xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 31b90347)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #define RCU_KTHREAD_PRIO 1
34 
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #else
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39 #endif
40 
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
45 static char __initdata nocb_buf[NR_CPUS * 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47 
48 /*
49  * Check the RCU kernel configuration parameters and print informative
50  * messages about anything out of the ordinary.  If you like #ifdef, you
51  * will love this function.
52  */
53 static void __init rcu_bootup_announce_oddness(void)
54 {
55 #ifdef CONFIG_RCU_TRACE
56 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 #endif
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 	       CONFIG_RCU_FANOUT);
61 #endif
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 #endif
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 #endif
68 #ifdef CONFIG_PROVE_RCU
69 	pr_info("\tRCU lockdep checking is enabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 	pr_info("\tRCU torture testing starts during boot.\n");
73 #endif
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 #endif
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 #endif
80 #if NUM_RCU_LVL_4 != 0
81 	pr_info("\tFour-level hierarchy is enabled.\n");
82 #endif
83 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85 	if (nr_cpu_ids != NR_CPUS)
86 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 	if (!have_rcu_nocb_mask) {
90 		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 		have_rcu_nocb_mask = true;
92 	}
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 	cpumask_set_cpu(0, rcu_nocb_mask);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 	pr_info("\tOffload RCU callbacks from all CPUs\n");
99 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 	if (have_rcu_nocb_mask) {
103 		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 				    rcu_nocb_mask);
107 		}
108 		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109 		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110 		if (rcu_nocb_poll)
111 			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112 	}
113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 }
115 
116 #ifdef CONFIG_TREE_PREEMPT_RCU
117 
118 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119 static struct rcu_state *rcu_state = &rcu_preempt_state;
120 
121 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122 
123 /*
124  * Tell them what RCU they are running.
125  */
126 static void __init rcu_bootup_announce(void)
127 {
128 	pr_info("Preemptible hierarchical RCU implementation.\n");
129 	rcu_bootup_announce_oddness();
130 }
131 
132 /*
133  * Return the number of RCU-preempt batches processed thus far
134  * for debug and statistics.
135  */
136 long rcu_batches_completed_preempt(void)
137 {
138 	return rcu_preempt_state.completed;
139 }
140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141 
142 /*
143  * Return the number of RCU batches processed thus far for debug & stats.
144  */
145 long rcu_batches_completed(void)
146 {
147 	return rcu_batches_completed_preempt();
148 }
149 EXPORT_SYMBOL_GPL(rcu_batches_completed);
150 
151 /*
152  * Force a quiescent state for preemptible RCU.
153  */
154 void rcu_force_quiescent_state(void)
155 {
156 	force_quiescent_state(&rcu_preempt_state);
157 }
158 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159 
160 /*
161  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162  * that this just means that the task currently running on the CPU is
163  * not in a quiescent state.  There might be any number of tasks blocked
164  * while in an RCU read-side critical section.
165  *
166  * Unlike the other rcu_*_qs() functions, callers to this function
167  * must disable irqs in order to protect the assignment to
168  * ->rcu_read_unlock_special.
169  */
170 static void rcu_preempt_qs(int cpu)
171 {
172 	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173 
174 	if (rdp->passed_quiesce == 0)
175 		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176 	rdp->passed_quiesce = 1;
177 	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178 }
179 
180 /*
181  * We have entered the scheduler, and the current task might soon be
182  * context-switched away from.  If this task is in an RCU read-side
183  * critical section, we will no longer be able to rely on the CPU to
184  * record that fact, so we enqueue the task on the blkd_tasks list.
185  * The task will dequeue itself when it exits the outermost enclosing
186  * RCU read-side critical section.  Therefore, the current grace period
187  * cannot be permitted to complete until the blkd_tasks list entries
188  * predating the current grace period drain, in other words, until
189  * rnp->gp_tasks becomes NULL.
190  *
191  * Caller must disable preemption.
192  */
193 static void rcu_preempt_note_context_switch(int cpu)
194 {
195 	struct task_struct *t = current;
196 	unsigned long flags;
197 	struct rcu_data *rdp;
198 	struct rcu_node *rnp;
199 
200 	if (t->rcu_read_lock_nesting > 0 &&
201 	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202 
203 		/* Possibly blocking in an RCU read-side critical section. */
204 		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205 		rnp = rdp->mynode;
206 		raw_spin_lock_irqsave(&rnp->lock, flags);
207 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
208 		t->rcu_blocked_node = rnp;
209 
210 		/*
211 		 * If this CPU has already checked in, then this task
212 		 * will hold up the next grace period rather than the
213 		 * current grace period.  Queue the task accordingly.
214 		 * If the task is queued for the current grace period
215 		 * (i.e., this CPU has not yet passed through a quiescent
216 		 * state for the current grace period), then as long
217 		 * as that task remains queued, the current grace period
218 		 * cannot end.  Note that there is some uncertainty as
219 		 * to exactly when the current grace period started.
220 		 * We take a conservative approach, which can result
221 		 * in unnecessarily waiting on tasks that started very
222 		 * slightly after the current grace period began.  C'est
223 		 * la vie!!!
224 		 *
225 		 * But first, note that the current CPU must still be
226 		 * on line!
227 		 */
228 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
229 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
230 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
231 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
232 			rnp->gp_tasks = &t->rcu_node_entry;
233 #ifdef CONFIG_RCU_BOOST
234 			if (rnp->boost_tasks != NULL)
235 				rnp->boost_tasks = rnp->gp_tasks;
236 #endif /* #ifdef CONFIG_RCU_BOOST */
237 		} else {
238 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
239 			if (rnp->qsmask & rdp->grpmask)
240 				rnp->gp_tasks = &t->rcu_node_entry;
241 		}
242 		trace_rcu_preempt_task(rdp->rsp->name,
243 				       t->pid,
244 				       (rnp->qsmask & rdp->grpmask)
245 				       ? rnp->gpnum
246 				       : rnp->gpnum + 1);
247 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
248 	} else if (t->rcu_read_lock_nesting < 0 &&
249 		   t->rcu_read_unlock_special) {
250 
251 		/*
252 		 * Complete exit from RCU read-side critical section on
253 		 * behalf of preempted instance of __rcu_read_unlock().
254 		 */
255 		rcu_read_unlock_special(t);
256 	}
257 
258 	/*
259 	 * Either we were not in an RCU read-side critical section to
260 	 * begin with, or we have now recorded that critical section
261 	 * globally.  Either way, we can now note a quiescent state
262 	 * for this CPU.  Again, if we were in an RCU read-side critical
263 	 * section, and if that critical section was blocking the current
264 	 * grace period, then the fact that the task has been enqueued
265 	 * means that we continue to block the current grace period.
266 	 */
267 	local_irq_save(flags);
268 	rcu_preempt_qs(cpu);
269 	local_irq_restore(flags);
270 }
271 
272 /*
273  * Check for preempted RCU readers blocking the current grace period
274  * for the specified rcu_node structure.  If the caller needs a reliable
275  * answer, it must hold the rcu_node's ->lock.
276  */
277 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
278 {
279 	return rnp->gp_tasks != NULL;
280 }
281 
282 /*
283  * Record a quiescent state for all tasks that were previously queued
284  * on the specified rcu_node structure and that were blocking the current
285  * RCU grace period.  The caller must hold the specified rnp->lock with
286  * irqs disabled, and this lock is released upon return, but irqs remain
287  * disabled.
288  */
289 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
290 	__releases(rnp->lock)
291 {
292 	unsigned long mask;
293 	struct rcu_node *rnp_p;
294 
295 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
296 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
297 		return;  /* Still need more quiescent states! */
298 	}
299 
300 	rnp_p = rnp->parent;
301 	if (rnp_p == NULL) {
302 		/*
303 		 * Either there is only one rcu_node in the tree,
304 		 * or tasks were kicked up to root rcu_node due to
305 		 * CPUs going offline.
306 		 */
307 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
308 		return;
309 	}
310 
311 	/* Report up the rest of the hierarchy. */
312 	mask = rnp->grpmask;
313 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
314 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
315 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
316 }
317 
318 /*
319  * Advance a ->blkd_tasks-list pointer to the next entry, instead
320  * returning NULL if at the end of the list.
321  */
322 static struct list_head *rcu_next_node_entry(struct task_struct *t,
323 					     struct rcu_node *rnp)
324 {
325 	struct list_head *np;
326 
327 	np = t->rcu_node_entry.next;
328 	if (np == &rnp->blkd_tasks)
329 		np = NULL;
330 	return np;
331 }
332 
333 /*
334  * Handle special cases during rcu_read_unlock(), such as needing to
335  * notify RCU core processing or task having blocked during the RCU
336  * read-side critical section.
337  */
338 void rcu_read_unlock_special(struct task_struct *t)
339 {
340 	int empty;
341 	int empty_exp;
342 	int empty_exp_now;
343 	unsigned long flags;
344 	struct list_head *np;
345 #ifdef CONFIG_RCU_BOOST
346 	struct rt_mutex *rbmp = NULL;
347 #endif /* #ifdef CONFIG_RCU_BOOST */
348 	struct rcu_node *rnp;
349 	int special;
350 
351 	/* NMI handlers cannot block and cannot safely manipulate state. */
352 	if (in_nmi())
353 		return;
354 
355 	local_irq_save(flags);
356 
357 	/*
358 	 * If RCU core is waiting for this CPU to exit critical section,
359 	 * let it know that we have done so.
360 	 */
361 	special = t->rcu_read_unlock_special;
362 	if (special & RCU_READ_UNLOCK_NEED_QS) {
363 		rcu_preempt_qs(smp_processor_id());
364 	}
365 
366 	/* Hardware IRQ handlers cannot block. */
367 	if (in_irq() || in_serving_softirq()) {
368 		local_irq_restore(flags);
369 		return;
370 	}
371 
372 	/* Clean up if blocked during RCU read-side critical section. */
373 	if (special & RCU_READ_UNLOCK_BLOCKED) {
374 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
375 
376 		/*
377 		 * Remove this task from the list it blocked on.  The
378 		 * task can migrate while we acquire the lock, but at
379 		 * most one time.  So at most two passes through loop.
