state;
833 	unsigned long snap;
834 	int trycount = 0;
835 
836 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
837 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838 	smp_mb(); /* Above access cannot bleed into critical section. */
839 
840 	/*
841 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
842 	 * operation that finds an rcu_node structure with tasks in the
843 	 * process of being boosted will know that all tasks blocking
844 	 * this expedited grace period will already be in the process of
845 	 * being boosted.  This simplifies the process of moving tasks
846 	 * from leaf to root rcu_node structures.
847 	 */
848 	get_online_cpus();
849 
850 	/*
851 	 * Acquire lock, falling back to synchronize_rcu() if too many
852 	 * lock-acquisition failures.  Of course, if someone does the
853 	 * expedited grace period for us, just leave.
854 	 */
855 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
856 		if (ULONG_CMP_LT(snap,
857 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858 			put_online_cpus();
859 			goto mb_ret; /* Others did our work for us. */
860 		}
861 		if (trycount++ < 10) {
862 			udelay(trycount * num_online_cpus());
863 		} else {
864 			put_online_cpus();
865 			wait_rcu_gp(call_rcu);
866 			return;
867 		}
868 	}
869 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870 		put_online_cpus();
871 		goto unlock_mb_ret; /* Others did our work for us. */
872 	}
873 
874 	/* force all RCU readers onto ->blkd_tasks lists. */
875 	synchronize_sched_expedited();
876 
877 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
878 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
879 		raw_spin_lock_irqsave(&rnp->lock, flags);
880 		smp_mb__after_unlock_lock();
881 		rnp->expmask = rnp->qsmaskinit;
882 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
883 	}
884 
885 	/* Snapshot current state of ->blkd_tasks lists. */
886 	rcu_for_each_leaf_node(rsp, rnp)
887 		sync_rcu_preempt_exp_init(rsp, rnp);
888 	if (NUM_RCU_NODES > 1)
889 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890 
891 	put_online_cpus();
892 
893 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
894 	rnp = rcu_get_root(rsp);
895 	wait_event(sync_rcu_preempt_exp_wq,
896 		   sync_rcu_preempt_exp_done(rnp));
897 
898 	/* Clean up and exit. */
899 	smp_mb(); /* ensure expedited GP seen before counter increment. */
900 	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
901 unlock_mb_ret:
902 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
903 mb_ret:
904 	smp_mb(); /* ensure subsequent action seen after grace period. */
905 }
906 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
907 
908 /**
909  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
910  *
911  * Note that this primitive does not necessarily wait for an RCU grace period
912  * to complete.  For example, if there are no RCU callbacks queued anywhere
913  * in the system, then rcu_barrier() is within its rights to return
914  * immediately, without waiting for anything, much less an RCU grace period.
915  */
916 void rcu_barrier(void)
917 {
918 	_rcu_barrier(&rcu_preempt_state);
919 }
920 EXPORT_SYMBOL_GPL(rcu_barrier);
921 
922 /*
923  * Initialize preemptible RCU's state structures.
924  */
925 static void __init __rcu_init_preempt(void)
926 {
927 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
928 }
929 
930 /*
931  * Check for a task exiting while in a preemptible-RCU read-side
932  * critical section, clean up if so.  No need to issue warnings,
933  * as debug_check_no_locks_held() already does this if lockdep
934  * is enabled.
935  */
936 void exit_rcu(void)
937 {
938 	struct task_struct *t = current;
939 
940 	if (likely(list_empty(&current->rcu_node_entry)))
941 		return;
942 	t->rcu_read_lock_nesting = 1;
943 	barrier();
944 	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
945 	__rcu_read_unlock();
946 }
947 
948 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
949 
950 static struct rcu_state *rcu_state_p = &rcu_sched_state;
951 
952 /*
953  * Tell them what RCU they are running.
954  */
955 static void __init rcu_bootup_announce(void)
956 {
957 	pr_info("Hierarchical RCU implementation.\n");
958 	rcu_bootup_announce_oddness();
959 }
960 
961 /*
962  * Return the number of RCU batches processed thus far for debug & stats.
963  */
964 long rcu_batches_completed(void)
965 {
966 	return rcu_batches_completed_sched();
967 }
968 EXPORT_SYMBOL_GPL(rcu_batches_completed);
969 
970 /*
971  * Because preemptible RCU does not exist, we never have to check for
972  * CPUs being in quiescent states.
973  */
974 static void rcu_preempt_note_context_switch(int cpu)
975 {
976 }
977 
978 /*
979  * Because preemptible RCU does not exist, there are never any preempted
980  * RCU readers.
981  */
982 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
983 {
984 	return 0;
985 }
986 
987 #ifdef CONFIG_HOTPLUG_CPU
988 
989 /* Because preemptible RCU does not exist, no quieting of tasks. */
990 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
991 	__releases(rnp->lock)
992 {
993 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
994 }
995 
996 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
997 
998 /*
999  * Because preemptible RCU does not exist, we never have to check for
1000  * tasks blocked within RCU read-side critical sections.
1001  */
1002 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1003 {
1004 }
1005 
1006 /*
1007  * Because preemptible RCU does not exist, we never have to check for
1008  * tasks blocked within RCU read-side critical sections.
1009  */
1010 static int rcu_print_task_stall(struct rcu_node *rnp)
1011 {
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Because there is no preemptible RCU, there can be no readers blocked,
1017  * so there is no need to check for blocked tasks.  So check only for
1018  * bogus qsmask values.
1019  */
1020 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1021 {
1022 	WARN_ON_ONCE(rnp->qsmask);
1023 }
1024 
1025 #ifdef CONFIG_HOTPLUG_CPU
1026 
1027 /*
1028  * Because preemptible RCU does not exist, it never needs to migrate
1029  * tasks that were blocked within RCU read-side critical sections, and
1030  * such non-existent tasks cannot possibly have been blocking the current
1031  * grace period.
1032  */
1033 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1034 				     struct rcu_node *rnp,
1035 				     struct rcu_data *rdp)
1036 {
1037 	return 0;
1038 }
1039 
1040 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1041 
1042 /*
1043  * Because preemptible RCU does not exist, it never has any callbacks
1044  * to check.
1045  */
1046 static void rcu_preempt_check_callbacks(int cpu)
1047 {
1048 }
1049 
1050 /*
1051  * Wait for an rcu-preempt grace period, but make it happen quickly.
1052  * But because preemptible RCU does not exist, map to rcu-sched.
1053  */
1054 void synchronize_rcu_expedited(void)
1055 {
1056 	synchronize_sched_expedited();
1057 }
1058 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1059 
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 
1062 /*
1063  * Because preemptible RCU does not exist, there is never any need to
1064  * report on tasks preempted in RCU read-side critical sections during
1065  * expedited RCU grace periods.
1066  */
1067 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1068 			       bool wake)
1069 {
1070 }
1071 
1072 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1073 
1074 /*
1075  * Because preemptible RCU does not exist, rcu_barrier() is just
1076  * another name for rcu_barrier_sched().
1077  */
1078 void rcu_barrier(void)
1079 {
1080 	rcu_barrier_sched();
1081 }
1082 EXPORT_SYMBOL_GPL(rcu_barrier);
1083 
1084 /*
1085  * Because preemptible RCU does not exist, it need not be initialized.
1086  */
1087 static void __init __rcu_init_preempt(void)
1088 {
1089 }
1090 
1091 /*
1092  * Because preemptible RCU does not exist, tasks cannot possibly exit
1093  * while in preemptible RCU read-side critical sections.
1094  */
1095 void exit_rcu(void)
1096 {
1097 }
1098 
1099 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1100 
1101 #ifdef CONFIG_RCU_BOOST
1102 
1103 #include "../locking/rtmutex_common.h"
1104 
1105 #ifdef CONFIG_RCU_TRACE
1106 
1107 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1108 {
1109 	if (list_empty(&rnp->blkd_tasks))
1110 		rnp->n_balk_blkd_tasks++;
1111 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1112 		rnp->n_balk_exp_gp_tasks++;
1113 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1114 		rnp->n_balk_boost_tasks++;
1115 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1116 		rnp->n_balk_notblocked++;
1117 	else if (rnp->gp_tasks != NULL &&
1118 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1119 		rnp->n_balk_notyet++;
1120 	else
1121 		rnp->n_balk_nos++;
1122 }
1123 
1124 #else /* #ifdef CONFIG_RCU_TRACE */
1125 
1126 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1127 {
1128 }
1129 
1130 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1131 
1132 static void rcu_wake_cond(struct task_struct *t, int status)
1133 {
1134 	/*
1135 	 * If the thread is yielding, only wake it when this
1136 	 * is invoked from idle
1137 	 */
1138 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1139 		wake_up_process(t);
1140 }
1141 
1142 /*
1143  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1144  * or ->boost_tasks, advancing the pointer to the next task in the
1145  * ->blkd_tasks list.
