xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 36bccb11)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #define RCU_KTHREAD_PRIO 1
34 
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #else
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39 #endif
40 
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
45 static char __initdata nocb_buf[NR_CPUS * 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47 
48 /*
49  * Check the RCU kernel configuration parameters and print informative
50  * messages about anything out of the ordinary.  If you like #ifdef, you
51  * will love this function.
52  */
53 static void __init rcu_bootup_announce_oddness(void)
54 {
55 #ifdef CONFIG_RCU_TRACE
56 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 #endif
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 	       CONFIG_RCU_FANOUT);
61 #endif
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 #endif
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 #endif
68 #ifdef CONFIG_PROVE_RCU
69 	pr_info("\tRCU lockdep checking is enabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 	pr_info("\tRCU torture testing starts during boot.\n");
73 #endif
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 #endif
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 #endif
80 #if NUM_RCU_LVL_4 != 0
81 	pr_info("\tFour-level hierarchy is enabled.\n");
82 #endif
83 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85 	if (nr_cpu_ids != NR_CPUS)
86 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 	if (!have_rcu_nocb_mask) {
90 		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 		have_rcu_nocb_mask = true;
92 	}
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 	cpumask_set_cpu(0, rcu_nocb_mask);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 	pr_info("\tOffload RCU callbacks from all CPUs\n");
99 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 	if (have_rcu_nocb_mask) {
103 		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 				    rcu_nocb_mask);
107 		}
108 		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109 		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110 		if (rcu_nocb_poll)
111 			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112 	}
113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 }
115 
116 #ifdef CONFIG_TREE_PREEMPT_RCU
117 
118 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119 static struct rcu_state *rcu_state = &rcu_preempt_state;
120 
121 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122 
123 /*
124  * Tell them what RCU they are running.
125  */
126 static void __init rcu_bootup_announce(void)
127 {
128 	pr_info("Preemptible hierarchical RCU implementation.\n");
129 	rcu_bootup_announce_oddness();
130 }
131 
132 /*
133  * Return the number of RCU-preempt batches processed thus far
134  * for debug and statistics.
135  */
136 long rcu_batches_completed_preempt(void)
137 {
138 	return rcu_preempt_state.completed;
139 }
140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141 
142 /*
143  * Return the number of RCU batches processed thus far for debug & stats.
144  */
145 long rcu_batches_completed(void)
146 {
147 	return rcu_batches_completed_preempt();
148 }
149 EXPORT_SYMBOL_GPL(rcu_batches_completed);
150 
151 /*
152  * Force a quiescent state for preemptible RCU.
153  */
154 void rcu_force_quiescent_state(void)
155 {
156 	force_quiescent_state(&rcu_preempt_state);
157 }
158 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159 
160 /*
161  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162  * that this just means that the task currently running on the CPU is
163  * not in a quiescent state.  There might be any number of tasks blocked
164  * while in an RCU read-side critical section.
165  *
166  * Unlike the other rcu_*_qs() functions, callers to this function
167  * must disable irqs in order to protect the assignment to
168  * ->rcu_read_unlock_special.
169  */
170 static void rcu_preempt_qs(int cpu)
171 {
172 	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173 
174 	if (rdp->passed_quiesce == 0)
175 		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176 	rdp->passed_quiesce = 1;
177 	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178 }
179 
180 /*
181  * We have entered the scheduler, and the current task might soon be
182  * context-switched away from.  If this task is in an RCU read-side
183  * critical section, we will no longer be able to rely on the CPU to
184  * record that fact, so we enqueue the task on the blkd_tasks list.
185  * The task will dequeue itself when it exits the outermost enclosing
186  * RCU read-side critical section.  Therefore, the current grace period
187  * cannot be permitted to complete until the blkd_tasks list entries
188  * predating the current grace period drain, in other words, until
189  * rnp->gp_tasks becomes NULL.
190  *
191  * Caller must disable preemption.
192  */
193 static void rcu_preempt_note_context_switch(int cpu)
194 {
195 	struct task_struct *t = current;
196 	unsigned long flags;
197 	struct rcu_data *rdp;
198 	struct rcu_node *rnp;
199 
200 	if (t->rcu_read_lock_nesting > 0 &&
201 	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202 
203 		/* Possibly blocking in an RCU read-side critical section. */
204 		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205 		rnp = rdp->mynode;
206 		raw_spin_lock_irqsave(&rnp->lock, flags);
207 		smp_mb__after_unlock_lock();
208 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
209 		t->rcu_blocked_node = rnp;
210 
211 		/*
212 		 * If this CPU has already checked in, then this task
213 		 * will hold up the next grace period rather than the
214 		 * current grace period.  Queue the task accordingly.
215 		 * If the task is queued for the current grace period
216 		 * (i.e., this CPU has not yet passed through a quiescent
217 		 * state for the current grace period), then as long
218 		 * as that task remains queued, the current grace period
219 		 * cannot end.  Note that there is some uncertainty as
220 		 * to exactly when the current grace period started.
221 		 * We take a conservative approach, which can result
222 		 * in unnecessarily waiting on tasks that started very
223 		 * slightly after the current grace period began.  C'est
224 		 * la vie!!!
225 		 *
226 		 * But first, note that the current CPU must still be
227 		 * on line!
228 		 */
229 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
230 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
231 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
232 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
233 			rnp->gp_tasks = &t->rcu_node_entry;
234 #ifdef CONFIG_RCU_BOOST
235 			if (rnp->boost_tasks != NULL)
236 				rnp->boost_tasks = rnp->gp_tasks;
237 #endif /* #ifdef CONFIG_RCU_BOOST */
238 		} else {
239 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
240 			if (rnp->qsmask & rdp->grpmask)
241 				rnp->gp_tasks = &t->rcu_node_entry;
242 		}
243 		trace_rcu_preempt_task(rdp->rsp->name,
244 				       t->pid,
245 				       (rnp->qsmask & rdp->grpmask)
246 				       ? rnp->gpnum
247 				       : rnp->gpnum + 1);
248 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
249 	} else if (t->rcu_read_lock_nesting < 0 &&
250 		   t->rcu_read_unlock_special) {
251 
252 		/*
253 		 * Complete exit from RCU read-side critical section on
254 		 * behalf of preempted instance of __rcu_read_unlock().
255 		 */
256 		rcu_read_unlock_special(t);
257 	}
258 
259 	/*
260 	 * Either we were not in an RCU read-side critical section to
261 	 * begin with, or we have now recorded that critical section
262 	 * globally.  Either way, we can now note a quiescent state
263 	 * for this CPU.  Again, if we were in an RCU read-side critical
264 	 * section, and if that critical section was blocking the current
265 	 * grace period, then the fact that the task has been enqueued
266 	 * means that we continue to block the current grace period.
267 	 */
268 	local_irq_save(flags);
269 	rcu_preempt_qs(cpu);
270 	local_irq_restore(flags);
271 }
272 
273 /*
274  * Check for preempted RCU readers blocking the current grace period
275  * for the specified rcu_node structure.  If the caller needs a reliable
276  * answer, it must hold the rcu_node's ->lock.
277  */
278 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
279 {
280 	return rnp->gp_tasks != NULL;
281 }
282 
283 /*
284  * Record a quiescent state for all tasks that were previously queued
285  * on the specified rcu_node structure and that were blocking the current
286  * RCU grace period.  The caller must hold the specified rnp->lock with
287  * irqs disabled, and this lock is released upon return, but irqs remain
288  * disabled.
289  */
290 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
291 	__releases(rnp->lock)
292 {
293 	unsigned long mask;
294 	struct rcu_node *rnp_p;
295 
296 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
297 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
298 		return;  /* Still need more quiescent states! */
299 	}
300 
301 	rnp_p = rnp->parent;
302 	if (rnp_p == NULL) {
303 		/*
304 		 * Either there is only one rcu_node in the tree,
305 		 * or tasks were kicked up to root rcu_node due to
306 		 * CPUs going offline.
307 		 */
308 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
309 		return;
310 	}
311 
312 	/* Report up the rest of the hierarchy. */
313 	mask = rnp->grpmask;
314 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
315 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
316 	smp_mb__after_unlock_lock();
317 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
318 }
319 
320 /*
321  * Advance a ->blkd_tasks-list pointer to the next entry, instead
322  * returning NULL if at the end of the list.
323  */
324 static struct list_head *rcu_next_node_entry(struct task_struct *t,
325 					     struct rcu_node *rnp)
326 {
327 	struct list_head *np;
328 
329 	np = t->rcu_node_entry.next;
330 	if (np == &rnp->blkd_tasks)
331 		np = NULL;
332 	return np;
333 }
334 
335 /*
336  * Handle special cases during rcu_read_unlock(), such as needing to
337  * notify RCU core processing or task having blocked during the RCU
338  * read-side critical section.
339  */
340 void rcu_read_unlock_special(struct task_struct *t)
341 {
342 	int empty;
343 	int empty_exp;
344 	int empty_exp_now;
345 	unsigned long flags;
346 	struct list_head *np;
347 #ifdef CONFIG_RCU_BOOST
348 	struct rt_mutex *rbmp = NULL;
349 #endif /* #ifdef CONFIG_RCU_BOOST */
350 	struct rcu_node *rnp;
351 	int special;
352 
353 	/* NMI handlers cannot block and cannot safely manipulate state. */
354 	if (in_nmi())
355 		return;
356 
357 	local_irq_save(flags);
358 
359 	/*
360 	 * If RCU core is waiting for this CPU to exit critical section,
361 	 * let it know that we have done so.
362 	 */
363 	special = t->rcu_read_unlock_special;
364 	if (special & RCU_READ_UNLOCK_NEED_QS) {
365 		rcu_preempt_qs(smp_processor_id());
366 		if (!t->rcu_read_unlock_special) {
367 			local_irq_restore(flags);
368 			return;
369 		}
370 	}
371 
372 	/* Hardware IRQ handlers cannot block, complain if they get here. */
373 	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
374 		local_irq_restore(flags);
375 		return;
376 	}
377 
378 	/* Clean up if blocked during RCU read-side critical section. */
379 	if (special & RCU_READ_UNLOCK_BLOCKED) {
380 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
381 
382 		/*
383 		 * Remove this task from the list it blocked on.  The
384 		 * task can migrate while we acquire the lock, but at
385 		 * most one time.  So at most two passes through loop.