380 		 */
381 		for (;;) {
382 			rnp = t->rcu_blocked_node;
383 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
384 			if (rnp == t->rcu_blocked_node)
385 				break;
386 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
387 		}
388 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
389 		empty_exp = !rcu_preempted_readers_exp(rnp);
390 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
391 		np = rcu_next_node_entry(t, rnp);
392 		list_del_init(&t->rcu_node_entry);
393 		t->rcu_blocked_node = NULL;
394 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
395 						rnp->gpnum, t->pid);
396 		if (&t->rcu_node_entry == rnp->gp_tasks)
397 			rnp->gp_tasks = np;
398 		if (&t->rcu_node_entry == rnp->exp_tasks)
399 			rnp->exp_tasks = np;
400 #ifdef CONFIG_RCU_BOOST
401 		if (&t->rcu_node_entry == rnp->boost_tasks)
402 			rnp->boost_tasks = np;
403 		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
404 		if (t->rcu_boost_mutex) {
405 			rbmp = t->rcu_boost_mutex;
406 			t->rcu_boost_mutex = NULL;
407 		}
408 #endif /* #ifdef CONFIG_RCU_BOOST */
409 
410 		/*
411 		 * If this was the last task on the current list, and if
412 		 * we aren't waiting on any CPUs, report the quiescent state.
413 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
414 		 * so we must take a snapshot of the expedited state.
415 		 */
416 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
417 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
418 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
419 							 rnp->gpnum,
420 							 0, rnp->qsmask,
421 							 rnp->level,
422 							 rnp->grplo,
423 							 rnp->grphi,
424 							 !!rnp->gp_tasks);
425 			rcu_report_unblock_qs_rnp(rnp, flags);
426 		} else {
427 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
428 		}
429 
430 #ifdef CONFIG_RCU_BOOST
431 		/* Unboost if we were boosted. */
432 		if (rbmp)
433 			rt_mutex_unlock(rbmp);
434 #endif /* #ifdef CONFIG_RCU_BOOST */
435 
436 		/*
437 		 * If this was the last task on the expedited lists,
438 		 * then we need to report up the rcu_node hierarchy.
439 		 */
440 		if (!empty_exp && empty_exp_now)
441 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
442 	} else {
443 		local_irq_restore(flags);
444 	}
445 }
446 
447 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
448 
449 /*
450  * Dump detailed information for all tasks blocking the current RCU
451  * grace period on the specified rcu_node structure.
452  */
453 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
454 {
455 	unsigned long flags;
456 	struct task_struct *t;
457 
458 	raw_spin_lock_irqsave(&rnp->lock, flags);
459 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
460 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
461 		return;
462 	}
463 	t = list_entry(rnp->gp_tasks,
464 		       struct task_struct, rcu_node_entry);
465 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
466 		sched_show_task(t);
467 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 }
469 
470 /*
471  * Dump detailed information for all tasks blocking the current RCU
472  * grace period.
473  */
474 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
475 {
476 	struct rcu_node *rnp = rcu_get_root(rsp);
477 
478 	rcu_print_detail_task_stall_rnp(rnp);
479 	rcu_for_each_leaf_node(rsp, rnp)
480 		rcu_print_detail_task_stall_rnp(rnp);
481 }
482 
483 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
484 
485 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
486 {
487 }
488 
489 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
490 
491 #ifdef CONFIG_RCU_CPU_STALL_INFO
492 
493 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
494 {
495 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
496 	       rnp->level, rnp->grplo, rnp->grphi);
497 }
498 
499 static void rcu_print_task_stall_end(void)
500 {
501 	pr_cont("\n");
502 }
503 
504 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
505 
506 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
507 {
508 }
509 
510 static void rcu_print_task_stall_end(void)
511 {
512 }
513 
514 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
515 
516 /*
517  * Scan the current list of tasks blocked within RCU read-side critical
518  * sections, printing out the tid of each.
519  */
520 static int rcu_print_task_stall(struct rcu_node *rnp)
521 {
522 	struct task_struct *t;
523 	int ndetected = 0;
524 
525 	if (!rcu_preempt_blocked_readers_cgp(rnp))
526 		return 0;
527 	rcu_print_task_stall_begin(rnp);
528 	t = list_entry(rnp->gp_tasks,
529 		       struct task_struct, rcu_node_entry);
530 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
531 		pr_cont(" P%d", t->pid);
532 		ndetected++;
533 	}
534 	rcu_print_task_stall_end();
535 	return ndetected;
536 }
537 
538 /*
539  * Check that the list of blocked tasks for the newly completed grace
540  * period is in fact empty.  It is a serious bug to complete a grace
541  * period that still has RCU readers blocked!  This function must be
542  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
543  * must be held by the caller.
544  *
545  * Also, if there are blocked tasks on the list, they automatically
546  * block the newly created grace period, so set up ->gp_tasks accordingly.
547  */
548 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
549 {
550 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
551 	if (!list_empty(&rnp->blkd_tasks))
552 		rnp->gp_tasks = rnp->blkd_tasks.next;
553 	WARN_ON_ONCE(rnp->qsmask);
554 }
555 
556 #ifdef CONFIG_HOTPLUG_CPU
557 
558 /*
559  * Handle tasklist migration for case in which all CPUs covered by the
560  * specified rcu_node have gone offline.  Move them up to the root
561  * rcu_node.  The reason for not just moving them to the immediate
562  * parent is to remove the need for rcu_read_unlock_special() to
563  * make more than two attempts to acquire the target rcu_node's lock.
564  * Returns true if there were tasks blocking the current RCU grace
565  * period.
566  *
567  * Returns 1 if there was previously a task blocking the current grace
568  * period on the specified rcu_node structure.
569  *
570  * The caller must hold rnp->lock with irqs disabled.
571  */
572 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
573 				     struct rcu_node *rnp,
574 				     struct rcu_data *rdp)
575 {
576 	struct list_head *lp;
577 	struct list_head *lp_root;
578 	int retval = 0;
579 	struct rcu_node *rnp_root = rcu_get_root(rsp);
580 	struct task_struct *t;
581 
582 	if (rnp == rnp_root) {
583 		WARN_ONCE(1, "Last CPU thought to be offlined?");
584 		return 0;  /* Shouldn't happen: at least one CPU online. */
585 	}
586 
587 	/* If we are on an internal node, complain bitterly. */
588 	WARN_ON_ONCE(rnp != rdp->mynode);
589 
590 	/*
591 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
592 	 * this corner-case operation -- just put this node's tasks
593 	 * at the head of the root node's list, and update the root node's
594 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
595 	 * if non-NULL.  This might result in waiting for more tasks than
596 	 * absolutely necessary, but this is a good performance/complexity
597 	 * tradeoff.
598 	 */
599 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
600 		retval |= RCU_OFL_TASKS_NORM_GP;
601 	if (rcu_preempted_readers_exp(rnp))
602 		retval |= RCU_OFL_TASKS_EXP_GP;
603 	lp = &rnp->blkd_tasks;
604 	lp_root = &rnp_root->blkd_tasks;
605 	while (!list_empty(lp)) {
606 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
607 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
608 		list_del(&t->rcu_node_entry);
609 		t->rcu_blocked_node = rnp_root;
610 		list_add(&t->rcu_node_entry, lp_root);
611 		if (&t->rcu_node_entry == rnp->gp_tasks)
612 			rnp_root->gp_tasks = rnp->gp_tasks;
613 		if (&t->rcu_node_entry == rnp->exp_tasks)
614 			rnp_root->exp_tasks = rnp->exp_tasks;
615 #ifdef CONFIG_RCU_BOOST
616 		if (&t->rcu_node_entry == rnp->boost_tasks)
617 			rnp_root->boost_tasks = rnp->boost_tasks;
618 #endif /* #ifdef CONFIG_RCU_BOOST */
619 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
620 	}
621 
622 	rnp->gp_tasks = NULL;
623 	rnp->exp_tasks = NULL;
624 #ifdef CONFIG_RCU_BOOST
625 	rnp->boost_tasks = NULL;
626 	/*
627 	 * In case root is being boosted and leaf was not.  Make sure
628 	 * that we boost the tasks blocking the current grace period
629 	 * in this case.
630 	 */
631 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
632 	if (rnp_root->boost_tasks != NULL &&
633 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
635 		rnp_root->boost_tasks = rnp_root->gp_tasks;
636 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637 #endif /* #ifdef CONFIG_RCU_BOOST */
638 
639 	return retval;
640 }
641 
642 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
643 
644 /*
645  * Check for a quiescent state from the current CPU.  When a task blocks,
646  * the task is recorded in the corresponding CPU's rcu_node structure,
647  * which is checked elsewhere.
648  *
649  * Caller must disable hard irqs.
650  */
651 static void rcu_preempt_check_callbacks(int cpu)
652 {
653 	struct task_struct *t = current;
654 
655 	if (t->rcu_read_lock_nesting == 0) {
656 		rcu_preempt_qs(cpu);
657 		return;
658 	}
659 	if (t->rcu_read_lock_nesting > 0 &&
660 	    per_cpu(rcu_preempt_data, cpu).qs_pending)
661 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662 }
663 
664 #ifdef CONFIG_RCU_BOOST
665 
666 static void rcu_preempt_do_callbacks(void)
667 {
668 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669 }
670 
671 #endif /* #ifdef CONFIG_RCU_BOOST */
672 
673 /*
674  * Queue a preemptible-RCU callback for invocation after a grace period.
675  */
676 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677 {
678 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
679 }
680 EXPORT_SYMBOL_GPL(call_rcu);
681 
682 /*
683  * Queue an RCU callback for lazy invocation after a grace period.
684  * This will likely be later named something like "call_rcu_lazy()",
685  * but this change will require some way of tagging the lazy RCU
686  * callbacks in the list of pending callbacks.  Until then, this
687  * function may only be called from __kfree_rcu().
688  */
689 void kfree_call_rcu(struct rcu_head *head,
690 		    void (*func)(struct rcu_head *rcu))
691 {
692 	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
693 }
694 EXPORT_SYMBOL_GPL(kfree_call_rcu);
695 
696 /**
697  * synchronize_rcu - wait until a grace period has elapsed.
698  *
699  * Control will return to the caller some time after a full grace
700  * period has elapsed, in other words after all currently executing RCU
701  * read-side critical sections have completed.  Note, however, that
702  * upon return from synchronize_rcu(), the caller might well be executing
703  * concurrently with new RCU read-side critical sections that began while
704  * synchronize_rcu() was waiting.  RCU read-side critical sections are
705  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
706  *
707  * See the description of synchronize_sched() for more detailed information
708  * on memory ordering guarantees.