1146  *
1147  * Note that irqs must be enabled: boosting the task can block.
1148  * Returns 1 if there are more tasks needing to be boosted.
1149  */
1150 static int rcu_boost(struct rcu_node *rnp)
1151 {
1152 	unsigned long flags;
1153 	struct task_struct *t;
1154 	struct list_head *tb;
1155 
1156 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1157 		return 0;  /* Nothing left to boost. */
1158 
1159 	raw_spin_lock_irqsave(&rnp->lock, flags);
1160 	smp_mb__after_unlock_lock();
1161 
1162 	/*
1163 	 * Recheck under the lock: all tasks in need of boosting
1164 	 * might exit their RCU read-side critical sections on their own.
1165 	 */
1166 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1167 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1168 		return 0;
1169 	}
1170 
1171 	/*
1172 	 * Preferentially boost tasks blocking expedited grace periods.
1173 	 * This cannot starve the normal grace periods because a second
1174 	 * expedited grace period must boost all blocked tasks, including
1175 	 * those blocking the pre-existing normal grace period.
1176 	 */
1177 	if (rnp->exp_tasks != NULL) {
1178 		tb = rnp->exp_tasks;
1179 		rnp->n_exp_boosts++;
1180 	} else {
1181 		tb = rnp->boost_tasks;
1182 		rnp->n_normal_boosts++;
1183 	}
1184 	rnp->n_tasks_boosted++;
1185 
1186 	/*
1187 	 * We boost task t by manufacturing an rt_mutex that appears to
1188 	 * be held by task t.  We leave a pointer to that rt_mutex where
1189 	 * task t can find it, and task t will release the mutex when it
1190 	 * exits its outermost RCU read-side critical section.  Then
1191 	 * simply acquiring this artificial rt_mutex will boost task
1192 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1193 	 *
1194 	 * Note that task t must acquire rnp->lock to remove itself from
1195 	 * the ->blkd_tasks list, which it will do from exit() if from
1196 	 * nowhere else.  We therefore are guaranteed that task t will
1197 	 * stay around at least until we drop rnp->lock.  Note that
1198 	 * rnp->lock also resolves races between our priority boosting
1199 	 * and task t's exiting its outermost RCU read-side critical
1200 	 * section.
1201 	 */
1202 	t = container_of(tb, struct task_struct, rcu_node_entry);
1203 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1204 	init_completion(&rnp->boost_completion);
1205 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206 	/* Lock only for side effect: boosts task t's priority. */
1207 	rt_mutex_lock(&rnp->boost_mtx);
1208 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1209 
1210 	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1211 	wait_for_completion(&rnp->boost_completion);
1212 
1213 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1214 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1215 }
1216 
1217 /*
1218  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1219  * root rcu_node.
1220  */
1221 static int rcu_boost_kthread(void *arg)
1222 {
1223 	struct rcu_node *rnp = (struct rcu_node *)arg;
1224 	int spincnt = 0;
1225 	int more2boost;
1226 
1227 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1228 	for (;;) {
1229 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1230 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1231 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1232 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1233 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1234 		more2boost = rcu_boost(rnp);
1235 		if (more2boost)
1236 			spincnt++;
1237 		else
1238 			spincnt = 0;
1239 		if (spincnt > 10) {
1240 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1241 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1242 			schedule_timeout_interruptible(2);
1243 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1244 			spincnt = 0;
1245 		}
1246 	}
1247 	/* NOTREACHED */
1248 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Check to see if it is time to start boosting RCU readers that are
1254  * blocking the current grace period, and, if so, tell the per-rcu_node
1255  * kthread to start boosting them.  If there is an expedited grace
1256  * period in progress, it is always time to boost.
1257  *
1258  * The caller must hold rnp->lock, which this function releases.
1259  * The ->boost_kthread_task is immortal, so we don't need to worry
1260  * about it going away.
1261  */
1262 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1263 	__releases(rnp->lock)
1264 {
1265 	struct task_struct *t;
1266 
1267 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1268 		rnp->n_balk_exp_gp_tasks++;
1269 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270 		return;
1271 	}
1272 	if (rnp->exp_tasks != NULL ||
1273 	    (rnp->gp_tasks != NULL &&
1274 	     rnp->boost_tasks == NULL &&
1275 	     rnp->qsmask == 0 &&
1276 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1277 		if (rnp->exp_tasks == NULL)
1278 			rnp->boost_tasks = rnp->gp_tasks;
1279 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1280 		t = rnp->boost_kthread_task;
1281 		if (t)
1282 			rcu_wake_cond(t, rnp->boost_kthread_status);
1283 	} else {
1284 		rcu_initiate_boost_trace(rnp);
1285 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1286 	}
1287 }
1288 
1289 /*
1290  * Wake up the per-CPU kthread to invoke RCU callbacks.
1291  */
1292 static void invoke_rcu_callbacks_kthread(void)
1293 {
1294 	unsigned long flags;
1295 
1296 	local_irq_save(flags);
1297 	__this_cpu_write(rcu_cpu_has_work, 1);
1298 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1299 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1300 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1301 			      __this_cpu_read(rcu_cpu_kthread_status));
1302 	}
1303 	local_irq_restore(flags);
1304 }
1305 
1306 /*
1307  * Is the current CPU running the RCU-callbacks kthread?
1308  * Caller must have preemption disabled.
1309  */
1310 static bool rcu_is_callbacks_kthread(void)
1311 {
1312 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1313 }
1314 
1315 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1316 
1317 /*
1318  * Do priority-boost accounting for the start of a new grace period.
1319  */
1320 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1321 {
1322 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1323 }
1324 
1325 /*
1326  * Create an RCU-boost kthread for the specified node if one does not
1327  * already exist.  We only create this kthread for preemptible RCU.
1328  * Returns zero if all is well, a negated errno otherwise.
1329  */
1330 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1331 						 struct rcu_node *rnp)
1332 {
1333 	int rnp_index = rnp - &rsp->node[0];
1334 	unsigned long flags;
1335 	struct sched_param sp;
1336 	struct task_struct *t;
1337 
1338 	if (&rcu_preempt_state != rsp)
1339 		return 0;
1340 
1341 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1342 		return 0;
1343 
1344 	rsp->boost = 1;
1345 	if (rnp->boost_kthread_task != NULL)
1346 		return 0;
1347 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1348 			   "rcub/%d", rnp_index);
1349 	if (IS_ERR(t))
1350 		return PTR_ERR(t);
1351 	raw_spin_lock_irqsave(&rnp->lock, flags);
1352 	smp_mb__after_unlock_lock();
1353 	rnp->boost_kthread_task = t;
1354 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1355 	sp.sched_priority = RCU_BOOST_PRIO;
1356 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1357 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1358 	return 0;
1359 }
1360 
1361 static void rcu_kthread_do_work(void)
1362 {
1363 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1364 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1365 	rcu_preempt_do_callbacks();
1366 }
1367 
1368 static void rcu_cpu_kthread_setup(unsigned int cpu)
1369 {
1370 	struct sched_param sp;
1371 
1372 	sp.sched_priority = RCU_KTHREAD_PRIO;
1373 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1374 }
1375 
1376 static void rcu_cpu_kthread_park(unsigned int cpu)
1377 {
1378 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1379 }
1380 
1381 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1382 {
1383 	return __this_cpu_read(rcu_cpu_has_work);
1384 }
1385 
1386 /*
1387  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1388  * RCU softirq used in flavors and configurations of RCU that do not
1389  * support RCU priority boosting.