386 		 */
387 		for (;;) {
388 			rnp = t->rcu_blocked_node;
389 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
390 			smp_mb__after_unlock_lock();
391 			if (rnp == t->rcu_blocked_node)
392 				break;
393 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
394 		}
395 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
396 		empty_exp = !rcu_preempted_readers_exp(rnp);
397 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
398 		np = rcu_next_node_entry(t, rnp);
399 		list_del_init(&t->rcu_node_entry);
400 		t->rcu_blocked_node = NULL;
401 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
402 						rnp->gpnum, t->pid);
403 		if (&t->rcu_node_entry == rnp->gp_tasks)
404 			rnp->gp_tasks = np;
405 		if (&t->rcu_node_entry == rnp->exp_tasks)
406 			rnp->exp_tasks = np;
407 #ifdef CONFIG_RCU_BOOST
408 		if (&t->rcu_node_entry == rnp->boost_tasks)
409 			rnp->boost_tasks = np;
410 		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
411 		if (t->rcu_boost_mutex) {
412 			rbmp = t->rcu_boost_mutex;
413 			t->rcu_boost_mutex = NULL;
414 		}
415 #endif /* #ifdef CONFIG_RCU_BOOST */
416 
417 		/*
418 		 * If this was the last task on the current list, and if
419 		 * we aren't waiting on any CPUs, report the quiescent state.
420 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
421 		 * so we must take a snapshot of the expedited state.
422 		 */
423 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
424 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
425 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
426 							 rnp->gpnum,
427 							 0, rnp->qsmask,
428 							 rnp->level,
429 							 rnp->grplo,
430 							 rnp->grphi,
431 							 !!rnp->gp_tasks);
432 			rcu_report_unblock_qs_rnp(rnp, flags);
433 		} else {
434 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
435 		}
436 
437 #ifdef CONFIG_RCU_BOOST
438 		/* Unboost if we were boosted. */
439 		if (rbmp)
440 			rt_mutex_unlock(rbmp);
441 #endif /* #ifdef CONFIG_RCU_BOOST */
442 
443 		/*
444 		 * If this was the last task on the expedited lists,
445 		 * then we need to report up the rcu_node hierarchy.
446 		 */
447 		if (!empty_exp && empty_exp_now)
448 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
449 	} else {
450 		local_irq_restore(flags);
451 	}
452 }
453 
454 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
455 
456 /*
457  * Dump detailed information for all tasks blocking the current RCU
458  * grace period on the specified rcu_node structure.
459  */
460 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
461 {
462 	unsigned long flags;
463 	struct task_struct *t;
464 
465 	raw_spin_lock_irqsave(&rnp->lock, flags);
466 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
467 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 		return;
469 	}
470 	t = list_entry(rnp->gp_tasks,
471 		       struct task_struct, rcu_node_entry);
472 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
473 		sched_show_task(t);
474 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
475 }
476 
477 /*
478  * Dump detailed information for all tasks blocking the current RCU
479  * grace period.
480  */
481 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
482 {
483 	struct rcu_node *rnp = rcu_get_root(rsp);
484 
485 	rcu_print_detail_task_stall_rnp(rnp);
486 	rcu_for_each_leaf_node(rsp, rnp)
487 		rcu_print_detail_task_stall_rnp(rnp);
488 }
489 
490 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
491 
492 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
493 {
494 }
495 
496 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
497 
498 #ifdef CONFIG_RCU_CPU_STALL_INFO
499 
500 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
501 {
502 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
503 	       rnp->level, rnp->grplo, rnp->grphi);
504 }
505 
506 static void rcu_print_task_stall_end(void)
507 {
508 	pr_cont("\n");
509 }
510 
511 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
512 
513 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
514 {
515 }
516 
517 static void rcu_print_task_stall_end(void)
518 {
519 }
520 
521 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
522 
523 /*
524  * Scan the current list of tasks blocked within RCU read-side critical
525  * sections, printing out the tid of each.
526  */
527 static int rcu_print_task_stall(struct rcu_node *rnp)
528 {
529 	struct task_struct *t;
530 	int ndetected = 0;
531 
532 	if (!rcu_preempt_blocked_readers_cgp(rnp))
533 		return 0;
534 	rcu_print_task_stall_begin(rnp);
535 	t = list_entry(rnp->gp_tasks,
536 		       struct task_struct, rcu_node_entry);
537 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
538 		pr_cont(" P%d", t->pid);
539 		ndetected++;
540 	}
541 	rcu_print_task_stall_end();
542 	return ndetected;
543 }
544 
545 /*
546  * Check that the list of blocked tasks for the newly completed grace
547  * period is in fact empty.  It is a serious bug to complete a grace
548  * period that still has RCU readers blocked!  This function must be
549  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
550  * must be held by the caller.
551  *
552  * Also, if there are blocked tasks on the list, they automatically
553  * block the newly created grace period, so set up ->gp_tasks accordingly.
554  */
555 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
556 {
557 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
558 	if (!list_empty(&rnp->blkd_tasks))
559 		rnp->gp_tasks = rnp->blkd_tasks.next;
560 	WARN_ON_ONCE(rnp->qsmask);
561 }
562 
563 #ifdef CONFIG_HOTPLUG_CPU
564 
565 /*
566  * Handle tasklist migration for case in which all CPUs covered by the
567  * specified rcu_node have gone offline.  Move them up to the root
568  * rcu_node.  The reason for not just moving them to the immediate
569  * parent is to remove the need for rcu_read_unlock_special() to
570  * make more than two attempts to acquire the target rcu_node's lock.
571  * Returns true if there were tasks blocking the current RCU grace
572  * period.
573  *
574  * Returns 1 if there was previously a task blocking the current grace
575  * period on the specified rcu_node structure.
576  *
577  * The caller must hold rnp->lock with irqs disabled.
578  */
579 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
580 				     struct rcu_node *rnp,
581 				     struct rcu_data *rdp)
582 {
583 	struct list_head *lp;
584 	struct list_head *lp_root;
585 	int retval = 0;
586 	struct rcu_node *rnp_root = rcu_get_root(rsp);
587 	struct task_struct *t;
588 
589 	if (rnp == rnp_root) {
590 		WARN_ONCE(1, "Last CPU thought to be offlined?");
591 		return 0;  /* Shouldn't happen: at least one CPU online. */
592 	}
593 
594 	/* If we are on an internal node, complain bitterly. */
595 	WARN_ON_ONCE(rnp != rdp->mynode);
596 
597 	/*
598 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
599 	 * this corner-case operation -- just put this node's tasks
600 	 * at the head of the root node's list, and update the root node's
601 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
602 	 * if non-NULL.  This might result in waiting for more tasks than
603 	 * absolutely necessary, but this is a good performance/complexity
604 	 * tradeoff.
605 	 */
606 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
607 		retval |= RCU_OFL_TASKS_NORM_GP;
608 	if (rcu_preempted_readers_exp(rnp))
609 		retval |= RCU_OFL_TASKS_EXP_GP;
610 	lp = &rnp->blkd_tasks;
611 	lp_root = &rnp_root->blkd_tasks;
612 	while (!list_empty(lp)) {
613 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
614 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
615 		smp_mb__after_unlock_lock();
616 		list_del(&t->rcu_node_entry);
617 		t->rcu_blocked_node = rnp_root;
618 		list_add(&t->rcu_node_entry, lp_root);
619 		if (&t->rcu_node_entry == rnp->gp_tasks)
620 			rnp_root->gp_tasks = rnp->gp_tasks;
621 		if (&t->rcu_node_entry == rnp->exp_tasks)
622 			rnp_root->exp_tasks = rnp->exp_tasks;
623 #ifdef CONFIG_RCU_BOOST
624 		if (&t->rcu_node_entry == rnp->boost_tasks)
625 			rnp_root->boost_tasks = rnp->boost_tasks;
626 #endif /* #ifdef CONFIG_RCU_BOOST */
627 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
628 	}
629 
630 	rnp->gp_tasks = NULL;
631 	rnp->exp_tasks = NULL;
632 #ifdef CONFIG_RCU_BOOST
633 	rnp->boost_tasks = NULL;
634 	/*
635 	 * In case root is being boosted and leaf was not.  Make sure
636 	 * that we boost the tasks blocking the current grace period
637 	 * in this case.
638 	 */
639 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
640 	smp_mb__after_unlock_lock();
641 	if (rnp_root->boost_tasks != NULL &&
642 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
643 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
644 		rnp_root->boost_tasks = rnp_root->gp_tasks;
645 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
646 #endif /* #ifdef CONFIG_RCU_BOOST */
647 
648 	return retval;
649 }
650 
651 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
652 
653 /*
654  * Check for a quiescent state from the current CPU.  When a task blocks,
655  * the task is recorded in the corresponding CPU's rcu_node structure,
656  * which is checked elsewhere.
657  *
658  * Caller must disable hard irqs.
659  */
660 static void rcu_preempt_check_callbacks(int cpu)
661 {
662 	struct task_struct *t = current;
663 
664 	if (t->rcu_read_lock_nesting == 0) {
665 		rcu_preempt_qs(cpu);
666 		return;
667 	}
668 	if (t->rcu_read_lock_nesting > 0 &&
669 	    per_cpu(rcu_preempt_data, cpu).qs_pending)
670 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
671 }
672 
673 #ifdef CONFIG_RCU_BOOST
674 
675 static void rcu_preempt_do_callbacks(void)
676 {
677 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
678 }
679 
680 #endif /* #ifdef CONFIG_RCU_BOOST */
681 
682 /*
683  * Queue a preemptible-RCU callback for invocation after a grace period.
684  */
685 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
686 {
687 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
688 }
689 EXPORT_SYMBOL_GPL(call_rcu);
690 
691 /*
692  * Queue an RCU callback for lazy invocation after a grace period.
693  * This will likely be later named something like "call_rcu_lazy()",
694  * but this change will require some way of tagging the lazy RCU
695  * callbacks in the list of pending callbacks.  Until then, this
696  * function may only be called from __kfree_rcu().
697  */
698 void kfree_call_rcu(struct rcu_head *head,
699 		    void (*func)(struct rcu_head *rcu))
700 {
701 	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
702 }
703 EXPORT_SYMBOL_GPL(kfree_call_rcu);
704 
705 /**
706  * synchronize_rcu - wait until a grace period has elapsed.
707  *
708  * Control will return to the caller some time after a full grace
709  * period has elapsed, in other words after all currently executing RCU
710  * read-side critical sections have completed.  Note, however, that
711  * upon return from synchronize_rcu(), the caller might well be executing
712  * concurrently with new RCU read-side critical sections that began while
713  * synchronize_rcu() was waiting.  RCU read-side critical sections are
714  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
715  *
716  * See the description of synchronize_sched() for more detailed information
717  * on memory ordering guarantees.
718  */
719 void synchronize_rcu(void)
720 {
721 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
722 			   !lock_is_held(&rcu_lock_map) &&
723 			   !lock_is_held(&rcu_sched_lock_map),
724 			   "Illegal synchronize_rcu() in RCU read-side critical section");
725 	if (!rcu_scheduler_active)
726 		return;
727 	if (rcu_expedited)
728 		synchronize_rcu_expedited();
729 	else
730 		wait_rcu_gp(call_rcu);
731 }
732 EXPORT_SYMBOL_GPL(synchronize_rcu);
733 
734 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
735 static unsigned long sync_rcu_preempt_exp_count;
736 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
737 
738 /*
739  * Return non-zero if there are any tasks in RCU read-side critical
740  * sections blocking the current preemptible-RCU expedited grace period.