709  */
710 void synchronize_rcu(void)
711 {
712 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
713 			   !lock_is_held(&rcu_lock_map) &&
714 			   !lock_is_held(&rcu_sched_lock_map),
715 			   "Illegal synchronize_rcu() in RCU read-side critical section");
716 	if (!rcu_scheduler_active)
717 		return;
718 	if (rcu_expedited)
719 		synchronize_rcu_expedited();
720 	else
721 		wait_rcu_gp(call_rcu);
722 }
723 EXPORT_SYMBOL_GPL(synchronize_rcu);
724 
725 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
726 static unsigned long sync_rcu_preempt_exp_count;
727 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
728 
729 /*
730  * Return non-zero if there are any tasks in RCU read-side critical
731  * sections blocking the current preemptible-RCU expedited grace period.
732  * If there is no preemptible-RCU expedited grace period currently in
733  * progress, returns zero unconditionally.
734  */
735 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
736 {
737 	return rnp->exp_tasks != NULL;
738 }
739 
740 /*
741  * return non-zero if there is no RCU expedited grace period in progress
742  * for the specified rcu_node structure, in other words, if all CPUs and
743  * tasks covered by the specified rcu_node structure have done their bit
744  * for the current expedited grace period.  Works only for preemptible
745  * RCU -- other RCU implementation use other means.
746  *
747  * Caller must hold sync_rcu_preempt_exp_mutex.
748  */
749 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
750 {
751 	return !rcu_preempted_readers_exp(rnp) &&
752 	       ACCESS_ONCE(rnp->expmask) == 0;
753 }
754 
755 /*
756  * Report the exit from RCU read-side critical section for the last task
757  * that queued itself during or before the current expedited preemptible-RCU
758  * grace period.  This event is reported either to the rcu_node structure on
759  * which the task was queued or to one of that rcu_node structure's ancestors,
760  * recursively up the tree.  (Calm down, calm down, we do the recursion
761  * iteratively!)
762  *
763  * Most callers will set the "wake" flag, but the task initiating the
764  * expedited grace period need not wake itself.
765  *
766  * Caller must hold sync_rcu_preempt_exp_mutex.
767  */
768 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
769 			       bool wake)
770 {
771 	unsigned long flags;
772 	unsigned long mask;
773 
774 	raw_spin_lock_irqsave(&rnp->lock, flags);
775 	for (;;) {
776 		if (!sync_rcu_preempt_exp_done(rnp)) {
777 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
778 			break;
779 		}
780 		if (rnp->parent == NULL) {
781 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
782 			if (wake)
783 				wake_up(&sync_rcu_preempt_exp_wq);
784 			break;
785 		}
786 		mask = rnp->grpmask;
787 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
788 		rnp = rnp->parent;
789 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
790 		rnp->expmask &= ~mask;
791 	}
792 }
793 
794 /*
795  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
796  * grace period for the specified rcu_node structure.  If there are no such
797  * tasks, report it up the rcu_node hierarchy.
798  *
799  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
800  * CPU hotplug operations.
801  */
802 static void
803 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
804 {
805 	unsigned long flags;
806 	int must_wait = 0;
807 
808 	raw_spin_lock_irqsave(&rnp->lock, flags);
809 	if (list_empty(&rnp->blkd_tasks)) {
810 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
811 	} else {
812 		rnp->exp_tasks = rnp->blkd_tasks.next;
813 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
814 		must_wait = 1;
815 	}
816 	if (!must_wait)
817 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
818 }
819 
820 /**
821  * synchronize_rcu_expedited - Brute-force RCU grace period
822  *
823  * Wait for an RCU-preempt grace period, but expedite it.  The basic
824  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
825  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
826  * significant time on all CPUs and is unfriendly to real-time workloads,
827  * so is thus not recommended for any sort of common-case code.
828  * In fact, if you are using synchronize_rcu_expedited() in a loop,
829  * please restructure your code to batch your updates, and then Use a
830  * single synchronize_rcu() instead.
831  *
832  * Note that it is illegal to call this function while holding any lock
833  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
834  * to call this function from a CPU-hotplug notifier.  Failing to observe
835  * these restriction will result in deadlock.
836  */
837 void synchronize_rcu_expedited(void)
838 {
839 	unsigned long flags;
840 	struct rcu_node *rnp;
841 	struct rcu_state *rsp = &rcu_preempt_state;
842 	unsigned long snap;
843 	int trycount = 0;
844 
845 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
846 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
847 	smp_mb(); /* Above access cannot bleed into critical section. */
848 
849 	/*
850 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
851 	 * operation that finds an rcu_node structure with tasks in the
852 	 * process of being boosted will know that all tasks blocking
853 	 * this expedited grace period will already be in the process of
854 	 * being boosted.  This simplifies the process of moving tasks
855 	 * from leaf to root rcu_node structures.
856 	 */
857 	get_online_cpus();
858 
859 	/*
860 	 * Acquire lock, falling back to synchronize_rcu() if too many
861 	 * lock-acquisition failures.  Of course, if someone does the
862 	 * expedited grace period for us, just leave.
863 	 */
864 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
865 		if (ULONG_CMP_LT(snap,
866 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
867 			put_online_cpus();
868 			goto mb_ret; /* Others did our work for us. */
869 		}
870 		if (trycount++ < 10) {
871 			udelay(trycount * num_online_cpus());
872 		} else {
873 			put_online_cpus();
874 			wait_rcu_gp(call_rcu);
875 			return;
876 		}
877 	}
878 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
879 		put_online_cpus();
880 		goto unlock_mb_ret; /* Others did our work for us. */
881 	}
882 
883 	/* force all RCU readers onto ->blkd_tasks lists. */
884 	synchronize_sched_expedited();
885 
886 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
887 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
888 		raw_spin_lock_irqsave(&rnp->lock, flags);
889 		rnp->expmask = rnp->qsmaskinit;
890 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
891 	}
892 
893 	/* Snapshot current state of ->blkd_tasks lists. */
894 	rcu_for_each_leaf_node(rsp, rnp)
895 		sync_rcu_preempt_exp_init(rsp, rnp);
896 	if (NUM_RCU_NODES > 1)
897 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
898 
899 	put_online_cpus();
900 
901 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
902 	rnp = rcu_get_root(rsp);
903 	wait_event(sync_rcu_preempt_exp_wq,
904 		   sync_rcu_preempt_exp_done(rnp));
905 
906 	/* Clean up and exit. */
907 	smp_mb(); /* ensure expedited GP seen before counter increment. */
908 	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
909 unlock_mb_ret:
910 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
911 mb_ret:
912 	smp_mb(); /* ensure subsequent action seen after grace period. */
913 }
914 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
915 
916 /**
917  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
918  *
919  * Note that this primitive does not necessarily wait for an RCU grace period
920  * to complete.  For example, if there are no RCU callbacks queued anywhere
921  * in the system, then rcu_barrier() is within its rights to return
922  * immediately, without waiting for anything, much less an RCU grace period.
923  */
924 void rcu_barrier(void)
925 {
926 	_rcu_barrier(&rcu_preempt_state);
927 }
928 EXPORT_SYMBOL_GPL(rcu_barrier);
929 
930 /*
931  * Initialize preemptible RCU's state structures.
932  */
933 static void __init __rcu_init_preempt(void)
934 {
935 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
936 }
937 
938 /*
939  * Check for a task exiting while in a preemptible-RCU read-side
940  * critical section, clean up if so.  No need to issue warnings,
941  * as debug_check_no_locks_held() already does this if lockdep
942  * is enabled.
943  */
944 void exit_rcu(void)
945 {
946 	struct task_struct *t = current;
947 
948 	if (likely(list_empty(&current->rcu_node_entry)))
949 		return;
950 	t->rcu_read_lock_nesting = 1;
951 	barrier();
952 	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
953 	__rcu_read_unlock();
954 }
955 
956 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
957 
958 static struct rcu_state *rcu_state = &rcu_sched_state;
959 
960 /*
961  * Tell them what RCU they are running.
962  */
963 static void __init rcu_bootup_announce(void)
964 {
965 	pr_info("Hierarchical RCU implementation.\n");
966 	rcu_bootup_announce_oddness();
967 }
968 
969 /*
970  * Return the number of RCU batches processed thus far for debug & stats.
971  */
972 long rcu_batches_completed(void)
973 {
974 	return rcu_batches_completed_sched();
975 }
976 EXPORT_SYMBOL_GPL(rcu_batches_completed);
977 
978 /*
979  * Force a quiescent state for RCU, which, because there is no preemptible
980  * RCU, becomes the same as rcu-sched.
981  */
982 void rcu_force_quiescent_state(void)
983 {
984 	rcu_sched_force_quiescent_state();
985 }
986 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
987 
988 /*
989  * Because preemptible RCU does not exist, we never have to check for
990  * CPUs being in quiescent states.
991  */
992 static void rcu_preempt_note_context_switch(int cpu)
993 {
994 }
995 
996 /*
997  * Because preemptible RCU does not exist, there are never any preempted
998  * RCU readers.
999  */
1000 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1001 {
1002 	return 0;
1003 }
1004 
1005 #ifdef CONFIG_HOTPLUG_CPU
1006 
1007 /* Because preemptible RCU does not exist, no quieting of tasks. */
1008 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1009 {
1010 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 }
1012 
1013 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1014 
1015 /*
1016  * Because preemptible RCU does not exist, we never have to check for
1017  * tasks blocked within RCU read-side critical sections.
1018  */
1019 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1020 {
1021 }
1022 
1023 /*
1024  * Because preemptible RCU does not exist, we never have to check for
1025  * tasks blocked within RCU read-side critical sections.
1026  */
1027 static int rcu_print_task_stall(struct rcu_node *rnp)
1028 {
1029 	return 0;
1030 }
1031 
1032 /*
1033  * Because there is no preemptible RCU, there can be no readers blocked,
1034  * so there is no need to check for blocked tasks.  So check only for
1035  * bogus qsmask values.
1036  */
1037 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1038 {
1039 	WARN_ON_ONCE(rnp->qsmask);
1040 }
1041 
1042 #ifdef CONFIG_HOTPLUG_CPU
1043 
1044 /*
1045  * Because preemptible RCU does not exist, it never needs to migrate
1046  * tasks that were blocked within RCU read-side critical sections, and
1047  * such non-existent tasks cannot possibly have been blocking the current
1048  * grace period.
1049  */
1050 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1051 				     struct rcu_node *rnp,
1052 				     struct rcu_data *rdp)
1053 {
1054 	return 0;
1055 }
1056 
1057 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1058 
1059 /*
1060  * Because preemptible RCU does not exist, it never has any callbacks
1061  * to check.
1062  */
1063 static void rcu_preempt_check_callbacks(int cpu)
1064 {
1065 }
1066 
1067 /*
1068  * Queue an RCU callback for lazy invocation after a grace period.
