1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 20 21 /* 22 * Check the RCU kernel configuration parameters and print informative 23 * messages about anything out of the ordinary. 24 */ 25 static void __init rcu_bootup_announce_oddness(void) 26 { 27 if (IS_ENABLED(CONFIG_RCU_TRACE)) 28 pr_info("\tRCU event tracing is enabled.\n"); 29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 32 RCU_FANOUT); 33 if (rcu_fanout_exact) 34 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 37 if (IS_ENABLED(CONFIG_PROVE_RCU)) 38 pr_info("\tRCU lockdep checking is enabled.\n"); 39 if (RCU_NUM_LVLS >= 4) 40 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 41 if (RCU_FANOUT_LEAF != 16) 42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 43 RCU_FANOUT_LEAF); 44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 46 rcu_fanout_leaf); 47 if (nr_cpu_ids != NR_CPUS) 48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 49 #ifdef CONFIG_RCU_BOOST 50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 51 kthread_prio, CONFIG_RCU_BOOST_DELAY); 52 #endif 53 if (blimit != DEFAULT_RCU_BLIMIT) 54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 55 if (qhimark != DEFAULT_RCU_QHIMARK) 56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 57 if (qlowmark != DEFAULT_RCU_QLOMARK) 58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 59 if (qovld != DEFAULT_RCU_QOVLD) 60 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 61 if (jiffies_till_first_fqs != ULONG_MAX) 62 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 63 if (jiffies_till_next_fqs != ULONG_MAX) 64 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 65 if (jiffies_till_sched_qs != ULONG_MAX) 66 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 67 if (rcu_kick_kthreads) 68 pr_info("\tKick kthreads if too-long grace period.\n"); 69 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 70 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 71 if (gp_preinit_delay) 72 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 73 if (gp_init_delay) 74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 75 if (gp_cleanup_delay) 76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 77 if (!use_softirq) 78 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 79 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 80 pr_info("\tRCU debug extended QS entry/exit.\n"); 81 rcupdate_announce_bootup_oddness(); 82 } 83 84 #ifdef CONFIG_PREEMPT_RCU 85 86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 87 static void rcu_read_unlock_special(struct task_struct *t); 88 89 /* 90 * Tell them what RCU they are running. 91 */ 92 static void __init rcu_bootup_announce(void) 93 { 94 pr_info("Preemptible hierarchical RCU implementation.\n"); 95 rcu_bootup_announce_oddness(); 96 } 97 98 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 99 #define RCU_GP_TASKS 0x8 100 #define RCU_EXP_TASKS 0x4 101 #define RCU_GP_BLKD 0x2 102 #define RCU_EXP_BLKD 0x1 103 104 /* 105 * Queues a task preempted within an RCU-preempt read-side critical 106 * section into the appropriate location within the ->blkd_tasks list, 107 * depending on the states of any ongoing normal and expedited grace 108 * periods. The ->gp_tasks pointer indicates which element the normal 109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 110 * indicates which element the expedited grace period is waiting on (again, 111 * NULL if none). If a grace period is waiting on a given element in the 112 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 113 * adding a task to the tail of the list blocks any grace period that is 114 * already waiting on one of the elements. In contrast, adding a task 115 * to the head of the list won't block any grace period that is already 116 * waiting on one of the elements. 117 * 118 * This queuing is imprecise, and can sometimes make an ongoing grace 119 * period wait for a task that is not strictly speaking blocking it. 120 * Given the choice, we needlessly block a normal grace period rather than 121 * blocking an expedited grace period. 122 * 123 * Note that an endless sequence of expedited grace periods still cannot 124 * indefinitely postpone a normal grace period. Eventually, all of the 125 * fixed number of preempted tasks blocking the normal grace period that are 126 * not also blocking the expedited grace period will resume and complete 127 * their RCU read-side critical sections. At that point, the ->gp_tasks 128 * pointer will equal the ->exp_tasks pointer, at which point the end of 129 * the corresponding expedited grace period will also be the end of the 130 * normal grace period. 131 */ 132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 133 __releases(rnp->lock) /* But leaves rrupts disabled. */ 134 { 135 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 136 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 137 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 138 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 139 struct task_struct *t = current; 140 141 raw_lockdep_assert_held_rcu_node(rnp); 142 WARN_ON_ONCE(rdp->mynode != rnp); 143 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 144 /* RCU better not be waiting on newly onlined CPUs! */ 145 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 146 rdp->grpmask); 147 148 /* 149 * Decide where to queue the newly blocked task. In theory, 150 * this could be an if-statement. In practice, when I tried 151 * that, it was quite messy. 152 */ 153 switch (blkd_state) { 154 case 0: 155 case RCU_EXP_TASKS: 156 case RCU_EXP_TASKS + RCU_GP_BLKD: 157 case RCU_GP_TASKS: 158 case RCU_GP_TASKS + RCU_EXP_TASKS: 159 160 /* 161 * Blocking neither GP, or first task blocking the normal 162 * GP but not blocking the already-waiting expedited GP. 163 * Queue at the head of the list to avoid unnecessarily 164 * blocking the already-waiting GPs. 165 */ 166 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 167 break; 168 169 case RCU_EXP_BLKD: 170 case RCU_GP_BLKD: 171 case RCU_GP_BLKD + RCU_EXP_BLKD: 172 case RCU_GP_TASKS + RCU_EXP_BLKD: 173 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 174 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 175 176 /* 177 * First task arriving that blocks either GP, or first task 178 * arriving that blocks the expedited GP (with the normal 179 * GP already waiting), or a task arriving that blocks 180 * both GPs with both GPs already waiting. Queue at the 181 * tail of the list to avoid any GP waiting on any of the 182 * already queued tasks that are not blocking it. 183 */ 184 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 185 break; 186 187 case RCU_EXP_TASKS + RCU_EXP_BLKD: 188 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 189 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 190 191 /* 192 * Second or subsequent task blocking the expedited GP. 193 * The task either does not block the normal GP, or is the 194 * first task blocking the normal GP. Queue just after 195 * the first task blocking the expedited GP. 196 */ 197 list_add(&t->rcu_node_entry, rnp->exp_tasks); 198 break; 199 200 case RCU_GP_TASKS + RCU_GP_BLKD: 201 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 202 203 /* 204 * Second or subsequent task blocking the normal GP. 205 * The task does not block the expedited GP. Queue just 206 * after the first task blocking the normal GP. 207 */ 208 list_add(&t->rcu_node_entry, rnp->gp_tasks); 209 break; 210 211 default: 212 213 /* Yet another exercise in excessive paranoia. */ 214 WARN_ON_ONCE(1); 215 break; 216 } 217 218 /* 219 * We have now queued the task. If it was the first one to 220 * block either grace period, update the ->gp_tasks and/or 221 * ->exp_tasks pointers, respectively, to reference the newly 222 * blocked tasks. 223 */ 224 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 225 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 226 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 227 } 228 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 229 rnp->exp_tasks = &t->rcu_node_entry; 230 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 231 !(rnp->qsmask & rdp->grpmask)); 232 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 233 !(rnp->expmask & rdp->grpmask)); 234 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 235 236 /* 237 * Report the quiescent state for the expedited GP. This expedited 238 * GP should not be able to end until we report, so there should be 239 * no need to check for a subsequent expedited GP. (Though we are 240 * still in a quiescent state in any case.) 241 */ 242 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) 243 rcu_report_exp_rdp(rdp); 244 else 245 WARN_ON_ONCE(rdp->exp_deferred_qs); 246 } 247 248 /* 249 * Record a preemptible-RCU quiescent state for the specified CPU. 250 * Note that this does not necessarily mean that the task currently running 251 * on the CPU is in a quiescent state: Instead, it means that the current 252 * grace period need not wait on any RCU read-side critical section that 253 * starts later on this CPU. It also means that if the current task is 254 * in an RCU read-side critical section, it has already added itself to 255 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 256 * current task, there might be any number of other tasks blocked while 257 * in an RCU read-side critical section. 