741  * If there is no preemptible-RCU expedited grace period currently in
742  * progress, returns zero unconditionally.
743  */
744 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
745 {
746 	return rnp->exp_tasks != NULL;
747 }
748 
749 /*
750  * return non-zero if there is no RCU expedited grace period in progress
751  * for the specified rcu_node structure, in other words, if all CPUs and
752  * tasks covered by the specified rcu_node structure have done their bit
753  * for the current expedited grace period.  Works only for preemptible
754  * RCU -- other RCU implementation use other means.
755  *
756  * Caller must hold sync_rcu_preempt_exp_mutex.
757  */
758 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
759 {
760 	return !rcu_preempted_readers_exp(rnp) &&
761 	       ACCESS_ONCE(rnp->expmask) == 0;
762 }
763 
764 /*
765  * Report the exit from RCU read-side critical section for the last task
766  * that queued itself during or before the current expedited preemptible-RCU
767  * grace period.  This event is reported either to the rcu_node structure on
768  * which the task was queued or to one of that rcu_node structure's ancestors,
769  * recursively up the tree.  (Calm down, calm down, we do the recursion
770  * iteratively!)
771  *
772  * Most callers will set the "wake" flag, but the task initiating the
773  * expedited grace period need not wake itself.
774  *
775  * Caller must hold sync_rcu_preempt_exp_mutex.
776  */
777 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
778 			       bool wake)
779 {
780 	unsigned long flags;
781 	unsigned long mask;
782 
783 	raw_spin_lock_irqsave(&rnp->lock, flags);
784 	smp_mb__after_unlock_lock();
785 	for (;;) {
786 		if (!sync_rcu_preempt_exp_done(rnp)) {
787 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
788 			break;
789 		}
790 		if (rnp->parent == NULL) {
791 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
792 			if (wake) {
793 				smp_mb(); /* EGP done before wake_up(). */
794 				wake_up(&sync_rcu_preempt_exp_wq);
795 			}
796 			break;
797 		}
798 		mask = rnp->grpmask;
799 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
800 		rnp = rnp->parent;
801 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
802 		smp_mb__after_unlock_lock();
803 		rnp->expmask &= ~mask;
804 	}
805 }
806 
807 /*
808  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
809  * grace period for the specified rcu_node structure.  If there are no such
810  * tasks, report it up the rcu_node hierarchy.
811  *
812  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
813  * CPU hotplug operations.
814  */
815 static void
816 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
817 {
818 	unsigned long flags;
819 	int must_wait = 0;
820 
821 	raw_spin_lock_irqsave(&rnp->lock, flags);
822 	smp_mb__after_unlock_lock();
823 	if (list_empty(&rnp->blkd_tasks)) {
824 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
825 	} else {
826 		rnp->exp_tasks = rnp->blkd_tasks.next;
827 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
828 		must_wait = 1;
829 	}
830 	if (!must_wait)
831 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
832 }
833 
834 /**
835  * synchronize_rcu_expedited - Brute-force RCU grace period
836  *
837  * Wait for an RCU-preempt grace period, but expedite it.  The basic
838  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
839  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
840  * significant time on all CPUs and is unfriendly to real-time workloads,
841  * so is thus not recommended for any sort of common-case code.
842  * In fact, if you are using synchronize_rcu_expedited() in a loop,
843  * please restructure your code to batch your updates, and then Use a
844  * single synchronize_rcu() instead.
845  *
846  * Note that it is illegal to call this function while holding any lock
847  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
848  * to call this function from a CPU-hotplug notifier.  Failing to observe
849  * these restriction will result in deadlock.
850  */
851 void synchronize_rcu_expedited(void)
852 {
853 	unsigned long flags;
854 	struct rcu_node *rnp;
855 	struct rcu_state *rsp = &rcu_preempt_state;
856 	unsigned long snap;
857 	int trycount = 0;
858 
859 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
860 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
861 	smp_mb(); /* Above access cannot bleed into critical section. */
862 
863 	/*
864 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
865 	 * operation that finds an rcu_node structure with tasks in the
866 	 * process of being boosted will know that all tasks blocking
867 	 * this expedited grace period will already be in the process of
868 	 * being boosted.  This simplifies the process of moving tasks
869 	 * from leaf to root rcu_node structures.
870 	 */
871 	get_online_cpus();
872 
873 	/*
874 	 * Acquire lock, falling back to synchronize_rcu() if too many
875 	 * lock-acquisition failures.  Of course, if someone does the
876 	 * expedited grace period for us, just leave.
877 	 */
878 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
879 		if (ULONG_CMP_LT(snap,
880 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
881 			put_online_cpus();
882 			goto mb_ret; /* Others did our work for us. */
883 		}
884 		if (trycount++ < 10) {
885 			udelay(trycount * num_online_cpus());
886 		} else {
887 			put_online_cpus();
888 			wait_rcu_gp(call_rcu);
889 			return;
890 		}
891 	}
892 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
893 		put_online_cpus();
894 		goto unlock_mb_ret; /* Others did our work for us. */
895 	}
896 
897 	/* force all RCU readers onto ->blkd_tasks lists. */
898 	synchronize_sched_expedited();
899 
900 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
901 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
902 		raw_spin_lock_irqsave(&rnp->lock, flags);
903 		smp_mb__after_unlock_lock();
904 		rnp->expmask = rnp->qsmaskinit;
905 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
906 	}
907 
908 	/* Snapshot current state of ->blkd_tasks lists. */
909 	rcu_for_each_leaf_node(rsp, rnp)
910 		sync_rcu_preempt_exp_init(rsp, rnp);
911 	if (NUM_RCU_NODES > 1)
912 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
913 
914 	put_online_cpus();
915 
916 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
917 	rnp = rcu_get_root(rsp);
918 	wait_event(sync_rcu_preempt_exp_wq,
919 		   sync_rcu_preempt_exp_done(rnp));
920 
921 	/* Clean up and exit. */
922 	smp_mb(); /* ensure expedited GP seen before counter increment. */
923 	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
924 unlock_mb_ret:
925 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
926 mb_ret:
927 	smp_mb(); /* ensure subsequent action seen after grace period. */
928 }
929 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
930 
931 /**
932  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
933  *
934  * Note that this primitive does not necessarily wait for an RCU grace period
935  * to complete.  For example, if there are no RCU callbacks queued anywhere
936  * in the system, then rcu_barrier() is within its rights to return
937  * immediately, without waiting for anything, much less an RCU grace period.
938  */
939 void rcu_barrier(void)
940 {
941 	_rcu_barrier(&rcu_preempt_state);
942 }
943 EXPORT_SYMBOL_GPL(rcu_barrier);
944 
945 /*
946  * Initialize preemptible RCU's state structures.
947  */
948 static void __init __rcu_init_preempt(void)
949 {
950 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
951 }
952 
953 /*
954  * Check for a task exiting while in a preemptible-RCU read-side
955  * critical section, clean up if so.  No need to issue warnings,
956  * as debug_check_no_locks_held() already does this if lockdep
957  * is enabled.
958  */
959 void exit_rcu(void)
960 {
961 	struct task_struct *t = current;
962 
963 	if (likely(list_empty(&current->rcu_node_entry)))
964 		return;
965 	t->rcu_read_lock_nesting = 1;
966 	barrier();
967 	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
968 	__rcu_read_unlock();
969 }
970 
971 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
972 
973 static struct rcu_state *rcu_state = &rcu_sched_state;
974 
975 /*
976  * Tell them what RCU they are running.
977  */
978 static void __init rcu_bootup_announce(void)
979 {
980 	pr_info("Hierarchical RCU implementation.\n");
981 	rcu_bootup_announce_oddness();
982 }
983 
984 /*
985  * Return the number of RCU batches processed thus far for debug & stats.
986  */
987 long rcu_batches_completed(void)
988 {
989 	return rcu_batches_completed_sched();
990 }
991 EXPORT_SYMBOL_GPL(rcu_batches_completed);
992 
993 /*
994  * Force a quiescent state for RCU, which, because there is no preemptible
995  * RCU, becomes the same as rcu-sched.
996  */
997 void rcu_force_quiescent_state(void)
998 {
999 	rcu_sched_force_quiescent_state();
1000 }
1001 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1002 
1003 /*
1004  * Because preemptible RCU does not exist, we never have to check for
1005  * CPUs being in quiescent states.
1006  */
1007 static void rcu_preempt_note_context_switch(int cpu)
1008 {
1009 }
1010 
1011 /*
1012  * Because preemptible RCU does not exist, there are never any preempted
1013  * RCU readers.
1014  */
1015 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1016 {
1017 	return 0;
1018 }
1019 
1020 #ifdef CONFIG_HOTPLUG_CPU
1021 
1022 /* Because preemptible RCU does not exist, no quieting of tasks. */
1023 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1024 {
1025 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1026 }
1027 
1028 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1029 
1030 /*
1031  * Because preemptible RCU does not exist, we never have to check for
1032  * tasks blocked within RCU read-side critical sections.
1033  */
1034 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1035 {
1036 }
1037 
1038 /*
1039  * Because preemptible RCU does not exist, we never have to check for
1040  * tasks blocked within RCU read-side critical sections.
1041  */
1042 static int rcu_print_task_stall(struct rcu_node *rnp)
1043 {
1044 	return 0;
1045 }
1046 
1047 /*
1048  * Because there is no preemptible RCU, there can be no readers blocked,
1049  * so there is no need to check for blocked tasks.  So check only for
1050  * bogus qsmask values.
1051  */
1052 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1053 {
1054 	WARN_ON_ONCE(rnp->qsmask);
1055 }
1056 
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 
1059 /*
1060  * Because preemptible RCU does not exist, it never needs to migrate
1061  * tasks that were blocked within RCU read-side critical sections, and
1062  * such non-existent tasks cannot possibly have been blocking the current
1063  * grace period.
1064  */
1065 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1066 				     struct rcu_node *rnp,
1067 				     struct rcu_data *rdp)
1068 {
1069 	return 0;
1070 }
1071 
1072 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1073 
1074 /*
1075  * Because preemptible RCU does not exist, it never has any callbacks
1076  * to check.
1077  */
1078 static void rcu_preempt_check_callbacks(int cpu)
1079 {
1080 }
1081 
1082 /*
1083  * Queue an RCU callback for lazy invocation after a grace period.
1084  * This will likely be later named something like "call_rcu_lazy()",
1085  * but this change will require some way of tagging the lazy RCU
1086  * callbacks in the list of pending callbacks.  Until then, this
1087  * function may only be called from __kfree_rcu().
1088  *
1089  * Because there is no preemptible RCU, we use RCU-sched instead.