1390  */
1391 static void rcu_cpu_kthread(unsigned int cpu)
1392 {
1393 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1394 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1395 	int spincnt;
1396 
1397 	for (spincnt = 0; spincnt < 10; spincnt++) {
1398 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1399 		local_bh_disable();
1400 		*statusp = RCU_KTHREAD_RUNNING;
1401 		this_cpu_inc(rcu_cpu_kthread_loops);
1402 		local_irq_disable();
1403 		work = *workp;
1404 		*workp = 0;
1405 		local_irq_enable();
1406 		if (work)
1407 			rcu_kthread_do_work();
1408 		local_bh_enable();
1409 		if (*workp == 0) {
1410 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1411 			*statusp = RCU_KTHREAD_WAITING;
1412 			return;
1413 		}
1414 	}
1415 	*statusp = RCU_KTHREAD_YIELDING;
1416 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1417 	schedule_timeout_interruptible(2);
1418 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1419 	*statusp = RCU_KTHREAD_WAITING;
1420 }
1421 
1422 /*
1423  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1424  * served by the rcu_node in question.  The CPU hotplug lock is still
1425  * held, so the value of rnp->qsmaskinit will be stable.
1426  *
1427  * We don't include outgoingcpu in the affinity set, use -1 if there is
1428  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1429  * this function allows the kthread to execute on any CPU.
1430  */
1431 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1432 {
1433 	struct task_struct *t = rnp->boost_kthread_task;
1434 	unsigned long mask = rnp->qsmaskinit;
1435 	cpumask_var_t cm;
1436 	int cpu;
1437 
1438 	if (!t)
1439 		return;
1440 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1441 		return;
1442 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1443 		if ((mask & 0x1) && cpu != outgoingcpu)
1444 			cpumask_set_cpu(cpu, cm);
1445 	if (cpumask_weight(cm) == 0) {
1446 		cpumask_setall(cm);
1447 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1448 			cpumask_clear_cpu(cpu, cm);
1449 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1450 	}
1451 	set_cpus_allowed_ptr(t, cm);
1452 	free_cpumask_var(cm);
1453 }
1454 
1455 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1456 	.store			= &rcu_cpu_kthread_task,
1457 	.thread_should_run	= rcu_cpu_kthread_should_run,
1458 	.thread_fn		= rcu_cpu_kthread,
1459 	.thread_comm		= "rcuc/%u",
1460 	.setup			= rcu_cpu_kthread_setup,
1461 	.park			= rcu_cpu_kthread_park,
1462 };
1463 
1464 /*
1465  * Spawn all kthreads -- called as soon as the scheduler is running.
1466  */
1467 static int __init rcu_spawn_kthreads(void)
1468 {
1469 	struct rcu_node *rnp;
1470 	int cpu;
1471 
1472 	rcu_scheduler_fully_active = 1;
1473 	for_each_possible_cpu(cpu)
1474 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1475 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1476 	rnp = rcu_get_root(rcu_state_p);
1477 	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1478 	if (NUM_RCU_NODES > 1) {
1479 		rcu_for_each_leaf_node(rcu_state_p, rnp)
1480 			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1481 	}
1482 	return 0;
1483 }
1484 early_initcall(rcu_spawn_kthreads);
1485 
1486 static void rcu_prepare_kthreads(int cpu)
1487 {
1488 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1489 	struct rcu_node *rnp = rdp->mynode;
1490 
1491 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1492 	if (rcu_scheduler_fully_active)
1493 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1494 }
1495 
1496 #else /* #ifdef CONFIG_RCU_BOOST */
1497 
1498 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1499 	__releases(rnp->lock)
1500 {
1501 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1502 }
1503 
1504 static void invoke_rcu_callbacks_kthread(void)
1505 {
1506 	WARN_ON_ONCE(1);
1507 }
1508 
1509 static bool rcu_is_callbacks_kthread(void)
1510 {
1511 	return false;
1512 }
1513 
1514 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1515 {
1516 }
1517 
1518 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1519 {
1520 }
1521 
1522 static int __init rcu_scheduler_really_started(void)
1523 {
1524 	rcu_scheduler_fully_active = 1;
1525 	return 0;
1526 }
1527 early_initcall(rcu_scheduler_really_started);
1528 
1529 static void rcu_prepare_kthreads(int cpu)
1530 {
1531 }
1532 
1533 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1534 
1535 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1536 
1537 /*
1538  * Check to see if any future RCU-related work will need to be done
1539  * by the current CPU, even if none need be done immediately, returning
1540  * 1 if so.  This function is part of the RCU implementation; it is -not-
1541  * an exported member of the RCU API.
1542  *
1543  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1544  * any flavor of RCU.
1545  */
1546 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1547 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1548 {
1549 	*delta_jiffies = ULONG_MAX;
1550 	return rcu_cpu_has_callbacks(cpu, NULL);
1551 }
1552 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1553 
1554 /*
1555  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1556  * after it.
1557  */
1558 static void rcu_cleanup_after_idle(int cpu)
1559 {
1560 }
1561 
1562 /*
1563  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1564  * is nothing.
1565  */
1566 static void rcu_prepare_for_idle(int cpu)
1567 {
1568 }
1569 
1570 /*
1571  * Don't bother keeping a running count of the number of RCU callbacks
1572  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1573  */
1574 static void rcu_idle_count_callbacks_posted(void)
1575 {
1576 }
1577 
1578 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1579 
1580 /*
1581  * This code is invoked when a CPU goes idle, at which point we want
1582  * to have the CPU do everything required for RCU so that it can enter
1583  * the energy-efficient dyntick-idle mode.  This is handled by a
1584  * state machine implemented by rcu_prepare_for_idle() below.
1585  *
1586  * The following three proprocessor symbols control this state machine:
1587  *
1588  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1589  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1590  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1591  *	benchmarkers who might otherwise be tempted to set this to a large
1592  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1593  *	system.  And if you are -that- concerned about energy efficiency,
1594  *	just power the system down and be done with it!
1595  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1596  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1597  *	callbacks pending.  Setting this too high can OOM your system.
1598  *
1599  * The values below work well in practice.  If future workloads require
1600  * adjustment, they can be converted into kernel config parameters, though
1601  * making the state machine smarter might be a better option.
1602  */
1603 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1604 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1605 
1606 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1607 module_param(rcu_idle_gp_delay, int, 0644);
1608 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1609 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1610 
1611 extern int tick_nohz_active;
1612 
1613 /*
1614  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1615  * only if it has been awhile since the last time we did so.  Afterwards,
1616  * if there are any callbacks ready for immediate invocation, return true.
1617  */
1618 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1619 {
1620 	bool cbs_ready = false;
1621 	struct rcu_data *rdp;
1622 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1623 	struct rcu_node *rnp;
1624 	struct rcu_state *rsp;
1625 
1626 	/* Exit early if we advanced recently. */
1627 	if (jiffies == rdtp->last_advance_all)
1628 		return 0;
1629 	rdtp->last_advance_all = jiffies;
1630 
1631 	for_each_rcu_flavor(rsp) {
1632 		rdp = this_cpu_ptr(rsp->rda);
1633 		rnp = rdp->mynode;
1634 
1635 		/*
1636 		 * Don't bother checking unless a grace period has
1637 		 * completed since we last checked and there are
1638 		 * callbacks not yet ready to invoke.
1639 		 */
1640 		if (rdp->completed != rnp->completed &&
1641 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1642 			note_gp_changes(rsp, rdp);
1643 
1644 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1645 			cbs_ready = true;
1646 	}
1647 	return cbs_ready;
1648 }
1649 
1650 /*
1651  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1652  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1653  * caller to set the timeout based on whether or not there are non-lazy
1654  * callbacks.
1655  *
1656  * The caller must have disabled interrupts.
1657  */
1658 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1659 int rcu_needs_cpu(int cpu, unsigned long *dj)
1660 {
1661 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1662 
1663 	/* Snapshot to detect later posting of non-lazy callback. */
1664 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1665 
1666 	/* If no callbacks, RCU doesn't need the CPU. */
1667 	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1668 		*dj = ULONG_MAX;
1669 		return 0;
1670 	}
1671 
1672 	/* Attempt to advance callbacks. */
1673 	if (rcu_try_advance_all_cbs()) {
1674 		/* Some ready to invoke, so initiate later invocation. */
1675 		invoke_rcu_core();
1676 		return 1;
1677 	}
1678 	rdtp->last_accelerate = jiffies;
1679 
1680 	/* Request timer delay depending on laziness, and round. */
1681 	if (!rdtp->all_lazy) {
1682 		*dj = round_up(rcu_idle_gp_delay + jiffies,
1683 			       rcu_idle_gp_delay) - jiffies;
1684 	} else {
1685 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1686 	}
1687 	return 0;
1688 }
1689 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1690 
1691 /*
1692  * Prepare a CPU for idle from an RCU perspective.  The first major task
1693  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1694  * The second major task is to check to see if a non-lazy callback has
1695  * arrived at a CPU that previously had only lazy callbacks.  The third
1696  * major task is to accelerate (that is, assign grace-period numbers to)
1697  * any recently arrived callbacks.