1069  * This will likely be later named something like "call_rcu_lazy()",
1070  * but this change will require some way of tagging the lazy RCU
1071  * callbacks in the list of pending callbacks.  Until then, this
1072  * function may only be called from __kfree_rcu().
1073  *
1074  * Because there is no preemptible RCU, we use RCU-sched instead.
1075  */
1076 void kfree_call_rcu(struct rcu_head *head,
1077 		    void (*func)(struct rcu_head *rcu))
1078 {
1079 	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1080 }
1081 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1082 
1083 /*
1084  * Wait for an rcu-preempt grace period, but make it happen quickly.
1085  * But because preemptible RCU does not exist, map to rcu-sched.
1086  */
1087 void synchronize_rcu_expedited(void)
1088 {
1089 	synchronize_sched_expedited();
1090 }
1091 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1092 
1093 #ifdef CONFIG_HOTPLUG_CPU
1094 
1095 /*
1096  * Because preemptible RCU does not exist, there is never any need to
1097  * report on tasks preempted in RCU read-side critical sections during
1098  * expedited RCU grace periods.
1099  */
1100 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1101 			       bool wake)
1102 {
1103 }
1104 
1105 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1106 
1107 /*
1108  * Because preemptible RCU does not exist, rcu_barrier() is just
1109  * another name for rcu_barrier_sched().
1110  */
1111 void rcu_barrier(void)
1112 {
1113 	rcu_barrier_sched();
1114 }
1115 EXPORT_SYMBOL_GPL(rcu_barrier);
1116 
1117 /*
1118  * Because preemptible RCU does not exist, it need not be initialized.
1119  */
1120 static void __init __rcu_init_preempt(void)
1121 {
1122 }
1123 
1124 /*
1125  * Because preemptible RCU does not exist, tasks cannot possibly exit
1126  * while in preemptible RCU read-side critical sections.
1127  */
1128 void exit_rcu(void)
1129 {
1130 }
1131 
1132 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1133 
1134 #ifdef CONFIG_RCU_BOOST
1135 
1136 #include "../locking/rtmutex_common.h"
1137 
1138 #ifdef CONFIG_RCU_TRACE
1139 
1140 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1141 {
1142 	if (list_empty(&rnp->blkd_tasks))
1143 		rnp->n_balk_blkd_tasks++;
1144 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1145 		rnp->n_balk_exp_gp_tasks++;
1146 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1147 		rnp->n_balk_boost_tasks++;
1148 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1149 		rnp->n_balk_notblocked++;
1150 	else if (rnp->gp_tasks != NULL &&
1151 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1152 		rnp->n_balk_notyet++;
1153 	else
1154 		rnp->n_balk_nos++;
1155 }
1156 
1157 #else /* #ifdef CONFIG_RCU_TRACE */
1158 
1159 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1160 {
1161 }
1162 
1163 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1164 
1165 static void rcu_wake_cond(struct task_struct *t, int status)
1166 {
1167 	/*
1168 	 * If the thread is yielding, only wake it when this
1169 	 * is invoked from idle
1170 	 */
1171 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1172 		wake_up_process(t);
1173 }
1174 
1175 /*
1176  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1177  * or ->boost_tasks, advancing the pointer to the next task in the
1178  * ->blkd_tasks list.
1179  *
1180  * Note that irqs must be enabled: boosting the task can block.
1181  * Returns 1 if there are more tasks needing to be boosted.
1182  */
1183 static int rcu_boost(struct rcu_node *rnp)
1184 {
1185 	unsigned long flags;
1186 	struct rt_mutex mtx;
1187 	struct task_struct *t;
1188 	struct list_head *tb;
1189 
1190 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1191 		return 0;  /* Nothing left to boost. */
1192 
1193 	raw_spin_lock_irqsave(&rnp->lock, flags);
1194 
1195 	/*
1196 	 * Recheck under the lock: all tasks in need of boosting
1197 	 * might exit their RCU read-side critical sections on their own.
1198 	 */
1199 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1200 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 		return 0;
1202 	}
1203 
1204 	/*
1205 	 * Preferentially boost tasks blocking expedited grace periods.
1206 	 * This cannot starve the normal grace periods because a second
1207 	 * expedited grace period must boost all blocked tasks, including
1208 	 * those blocking the pre-existing normal grace period.
1209 	 */
1210 	if (rnp->exp_tasks != NULL) {
1211 		tb = rnp->exp_tasks;
1212 		rnp->n_exp_boosts++;
1213 	} else {
1214 		tb = rnp->boost_tasks;
1215 		rnp->n_normal_boosts++;
1216 	}
1217 	rnp->n_tasks_boosted++;
1218 
1219 	/*
1220 	 * We boost task t by manufacturing an rt_mutex that appears to
1221 	 * be held by task t.  We leave a pointer to that rt_mutex where
1222 	 * task t can find it, and task t will release the mutex when it
1223 	 * exits its outermost RCU read-side critical section.  Then
1224 	 * simply acquiring this artificial rt_mutex will boost task
1225 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1226 	 *
1227 	 * Note that task t must acquire rnp->lock to remove itself from
1228 	 * the ->blkd_tasks list, which it will do from exit() if from
1229 	 * nowhere else.  We therefore are guaranteed that task t will
1230 	 * stay around at least until we drop rnp->lock.  Note that
1231 	 * rnp->lock also resolves races between our priority boosting
1232 	 * and task t's exiting its outermost RCU read-side critical
1233 	 * section.
1234 	 */
1235 	t = container_of(tb, struct task_struct, rcu_node_entry);
1236 	rt_mutex_init_proxy_locked(&mtx, t);
1237 	t->rcu_boost_mutex = &mtx;
1238 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1239 	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1240 	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1241 
1242 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1243 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1244 }
1245 
1246 /*
1247  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1248  * root rcu_node.
1249  */
1250 static int rcu_boost_kthread(void *arg)
1251 {
1252 	struct rcu_node *rnp = (struct rcu_node *)arg;
1253 	int spincnt = 0;
1254 	int more2boost;
1255 
1256 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1257 	for (;;) {
1258 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1259 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1260 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1261 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1262 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1263 		more2boost = rcu_boost(rnp);
1264 		if (more2boost)
1265 			spincnt++;
1266 		else
1267 			spincnt = 0;
1268 		if (spincnt > 10) {
1269 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1270 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1271 			schedule_timeout_interruptible(2);
1272 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1273 			spincnt = 0;
1274 		}
1275 	}
1276 	/* NOTREACHED */
1277 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1278 	return 0;
1279 }
1280 
1281 /*
1282  * Check to see if it is time to start boosting RCU readers that are
1283  * blocking the current grace period, and, if so, tell the per-rcu_node
1284  * kthread to start boosting them.  If there is an expedited grace
1285  * period in progress, it is always time to boost.
1286  *
1287  * The caller must hold rnp->lock, which this function releases.
1288  * The ->boost_kthread_task is immortal, so we don't need to worry
1289  * about it going away.
1290  */
1291 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1292 {
1293 	struct task_struct *t;
1294 
1295 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1296 		rnp->n_balk_exp_gp_tasks++;
1297 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1298 		return;
1299 	}
1300 	if (rnp->exp_tasks != NULL ||
1301 	    (rnp->gp_tasks != NULL &&
1302 	     rnp->boost_tasks == NULL &&
1303 	     rnp->qsmask == 0 &&
1304 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1305 		if (rnp->exp_tasks == NULL)
1306 			rnp->boost_tasks = rnp->gp_tasks;
1307 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1308 		t = rnp->boost_kthread_task;
1309 		if (t)
1310 			rcu_wake_cond(t, rnp->boost_kthread_status);
1311 	} else {
1312 		rcu_initiate_boost_trace(rnp);
1313 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314 	}
1315 }
1316 
1317 /*
1318  * Wake up the per-CPU kthread to invoke RCU callbacks.
1319  */
1320 static void invoke_rcu_callbacks_kthread(void)
1321 {
1322 	unsigned long flags;
1323 
1324 	local_irq_save(flags);
1325 	__this_cpu_write(rcu_cpu_has_work, 1);
1326 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1327 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1328 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1329 			      __this_cpu_read(rcu_cpu_kthread_status));
1330 	}
1331 	local_irq_restore(flags);
1332 }
1333 
1334 /*
1335  * Is the current CPU running the RCU-callbacks kthread?
1336  * Caller must have preemption disabled.
1337  */
1338 static bool rcu_is_callbacks_kthread(void)
1339 {
1340 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1341 }
1342 
1343 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1344 
1345 /*
1346  * Do priority-boost accounting for the start of a new grace period.
1347  */
1348 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1349 {
1350 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1351 }
1352 
1353 /*
1354  * Create an RCU-boost kthread for the specified node if one does not
1355  * already exist.  We only create this kthread for preemptible RCU.
1356  * Returns zero if all is well, a negated errno otherwise.
1357  */
1358 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1359 						 struct rcu_node *rnp)
1360 {
1361 	int rnp_index = rnp - &rsp->node[0];
1362 	unsigned long flags;
1363 	struct sched_param sp;
1364 	struct task_struct *t;
1365 
1366 	if (&rcu_preempt_state != rsp)
1367 		return 0;
1368 
1369 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1370 		return 0;
1371 
1372 	rsp->boost = 1;
1373 	if (rnp->boost_kthread_task != NULL)
1374 		return 0;
1375 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1376 			   "rcub/%d", rnp_index);
1377 	if (IS_ERR(t))
1378 		return PTR_ERR(t);
1379 	raw_spin_lock_irqsave(&rnp->lock, flags);
1380 	rnp->boost_kthread_task = t;
1381 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1382 	sp.sched_priority = RCU_BOOST_PRIO;
1383 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1384 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1385 	return 0;
1386 }
1387 
1388 static void rcu_kthread_do_work(void)
1389 {
1390 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1391 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1392 	rcu_preempt_do_callbacks();
1393 }
1394 
1395 static void rcu_cpu_kthread_setup(unsigned int cpu)
1396 {
1397 	struct sched_param sp;
1398 
1399 	sp.sched_priority = RCU_KTHREAD_PRIO;
1400 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1401 }
1402 
1403 static void rcu_cpu_kthread_park(unsigned int cpu)
1404 {
1405 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1406 }
1407 
1408 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1409 {
1410 	return __this_cpu_read(rcu_cpu_has_work);
1411 }
1412 
1413 /*
1414  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1415  * RCU softirq used in flavors and configurations of RCU that do not
1416  * support RCU priority boosting.
