xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 1f9f6a78)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #ifdef CONFIG_RCU_BOOST
34 
35 #include "../locking/rtmutex_common.h"
36 
37 /* rcuc/rcub kthread realtime priority */
38 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
39 module_param(kthread_prio, int, 0644);
40 
41 /*
42  * Control variables for per-CPU and per-rcu_node kthreads.  These
43  * handle all flavors of RCU.
44  */
45 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
47 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
48 DEFINE_PER_CPU(char, rcu_cpu_has_work);
49 
50 #endif /* #ifdef CONFIG_RCU_BOOST */
51 
52 #ifdef CONFIG_RCU_NOCB_CPU
53 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
54 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
55 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
56 static char __initdata nocb_buf[NR_CPUS * 5];
57 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
58 
59 /*
60  * Check the RCU kernel configuration parameters and print informative
61  * messages about anything out of the ordinary.  If you like #ifdef, you
62  * will love this function.
63  */
64 static void __init rcu_bootup_announce_oddness(void)
65 {
66 #ifdef CONFIG_RCU_TRACE
67 	pr_info("\tRCU debugfs-based tracing is enabled.\n");
68 #endif
69 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
70 	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
71 	       CONFIG_RCU_FANOUT);
72 #endif
73 #ifdef CONFIG_RCU_FANOUT_EXACT
74 	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
75 #endif
76 #ifdef CONFIG_RCU_FAST_NO_HZ
77 	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
78 #endif
79 #ifdef CONFIG_PROVE_RCU
80 	pr_info("\tRCU lockdep checking is enabled.\n");
81 #endif
82 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
83 	pr_info("\tRCU torture testing starts during boot.\n");
84 #endif
85 #if defined(CONFIG_RCU_CPU_STALL_INFO)
86 	pr_info("\tAdditional per-CPU info printed with stalls.\n");
87 #endif
88 #if NUM_RCU_LVL_4 != 0
89 	pr_info("\tFour-level hierarchy is enabled.\n");
90 #endif
91 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
92 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
93 	if (nr_cpu_ids != NR_CPUS)
94 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
95 #ifdef CONFIG_RCU_BOOST
96 	pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
97 #endif
98 }
99 
100 #ifdef CONFIG_PREEMPT_RCU
101 
102 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
103 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
104 
105 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
106 
107 /*
108  * Tell them what RCU they are running.
109  */
110 static void __init rcu_bootup_announce(void)
111 {
112 	pr_info("Preemptible hierarchical RCU implementation.\n");
113 	rcu_bootup_announce_oddness();
114 }
115 
116 /*
117  * Return the number of RCU-preempt batches processed thus far
118  * for debug and statistics.
119  */
120 static long rcu_batches_completed_preempt(void)
121 {
122 	return rcu_preempt_state.completed;
123 }
124 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
125 
126 /*
127  * Return the number of RCU batches processed thus far for debug & stats.
128  */
129 long rcu_batches_completed(void)
130 {
131 	return rcu_batches_completed_preempt();
132 }
133 EXPORT_SYMBOL_GPL(rcu_batches_completed);
134 
135 /*
136  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
137  * that this just means that the task currently running on the CPU is
138  * not in a quiescent state.  There might be any number of tasks blocked
139  * while in an RCU read-side critical section.
140  *
141  * As with the other rcu_*_qs() functions, callers to this function
142  * must disable preemption.
143  */
144 static void rcu_preempt_qs(void)
145 {
146 	if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
147 		trace_rcu_grace_period(TPS("rcu_preempt"),
148 				       __this_cpu_read(rcu_preempt_data.gpnum),
149 				       TPS("cpuqs"));
150 		__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
151 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
152 		current->rcu_read_unlock_special.b.need_qs = false;
153 	}
154 }
155 
156 /*
157  * We have entered the scheduler, and the current task might soon be
158  * context-switched away from.  If this task is in an RCU read-side
159  * critical section, we will no longer be able to rely on the CPU to
160  * record that fact, so we enqueue the task on the blkd_tasks list.
161  * The task will dequeue itself when it exits the outermost enclosing
162  * RCU read-side critical section.  Therefore, the current grace period
163  * cannot be permitted to complete until the blkd_tasks list entries
164  * predating the current grace period drain, in other words, until
165  * rnp->gp_tasks becomes NULL.
166  *
167  * Caller must disable preemption.
168  */
169 static void rcu_preempt_note_context_switch(void)
170 {
171 	struct task_struct *t = current;
172 	unsigned long flags;
173 	struct rcu_data *rdp;
174 	struct rcu_node *rnp;
175 
176 	if (t->rcu_read_lock_nesting > 0 &&
177 	    !t->rcu_read_unlock_special.b.blocked) {
178 
179 		/* Possibly blocking in an RCU read-side critical section. */
180 		rdp = this_cpu_ptr(rcu_preempt_state.rda);
181 		rnp = rdp->mynode;
182 		raw_spin_lock_irqsave(&rnp->lock, flags);
183 		smp_mb__after_unlock_lock();
184 		t->rcu_read_unlock_special.b.blocked = true;
185 		t->rcu_blocked_node = rnp;
186 
187 		/*
188 		 * If this CPU has already checked in, then this task
189 		 * will hold up the next grace period rather than the
190 		 * current grace period.  Queue the task accordingly.
191 		 * If the task is queued for the current grace period
192 		 * (i.e., this CPU has not yet passed through a quiescent
193 		 * state for the current grace period), then as long
194 		 * as that task remains queued, the current grace period
195 		 * cannot end.  Note that there is some uncertainty as
196 		 * to exactly when the current grace period started.
197 		 * We take a conservative approach, which can result
198 		 * in unnecessarily waiting on tasks that started very
199 		 * slightly after the current grace period began.  C'est
200 		 * la vie!!!
201 		 *
202 		 * But first, note that the current CPU must still be
203 		 * on line!
204 		 */
205 		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
206 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
207 		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
208 			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
209 			rnp->gp_tasks = &t->rcu_node_entry;
210 #ifdef CONFIG_RCU_BOOST
211 			if (rnp->boost_tasks != NULL)
212 				rnp->boost_tasks = rnp->gp_tasks;
213 #endif /* #ifdef CONFIG_RCU_BOOST */
214 		} else {
215 			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
216 			if (rnp->qsmask & rdp->grpmask)
217 				rnp->gp_tasks = &t->rcu_node_entry;
218 		}
219 		trace_rcu_preempt_task(rdp->rsp->name,
220 				       t->pid,
221 				       (rnp->qsmask & rdp->grpmask)
222 				       ? rnp->gpnum
223 				       : rnp->gpnum + 1);
224 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
225 	} else if (t->rcu_read_lock_nesting < 0 &&
226 		   t->rcu_read_unlock_special.s) {
227 
228 		/*
229 		 * Complete exit from RCU read-side critical section on
230 		 * behalf of preempted instance of __rcu_read_unlock().
231 		 */
232 		rcu_read_unlock_special(t);
233 	}
234 
235 	/*
236 	 * Either we were not in an RCU read-side critical section to
237 	 * begin with, or we have now recorded that critical section
238 	 * globally.  Either way, we can now note a quiescent state
239 	 * for this CPU.  Again, if we were in an RCU read-side critical
240 	 * section, and if that critical section was blocking the current
241 	 * grace period, then the fact that the task has been enqueued
242 	 * means that we continue to block the current grace period.
243 	 */
244 	rcu_preempt_qs();
245 }
246 
247 /*
248  * Check for preempted RCU readers blocking the current grace period
249  * for the specified rcu_node structure.  If the caller needs a reliable
250  * answer, it must hold the rcu_node's ->lock.
251  */
252 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
253 {
254 	return rnp->gp_tasks != NULL;
255 }
256 
257 /*
258  * Record a quiescent state for all tasks that were previously queued
259  * on the specified rcu_node structure and that were blocking the current
260  * RCU grace period.  The caller must hold the specified rnp->lock with
261  * irqs disabled, and this lock is released upon return, but irqs remain
262  * disabled.
263  */
264 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
265 	__releases(rnp->lock)
266 {
267 	unsigned long mask;
268 	struct rcu_node *rnp_p;
269 
270 	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
271 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
272 		return;  /* Still need more quiescent states! */
273 	}
274 
275 	rnp_p = rnp->parent;
276 	if (rnp_p == NULL) {
277 		/*
278 		 * Either there is only one rcu_node in the tree,
279 		 * or tasks were kicked up to root rcu_node due to
280 		 * CPUs going offline.
281 		 */
282 		rcu_report_qs_rsp(&rcu_preempt_state, flags);
283 		return;
284 	}
285 
286 	/* Report up the rest of the hierarchy. */
287 	mask = rnp->grpmask;
288 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
289 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
290 	smp_mb__after_unlock_lock();
291 	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
292 }
293 
294 /*
295  * Advance a ->blkd_tasks-list pointer to the next entry, instead
296  * returning NULL if at the end of the list.
297  */
298 static struct list_head *rcu_next_node_entry(struct task_struct *t,
299 					     struct rcu_node *rnp)
300 {
301 	struct list_head *np;
302 
303 	np = t->rcu_node_entry.next;
304 	if (np == &rnp->blkd_tasks)
305 		np = NULL;
306 	return np;
307 }
308 
309 /*
310  * Handle special cases during rcu_read_unlock(), such as needing to
311  * notify RCU core processing or task having blocked during the RCU
312  * read-side critical section.
313  */
314 void rcu_read_unlock_special(struct task_struct *t)
315 {
316 	int empty;
317 	int empty_exp;
318 	int empty_exp_now;
319 	unsigned long flags;
320 	struct list_head *np;
321 #ifdef CONFIG_RCU_BOOST
322 	bool drop_boost_mutex = false;
323 #endif /* #ifdef CONFIG_RCU_BOOST */
324 	struct rcu_node *rnp;
325 	union rcu_special special;
326 
327 	/* NMI handlers cannot block and cannot safely manipulate state. */
328 	if (in_nmi())
329 		return;
330 
331 	local_irq_save(flags);
332 
333 	/*
334 	 * If RCU core is waiting for this CPU to exit critical section,
335 	 * let it know that we have done so.  Because irqs are disabled,
336 	 * t->rcu_read_unlock_special cannot change.
337 	 */
338 	special = t->rcu_read_unlock_special;
339 	if (special.b.need_qs) {
340 		rcu_preempt_qs();
341 		if (!t->rcu_read_unlock_special.s) {
342 			local_irq_restore(flags);
343 			return;
344 		}
345 	}
346 
347 	/* Hardware IRQ handlers cannot block, complain if they get here. */
348 	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
349 		local_irq_restore(flags);
350 		return;
351 	}
352 
353 	/* Clean up if blocked during RCU read-side critical section. */
354 	if (special.b.blocked) {
355 		t->rcu_read_unlock_special.b.blocked = false;
356 
357 		/*
358 		 * Remove this task from the list it blocked on.  The
359 		 * task can migrate while we acquire the lock, but at
360 		 * most one time.  So at most two passes through loop.
361 		 */
362 		for (;;) {
363 			rnp = t->rcu_blocked_node;
364 			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
365 			smp_mb__after_unlock_lock();
366 			if (rnp == t->rcu_blocked_node)
367 				break;
368 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
369 		}
370 		empty = !rcu_preempt_blocked_readers_cgp(rnp);
371 		empty_exp = !rcu_preempted_readers_exp(rnp);
372 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
373 		np = rcu_next_node_entry(t, rnp);
374 		list_del_init(&t->rcu_node_entry);
375 		t->rcu_blocked_node = NULL;
376 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
377 						rnp->gpnum, t->pid);
378 		if (&t->rcu_node_entry == rnp->gp_tasks)
379 			rnp->gp_tasks = np;
380 		if (&t->rcu_node_entry == rnp->exp_tasks)
381 			rnp->exp_tasks = np;
382 #ifdef CONFIG_RCU_BOOST
383 		if (&t->rcu_node_entry == rnp->boost_tasks)
384 			rnp->boost_tasks = np;
385 		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
386 		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
387 #endif /* #ifdef CONFIG_RCU_BOOST */
388 
389 		/*
390 		 * If this was the last task on the current list, and if
391 		 * we aren't waiting on any CPUs, report the quiescent state.
392 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
393 		 * so we must take a snapshot of the expedited state.