1090  */
1091 void kfree_call_rcu(struct rcu_head *head,
1092 		    void (*func)(struct rcu_head *rcu))
1093 {
1094 	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1095 }
1096 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1097 
1098 /*
1099  * Wait for an rcu-preempt grace period, but make it happen quickly.
1100  * But because preemptible RCU does not exist, map to rcu-sched.
1101  */
1102 void synchronize_rcu_expedited(void)
1103 {
1104 	synchronize_sched_expedited();
1105 }
1106 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1107 
1108 #ifdef CONFIG_HOTPLUG_CPU
1109 
1110 /*
1111  * Because preemptible RCU does not exist, there is never any need to
1112  * report on tasks preempted in RCU read-side critical sections during
1113  * expedited RCU grace periods.
1114  */
1115 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1116 			       bool wake)
1117 {
1118 }
1119 
1120 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1121 
1122 /*
1123  * Because preemptible RCU does not exist, rcu_barrier() is just
1124  * another name for rcu_barrier_sched().
1125  */
1126 void rcu_barrier(void)
1127 {
1128 	rcu_barrier_sched();
1129 }
1130 EXPORT_SYMBOL_GPL(rcu_barrier);
1131 
1132 /*
1133  * Because preemptible RCU does not exist, it need not be initialized.
1134  */
1135 static void __init __rcu_init_preempt(void)
1136 {
1137 }
1138 
1139 /*
1140  * Because preemptible RCU does not exist, tasks cannot possibly exit
1141  * while in preemptible RCU read-side critical sections.
1142  */
1143 void exit_rcu(void)
1144 {
1145 }
1146 
1147 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1148 
1149 #ifdef CONFIG_RCU_BOOST
1150 
1151 #include "../locking/rtmutex_common.h"
1152 
1153 #ifdef CONFIG_RCU_TRACE
1154 
1155 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1156 {
1157 	if (list_empty(&rnp->blkd_tasks))
1158 		rnp->n_balk_blkd_tasks++;
1159 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1160 		rnp->n_balk_exp_gp_tasks++;
1161 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1162 		rnp->n_balk_boost_tasks++;
1163 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1164 		rnp->n_balk_notblocked++;
1165 	else if (rnp->gp_tasks != NULL &&
1166 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1167 		rnp->n_balk_notyet++;
1168 	else
1169 		rnp->n_balk_nos++;
1170 }
1171 
1172 #else /* #ifdef CONFIG_RCU_TRACE */
1173 
1174 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1175 {
1176 }
1177 
1178 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1179 
1180 static void rcu_wake_cond(struct task_struct *t, int status)
1181 {
1182 	/*
1183 	 * If the thread is yielding, only wake it when this
1184 	 * is invoked from idle
1185 	 */
1186 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1187 		wake_up_process(t);
1188 }
1189 
1190 /*
1191  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1192  * or ->boost_tasks, advancing the pointer to the next task in the
1193  * ->blkd_tasks list.
1194  *
1195  * Note that irqs must be enabled: boosting the task can block.
1196  * Returns 1 if there are more tasks needing to be boosted.
1197  */
1198 static int rcu_boost(struct rcu_node *rnp)
1199 {
1200 	unsigned long flags;
1201 	struct rt_mutex mtx;
1202 	struct task_struct *t;
1203 	struct list_head *tb;
1204 
1205 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1206 		return 0;  /* Nothing left to boost. */
1207 
1208 	raw_spin_lock_irqsave(&rnp->lock, flags);
1209 	smp_mb__after_unlock_lock();
1210 
1211 	/*
1212 	 * Recheck under the lock: all tasks in need of boosting
1213 	 * might exit their RCU read-side critical sections on their own.
1214 	 */
1215 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1216 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1217 		return 0;
1218 	}
1219 
1220 	/*
1221 	 * Preferentially boost tasks blocking expedited grace periods.
1222 	 * This cannot starve the normal grace periods because a second
1223 	 * expedited grace period must boost all blocked tasks, including
1224 	 * those blocking the pre-existing normal grace period.
1225 	 */
1226 	if (rnp->exp_tasks != NULL) {
1227 		tb = rnp->exp_tasks;
1228 		rnp->n_exp_boosts++;
1229 	} else {
1230 		tb = rnp->boost_tasks;
1231 		rnp->n_normal_boosts++;
1232 	}
1233 	rnp->n_tasks_boosted++;
1234 
1235 	/*
1236 	 * We boost task t by manufacturing an rt_mutex that appears to
1237 	 * be held by task t.  We leave a pointer to that rt_mutex where
1238 	 * task t can find it, and task t will release the mutex when it
1239 	 * exits its outermost RCU read-side critical section.  Then
1240 	 * simply acquiring this artificial rt_mutex will boost task
1241 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1242 	 *
1243 	 * Note that task t must acquire rnp->lock to remove itself from
1244 	 * the ->blkd_tasks list, which it will do from exit() if from
1245 	 * nowhere else.  We therefore are guaranteed that task t will
1246 	 * stay around at least until we drop rnp->lock.  Note that
1247 	 * rnp->lock also resolves races between our priority boosting
1248 	 * and task t's exiting its outermost RCU read-side critical
1249 	 * section.
1250 	 */
1251 	t = container_of(tb, struct task_struct, rcu_node_entry);
1252 	rt_mutex_init_proxy_locked(&mtx, t);
1253 	t->rcu_boost_mutex = &mtx;
1254 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1255 	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1256 	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1257 
1258 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1259 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1260 }
1261 
1262 /*
1263  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1264  * root rcu_node.
1265  */
1266 static int rcu_boost_kthread(void *arg)
1267 {
1268 	struct rcu_node *rnp = (struct rcu_node *)arg;
1269 	int spincnt = 0;
1270 	int more2boost;
1271 
1272 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1273 	for (;;) {
1274 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1275 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1276 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1277 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1278 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1279 		more2boost = rcu_boost(rnp);
1280 		if (more2boost)
1281 			spincnt++;
1282 		else
1283 			spincnt = 0;
1284 		if (spincnt > 10) {
1285 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1286 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1287 			schedule_timeout_interruptible(2);
1288 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1289 			spincnt = 0;
1290 		}
1291 	}
1292 	/* NOTREACHED */
1293 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Check to see if it is time to start boosting RCU readers that are
1299  * blocking the current grace period, and, if so, tell the per-rcu_node
1300  * kthread to start boosting them.  If there is an expedited grace
1301  * period in progress, it is always time to boost.
1302  *
1303  * The caller must hold rnp->lock, which this function releases.
1304  * The ->boost_kthread_task is immortal, so we don't need to worry
1305  * about it going away.
1306  */
1307 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308 {
1309 	struct task_struct *t;
1310 
1311 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1312 		rnp->n_balk_exp_gp_tasks++;
1313 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314 		return;
1315 	}
1316 	if (rnp->exp_tasks != NULL ||
1317 	    (rnp->gp_tasks != NULL &&
1318 	     rnp->boost_tasks == NULL &&
1319 	     rnp->qsmask == 0 &&
1320 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1321 		if (rnp->exp_tasks == NULL)
1322 			rnp->boost_tasks = rnp->gp_tasks;
1323 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324 		t = rnp->boost_kthread_task;
1325 		if (t)
1326 			rcu_wake_cond(t, rnp->boost_kthread_status);
1327 	} else {
1328 		rcu_initiate_boost_trace(rnp);
1329 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330 	}
1331 }
1332 
1333 /*
1334  * Wake up the per-CPU kthread to invoke RCU callbacks.
1335  */
1336 static void invoke_rcu_callbacks_kthread(void)
1337 {
1338 	unsigned long flags;
1339 
1340 	local_irq_save(flags);
1341 	__this_cpu_write(rcu_cpu_has_work, 1);
1342 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1343 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1344 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1345 			      __this_cpu_read(rcu_cpu_kthread_status));
1346 	}
1347 	local_irq_restore(flags);
1348 }
1349 
1350 /*
1351  * Is the current CPU running the RCU-callbacks kthread?
1352  * Caller must have preemption disabled.
1353  */
1354 static bool rcu_is_callbacks_kthread(void)
1355 {
1356 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1357 }
1358 
1359 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1360 
1361 /*
1362  * Do priority-boost accounting for the start of a new grace period.
1363  */
1364 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1365 {
1366 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1367 }
1368 
1369 /*
1370  * Create an RCU-boost kthread for the specified node if one does not
1371  * already exist.  We only create this kthread for preemptible RCU.
1372  * Returns zero if all is well, a negated errno otherwise.
1373  */
1374 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1375 						 struct rcu_node *rnp)
1376 {
1377 	int rnp_index = rnp - &rsp->node[0];
1378 	unsigned long flags;
1379 	struct sched_param sp;
1380 	struct task_struct *t;
1381 
1382 	if (&rcu_preempt_state != rsp)
1383 		return 0;
1384 
1385 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1386 		return 0;
1387 
1388 	rsp->boost = 1;
1389 	if (rnp->boost_kthread_task != NULL)
1390 		return 0;
1391 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1392 			   "rcub/%d", rnp_index);
1393 	if (IS_ERR(t))
1394 		return PTR_ERR(t);
1395 	raw_spin_lock_irqsave(&rnp->lock, flags);
1396 	smp_mb__after_unlock_lock();
1397 	rnp->boost_kthread_task = t;
1398 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1399 	sp.sched_priority = RCU_BOOST_PRIO;
1400 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1401 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1402 	return 0;
1403 }
1404 
1405 static void rcu_kthread_do_work(void)
1406 {
1407 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1408 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1409 	rcu_preempt_do_callbacks();
1410 }
1411 
1412 static void rcu_cpu_kthread_setup(unsigned int cpu)
1413 {
1414 	struct sched_param sp;
1415 
1416 	sp.sched_priority = RCU_KTHREAD_PRIO;
1417 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1418 }
1419 
1420 static void rcu_cpu_kthread_park(unsigned int cpu)
1421 {
1422 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1423 }
1424 
1425 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1426 {
1427 	return __this_cpu_read(rcu_cpu_has_work);
1428 }
1429 
1430 /*
1431  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1432  * RCU softirq used in flavors and configurations of RCU that do not
1433  * support RCU priority boosting.
1434  */
1435 static void rcu_cpu_kthread(unsigned int cpu)
1436 {
1437 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1438 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1439 	int spincnt;
1440 
1441 	for (spincnt = 0; spincnt < 10; spincnt++) {
1442 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1443 		local_bh_disable();
1444 		*statusp = RCU_KTHREAD_RUNNING;
1445 		this_cpu_inc(rcu_cpu_kthread_loops);
1446 		local_irq_disable();
1447 		work = *workp;
1448 		*workp = 0;
1449 		local_irq_enable();
1450 		if (work)
1451 			rcu_kthread_do_work();
1452 		local_bh_enable();
1453 		if (*workp == 0) {
1454 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1455 			*statusp = RCU_KTHREAD_WAITING;
1456 			return;
1457 		}
1458 	}
1459 	*statusp = RCU_KTHREAD_YIELDING;
1460 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1461 	schedule_timeout_interruptible(2);
1462 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1463 	*statusp = RCU_KTHREAD_WAITING;
1464 }
1465 
1466 /*
1467  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1468  * served by the rcu_node in question.  The CPU hotplug lock is still
1469  * held, so the value of rnp->qsmaskinit will be stable.