1417  */
1418 static void rcu_cpu_kthread(unsigned int cpu)
1419 {
1420 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1421 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1422 	int spincnt;
1423 
1424 	for (spincnt = 0; spincnt < 10; spincnt++) {
1425 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1426 		local_bh_disable();
1427 		*statusp = RCU_KTHREAD_RUNNING;
1428 		this_cpu_inc(rcu_cpu_kthread_loops);
1429 		local_irq_disable();
1430 		work = *workp;
1431 		*workp = 0;
1432 		local_irq_enable();
1433 		if (work)
1434 			rcu_kthread_do_work();
1435 		local_bh_enable();
1436 		if (*workp == 0) {
1437 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1438 			*statusp = RCU_KTHREAD_WAITING;
1439 			return;
1440 		}
1441 	}
1442 	*statusp = RCU_KTHREAD_YIELDING;
1443 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1444 	schedule_timeout_interruptible(2);
1445 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1446 	*statusp = RCU_KTHREAD_WAITING;
1447 }
1448 
1449 /*
1450  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1451  * served by the rcu_node in question.  The CPU hotplug lock is still
1452  * held, so the value of rnp->qsmaskinit will be stable.
1453  *
1454  * We don't include outgoingcpu in the affinity set, use -1 if there is
1455  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1456  * this function allows the kthread to execute on any CPU.
1457  */
1458 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1459 {
1460 	struct task_struct *t = rnp->boost_kthread_task;
1461 	unsigned long mask = rnp->qsmaskinit;
1462 	cpumask_var_t cm;
1463 	int cpu;
1464 
1465 	if (!t)
1466 		return;
1467 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1468 		return;
1469 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1470 		if ((mask & 0x1) && cpu != outgoingcpu)
1471 			cpumask_set_cpu(cpu, cm);
1472 	if (cpumask_weight(cm) == 0) {
1473 		cpumask_setall(cm);
1474 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1475 			cpumask_clear_cpu(cpu, cm);
1476 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1477 	}
1478 	set_cpus_allowed_ptr(t, cm);
1479 	free_cpumask_var(cm);
1480 }
1481 
1482 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1483 	.store			= &rcu_cpu_kthread_task,
1484 	.thread_should_run	= rcu_cpu_kthread_should_run,
1485 	.thread_fn		= rcu_cpu_kthread,
1486 	.thread_comm		= "rcuc/%u",
1487 	.setup			= rcu_cpu_kthread_setup,
1488 	.park			= rcu_cpu_kthread_park,
1489 };
1490 
1491 /*
1492  * Spawn all kthreads -- called as soon as the scheduler is running.
1493  */
1494 static int __init rcu_spawn_kthreads(void)
1495 {
1496 	struct rcu_node *rnp;
1497 	int cpu;
1498 
1499 	rcu_scheduler_fully_active = 1;
1500 	for_each_possible_cpu(cpu)
1501 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1502 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1503 	rnp = rcu_get_root(rcu_state);
1504 	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1505 	if (NUM_RCU_NODES > 1) {
1506 		rcu_for_each_leaf_node(rcu_state, rnp)
1507 			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1508 	}
1509 	return 0;
1510 }
1511 early_initcall(rcu_spawn_kthreads);
1512 
1513 static void rcu_prepare_kthreads(int cpu)
1514 {
1515 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1516 	struct rcu_node *rnp = rdp->mynode;
1517 
1518 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1519 	if (rcu_scheduler_fully_active)
1520 		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1521 }
1522 
1523 #else /* #ifdef CONFIG_RCU_BOOST */
1524 
1525 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1526 {
1527 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1528 }
1529 
1530 static void invoke_rcu_callbacks_kthread(void)
1531 {
1532 	WARN_ON_ONCE(1);
1533 }
1534 
1535 static bool rcu_is_callbacks_kthread(void)
1536 {
1537 	return false;
1538 }
1539 
1540 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1541 {
1542 }
1543 
1544 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1545 {
1546 }
1547 
1548 static int __init rcu_scheduler_really_started(void)
1549 {
1550 	rcu_scheduler_fully_active = 1;
1551 	return 0;
1552 }
1553 early_initcall(rcu_scheduler_really_started);
1554 
1555 static void rcu_prepare_kthreads(int cpu)
1556 {
1557 }
1558 
1559 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1560 
1561 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1562 
1563 /*
1564  * Check to see if any future RCU-related work will need to be done
1565  * by the current CPU, even if none need be done immediately, returning
1566  * 1 if so.  This function is part of the RCU implementation; it is -not-
1567  * an exported member of the RCU API.
1568  *
1569  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1570  * any flavor of RCU.
1571  */
1572 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1573 {
1574 	*delta_jiffies = ULONG_MAX;
1575 	return rcu_cpu_has_callbacks(cpu, NULL);
1576 }
1577 
1578 /*
1579  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1580  * after it.
1581  */
1582 static void rcu_cleanup_after_idle(int cpu)
1583 {
1584 }
1585 
1586 /*
1587  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1588  * is nothing.
1589  */
1590 static void rcu_prepare_for_idle(int cpu)
1591 {
1592 }
1593 
1594 /*
1595  * Don't bother keeping a running count of the number of RCU callbacks
1596  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1597  */
1598 static void rcu_idle_count_callbacks_posted(void)
1599 {
1600 }
1601 
1602 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1603 
1604 /*
1605  * This code is invoked when a CPU goes idle, at which point we want
1606  * to have the CPU do everything required for RCU so that it can enter
1607  * the energy-efficient dyntick-idle mode.  This is handled by a
1608  * state machine implemented by rcu_prepare_for_idle() below.
1609  *
1610  * The following three proprocessor symbols control this state machine:
1611  *
1612  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1613  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1614  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1615  *	benchmarkers who might otherwise be tempted to set this to a large
1616  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1617  *	system.  And if you are -that- concerned about energy efficiency,
1618  *	just power the system down and be done with it!
1619  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1620  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1621  *	callbacks pending.  Setting this too high can OOM your system.
1622  *
1623  * The values below work well in practice.  If future workloads require
1624  * adjustment, they can be converted into kernel config parameters, though
1625  * making the state machine smarter might be a better option.
1626  */
1627 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1628 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1629 
1630 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1631 module_param(rcu_idle_gp_delay, int, 0644);
1632 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1633 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1634 
1635 extern int tick_nohz_active;
1636 
1637 /*
1638  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1639  * only if it has been awhile since the last time we did so.  Afterwards,
1640  * if there are any callbacks ready for immediate invocation, return true.
1641  */
1642 static bool rcu_try_advance_all_cbs(void)
1643 {
1644 	bool cbs_ready = false;
1645 	struct rcu_data *rdp;
1646 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1647 	struct rcu_node *rnp;
1648 	struct rcu_state *rsp;
1649 
1650 	/* Exit early if we advanced recently. */
1651 	if (jiffies == rdtp->last_advance_all)
1652 		return 0;
1653 	rdtp->last_advance_all = jiffies;
1654 
1655 	for_each_rcu_flavor(rsp) {
1656 		rdp = this_cpu_ptr(rsp->rda);
1657 		rnp = rdp->mynode;
1658 
1659 		/*
1660 		 * Don't bother checking unless a grace period has
1661 		 * completed since we last checked and there are
1662 		 * callbacks not yet ready to invoke.
1663 		 */
1664 		if (rdp->completed != rnp->completed &&
1665 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1666 			note_gp_changes(rsp, rdp);
1667 
1668 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1669 			cbs_ready = true;
1670 	}
1671 	return cbs_ready;
1672 }
1673 
1674 /*
1675  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1676  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1677  * caller to set the timeout based on whether or not there are non-lazy
1678  * callbacks.
1679  *
1680  * The caller must have disabled interrupts.
1681  */
1682 int rcu_needs_cpu(int cpu, unsigned long *dj)
1683 {
1684 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1685 
1686 	/* Snapshot to detect later posting of non-lazy callback. */
1687 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1688 
1689 	/* If no callbacks, RCU doesn't need the CPU. */
1690 	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1691 		*dj = ULONG_MAX;
1692 		return 0;
1693 	}
1694 
1695 	/* Attempt to advance callbacks. */
1696 	if (rcu_try_advance_all_cbs()) {
1697 		/* Some ready to invoke, so initiate later invocation. */
1698 		invoke_rcu_core();
1699 		return 1;
1700 	}
1701 	rdtp->last_accelerate = jiffies;
1702 
1703 	/* Request timer delay depending on laziness, and round. */
1704 	if (!rdtp->all_lazy) {
1705 		*dj = round_up(rcu_idle_gp_delay + jiffies,
1706 			       rcu_idle_gp_delay) - jiffies;
1707 	} else {
1708 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1709 	}
1710 	return 0;
1711 }
1712 
1713 /*
1714  * Prepare a CPU for idle from an RCU perspective.  The first major task
1715  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1716  * The second major task is to check to see if a non-lazy callback has
1717  * arrived at a CPU that previously had only lazy callbacks.  The third
1718  * major task is to accelerate (that is, assign grace-period numbers to)
1719  * any recently arrived callbacks.
1720  *
1721  * The caller must have disabled interrupts.
1722  */
1723 static void rcu_prepare_for_idle(int cpu)
1724 {
1725 	struct rcu_data *rdp;
1726 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1727 	struct rcu_node *rnp;
1728 	struct rcu_state *rsp;
1729 	int tne;
1730 
1731 	/* Handle nohz enablement switches conservatively. */
1732 	tne = ACCESS_ONCE(tick_nohz_active);
1733 	if (tne != rdtp->tick_nohz_enabled_snap) {
1734 		if (rcu_cpu_has_callbacks(cpu, NULL))
1735 			invoke_rcu_core(); /* force nohz to see update. */
1736 		rdtp->tick_nohz_enabled_snap = tne;
1737 		return;
1738 	}
1739 	if (!tne)
1740 		return;
1741 
1742 	/* If this is a no-CBs CPU, no callbacks, just return. */
1743 	if (rcu_is_nocb_cpu(cpu))
1744 		return;
1745 
1746 	/*
1747 	 * If a non-lazy callback arrived at a CPU having only lazy
1748 	 * callbacks, invoke RCU core for the side-effect of recalculating
1749 	 * idle duration on re-entry to idle.
1750 	 */
1751 	if (rdtp->all_lazy &&
1752 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1753 		rdtp->all_lazy = false;
1754 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1755 		invoke_rcu_core();
1756 		return;
1757 	}
1758 
1759 	/*
1760 	 * If we have not yet accelerated this jiffy, accelerate all
1761 	 * callbacks on this CPU.