394 		 */
395 		empty_exp_now = !rcu_preempted_readers_exp(rnp);
396 		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
397 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
398 							 rnp->gpnum,
399 							 0, rnp->qsmask,
400 							 rnp->level,
401 							 rnp->grplo,
402 							 rnp->grphi,
403 							 !!rnp->gp_tasks);
404 			rcu_report_unblock_qs_rnp(rnp, flags);
405 		} else {
406 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
407 		}
408 
409 #ifdef CONFIG_RCU_BOOST
410 		/* Unboost if we were boosted. */
411 		if (drop_boost_mutex) {
412 			rt_mutex_unlock(&rnp->boost_mtx);
413 			complete(&rnp->boost_completion);
414 		}
415 #endif /* #ifdef CONFIG_RCU_BOOST */
416 
417 		/*
418 		 * If this was the last task on the expedited lists,
419 		 * then we need to report up the rcu_node hierarchy.
420 		 */
421 		if (!empty_exp && empty_exp_now)
422 			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
423 	} else {
424 		local_irq_restore(flags);
425 	}
426 }
427 
428 /*
429  * Dump detailed information for all tasks blocking the current RCU
430  * grace period on the specified rcu_node structure.
431  */
432 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
433 {
434 	unsigned long flags;
435 	struct task_struct *t;
436 
437 	raw_spin_lock_irqsave(&rnp->lock, flags);
438 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
439 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
440 		return;
441 	}
442 	t = list_entry(rnp->gp_tasks,
443 		       struct task_struct, rcu_node_entry);
444 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
445 		sched_show_task(t);
446 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
447 }
448 
449 /*
450  * Dump detailed information for all tasks blocking the current RCU
451  * grace period.
452  */
453 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
454 {
455 	struct rcu_node *rnp = rcu_get_root(rsp);
456 
457 	rcu_print_detail_task_stall_rnp(rnp);
458 	rcu_for_each_leaf_node(rsp, rnp)
459 		rcu_print_detail_task_stall_rnp(rnp);
460 }
461 
462 #ifdef CONFIG_RCU_CPU_STALL_INFO
463 
464 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465 {
466 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467 	       rnp->level, rnp->grplo, rnp->grphi);
468 }
469 
470 static void rcu_print_task_stall_end(void)
471 {
472 	pr_cont("\n");
473 }
474 
475 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476 
477 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478 {
479 }
480 
481 static void rcu_print_task_stall_end(void)
482 {
483 }
484 
485 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486 
487 /*
488  * Scan the current list of tasks blocked within RCU read-side critical
489  * sections, printing out the tid of each.
490  */
491 static int rcu_print_task_stall(struct rcu_node *rnp)
492 {
493 	struct task_struct *t;
494 	int ndetected = 0;
495 
496 	if (!rcu_preempt_blocked_readers_cgp(rnp))
497 		return 0;
498 	rcu_print_task_stall_begin(rnp);
499 	t = list_entry(rnp->gp_tasks,
500 		       struct task_struct, rcu_node_entry);
501 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502 		pr_cont(" P%d", t->pid);
503 		ndetected++;
504 	}
505 	rcu_print_task_stall_end();
506 	return ndetected;
507 }
508 
509 /*
510  * Check that the list of blocked tasks for the newly completed grace
511  * period is in fact empty.  It is a serious bug to complete a grace
512  * period that still has RCU readers blocked!  This function must be
513  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514  * must be held by the caller.
515  *
516  * Also, if there are blocked tasks on the list, they automatically
517  * block the newly created grace period, so set up ->gp_tasks accordingly.
518  */
519 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520 {
521 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522 	if (!list_empty(&rnp->blkd_tasks))
523 		rnp->gp_tasks = rnp->blkd_tasks.next;
524 	WARN_ON_ONCE(rnp->qsmask);
525 }
526 
527 #ifdef CONFIG_HOTPLUG_CPU
528 
529 /*
530  * Handle tasklist migration for case in which all CPUs covered by the
531  * specified rcu_node have gone offline.  Move them up to the root
532  * rcu_node.  The reason for not just moving them to the immediate
533  * parent is to remove the need for rcu_read_unlock_special() to
534  * make more than two attempts to acquire the target rcu_node's lock.
535  * Returns true if there were tasks blocking the current RCU grace
536  * period.
537  *
538  * Returns 1 if there was previously a task blocking the current grace
539  * period on the specified rcu_node structure.
540  *
541  * The caller must hold rnp->lock with irqs disabled.
542  */
543 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544 				     struct rcu_node *rnp,
545 				     struct rcu_data *rdp)
546 {
547 	struct list_head *lp;
548 	struct list_head *lp_root;
549 	int retval = 0;
550 	struct rcu_node *rnp_root = rcu_get_root(rsp);
551 	struct task_struct *t;
552 
553 	if (rnp == rnp_root) {
554 		WARN_ONCE(1, "Last CPU thought to be offlined?");
555 		return 0;  /* Shouldn't happen: at least one CPU online. */
556 	}
557 
558 	/* If we are on an internal node, complain bitterly. */
559 	WARN_ON_ONCE(rnp != rdp->mynode);
560 
561 	/*
562 	 * Move tasks up to root rcu_node.  Don't try to get fancy for
563 	 * this corner-case operation -- just put this node's tasks
564 	 * at the head of the root node's list, and update the root node's
565 	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566 	 * if non-NULL.  This might result in waiting for more tasks than
567 	 * absolutely necessary, but this is a good performance/complexity
568 	 * tradeoff.
569 	 */
570 	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571 		retval |= RCU_OFL_TASKS_NORM_GP;
572 	if (rcu_preempted_readers_exp(rnp))
573 		retval |= RCU_OFL_TASKS_EXP_GP;
574 	lp = &rnp->blkd_tasks;
575 	lp_root = &rnp_root->blkd_tasks;
576 	while (!list_empty(lp)) {
577 		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578 		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579 		smp_mb__after_unlock_lock();
580 		list_del(&t->rcu_node_entry);
581 		t->rcu_blocked_node = rnp_root;
582 		list_add(&t->rcu_node_entry, lp_root);
583 		if (&t->rcu_node_entry == rnp->gp_tasks)
584 			rnp_root->gp_tasks = rnp->gp_tasks;
585 		if (&t->rcu_node_entry == rnp->exp_tasks)
586 			rnp_root->exp_tasks = rnp->exp_tasks;
587 #ifdef CONFIG_RCU_BOOST
588 		if (&t->rcu_node_entry == rnp->boost_tasks)
589 			rnp_root->boost_tasks = rnp->boost_tasks;
590 #endif /* #ifdef CONFIG_RCU_BOOST */
591 		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592 	}
593 
594 	rnp->gp_tasks = NULL;
595 	rnp->exp_tasks = NULL;
596 #ifdef CONFIG_RCU_BOOST
597 	rnp->boost_tasks = NULL;
598 	/*
599 	 * In case root is being boosted and leaf was not.  Make sure
600 	 * that we boost the tasks blocking the current grace period
601 	 * in this case.
602 	 */
603 	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604 	smp_mb__after_unlock_lock();
605 	if (rnp_root->boost_tasks != NULL &&
606 	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
607 	    rnp_root->boost_tasks != rnp_root->exp_tasks)
608 		rnp_root->boost_tasks = rnp_root->gp_tasks;
609 	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610 #endif /* #ifdef CONFIG_RCU_BOOST */
611 
612 	return retval;
613 }
614 
615 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
616 
617 /*
618  * Check for a quiescent state from the current CPU.  When a task blocks,
619  * the task is recorded in the corresponding CPU's rcu_node structure,
620  * which is checked elsewhere.
621  *
622  * Caller must disable hard irqs.
623  */
624 static void rcu_preempt_check_callbacks(void)
625 {
626 	struct task_struct *t = current;
627 
628 	if (t->rcu_read_lock_nesting == 0) {
629 		rcu_preempt_qs();
630 		return;
631 	}
632 	if (t->rcu_read_lock_nesting > 0 &&
633 	    __this_cpu_read(rcu_preempt_data.qs_pending) &&
634 	    !__this_cpu_read(rcu_preempt_data.passed_quiesce))
635 		t->rcu_read_unlock_special.b.need_qs = true;
636 }
637 
638 #ifdef CONFIG_RCU_BOOST
639 
640 static void rcu_preempt_do_callbacks(void)
641 {
642 	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
643 }
644 
645 #endif /* #ifdef CONFIG_RCU_BOOST */
646 
647 /*
648  * Queue a preemptible-RCU callback for invocation after a grace period.
649  */
650 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
651 {
652 	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
653 }
654 EXPORT_SYMBOL_GPL(call_rcu);
655 
656 /**
657  * synchronize_rcu - wait until a grace period has elapsed.
658  *
659  * Control will return to the caller some time after a full grace
660  * period has elapsed, in other words after all currently executing RCU
661  * read-side critical sections have completed.  Note, however, that
662  * upon return from synchronize_rcu(), the caller might well be executing
663  * concurrently with new RCU read-side critical sections that began while
664  * synchronize_rcu() was waiting.  RCU read-side critical sections are
665  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666  *
667  * See the description of synchronize_sched() for more detailed information
668  * on memory ordering guarantees.
669  */
670 void synchronize_rcu(void)
671 {
672 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
673 			   !lock_is_held(&rcu_lock_map) &&
674 			   !lock_is_held(&rcu_sched_lock_map),
675 			   "Illegal synchronize_rcu() in RCU read-side critical section");
676 	if (!rcu_scheduler_active)
677 		return;
678 	if (rcu_expedited)
679 		synchronize_rcu_expedited();
680 	else
681 		wait_rcu_gp(call_rcu);
682 }
683 EXPORT_SYMBOL_GPL(synchronize_rcu);
684 
685 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
686 static unsigned long sync_rcu_preempt_exp_count;
687 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
688 
689 /*
690  * Return non-zero if there are any tasks in RCU read-side critical
691  * sections blocking the current preemptible-RCU expedited grace period.
692  * If there is no preemptible-RCU expedited grace period currently in
693  * progress, returns zero unconditionally.
694  */
695 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
696 {
697 	return rnp->exp_tasks != NULL;
698 }
699 
700 /*
701  * return non-zero if there is no RCU expedited grace period in progress
702  * for the specified rcu_node structure, in other words, if all CPUs and
703  * tasks covered by the specified rcu_node structure have done their bit
704  * for the current expedited grace period.  Works only for preemptible
705  * RCU -- other RCU implementation use other means.
706  *
707  * Caller must hold sync_rcu_preempt_exp_mutex.
708  */
709 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
710 {
711 	return !rcu_preempted_readers_exp(rnp) &&
712 	       ACCESS_ONCE(rnp->expmask) == 0;
713 }
714 
715 /*
716  * Report the exit from RCU read-side critical section for the last task
717  * that queued itself during or before the current expedited preemptible-RCU
718  * grace period.  This event is reported either to the rcu_node structure on
719  * which the task was queued or to one of that rcu_node structure's ancestors,
720  * recursively up the tree.  (Calm down, calm down, we do the recursion
721  * iteratively!)
722  *
723  * Most callers will set the "wake" flag, but the task initiating the
724  * expedited grace period need not wake itself.
725  *
726  * Caller must hold sync_rcu_preempt_exp_mutex.
727  */
728 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
729 			       bool wake)
730 {
731 	unsigned long flags;
732 	unsigned long mask;
733 
734 	raw_spin_lock_irqsave(&rnp->lock, flags);
735 	smp_mb__after_unlock_lock();
736 	for (;;) {
737 		if (!sync_rcu_preempt_exp_done(rnp)) {
738 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
739 			break;
740 		}
741 		if (rnp->parent == NULL) {
742 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
743 			if (wake) {
744 				smp_mb(); /* EGP done before wake_up(). */
745 				wake_up(&sync_rcu_preempt_exp_wq);
746 			}
747 			break;
748 		}
749 		mask = rnp->grpmask;
750 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
751 		rnp = rnp->parent;
752 		raw_spin_lock(&rnp->lock); /* irqs already disabled */
753 		smp_mb__after_unlock_lock();
754 		rnp->expmask &= ~mask;
755 	}
756 }
757 
758 /*
759  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
760  * grace period for the specified rcu_node structure.  If there are no such
761  * tasks, report it up the rcu_node hierarchy.