1470  *
1471  * We don't include outgoingcpu in the affinity set, use -1 if there is
1472  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1473  * this function allows the kthread to execute on any CPU.
1474  */
1475 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1476 {
1477 	struct task_struct *t = rnp->boost_kthread_task;
1478 	unsigned long mask = rnp->qsmaskinit;
1479 	cpumask_var_t cm;
1480 	int cpu;
1481 
1482 	if (!t)
1483 		return;
1484 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1485 		return;
1486 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1487 		if ((mask & 0x1) && cpu != outgoingcpu)
1488 			cpumask_set_cpu(cpu, cm);
1489 	if (cpumask_weight(cm) == 0) {
1490 		cpumask_setall(cm);
1491 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1492 			cpumask_clear_cpu(cpu, cm);
1493 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1494 	}
1495 	set_cpus_allowed_ptr(t, cm);
1496 	free_cpumask_var(cm);
1497 }
1498 
1499 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1500 	.store			= &rcu_cpu_kthread_task,
1501 	.thread_should_run	= rcu_cpu_kthread_should_run,
1502 	.thread_fn		= rcu_cpu_kthread,
1503 	.thread_comm		= "rcuc/%u",
1504 	.setup			= rcu_cpu_kthread_setup,
1505 	.park			= rcu_cpu_kthread_park,
1506 };
1507 
1508 /*
1509  * Spawn all kthreads -- called as soon as the scheduler is running.
1510  */
1511 static int __init rcu_spawn_kthreads(void)
1512 {
1513 	struct rcu_node *rnp;
1514 	int cpu;
1515 
1516 	rcu_scheduler_fully_active = 1;
1517 	for_each_possible_cpu(cpu)
1518 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1519 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1520 	rnp = rcu_get_root(rcu_state);
1521 	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1522 	if (NUM_RCU_NODES > 1) {
1523 		rcu_for_each_leaf_node(rcu_state, rnp)
1524 			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1525 	}
1526 	return 0;
1527 }
1528 early_initcall(rcu_spawn_kthreads);
1529 
1530 static void rcu_prepare_kthreads(int cpu)
1531 {
1532 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1533 	struct rcu_node *rnp = rdp->mynode;
1534 
1535 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1536 	if (rcu_scheduler_fully_active)
1537 		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1538 }
1539 
1540 #else /* #ifdef CONFIG_RCU_BOOST */
1541 
1542 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1543 {
1544 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1545 }
1546 
1547 static void invoke_rcu_callbacks_kthread(void)
1548 {
1549 	WARN_ON_ONCE(1);
1550 }
1551 
1552 static bool rcu_is_callbacks_kthread(void)
1553 {
1554 	return false;
1555 }
1556 
1557 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1558 {
1559 }
1560 
1561 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1562 {
1563 }
1564 
1565 static int __init rcu_scheduler_really_started(void)
1566 {
1567 	rcu_scheduler_fully_active = 1;
1568 	return 0;
1569 }
1570 early_initcall(rcu_scheduler_really_started);
1571 
1572 static void rcu_prepare_kthreads(int cpu)
1573 {
1574 }
1575 
1576 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1577 
1578 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1579 
1580 /*
1581  * Check to see if any future RCU-related work will need to be done
1582  * by the current CPU, even if none need be done immediately, returning
1583  * 1 if so.  This function is part of the RCU implementation; it is -not-
1584  * an exported member of the RCU API.
1585  *
1586  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1587  * any flavor of RCU.
1588  */
1589 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1590 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1591 {
1592 	*delta_jiffies = ULONG_MAX;
1593 	return rcu_cpu_has_callbacks(cpu, NULL);
1594 }
1595 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1596 
1597 /*
1598  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1599  * after it.
1600  */
1601 static void rcu_cleanup_after_idle(int cpu)
1602 {
1603 }
1604 
1605 /*
1606  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1607  * is nothing.
1608  */
1609 static void rcu_prepare_for_idle(int cpu)
1610 {
1611 }
1612 
1613 /*
1614  * Don't bother keeping a running count of the number of RCU callbacks
1615  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1616  */
1617 static void rcu_idle_count_callbacks_posted(void)
1618 {
1619 }
1620 
1621 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1622 
1623 /*
1624  * This code is invoked when a CPU goes idle, at which point we want
1625  * to have the CPU do everything required for RCU so that it can enter
1626  * the energy-efficient dyntick-idle mode.  This is handled by a
1627  * state machine implemented by rcu_prepare_for_idle() below.
1628  *
1629  * The following three proprocessor symbols control this state machine:
1630  *
1631  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1632  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1633  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1634  *	benchmarkers who might otherwise be tempted to set this to a large
1635  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1636  *	system.  And if you are -that- concerned about energy efficiency,
1637  *	just power the system down and be done with it!
1638  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1639  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1640  *	callbacks pending.  Setting this too high can OOM your system.
1641  *
1642  * The values below work well in practice.  If future workloads require
1643  * adjustment, they can be converted into kernel config parameters, though
1644  * making the state machine smarter might be a better option.
1645  */
1646 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1647 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1648 
1649 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1650 module_param(rcu_idle_gp_delay, int, 0644);
1651 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1652 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1653 
1654 extern int tick_nohz_active;
1655 
1656 /*
1657  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1658  * only if it has been awhile since the last time we did so.  Afterwards,
1659  * if there are any callbacks ready for immediate invocation, return true.
1660  */
1661 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1662 {
1663 	bool cbs_ready = false;
1664 	struct rcu_data *rdp;
1665 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1666 	struct rcu_node *rnp;
1667 	struct rcu_state *rsp;
1668 
1669 	/* Exit early if we advanced recently. */
1670 	if (jiffies == rdtp->last_advance_all)
1671 		return 0;
1672 	rdtp->last_advance_all = jiffies;
1673 
1674 	for_each_rcu_flavor(rsp) {
1675 		rdp = this_cpu_ptr(rsp->rda);
1676 		rnp = rdp->mynode;
1677 
1678 		/*
1679 		 * Don't bother checking unless a grace period has
1680 		 * completed since we last checked and there are
1681 		 * callbacks not yet ready to invoke.
1682 		 */
1683 		if (rdp->completed != rnp->completed &&
1684 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1685 			note_gp_changes(rsp, rdp);
1686 
1687 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1688 			cbs_ready = true;
1689 	}
1690 	return cbs_ready;
1691 }
1692 
1693 /*
1694  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1695  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1696  * caller to set the timeout based on whether or not there are non-lazy
1697  * callbacks.
1698  *
1699  * The caller must have disabled interrupts.
1700  */
1701 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1702 int rcu_needs_cpu(int cpu, unsigned long *dj)
1703 {
1704 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1705 
1706 	/* Snapshot to detect later posting of non-lazy callback. */
1707 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1708 
1709 	/* If no callbacks, RCU doesn't need the CPU. */
1710 	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1711 		*dj = ULONG_MAX;
1712 		return 0;
1713 	}
1714 
1715 	/* Attempt to advance callbacks. */
1716 	if (rcu_try_advance_all_cbs()) {
1717 		/* Some ready to invoke, so initiate later invocation. */
1718 		invoke_rcu_core();
1719 		return 1;
1720 	}
1721 	rdtp->last_accelerate = jiffies;
1722 
1723 	/* Request timer delay depending on laziness, and round. */
1724 	if (!rdtp->all_lazy) {
1725 		*dj = round_up(rcu_idle_gp_delay + jiffies,
1726 			       rcu_idle_gp_delay) - jiffies;
1727 	} else {
1728 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1729 	}
1730 	return 0;
1731 }
1732 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1733 
1734 /*
1735  * Prepare a CPU for idle from an RCU perspective.  The first major task
1736  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1737  * The second major task is to check to see if a non-lazy callback has
1738  * arrived at a CPU that previously had only lazy callbacks.  The third
1739  * major task is to accelerate (that is, assign grace-period numbers to)
1740  * any recently arrived callbacks.
1741  *
1742  * The caller must have disabled interrupts.
1743  */
1744 static void rcu_prepare_for_idle(int cpu)
1745 {
1746 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1747 	struct rcu_data *rdp;
1748 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1749 	struct rcu_node *rnp;
1750 	struct rcu_state *rsp;
1751 	int tne;
1752 
1753 	/* Handle nohz enablement switches conservatively. */
1754 	tne = ACCESS_ONCE(tick_nohz_active);
1755 	if (tne != rdtp->tick_nohz_enabled_snap) {
1756 		if (rcu_cpu_has_callbacks(cpu, NULL))
1757 			invoke_rcu_core(); /* force nohz to see update. */
1758 		rdtp->tick_nohz_enabled_snap = tne;
1759 		return;
1760 	}
1761 	if (!tne)
1762 		return;
1763 
1764 	/* If this is a no-CBs CPU, no callbacks, just return. */
1765 	if (rcu_is_nocb_cpu(cpu))
1766 		return;
1767 
1768 	/*
1769 	 * If a non-lazy callback arrived at a CPU having only lazy
1770 	 * callbacks, invoke RCU core for the side-effect of recalculating
1771 	 * idle duration on re-entry to idle.
1772 	 */
1773 	if (rdtp->all_lazy &&
1774 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1775 		rdtp->all_lazy = false;
1776 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1777 		invoke_rcu_core();
1778 		return;
1779 	}
1780 
1781 	/*
1782 	 * If we have not yet accelerated this jiffy, accelerate all
1783 	 * callbacks on this CPU.
1784 	 */
1785 	if (rdtp->last_accelerate == jiffies)
1786 		return;
1787 	rdtp->last_accelerate = jiffies;
1788 	for_each_rcu_flavor(rsp) {
1789 		rdp = per_cpu_ptr(rsp->rda, cpu);
1790 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1791 			continue;
1792 		rnp = rdp->mynode;
1793 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1794 		smp_mb__after_unlock_lock();
1795 		rcu_accelerate_cbs(rsp, rnp, rdp);
1796 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1797 	}
1798 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1799 }
1800 
1801 /*
1802  * Clean up for exit from idle.  Attempt to advance callbacks based on
1803  * any grace periods that elapsed while the CPU was idle, and if any
1804  * callbacks are now ready to invoke, initiate invocation.