258 * 259 * Callers to this function must disable preemption. 260 */ 261 static void rcu_qs(void) 262 { 263 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 264 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 265 trace_rcu_grace_period(TPS("rcu_preempt"), 266 __this_cpu_read(rcu_data.gp_seq), 267 TPS("cpuqs")); 268 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 269 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 270 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 271 } 272 } 273 274 /* 275 * We have entered the scheduler, and the current task might soon be 276 * context-switched away from. If this task is in an RCU read-side 277 * critical section, we will no longer be able to rely on the CPU to 278 * record that fact, so we enqueue the task on the blkd_tasks list. 279 * The task will dequeue itself when it exits the outermost enclosing 280 * RCU read-side critical section. Therefore, the current grace period 281 * cannot be permitted to complete until the blkd_tasks list entries 282 * predating the current grace period drain, in other words, until 283 * rnp->gp_tasks becomes NULL. 284 * 285 * Caller must disable interrupts. 286 */ 287 void rcu_note_context_switch(bool preempt) 288 { 289 struct task_struct *t = current; 290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 291 struct rcu_node *rnp; 292 293 trace_rcu_utilization(TPS("Start context switch")); 294 lockdep_assert_irqs_disabled(); 295 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); 296 if (rcu_preempt_depth() > 0 && 297 !t->rcu_read_unlock_special.b.blocked) { 298 299 /* Possibly blocking in an RCU read-side critical section. */ 300 rnp = rdp->mynode; 301 raw_spin_lock_rcu_node(rnp); 302 t->rcu_read_unlock_special.b.blocked = true; 303 t->rcu_blocked_node = rnp; 304 305 /* 306 * Verify the CPU's sanity, trace the preemption, and 307 * then queue the task as required based on the states 308 * of any ongoing and expedited grace periods. 309 */ 310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 312 trace_rcu_preempt_task(rcu_state.name, 313 t->pid, 314 (rnp->qsmask & rdp->grpmask) 315 ? rnp->gp_seq 316 : rcu_seq_snap(&rnp->gp_seq)); 317 rcu_preempt_ctxt_queue(rnp, rdp); 318 } else { 319 rcu_preempt_deferred_qs(t); 320 } 321 322 /* 323 * Either we were not in an RCU read-side critical section to 324 * begin with, or we have now recorded that critical section 325 * globally. Either way, we can now note a quiescent state 326 * for this CPU. Again, if we were in an RCU read-side critical 327 * section, and if that critical section was blocking the current 328 * grace period, then the fact that the task has been enqueued 329 * means that we continue to block the current grace period. 330 */ 331 rcu_qs(); 332 if (rdp->exp_deferred_qs) 333 rcu_report_exp_rdp(rdp); 334 trace_rcu_utilization(TPS("End context switch")); 335 } 336 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 337 338 /* 339 * Check for preempted RCU readers blocking the current grace period 340 * for the specified rcu_node structure. If the caller needs a reliable 341 * answer, it must hold the rcu_node's ->lock. 342 */ 343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 344 { 345 return READ_ONCE(rnp->gp_tasks) != NULL; 346 } 347 348 /* Bias and limit values for ->rcu_read_lock_nesting. */ 349 #define RCU_NEST_BIAS INT_MAX 350 #define RCU_NEST_NMAX (-INT_MAX / 2) 351 #define RCU_NEST_PMAX (INT_MAX / 2) 352 353 static void rcu_preempt_read_enter(void) 354 { 355 current->rcu_read_lock_nesting++; 356 } 357 358 static void rcu_preempt_read_exit(void) 359 { 360 current->rcu_read_lock_nesting--; 361 } 362 363 static void rcu_preempt_depth_set(int val) 364 { 365 current->rcu_read_lock_nesting = val; 366 } 367 368 /* 369 * Preemptible RCU implementation for rcu_read_lock(). 370 * Just increment ->rcu_read_lock_nesting, shared state will be updated 371 * if we block. 372 */ 373 void __rcu_read_lock(void) 374 { 375 rcu_preempt_read_enter(); 376 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 377 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 378 barrier(); /* critical section after entry code. */ 379 } 380 EXPORT_SYMBOL_GPL(__rcu_read_lock); 381 382 /* 383 * Preemptible RCU implementation for rcu_read_unlock(). 384 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 385 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 386 * invoke rcu_read_unlock_special() to clean up after a context switch 387 * in an RCU read-side critical section and other special cases. 388 */ 389 void __rcu_read_unlock(void) 390 { 391 struct task_struct *t = current; 392 393 if (rcu_preempt_depth() != 1) { 394 rcu_preempt_read_exit(); 395 } else { 396 barrier(); /* critical section before exit code. */ 397 rcu_preempt_depth_set(-RCU_NEST_BIAS); 398 barrier(); /* assign before ->rcu_read_unlock_special load */ 399 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 400 rcu_read_unlock_special(t); 401 barrier(); /* ->rcu_read_unlock_special load before assign */ 402 rcu_preempt_depth_set(0); 403 } 404 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 405 int rrln = rcu_preempt_depth(); 406 407 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX); 408 } 409 } 410 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 411 412 /* 413 * Advance a ->blkd_tasks-list pointer to the next entry, instead 414 * returning NULL if at the end of the list. 415 */ 416 static struct list_head *rcu_next_node_entry(struct task_struct *t, 417 struct rcu_node *rnp) 418 { 419 struct list_head *np; 420 421 np = t->rcu_node_entry.next; 422 if (np == &rnp->blkd_tasks) 423 np = NULL; 424 return np; 425 } 426 427 /* 428 * Return true if the specified rcu_node structure has tasks that were 429 * preempted within an RCU read-side critical section. 430 */ 431 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 432 { 433 return !list_empty(&rnp->blkd_tasks); 434 } 435 436 /* 437 * Report deferred quiescent states. The deferral time can 438 * be quite short, for example, in the case of the call from 439 * rcu_read_unlock_special(). 440 */ 441 static void 442 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 443 { 444 bool empty_exp; 445 bool empty_norm; 446 bool empty_exp_now; 447 struct list_head *np; 448 bool drop_boost_mutex = false; 449 struct rcu_data *rdp; 450 struct rcu_node *rnp; 451 union rcu_special special; 452 453 /* 454 * If RCU core is waiting for this CPU to exit its critical section, 455 * report the fact that it has exited. Because irqs are disabled, 456 * t->rcu_read_unlock_special cannot change. 457 */ 458 special = t->rcu_read_unlock_special; 459 rdp = this_cpu_ptr(&rcu_data); 460 if (!special.s && !rdp->exp_deferred_qs) { 461 local_irq_restore(flags); 462 return; 463 } 464 t->rcu_read_unlock_special.s = 0; 465 if (special.b.need_qs) 466 rcu_qs(); 467 468 /* 469 * Respond to a request by an expedited grace period for a 470 * quiescent state from this CPU. Note that requests from 471 * tasks are handled when removing the task from the 472 * blocked-tasks list below. 473 */ 474 if (rdp->exp_deferred_qs) 475 rcu_report_exp_rdp(rdp); 476 477 /* Clean up if blocked during RCU read-side critical section. */ 478 if (special.b.blocked) { 479 480 /* 481 * Remove this task from the list it blocked on. The task 482 * now remains queued on the rcu_node corresponding to the 483 * CPU it first blocked on, so there is no longer any need 484 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 485 */ 486 rnp = t->rcu_blocked_node; 487 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 488 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 489 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 490 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 491 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 492 (!empty_norm || rnp->qsmask)); 493 empty_exp = sync_rcu_exp_done(rnp); 494 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 495 np = rcu_next_node_entry(t, rnp); 496 list_del_init(&t->rcu_node_entry); 497 t->rcu_blocked_node = NULL; 498 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 499 rnp->gp_seq, t->pid); 500 if (&t->rcu_node_entry == rnp->gp_tasks) 501 WRITE_ONCE(rnp->gp_tasks, np); 502 if (&t->rcu_node_entry == rnp->exp_tasks) 503 rnp->exp_tasks = np; 504 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 505 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 506 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 507 if (&t->rcu_node_entry == rnp->boost_tasks) 508 rnp->boost_tasks = np; 509 } 510 511 /* 512 * If this was the last task on the current list, and if 513 * we aren't waiting on any CPUs, report the quiescent state. 