762  *
763  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
764  * CPU hotplug operations.
765  */
766 static void
767 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
768 {
769 	unsigned long flags;
770 	int must_wait = 0;
771 
772 	raw_spin_lock_irqsave(&rnp->lock, flags);
773 	smp_mb__after_unlock_lock();
774 	if (list_empty(&rnp->blkd_tasks)) {
775 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
776 	} else {
777 		rnp->exp_tasks = rnp->blkd_tasks.next;
778 		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
779 		must_wait = 1;
780 	}
781 	if (!must_wait)
782 		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
783 }
784 
785 /**
786  * synchronize_rcu_expedited - Brute-force RCU grace period
787  *
788  * Wait for an RCU-preempt grace period, but expedite it.  The basic
789  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
790  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
791  * significant time on all CPUs and is unfriendly to real-time workloads,
792  * so is thus not recommended for any sort of common-case code.
793  * In fact, if you are using synchronize_rcu_expedited() in a loop,
794  * please restructure your code to batch your updates, and then Use a
795  * single synchronize_rcu() instead.
796  */
797 void synchronize_rcu_expedited(void)
798 {
799 	unsigned long flags;
800 	struct rcu_node *rnp;
801 	struct rcu_state *rsp = &rcu_preempt_state;
802 	unsigned long snap;
803 	int trycount = 0;
804 
805 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
806 	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
807 	smp_mb(); /* Above access cannot bleed into critical section. */
808 
809 	/*
810 	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
811 	 * operation that finds an rcu_node structure with tasks in the
812 	 * process of being boosted will know that all tasks blocking
813 	 * this expedited grace period will already be in the process of
814 	 * being boosted.  This simplifies the process of moving tasks
815 	 * from leaf to root rcu_node structures.
816 	 */
817 	if (!try_get_online_cpus()) {
818 		/* CPU-hotplug operation in flight, fall back to normal GP. */
819 		wait_rcu_gp(call_rcu);
820 		return;
821 	}
822 
823 	/*
824 	 * Acquire lock, falling back to synchronize_rcu() if too many
825 	 * lock-acquisition failures.  Of course, if someone does the
826 	 * expedited grace period for us, just leave.
827 	 */
828 	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829 		if (ULONG_CMP_LT(snap,
830 		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831 			put_online_cpus();
832 			goto mb_ret; /* Others did our work for us. */
833 		}
834 		if (trycount++ < 10) {
835 			udelay(trycount * num_online_cpus());
836 		} else {
837 			put_online_cpus();
838 			wait_rcu_gp(call_rcu);
839 			return;
840 		}
841 	}
842 	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843 		put_online_cpus();
844 		goto unlock_mb_ret; /* Others did our work for us. */
845 	}
846 
847 	/* force all RCU readers onto ->blkd_tasks lists. */
848 	synchronize_sched_expedited();
849 
850 	/* Initialize ->expmask for all non-leaf rcu_node structures. */
851 	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852 		raw_spin_lock_irqsave(&rnp->lock, flags);
853 		smp_mb__after_unlock_lock();
854 		rnp->expmask = rnp->qsmaskinit;
855 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
856 	}
857 
858 	/* Snapshot current state of ->blkd_tasks lists. */
859 	rcu_for_each_leaf_node(rsp, rnp)
860 		sync_rcu_preempt_exp_init(rsp, rnp);
861 	if (NUM_RCU_NODES > 1)
862 		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863 
864 	put_online_cpus();
865 
866 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
867 	rnp = rcu_get_root(rsp);
868 	wait_event(sync_rcu_preempt_exp_wq,
869 		   sync_rcu_preempt_exp_done(rnp));
870 
871 	/* Clean up and exit. */
872 	smp_mb(); /* ensure expedited GP seen before counter increment. */
873 	ACCESS_ONCE(sync_rcu_preempt_exp_count) =
874 					sync_rcu_preempt_exp_count + 1;
875 unlock_mb_ret:
876 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
877 mb_ret:
878 	smp_mb(); /* ensure subsequent action seen after grace period. */
879 }
880 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
881 
882 /**
883  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
884  *
885  * Note that this primitive does not necessarily wait for an RCU grace period
886  * to complete.  For example, if there are no RCU callbacks queued anywhere
887  * in the system, then rcu_barrier() is within its rights to return
888  * immediately, without waiting for anything, much less an RCU grace period.
889  */
890 void rcu_barrier(void)
891 {
892 	_rcu_barrier(&rcu_preempt_state);
893 }
894 EXPORT_SYMBOL_GPL(rcu_barrier);
895 
896 /*
897  * Initialize preemptible RCU's state structures.
898  */
899 static void __init __rcu_init_preempt(void)
900 {
901 	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
902 }
903 
904 /*
905  * Check for a task exiting while in a preemptible-RCU read-side
906  * critical section, clean up if so.  No need to issue warnings,
907  * as debug_check_no_locks_held() already does this if lockdep
908  * is enabled.
909  */
910 void exit_rcu(void)
911 {
912 	struct task_struct *t = current;
913 
914 	if (likely(list_empty(&current->rcu_node_entry)))
915 		return;
916 	t->rcu_read_lock_nesting = 1;
917 	barrier();
918 	t->rcu_read_unlock_special.b.blocked = true;
919 	__rcu_read_unlock();
920 }
921 
922 #else /* #ifdef CONFIG_PREEMPT_RCU */
923 
924 static struct rcu_state *rcu_state_p = &rcu_sched_state;
925 
926 /*
927  * Tell them what RCU they are running.
928  */
929 static void __init rcu_bootup_announce(void)
930 {
931 	pr_info("Hierarchical RCU implementation.\n");
932 	rcu_bootup_announce_oddness();
933 }
934 
935 /*
936  * Return the number of RCU batches processed thus far for debug & stats.
937  */
938 long rcu_batches_completed(void)
939 {
940 	return rcu_batches_completed_sched();
941 }
942 EXPORT_SYMBOL_GPL(rcu_batches_completed);
943 
944 /*
945  * Because preemptible RCU does not exist, we never have to check for
946  * CPUs being in quiescent states.
947  */
948 static void rcu_preempt_note_context_switch(void)
949 {
950 }
951 
952 /*
953  * Because preemptible RCU does not exist, there are never any preempted
954  * RCU readers.
955  */
956 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
957 {
958 	return 0;
959 }
960 
961 #ifdef CONFIG_HOTPLUG_CPU
962 
963 /* Because preemptible RCU does not exist, no quieting of tasks. */
964 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
965 	__releases(rnp->lock)
966 {
967 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
968 }
969 
970 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
971 
972 /*
973  * Because preemptible RCU does not exist, we never have to check for
974  * tasks blocked within RCU read-side critical sections.
975  */
976 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
977 {
978 }
979 
980 /*
981  * Because preemptible RCU does not exist, we never have to check for
982  * tasks blocked within RCU read-side critical sections.
983  */
984 static int rcu_print_task_stall(struct rcu_node *rnp)
985 {
986 	return 0;
987 }
988 
989 /*
990  * Because there is no preemptible RCU, there can be no readers blocked,
991  * so there is no need to check for blocked tasks.  So check only for
992  * bogus qsmask values.
993  */
994 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
995 {
996 	WARN_ON_ONCE(rnp->qsmask);
997 }
998 
999 #ifdef CONFIG_HOTPLUG_CPU
1000 
1001 /*
1002  * Because preemptible RCU does not exist, it never needs to migrate
1003  * tasks that were blocked within RCU read-side critical sections, and
1004  * such non-existent tasks cannot possibly have been blocking the current
1005  * grace period.
1006  */
1007 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1008 				     struct rcu_node *rnp,
1009 				     struct rcu_data *rdp)
1010 {
1011 	return 0;
1012 }
1013 
1014 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1015 
1016 /*
1017  * Because preemptible RCU does not exist, it never has any callbacks
1018  * to check.
1019  */
1020 static void rcu_preempt_check_callbacks(void)
1021 {
1022 }
1023 
1024 /*
1025  * Wait for an rcu-preempt grace period, but make it happen quickly.
1026  * But because preemptible RCU does not exist, map to rcu-sched.
1027  */
1028 void synchronize_rcu_expedited(void)
1029 {
1030 	synchronize_sched_expedited();
1031 }
1032 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1033 
1034 #ifdef CONFIG_HOTPLUG_CPU
1035 
1036 /*
1037  * Because preemptible RCU does not exist, there is never any need to
1038  * report on tasks preempted in RCU read-side critical sections during
1039  * expedited RCU grace periods.
1040  */
1041 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1042 			       bool wake)
1043 {
1044 }
1045 
1046 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1047 
1048 /*
1049  * Because preemptible RCU does not exist, rcu_barrier() is just
1050  * another name for rcu_barrier_sched().
1051  */
1052 void rcu_barrier(void)
1053 {
1054 	rcu_barrier_sched();
1055 }
1056 EXPORT_SYMBOL_GPL(rcu_barrier);
1057 
1058 /*
1059  * Because preemptible RCU does not exist, it need not be initialized.
1060  */
1061 static void __init __rcu_init_preempt(void)
1062 {
1063 }
1064 
1065 /*
1066  * Because preemptible RCU does not exist, tasks cannot possibly exit
1067  * while in preemptible RCU read-side critical sections.
1068  */
1069 void exit_rcu(void)
1070 {
1071 }
1072 
1073 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1074 
1075 #ifdef CONFIG_RCU_BOOST
1076 
1077 #include "../locking/rtmutex_common.h"
1078 
1079 #ifdef CONFIG_RCU_TRACE
1080 
1081 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1082 {
1083 	if (list_empty(&rnp->blkd_tasks))
1084 		rnp->n_balk_blkd_tasks++;
1085 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1086 		rnp->n_balk_exp_gp_tasks++;
1087 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1088 		rnp->n_balk_boost_tasks++;
1089 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1090 		rnp->n_balk_notblocked++;
1091 	else if (rnp->gp_tasks != NULL &&
1092 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1093 		rnp->n_balk_notyet++;
1094 	else
1095 		rnp->n_balk_nos++;
1096 }
1097 
1098 #else /* #ifdef CONFIG_RCU_TRACE */
1099 
1100 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1101 {
1102 }
1103 
1104 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1105 
1106 static void rcu_wake_cond(struct task_struct *t, int status)
1107 {
1108 	/*
1109 	 * If the thread is yielding, only wake it when this
1110 	 * is invoked from idle
1111 	 */
1112 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1113 		wake_up_process(t);
1114 }
1115 
1116 /*
1117  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1118  * or ->boost_tasks, advancing the pointer to the next task in the
1119  * ->blkd_tasks list.
1120  *
1121  * Note that irqs must be enabled: boosting the task can block.
1122  * Returns 1 if there are more tasks needing to be boosted.
1123  */
1124 static int rcu_boost(struct rcu_node *rnp)
1125 {
1126 	unsigned long flags;
1127 	struct task_struct *t;
1128 	struct list_head *tb;
1129 
1130 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1131 		return 0;  /* Nothing left to boost. */
1132 
1133 	raw_spin_lock_irqsave(&rnp->lock, flags);
1134 	smp_mb__after_unlock_lock();
1135 
1136 	/*
1137 	 * Recheck under the lock: all tasks in need of boosting
1138 	 * might exit their RCU read-side critical sections on their own.
1139 	 */
1140 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1141 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1142 		return 0;
1143 	}
1144 
1145 	/*
1146 	 * Preferentially boost tasks blocking expedited grace periods.
1147 	 * This cannot starve the normal grace periods because a second
1148 	 * expedited grace period must boost all blocked tasks, including
1149 	 * those blocking the pre-existing normal grace period.
1150 	 */
1151 	if (rnp->exp_tasks != NULL) {
1152 		tb = rnp->exp_tasks;
1153 		rnp->n_exp_boosts++;
1154 	} else {
1155 		tb = rnp->boost_tasks;
1156 		rnp->n_normal_boosts++;
1157 	}
1158 	rnp->n_tasks_boosted++;
1159 
1160 	/*
1161 	 * We boost task t by manufacturing an rt_mutex that appears to
1162 	 * be held by task t.  We leave a pointer to that rt_mutex where
1163 	 * task t can find it, and task t will release the mutex when it
1164 	 * exits its outermost RCU read-side critical section.  Then
1165 	 * simply acquiring this artificial rt_mutex will boost task
1166 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1167 	 *
1168 	 * Note that task t must acquire rnp->lock to remove itself from
1169 	 * the ->blkd_tasks list, which it will do from exit() if from
1170 	 * nowhere else.  We therefore are guaranteed that task t will
1171 	 * stay around at least until we drop rnp->lock.  Note that
1172 	 * rnp->lock also resolves races between our priority boosting
1173 	 * and task t's exiting its outermost RCU read-side critical
1174 	 * section.