1698  *
1699  * The caller must have disabled interrupts.
1700  */
1701 static void rcu_prepare_for_idle(int cpu)
1702 {
1703 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1704 	bool needwake;
1705 	struct rcu_data *rdp;
1706 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1707 	struct rcu_node *rnp;
1708 	struct rcu_state *rsp;
1709 	int tne;
1710 
1711 	/* Handle nohz enablement switches conservatively. */
1712 	tne = ACCESS_ONCE(tick_nohz_active);
1713 	if (tne != rdtp->tick_nohz_enabled_snap) {
1714 		if (rcu_cpu_has_callbacks(cpu, NULL))
1715 			invoke_rcu_core(); /* force nohz to see update. */
1716 		rdtp->tick_nohz_enabled_snap = tne;
1717 		return;
1718 	}
1719 	if (!tne)
1720 		return;
1721 
1722 	/* If this is a no-CBs CPU, no callbacks, just return. */
1723 	if (rcu_is_nocb_cpu(cpu))
1724 		return;
1725 
1726 	/*
1727 	 * If a non-lazy callback arrived at a CPU having only lazy
1728 	 * callbacks, invoke RCU core for the side-effect of recalculating
1729 	 * idle duration on re-entry to idle.
1730 	 */
1731 	if (rdtp->all_lazy &&
1732 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1733 		rdtp->all_lazy = false;
1734 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1735 		invoke_rcu_core();
1736 		return;
1737 	}
1738 
1739 	/*
1740 	 * If we have not yet accelerated this jiffy, accelerate all
1741 	 * callbacks on this CPU.
1742 	 */
1743 	if (rdtp->last_accelerate == jiffies)
1744 		return;
1745 	rdtp->last_accelerate = jiffies;
1746 	for_each_rcu_flavor(rsp) {
1747 		rdp = per_cpu_ptr(rsp->rda, cpu);
1748 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1749 			continue;
1750 		rnp = rdp->mynode;
1751 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1752 		smp_mb__after_unlock_lock();
1753 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1754 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1755 		if (needwake)
1756 			rcu_gp_kthread_wake(rsp);
1757 	}
1758 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759 }
1760 
1761 /*
1762  * Clean up for exit from idle.  Attempt to advance callbacks based on
1763  * any grace periods that elapsed while the CPU was idle, and if any
1764  * callbacks are now ready to invoke, initiate invocation.
1765  */
1766 static void rcu_cleanup_after_idle(int cpu)
1767 {
1768 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1769 	if (rcu_is_nocb_cpu(cpu))
1770 		return;
1771 	if (rcu_try_advance_all_cbs())
1772 		invoke_rcu_core();
1773 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1774 }
1775 
1776 /*
1777  * Keep a running count of the number of non-lazy callbacks posted
1778  * on this CPU.  This running counter (which is never decremented) allows
1779  * rcu_prepare_for_idle() to detect when something out of the idle loop
1780  * posts a callback, even if an equal number of callbacks are invoked.
1781  * Of course, callbacks should only be posted from within a trace event
1782  * designed to be called from idle or from within RCU_NONIDLE().
1783  */
1784 static void rcu_idle_count_callbacks_posted(void)
1785 {
1786 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1787 }
1788 
1789 /*
1790  * Data for flushing lazy RCU callbacks at OOM time.
1791  */
1792 static atomic_t oom_callback_count;
1793 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1794 
1795 /*
1796  * RCU OOM callback -- decrement the outstanding count and deliver the
1797  * wake-up if we are the last one.
1798  */
1799 static void rcu_oom_callback(struct rcu_head *rhp)
1800 {
1801 	if (atomic_dec_and_test(&oom_callback_count))
1802 		wake_up(&oom_callback_wq);
1803 }
1804 
1805 /*
1806  * Post an rcu_oom_notify callback on the current CPU if it has at
1807  * least one lazy callback.  This will unnecessarily post callbacks
1808  * to CPUs that already have a non-lazy callback at the end of their
1809  * callback list, but this is an infrequent operation, so accept some
1810  * extra overhead to keep things simple.
1811  */
1812 static void rcu_oom_notify_cpu(void *unused)
1813 {
1814 	struct rcu_state *rsp;
1815 	struct rcu_data *rdp;
1816 
1817 	for_each_rcu_flavor(rsp) {
1818 		rdp = raw_cpu_ptr(rsp->rda);
1819 		if (rdp->qlen_lazy != 0) {
1820 			atomic_inc(&oom_callback_count);
1821 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1822 		}
1823 	}
1824 }
1825 
1826 /*
1827  * If low on memory, ensure that each CPU has a non-lazy callback.
1828  * This will wake up CPUs that have only lazy callbacks, in turn
1829  * ensuring that they free up the corresponding memory in a timely manner.
1830  * Because an uncertain amount of memory will be freed in some uncertain
1831  * timeframe, we do not claim to have freed anything.
1832  */
1833 static int rcu_oom_notify(struct notifier_block *self,
1834 			  unsigned long notused, void *nfreed)
1835 {
1836 	int cpu;
1837 
1838 	/* Wait for callbacks from earlier instance to complete. */
1839 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1840 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1841 
1842 	/*
1843 	 * Prevent premature wakeup: ensure that all increments happen
1844 	 * before there is a chance of the counter reaching zero.
1845 	 */
1846 	atomic_set(&oom_callback_count, 1);
1847 
1848 	get_online_cpus();
1849 	for_each_online_cpu(cpu) {
1850 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1851 		cond_resched();
1852 	}
1853 	put_online_cpus();
1854 
1855 	/* Unconditionally decrement: no need to wake ourselves up. */
1856 	atomic_dec(&oom_callback_count);
1857 
1858 	return NOTIFY_OK;
1859 }
1860 
1861 static struct notifier_block rcu_oom_nb = {
1862 	.notifier_call = rcu_oom_notify
1863 };
1864 
1865 static int __init rcu_register_oom_notifier(void)
1866 {
1867 	register_oom_notifier(&rcu_oom_nb);
1868 	return 0;
1869 }
1870 early_initcall(rcu_register_oom_notifier);
1871 
1872 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1873 
1874 #ifdef CONFIG_RCU_CPU_STALL_INFO
1875 
1876 #ifdef CONFIG_RCU_FAST_NO_HZ
1877 
1878 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1879 {
1880 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1881 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1882 
1883 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1884 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1885 		ulong2long(nlpd),
1886 		rdtp->all_lazy ? 'L' : '.',
1887 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1888 }
1889 
1890 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1891 
1892 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1893 {
1894 	*cp = '\0';
1895 }
1896 
1897 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1898 
1899 /* Initiate the stall-info list. */
1900 static void print_cpu_stall_info_begin(void)
1901 {
1902 	pr_cont("\n");
1903 }
1904 
1905 /*
1906  * Print out diagnostic information for the specified stalled CPU.
1907  *
1908  * If the specified CPU is aware of the current RCU grace period
1909  * (flavor specified by rsp), then print the number of scheduling
1910  * clock interrupts the CPU has taken during the time that it has
1911  * been aware.  Otherwise, print the number of RCU grace periods
1912  * that this CPU is ignorant of, for example, "1" if the CPU was
1913  * aware of the previous grace period.