514 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 515 * so we must take a snapshot of the expedited state. 516 */ 517 empty_exp_now = sync_rcu_exp_done(rnp); 518 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 519 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 520 rnp->gp_seq, 521 0, rnp->qsmask, 522 rnp->level, 523 rnp->grplo, 524 rnp->grphi, 525 !!rnp->gp_tasks); 526 rcu_report_unblock_qs_rnp(rnp, flags); 527 } else { 528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 529 } 530 531 /* Unboost if we were boosted. */ 532 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 533 rt_mutex_futex_unlock(&rnp->boost_mtx); 534 535 /* 536 * If this was the last task on the expedited lists, 537 * then we need to report up the rcu_node hierarchy. 538 */ 539 if (!empty_exp && empty_exp_now) 540 rcu_report_exp_rnp(rnp, true); 541 } else { 542 local_irq_restore(flags); 543 } 544 } 545 546 /* 547 * Is a deferred quiescent-state pending, and are we also not in 548 * an RCU read-side critical section? It is the caller's responsibility 549 * to ensure it is otherwise safe to report any deferred quiescent 550 * states. The reason for this is that it is safe to report a 551 * quiescent state during context switch even though preemption 552 * is disabled. This function cannot be expected to understand these 553 * nuances, so the caller must handle them. 554 */ 555 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 556 { 557 return (__this_cpu_read(rcu_data.exp_deferred_qs) || 558 READ_ONCE(t->rcu_read_unlock_special.s)) && 559 rcu_preempt_depth() <= 0; 560 } 561 562 /* 563 * Report a deferred quiescent state if needed and safe to do so. 564 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 565 * not being in an RCU read-side critical section. The caller must 566 * evaluate safety in terms of interrupt, softirq, and preemption 567 * disabling. 568 */ 569 static void rcu_preempt_deferred_qs(struct task_struct *t) 570 { 571 unsigned long flags; 572 bool couldrecurse = rcu_preempt_depth() >= 0; 573 574 if (!rcu_preempt_need_deferred_qs(t)) 575 return; 576 if (couldrecurse) 577 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS); 578 local_irq_save(flags); 579 rcu_preempt_deferred_qs_irqrestore(t, flags); 580 if (couldrecurse) 581 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS); 582 } 583 584 /* 585 * Minimal handler to give the scheduler a chance to re-evaluate. 586 */ 587 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 588 { 589 struct rcu_data *rdp; 590 591 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 592 rdp->defer_qs_iw_pending = false; 593 } 594 595 /* 596 * Handle special cases during rcu_read_unlock(), such as needing to 597 * notify RCU core processing or task having blocked during the RCU 598 * read-side critical section. 599 */ 600 static void rcu_read_unlock_special(struct task_struct *t) 601 { 602 unsigned long flags; 603 bool preempt_bh_were_disabled = 604 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 605 bool irqs_were_disabled; 606 607 /* NMI handlers cannot block and cannot safely manipulate state. */ 608 if (in_nmi()) 609 return; 610 611 local_irq_save(flags); 612 irqs_were_disabled = irqs_disabled_flags(flags); 613 if (preempt_bh_were_disabled || irqs_were_disabled) { 614 bool exp; 615 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 616 struct rcu_node *rnp = rdp->mynode; 617 618 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) || 619 (rdp->grpmask & READ_ONCE(rnp->expmask)) || 620 tick_nohz_full_cpu(rdp->cpu); 621 // Need to defer quiescent state until everything is enabled. 622 if (irqs_were_disabled && use_softirq && 623 (in_interrupt() || 624 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) { 625 // Using softirq, safe to awaken, and we get 626 // no help from enabling irqs, unlike bh/preempt. 627 raise_softirq_irqoff(RCU_SOFTIRQ); 628 } else { 629 // Enabling BH or preempt does reschedule, so... 630 // Also if no expediting or NO_HZ_FULL, slow is OK. 631 set_tsk_need_resched(current); 632 set_preempt_need_resched(); 633 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 634 !rdp->defer_qs_iw_pending && exp) { 635 // Get scheduler to re-evaluate and call hooks. 636 // If !IRQ_WORK, FQS scan will eventually IPI. 637 init_irq_work(&rdp->defer_qs_iw, 638 rcu_preempt_deferred_qs_handler); 639 rdp->defer_qs_iw_pending = true; 640 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 641 } 642 } 643 t->rcu_read_unlock_special.b.deferred_qs = true; 644 local_irq_restore(flags); 645 return; 646 } 647 rcu_preempt_deferred_qs_irqrestore(t, flags); 648 } 649 650 /* 651 * Check that the list of blocked tasks for the newly completed grace 652 * period is in fact empty. It is a serious bug to complete a grace 653 * period that still has RCU readers blocked! This function must be 654 * invoked -before- updating this rnp's ->gp_seq. 655 * 656 * Also, if there are blocked tasks on the list, they automatically 657 * block the newly created grace period, so set up ->gp_tasks accordingly. 658 */ 659 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 660 { 661 struct task_struct *t; 662 663 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 664 raw_lockdep_assert_held_rcu_node(rnp); 665 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 666 dump_blkd_tasks(rnp, 10); 667 if (rcu_preempt_has_tasks(rnp) && 668 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 669 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 670 t = container_of(rnp->gp_tasks, struct task_struct, 671 rcu_node_entry); 672 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 673 rnp->gp_seq, t->pid); 674 } 675 WARN_ON_ONCE(rnp->qsmask); 676 } 677 678 /* 679 * Check for a quiescent state from the current CPU, including voluntary 680 * context switches for Tasks RCU. When a task blocks, the task is 681 * recorded in the corresponding CPU's rcu_node structure, which is checked 682 * elsewhere, hence this function need only check for quiescent states 683 * related to the current CPU, not to those related to tasks. 684 */ 685 static void rcu_flavor_sched_clock_irq(int user) 686 { 687 struct task_struct *t = current; 688 689 if (user || rcu_is_cpu_rrupt_from_idle()) { 690 rcu_note_voluntary_context_switch(current); 691 } 692 if (rcu_preempt_depth() > 0 || 693 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 694 /* No QS, force context switch if deferred. */ 695 if (rcu_preempt_need_deferred_qs(t)) { 696 set_tsk_need_resched(t); 697 set_preempt_need_resched(); 698 } 699 } else if (rcu_preempt_need_deferred_qs(t)) { 700 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 701 return; 702 } else if (!rcu_preempt_depth()) { 703 rcu_qs(); /* Report immediate QS. */ 704 return; 705 } 706 707 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 708 if (rcu_preempt_depth() > 0 && 709 __this_cpu_read(rcu_data.core_needs_qs) && 710 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 711 !t->rcu_read_unlock_special.b.need_qs && 712 time_after(jiffies, rcu_state.gp_start + HZ)) 713 t->rcu_read_unlock_special.b.need_qs = true; 714 } 715 716 /* 717 * Check for a task exiting while in a preemptible-RCU read-side 718 * critical section, clean up if so. No need to issue warnings, as 719 * debug_check_no_locks_held() already does this if lockdep is enabled. 720 * Besides, if this function does anything other than just immediately 721 * return, there was a bug of some sort. Spewing warnings from this 722 * function is like as not to simply obscure important prior warnings. 723 */ 724 void exit_rcu(void) 725 { 726 struct task_struct *t = current; 727 728 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 729 rcu_preempt_depth_set(1); 730 barrier(); 731 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 732 } else if (unlikely(rcu_preempt_depth())) { 733 rcu_preempt_depth_set(1); 734 } else { 735 return; 736 } 737 __rcu_read_unlock(); 738 rcu_preempt_deferred_qs(current); 739 } 740 741 /* 742 * Dump the blocked-tasks state, but limit the list dump to the 743 * specified number of elements. 744 */ 745 static void 746 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 747 { 748 int cpu; 749 int i; 750 struct list_head *lhp; 751 bool onl; 752 struct rcu_data *rdp; 753 struct rcu_node *rnp1; 754 755 raw_lockdep_assert_held_rcu_node(rnp); 756 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 757 __func__, rnp->grplo, rnp->grphi, rnp->level, 758 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 759 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 760 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 761 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 762 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 763 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks, 764 rnp->exp_tasks); 765 pr_info("%s: ->blkd_tasks", __func__); 766 i = 0; 767 list_for_each(lhp, &rnp->blkd_tasks) { 768 pr_cont(" %p", lhp); 769 if (++i >= ncheck) 770 break; 771 } 772 pr_cont("\n"); 773 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 774 rdp = per_cpu_ptr(&rcu_data, cpu); 775 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 776 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 777 cpu, ".o"[onl], 778 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 779 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 780 } 781 } 782 783 #else /* #ifdef CONFIG_PREEMPT_RCU */ 784 785 /* 786 * Tell them what RCU they are running. 