1175 	 */
1176 	t = container_of(tb, struct task_struct, rcu_node_entry);
1177 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1178 	init_completion(&rnp->boost_completion);
1179 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180 	/* Lock only for side effect: boosts task t's priority. */
1181 	rt_mutex_lock(&rnp->boost_mtx);
1182 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1183 
1184 	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1185 	wait_for_completion(&rnp->boost_completion);
1186 
1187 	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1188 	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1189 }
1190 
1191 /*
1192  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1193  * root rcu_node.
1194  */
1195 static int rcu_boost_kthread(void *arg)
1196 {
1197 	struct rcu_node *rnp = (struct rcu_node *)arg;
1198 	int spincnt = 0;
1199 	int more2boost;
1200 
1201 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1202 	for (;;) {
1203 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1204 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1205 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1206 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1207 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1208 		more2boost = rcu_boost(rnp);
1209 		if (more2boost)
1210 			spincnt++;
1211 		else
1212 			spincnt = 0;
1213 		if (spincnt > 10) {
1214 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1215 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1216 			schedule_timeout_interruptible(2);
1217 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1218 			spincnt = 0;
1219 		}
1220 	}
1221 	/* NOTREACHED */
1222 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Check to see if it is time to start boosting RCU readers that are
1228  * blocking the current grace period, and, if so, tell the per-rcu_node
1229  * kthread to start boosting them.  If there is an expedited grace
1230  * period in progress, it is always time to boost.
1231  *
1232  * The caller must hold rnp->lock, which this function releases.
1233  * The ->boost_kthread_task is immortal, so we don't need to worry
1234  * about it going away.
1235  */
1236 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1237 	__releases(rnp->lock)
1238 {
1239 	struct task_struct *t;
1240 
1241 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1242 		rnp->n_balk_exp_gp_tasks++;
1243 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1244 		return;
1245 	}
1246 	if (rnp->exp_tasks != NULL ||
1247 	    (rnp->gp_tasks != NULL &&
1248 	     rnp->boost_tasks == NULL &&
1249 	     rnp->qsmask == 0 &&
1250 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1251 		if (rnp->exp_tasks == NULL)
1252 			rnp->boost_tasks = rnp->gp_tasks;
1253 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1254 		t = rnp->boost_kthread_task;
1255 		if (t)
1256 			rcu_wake_cond(t, rnp->boost_kthread_status);
1257 	} else {
1258 		rcu_initiate_boost_trace(rnp);
1259 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260 	}
1261 }
1262 
1263 /*
1264  * Wake up the per-CPU kthread to invoke RCU callbacks.
1265  */
1266 static void invoke_rcu_callbacks_kthread(void)
1267 {
1268 	unsigned long flags;
1269 
1270 	local_irq_save(flags);
1271 	__this_cpu_write(rcu_cpu_has_work, 1);
1272 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1273 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1274 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1275 			      __this_cpu_read(rcu_cpu_kthread_status));
1276 	}
1277 	local_irq_restore(flags);
1278 }
1279 
1280 /*
1281  * Is the current CPU running the RCU-callbacks kthread?
1282  * Caller must have preemption disabled.
1283  */
1284 static bool rcu_is_callbacks_kthread(void)
1285 {
1286 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1287 }
1288 
1289 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1290 
1291 /*
1292  * Do priority-boost accounting for the start of a new grace period.
1293  */
1294 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1295 {
1296 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1297 }
1298 
1299 /*
1300  * Create an RCU-boost kthread for the specified node if one does not
1301  * already exist.  We only create this kthread for preemptible RCU.
1302  * Returns zero if all is well, a negated errno otherwise.
1303  */
1304 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1305 						 struct rcu_node *rnp)
1306 {
1307 	int rnp_index = rnp - &rsp->node[0];
1308 	unsigned long flags;
1309 	struct sched_param sp;
1310 	struct task_struct *t;
1311 
1312 	if (&rcu_preempt_state != rsp)
1313 		return 0;
1314 
1315 	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1316 		return 0;
1317 
1318 	rsp->boost = 1;
1319 	if (rnp->boost_kthread_task != NULL)
1320 		return 0;
1321 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1322 			   "rcub/%d", rnp_index);
1323 	if (IS_ERR(t))
1324 		return PTR_ERR(t);
1325 	raw_spin_lock_irqsave(&rnp->lock, flags);
1326 	smp_mb__after_unlock_lock();
1327 	rnp->boost_kthread_task = t;
1328 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1329 	sp.sched_priority = kthread_prio;
1330 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1331 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1332 	return 0;
1333 }
1334 
1335 static void rcu_kthread_do_work(void)
1336 {
1337 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1338 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1339 	rcu_preempt_do_callbacks();
1340 }
1341 
1342 static void rcu_cpu_kthread_setup(unsigned int cpu)
1343 {
1344 	struct sched_param sp;
1345 
1346 	sp.sched_priority = kthread_prio;
1347 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1348 }
1349 
1350 static void rcu_cpu_kthread_park(unsigned int cpu)
1351 {
1352 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1353 }
1354 
1355 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1356 {
1357 	return __this_cpu_read(rcu_cpu_has_work);
1358 }
1359 
1360 /*
1361  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1362  * RCU softirq used in flavors and configurations of RCU that do not
1363  * support RCU priority boosting.
1364  */
1365 static void rcu_cpu_kthread(unsigned int cpu)
1366 {
1367 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1368 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1369 	int spincnt;
1370 
1371 	for (spincnt = 0; spincnt < 10; spincnt++) {
1372 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1373 		local_bh_disable();
1374 		*statusp = RCU_KTHREAD_RUNNING;
1375 		this_cpu_inc(rcu_cpu_kthread_loops);
1376 		local_irq_disable();
1377 		work = *workp;
1378 		*workp = 0;
1379 		local_irq_enable();
1380 		if (work)
1381 			rcu_kthread_do_work();
1382 		local_bh_enable();
1383 		if (*workp == 0) {
1384 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1385 			*statusp = RCU_KTHREAD_WAITING;
1386 			return;
1387 		}
1388 	}
1389 	*statusp = RCU_KTHREAD_YIELDING;
1390 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1391 	schedule_timeout_interruptible(2);
1392 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1393 	*statusp = RCU_KTHREAD_WAITING;
1394 }
1395 
1396 /*
1397  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1398  * served by the rcu_node in question.  The CPU hotplug lock is still
1399  * held, so the value of rnp->qsmaskinit will be stable.
1400  *
1401  * We don't include outgoingcpu in the affinity set, use -1 if there is
1402  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1403  * this function allows the kthread to execute on any CPU.
1404  */
1405 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1406 {
1407 	struct task_struct *t = rnp->boost_kthread_task;
1408 	unsigned long mask = rnp->qsmaskinit;
1409 	cpumask_var_t cm;
1410 	int cpu;
1411 
1412 	if (!t)
1413 		return;
1414 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1415 		return;
1416 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1417 		if ((mask & 0x1) && cpu != outgoingcpu)
1418 			cpumask_set_cpu(cpu, cm);
1419 	if (cpumask_weight(cm) == 0) {
1420 		cpumask_setall(cm);
1421 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1422 			cpumask_clear_cpu(cpu, cm);
1423 		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1424 	}
1425 	set_cpus_allowed_ptr(t, cm);
1426 	free_cpumask_var(cm);
1427 }
1428 
1429 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1430 	.store			= &rcu_cpu_kthread_task,
1431 	.thread_should_run	= rcu_cpu_kthread_should_run,
1432 	.thread_fn		= rcu_cpu_kthread,
1433 	.thread_comm		= "rcuc/%u",
1434 	.setup			= rcu_cpu_kthread_setup,
1435 	.park			= rcu_cpu_kthread_park,
1436 };
1437 
1438 /*
1439  * Spawn boost kthreads -- called as soon as the scheduler is running.
1440  */
1441 static void __init rcu_spawn_boost_kthreads(void)
1442 {
1443 	struct rcu_node *rnp;
1444 	int cpu;
1445 
1446 	for_each_possible_cpu(cpu)
1447 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1448 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1449 	rnp = rcu_get_root(rcu_state_p);
1450 	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1451 	if (NUM_RCU_NODES > 1) {
1452 		rcu_for_each_leaf_node(rcu_state_p, rnp)
1453 			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1454 	}
1455 }
1456 
1457 static void rcu_prepare_kthreads(int cpu)
1458 {
1459 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1460 	struct rcu_node *rnp = rdp->mynode;
1461 
1462 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1463 	if (rcu_scheduler_fully_active)
1464 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1465 }
1466 
1467 #else /* #ifdef CONFIG_RCU_BOOST */
1468 
1469 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1470 	__releases(rnp->lock)
1471 {
1472 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1473 }
1474 
1475 static void invoke_rcu_callbacks_kthread(void)
1476 {
1477 	WARN_ON_ONCE(1);
1478 }
1479 
1480 static bool rcu_is_callbacks_kthread(void)
1481 {
1482 	return false;
1483 }
1484 
1485 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1486 {
1487 }
1488 
1489 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1490 {
1491 }
1492 
1493 static void __init rcu_spawn_boost_kthreads(void)
1494 {
1495 }
1496 
1497 static void rcu_prepare_kthreads(int cpu)
1498 {
1499 }
1500 
1501 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1502 
1503 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1504 
1505 /*
1506  * Check to see if any future RCU-related work will need to be done
1507  * by the current CPU, even if none need be done immediately, returning
1508  * 1 if so.  This function is part of the RCU implementation; it is -not-
1509  * an exported member of the RCU API.
1510  *
1511  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1512  * any flavor of RCU.
1513  */
1514 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1515 int rcu_needs_cpu(unsigned long *delta_jiffies)
1516 {
1517 	*delta_jiffies = ULONG_MAX;
1518 	return rcu_cpu_has_callbacks(NULL);
1519 }
1520 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1521 
1522 /*
1523  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1524  * after it.
1525  */
1526 static void rcu_cleanup_after_idle(void)
1527 {
1528 }
1529 
1530 /*
1531  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1532  * is nothing.
1533  */
1534 static void rcu_prepare_for_idle(void)
1535 {
1536 }
1537 
1538 /*
1539  * Don't bother keeping a running count of the number of RCU callbacks
1540  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1541  */
1542 static void rcu_idle_count_callbacks_posted(void)
1543 {
1544 }
1545 
1546 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1547 
1548 /*
1549  * This code is invoked when a CPU goes idle, at which point we want
1550  * to have the CPU do everything required for RCU so that it can enter
1551  * the energy-efficient dyntick-idle mode.  This is handled by a
1552  * state machine implemented by rcu_prepare_for_idle() below.
1553  *
1554  * The following three proprocessor symbols control this state machine:
1555  *
1556  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1557  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1558  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1559  *	benchmarkers who might otherwise be tempted to set this to a large
1560  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1561  *	system.  And if you are -that- concerned about energy efficiency,
1562  *	just power the system down and be done with it!
1563  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1564  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1565  *	callbacks pending.  Setting this too high can OOM your system.
1566  *
1567  * The values below work well in practice.  If future workloads require
1568  * adjustment, they can be converted into kernel config parameters, though
1569  * making the state machine smarter might be a better option.
1570  */
1571 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1572 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1573 
1574 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1575 module_param(rcu_idle_gp_delay, int, 0644);
1576 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1577 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1578 
1579 extern int tick_nohz_active;
1580 
1581 /*
1582  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1583  * only if it has been awhile since the last time we did so.  Afterwards,
1584  * if there are any callbacks ready for immediate invocation, return true.