1914  *
1915  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1916  */
1917 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1918 {
1919 	char fast_no_hz[72];
1920 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1921 	struct rcu_dynticks *rdtp = rdp->dynticks;
1922 	char *ticks_title;
1923 	unsigned long ticks_value;
1924 
1925 	if (rsp->gpnum == rdp->gpnum) {
1926 		ticks_title = "ticks this GP";
1927 		ticks_value = rdp->ticks_this_gp;
1928 	} else {
1929 		ticks_title = "GPs behind";
1930 		ticks_value = rsp->gpnum - rdp->gpnum;
1931 	}
1932 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1933 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1934 	       cpu, ticks_value, ticks_title,
1935 	       atomic_read(&rdtp->dynticks) & 0xfff,
1936 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1937 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1938 	       fast_no_hz);
1939 }
1940 
1941 /* Terminate the stall-info list. */
1942 static void print_cpu_stall_info_end(void)
1943 {
1944 	pr_err("\t");
1945 }
1946 
1947 /* Zero ->ticks_this_gp for all flavors of RCU. */
1948 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949 {
1950 	rdp->ticks_this_gp = 0;
1951 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1952 }
1953 
1954 /* Increment ->ticks_this_gp for all flavors of RCU. */
1955 static void increment_cpu_stall_ticks(void)
1956 {
1957 	struct rcu_state *rsp;
1958 
1959 	for_each_rcu_flavor(rsp)
1960 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1961 }
1962 
1963 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1964 
1965 static void print_cpu_stall_info_begin(void)
1966 {
1967 	pr_cont(" {");
1968 }
1969 
1970 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1971 {
1972 	pr_cont(" %d", cpu);
1973 }
1974 
1975 static void print_cpu_stall_info_end(void)
1976 {
1977 	pr_cont("} ");
1978 }
1979 
1980 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1981 {
1982 }
1983 
1984 static void increment_cpu_stall_ticks(void)
1985 {
1986 }
1987 
1988 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1989 
1990 #ifdef CONFIG_RCU_NOCB_CPU
1991 
1992 /*
1993  * Offload callback processing from the boot-time-specified set of CPUs
1994  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1995  * kthread created that pulls the callbacks from the corresponding CPU,
1996  * waits for a grace period to elapse, and invokes the callbacks.
1997  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1998  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1999  * has been specified, in which case each kthread actively polls its
2000  * CPU.  (Which isn't so great for energy efficiency, but which does
2001  * reduce RCU's overhead on that CPU.)
2002  *
2003  * This is intended to be used in conjunction with Frederic Weisbecker's
2004  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2005  * running CPU-bound user-mode computations.
2006  *
2007  * Offloading of callback processing could also in theory be used as
2008  * an energy-efficiency measure because CPUs with no RCU callbacks
2009  * queued are more aggressive about entering dyntick-idle mode.
2010  */
2011 
2012 
2013 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2014 static int __init rcu_nocb_setup(char *str)
2015 {
2016 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2017 	have_rcu_nocb_mask = true;
2018 	cpulist_parse(str, rcu_nocb_mask);
2019 	return 1;
2020 }
2021 __setup("rcu_nocbs=", rcu_nocb_setup);
2022 
2023 static int __init parse_rcu_nocb_poll(char *arg)
2024 {
2025 	rcu_nocb_poll = 1;
2026 	return 0;
2027 }
2028 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2029 
2030 /*
2031  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2032  * grace period.
2033  */
2034 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2035 {
2036 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2037 }
2038 
2039 /*
2040  * Set the root rcu_node structure's ->need_future_gp field
2041  * based on the sum of those of all rcu_node structures.  This does
2042  * double-count the root rcu_node structure's requests, but this
2043  * is necessary to handle the possibility of a rcu_nocb_kthread()
2044  * having awakened during the time that the rcu_node structures
2045  * were being updated for the end of the previous grace period.
2046  */
2047 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2048 {
2049 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2050 }
2051 
2052 static void rcu_init_one_nocb(struct rcu_node *rnp)
2053 {
2054 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2055 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2056 }
2057 
2058 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2059 /* Is the specified CPU a no-CBs CPU? */
2060 bool rcu_is_nocb_cpu(int cpu)
2061 {
2062 	if (have_rcu_nocb_mask)
2063 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2064 	return false;
2065 }
2066 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2067 
2068 /*
2069  * Kick the leader kthread for this NOCB group.
2070  */
2071 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2072 {
2073 	struct rcu_data *rdp_leader = rdp->nocb_leader;
2074 
2075 	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2076 		return;
2077 	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2078 		/* Prior xchg orders against prior callback enqueue. */
2079 		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2080 		wake_up(&rdp_leader->nocb_wq);
2081 	}
2082 }
2083 
2084 /*
2085  * Enqueue the specified string of rcu_head structures onto the specified
2086  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2087  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2088  * counts are supplied by rhcount and rhcount_lazy.
2089  *
2090  * If warranted, also wake up the kthread servicing this CPUs queues.
2091  */
2092 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2093 				    struct rcu_head *rhp,
2094 				    struct rcu_head **rhtp,
2095 				    int rhcount, int rhcount_lazy,
2096 				    unsigned long flags)
2097 {
2098 	int len;
2099 	struct rcu_head **old_rhpp;
2100 	struct task_struct *t;
2101 
2102 	/* Enqueue the callback on the nocb list and update counts. */
2103 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2104 	ACCESS_ONCE(*old_rhpp) = rhp;
2105 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2106 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2107 
2108 	/* If we are not being polled and there is a kthread, awaken it ... */
2109 	t = ACCESS_ONCE(rdp->nocb_kthread);
2110 	if (rcu_nocb_poll || !t) {
2111 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2112 				    TPS("WakeNotPoll"));
2113 		return;
2114 	}
2115 	len = atomic_long_read(&rdp->nocb_q_count);
2116 	if (old_rhpp == &rdp->nocb_head) {
2117 		if (!irqs_disabled_flags(flags)) {
2118 			/* ... if queue was empty ... */
2119 			wake_nocb_leader(rdp, false);
2120 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 					    TPS("WakeEmpty"));
2122 		} else {
2123 			rdp->nocb_defer_wakeup = true;
2124 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2125 					    TPS("WakeEmptyIsDeferred"));
2126 		}
2127 		rdp->qlen_last_fqs_check = 0;
2128 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2129 		/* ... or if many callbacks queued. */
2130 		wake_nocb_leader(rdp, true);
2131 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2132 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2133 	} else {
2134 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2135 	}
2136 	return;
2137 }
2138 
2139 /*
2140  * This is a helper for __call_rcu(), which invokes this when the normal
2141  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2142  * function returns failure back to __call_rcu(), which can complain
2143  * appropriately.
2144  *
2145  * Otherwise, this function queues the callback where the corresponding
2146  * "rcuo" kthread can find it.
2147  */
2148 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2149 			    bool lazy, unsigned long flags)
2150 {
2151 
2152 	if (!rcu_is_nocb_cpu(rdp->cpu))
2153 		return 0;
2154 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2155 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2156 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2157 					 (unsigned long)rhp->func,
2158 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2159 					 -atomic_long_read(&rdp->nocb_q_count));
2160 	else
2161 		trace_rcu_callback(rdp->rsp->name, rhp,
2162 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2163 				   -atomic_long_read(&rdp->nocb_q_count));
2164 	return 1;
2165 }
2166 
2167 /*
2168  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2169  * not a no-CBs CPU.
2170  */
2171 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2172 						     struct rcu_data *rdp,
2173 						     unsigned long flags)
2174 {
2175 	long ql = rsp->qlen;
2176 	long qll = rsp->qlen_lazy;
2177 
2178 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2179 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2180 		return 0;
2181 	rsp->qlen = 0;
2182 	rsp->qlen_lazy = 0;
2183 
2184 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2185 	if (rsp->orphan_donelist != NULL) {
2186 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2187 					rsp->orphan_donetail, ql, qll, flags);
2188 		ql = qll = 0;
2189 		rsp->orphan_donelist = NULL;
2190 		rsp->orphan_donetail = &rsp->orphan_donelist;
2191 	}
2192 	if (rsp->orphan_nxtlist != NULL) {
2193 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2194 					rsp->orphan_nxttail, ql, qll, flags);
2195 		ql = qll = 0;
2196 		rsp->orphan_nxtlist = NULL;
2197 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2198 	}
2199 	return 1;
2200 }
2201 
2202 /*
2203  * If necessary, kick off a new grace period, and either way wait
2204  * for a subsequent grace period to complete.