787 */ 788 static void __init rcu_bootup_announce(void) 789 { 790 pr_info("Hierarchical RCU implementation.\n"); 791 rcu_bootup_announce_oddness(); 792 } 793 794 /* 795 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 796 * how many quiescent states passed, just if there was at least one since 797 * the start of the grace period, this just sets a flag. The caller must 798 * have disabled preemption. 799 */ 800 static void rcu_qs(void) 801 { 802 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 803 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 804 return; 805 trace_rcu_grace_period(TPS("rcu_sched"), 806 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 807 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 808 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 809 return; 810 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 811 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 812 } 813 814 /* 815 * Register an urgently needed quiescent state. If there is an 816 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 817 * dyntick-idle quiescent state visible to other CPUs, which will in 818 * some cases serve for expedited as well as normal grace periods. 819 * Either way, register a lightweight quiescent state. 820 */ 821 void rcu_all_qs(void) 822 { 823 unsigned long flags; 824 825 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 826 return; 827 preempt_disable(); 828 /* Load rcu_urgent_qs before other flags. */ 829 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 830 preempt_enable(); 831 return; 832 } 833 this_cpu_write(rcu_data.rcu_urgent_qs, false); 834 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 835 local_irq_save(flags); 836 rcu_momentary_dyntick_idle(); 837 local_irq_restore(flags); 838 } 839 rcu_qs(); 840 preempt_enable(); 841 } 842 EXPORT_SYMBOL_GPL(rcu_all_qs); 843 844 /* 845 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 846 */ 847 void rcu_note_context_switch(bool preempt) 848 { 849 trace_rcu_utilization(TPS("Start context switch")); 850 rcu_qs(); 851 /* Load rcu_urgent_qs before other flags. */ 852 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 853 goto out; 854 this_cpu_write(rcu_data.rcu_urgent_qs, false); 855 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 856 rcu_momentary_dyntick_idle(); 857 if (!preempt) 858 rcu_tasks_qs(current); 859 out: 860 trace_rcu_utilization(TPS("End context switch")); 861 } 862 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 863 864 /* 865 * Because preemptible RCU does not exist, there are never any preempted 866 * RCU readers. 867 */ 868 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 869 { 870 return 0; 871 } 872 873 /* 874 * Because there is no preemptible RCU, there can be no readers blocked. 875 */ 876 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 877 { 878 return false; 879 } 880 881 /* 882 * Because there is no preemptible RCU, there can be no deferred quiescent 883 * states. 884 */ 885 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 886 { 887 return false; 888 } 889 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 890 891 /* 892 * Because there is no preemptible RCU, there can be no readers blocked, 893 * so there is no need to check for blocked tasks. So check only for 894 * bogus qsmask values. 895 */ 896 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 897 { 898 WARN_ON_ONCE(rnp->qsmask); 899 } 900 901 /* 902 * Check to see if this CPU is in a non-context-switch quiescent state, 903 * namely user mode and idle loop. 904 */ 905 static void rcu_flavor_sched_clock_irq(int user) 906 { 907 if (user || rcu_is_cpu_rrupt_from_idle()) { 908 909 /* 910 * Get here if this CPU took its interrupt from user 911 * mode or from the idle loop, and if this is not a 912 * nested interrupt. In this case, the CPU is in 913 * a quiescent state, so note it. 914 * 915 * No memory barrier is required here because rcu_qs() 916 * references only CPU-local variables that other CPUs 917 * neither access nor modify, at least not while the 918 * corresponding CPU is online. 919 */ 920 921 rcu_qs(); 922 } 923 } 924 925 /* 926 * Because preemptible RCU does not exist, tasks cannot possibly exit 927 * while in preemptible RCU read-side critical sections. 928 */ 929 void exit_rcu(void) 930 { 931 } 932 933 /* 934 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 935 */ 936 static void 937 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 938 { 939 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 940 } 941 942 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 943 944 /* 945 * If boosting, set rcuc kthreads to realtime priority. 946 */ 947 static void rcu_cpu_kthread_setup(unsigned int cpu) 948 { 949 #ifdef CONFIG_RCU_BOOST 950 struct sched_param sp; 951 952 sp.sched_priority = kthread_prio; 953 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 954 #endif /* #ifdef CONFIG_RCU_BOOST */ 955 } 956 957 #ifdef CONFIG_RCU_BOOST 958 959 /* 960 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 961 * or ->boost_tasks, advancing the pointer to the next task in the 962 * ->blkd_tasks list. 963 * 964 * Note that irqs must be enabled: boosting the task can block. 965 * Returns 1 if there are more tasks needing to be boosted. 966 */ 967 static int rcu_boost(struct rcu_node *rnp) 968 { 969 unsigned long flags; 970 struct task_struct *t; 971 struct list_head *tb; 972 973 if (READ_ONCE(rnp->exp_tasks) == NULL && 974 READ_ONCE(rnp->boost_tasks) == NULL) 975 return 0; /* Nothing left to boost. */ 976 977 raw_spin_lock_irqsave_rcu_node(rnp, flags); 978 979 /* 980 * Recheck under the lock: all tasks in need of boosting 981 * might exit their RCU read-side critical sections on their own. 982 */ 983 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 984 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 985 return 0; 986 } 987 988 /* 989 * Preferentially boost tasks blocking expedited grace periods. 990 * This cannot starve the normal grace periods because a second 991 * expedited grace period must boost all blocked tasks, including 992 * those blocking the pre-existing normal grace period. 993 */ 994 if (rnp->exp_tasks != NULL) 995 tb = rnp->exp_tasks; 996 else 997 tb = rnp->boost_tasks; 998 999 /* 1000 * We boost task t by manufacturing an rt_mutex that appears to 1001 * be held by task t. We leave a pointer to that rt_mutex where 1002 * task t can find it, and task t will release the mutex when it 1003 * exits its outermost RCU read-side critical section. Then 1004 * simply acquiring this artificial rt_mutex will boost task 1005 * t's priority. (Thanks to tglx for suggesting this approach!) 1006 * 1007 * Note that task t must acquire rnp->lock to remove itself from 1008 * the ->blkd_tasks list, which it will do from exit() if from 1009 * nowhere else. We therefore are guaranteed that task t will 1010 * stay around at least until we drop rnp->lock. Note that 1011 * rnp->lock also resolves races between our priority boosting 1012 * and task t's exiting its outermost RCU read-side critical 1013 * section. 1014 */ 1015 t = container_of(tb, struct task_struct, rcu_node_entry); 1016 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1017 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1018 /* Lock only for side effect: boosts task t's priority. */ 1019 rt_mutex_lock(&rnp->boost_mtx); 1020 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1021 1022 return READ_ONCE(rnp->exp_tasks) != NULL || 1023 READ_ONCE(rnp->boost_tasks) != NULL; 1024 } 1025 1026 /* 1027 * Priority-boosting kthread, one per leaf rcu_node. 1028 */ 1029 static int rcu_boost_kthread(void *arg) 1030 { 1031 struct rcu_node *rnp = (struct rcu_node *)arg; 1032 int spincnt = 0; 1033 int more2boost; 1034 1035 trace_rcu_utilization(TPS("Start boost kthread@init")); 1036 for (;;) { 1037 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1038 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1039 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1040 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1041 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1042 more2boost = rcu_boost(rnp); 1043 if (more2boost) 1044 spincnt++; 1045 else 1046 spincnt = 0; 1047 if (spincnt > 10) { 1048 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1049 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1050 schedule_timeout_interruptible(2); 1051 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1052 spincnt = 0; 1053 } 1054 } 1055 /* NOTREACHED */ 1056 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1057 return 0; 1058 } 1059 1060 /* 1061 * Check to see if it is time to start boosting RCU readers that are 1062 * blocking the current grace period, and, if so, tell the per-rcu_node 1063 * kthread to start boosting them. If there is an expedited grace 1064 * period in progress, it is always time to boost. 