1805  */
1806 static void rcu_cleanup_after_idle(int cpu)
1807 {
1808 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1809 	if (rcu_is_nocb_cpu(cpu))
1810 		return;
1811 	if (rcu_try_advance_all_cbs())
1812 		invoke_rcu_core();
1813 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1814 }
1815 
1816 /*
1817  * Keep a running count of the number of non-lazy callbacks posted
1818  * on this CPU.  This running counter (which is never decremented) allows
1819  * rcu_prepare_for_idle() to detect when something out of the idle loop
1820  * posts a callback, even if an equal number of callbacks are invoked.
1821  * Of course, callbacks should only be posted from within a trace event
1822  * designed to be called from idle or from within RCU_NONIDLE().
1823  */
1824 static void rcu_idle_count_callbacks_posted(void)
1825 {
1826 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1827 }
1828 
1829 /*
1830  * Data for flushing lazy RCU callbacks at OOM time.
1831  */
1832 static atomic_t oom_callback_count;
1833 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1834 
1835 /*
1836  * RCU OOM callback -- decrement the outstanding count and deliver the
1837  * wake-up if we are the last one.
1838  */
1839 static void rcu_oom_callback(struct rcu_head *rhp)
1840 {
1841 	if (atomic_dec_and_test(&oom_callback_count))
1842 		wake_up(&oom_callback_wq);
1843 }
1844 
1845 /*
1846  * Post an rcu_oom_notify callback on the current CPU if it has at
1847  * least one lazy callback.  This will unnecessarily post callbacks
1848  * to CPUs that already have a non-lazy callback at the end of their
1849  * callback list, but this is an infrequent operation, so accept some
1850  * extra overhead to keep things simple.
1851  */
1852 static void rcu_oom_notify_cpu(void *unused)
1853 {
1854 	struct rcu_state *rsp;
1855 	struct rcu_data *rdp;
1856 
1857 	for_each_rcu_flavor(rsp) {
1858 		rdp = __this_cpu_ptr(rsp->rda);
1859 		if (rdp->qlen_lazy != 0) {
1860 			atomic_inc(&oom_callback_count);
1861 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1862 		}
1863 	}
1864 }
1865 
1866 /*
1867  * If low on memory, ensure that each CPU has a non-lazy callback.
1868  * This will wake up CPUs that have only lazy callbacks, in turn
1869  * ensuring that they free up the corresponding memory in a timely manner.
1870  * Because an uncertain amount of memory will be freed in some uncertain
1871  * timeframe, we do not claim to have freed anything.
1872  */
1873 static int rcu_oom_notify(struct notifier_block *self,
1874 			  unsigned long notused, void *nfreed)
1875 {
1876 	int cpu;
1877 
1878 	/* Wait for callbacks from earlier instance to complete. */
1879 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1880 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1881 
1882 	/*
1883 	 * Prevent premature wakeup: ensure that all increments happen
1884 	 * before there is a chance of the counter reaching zero.
1885 	 */
1886 	atomic_set(&oom_callback_count, 1);
1887 
1888 	get_online_cpus();
1889 	for_each_online_cpu(cpu) {
1890 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1891 		cond_resched();
1892 	}
1893 	put_online_cpus();
1894 
1895 	/* Unconditionally decrement: no need to wake ourselves up. */
1896 	atomic_dec(&oom_callback_count);
1897 
1898 	return NOTIFY_OK;
1899 }
1900 
1901 static struct notifier_block rcu_oom_nb = {
1902 	.notifier_call = rcu_oom_notify
1903 };
1904 
1905 static int __init rcu_register_oom_notifier(void)
1906 {
1907 	register_oom_notifier(&rcu_oom_nb);
1908 	return 0;
1909 }
1910 early_initcall(rcu_register_oom_notifier);
1911 
1912 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1913 
1914 #ifdef CONFIG_RCU_CPU_STALL_INFO
1915 
1916 #ifdef CONFIG_RCU_FAST_NO_HZ
1917 
1918 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1919 {
1920 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1921 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1922 
1923 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1924 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1925 		ulong2long(nlpd),
1926 		rdtp->all_lazy ? 'L' : '.',
1927 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1928 }
1929 
1930 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1931 
1932 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1933 {
1934 	*cp = '\0';
1935 }
1936 
1937 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1938 
1939 /* Initiate the stall-info list. */
1940 static void print_cpu_stall_info_begin(void)
1941 {
1942 	pr_cont("\n");
1943 }
1944 
1945 /*
1946  * Print out diagnostic information for the specified stalled CPU.
1947  *
1948  * If the specified CPU is aware of the current RCU grace period
1949  * (flavor specified by rsp), then print the number of scheduling
1950  * clock interrupts the CPU has taken during the time that it has
1951  * been aware.  Otherwise, print the number of RCU grace periods
1952  * that this CPU is ignorant of, for example, "1" if the CPU was
1953  * aware of the previous grace period.
1954  *
1955  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1956  */
1957 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1958 {
1959 	char fast_no_hz[72];
1960 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1961 	struct rcu_dynticks *rdtp = rdp->dynticks;
1962 	char *ticks_title;
1963 	unsigned long ticks_value;
1964 
1965 	if (rsp->gpnum == rdp->gpnum) {
1966 		ticks_title = "ticks this GP";
1967 		ticks_value = rdp->ticks_this_gp;
1968 	} else {
1969 		ticks_title = "GPs behind";
1970 		ticks_value = rsp->gpnum - rdp->gpnum;
1971 	}
1972 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1973 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1974 	       cpu, ticks_value, ticks_title,
1975 	       atomic_read(&rdtp->dynticks) & 0xfff,
1976 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1977 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1978 	       fast_no_hz);
1979 }
1980 
1981 /* Terminate the stall-info list. */
1982 static void print_cpu_stall_info_end(void)
1983 {
1984 	pr_err("\t");
1985 }
1986 
1987 /* Zero ->ticks_this_gp for all flavors of RCU. */
1988 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1989 {
1990 	rdp->ticks_this_gp = 0;
1991 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1992 }
1993 
1994 /* Increment ->ticks_this_gp for all flavors of RCU. */
1995 static void increment_cpu_stall_ticks(void)
1996 {
1997 	struct rcu_state *rsp;
1998 
1999 	for_each_rcu_flavor(rsp)
2000 		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2001 }
2002 
2003 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2004 
2005 static void print_cpu_stall_info_begin(void)
2006 {
2007 	pr_cont(" {");
2008 }
2009 
2010 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2011 {
2012 	pr_cont(" %d", cpu);
2013 }
2014 
2015 static void print_cpu_stall_info_end(void)
2016 {
2017 	pr_cont("} ");
2018 }
2019 
2020 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2021 {
2022 }
2023 
2024 static void increment_cpu_stall_ticks(void)
2025 {
2026 }
2027 
2028 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2029 
2030 #ifdef CONFIG_RCU_NOCB_CPU
2031 
2032 /*
2033  * Offload callback processing from the boot-time-specified set of CPUs
2034  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
2035  * kthread created that pulls the callbacks from the corresponding CPU,
2036  * waits for a grace period to elapse, and invokes the callbacks.
2037  * The no-CBs CPUs do a wake_up() on their kthread when they insert
2038  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2039  * has been specified, in which case each kthread actively polls its
2040  * CPU.  (Which isn't so great for energy efficiency, but which does
2041  * reduce RCU's overhead on that CPU.)
2042  *
2043  * This is intended to be used in conjunction with Frederic Weisbecker's
2044  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2045  * running CPU-bound user-mode computations.
2046  *
2047  * Offloading of callback processing could also in theory be used as
2048  * an energy-efficiency measure because CPUs with no RCU callbacks
2049  * queued are more aggressive about entering dyntick-idle mode.
2050  */
2051 
2052 
2053 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2054 static int __init rcu_nocb_setup(char *str)
2055 {
2056 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2057 	have_rcu_nocb_mask = true;
2058 	cpulist_parse(str, rcu_nocb_mask);
2059 	return 1;
2060 }
2061 __setup("rcu_nocbs=", rcu_nocb_setup);
2062 
2063 static int __init parse_rcu_nocb_poll(char *arg)
2064 {
2065 	rcu_nocb_poll = 1;
2066 	return 0;
2067 }
2068 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2069 
2070 /*
2071  * Do any no-CBs CPUs need another grace period?
2072  *
2073  * Interrupts must be disabled.  If the caller does not hold the root
2074  * rnp_node structure's ->lock, the results are advisory only.
2075  */
2076 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2077 {
2078 	struct rcu_node *rnp = rcu_get_root(rsp);
2079 
2080 	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2081 }
2082 
2083 /*
2084  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2085  * grace period.
2086  */
2087 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2088 {
2089 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2090 }
2091 
2092 /*
2093  * Set the root rcu_node structure's ->need_future_gp field
2094  * based on the sum of those of all rcu_node structures.  This does
2095  * double-count the root rcu_node structure's requests, but this
2096  * is necessary to handle the possibility of a rcu_nocb_kthread()
2097  * having awakened during the time that the rcu_node structures
2098  * were being updated for the end of the previous grace period.
2099  */
2100 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2101 {
2102 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2103 }
2104 
2105 static void rcu_init_one_nocb(struct rcu_node *rnp)
2106 {
2107 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2108 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2109 }
2110 
2111 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2112 /* Is the specified CPU a no-CPUs CPU? */
2113 bool rcu_is_nocb_cpu(int cpu)
2114 {
2115 	if (have_rcu_nocb_mask)
2116 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2117 	return false;
2118 }
2119 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2120 
2121 /*
2122  * Enqueue the specified string of rcu_head structures onto the specified
2123  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2124  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2125  * counts are supplied by rhcount and rhcount_lazy.
2126  *
2127  * If warranted, also wake up the kthread servicing this CPUs queues.
2128  */
2129 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2130 				    struct rcu_head *rhp,
2131 				    struct rcu_head **rhtp,
2132 				    int rhcount, int rhcount_lazy,
2133 				    unsigned long flags)
2134 {
2135 	int len;
2136 	struct rcu_head **old_rhpp;
2137 	struct task_struct *t;
2138 
2139 	/* Enqueue the callback on the nocb list and update counts. */
2140 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2141 	ACCESS_ONCE(*old_rhpp) = rhp;
2142 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2143 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2144 
2145 	/* If we are not being polled and there is a kthread, awaken it ... */
2146 	t = ACCESS_ONCE(rdp->nocb_kthread);
2147 	if (rcu_nocb_poll || !t) {
2148 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2149 				    TPS("WakeNotPoll"));
2150 		return;
2151 	}
2152 	len = atomic_long_read(&rdp->nocb_q_count);
2153 	if (old_rhpp == &rdp->nocb_head) {
2154 		if (!irqs_disabled_flags(flags)) {
2155 			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2156 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2157 					    TPS("WakeEmpty"));
2158 		} else {
2159 			rdp->nocb_defer_wakeup = true;
2160 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2161 					    TPS("WakeEmptyIsDeferred"));
2162 		}
2163 		rdp->qlen_last_fqs_check = 0;
2164 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2165 		wake_up_process(t); /* ... or if many callbacks queued. */
2166 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2167 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2168 	} else {
2169 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2170 	}
2171 	return;
2172 }
2173 
2174 /*
2175  * This is a helper for __call_rcu(), which invokes this when the normal
2176  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2177  * function returns failure back to __call_rcu(), which can complain
2178  * appropriately.