2205  */
2206 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2207 {
2208 	unsigned long c;
2209 	bool d;
2210 	unsigned long flags;
2211 	bool needwake;
2212 	struct rcu_node *rnp = rdp->mynode;
2213 
2214 	raw_spin_lock_irqsave(&rnp->lock, flags);
2215 	smp_mb__after_unlock_lock();
2216 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2217 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2218 	if (needwake)
2219 		rcu_gp_kthread_wake(rdp->rsp);
2220 
2221 	/*
2222 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2223 	 * up the load average.
2224 	 */
2225 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2226 	for (;;) {
2227 		wait_event_interruptible(
2228 			rnp->nocb_gp_wq[c & 0x1],
2229 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2230 		if (likely(d))
2231 			break;
2232 		flush_signals(current);
2233 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2234 	}
2235 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2236 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2237 }
2238 
2239 /*
2240  * Leaders come here to wait for additional callbacks to show up.
2241  * This function does not return until callbacks appear.
2242  */
2243 static void nocb_leader_wait(struct rcu_data *my_rdp)
2244 {
2245 	bool firsttime = true;
2246 	bool gotcbs;
2247 	struct rcu_data *rdp;
2248 	struct rcu_head **tail;
2249 
2250 wait_again:
2251 
2252 	/* Wait for callbacks to appear. */
2253 	if (!rcu_nocb_poll) {
2254 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2255 		wait_event_interruptible(my_rdp->nocb_wq,
2256 				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2257 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2258 	} else if (firsttime) {
2259 		firsttime = false; /* Don't drown trace log with "Poll"! */
2260 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2261 	}
2262 
2263 	/*
2264 	 * Each pass through the following loop checks a follower for CBs.
2265 	 * We are our own first follower.  Any CBs found are moved to
2266 	 * nocb_gp_head, where they await a grace period.
2267 	 */
2268 	gotcbs = false;
2269 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2270 		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2271 		if (!rdp->nocb_gp_head)
2272 			continue;  /* No CBs here, try next follower. */
2273 
2274 		/* Move callbacks to wait-for-GP list, which is empty. */
2275 		ACCESS_ONCE(rdp->nocb_head) = NULL;
2276 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2277 		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2278 		rdp->nocb_gp_count_lazy =
2279 			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2280 		gotcbs = true;
2281 	}
2282 
2283 	/*
2284 	 * If there were no callbacks, sleep a bit, rescan after a
2285 	 * memory barrier, and go retry.
2286 	 */
2287 	if (unlikely(!gotcbs)) {
2288 		if (!rcu_nocb_poll)
2289 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2290 					    "WokeEmpty");
2291 		flush_signals(current);
2292 		schedule_timeout_interruptible(1);
2293 
2294 		/* Rescan in case we were a victim of memory ordering. */
2295 		my_rdp->nocb_leader_sleep = true;
2296 		smp_mb();  /* Ensure _sleep true before scan. */
2297 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2298 			if (ACCESS_ONCE(rdp->nocb_head)) {
2299 				/* Found CB, so short-circuit next wait. */
2300 				my_rdp->nocb_leader_sleep = false;
2301 				break;
2302 			}
2303 		goto wait_again;
2304 	}
2305 
2306 	/* Wait for one grace period. */
2307 	rcu_nocb_wait_gp(my_rdp);
2308 
2309 	/*
2310 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2311 	 * We set it now, but recheck for new callbacks while
2312 	 * traversing our follower list.
2313 	 */
2314 	my_rdp->nocb_leader_sleep = true;
2315 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2316 
2317 	/* Each pass through the following loop wakes a follower, if needed. */
2318 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2319 		if (ACCESS_ONCE(rdp->nocb_head))
2320 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2321 		if (!rdp->nocb_gp_head)
2322 			continue; /* No CBs, so no need to wake follower. */
2323 
2324 		/* Append callbacks to follower's "done" list. */
2325 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2326 		*tail = rdp->nocb_gp_head;
2327 		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2328 		atomic_long_add(rdp->nocb_gp_count_lazy,
2329 				&rdp->nocb_follower_count_lazy);
2330 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2331 			/*
2332 			 * List was empty, wake up the follower.
2333 			 * Memory barriers supplied by atomic_long_add().
2334 			 */
2335 			wake_up(&rdp->nocb_wq);
2336 		}
2337 	}
2338 
2339 	/* If we (the leader) don't have CBs, go wait some more. */
2340 	if (!my_rdp->nocb_follower_head)
2341 		goto wait_again;
2342 }
2343 
2344 /*
2345  * Followers come here to wait for additional callbacks to show up.
2346  * This function does not return until callbacks appear.
2347  */
2348 static void nocb_follower_wait(struct rcu_data *rdp)
2349 {
2350 	bool firsttime = true;
2351 
2352 	for (;;) {
2353 		if (!rcu_nocb_poll) {
2354 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2355 					    "FollowerSleep");
2356 			wait_event_interruptible(rdp->nocb_wq,
2357 						 ACCESS_ONCE(rdp->nocb_follower_head));
2358 		} else if (firsttime) {
2359 			/* Don't drown trace log with "Poll"! */
2360 			firsttime = false;
2361 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2362 		}
2363 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2364 			/* ^^^ Ensure CB invocation follows _head test. */
2365 			return;
2366 		}
2367 		if (!rcu_nocb_poll)
2368 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2369 					    "WokeEmpty");
2370 		flush_signals(current);
2371 		schedule_timeout_interruptible(1);
2372 	}
2373 }
2374 
2375 /*
2376  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2377  * callbacks queued by the corresponding no-CBs CPU, however, there is
2378  * an optional leader-follower relationship so that the grace-period
2379  * kthreads don't have to do quite so many wakeups.
2380  */
2381 static int rcu_nocb_kthread(void *arg)
2382 {
2383 	int c, cl;
2384 	struct rcu_head *list;
2385 	struct rcu_head *next;
2386 	struct rcu_head **tail;
2387 	struct rcu_data *rdp = arg;
2388 
2389 	/* Each pass through this loop invokes one batch of callbacks */
2390 	for (;;) {
2391 		/* Wait for callbacks. */
2392 		if (rdp->nocb_leader == rdp)
2393 			nocb_leader_wait(rdp);
2394 		else
2395 			nocb_follower_wait(rdp);
2396 
2397 		/* Pull the ready-to-invoke callbacks onto local list. */
2398 		list = ACCESS_ONCE(rdp->nocb_follower_head);
2399 		BUG_ON(!list);
2400 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2401 		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2402 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2403 		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2404 		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2405 		rdp->nocb_p_count += c;
2406 		rdp->nocb_p_count_lazy += cl;
2407 
2408 		/* Each pass through the following loop invokes a callback. */
2409 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2410 		c = cl = 0;
2411 		while (list) {
2412 			next = list->next;
2413 			/* Wait for enqueuing to complete, if needed. */
2414 			while (next == NULL && &list->next != tail) {
2415 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2416 						    TPS("WaitQueue"));
2417 				schedule_timeout_interruptible(1);
2418 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2419 						    TPS("WokeQueue"));
2420 				next = list->next;
2421 			}
2422 			debug_rcu_head_unqueue(list);
2423 			local_bh_disable();
2424 			if (__rcu_reclaim(rdp->rsp->name, list))
2425 				cl++;
2426 			c++;
2427 			local_bh_enable();
2428 			list = next;
2429 		}
2430 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2431 		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2432 		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2433 		rdp->n_nocbs_invoked += c;
2434 	}
2435 	return 0;
2436 }
2437 
2438 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2439 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2440 {
2441 	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2442 }
2443 
2444 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2445 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2446 {
2447 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2448 		return;
2449 	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2450 	wake_nocb_leader(rdp, false);
2451 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2452 }
2453 
2454 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2455 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2456 {
2457 	rdp->nocb_tail = &rdp->nocb_head;
2458 	init_waitqueue_head(&rdp->nocb_wq);
2459 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2460 }
2461 
2462 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2463 static int rcu_nocb_leader_stride = -1;
2464 module_param(rcu_nocb_leader_stride, int, 0444);
2465 
2466 /*
2467  * Create a kthread for each RCU flavor for each no-CBs CPU.
2468  * Also initialize leader-follower relationships.