1065 * 1066 * The caller must hold rnp->lock, which this function releases. 1067 * The ->boost_kthread_task is immortal, so we don't need to worry 1068 * about it going away. 1069 */ 1070 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1071 __releases(rnp->lock) 1072 { 1073 raw_lockdep_assert_held_rcu_node(rnp); 1074 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1076 return; 1077 } 1078 if (rnp->exp_tasks != NULL || 1079 (rnp->gp_tasks != NULL && 1080 rnp->boost_tasks == NULL && 1081 rnp->qsmask == 0 && 1082 (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) { 1083 if (rnp->exp_tasks == NULL) 1084 rnp->boost_tasks = rnp->gp_tasks; 1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1086 rcu_wake_cond(rnp->boost_kthread_task, 1087 READ_ONCE(rnp->boost_kthread_status)); 1088 } else { 1089 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1090 } 1091 } 1092 1093 /* 1094 * Is the current CPU running the RCU-callbacks kthread? 1095 * Caller must have preemption disabled. 1096 */ 1097 static bool rcu_is_callbacks_kthread(void) 1098 { 1099 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1100 } 1101 1102 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1103 1104 /* 1105 * Do priority-boost accounting for the start of a new grace period. 1106 */ 1107 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1108 { 1109 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1110 } 1111 1112 /* 1113 * Create an RCU-boost kthread for the specified node if one does not 1114 * already exist. We only create this kthread for preemptible RCU. 1115 * Returns zero if all is well, a negated errno otherwise. 1116 */ 1117 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1118 { 1119 int rnp_index = rnp - rcu_get_root(); 1120 unsigned long flags; 1121 struct sched_param sp; 1122 struct task_struct *t; 1123 1124 if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) 1125 return; 1126 1127 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1128 return; 1129 1130 rcu_state.boost = 1; 1131 1132 if (rnp->boost_kthread_task != NULL) 1133 return; 1134 1135 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1136 "rcub/%d", rnp_index); 1137 if (WARN_ON_ONCE(IS_ERR(t))) 1138 return; 1139 1140 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1141 rnp->boost_kthread_task = t; 1142 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1143 sp.sched_priority = kthread_prio; 1144 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1145 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1146 } 1147 1148 /* 1149 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1150 * served by the rcu_node in question. The CPU hotplug lock is still 1151 * held, so the value of rnp->qsmaskinit will be stable. 1152 * 1153 * We don't include outgoingcpu in the affinity set, use -1 if there is 1154 * no outgoing CPU. If there are no CPUs left in the affinity set, 1155 * this function allows the kthread to execute on any CPU. 1156 */ 1157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1158 { 1159 struct task_struct *t = rnp->boost_kthread_task; 1160 unsigned long mask = rcu_rnp_online_cpus(rnp); 1161 cpumask_var_t cm; 1162 int cpu; 1163 1164 if (!t) 1165 return; 1166 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1167 return; 1168 for_each_leaf_node_possible_cpu(rnp, cpu) 1169 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1170 cpu != outgoingcpu) 1171 cpumask_set_cpu(cpu, cm); 1172 if (cpumask_weight(cm) == 0) 1173 cpumask_setall(cm); 1174 set_cpus_allowed_ptr(t, cm); 1175 free_cpumask_var(cm); 1176 } 1177 1178 /* 1179 * Spawn boost kthreads -- called as soon as the scheduler is running. 1180 */ 1181 static void __init rcu_spawn_boost_kthreads(void) 1182 { 1183 struct rcu_node *rnp; 1184 1185 rcu_for_each_leaf_node(rnp) 1186 rcu_spawn_one_boost_kthread(rnp); 1187 } 1188 1189 static void rcu_prepare_kthreads(int cpu) 1190 { 1191 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1192 struct rcu_node *rnp = rdp->mynode; 1193 1194 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1195 if (rcu_scheduler_fully_active) 1196 rcu_spawn_one_boost_kthread(rnp); 1197 } 1198 1199 #else /* #ifdef CONFIG_RCU_BOOST */ 1200 1201 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1202 __releases(rnp->lock) 1203 { 1204 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1205 } 1206 1207 static bool rcu_is_callbacks_kthread(void) 1208 { 1209 return false; 1210 } 1211 1212 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1213 { 1214 } 1215 1216 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1217 { 1218 } 1219 1220 static void __init rcu_spawn_boost_kthreads(void) 1221 { 1222 } 1223 1224 static void rcu_prepare_kthreads(int cpu) 1225 { 1226 } 1227 1228 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1229 1230 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1231 1232 /* 1233 * Check to see if any future non-offloaded RCU-related work will need 1234 * to be done by the current CPU, even if none need be done immediately, 1235 * returning 1 if so. This function is part of the RCU implementation; 1236 * it is -not- an exported member of the RCU API. 1237 * 1238 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1239 * CPU has RCU callbacks queued. 1240 */ 1241 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1242 { 1243 *nextevt = KTIME_MAX; 1244 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1245 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); 1246 } 1247 1248 /* 1249 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1250 * after it. 1251 */ 1252 static void rcu_cleanup_after_idle(void) 1253 { 1254 } 1255 1256 /* 1257 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1258 * is nothing. 1259 */ 1260 static void rcu_prepare_for_idle(void) 1261 { 1262 } 1263 1264 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1265 1266 /* 1267 * This code is invoked when a CPU goes idle, at which point we want 1268 * to have the CPU do everything required for RCU so that it can enter 1269 * the energy-efficient dyntick-idle mode. 1270 * 1271 * The following preprocessor symbol controls this: 1272 * 1273 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1274 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1275 * is sized to be roughly one RCU grace period. Those energy-efficiency 1276 * benchmarkers who might otherwise be tempted to set this to a large 1277 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1278 * system. And if you are -that- concerned about energy efficiency, 1279 * just power the system down and be done with it! 1280 * 1281 * The value below works well in practice. If future workloads require 1282 * adjustment, they can be converted into kernel config parameters, though 1283 * making the state machine smarter might be a better option. 1284 */ 1285 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1286 1287 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1288 module_param(rcu_idle_gp_delay, int, 0644); 1289 1290 /* 1291 * Try to advance callbacks on the current CPU, but only if it has been 1292 * awhile since the last time we did so. Afterwards, if there are any 1293 * callbacks ready for immediate invocation, return true. 1294 */ 1295 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1296 { 1297 bool cbs_ready = false; 1298 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1299 struct rcu_node *rnp; 1300 1301 /* Exit early if we advanced recently. */ 1302 if (jiffies == rdp->last_advance_all) 1303 return false; 1304 rdp->last_advance_all = jiffies; 1305 1306 rnp = rdp->mynode; 1307 1308 /* 1309 * Don't bother checking unless a grace period has 1310 * completed since we last checked and there are 1311 * callbacks not yet ready to invoke. 1312 */ 1313 if ((rcu_seq_completed_gp(rdp->gp_seq, 1314 rcu_seq_current(&rnp->gp_seq)) || 1315 unlikely(READ_ONCE(rdp->gpwrap))) && 1316 rcu_segcblist_pend_cbs(&rdp->cblist)) 1317 note_gp_changes(rdp); 1318 1319 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1320 cbs_ready = true; 1321 return cbs_ready; 1322 } 1323 1324 /* 1325 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1326 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1327 * caller about what to set the timeout. 1328 * 1329 * The caller must have disabled interrupts. 