2179  *
2180  * Otherwise, this function queues the callback where the corresponding
2181  * "rcuo" kthread can find it.
2182  */
2183 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2184 			    bool lazy, unsigned long flags)
2185 {
2186 
2187 	if (!rcu_is_nocb_cpu(rdp->cpu))
2188 		return 0;
2189 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2190 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2191 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2192 					 (unsigned long)rhp->func,
2193 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2194 					 -atomic_long_read(&rdp->nocb_q_count));
2195 	else
2196 		trace_rcu_callback(rdp->rsp->name, rhp,
2197 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2198 				   -atomic_long_read(&rdp->nocb_q_count));
2199 	return 1;
2200 }
2201 
2202 /*
2203  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2204  * not a no-CBs CPU.
2205  */
2206 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2207 						     struct rcu_data *rdp,
2208 						     unsigned long flags)
2209 {
2210 	long ql = rsp->qlen;
2211 	long qll = rsp->qlen_lazy;
2212 
2213 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2214 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2215 		return 0;
2216 	rsp->qlen = 0;
2217 	rsp->qlen_lazy = 0;
2218 
2219 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2220 	if (rsp->orphan_donelist != NULL) {
2221 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2222 					rsp->orphan_donetail, ql, qll, flags);
2223 		ql = qll = 0;
2224 		rsp->orphan_donelist = NULL;
2225 		rsp->orphan_donetail = &rsp->orphan_donelist;
2226 	}
2227 	if (rsp->orphan_nxtlist != NULL) {
2228 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2229 					rsp->orphan_nxttail, ql, qll, flags);
2230 		ql = qll = 0;
2231 		rsp->orphan_nxtlist = NULL;
2232 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2233 	}
2234 	return 1;
2235 }
2236 
2237 /*
2238  * If necessary, kick off a new grace period, and either way wait
2239  * for a subsequent grace period to complete.
2240  */
2241 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2242 {
2243 	unsigned long c;
2244 	bool d;
2245 	unsigned long flags;
2246 	struct rcu_node *rnp = rdp->mynode;
2247 
2248 	raw_spin_lock_irqsave(&rnp->lock, flags);
2249 	smp_mb__after_unlock_lock();
2250 	c = rcu_start_future_gp(rnp, rdp);
2251 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2252 
2253 	/*
2254 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2255 	 * up the load average.
2256 	 */
2257 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2258 	for (;;) {
2259 		wait_event_interruptible(
2260 			rnp->nocb_gp_wq[c & 0x1],
2261 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2262 		if (likely(d))
2263 			break;
2264 		flush_signals(current);
2265 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2266 	}
2267 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2268 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2269 }
2270 
2271 /*
2272  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2273  * callbacks queued by the corresponding no-CBs CPU.
2274  */
2275 static int rcu_nocb_kthread(void *arg)
2276 {
2277 	int c, cl;
2278 	bool firsttime = 1;
2279 	struct rcu_head *list;
2280 	struct rcu_head *next;
2281 	struct rcu_head **tail;
2282 	struct rcu_data *rdp = arg;
2283 
2284 	/* Each pass through this loop invokes one batch of callbacks */
2285 	for (;;) {
2286 		/* If not polling, wait for next batch of callbacks. */
2287 		if (!rcu_nocb_poll) {
2288 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2289 					    TPS("Sleep"));
2290 			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2291 			/* Memory barrier provide by xchg() below. */
2292 		} else if (firsttime) {
2293 			firsttime = 0;
2294 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2295 					    TPS("Poll"));
2296 		}
2297 		list = ACCESS_ONCE(rdp->nocb_head);
2298 		if (!list) {
2299 			if (!rcu_nocb_poll)
2300 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2301 						    TPS("WokeEmpty"));
2302 			schedule_timeout_interruptible(1);
2303 			flush_signals(current);
2304 			continue;
2305 		}
2306 		firsttime = 1;
2307 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2308 				    TPS("WokeNonEmpty"));
2309 
2310 		/*
2311 		 * Extract queued callbacks, update counts, and wait
2312 		 * for a grace period to elapse.
2313 		 */
2314 		ACCESS_ONCE(rdp->nocb_head) = NULL;
2315 		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2316 		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2317 		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2318 		ACCESS_ONCE(rdp->nocb_p_count) += c;
2319 		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2320 		rcu_nocb_wait_gp(rdp);
2321 
2322 		/* Each pass through the following loop invokes a callback. */
2323 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2324 		c = cl = 0;
2325 		while (list) {
2326 			next = list->next;
2327 			/* Wait for enqueuing to complete, if needed. */
2328 			while (next == NULL && &list->next != tail) {
2329 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2330 						    TPS("WaitQueue"));
2331 				schedule_timeout_interruptible(1);
2332 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2333 						    TPS("WokeQueue"));
2334 				next = list->next;
2335 			}
2336 			debug_rcu_head_unqueue(list);
2337 			local_bh_disable();
2338 			if (__rcu_reclaim(rdp->rsp->name, list))
2339 				cl++;
2340 			c++;
2341 			local_bh_enable();
2342 			list = next;
2343 		}
2344 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2345 		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2346 		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2347 		rdp->n_nocbs_invoked += c;
2348 	}
2349 	return 0;
2350 }
2351 
2352 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2353 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2354 {
2355 	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2356 }
2357 
2358 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2359 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2360 {
2361 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2362 		return;
2363 	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2364 	wake_up(&rdp->nocb_wq);
2365 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2366 }
2367 
2368 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2369 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2370 {
2371 	rdp->nocb_tail = &rdp->nocb_head;
2372 	init_waitqueue_head(&rdp->nocb_wq);
2373 }
2374 
2375 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2376 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2377 {
2378 	int cpu;
2379 	struct rcu_data *rdp;
2380 	struct task_struct *t;
2381 
2382 	if (rcu_nocb_mask == NULL)
2383 		return;
2384 	for_each_cpu(cpu, rcu_nocb_mask) {
2385 		rdp = per_cpu_ptr(rsp->rda, cpu);
2386 		t = kthread_run(rcu_nocb_kthread, rdp,
2387 				"rcuo%c/%d", rsp->abbr, cpu);
2388 		BUG_ON(IS_ERR(t));
2389 		ACCESS_ONCE(rdp->nocb_kthread) = t;
2390 	}
2391 }
2392 
2393 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2394 static bool init_nocb_callback_list(struct rcu_data *rdp)
2395 {
2396 	if (rcu_nocb_mask == NULL ||
2397 	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2398 		return false;
2399 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2400 	return true;
2401 }
2402 
2403 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2404 
2405 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2406 {
2407 	return 0;
2408 }
2409 
2410 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2411 {
2412 }
2413 
2414 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2415 {
2416 }
2417 
2418 static void rcu_init_one_nocb(struct rcu_node *rnp)
2419 {
2420 }
2421 
2422 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2423 			    bool lazy, unsigned long flags)
2424 {
2425 	return 0;
2426 }
2427 
2428 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2429 						     struct rcu_data *rdp,
2430 						     unsigned long flags)
2431 {
2432 	return 0;
2433 }
2434 
2435 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2436 {
2437 }
2438 
2439 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2440 {
2441 	return false;
2442 }
2443 
2444 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2445 {
2446 }
2447 
2448 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2449 {
2450 }
2451 
2452 static bool init_nocb_callback_list(struct rcu_data *rdp)
2453 {
2454 	return false;
2455 }
2456 
2457 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2458 
2459 /*
2460  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2461  * arbitrarily long period of time with the scheduling-clock tick turned
2462  * off.  RCU will be paying attention to this CPU because it is in the
2463  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2464  * machine because the scheduling-clock tick has been disabled.  Therefore,
2465  * if an adaptive-ticks CPU is failing to respond to the current grace
2466  * period and has not be idle from an RCU perspective, kick it.
2467  */
2468 static void rcu_kick_nohz_cpu(int cpu)
2469 {
2470 #ifdef CONFIG_NO_HZ_FULL
2471 	if (tick_nohz_full_cpu(cpu))
2472 		smp_send_reschedule(cpu);
2473 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2474 }
2475 
2476 
2477 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2478 
2479 /*
2480  * Define RCU flavor that holds sysidle state.  This needs to be the
2481  * most active flavor of RCU.
2482  */
2483 #ifdef CONFIG_PREEMPT_RCU
2484 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2485 #else /* #ifdef CONFIG_PREEMPT_RCU */
2486 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2487 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2488 
2489 static int full_sysidle_state;		/* Current system-idle state. */
2490 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2491 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2492 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2493 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2494 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2495 
2496 /*
2497  * Invoked to note exit from irq or task transition to idle.  Note that
2498  * usermode execution does -not- count as idle here!  After all, we want
2499  * to detect full-system idle states, not RCU quiescent states and grace
2500  * periods.  The caller must have disabled interrupts.
2501  */
2502 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2503 {
2504 	unsigned long j;
2505 
2506 	/* Adjust nesting, check for fully idle. */
2507 	if (irq) {
2508 		rdtp->dynticks_idle_nesting--;
2509 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2510 		if (rdtp->dynticks_idle_nesting != 0)
2511 			return;  /* Still not fully idle. */
2512 	} else {
2513 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2514 		    DYNTICK_TASK_NEST_VALUE) {
2515 			rdtp->dynticks_idle_nesting = 0;
2516 		} else {
2517 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2518 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2519 			return;  /* Still not fully idle. */
2520 		}
2521 	}
2522 
2523 	/* Record start of fully idle period. */
2524 	j = jiffies;
2525 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2526 	smp_mb__before_atomic_inc();
2527 	atomic_inc(&rdtp->dynticks_idle);
2528 	smp_mb__after_atomic_inc();
2529 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2530 }
2531 
2532 /*
2533  * Unconditionally force exit from full system-idle state.  This is
2534  * invoked when a normal CPU exits idle, but must be called separately
2535  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2536  * is that the timekeeping CPU is permitted to take scheduling-clock
2537  * interrupts while the system is in system-idle state, and of course
2538  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2539  * interrupt from any other type of interrupt.
2540  */
2541 void rcu_sysidle_force_exit(void)
2542 {
2543 	int oldstate = ACCESS_ONCE(full_sysidle_state);
2544 	int newoldstate;
2545 
2546 	/*
2547 	 * Each pass through the following loop attempts to exit full
2548 	 * system-idle state.  If contention proves to be a problem,
2549 	 * a trylock-based contention tree could be used here.