1762 	 */
1763 	if (rdtp->last_accelerate == jiffies)
1764 		return;
1765 	rdtp->last_accelerate = jiffies;
1766 	for_each_rcu_flavor(rsp) {
1767 		rdp = per_cpu_ptr(rsp->rda, cpu);
1768 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1769 			continue;
1770 		rnp = rdp->mynode;
1771 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1772 		rcu_accelerate_cbs(rsp, rnp, rdp);
1773 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1774 	}
1775 }
1776 
1777 /*
1778  * Clean up for exit from idle.  Attempt to advance callbacks based on
1779  * any grace periods that elapsed while the CPU was idle, and if any
1780  * callbacks are now ready to invoke, initiate invocation.
1781  */
1782 static void rcu_cleanup_after_idle(int cpu)
1783 {
1784 
1785 	if (rcu_is_nocb_cpu(cpu))
1786 		return;
1787 	if (rcu_try_advance_all_cbs())
1788 		invoke_rcu_core();
1789 }
1790 
1791 /*
1792  * Keep a running count of the number of non-lazy callbacks posted
1793  * on this CPU.  This running counter (which is never decremented) allows
1794  * rcu_prepare_for_idle() to detect when something out of the idle loop
1795  * posts a callback, even if an equal number of callbacks are invoked.
1796  * Of course, callbacks should only be posted from within a trace event
1797  * designed to be called from idle or from within RCU_NONIDLE().
1798  */
1799 static void rcu_idle_count_callbacks_posted(void)
1800 {
1801 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1802 }
1803 
1804 /*
1805  * Data for flushing lazy RCU callbacks at OOM time.
1806  */
1807 static atomic_t oom_callback_count;
1808 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1809 
1810 /*
1811  * RCU OOM callback -- decrement the outstanding count and deliver the
1812  * wake-up if we are the last one.
1813  */
1814 static void rcu_oom_callback(struct rcu_head *rhp)
1815 {
1816 	if (atomic_dec_and_test(&oom_callback_count))
1817 		wake_up(&oom_callback_wq);
1818 }
1819 
1820 /*
1821  * Post an rcu_oom_notify callback on the current CPU if it has at
1822  * least one lazy callback.  This will unnecessarily post callbacks
1823  * to CPUs that already have a non-lazy callback at the end of their
1824  * callback list, but this is an infrequent operation, so accept some
1825  * extra overhead to keep things simple.
1826  */
1827 static void rcu_oom_notify_cpu(void *unused)
1828 {
1829 	struct rcu_state *rsp;
1830 	struct rcu_data *rdp;
1831 
1832 	for_each_rcu_flavor(rsp) {
1833 		rdp = __this_cpu_ptr(rsp->rda);
1834 		if (rdp->qlen_lazy != 0) {
1835 			atomic_inc(&oom_callback_count);
1836 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1837 		}
1838 	}
1839 }
1840 
1841 /*
1842  * If low on memory, ensure that each CPU has a non-lazy callback.
1843  * This will wake up CPUs that have only lazy callbacks, in turn
1844  * ensuring that they free up the corresponding memory in a timely manner.
1845  * Because an uncertain amount of memory will be freed in some uncertain
1846  * timeframe, we do not claim to have freed anything.
1847  */
1848 static int rcu_oom_notify(struct notifier_block *self,
1849 			  unsigned long notused, void *nfreed)
1850 {
1851 	int cpu;
1852 
1853 	/* Wait for callbacks from earlier instance to complete. */
1854 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1855 
1856 	/*
1857 	 * Prevent premature wakeup: ensure that all increments happen
1858 	 * before there is a chance of the counter reaching zero.
1859 	 */
1860 	atomic_set(&oom_callback_count, 1);
1861 
1862 	get_online_cpus();
1863 	for_each_online_cpu(cpu) {
1864 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1865 		cond_resched();
1866 	}
1867 	put_online_cpus();
1868 
1869 	/* Unconditionally decrement: no need to wake ourselves up. */
1870 	atomic_dec(&oom_callback_count);
1871 
1872 	return NOTIFY_OK;
1873 }
1874 
1875 static struct notifier_block rcu_oom_nb = {
1876 	.notifier_call = rcu_oom_notify
1877 };
1878 
1879 static int __init rcu_register_oom_notifier(void)
1880 {
1881 	register_oom_notifier(&rcu_oom_nb);
1882 	return 0;
1883 }
1884 early_initcall(rcu_register_oom_notifier);
1885 
1886 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1887 
1888 #ifdef CONFIG_RCU_CPU_STALL_INFO
1889 
1890 #ifdef CONFIG_RCU_FAST_NO_HZ
1891 
1892 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1893 {
1894 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1895 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1896 
1897 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1898 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1899 		ulong2long(nlpd),
1900 		rdtp->all_lazy ? 'L' : '.',
1901 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1902 }
1903 
1904 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1905 
1906 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1907 {
1908 	*cp = '\0';
1909 }
1910 
1911 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1912 
1913 /* Initiate the stall-info list. */
1914 static void print_cpu_stall_info_begin(void)
1915 {
1916 	pr_cont("\n");
1917 }
1918 
1919 /*
1920  * Print out diagnostic information for the specified stalled CPU.
1921  *
1922  * If the specified CPU is aware of the current RCU grace period
1923  * (flavor specified by rsp), then print the number of scheduling
1924  * clock interrupts the CPU has taken during the time that it has
1925  * been aware.  Otherwise, print the number of RCU grace periods
1926  * that this CPU is ignorant of, for example, "1" if the CPU was
1927  * aware of the previous grace period.
1928  *
1929  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1930  */
1931 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1932 {
1933 	char fast_no_hz[72];
1934 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1935 	struct rcu_dynticks *rdtp = rdp->dynticks;
1936 	char *ticks_title;
1937 	unsigned long ticks_value;
1938 
1939 	if (rsp->gpnum == rdp->gpnum) {
1940 		ticks_title = "ticks this GP";
1941 		ticks_value = rdp->ticks_this_gp;
1942 	} else {
1943 		ticks_title = "GPs behind";
1944 		ticks_value = rsp->gpnum - rdp->gpnum;
1945 	}
1946 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1947 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1948 	       cpu, ticks_value, ticks_title,
1949 	       atomic_read(&rdtp->dynticks) & 0xfff,
1950 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1951 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1952 	       fast_no_hz);
1953 }
1954 
1955 /* Terminate the stall-info list. */
1956 static void print_cpu_stall_info_end(void)
1957 {
1958 	pr_err("\t");
1959 }
1960 
1961 /* Zero ->ticks_this_gp for all flavors of RCU. */
1962 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1963 {
1964 	rdp->ticks_this_gp = 0;
1965 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1966 }
1967 
1968 /* Increment ->ticks_this_gp for all flavors of RCU. */
1969 static void increment_cpu_stall_ticks(void)
1970 {
1971 	struct rcu_state *rsp;
1972 
1973 	for_each_rcu_flavor(rsp)
1974 		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1975 }
1976 
1977 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1978 
1979 static void print_cpu_stall_info_begin(void)
1980 {
1981 	pr_cont(" {");
1982 }
1983 
1984 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1985 {
1986 	pr_cont(" %d", cpu);
1987 }
1988 
1989 static void print_cpu_stall_info_end(void)
1990 {
1991 	pr_cont("} ");
1992 }
1993 
1994 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1995 {
1996 }
1997 
1998 static void increment_cpu_stall_ticks(void)
1999 {
2000 }
2001 
2002 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2003 
2004 #ifdef CONFIG_RCU_NOCB_CPU
2005 
2006 /*
2007  * Offload callback processing from the boot-time-specified set of CPUs
2008  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
2009  * kthread created that pulls the callbacks from the corresponding CPU,
2010  * waits for a grace period to elapse, and invokes the callbacks.
2011  * The no-CBs CPUs do a wake_up() on their kthread when they insert
2012  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2013  * has been specified, in which case each kthread actively polls its
2014  * CPU.  (Which isn't so great for energy efficiency, but which does
2015  * reduce RCU's overhead on that CPU.)
2016  *
2017  * This is intended to be used in conjunction with Frederic Weisbecker's
2018  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2019  * running CPU-bound user-mode computations.
2020  *
2021  * Offloading of callback processing could also in theory be used as
2022  * an energy-efficiency measure because CPUs with no RCU callbacks
2023  * queued are more aggressive about entering dyntick-idle mode.
2024  */
2025 
2026 
2027 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2028 static int __init rcu_nocb_setup(char *str)
2029 {
2030 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2031 	have_rcu_nocb_mask = true;
2032 	cpulist_parse(str, rcu_nocb_mask);
2033 	return 1;
2034 }
2035 __setup("rcu_nocbs=", rcu_nocb_setup);
2036 
2037 static int __init parse_rcu_nocb_poll(char *arg)
2038 {
2039 	rcu_nocb_poll = 1;
2040 	return 0;
2041 }
2042 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2043 
2044 /*
2045  * Do any no-CBs CPUs need another grace period?
2046  *
2047  * Interrupts must be disabled.  If the caller does not hold the root
2048  * rnp_node structure's ->lock, the results are advisory only.
2049  */
2050 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2051 {
2052 	struct rcu_node *rnp = rcu_get_root(rsp);
2053 
2054 	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2055 }
2056 
2057 /*
2058  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2059  * grace period.
2060  */
2061 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2062 {
2063 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2064 }
2065 
2066 /*
2067  * Set the root rcu_node structure's ->need_future_gp field
2068  * based on the sum of those of all rcu_node structures.  This does
2069  * double-count the root rcu_node structure's requests, but this
2070  * is necessary to handle the possibility of a rcu_nocb_kthread()
2071  * having awakened during the time that the rcu_node structures
2072  * were being updated for the end of the previous grace period.
2073  */
2074 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2075 {
2076 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2077 }
2078 
2079 static void rcu_init_one_nocb(struct rcu_node *rnp)
2080 {
2081 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2082 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2083 }
2084 
2085 /* Is the specified CPU a no-CPUs CPU? */
2086 bool rcu_is_nocb_cpu(int cpu)
2087 {
2088 	if (have_rcu_nocb_mask)
2089 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2090 	return false;
2091 }
2092 
2093 /*
2094  * Enqueue the specified string of rcu_head structures onto the specified
2095  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2096  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2097  * counts are supplied by rhcount and rhcount_lazy.
2098  *
2099  * If warranted, also wake up the kthread servicing this CPUs queues.