1585  */
1586 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1587 {
1588 	bool cbs_ready = false;
1589 	struct rcu_data *rdp;
1590 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1591 	struct rcu_node *rnp;
1592 	struct rcu_state *rsp;
1593 
1594 	/* Exit early if we advanced recently. */
1595 	if (jiffies == rdtp->last_advance_all)
1596 		return false;
1597 	rdtp->last_advance_all = jiffies;
1598 
1599 	for_each_rcu_flavor(rsp) {
1600 		rdp = this_cpu_ptr(rsp->rda);
1601 		rnp = rdp->mynode;
1602 
1603 		/*
1604 		 * Don't bother checking unless a grace period has
1605 		 * completed since we last checked and there are
1606 		 * callbacks not yet ready to invoke.
1607 		 */
1608 		if (rdp->completed != rnp->completed &&
1609 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1610 			note_gp_changes(rsp, rdp);
1611 
1612 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1613 			cbs_ready = true;
1614 	}
1615 	return cbs_ready;
1616 }
1617 
1618 /*
1619  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1620  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1621  * caller to set the timeout based on whether or not there are non-lazy
1622  * callbacks.
1623  *
1624  * The caller must have disabled interrupts.
1625  */
1626 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1627 int rcu_needs_cpu(unsigned long *dj)
1628 {
1629 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1630 
1631 	/* Snapshot to detect later posting of non-lazy callback. */
1632 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1633 
1634 	/* If no callbacks, RCU doesn't need the CPU. */
1635 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1636 		*dj = ULONG_MAX;
1637 		return 0;
1638 	}
1639 
1640 	/* Attempt to advance callbacks. */
1641 	if (rcu_try_advance_all_cbs()) {
1642 		/* Some ready to invoke, so initiate later invocation. */
1643 		invoke_rcu_core();
1644 		return 1;
1645 	}
1646 	rdtp->last_accelerate = jiffies;
1647 
1648 	/* Request timer delay depending on laziness, and round. */
1649 	if (!rdtp->all_lazy) {
1650 		*dj = round_up(rcu_idle_gp_delay + jiffies,
1651 			       rcu_idle_gp_delay) - jiffies;
1652 	} else {
1653 		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1654 	}
1655 	return 0;
1656 }
1657 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1658 
1659 /*
1660  * Prepare a CPU for idle from an RCU perspective.  The first major task
1661  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1662  * The second major task is to check to see if a non-lazy callback has
1663  * arrived at a CPU that previously had only lazy callbacks.  The third
1664  * major task is to accelerate (that is, assign grace-period numbers to)
1665  * any recently arrived callbacks.
1666  *
1667  * The caller must have disabled interrupts.
1668  */
1669 static void rcu_prepare_for_idle(void)
1670 {
1671 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1672 	bool needwake;
1673 	struct rcu_data *rdp;
1674 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1675 	struct rcu_node *rnp;
1676 	struct rcu_state *rsp;
1677 	int tne;
1678 
1679 	/* Handle nohz enablement switches conservatively. */
1680 	tne = ACCESS_ONCE(tick_nohz_active);
1681 	if (tne != rdtp->tick_nohz_enabled_snap) {
1682 		if (rcu_cpu_has_callbacks(NULL))
1683 			invoke_rcu_core(); /* force nohz to see update. */
1684 		rdtp->tick_nohz_enabled_snap = tne;
1685 		return;
1686 	}
1687 	if (!tne)
1688 		return;
1689 
1690 	/* If this is a no-CBs CPU, no callbacks, just return. */
1691 	if (rcu_is_nocb_cpu(smp_processor_id()))
1692 		return;
1693 
1694 	/*
1695 	 * If a non-lazy callback arrived at a CPU having only lazy
1696 	 * callbacks, invoke RCU core for the side-effect of recalculating
1697 	 * idle duration on re-entry to idle.
1698 	 */
1699 	if (rdtp->all_lazy &&
1700 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1701 		rdtp->all_lazy = false;
1702 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1703 		invoke_rcu_core();
1704 		return;
1705 	}
1706 
1707 	/*
1708 	 * If we have not yet accelerated this jiffy, accelerate all
1709 	 * callbacks on this CPU.
1710 	 */
1711 	if (rdtp->last_accelerate == jiffies)
1712 		return;
1713 	rdtp->last_accelerate = jiffies;
1714 	for_each_rcu_flavor(rsp) {
1715 		rdp = this_cpu_ptr(rsp->rda);
1716 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1717 			continue;
1718 		rnp = rdp->mynode;
1719 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1720 		smp_mb__after_unlock_lock();
1721 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1722 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1723 		if (needwake)
1724 			rcu_gp_kthread_wake(rsp);
1725 	}
1726 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1727 }
1728 
1729 /*
1730  * Clean up for exit from idle.  Attempt to advance callbacks based on
1731  * any grace periods that elapsed while the CPU was idle, and if any
1732  * callbacks are now ready to invoke, initiate invocation.
1733  */
1734 static void rcu_cleanup_after_idle(void)
1735 {
1736 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1737 	if (rcu_is_nocb_cpu(smp_processor_id()))
1738 		return;
1739 	if (rcu_try_advance_all_cbs())
1740 		invoke_rcu_core();
1741 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1742 }
1743 
1744 /*
1745  * Keep a running count of the number of non-lazy callbacks posted
1746  * on this CPU.  This running counter (which is never decremented) allows
1747  * rcu_prepare_for_idle() to detect when something out of the idle loop
1748  * posts a callback, even if an equal number of callbacks are invoked.
1749  * Of course, callbacks should only be posted from within a trace event
1750  * designed to be called from idle or from within RCU_NONIDLE().
1751  */
1752 static void rcu_idle_count_callbacks_posted(void)
1753 {
1754 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1755 }
1756 
1757 /*
1758  * Data for flushing lazy RCU callbacks at OOM time.
1759  */
1760 static atomic_t oom_callback_count;
1761 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1762 
1763 /*
1764  * RCU OOM callback -- decrement the outstanding count and deliver the
1765  * wake-up if we are the last one.
1766  */
1767 static void rcu_oom_callback(struct rcu_head *rhp)
1768 {
1769 	if (atomic_dec_and_test(&oom_callback_count))
1770 		wake_up(&oom_callback_wq);
1771 }
1772 
1773 /*
1774  * Post an rcu_oom_notify callback on the current CPU if it has at
1775  * least one lazy callback.  This will unnecessarily post callbacks
1776  * to CPUs that already have a non-lazy callback at the end of their
1777  * callback list, but this is an infrequent operation, so accept some
1778  * extra overhead to keep things simple.
1779  */
1780 static void rcu_oom_notify_cpu(void *unused)
1781 {
1782 	struct rcu_state *rsp;
1783 	struct rcu_data *rdp;
1784 
1785 	for_each_rcu_flavor(rsp) {
1786 		rdp = raw_cpu_ptr(rsp->rda);
1787 		if (rdp->qlen_lazy != 0) {
1788 			atomic_inc(&oom_callback_count);
1789 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1790 		}
1791 	}
1792 }
1793 
1794 /*
1795  * If low on memory, ensure that each CPU has a non-lazy callback.
1796  * This will wake up CPUs that have only lazy callbacks, in turn
1797  * ensuring that they free up the corresponding memory in a timely manner.
1798  * Because an uncertain amount of memory will be freed in some uncertain
1799  * timeframe, we do not claim to have freed anything.
1800  */
1801 static int rcu_oom_notify(struct notifier_block *self,
1802 			  unsigned long notused, void *nfreed)
1803 {
1804 	int cpu;
1805 
1806 	/* Wait for callbacks from earlier instance to complete. */
1807 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1808 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1809 
1810 	/*
1811 	 * Prevent premature wakeup: ensure that all increments happen
1812 	 * before there is a chance of the counter reaching zero.
1813 	 */
1814 	atomic_set(&oom_callback_count, 1);
1815 
1816 	get_online_cpus();
1817 	for_each_online_cpu(cpu) {
1818 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1819 		cond_resched_rcu_qs();
1820 	}
1821 	put_online_cpus();
1822 
1823 	/* Unconditionally decrement: no need to wake ourselves up. */
1824 	atomic_dec(&oom_callback_count);
1825 
1826 	return NOTIFY_OK;
1827 }
1828 
1829 static struct notifier_block rcu_oom_nb = {
1830 	.notifier_call = rcu_oom_notify
1831 };
1832 
1833 static int __init rcu_register_oom_notifier(void)
1834 {
1835 	register_oom_notifier(&rcu_oom_nb);
1836 	return 0;
1837 }
1838 early_initcall(rcu_register_oom_notifier);
1839 
1840 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1841 
1842 #ifdef CONFIG_RCU_CPU_STALL_INFO
1843 
1844 #ifdef CONFIG_RCU_FAST_NO_HZ
1845 
1846 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1847 {
1848 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1849 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1850 
1851 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1852 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1853 		ulong2long(nlpd),
1854 		rdtp->all_lazy ? 'L' : '.',
1855 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1856 }
1857 
1858 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1859 
1860 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1861 {
1862 	*cp = '\0';
1863 }
1864 
1865 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1866 
1867 /* Initiate the stall-info list. */
1868 static void print_cpu_stall_info_begin(void)
1869 {
1870 	pr_cont("\n");
1871 }
1872 
1873 /*
1874  * Print out diagnostic information for the specified stalled CPU.
1875  *
1876  * If the specified CPU is aware of the current RCU grace period
1877  * (flavor specified by rsp), then print the number of scheduling
1878  * clock interrupts the CPU has taken during the time that it has
1879  * been aware.  Otherwise, print the number of RCU grace periods
1880  * that this CPU is ignorant of, for example, "1" if the CPU was
1881  * aware of the previous grace period.
1882  *
1883  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1884  */
1885 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1886 {
1887 	char fast_no_hz[72];
1888 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1889 	struct rcu_dynticks *rdtp = rdp->dynticks;
1890 	char *ticks_title;
1891 	unsigned long ticks_value;
1892 
1893 	if (rsp->gpnum == rdp->gpnum) {
1894 		ticks_title = "ticks this GP";
1895 		ticks_value = rdp->ticks_this_gp;
1896 	} else {
1897 		ticks_title = "GPs behind";
1898 		ticks_value = rsp->gpnum - rdp->gpnum;
1899 	}
1900 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1901 	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1902 	       cpu, ticks_value, ticks_title,
1903 	       atomic_read(&rdtp->dynticks) & 0xfff,
1904 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1905 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1906 	       fast_no_hz);
1907 }
1908 
1909 /* Terminate the stall-info list. */
1910 static void print_cpu_stall_info_end(void)
1911 {
1912 	pr_err("\t");
1913 }
1914 
1915 /* Zero ->ticks_this_gp for all flavors of RCU. */
1916 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1917 {
1918 	rdp->ticks_this_gp = 0;
1919 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1920 }
1921 
1922 /* Increment ->ticks_this_gp for all flavors of RCU. */
1923 static void increment_cpu_stall_ticks(void)
1924 {
1925 	struct rcu_state *rsp;
1926 
1927 	for_each_rcu_flavor(rsp)
1928 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1929 }
1930 
1931 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1932 
1933 static void print_cpu_stall_info_begin(void)
1934 {
1935 	pr_cont(" {");
1936 }
1937 
1938 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1939 {
1940 	pr_cont(" %d", cpu);
1941 }
1942 
1943 static void print_cpu_stall_info_end(void)
1944 {
1945 	pr_cont("} ");
1946 }
1947 
1948 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949 {
1950 }
1951 
1952 static void increment_cpu_stall_ticks(void)
1953 {
1954 }
1955 
1956 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1957 
1958 #ifdef CONFIG_RCU_NOCB_CPU
1959 
1960 /*
1961  * Offload callback processing from the boot-time-specified set of CPUs
1962  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1963  * kthread created that pulls the callbacks from the corresponding CPU,
1964  * waits for a grace period to elapse, and invokes the callbacks.
1965  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1966  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1967  * has been specified, in which case each kthread actively polls its
1968  * CPU.  (Which isn't so great for energy efficiency, but which does
1969  * reduce RCU's overhead on that CPU.)
1970  *
1971  * This is intended to be used in conjunction with Frederic Weisbecker's
1972  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1973  * running CPU-bound user-mode computations.
1974  *
1975  * Offloading of callback processing could also in theory be used as
1976  * an energy-efficiency measure because CPUs with no RCU callbacks
1977  * queued are more aggressive about entering dyntick-idle mode.