1330 */ 1331 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1332 { 1333 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1334 unsigned long dj; 1335 1336 lockdep_assert_irqs_disabled(); 1337 1338 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ 1339 if (rcu_segcblist_empty(&rdp->cblist) || 1340 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { 1341 *nextevt = KTIME_MAX; 1342 return 0; 1343 } 1344 1345 /* Attempt to advance callbacks. */ 1346 if (rcu_try_advance_all_cbs()) { 1347 /* Some ready to invoke, so initiate later invocation. */ 1348 invoke_rcu_core(); 1349 return 1; 1350 } 1351 rdp->last_accelerate = jiffies; 1352 1353 /* Request timer and round. */ 1354 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; 1355 1356 *nextevt = basemono + dj * TICK_NSEC; 1357 return 0; 1358 } 1359 1360 /* 1361 * Prepare a CPU for idle from an RCU perspective. The first major task is to 1362 * sense whether nohz mode has been enabled or disabled via sysfs. The second 1363 * major task is to accelerate (that is, assign grace-period numbers to) any 1364 * recently arrived callbacks. 1365 * 1366 * The caller must have disabled interrupts. 1367 */ 1368 static void rcu_prepare_for_idle(void) 1369 { 1370 bool needwake; 1371 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1372 struct rcu_node *rnp; 1373 int tne; 1374 1375 lockdep_assert_irqs_disabled(); 1376 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1377 return; 1378 1379 /* Handle nohz enablement switches conservatively. */ 1380 tne = READ_ONCE(tick_nohz_active); 1381 if (tne != rdp->tick_nohz_enabled_snap) { 1382 if (!rcu_segcblist_empty(&rdp->cblist)) 1383 invoke_rcu_core(); /* force nohz to see update. */ 1384 rdp->tick_nohz_enabled_snap = tne; 1385 return; 1386 } 1387 if (!tne) 1388 return; 1389 1390 /* 1391 * If we have not yet accelerated this jiffy, accelerate all 1392 * callbacks on this CPU. 1393 */ 1394 if (rdp->last_accelerate == jiffies) 1395 return; 1396 rdp->last_accelerate = jiffies; 1397 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1398 rnp = rdp->mynode; 1399 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1400 needwake = rcu_accelerate_cbs(rnp, rdp); 1401 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1402 if (needwake) 1403 rcu_gp_kthread_wake(); 1404 } 1405 } 1406 1407 /* 1408 * Clean up for exit from idle. Attempt to advance callbacks based on 1409 * any grace periods that elapsed while the CPU was idle, and if any 1410 * callbacks are now ready to invoke, initiate invocation. 1411 */ 1412 static void rcu_cleanup_after_idle(void) 1413 { 1414 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1415 1416 lockdep_assert_irqs_disabled(); 1417 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1418 return; 1419 if (rcu_try_advance_all_cbs()) 1420 invoke_rcu_core(); 1421 } 1422 1423 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1424 1425 #ifdef CONFIG_RCU_NOCB_CPU 1426 1427 /* 1428 * Offload callback processing from the boot-time-specified set of CPUs 1429 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 1430 * created that pull the callbacks from the corresponding CPU, wait for 1431 * a grace period to elapse, and invoke the callbacks. These kthreads 1432 * are organized into GP kthreads, which manage incoming callbacks, wait for 1433 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 1434 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 1435 * do a wake_up() on their GP kthread when they insert a callback into any 1436 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 1437 * in which case each kthread actively polls its CPU. (Which isn't so great 1438 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 1439 * 1440 * This is intended to be used in conjunction with Frederic Weisbecker's 1441 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1442 * running CPU-bound user-mode computations. 1443 * 1444 * Offloading of callbacks can also be used as an energy-efficiency 1445 * measure because CPUs with no RCU callbacks queued are more aggressive 1446 * about entering dyntick-idle mode. 1447 */ 1448 1449 1450 /* 1451 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 1452 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a 1453 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is 1454 * given, a warning is emitted and all CPUs are offloaded. 1455 */ 1456 static int __init rcu_nocb_setup(char *str) 1457 { 1458 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1459 if (!strcasecmp(str, "all")) 1460 cpumask_setall(rcu_nocb_mask); 1461 else 1462 if (cpulist_parse(str, rcu_nocb_mask)) { 1463 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 1464 cpumask_setall(rcu_nocb_mask); 1465 } 1466 return 1; 1467 } 1468 __setup("rcu_nocbs=", rcu_nocb_setup); 1469 1470 static int __init parse_rcu_nocb_poll(char *arg) 1471 { 1472 rcu_nocb_poll = true; 1473 return 0; 1474 } 1475 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1476 1477 /* 1478 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 1479 * After all, the main point of bypassing is to avoid lock contention 1480 * on ->nocb_lock, which only can happen at high call_rcu() rates. 1481 */ 1482 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 1483 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 1484 1485 /* 1486 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 1487 * lock isn't immediately available, increment ->nocb_lock_contended to 1488 * flag the contention. 1489 */ 1490 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 1491 __acquires(&rdp->nocb_bypass_lock) 1492 { 1493 lockdep_assert_irqs_disabled(); 1494 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 1495 return; 1496 atomic_inc(&rdp->nocb_lock_contended); 1497 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1498 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 1499 raw_spin_lock(&rdp->nocb_bypass_lock); 1500 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 1501 atomic_dec(&rdp->nocb_lock_contended); 1502 } 1503 1504 /* 1505 * Spinwait until the specified rcu_data structure's ->nocb_lock is 1506 * not contended. Please note that this is extremely special-purpose, 1507 * relying on the fact that at most two kthreads and one CPU contend for 1508 * this lock, and also that the two kthreads are guaranteed to have frequent 1509 * grace-period-duration time intervals between successive acquisitions 1510 * of the lock. This allows us to use an extremely simple throttling 1511 * mechanism, and further to apply it only to the CPU doing floods of 1512 * call_rcu() invocations. Don't try this at home! 1513 */ 1514 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 1515 { 1516 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1517 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 1518 cpu_relax(); 1519 } 1520 1521 /* 1522 * Conditionally acquire the specified rcu_data structure's 1523 * ->nocb_bypass_lock. 1524 */ 1525 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 1526 { 1527 lockdep_assert_irqs_disabled(); 1528 return raw_spin_trylock(&rdp->nocb_bypass_lock); 1529 } 1530 1531 /* 1532 * Release the specified rcu_data structure's ->nocb_bypass_lock. 1533 */ 1534 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 1535 __releases(&rdp->nocb_bypass_lock) 1536 { 1537 lockdep_assert_irqs_disabled(); 1538 raw_spin_unlock(&rdp->nocb_bypass_lock); 1539 } 1540 1541 /* 1542 * Acquire the specified rcu_data structure's ->nocb_lock, but only 1543 * if it corresponds to a no-CBs CPU. 1544 */ 1545 static void rcu_nocb_lock(struct rcu_data *rdp) 1546 { 1547 lockdep_assert_irqs_disabled(); 1548 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1549 return; 1550 raw_spin_lock(&rdp->nocb_lock); 1551 } 1552 1553 /* 1554 * Release the specified rcu_data structure's ->nocb_lock, but only 1555 * if it corresponds to a no-CBs CPU. 1556 */ 1557 static void rcu_nocb_unlock(struct rcu_data *rdp) 1558 { 1559 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1560 lockdep_assert_irqs_disabled(); 1561 raw_spin_unlock(&rdp->nocb_lock); 1562 } 1563 } 1564 1565 /* 1566 * Release the specified rcu_data structure's ->nocb_lock and restore 1567 * interrupts, but only if it corresponds to a no-CBs CPU. 1568 */ 1569 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1570 unsigned long flags) 1571 { 1572 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1573 lockdep_assert_irqs_disabled(); 1574 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1575 } else { 1576 local_irq_restore(flags); 1577 } 1578 } 1579 1580 /* Lockdep check that ->cblist may be safely accessed. */ 1581 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1582 { 1583 lockdep_assert_irqs_disabled(); 1584 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1585 lockdep_assert_held(&rdp->nocb_lock); 1586 } 1587 1588 /* 1589 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1590 * grace period. 