2100  */
2101 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2102 				    struct rcu_head *rhp,
2103 				    struct rcu_head **rhtp,
2104 				    int rhcount, int rhcount_lazy)
2105 {
2106 	int len;
2107 	struct rcu_head **old_rhpp;
2108 	struct task_struct *t;
2109 
2110 	/* Enqueue the callback on the nocb list and update counts. */
2111 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2112 	ACCESS_ONCE(*old_rhpp) = rhp;
2113 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2114 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2115 
2116 	/* If we are not being polled and there is a kthread, awaken it ... */
2117 	t = ACCESS_ONCE(rdp->nocb_kthread);
2118 	if (rcu_nocb_poll || !t) {
2119 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2120 				    TPS("WakeNotPoll"));
2121 		return;
2122 	}
2123 	len = atomic_long_read(&rdp->nocb_q_count);
2124 	if (old_rhpp == &rdp->nocb_head) {
2125 		wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
2126 		rdp->qlen_last_fqs_check = 0;
2127 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeEmpty"));
2128 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2129 		wake_up_process(t); /* ... or if many callbacks queued. */
2130 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2131 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2132 	} else {
2133 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2134 	}
2135 	return;
2136 }
2137 
2138 /*
2139  * This is a helper for __call_rcu(), which invokes this when the normal
2140  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2141  * function returns failure back to __call_rcu(), which can complain
2142  * appropriately.
2143  *
2144  * Otherwise, this function queues the callback where the corresponding
2145  * "rcuo" kthread can find it.
2146  */
2147 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2148 			    bool lazy)
2149 {
2150 
2151 	if (!rcu_is_nocb_cpu(rdp->cpu))
2152 		return 0;
2153 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
2154 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2155 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2156 					 (unsigned long)rhp->func,
2157 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2158 					 -atomic_long_read(&rdp->nocb_q_count));
2159 	else
2160 		trace_rcu_callback(rdp->rsp->name, rhp,
2161 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2162 				   -atomic_long_read(&rdp->nocb_q_count));
2163 	return 1;
2164 }
2165 
2166 /*
2167  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2168  * not a no-CBs CPU.
2169  */
2170 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2171 						     struct rcu_data *rdp)
2172 {
2173 	long ql = rsp->qlen;
2174 	long qll = rsp->qlen_lazy;
2175 
2176 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2177 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2178 		return 0;
2179 	rsp->qlen = 0;
2180 	rsp->qlen_lazy = 0;
2181 
2182 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2183 	if (rsp->orphan_donelist != NULL) {
2184 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2185 					rsp->orphan_donetail, ql, qll);
2186 		ql = qll = 0;
2187 		rsp->orphan_donelist = NULL;
2188 		rsp->orphan_donetail = &rsp->orphan_donelist;
2189 	}
2190 	if (rsp->orphan_nxtlist != NULL) {
2191 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2192 					rsp->orphan_nxttail, ql, qll);
2193 		ql = qll = 0;
2194 		rsp->orphan_nxtlist = NULL;
2195 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2196 	}
2197 	return 1;
2198 }
2199 
2200 /*
2201  * If necessary, kick off a new grace period, and either way wait
2202  * for a subsequent grace period to complete.
2203  */
2204 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2205 {
2206 	unsigned long c;
2207 	bool d;
2208 	unsigned long flags;
2209 	struct rcu_node *rnp = rdp->mynode;
2210 
2211 	raw_spin_lock_irqsave(&rnp->lock, flags);
2212 	c = rcu_start_future_gp(rnp, rdp);
2213 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2214 
2215 	/*
2216 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2217 	 * up the load average.
2218 	 */
2219 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2220 	for (;;) {
2221 		wait_event_interruptible(
2222 			rnp->nocb_gp_wq[c & 0x1],
2223 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2224 		if (likely(d))
2225 			break;
2226 		flush_signals(current);
2227 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2228 	}
2229 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2230 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2231 }
2232 
2233 /*
2234  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2235  * callbacks queued by the corresponding no-CBs CPU.
2236  */
2237 static int rcu_nocb_kthread(void *arg)
2238 {
2239 	int c, cl;
2240 	bool firsttime = 1;
2241 	struct rcu_head *list;
2242 	struct rcu_head *next;
2243 	struct rcu_head **tail;
2244 	struct rcu_data *rdp = arg;
2245 
2246 	/* Each pass through this loop invokes one batch of callbacks */
2247 	for (;;) {
2248 		/* If not polling, wait for next batch of callbacks. */
2249 		if (!rcu_nocb_poll) {
2250 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2251 					    TPS("Sleep"));
2252 			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2253 		} else if (firsttime) {
2254 			firsttime = 0;
2255 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2256 					    TPS("Poll"));
2257 		}
2258 		list = ACCESS_ONCE(rdp->nocb_head);
2259 		if (!list) {
2260 			if (!rcu_nocb_poll)
2261 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2262 						    TPS("WokeEmpty"));
2263 			schedule_timeout_interruptible(1);
2264 			flush_signals(current);
2265 			continue;
2266 		}
2267 		firsttime = 1;
2268 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2269 				    TPS("WokeNonEmpty"));
2270 
2271 		/*
2272 		 * Extract queued callbacks, update counts, and wait
2273 		 * for a grace period to elapse.
2274 		 */
2275 		ACCESS_ONCE(rdp->nocb_head) = NULL;
2276 		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2277 		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2278 		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2279 		ACCESS_ONCE(rdp->nocb_p_count) += c;
2280 		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2281 		rcu_nocb_wait_gp(rdp);
2282 
2283 		/* Each pass through the following loop invokes a callback. */
2284 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2285 		c = cl = 0;
2286 		while (list) {
2287 			next = list->next;
2288 			/* Wait for enqueuing to complete, if needed. */
2289 			while (next == NULL && &list->next != tail) {
2290 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2291 						    TPS("WaitQueue"));
2292 				schedule_timeout_interruptible(1);
2293 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2294 						    TPS("WokeQueue"));
2295 				next = list->next;
2296 			}
2297 			debug_rcu_head_unqueue(list);
2298 			local_bh_disable();
2299 			if (__rcu_reclaim(rdp->rsp->name, list))
2300 				cl++;
2301 			c++;
2302 			local_bh_enable();
2303 			list = next;
2304 		}
2305 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2306 		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2307 		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2308 		rdp->n_nocbs_invoked += c;
2309 	}
2310 	return 0;
2311 }
2312 
2313 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2314 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2315 {
2316 	rdp->nocb_tail = &rdp->nocb_head;
2317 	init_waitqueue_head(&rdp->nocb_wq);
2318 }
2319 
2320 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2321 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2322 {
2323 	int cpu;
2324 	struct rcu_data *rdp;
2325 	struct task_struct *t;
2326 
2327 	if (rcu_nocb_mask == NULL)
2328 		return;
2329 	for_each_cpu(cpu, rcu_nocb_mask) {
2330 		rdp = per_cpu_ptr(rsp->rda, cpu);
2331 		t = kthread_run(rcu_nocb_kthread, rdp,
2332 				"rcuo%c/%d", rsp->abbr, cpu);
2333 		BUG_ON(IS_ERR(t));
2334 		ACCESS_ONCE(rdp->nocb_kthread) = t;
2335 	}
2336 }
2337 
2338 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2339 static bool init_nocb_callback_list(struct rcu_data *rdp)
2340 {
2341 	if (rcu_nocb_mask == NULL ||
2342 	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2343 		return false;
2344 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2345 	return true;
2346 }
2347 
2348 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2349 
2350 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2351 {
2352 	return 0;
2353 }
2354 
2355 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2356 {
2357 }
2358 
2359 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2360 {
2361 }
2362 
2363 static void rcu_init_one_nocb(struct rcu_node *rnp)
2364 {
2365 }
2366 
2367 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2368 			    bool lazy)
2369 {
2370 	return 0;
2371 }
2372 
2373 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2374 						     struct rcu_data *rdp)
2375 {
2376 	return 0;
2377 }
2378 
2379 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2380 {
2381 }
2382 
2383 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2384 {
2385 }
2386 
2387 static bool init_nocb_callback_list(struct rcu_data *rdp)
2388 {
2389 	return false;
2390 }
2391 
2392 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2393 
2394 /*
2395  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2396  * arbitrarily long period of time with the scheduling-clock tick turned
2397  * off.  RCU will be paying attention to this CPU because it is in the
2398  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2399  * machine because the scheduling-clock tick has been disabled.  Therefore,
2400  * if an adaptive-ticks CPU is failing to respond to the current grace
2401  * period and has not be idle from an RCU perspective, kick it.
2402  */
2403 static void rcu_kick_nohz_cpu(int cpu)
2404 {
2405 #ifdef CONFIG_NO_HZ_FULL
2406 	if (tick_nohz_full_cpu(cpu))
2407 		smp_send_reschedule(cpu);
2408 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2409 }
2410 
2411 
2412 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2413 
2414 /*
2415  * Define RCU flavor that holds sysidle state.  This needs to be the
2416  * most active flavor of RCU.
2417  */
2418 #ifdef CONFIG_PREEMPT_RCU
2419 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2420 #else /* #ifdef CONFIG_PREEMPT_RCU */
2421 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2422 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2423 
2424 static int full_sysidle_state;		/* Current system-idle state. */
2425 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2426 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2427 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2428 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2429 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2430 
2431 /*
2432  * Invoked to note exit from irq or task transition to idle.  Note that
2433  * usermode execution does -not- count as idle here!  After all, we want
2434  * to detect full-system idle states, not RCU quiescent states and grace
2435  * periods.  The caller must have disabled interrupts.
2436  */
2437 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2438 {
2439 	unsigned long j;
2440 
2441 	/* Adjust nesting, check for fully idle. */
2442 	if (irq) {
2443 		rdtp->dynticks_idle_nesting--;
2444 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2445 		if (rdtp->dynticks_idle_nesting != 0)
2446 			return;  /* Still not fully idle. */
2447 	} else {
2448 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2449 		    DYNTICK_TASK_NEST_VALUE) {
2450 			rdtp->dynticks_idle_nesting = 0;
2451 		} else {
2452 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2453 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2454 			return;  /* Still not fully idle. */
2455 		}
2456 	}
2457 
2458 	/* Record start of fully idle period. */
2459 	j = jiffies;
2460 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2461 	smp_mb__before_atomic_inc();
2462 	atomic_inc(&rdtp->dynticks_idle);
2463 	smp_mb__after_atomic_inc();
2464 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2465 }
2466 
2467 /*
2468  * Unconditionally force exit from full system-idle state.  This is
2469  * invoked when a normal CPU exits idle, but must be called separately
2470  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2471  * is that the timekeeping CPU is permitted to take scheduling-clock
2472  * interrupts while the system is in system-idle state, and of course
2473  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2474  * interrupt from any other type of interrupt.