1978  */
1979 
1980 
1981 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1982 static int __init rcu_nocb_setup(char *str)
1983 {
1984 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1985 	have_rcu_nocb_mask = true;
1986 	cpulist_parse(str, rcu_nocb_mask);
1987 	return 1;
1988 }
1989 __setup("rcu_nocbs=", rcu_nocb_setup);
1990 
1991 static int __init parse_rcu_nocb_poll(char *arg)
1992 {
1993 	rcu_nocb_poll = 1;
1994 	return 0;
1995 }
1996 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1997 
1998 /*
1999  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2000  * grace period.
2001  */
2002 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2003 {
2004 	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2005 }
2006 
2007 /*
2008  * Set the root rcu_node structure's ->need_future_gp field
2009  * based on the sum of those of all rcu_node structures.  This does
2010  * double-count the root rcu_node structure's requests, but this
2011  * is necessary to handle the possibility of a rcu_nocb_kthread()
2012  * having awakened during the time that the rcu_node structures
2013  * were being updated for the end of the previous grace period.
2014  */
2015 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2016 {
2017 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2018 }
2019 
2020 static void rcu_init_one_nocb(struct rcu_node *rnp)
2021 {
2022 	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2023 	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2024 }
2025 
2026 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2027 /* Is the specified CPU a no-CBs CPU? */
2028 bool rcu_is_nocb_cpu(int cpu)
2029 {
2030 	if (have_rcu_nocb_mask)
2031 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2032 	return false;
2033 }
2034 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2035 
2036 /*
2037  * Kick the leader kthread for this NOCB group.
2038  */
2039 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2040 {
2041 	struct rcu_data *rdp_leader = rdp->nocb_leader;
2042 
2043 	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2044 		return;
2045 	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2046 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
2047 		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2048 		wake_up(&rdp_leader->nocb_wq);
2049 	}
2050 }
2051 
2052 /*
2053  * Does the specified CPU need an RCU callback for the specified flavor
2054  * of rcu_barrier()?
2055  */
2056 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2057 {
2058 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2059 	struct rcu_head *rhp;
2060 
2061 	/* No-CBs CPUs might have callbacks on any of three lists. */
2062 	rhp = ACCESS_ONCE(rdp->nocb_head);
2063 	if (!rhp)
2064 		rhp = ACCESS_ONCE(rdp->nocb_gp_head);
2065 	if (!rhp)
2066 		rhp = ACCESS_ONCE(rdp->nocb_follower_head);
2067 
2068 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
2069 	if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
2070 		/* RCU callback enqueued before CPU first came online??? */
2071 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2072 		       cpu, rhp->func);
2073 		WARN_ON_ONCE(1);
2074 	}
2075 
2076 	return !!rhp;
2077 }
2078 
2079 /*
2080  * Enqueue the specified string of rcu_head structures onto the specified
2081  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2082  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2083  * counts are supplied by rhcount and rhcount_lazy.
2084  *
2085  * If warranted, also wake up the kthread servicing this CPUs queues.
2086  */
2087 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2088 				    struct rcu_head *rhp,
2089 				    struct rcu_head **rhtp,
2090 				    int rhcount, int rhcount_lazy,
2091 				    unsigned long flags)
2092 {
2093 	int len;
2094 	struct rcu_head **old_rhpp;
2095 	struct task_struct *t;
2096 
2097 	/* Enqueue the callback on the nocb list and update counts. */
2098 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2099 	ACCESS_ONCE(*old_rhpp) = rhp;
2100 	atomic_long_add(rhcount, &rdp->nocb_q_count);
2101 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2102 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2103 
2104 	/* If we are not being polled and there is a kthread, awaken it ... */
2105 	t = ACCESS_ONCE(rdp->nocb_kthread);
2106 	if (rcu_nocb_poll || !t) {
2107 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2108 				    TPS("WakeNotPoll"));
2109 		return;
2110 	}
2111 	len = atomic_long_read(&rdp->nocb_q_count);
2112 	if (old_rhpp == &rdp->nocb_head) {
2113 		if (!irqs_disabled_flags(flags)) {
2114 			/* ... if queue was empty ... */
2115 			wake_nocb_leader(rdp, false);
2116 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2117 					    TPS("WakeEmpty"));
2118 		} else {
2119 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2120 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 					    TPS("WakeEmptyIsDeferred"));
2122 		}
2123 		rdp->qlen_last_fqs_check = 0;
2124 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2125 		/* ... or if many callbacks queued. */
2126 		if (!irqs_disabled_flags(flags)) {
2127 			wake_nocb_leader(rdp, true);
2128 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2129 					    TPS("WakeOvf"));
2130 		} else {
2131 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2132 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2133 					    TPS("WakeOvfIsDeferred"));
2134 		}
2135 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2136 	} else {
2137 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2138 	}
2139 	return;
2140 }
2141 
2142 /*
2143  * This is a helper for __call_rcu(), which invokes this when the normal
2144  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2145  * function returns failure back to __call_rcu(), which can complain
2146  * appropriately.
2147  *
2148  * Otherwise, this function queues the callback where the corresponding
2149  * "rcuo" kthread can find it.
2150  */
2151 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2152 			    bool lazy, unsigned long flags)
2153 {
2154 
2155 	if (!rcu_is_nocb_cpu(rdp->cpu))
2156 		return false;
2157 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2158 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2159 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2160 					 (unsigned long)rhp->func,
2161 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2162 					 -atomic_long_read(&rdp->nocb_q_count));
2163 	else
2164 		trace_rcu_callback(rdp->rsp->name, rhp,
2165 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2166 				   -atomic_long_read(&rdp->nocb_q_count));
2167 
2168 	/*
2169 	 * If called from an extended quiescent state with interrupts
2170 	 * disabled, invoke the RCU core in order to allow the idle-entry
2171 	 * deferred-wakeup check to function.
2172 	 */
2173 	if (irqs_disabled_flags(flags) &&
2174 	    !rcu_is_watching() &&
2175 	    cpu_online(smp_processor_id()))
2176 		invoke_rcu_core();
2177 
2178 	return true;
2179 }
2180 
2181 /*
2182  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2183  * not a no-CBs CPU.
2184  */
2185 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2186 						     struct rcu_data *rdp,
2187 						     unsigned long flags)
2188 {
2189 	long ql = rsp->qlen;
2190 	long qll = rsp->qlen_lazy;
2191 
2192 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2193 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2194 		return false;
2195 	rsp->qlen = 0;
2196 	rsp->qlen_lazy = 0;
2197 
2198 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2199 	if (rsp->orphan_donelist != NULL) {
2200 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2201 					rsp->orphan_donetail, ql, qll, flags);
2202 		ql = qll = 0;
2203 		rsp->orphan_donelist = NULL;
2204 		rsp->orphan_donetail = &rsp->orphan_donelist;
2205 	}
2206 	if (rsp->orphan_nxtlist != NULL) {
2207 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2208 					rsp->orphan_nxttail, ql, qll, flags);
2209 		ql = qll = 0;
2210 		rsp->orphan_nxtlist = NULL;
2211 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2212 	}
2213 	return true;
2214 }
2215 
2216 /*
2217  * If necessary, kick off a new grace period, and either way wait
2218  * for a subsequent grace period to complete.
2219  */
2220 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2221 {
2222 	unsigned long c;
2223 	bool d;
2224 	unsigned long flags;
2225 	bool needwake;
2226 	struct rcu_node *rnp = rdp->mynode;
2227 
2228 	raw_spin_lock_irqsave(&rnp->lock, flags);
2229 	smp_mb__after_unlock_lock();
2230 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2231 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2232 	if (needwake)
2233 		rcu_gp_kthread_wake(rdp->rsp);
2234 
2235 	/*
2236 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2237 	 * up the load average.
2238 	 */
2239 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2240 	for (;;) {
2241 		wait_event_interruptible(
2242 			rnp->nocb_gp_wq[c & 0x1],
2243 			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2244 		if (likely(d))
2245 			break;
2246 		WARN_ON(signal_pending(current));
2247 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2248 	}
2249 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2250 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2251 }
2252 
2253 /*
2254  * Leaders come here to wait for additional callbacks to show up.
2255  * This function does not return until callbacks appear.
2256  */
2257 static void nocb_leader_wait(struct rcu_data *my_rdp)
2258 {
2259 	bool firsttime = true;
2260 	bool gotcbs;
2261 	struct rcu_data *rdp;
2262 	struct rcu_head **tail;
2263 
2264 wait_again:
2265 
2266 	/* Wait for callbacks to appear. */
2267 	if (!rcu_nocb_poll) {
2268 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2269 		wait_event_interruptible(my_rdp->nocb_wq,
2270 				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2271 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2272 	} else if (firsttime) {
2273 		firsttime = false; /* Don't drown trace log with "Poll"! */
2274 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2275 	}
2276 
2277 	/*
2278 	 * Each pass through the following loop checks a follower for CBs.
2279 	 * We are our own first follower.  Any CBs found are moved to
2280 	 * nocb_gp_head, where they await a grace period.
2281 	 */
2282 	gotcbs = false;
2283 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2284 		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2285 		if (!rdp->nocb_gp_head)
2286 			continue;  /* No CBs here, try next follower. */
2287 
2288 		/* Move callbacks to wait-for-GP list, which is empty. */
2289 		ACCESS_ONCE(rdp->nocb_head) = NULL;
2290 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2291 		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2292 		rdp->nocb_gp_count_lazy =
2293 			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2294 		gotcbs = true;
2295 	}
2296 
2297 	/*
2298 	 * If there were no callbacks, sleep a bit, rescan after a
2299 	 * memory barrier, and go retry.
2300 	 */
2301 	if (unlikely(!gotcbs)) {
2302 		if (!rcu_nocb_poll)
2303 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2304 					    "WokeEmpty");
2305 		WARN_ON(signal_pending(current));
2306 		schedule_timeout_interruptible(1);
2307 
2308 		/* Rescan in case we were a victim of memory ordering. */
2309 		my_rdp->nocb_leader_sleep = true;
2310 		smp_mb();  /* Ensure _sleep true before scan. */
2311 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2312 			if (ACCESS_ONCE(rdp->nocb_head)) {
2313 				/* Found CB, so short-circuit next wait. */
2314 				my_rdp->nocb_leader_sleep = false;
2315 				break;
2316 			}
2317 		goto wait_again;
2318 	}
2319 
2320 	/* Wait for one grace period. */
2321 	rcu_nocb_wait_gp(my_rdp);
2322 
2323 	/*
2324 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2325 	 * We set it now, but recheck for new callbacks while
2326 	 * traversing our follower list.
2327 	 */
2328 	my_rdp->nocb_leader_sleep = true;
2329 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2330 
2331 	/* Each pass through the following loop wakes a follower, if needed. */
2332 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2333 		if (ACCESS_ONCE(rdp->nocb_head))
2334 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2335 		if (!rdp->nocb_gp_head)
2336 			continue; /* No CBs, so no need to wake follower. */
2337 
2338 		/* Append callbacks to follower's "done" list. */
2339 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2340 		*tail = rdp->nocb_gp_head;
2341 		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2342 		atomic_long_add(rdp->nocb_gp_count_lazy,
2343 				&rdp->nocb_follower_count_lazy);
2344 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2345 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2346 			/*
2347 			 * List was empty, wake up the follower.
2348 			 * Memory barriers supplied by atomic_long_add().
2349 			 */
2350 			wake_up(&rdp->nocb_wq);
2351 		}
2352 	}
2353 
2354 	/* If we (the leader) don't have CBs, go wait some more. */
2355 	if (!my_rdp->nocb_follower_head)
2356 		goto wait_again;
2357 }
2358 
2359 /*
2360  * Followers come here to wait for additional callbacks to show up.
2361  * This function does not return until callbacks appear.
2362  */
2363 static void nocb_follower_wait(struct rcu_data *rdp)
2364 {
2365 	bool firsttime = true;
2366 
2367 	for (;;) {
2368 		if (!rcu_nocb_poll) {
2369 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2370 					    "FollowerSleep");
2371 			wait_event_interruptible(rdp->nocb_wq,
2372 						 ACCESS_ONCE(rdp->nocb_follower_head));
2373 		} else if (firsttime) {
2374 			/* Don't drown trace log with "Poll"! */
2375 			firsttime = false;
2376 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2377 		}
2378 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2379 			/* ^^^ Ensure CB invocation follows _head test. */
2380 			return;
2381 		}
2382 		if (!rcu_nocb_poll)
2383 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2384 					    "WokeEmpty");
2385 		WARN_ON(signal_pending(current));
2386 		schedule_timeout_interruptible(1);
2387 	}
2388 }
2389 
2390 /*
2391  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2392  * callbacks queued by the corresponding no-CBs CPU, however, there is
2393  * an optional leader-follower relationship so that the grace-period
2394  * kthreads don't have to do quite so many wakeups.