1591 */ 1592 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1593 { 1594 swake_up_all(sq); 1595 } 1596 1597 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1598 { 1599 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 1600 } 1601 1602 static void rcu_init_one_nocb(struct rcu_node *rnp) 1603 { 1604 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1605 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1606 } 1607 1608 /* Is the specified CPU a no-CBs CPU? */ 1609 bool rcu_is_nocb_cpu(int cpu) 1610 { 1611 if (cpumask_available(rcu_nocb_mask)) 1612 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1613 return false; 1614 } 1615 1616 /* 1617 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock 1618 * and this function releases it. 1619 */ 1620 static void wake_nocb_gp(struct rcu_data *rdp, bool force, 1621 unsigned long flags) 1622 __releases(rdp->nocb_lock) 1623 { 1624 bool needwake = false; 1625 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1626 1627 lockdep_assert_held(&rdp->nocb_lock); 1628 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 1629 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1630 TPS("AlreadyAwake")); 1631 rcu_nocb_unlock_irqrestore(rdp, flags); 1632 return; 1633 } 1634 del_timer(&rdp->nocb_timer); 1635 rcu_nocb_unlock_irqrestore(rdp, flags); 1636 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1637 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 1638 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 1639 needwake = true; 1640 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 1641 } 1642 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1643 if (needwake) 1644 wake_up_process(rdp_gp->nocb_gp_kthread); 1645 } 1646 1647 /* 1648 * Arrange to wake the GP kthread for this NOCB group at some future 1649 * time when it is safe to do so. 1650 */ 1651 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 1652 const char *reason) 1653 { 1654 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1655 mod_timer(&rdp->nocb_timer, jiffies + 1); 1656 if (rdp->nocb_defer_wakeup < waketype) 1657 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1658 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 1659 } 1660 1661 /* 1662 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1663 * However, if there is a callback to be enqueued and if ->nocb_bypass 1664 * proves to be initially empty, just return false because the no-CB GP 1665 * kthread may need to be awakened in this case. 1666 * 1667 * Note that this function always returns true if rhp is NULL. 1668 */ 1669 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1670 unsigned long j) 1671 { 1672 struct rcu_cblist rcl; 1673 1674 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); 1675 rcu_lockdep_assert_cblist_protected(rdp); 1676 lockdep_assert_held(&rdp->nocb_bypass_lock); 1677 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 1678 raw_spin_unlock(&rdp->nocb_bypass_lock); 1679 return false; 1680 } 1681 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 1682 if (rhp) 1683 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1684 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 1685 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 1686 WRITE_ONCE(rdp->nocb_bypass_first, j); 1687 rcu_nocb_bypass_unlock(rdp); 1688 return true; 1689 } 1690 1691 /* 1692 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1693 * However, if there is a callback to be enqueued and if ->nocb_bypass 1694 * proves to be initially empty, just return false because the no-CB GP 1695 * kthread may need to be awakened in this case. 1696 * 1697 * Note that this function always returns true if rhp is NULL. 1698 */ 1699 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1700 unsigned long j) 1701 { 1702 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1703 return true; 1704 rcu_lockdep_assert_cblist_protected(rdp); 1705 rcu_nocb_bypass_lock(rdp); 1706 return rcu_nocb_do_flush_bypass(rdp, rhp, j); 1707 } 1708 1709 /* 1710 * If the ->nocb_bypass_lock is immediately available, flush the 1711 * ->nocb_bypass queue into ->cblist. 1712 */ 1713 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 1714 { 1715 rcu_lockdep_assert_cblist_protected(rdp); 1716 if (!rcu_segcblist_is_offloaded(&rdp->cblist) || 1717 !rcu_nocb_bypass_trylock(rdp)) 1718 return; 1719 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); 1720 } 1721 1722 /* 1723 * See whether it is appropriate to use the ->nocb_bypass list in order 1724 * to control contention on ->nocb_lock. A limited number of direct 1725 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 1726 * is non-empty, further callbacks must be placed into ->nocb_bypass, 1727 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 1728 * back to direct use of ->cblist. However, ->nocb_bypass should not be 1729 * used if ->cblist is empty, because otherwise callbacks can be stranded 1730 * on ->nocb_bypass because we cannot count on the current CPU ever again 1731 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 1732 * non-empty, the corresponding no-CBs grace-period kthread must not be 1733 * in an indefinite sleep state. 1734 * 1735 * Finally, it is not permitted to use the bypass during early boot, 1736 * as doing so would confuse the auto-initialization code. Besides 1737 * which, there is no point in worrying about lock contention while 1738 * there is only one CPU in operation. 1739 */ 1740 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1741 bool *was_alldone, unsigned long flags) 1742 { 1743 unsigned long c; 1744 unsigned long cur_gp_seq; 1745 unsigned long j = jiffies; 1746 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1747 1748 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { 1749 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1750 return false; /* Not offloaded, no bypassing. */ 1751 } 1752 lockdep_assert_irqs_disabled(); 1753 1754 // Don't use ->nocb_bypass during early boot. 1755 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 1756 rcu_nocb_lock(rdp); 1757 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1758 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1759 return false; 1760 } 1761 1762 // If we have advanced to a new jiffy, reset counts to allow 1763 // moving back from ->nocb_bypass to ->cblist. 1764 if (j == rdp->nocb_nobypass_last) { 1765 c = rdp->nocb_nobypass_count + 1; 1766 } else { 1767 WRITE_ONCE(rdp->nocb_nobypass_last, j); 1768 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 1769 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 1770 nocb_nobypass_lim_per_jiffy)) 1771 c = 0; 1772 else if (c > nocb_nobypass_lim_per_jiffy) 1773 c = nocb_nobypass_lim_per_jiffy; 1774 } 1775 WRITE_ONCE(rdp->nocb_nobypass_count, c); 1776 1777 // If there hasn't yet been all that many ->cblist enqueues 1778 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 1779 // ->nocb_bypass first. 1780 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { 1781 rcu_nocb_lock(rdp); 1782 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1783 if (*was_alldone) 1784 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1785 TPS("FirstQ")); 1786 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); 1787 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1788 return false; // Caller must enqueue the callback. 1789 } 1790 1791 // If ->nocb_bypass has been used too long or is too full, 1792 // flush ->nocb_bypass to ->cblist. 1793 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || 1794 ncbs >= qhimark) { 1795 rcu_nocb_lock(rdp); 1796 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { 1797 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1798 if (*was_alldone) 1799 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1800 TPS("FirstQ")); 1801 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1802 return false; // Caller must enqueue the callback. 1803 } 1804 if (j != rdp->nocb_gp_adv_time && 1805 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1806 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1807 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1808 rdp->nocb_gp_adv_time = j; 1809 } 1810 rcu_nocb_unlock_irqrestore(rdp, flags); 1811 return true; // Callback already enqueued. 1812 } 1813 1814 // We need to use the bypass. 1815 rcu_nocb_wait_contended(rdp); 1816 rcu_nocb_bypass_lock(rdp); 1817 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1818 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1819 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 1820 if (!ncbs) { 1821 WRITE_ONCE(rdp->nocb_bypass_first, j); 1822 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 1823 } 1824 rcu_nocb_bypass_unlock(rdp); 1825 smp_mb(); /* Order enqueue before wake. */ 1826 if (ncbs) { 1827 local_irq_restore(flags); 1828 } else { 1829 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 1830 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 1831 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 1832 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1833 TPS("FirstBQwake")); 1834 __call_rcu_nocb_wake(rdp, true, flags); 1835 } else { 1836 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1837 TPS("FirstBQnoWake")); 1838 rcu_nocb_unlock_irqrestore(rdp, flags); 1839 } 1840 } 1841 return true; // Callback already enqueued. 