2475  */
2476 void rcu_sysidle_force_exit(void)
2477 {
2478 	int oldstate = ACCESS_ONCE(full_sysidle_state);
2479 	int newoldstate;
2480 
2481 	/*
2482 	 * Each pass through the following loop attempts to exit full
2483 	 * system-idle state.  If contention proves to be a problem,
2484 	 * a trylock-based contention tree could be used here.
2485 	 */
2486 	while (oldstate > RCU_SYSIDLE_SHORT) {
2487 		newoldstate = cmpxchg(&full_sysidle_state,
2488 				      oldstate, RCU_SYSIDLE_NOT);
2489 		if (oldstate == newoldstate &&
2490 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2491 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2492 			return; /* We cleared it, done! */
2493 		}
2494 		oldstate = newoldstate;
2495 	}
2496 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2497 }
2498 
2499 /*
2500  * Invoked to note entry to irq or task transition from idle.  Note that
2501  * usermode execution does -not- count as idle here!  The caller must
2502  * have disabled interrupts.
2503  */
2504 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2505 {
2506 	/* Adjust nesting, check for already non-idle. */
2507 	if (irq) {
2508 		rdtp->dynticks_idle_nesting++;
2509 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2510 		if (rdtp->dynticks_idle_nesting != 1)
2511 			return; /* Already non-idle. */
2512 	} else {
2513 		/*
2514 		 * Allow for irq misnesting.  Yes, it really is possible
2515 		 * to enter an irq handler then never leave it, and maybe
2516 		 * also vice versa.  Handle both possibilities.
2517 		 */
2518 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2519 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2520 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2521 			return; /* Already non-idle. */
2522 		} else {
2523 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2524 		}
2525 	}
2526 
2527 	/* Record end of idle period. */
2528 	smp_mb__before_atomic_inc();
2529 	atomic_inc(&rdtp->dynticks_idle);
2530 	smp_mb__after_atomic_inc();
2531 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2532 
2533 	/*
2534 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2535 	 * during a system-idle state.  This must be the case, because
2536 	 * the timekeeping CPU has to take scheduling-clock interrupts
2537 	 * during the time that the system is transitioning to full
2538 	 * system-idle state.  This means that the timekeeping CPU must
2539 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2540 	 * more than take a scheduling-clock interrupt.
2541 	 */
2542 	if (smp_processor_id() == tick_do_timer_cpu)
2543 		return;
2544 
2545 	/* Update system-idle state: We are clearly no longer fully idle! */
2546 	rcu_sysidle_force_exit();
2547 }
2548 
2549 /*
2550  * Check to see if the current CPU is idle.  Note that usermode execution
2551  * does not count as idle.  The caller must have disabled interrupts.
2552  */
2553 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2554 				  unsigned long *maxj)
2555 {
2556 	int cur;
2557 	unsigned long j;
2558 	struct rcu_dynticks *rdtp = rdp->dynticks;
2559 
2560 	/*
2561 	 * If some other CPU has already reported non-idle, if this is
2562 	 * not the flavor of RCU that tracks sysidle state, or if this
2563 	 * is an offline or the timekeeping CPU, nothing to do.
2564 	 */
2565 	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2566 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2567 		return;
2568 	if (rcu_gp_in_progress(rdp->rsp))
2569 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2570 
2571 	/* Pick up current idle and NMI-nesting counter and check. */
2572 	cur = atomic_read(&rdtp->dynticks_idle);
2573 	if (cur & 0x1) {
2574 		*isidle = false; /* We are not idle! */
2575 		return;
2576 	}
2577 	smp_mb(); /* Read counters before timestamps. */
2578 
2579 	/* Pick up timestamps. */
2580 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2581 	/* If this CPU entered idle more recently, update maxj timestamp. */
2582 	if (ULONG_CMP_LT(*maxj, j))
2583 		*maxj = j;
2584 }
2585 
2586 /*
2587  * Is this the flavor of RCU that is handling full-system idle?
2588  */
2589 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2590 {
2591 	return rsp == rcu_sysidle_state;
2592 }
2593 
2594 /*
2595  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2596  * timekeeping CPU.
2597  */
2598 static void rcu_bind_gp_kthread(void)
2599 {
2600 	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2601 
2602 	if (cpu < 0 || cpu >= nr_cpu_ids)
2603 		return;
2604 	if (raw_smp_processor_id() != cpu)
2605 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2606 }
2607 
2608 /*
2609  * Return a delay in jiffies based on the number of CPUs, rcu_node
2610  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2611  * systems more time to transition to full-idle state in order to
2612  * avoid the cache thrashing that otherwise occur on the state variable.
2613  * Really small systems (less than a couple of tens of CPUs) should
2614  * instead use a single global atomically incremented counter, and later
2615  * versions of this will automatically reconfigure themselves accordingly.
2616  */
2617 static unsigned long rcu_sysidle_delay(void)
2618 {
2619 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2620 		return 0;
2621 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2622 }
2623 
2624 /*
2625  * Advance the full-system-idle state.  This is invoked when all of
2626  * the non-timekeeping CPUs are idle.
2627  */
2628 static void rcu_sysidle(unsigned long j)
2629 {
2630 	/* Check the current state. */
2631 	switch (ACCESS_ONCE(full_sysidle_state)) {
2632 	case RCU_SYSIDLE_NOT:
2633 
2634 		/* First time all are idle, so note a short idle period. */
2635 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2636 		break;
2637 
2638 	case RCU_SYSIDLE_SHORT:
2639 
2640 		/*
2641 		 * Idle for a bit, time to advance to next state?
2642 		 * cmpxchg failure means race with non-idle, let them win.
2643 		 */
2644 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2645 			(void)cmpxchg(&full_sysidle_state,
2646 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2647 		break;
2648 
2649 	case RCU_SYSIDLE_LONG:
2650 
2651 		/*
2652 		 * Do an additional check pass before advancing to full.
2653 		 * cmpxchg failure means race with non-idle, let them win.
2654 		 */
2655 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2656 			(void)cmpxchg(&full_sysidle_state,
2657 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2658 		break;
2659 
2660 	default:
2661 		break;
2662 	}
2663 }
2664 
2665 /*
2666  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2667  * back to the beginning.
2668  */
2669 static void rcu_sysidle_cancel(void)
2670 {
2671 	smp_mb();
2672 	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2673 }
2674 
2675 /*
2676  * Update the sysidle state based on the results of a force-quiescent-state
2677  * scan of the CPUs' dyntick-idle state.
2678  */
2679 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2680 			       unsigned long maxj, bool gpkt)
2681 {
2682 	if (rsp != rcu_sysidle_state)
2683 		return;  /* Wrong flavor, ignore. */
2684 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2685 		return;  /* Running state machine from timekeeping CPU. */
2686 	if (isidle)
2687 		rcu_sysidle(maxj);    /* More idle! */
2688 	else
2689 		rcu_sysidle_cancel(); /* Idle is over. */
2690 }
2691 
2692 /*
2693  * Wrapper for rcu_sysidle_report() when called from the grace-period
2694  * kthread's context.
2695  */
2696 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2697 				  unsigned long maxj)
2698 {
2699 	rcu_sysidle_report(rsp, isidle, maxj, true);
2700 }
2701 
2702 /* Callback and function for forcing an RCU grace period. */
2703 struct rcu_sysidle_head {
2704 	struct rcu_head rh;
2705 	int inuse;
2706 };
2707 
2708 static void rcu_sysidle_cb(struct rcu_head *rhp)
2709 {
2710 	struct rcu_sysidle_head *rshp;
2711 
2712 	/*
2713 	 * The following memory barrier is needed to replace the
2714 	 * memory barriers that would normally be in the memory
2715 	 * allocator.
2716 	 */
2717 	smp_mb();  /* grace period precedes setting inuse. */
2718 
2719 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2720 	ACCESS_ONCE(rshp->inuse) = 0;
2721 }
2722 
2723 /*
2724  * Check to see if the system is fully idle, other than the timekeeping CPU.
2725  * The caller must have disabled interrupts.
2726  */
2727 bool rcu_sys_is_idle(void)
2728 {
2729 	static struct rcu_sysidle_head rsh;
2730 	int rss = ACCESS_ONCE(full_sysidle_state);
2731 
2732 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2733 		return false;
2734 
2735 	/* Handle small-system case by doing a full scan of CPUs. */
2736 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2737 		int oldrss = rss - 1;
2738 
2739 		/*
2740 		 * One pass to advance to each state up to _FULL.
2741 		 * Give up if any pass fails to advance the state.
2742 		 */
2743 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2744 			int cpu;
2745 			bool isidle = true;
2746 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2747 			struct rcu_data *rdp;
2748 
2749 			/* Scan all the CPUs looking for nonidle CPUs. */
2750 			for_each_possible_cpu(cpu) {
2751 				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2752 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2753 				if (!isidle)
2754 					break;
2755 			}
2756 			rcu_sysidle_report(rcu_sysidle_state,
2757 					   isidle, maxj, false);
2758 			oldrss = rss;
2759 			rss = ACCESS_ONCE(full_sysidle_state);
2760 		}
2761 	}
2762 
2763 	/* If this is the first observation of an idle period, record it. */
2764 	if (rss == RCU_SYSIDLE_FULL) {
2765 		rss = cmpxchg(&full_sysidle_state,
2766 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2767 		return rss == RCU_SYSIDLE_FULL;
2768 	}
2769 
2770 	smp_mb(); /* ensure rss load happens before later caller actions. */
2771 
2772 	/* If already fully idle, tell the caller (in case of races). */
2773 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2774 		return true;
2775 
2776 	/*
2777 	 * If we aren't there yet, and a grace period is not in flight,
2778 	 * initiate a grace period.  Either way, tell the caller that
2779 	 * we are not there yet.  We use an xchg() rather than an assignment
2780 	 * to make up for the memory barriers that would otherwise be
2781 	 * provided by the memory allocator.
2782 	 */
2783 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2784 	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2785 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2786 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2787 	return false;
2788 }
2789 
2790 /*
2791  * Initialize dynticks sysidle state for CPUs coming online.
2792  */
2793 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2794 {
2795 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2796 }
2797 
2798 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2799 
2800 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2801 {
2802 }
2803 
2804 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2805 {
2806 }
2807 
2808 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2809 				  unsigned long *maxj)
2810 {
2811 }
2812 
2813 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2814 {
2815 	return false;
2816 }
2817 
2818 static void rcu_bind_gp_kthread(void)
2819 {
2820 }
2821 
2822 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2823 				  unsigned long maxj)
2824 {
2825 }
2826 
2827 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2828 {
2829 }
2830 
2831 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2832