2550 	 */
2551 	while (oldstate > RCU_SYSIDLE_SHORT) {
2552 		newoldstate = cmpxchg(&full_sysidle_state,
2553 				      oldstate, RCU_SYSIDLE_NOT);
2554 		if (oldstate == newoldstate &&
2555 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2556 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2557 			return; /* We cleared it, done! */
2558 		}
2559 		oldstate = newoldstate;
2560 	}
2561 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2562 }
2563 
2564 /*
2565  * Invoked to note entry to irq or task transition from idle.  Note that
2566  * usermode execution does -not- count as idle here!  The caller must
2567  * have disabled interrupts.
2568  */
2569 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2570 {
2571 	/* Adjust nesting, check for already non-idle. */
2572 	if (irq) {
2573 		rdtp->dynticks_idle_nesting++;
2574 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2575 		if (rdtp->dynticks_idle_nesting != 1)
2576 			return; /* Already non-idle. */
2577 	} else {
2578 		/*
2579 		 * Allow for irq misnesting.  Yes, it really is possible
2580 		 * to enter an irq handler then never leave it, and maybe
2581 		 * also vice versa.  Handle both possibilities.
2582 		 */
2583 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2584 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2585 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2586 			return; /* Already non-idle. */
2587 		} else {
2588 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2589 		}
2590 	}
2591 
2592 	/* Record end of idle period. */
2593 	smp_mb__before_atomic_inc();
2594 	atomic_inc(&rdtp->dynticks_idle);
2595 	smp_mb__after_atomic_inc();
2596 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2597 
2598 	/*
2599 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2600 	 * during a system-idle state.  This must be the case, because
2601 	 * the timekeeping CPU has to take scheduling-clock interrupts
2602 	 * during the time that the system is transitioning to full
2603 	 * system-idle state.  This means that the timekeeping CPU must
2604 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2605 	 * more than take a scheduling-clock interrupt.
2606 	 */
2607 	if (smp_processor_id() == tick_do_timer_cpu)
2608 		return;
2609 
2610 	/* Update system-idle state: We are clearly no longer fully idle! */
2611 	rcu_sysidle_force_exit();
2612 }
2613 
2614 /*
2615  * Check to see if the current CPU is idle.  Note that usermode execution
2616  * does not count as idle.  The caller must have disabled interrupts.
2617  */
2618 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2619 				  unsigned long *maxj)
2620 {
2621 	int cur;
2622 	unsigned long j;
2623 	struct rcu_dynticks *rdtp = rdp->dynticks;
2624 
2625 	/*
2626 	 * If some other CPU has already reported non-idle, if this is
2627 	 * not the flavor of RCU that tracks sysidle state, or if this
2628 	 * is an offline or the timekeeping CPU, nothing to do.
2629 	 */
2630 	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2631 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2632 		return;
2633 	if (rcu_gp_in_progress(rdp->rsp))
2634 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2635 
2636 	/* Pick up current idle and NMI-nesting counter and check. */
2637 	cur = atomic_read(&rdtp->dynticks_idle);
2638 	if (cur & 0x1) {
2639 		*isidle = false; /* We are not idle! */
2640 		return;
2641 	}
2642 	smp_mb(); /* Read counters before timestamps. */
2643 
2644 	/* Pick up timestamps. */
2645 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2646 	/* If this CPU entered idle more recently, update maxj timestamp. */
2647 	if (ULONG_CMP_LT(*maxj, j))
2648 		*maxj = j;
2649 }
2650 
2651 /*
2652  * Is this the flavor of RCU that is handling full-system idle?
2653  */
2654 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2655 {
2656 	return rsp == rcu_sysidle_state;
2657 }
2658 
2659 /*
2660  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2661  * timekeeping CPU.
2662  */
2663 static void rcu_bind_gp_kthread(void)
2664 {
2665 	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2666 
2667 	if (cpu < 0 || cpu >= nr_cpu_ids)
2668 		return;
2669 	if (raw_smp_processor_id() != cpu)
2670 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2671 }
2672 
2673 /*
2674  * Return a delay in jiffies based on the number of CPUs, rcu_node
2675  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2676  * systems more time to transition to full-idle state in order to
2677  * avoid the cache thrashing that otherwise occur on the state variable.
2678  * Really small systems (less than a couple of tens of CPUs) should
2679  * instead use a single global atomically incremented counter, and later
2680  * versions of this will automatically reconfigure themselves accordingly.
2681  */
2682 static unsigned long rcu_sysidle_delay(void)
2683 {
2684 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2685 		return 0;
2686 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2687 }
2688 
2689 /*
2690  * Advance the full-system-idle state.  This is invoked when all of
2691  * the non-timekeeping CPUs are idle.
2692  */
2693 static void rcu_sysidle(unsigned long j)
2694 {
2695 	/* Check the current state. */
2696 	switch (ACCESS_ONCE(full_sysidle_state)) {
2697 	case RCU_SYSIDLE_NOT:
2698 
2699 		/* First time all are idle, so note a short idle period. */
2700 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2701 		break;
2702 
2703 	case RCU_SYSIDLE_SHORT:
2704 
2705 		/*
2706 		 * Idle for a bit, time to advance to next state?
2707 		 * cmpxchg failure means race with non-idle, let them win.
2708 		 */
2709 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2710 			(void)cmpxchg(&full_sysidle_state,
2711 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2712 		break;
2713 
2714 	case RCU_SYSIDLE_LONG:
2715 
2716 		/*
2717 		 * Do an additional check pass before advancing to full.
2718 		 * cmpxchg failure means race with non-idle, let them win.
2719 		 */
2720 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2721 			(void)cmpxchg(&full_sysidle_state,
2722 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2723 		break;
2724 
2725 	default:
2726 		break;
2727 	}
2728 }
2729 
2730 /*
2731  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2732  * back to the beginning.
2733  */
2734 static void rcu_sysidle_cancel(void)
2735 {
2736 	smp_mb();
2737 	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2738 }
2739 
2740 /*
2741  * Update the sysidle state based on the results of a force-quiescent-state
2742  * scan of the CPUs' dyntick-idle state.
2743  */
2744 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2745 			       unsigned long maxj, bool gpkt)
2746 {
2747 	if (rsp != rcu_sysidle_state)
2748 		return;  /* Wrong flavor, ignore. */
2749 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2750 		return;  /* Running state machine from timekeeping CPU. */
2751 	if (isidle)
2752 		rcu_sysidle(maxj);    /* More idle! */
2753 	else
2754 		rcu_sysidle_cancel(); /* Idle is over. */
2755 }
2756 
2757 /*
2758  * Wrapper for rcu_sysidle_report() when called from the grace-period
2759  * kthread's context.
2760  */
2761 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2762 				  unsigned long maxj)
2763 {
2764 	rcu_sysidle_report(rsp, isidle, maxj, true);
2765 }
2766 
2767 /* Callback and function for forcing an RCU grace period. */
2768 struct rcu_sysidle_head {
2769 	struct rcu_head rh;
2770 	int inuse;
2771 };
2772 
2773 static void rcu_sysidle_cb(struct rcu_head *rhp)
2774 {
2775 	struct rcu_sysidle_head *rshp;
2776 
2777 	/*
2778 	 * The following memory barrier is needed to replace the
2779 	 * memory barriers that would normally be in the memory
2780 	 * allocator.
2781 	 */
2782 	smp_mb();  /* grace period precedes setting inuse. */
2783 
2784 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2785 	ACCESS_ONCE(rshp->inuse) = 0;
2786 }
2787 
2788 /*
2789  * Check to see if the system is fully idle, other than the timekeeping CPU.
2790  * The caller must have disabled interrupts.
2791  */
2792 bool rcu_sys_is_idle(void)
2793 {
2794 	static struct rcu_sysidle_head rsh;
2795 	int rss = ACCESS_ONCE(full_sysidle_state);
2796 
2797 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2798 		return false;
2799 
2800 	/* Handle small-system case by doing a full scan of CPUs. */
2801 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2802 		int oldrss = rss - 1;
2803 
2804 		/*
2805 		 * One pass to advance to each state up to _FULL.
2806 		 * Give up if any pass fails to advance the state.
2807 		 */
2808 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2809 			int cpu;
2810 			bool isidle = true;
2811 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2812 			struct rcu_data *rdp;
2813 
2814 			/* Scan all the CPUs looking for nonidle CPUs. */
2815 			for_each_possible_cpu(cpu) {
2816 				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2817 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2818 				if (!isidle)
2819 					break;
2820 			}
2821 			rcu_sysidle_report(rcu_sysidle_state,
2822 					   isidle, maxj, false);
2823 			oldrss = rss;
2824 			rss = ACCESS_ONCE(full_sysidle_state);
2825 		}
2826 	}
2827 
2828 	/* If this is the first observation of an idle period, record it. */
2829 	if (rss == RCU_SYSIDLE_FULL) {
2830 		rss = cmpxchg(&full_sysidle_state,
2831 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2832 		return rss == RCU_SYSIDLE_FULL;
2833 	}
2834 
2835 	smp_mb(); /* ensure rss load happens before later caller actions. */
2836 
2837 	/* If already fully idle, tell the caller (in case of races). */
2838 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2839 		return true;
2840 
2841 	/*
2842 	 * If we aren't there yet, and a grace period is not in flight,
2843 	 * initiate a grace period.  Either way, tell the caller that
2844 	 * we are not there yet.  We use an xchg() rather than an assignment
2845 	 * to make up for the memory barriers that would otherwise be
2846 	 * provided by the memory allocator.
2847 	 */
2848 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2849 	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2850 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2851 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2852 	return false;
2853 }
2854 
2855 /*
2856  * Initialize dynticks sysidle state for CPUs coming online.
2857  */
2858 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2859 {
2860 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2861 }
2862 
2863 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2864 
2865 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2866 {
2867 }
2868 
2869 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2870 {
2871 }
2872 
2873 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2874 				  unsigned long *maxj)
2875 {
2876 }
2877 
2878 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2879 {
2880 	return false;
2881 }
2882 
2883 static void rcu_bind_gp_kthread(void)
2884 {
2885 }
2886 
2887 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2888 				  unsigned long maxj)
2889 {
2890 }
2891 
2892 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2893 {
2894 }
2895 
2896 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2897 
2898 /*
2899  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2900  * grace-period kthread will do force_quiescent_state() processing?
2901  * The idea is to avoid waking up RCU core processing on such a
2902  * CPU unless the grace period has extended for too long.
2903  *
2904  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2905  * CONFIG_RCU_NOCB_CPU CPUs.
2906  */
2907 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2908 {
2909 #ifdef CONFIG_NO_HZ_FULL
2910 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2911 	    (!rcu_gp_in_progress(rsp) ||
2912 	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
2913 		return 1;
2914 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2915 	return 0;
2916 }
2917