2395  */
2396 static int rcu_nocb_kthread(void *arg)
2397 {
2398 	int c, cl;
2399 	struct rcu_head *list;
2400 	struct rcu_head *next;
2401 	struct rcu_head **tail;
2402 	struct rcu_data *rdp = arg;
2403 
2404 	/* Each pass through this loop invokes one batch of callbacks */
2405 	for (;;) {
2406 		/* Wait for callbacks. */
2407 		if (rdp->nocb_leader == rdp)
2408 			nocb_leader_wait(rdp);
2409 		else
2410 			nocb_follower_wait(rdp);
2411 
2412 		/* Pull the ready-to-invoke callbacks onto local list. */
2413 		list = ACCESS_ONCE(rdp->nocb_follower_head);
2414 		BUG_ON(!list);
2415 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2416 		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2417 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2418 		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2419 		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2420 		rdp->nocb_p_count += c;
2421 		rdp->nocb_p_count_lazy += cl;
2422 
2423 		/* Each pass through the following loop invokes a callback. */
2424 		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2425 		c = cl = 0;
2426 		while (list) {
2427 			next = list->next;
2428 			/* Wait for enqueuing to complete, if needed. */
2429 			while (next == NULL && &list->next != tail) {
2430 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2431 						    TPS("WaitQueue"));
2432 				schedule_timeout_interruptible(1);
2433 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2434 						    TPS("WokeQueue"));
2435 				next = list->next;
2436 			}
2437 			debug_rcu_head_unqueue(list);
2438 			local_bh_disable();
2439 			if (__rcu_reclaim(rdp->rsp->name, list))
2440 				cl++;
2441 			c++;
2442 			local_bh_enable();
2443 			list = next;
2444 		}
2445 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2446 		ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2447 		ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2448 						rdp->nocb_p_count_lazy - cl;
2449 		rdp->n_nocbs_invoked += c;
2450 	}
2451 	return 0;
2452 }
2453 
2454 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2455 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2456 {
2457 	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2458 }
2459 
2460 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2461 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2462 {
2463 	int ndw;
2464 
2465 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2466 		return;
2467 	ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2468 	ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2469 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2470 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2471 }
2472 
2473 void __init rcu_init_nohz(void)
2474 {
2475 	int cpu;
2476 	bool need_rcu_nocb_mask = true;
2477 	struct rcu_state *rsp;
2478 
2479 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2480 	need_rcu_nocb_mask = false;
2481 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2482 
2483 #if defined(CONFIG_NO_HZ_FULL)
2484 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2485 		need_rcu_nocb_mask = true;
2486 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2487 
2488 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2489 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2490 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2491 			return;
2492 		}
2493 		have_rcu_nocb_mask = true;
2494 	}
2495 	if (!have_rcu_nocb_mask)
2496 		return;
2497 
2498 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2499 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2500 	cpumask_set_cpu(0, rcu_nocb_mask);
2501 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2502 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2503 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2504 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2505 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2506 #if defined(CONFIG_NO_HZ_FULL)
2507 	if (tick_nohz_full_running)
2508 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2509 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2510 
2511 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2512 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2513 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2514 			    rcu_nocb_mask);
2515 	}
2516 	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2517 	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2518 	if (rcu_nocb_poll)
2519 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2520 
2521 	for_each_rcu_flavor(rsp) {
2522 		for_each_cpu(cpu, rcu_nocb_mask) {
2523 			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2524 
2525 			/*
2526 			 * If there are early callbacks, they will need
2527 			 * to be moved to the nocb lists.
2528 			 */
2529 			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2530 				     &rdp->nxtlist &&
2531 				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2532 			init_nocb_callback_list(rdp);
2533 		}
2534 		rcu_organize_nocb_kthreads(rsp);
2535 	}
2536 }
2537 
2538 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2539 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2540 {
2541 	rdp->nocb_tail = &rdp->nocb_head;
2542 	init_waitqueue_head(&rdp->nocb_wq);
2543 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2544 }
2545 
2546 /*
2547  * If the specified CPU is a no-CBs CPU that does not already have its
2548  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2549  * brought online out of order, this can require re-organizing the
2550  * leader-follower relationships.
2551  */
2552 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2553 {
2554 	struct rcu_data *rdp;
2555 	struct rcu_data *rdp_last;
2556 	struct rcu_data *rdp_old_leader;
2557 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2558 	struct task_struct *t;
2559 
2560 	/*
2561 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2562 	 * then nothing to do.
2563 	 */
2564 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2565 		return;
2566 
2567 	/* If we didn't spawn the leader first, reorganize! */
2568 	rdp_old_leader = rdp_spawn->nocb_leader;
2569 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2570 		rdp_last = NULL;
2571 		rdp = rdp_old_leader;
2572 		do {
2573 			rdp->nocb_leader = rdp_spawn;
2574 			if (rdp_last && rdp != rdp_spawn)
2575 				rdp_last->nocb_next_follower = rdp;
2576 			if (rdp == rdp_spawn) {
2577 				rdp = rdp->nocb_next_follower;
2578 			} else {
2579 				rdp_last = rdp;
2580 				rdp = rdp->nocb_next_follower;
2581 				rdp_last->nocb_next_follower = NULL;
2582 			}
2583 		} while (rdp);
2584 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2585 	}
2586 
2587 	/* Spawn the kthread for this CPU and RCU flavor. */
2588 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2589 			"rcuo%c/%d", rsp->abbr, cpu);
2590 	BUG_ON(IS_ERR(t));
2591 	ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2592 }
2593 
2594 /*
2595  * If the specified CPU is a no-CBs CPU that does not already have its
2596  * rcuo kthreads, spawn them.
2597  */
2598 static void rcu_spawn_all_nocb_kthreads(int cpu)
2599 {
2600 	struct rcu_state *rsp;
2601 
2602 	if (rcu_scheduler_fully_active)
2603 		for_each_rcu_flavor(rsp)
2604 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2605 }
2606 
2607 /*
2608  * Once the scheduler is running, spawn rcuo kthreads for all online
2609  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2610  * non-boot CPUs come online -- if this changes, we will need to add
2611  * some mutual exclusion.
2612  */
2613 static void __init rcu_spawn_nocb_kthreads(void)
2614 {
2615 	int cpu;
2616 
2617 	for_each_online_cpu(cpu)
2618 		rcu_spawn_all_nocb_kthreads(cpu);
2619 }
2620 
2621 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2622 static int rcu_nocb_leader_stride = -1;
2623 module_param(rcu_nocb_leader_stride, int, 0444);
2624 
2625 /*
2626  * Initialize leader-follower relationships for all no-CBs CPU.
2627  */
2628 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2629 {
2630 	int cpu;
2631 	int ls = rcu_nocb_leader_stride;
2632 	int nl = 0;  /* Next leader. */
2633 	struct rcu_data *rdp;
2634 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2635 	struct rcu_data *rdp_prev = NULL;
2636 
2637 	if (!have_rcu_nocb_mask)
2638 		return;
2639 	if (ls == -1) {
2640 		ls = int_sqrt(nr_cpu_ids);
2641 		rcu_nocb_leader_stride = ls;
2642 	}
2643 
2644 	/*
2645 	 * Each pass through this loop sets up one rcu_data structure and
2646 	 * spawns one rcu_nocb_kthread().
2647 	 */
2648 	for_each_cpu(cpu, rcu_nocb_mask) {
2649 		rdp = per_cpu_ptr(rsp->rda, cpu);
2650 		if (rdp->cpu >= nl) {
2651 			/* New leader, set up for followers & next leader. */
2652 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2653 			rdp->nocb_leader = rdp;
2654 			rdp_leader = rdp;
2655 		} else {
2656 			/* Another follower, link to previous leader. */
2657 			rdp->nocb_leader = rdp_leader;
2658 			rdp_prev->nocb_next_follower = rdp;
2659 		}
2660 		rdp_prev = rdp;
2661 	}
2662 }
2663 
2664 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2665 static bool init_nocb_callback_list(struct rcu_data *rdp)
2666 {
2667 	if (!rcu_is_nocb_cpu(rdp->cpu))
2668 		return false;
2669 
2670 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2671 	return true;
2672 }
2673 
2674 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2675 
2676 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2677 {
2678 	WARN_ON_ONCE(1); /* Should be dead code. */
2679 	return false;
2680 }
2681 
2682 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2683 {
2684 }
2685 
2686 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2687 {
2688 }
2689 
2690 static void rcu_init_one_nocb(struct rcu_node *rnp)
2691 {
2692 }
2693 
2694 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2695 			    bool lazy, unsigned long flags)
2696 {
2697 	return false;
2698 }
2699 
2700 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2701 						     struct rcu_data *rdp,
2702 						     unsigned long flags)
2703 {
2704 	return false;
2705 }
2706 
2707 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2708 {
2709 }
2710 
2711 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2712 {
2713 	return false;
2714 }
2715 
2716 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2717 {
2718 }
2719 
2720 static void rcu_spawn_all_nocb_kthreads(int cpu)
2721 {
2722 }
2723 
2724 static void __init rcu_spawn_nocb_kthreads(void)
2725 {
2726 }
2727 
2728 static bool init_nocb_callback_list(struct rcu_data *rdp)
2729 {
2730 	return false;
2731 }
2732 
2733 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2734 
2735 /*
2736  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2737  * arbitrarily long period of time with the scheduling-clock tick turned
2738  * off.  RCU will be paying attention to this CPU because it is in the
2739  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2740  * machine because the scheduling-clock tick has been disabled.  Therefore,
2741  * if an adaptive-ticks CPU is failing to respond to the current grace
2742  * period and has not be idle from an RCU perspective, kick it.
2743  */
2744 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2745 {
2746 #ifdef CONFIG_NO_HZ_FULL
2747 	if (tick_nohz_full_cpu(cpu))
2748 		smp_send_reschedule(cpu);
2749 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2750 }
2751 
2752 
2753 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2754 
2755 static int full_sysidle_state;		/* Current system-idle state. */
2756 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2757 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2758 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2759 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2760 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2761 
2762 /*
2763  * Invoked to note exit from irq or task transition to idle.  Note that
2764  * usermode execution does -not- count as idle here!  After all, we want
2765  * to detect full-system idle states, not RCU quiescent states and grace
2766  * periods.  The caller must have disabled interrupts.
2767  */
2768 static void rcu_sysidle_enter(int irq)
2769 {
2770 	unsigned long j;
2771 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2772 
2773 	/* If there are no nohz_full= CPUs, no need to track this. */
2774 	if (!tick_nohz_full_enabled())
2775 		return;
2776 
2777 	/* Adjust nesting, check for fully idle. */
2778 	if (irq) {
2779 		rdtp->dynticks_idle_nesting--;
2780 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2781 		if (rdtp->dynticks_idle_nesting != 0)
2782 			return;  /* Still not fully idle. */
2783 	} else {
2784 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2785 		    DYNTICK_TASK_NEST_VALUE) {
2786 			rdtp->dynticks_idle_nesting = 0;
2787 		} else {
2788 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2789 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2790 			return;  /* Still not fully idle. */
2791 		}
2792 	}
2793 
2794 	/* Record start of fully idle period. */
2795 	j = jiffies;
2796 	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2797 	smp_mb__before_atomic();
2798 	atomic_inc(&rdtp->dynticks_idle);
2799 	smp_mb__after_atomic();
2800 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2801 }
2802 
2803 /*
2804  * Unconditionally force exit from full system-idle state.  This is
2805  * invoked when a normal CPU exits idle, but must be called separately
2806  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2807  * is that the timekeeping CPU is permitted to take scheduling-clock
2808  * interrupts while the system is in system-idle state, and of course
2809  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2810  * interrupt from any other type of interrupt.