2469  */
2470 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2471 {
2472 	int cpu;
2473 	int ls = rcu_nocb_leader_stride;
2474 	int nl = 0;  /* Next leader. */
2475 	struct rcu_data *rdp;
2476 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2477 	struct rcu_data *rdp_prev = NULL;
2478 	struct task_struct *t;
2479 
2480 	if (rcu_nocb_mask == NULL)
2481 		return;
2482 #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
2483 	if (tick_nohz_full_running)
2484 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2485 #endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
2486 	if (ls == -1) {
2487 		ls = int_sqrt(nr_cpu_ids);
2488 		rcu_nocb_leader_stride = ls;
2489 	}
2490 
2491 	/*
2492 	 * Each pass through this loop sets up one rcu_data structure and
2493 	 * spawns one rcu_nocb_kthread().
2494 	 */
2495 	for_each_cpu(cpu, rcu_nocb_mask) {
2496 		rdp = per_cpu_ptr(rsp->rda, cpu);
2497 		if (rdp->cpu >= nl) {
2498 			/* New leader, set up for followers & next leader. */
2499 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2500 			rdp->nocb_leader = rdp;
2501 			rdp_leader = rdp;
2502 		} else {
2503 			/* Another follower, link to previous leader. */
2504 			rdp->nocb_leader = rdp_leader;
2505 			rdp_prev->nocb_next_follower = rdp;
2506 		}
2507 		rdp_prev = rdp;
2508 
2509 		/* Spawn the kthread for this CPU. */
2510 		t = kthread_run(rcu_nocb_kthread, rdp,
2511 				"rcuo%c/%d", rsp->abbr, cpu);
2512 		BUG_ON(IS_ERR(t));
2513 		ACCESS_ONCE(rdp->nocb_kthread) = t;
2514 	}
2515 }
2516 
2517 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2518 static bool init_nocb_callback_list(struct rcu_data *rdp)
2519 {
2520 	if (rcu_nocb_mask == NULL ||
2521 	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2522 		return false;
2523 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2524 	return true;
2525 }
2526 
2527 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2528 
2529 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2530 {
2531 }
2532 
2533 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2534 {
2535 }
2536 
2537 static void rcu_init_one_nocb(struct rcu_node *rnp)
2538 {
2539 }
2540 
2541 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2542 			    bool lazy, unsigned long flags)
2543 {
2544 	return 0;
2545 }
2546 
2547 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2548 						     struct rcu_data *rdp,
2549 						     unsigned long flags)
2550 {
2551 	return 0;
2552 }
2553 
2554 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2555 {
2556 }
2557 
2558 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2559 {
2560 	return false;
2561 }
2562 
2563 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2564 {
2565 }
2566 
2567 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2568 {
2569 }
2570 
2571 static bool init_nocb_callback_list(struct rcu_data *rdp)
2572 {
2573 	return false;
2574 }
2575 
2576 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2577 
2578 /*
2579  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2580  * arbitrarily long period of time with the scheduling-clock tick turned
2581  * off.  RCU will be paying attention to this CPU because it is in the
2582  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2583  * machine because the scheduling-clock tick has been disabled.  Therefore,
2584  * if an adaptive-ticks CPU is failing to respond to the current grace
2585  * period and has not be idle from an RCU perspective, kick it.
2586  */
2587 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2588 {
2589 #ifdef CONFIG_NO_HZ_FULL
2590 	if (tick_nohz_full_cpu(cpu))
2591 		smp_send_reschedule(cpu);
2592 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2593 }
2594 
2595 
2596 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2597 
2598 /*
2599  * Define RCU flavor that holds sysidle state.  This needs to be the
2600  * most active flavor of RCU.
2601  */
2602 #ifdef CONFIG_PREEMPT_RCU
2603 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2604 #else /* #ifdef CONFIG_PREEMPT_RCU */
2605 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2606 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2607 
2608 static int full_sysidle_state;		/* Current system-idle state. */
2609 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2610 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2611 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2612 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2613 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2614 
2615 /*
2616  * Invoked to note exit from irq or task transition to idle.  Note that
2617  * usermode execution does -not- count as idle here!  After all, we want
2618  * to detect full-system idle states, not RCU quiescent states and grace
2619  * periods.  The caller must have disabled interrupts.
2620  */
2621 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2622 {
2623 	unsigned long j;
2624 
2625 	/* Adjust nesting, check for fully idle. */
2626 	if (irq) {
2627 		rdtp->dynticks_idle_nesting--;
2628 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2629 		if (rdtp->dynticks_idle_nesting != 0)
2630 			return;  /* Still not fully idle. */
2631 	} else {
2632 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2633 		    DYNTICK_TASK_NEST_VALUE) {
2634 			rdtp->dynticks_idle_nesting = 0;
2635 		} else {
2636 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2637 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2638 			return;  /* Still not fully idle. */
2639 		}
2640 	}
2641 
2642 	/* Record start of fully idle period. */
2643 	j = jiffies;
2644 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2645 	smp_mb__before_atomic();
2646 	atomic_inc(&rdtp->dynticks_idle);
2647 	smp_mb__after_atomic();
2648 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2649 }
2650 
2651 /*
2652  * Unconditionally force exit from full system-idle state.  This is
2653  * invoked when a normal CPU exits idle, but must be called separately
2654  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2655  * is that the timekeeping CPU is permitted to take scheduling-clock
2656  * interrupts while the system is in system-idle state, and of course
2657  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2658  * interrupt from any other type of interrupt.
2659  */
2660 void rcu_sysidle_force_exit(void)
2661 {
2662 	int oldstate = ACCESS_ONCE(full_sysidle_state);
2663 	int newoldstate;
2664 
2665 	/*
2666 	 * Each pass through the following loop attempts to exit full
2667 	 * system-idle state.  If contention proves to be a problem,
2668 	 * a trylock-based contention tree could be used here.
2669 	 */
2670 	while (oldstate > RCU_SYSIDLE_SHORT) {
2671 		newoldstate = cmpxchg(&full_sysidle_state,
2672 				      oldstate, RCU_SYSIDLE_NOT);
2673 		if (oldstate == newoldstate &&
2674 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2675 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2676 			return; /* We cleared it, done! */
2677 		}
2678 		oldstate = newoldstate;
2679 	}
2680 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2681 }
2682 
2683 /*
2684  * Invoked to note entry to irq or task transition from idle.  Note that
2685  * usermode execution does -not- count as idle here!  The caller must
2686  * have disabled interrupts.
2687  */
2688 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2689 {
2690 	/* Adjust nesting, check for already non-idle. */
2691 	if (irq) {
2692 		rdtp->dynticks_idle_nesting++;
2693 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2694 		if (rdtp->dynticks_idle_nesting != 1)
2695 			return; /* Already non-idle. */
2696 	} else {
2697 		/*
2698 		 * Allow for irq misnesting.  Yes, it really is possible
2699 		 * to enter an irq handler then never leave it, and maybe
2700 		 * also vice versa.  Handle both possibilities.
2701 		 */
2702 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2703 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2704 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2705 			return; /* Already non-idle. */
2706 		} else {
2707 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2708 		}
2709 	}
2710 
2711 	/* Record end of idle period. */
2712 	smp_mb__before_atomic();
2713 	atomic_inc(&rdtp->dynticks_idle);
2714 	smp_mb__after_atomic();
2715 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2716 
2717 	/*
2718 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2719 	 * during a system-idle state.  This must be the case, because
2720 	 * the timekeeping CPU has to take scheduling-clock interrupts
2721 	 * during the time that the system is transitioning to full
2722 	 * system-idle state.  This means that the timekeeping CPU must
2723 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2724 	 * more than take a scheduling-clock interrupt.
2725 	 */
2726 	if (smp_processor_id() == tick_do_timer_cpu)
2727 		return;
2728 
2729 	/* Update system-idle state: We are clearly no longer fully idle! */
2730 	rcu_sysidle_force_exit();
2731 }
2732 
2733 /*
2734  * Check to see if the current CPU is idle.  Note that usermode execution
2735  * does not count as idle.  The caller must have disabled interrupts.
2736  */
2737 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2738 				  unsigned long *maxj)
2739 {
2740 	int cur;
2741 	unsigned long j;
2742 	struct rcu_dynticks *rdtp = rdp->dynticks;
2743 
2744 	/*
2745 	 * If some other CPU has already reported non-idle, if this is
2746 	 * not the flavor of RCU that tracks sysidle state, or if this
2747 	 * is an offline or the timekeeping CPU, nothing to do.