2811  */
2812 void rcu_sysidle_force_exit(void)
2813 {
2814 	int oldstate = ACCESS_ONCE(full_sysidle_state);
2815 	int newoldstate;
2816 
2817 	/*
2818 	 * Each pass through the following loop attempts to exit full
2819 	 * system-idle state.  If contention proves to be a problem,
2820 	 * a trylock-based contention tree could be used here.
2821 	 */
2822 	while (oldstate > RCU_SYSIDLE_SHORT) {
2823 		newoldstate = cmpxchg(&full_sysidle_state,
2824 				      oldstate, RCU_SYSIDLE_NOT);
2825 		if (oldstate == newoldstate &&
2826 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2827 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2828 			return; /* We cleared it, done! */
2829 		}
2830 		oldstate = newoldstate;
2831 	}
2832 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2833 }
2834 
2835 /*
2836  * Invoked to note entry to irq or task transition from idle.  Note that
2837  * usermode execution does -not- count as idle here!  The caller must
2838  * have disabled interrupts.
2839  */
2840 static void rcu_sysidle_exit(int irq)
2841 {
2842 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2843 
2844 	/* If there are no nohz_full= CPUs, no need to track this. */
2845 	if (!tick_nohz_full_enabled())
2846 		return;
2847 
2848 	/* Adjust nesting, check for already non-idle. */
2849 	if (irq) {
2850 		rdtp->dynticks_idle_nesting++;
2851 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2852 		if (rdtp->dynticks_idle_nesting != 1)
2853 			return; /* Already non-idle. */
2854 	} else {
2855 		/*
2856 		 * Allow for irq misnesting.  Yes, it really is possible
2857 		 * to enter an irq handler then never leave it, and maybe
2858 		 * also vice versa.  Handle both possibilities.
2859 		 */
2860 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2861 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2862 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2863 			return; /* Already non-idle. */
2864 		} else {
2865 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2866 		}
2867 	}
2868 
2869 	/* Record end of idle period. */
2870 	smp_mb__before_atomic();
2871 	atomic_inc(&rdtp->dynticks_idle);
2872 	smp_mb__after_atomic();
2873 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2874 
2875 	/*
2876 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2877 	 * during a system-idle state.  This must be the case, because
2878 	 * the timekeeping CPU has to take scheduling-clock interrupts
2879 	 * during the time that the system is transitioning to full
2880 	 * system-idle state.  This means that the timekeeping CPU must
2881 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2882 	 * more than take a scheduling-clock interrupt.
2883 	 */
2884 	if (smp_processor_id() == tick_do_timer_cpu)
2885 		return;
2886 
2887 	/* Update system-idle state: We are clearly no longer fully idle! */
2888 	rcu_sysidle_force_exit();
2889 }
2890 
2891 /*
2892  * Check to see if the current CPU is idle.  Note that usermode execution
2893  * does not count as idle.  The caller must have disabled interrupts.
2894  */
2895 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2896 				  unsigned long *maxj)
2897 {
2898 	int cur;
2899 	unsigned long j;
2900 	struct rcu_dynticks *rdtp = rdp->dynticks;
2901 
2902 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2903 	if (!tick_nohz_full_enabled())
2904 		return;
2905 
2906 	/*
2907 	 * If some other CPU has already reported non-idle, if this is
2908 	 * not the flavor of RCU that tracks sysidle state, or if this
2909 	 * is an offline or the timekeeping CPU, nothing to do.
2910 	 */
2911 	if (!*isidle || rdp->rsp != rcu_state_p ||
2912 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2913 		return;
2914 	if (rcu_gp_in_progress(rdp->rsp))
2915 		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2916 
2917 	/* Pick up current idle and NMI-nesting counter and check. */
2918 	cur = atomic_read(&rdtp->dynticks_idle);
2919 	if (cur & 0x1) {
2920 		*isidle = false; /* We are not idle! */
2921 		return;
2922 	}
2923 	smp_mb(); /* Read counters before timestamps. */
2924 
2925 	/* Pick up timestamps. */
2926 	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2927 	/* If this CPU entered idle more recently, update maxj timestamp. */
2928 	if (ULONG_CMP_LT(*maxj, j))
2929 		*maxj = j;
2930 }
2931 
2932 /*
2933  * Is this the flavor of RCU that is handling full-system idle?
2934  */
2935 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2936 {
2937 	return rsp == rcu_state_p;
2938 }
2939 
2940 /*
2941  * Return a delay in jiffies based on the number of CPUs, rcu_node
2942  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2943  * systems more time to transition to full-idle state in order to
2944  * avoid the cache thrashing that otherwise occur on the state variable.
2945  * Really small systems (less than a couple of tens of CPUs) should
2946  * instead use a single global atomically incremented counter, and later
2947  * versions of this will automatically reconfigure themselves accordingly.
2948  */
2949 static unsigned long rcu_sysidle_delay(void)
2950 {
2951 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2952 		return 0;
2953 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2954 }
2955 
2956 /*
2957  * Advance the full-system-idle state.  This is invoked when all of
2958  * the non-timekeeping CPUs are idle.
2959  */
2960 static void rcu_sysidle(unsigned long j)
2961 {
2962 	/* Check the current state. */
2963 	switch (ACCESS_ONCE(full_sysidle_state)) {
2964 	case RCU_SYSIDLE_NOT:
2965 
2966 		/* First time all are idle, so note a short idle period. */
2967 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2968 		break;
2969 
2970 	case RCU_SYSIDLE_SHORT:
2971 
2972 		/*
2973 		 * Idle for a bit, time to advance to next state?
2974 		 * cmpxchg failure means race with non-idle, let them win.
2975 		 */
2976 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2977 			(void)cmpxchg(&full_sysidle_state,
2978 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2979 		break;
2980 
2981 	case RCU_SYSIDLE_LONG:
2982 
2983 		/*
2984 		 * Do an additional check pass before advancing to full.
2985 		 * cmpxchg failure means race with non-idle, let them win.
2986 		 */
2987 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2988 			(void)cmpxchg(&full_sysidle_state,
2989 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2990 		break;
2991 
2992 	default:
2993 		break;
2994 	}
2995 }
2996 
2997 /*
2998  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2999  * back to the beginning.
3000  */
3001 static void rcu_sysidle_cancel(void)
3002 {
3003 	smp_mb();
3004 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
3005 		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
3006 }
3007 
3008 /*
3009  * Update the sysidle state based on the results of a force-quiescent-state
3010  * scan of the CPUs' dyntick-idle state.
3011  */
3012 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
3013 			       unsigned long maxj, bool gpkt)
3014 {
3015 	if (rsp != rcu_state_p)
3016 		return;  /* Wrong flavor, ignore. */
3017 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
3018 		return;  /* Running state machine from timekeeping CPU. */
3019 	if (isidle)
3020 		rcu_sysidle(maxj);    /* More idle! */
3021 	else
3022 		rcu_sysidle_cancel(); /* Idle is over. */
3023 }
3024 
3025 /*
3026  * Wrapper for rcu_sysidle_report() when called from the grace-period
3027  * kthread's context.
3028  */
3029 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3030 				  unsigned long maxj)
3031 {
3032 	/* If there are no nohz_full= CPUs, no need to track this. */
3033 	if (!tick_nohz_full_enabled())
3034 		return;
3035 
3036 	rcu_sysidle_report(rsp, isidle, maxj, true);
3037 }
3038 
3039 /* Callback and function for forcing an RCU grace period. */
3040 struct rcu_sysidle_head {
3041 	struct rcu_head rh;
3042 	int inuse;
3043 };
3044 
3045 static void rcu_sysidle_cb(struct rcu_head *rhp)
3046 {
3047 	struct rcu_sysidle_head *rshp;
3048 
3049 	/*
3050 	 * The following memory barrier is needed to replace the
3051 	 * memory barriers that would normally be in the memory
3052 	 * allocator.
3053 	 */
3054 	smp_mb();  /* grace period precedes setting inuse. */
3055 
3056 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3057 	ACCESS_ONCE(rshp->inuse) = 0;
3058 }
3059 
3060 /*
3061  * Check to see if the system is fully idle, other than the timekeeping CPU.
3062  * The caller must have disabled interrupts.  This is not intended to be
3063  * called unless tick_nohz_full_enabled().
3064  */
3065 bool rcu_sys_is_idle(void)
3066 {
3067 	static struct rcu_sysidle_head rsh;
3068 	int rss = ACCESS_ONCE(full_sysidle_state);
3069 
3070 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3071 		return false;
3072 
3073 	/* Handle small-system case by doing a full scan of CPUs. */
3074 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3075 		int oldrss = rss - 1;
3076 
3077 		/*
3078 		 * One pass to advance to each state up to _FULL.
3079 		 * Give up if any pass fails to advance the state.
3080 		 */
3081 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3082 			int cpu;
3083 			bool isidle = true;
3084 			unsigned long maxj = jiffies - ULONG_MAX / 4;
3085 			struct rcu_data *rdp;
3086 
3087 			/* Scan all the CPUs looking for nonidle CPUs. */
3088 			for_each_possible_cpu(cpu) {
3089 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3090 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3091 				if (!isidle)
3092 					break;
3093 			}
3094 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3095 			oldrss = rss;
3096 			rss = ACCESS_ONCE(full_sysidle_state);
3097 		}
3098 	}
3099 
3100 	/* If this is the first observation of an idle period, record it. */
3101 	if (rss == RCU_SYSIDLE_FULL) {
3102 		rss = cmpxchg(&full_sysidle_state,
3103 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3104 		return rss == RCU_SYSIDLE_FULL;
3105 	}
3106 
3107 	smp_mb(); /* ensure rss load happens before later caller actions. */
3108 
3109 	/* If already fully idle, tell the caller (in case of races). */
3110 	if (rss == RCU_SYSIDLE_FULL_NOTED)
3111 		return true;
3112 
3113 	/*
3114 	 * If we aren't there yet, and a grace period is not in flight,
3115 	 * initiate a grace period.  Either way, tell the caller that
3116 	 * we are not there yet.  We use an xchg() rather than an assignment
3117 	 * to make up for the memory barriers that would otherwise be
3118 	 * provided by the memory allocator.
3119 	 */
3120 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3121 	    !rcu_gp_in_progress(rcu_state_p) &&
3122 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3123 		call_rcu(&rsh.rh, rcu_sysidle_cb);
3124 	return false;
3125 }
3126 
3127 /*
3128  * Initialize dynticks sysidle state for CPUs coming online.
3129  */
3130 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3131 {
3132 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3133 }
3134 
3135 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3136 
3137 static void rcu_sysidle_enter(int irq)
3138 {
3139 }
3140 
3141 static void rcu_sysidle_exit(int irq)
3142 {
3143 }
3144 
3145 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3146 				  unsigned long *maxj)
3147 {
3148 }
3149 
3150 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3151 {
3152 	return false;
3153 }
3154 
3155 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3156 				  unsigned long maxj)
3157 {
3158 }
3159 
3160 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3161 {
3162 }
3163 
3164 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3165 
3166 /*
3167  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3168  * grace-period kthread will do force_quiescent_state() processing?
3169  * The idea is to avoid waking up RCU core processing on such a
3170  * CPU unless the grace period has extended for too long.
3171  *
3172  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3173  * CONFIG_RCU_NOCB_CPU CPUs.
3174  */
3175 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3176 {
3177 #ifdef CONFIG_NO_HZ_FULL
3178 	if (tick_nohz_full_cpu(smp_processor_id()) &&
3179 	    (!rcu_gp_in_progress(rsp) ||
3180 	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3181 		return 1;
3182 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3183 	return 0;
3184 }
3185 
3186 /*
3187  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3188  * timekeeping CPU.
3189  */
3190 static void rcu_bind_gp_kthread(void)
3191 {
3192 	int __maybe_unused cpu;
3193 
3194 	if (!tick_nohz_full_enabled())
3195 		return;
3196 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3197 	cpu = tick_do_timer_cpu;
3198 	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3199 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3200 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3201 	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3202 		housekeeping_affine(current);
3203 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3204 }
3205 
3206 /* Record the current task on dyntick-idle entry. */
3207 static void rcu_dynticks_task_enter(void)
3208 {
3209 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3210 	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3211 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3212 }
3213 
3214 /* Record no current task on dyntick-idle exit. */
3215 static void rcu_dynticks_task_exit(void)
3216 {
3217 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3218 	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3219 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3220 }
3221