2748 	 */
2749 	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2750 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2751 		return;
2752 	if (rcu_gp_in_progress(rdp->rsp))
2753 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2754 
2755 	/* Pick up current idle and NMI-nesting counter and check. */
2756 	cur = atomic_read(&rdtp->dynticks_idle);
2757 	if (cur & 0x1) {
2758 		*isidle = false; /* We are not idle! */
2759 		return;
2760 	}
2761 	smp_mb(); /* Read counters before timestamps. */
2762 
2763 	/* Pick up timestamps. */
2764 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2765 	/* If this CPU entered idle more recently, update maxj timestamp. */
2766 	if (ULONG_CMP_LT(*maxj, j))
2767 		*maxj = j;
2768 }
2769 
2770 /*
2771  * Is this the flavor of RCU that is handling full-system idle?
2772  */
2773 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2774 {
2775 	return rsp == rcu_sysidle_state;
2776 }
2777 
2778 /*
2779  * Return a delay in jiffies based on the number of CPUs, rcu_node
2780  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2781  * systems more time to transition to full-idle state in order to
2782  * avoid the cache thrashing that otherwise occur on the state variable.
2783  * Really small systems (less than a couple of tens of CPUs) should
2784  * instead use a single global atomically incremented counter, and later
2785  * versions of this will automatically reconfigure themselves accordingly.
2786  */
2787 static unsigned long rcu_sysidle_delay(void)
2788 {
2789 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2790 		return 0;
2791 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2792 }
2793 
2794 /*
2795  * Advance the full-system-idle state.  This is invoked when all of
2796  * the non-timekeeping CPUs are idle.
2797  */
2798 static void rcu_sysidle(unsigned long j)
2799 {
2800 	/* Check the current state. */
2801 	switch (ACCESS_ONCE(full_sysidle_state)) {
2802 	case RCU_SYSIDLE_NOT:
2803 
2804 		/* First time all are idle, so note a short idle period. */
2805 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2806 		break;
2807 
2808 	case RCU_SYSIDLE_SHORT:
2809 
2810 		/*
2811 		 * Idle for a bit, time to advance to next state?
2812 		 * cmpxchg failure means race with non-idle, let them win.
2813 		 */
2814 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2815 			(void)cmpxchg(&full_sysidle_state,
2816 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2817 		break;
2818 
2819 	case RCU_SYSIDLE_LONG:
2820 
2821 		/*
2822 		 * Do an additional check pass before advancing to full.
2823 		 * cmpxchg failure means race with non-idle, let them win.
2824 		 */
2825 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2826 			(void)cmpxchg(&full_sysidle_state,
2827 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2828 		break;
2829 
2830 	default:
2831 		break;
2832 	}
2833 }
2834 
2835 /*
2836  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2837  * back to the beginning.
2838  */
2839 static void rcu_sysidle_cancel(void)
2840 {
2841 	smp_mb();
2842 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2843 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2844 }
2845 
2846 /*
2847  * Update the sysidle state based on the results of a force-quiescent-state
2848  * scan of the CPUs' dyntick-idle state.
2849  */
2850 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2851 			       unsigned long maxj, bool gpkt)
2852 {
2853 	if (rsp != rcu_sysidle_state)
2854 		return;  /* Wrong flavor, ignore. */
2855 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2856 		return;  /* Running state machine from timekeeping CPU. */
2857 	if (isidle)
2858 		rcu_sysidle(maxj);    /* More idle! */
2859 	else
2860 		rcu_sysidle_cancel(); /* Idle is over. */
2861 }
2862 
2863 /*
2864  * Wrapper for rcu_sysidle_report() when called from the grace-period
2865  * kthread's context.
2866  */
2867 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2868 				  unsigned long maxj)
2869 {
2870 	rcu_sysidle_report(rsp, isidle, maxj, true);
2871 }
2872 
2873 /* Callback and function for forcing an RCU grace period. */
2874 struct rcu_sysidle_head {
2875 	struct rcu_head rh;
2876 	int inuse;
2877 };
2878 
2879 static void rcu_sysidle_cb(struct rcu_head *rhp)
2880 {
2881 	struct rcu_sysidle_head *rshp;
2882 
2883 	/*
2884 	 * The following memory barrier is needed to replace the
2885 	 * memory barriers that would normally be in the memory
2886 	 * allocator.
2887 	 */
2888 	smp_mb();  /* grace period precedes setting inuse. */
2889 
2890 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2891 	ACCESS_ONCE(rshp->inuse) = 0;
2892 }
2893 
2894 /*
2895  * Check to see if the system is fully idle, other than the timekeeping CPU.
2896  * The caller must have disabled interrupts.
2897  */
2898 bool rcu_sys_is_idle(void)
2899 {
2900 	static struct rcu_sysidle_head rsh;
2901 	int rss = ACCESS_ONCE(full_sysidle_state);
2902 
2903 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2904 		return false;
2905 
2906 	/* Handle small-system case by doing a full scan of CPUs. */
2907 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2908 		int oldrss = rss - 1;
2909 
2910 		/*
2911 		 * One pass to advance to each state up to _FULL.
2912 		 * Give up if any pass fails to advance the state.
2913 		 */
2914 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2915 			int cpu;
2916 			bool isidle = true;
2917 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2918 			struct rcu_data *rdp;
2919 
2920 			/* Scan all the CPUs looking for nonidle CPUs. */
2921 			for_each_possible_cpu(cpu) {
2922 				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2923 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2924 				if (!isidle)
2925 					break;
2926 			}
2927 			rcu_sysidle_report(rcu_sysidle_state,
2928 					   isidle, maxj, false);
2929 			oldrss = rss;
2930 			rss = ACCESS_ONCE(full_sysidle_state);
2931 		}
2932 	}
2933 
2934 	/* If this is the first observation of an idle period, record it. */
2935 	if (rss == RCU_SYSIDLE_FULL) {
2936 		rss = cmpxchg(&full_sysidle_state,
2937 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2938 		return rss == RCU_SYSIDLE_FULL;
2939 	}
2940 
2941 	smp_mb(); /* ensure rss load happens before later caller actions. */
2942 
2943 	/* If already fully idle, tell the caller (in case of races). */
2944 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2945 		return true;
2946 
2947 	/*
2948 	 * If we aren't there yet, and a grace period is not in flight,
2949 	 * initiate a grace period.  Either way, tell the caller that
2950 	 * we are not there yet.  We use an xchg() rather than an assignment
2951 	 * to make up for the memory barriers that would otherwise be
2952 	 * provided by the memory allocator.
2953 	 */
2954 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2955 	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2956 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2957 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2958 	return false;
2959 }
2960 
2961 /*
2962  * Initialize dynticks sysidle state for CPUs coming online.
2963  */
2964 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2965 {
2966 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2967 }
2968 
2969 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2970 
2971 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2972 {
2973 }
2974 
2975 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2976 {
2977 }
2978 
2979 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2980 				  unsigned long *maxj)
2981 {
2982 }
2983 
2984 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2985 {
2986 	return false;
2987 }
2988 
2989 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2990 				  unsigned long maxj)
2991 {
2992 }
2993 
2994 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2995 {
2996 }
2997 
2998 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2999 
3000 /*
3001  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3002  * grace-period kthread will do force_quiescent_state() processing?
3003  * The idea is to avoid waking up RCU core processing on such a
3004  * CPU unless the grace period has extended for too long.
3005  *
3006  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3007  * CONFIG_RCU_NOCB_CPU CPUs.
3008  */
3009 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3010 {
3011 #ifdef CONFIG_NO_HZ_FULL
3012 	if (tick_nohz_full_cpu(smp_processor_id()) &&
3013 	    (!rcu_gp_in_progress(rsp) ||
3014 	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3015 		return 1;
3016 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3017 	return 0;
3018 }
3019 
3020 /*
3021  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3022  * timekeeping CPU.
3023  */
3024 static void rcu_bind_gp_kthread(void)
3025 {
3026 	int __maybe_unused cpu;
3027 
3028 	if (!tick_nohz_full_enabled())
3029 		return;
3030 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3031 	cpu = tick_do_timer_cpu;
3032 	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3033 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3034 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3035 	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3036 		housekeeping_affine(current);
3037 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3038 }
3039