1842 } 1843 1844 /* 1845 * Awaken the no-CBs grace-period kthead if needed, either due to it 1846 * legitimately being asleep or due to overload conditions. 1847 * 1848 * If warranted, also wake up the kthread servicing this CPUs queues. 1849 */ 1850 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 1851 unsigned long flags) 1852 __releases(rdp->nocb_lock) 1853 { 1854 unsigned long cur_gp_seq; 1855 unsigned long j; 1856 long len; 1857 struct task_struct *t; 1858 1859 // If we are being polled or there is no kthread, just leave. 1860 t = READ_ONCE(rdp->nocb_gp_kthread); 1861 if (rcu_nocb_poll || !t) { 1862 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1863 TPS("WakeNotPoll")); 1864 rcu_nocb_unlock_irqrestore(rdp, flags); 1865 return; 1866 } 1867 // Need to actually to a wakeup. 1868 len = rcu_segcblist_n_cbs(&rdp->cblist); 1869 if (was_alldone) { 1870 rdp->qlen_last_fqs_check = len; 1871 if (!irqs_disabled_flags(flags)) { 1872 /* ... if queue was empty ... */ 1873 wake_nocb_gp(rdp, false, flags); 1874 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1875 TPS("WakeEmpty")); 1876 } else { 1877 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 1878 TPS("WakeEmptyIsDeferred")); 1879 rcu_nocb_unlock_irqrestore(rdp, flags); 1880 } 1881 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1882 /* ... or if many callbacks queued. */ 1883 rdp->qlen_last_fqs_check = len; 1884 j = jiffies; 1885 if (j != rdp->nocb_gp_adv_time && 1886 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1887 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1888 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1889 rdp->nocb_gp_adv_time = j; 1890 } 1891 smp_mb(); /* Enqueue before timer_pending(). */ 1892 if ((rdp->nocb_cb_sleep || 1893 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 1894 !timer_pending(&rdp->nocb_bypass_timer)) 1895 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 1896 TPS("WakeOvfIsDeferred")); 1897 rcu_nocb_unlock_irqrestore(rdp, flags); 1898 } else { 1899 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 1900 rcu_nocb_unlock_irqrestore(rdp, flags); 1901 } 1902 return; 1903 } 1904 1905 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ 1906 static void do_nocb_bypass_wakeup_timer(struct timer_list *t) 1907 { 1908 unsigned long flags; 1909 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); 1910 1911 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1912 rcu_nocb_lock_irqsave(rdp, flags); 1913 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1914 __call_rcu_nocb_wake(rdp, true, flags); 1915 } 1916 1917 /* 1918 * No-CBs GP kthreads come here to wait for additional callbacks to show up 1919 * or for grace periods to end. 1920 */ 1921 static void nocb_gp_wait(struct rcu_data *my_rdp) 1922 { 1923 bool bypass = false; 1924 long bypass_ncbs; 1925 int __maybe_unused cpu = my_rdp->cpu; 1926 unsigned long cur_gp_seq; 1927 unsigned long flags; 1928 bool gotcbs = false; 1929 unsigned long j = jiffies; 1930 bool needwait_gp = false; // This prevents actual uninitialized use. 1931 bool needwake; 1932 bool needwake_gp; 1933 struct rcu_data *rdp; 1934 struct rcu_node *rnp; 1935 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 1936 bool wasempty = false; 1937 1938 /* 1939 * Each pass through the following loop checks for CBs and for the 1940 * nearest grace period (if any) to wait for next. The CB kthreads 1941 * and the global grace-period kthread are awakened if needed. 1942 */ 1943 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { 1944 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 1945 rcu_nocb_lock_irqsave(rdp, flags); 1946 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1947 if (bypass_ncbs && 1948 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 1949 bypass_ncbs > 2 * qhimark)) { 1950 // Bypass full or old, so flush it. 1951 (void)rcu_nocb_try_flush_bypass(rdp, j); 1952 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1953 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 1954 rcu_nocb_unlock_irqrestore(rdp, flags); 1955 continue; /* No callbacks here, try next. */ 1956 } 1957 if (bypass_ncbs) { 1958 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1959 TPS("Bypass")); 1960 bypass = true; 1961 } 1962 rnp = rdp->mynode; 1963 if (bypass) { // Avoid race with first bypass CB. 1964 WRITE_ONCE(my_rdp->nocb_defer_wakeup, 1965 RCU_NOCB_WAKE_NOT); 1966 del_timer(&my_rdp->nocb_timer); 1967 } 1968 // Advance callbacks if helpful and low contention. 1969 needwake_gp = false; 1970 if (!rcu_segcblist_restempty(&rdp->cblist, 1971 RCU_NEXT_READY_TAIL) || 1972 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1973 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 1974 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 1975 needwake_gp = rcu_advance_cbs(rnp, rdp); 1976 wasempty = rcu_segcblist_restempty(&rdp->cblist, 1977 RCU_NEXT_READY_TAIL); 1978 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 1979 } 1980 // Need to wait on some grace period? 1981 WARN_ON_ONCE(wasempty && 1982 !rcu_segcblist_restempty(&rdp->cblist, 1983 RCU_NEXT_READY_TAIL)); 1984 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 1985 if (!needwait_gp || 1986 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 1987 wait_gp_seq = cur_gp_seq; 1988 needwait_gp = true; 1989 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1990 TPS("NeedWaitGP")); 1991 } 1992 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 1993 needwake = rdp->nocb_cb_sleep; 1994 WRITE_ONCE(rdp->nocb_cb_sleep, false); 1995 smp_mb(); /* CB invocation -after- GP end. */ 1996 } else { 1997 needwake = false; 1998 } 1999 rcu_nocb_unlock_irqrestore(rdp, flags); 2000 if (needwake) { 2001 swake_up_one(&rdp->nocb_cb_wq); 2002 gotcbs = true; 2003 } 2004 if (needwake_gp) 2005 rcu_gp_kthread_wake(); 2006 } 2007 2008 my_rdp->nocb_gp_bypass = bypass; 2009 my_rdp->nocb_gp_gp = needwait_gp; 2010 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 2011 if (bypass && !rcu_nocb_poll) { 2012 // At least one child with non-empty ->nocb_bypass, so set 2013 // timer in order to avoid stranding its callbacks. 2014 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2015 mod_timer(&my_rdp->nocb_bypass_timer, j + 2); 2016 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2017 } 2018 if (rcu_nocb_poll) { 2019 /* Polling, so trace if first poll in the series. */ 2020 if (gotcbs) 2021 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 2022 schedule_timeout_interruptible(1); 2023 } else if (!needwait_gp) { 2024 /* Wait for callbacks to appear. */ 2025 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 2026 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 2027 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2028 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 2029 } else { 2030 rnp = my_rdp->mynode; 2031 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 2032 swait_event_interruptible_exclusive( 2033 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 2034 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 2035 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2036 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 2037 } 2038 if (!rcu_nocb_poll) { 2039 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2040 if (bypass) 2041 del_timer(&my_rdp->nocb_bypass_timer); 2042 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 2043 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2044 } 2045 my_rdp->nocb_gp_seq = -1; 2046 WARN_ON(signal_pending(current)); 2047 } 2048 2049 /* 2050 * No-CBs grace-period-wait kthread. There is one of these per group 2051 * of CPUs, but only once at least one CPU in that group has come online 2052 * at least once since boot. This kthread checks for newly posted 2053 * callbacks from any of the CPUs it is responsible for, waits for a 2054 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 2055 * that then have callback-invocation work to do. 2056 */ 2057 static int rcu_nocb_gp_kthread(void *arg) 2058 { 2059 struct rcu_data *rdp = arg; 2060 2061 for (;;) { 2062 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 2063 nocb_gp_wait(rdp); 2064 cond_resched_tasks_rcu_qs(); 2065 } 2066 return 0; 2067 } 2068 2069 /* 2070 * Invoke any ready callbacks from the corresponding no-CBs CPU, 2071 * then, if there are no more, wait for more to appear. 2072 */ 2073 static void nocb_cb_wait(struct rcu_data *rdp) 2074 { 2075 unsigned long cur_gp_seq; 2076 unsigned long flags; 2077 bool needwake_gp = false; 2078 struct rcu_node *rnp = rdp->mynode; 2079 2080 local_irq_save(flags); 2081 rcu_momentary_dyntick_idle(); 2082 local_irq_restore(flags); 2083 local_bh_disable(); 2084 rcu_do_batch(rdp); 2085 local_bh_enable(); 2086 lockdep_assert_irqs_enabled(); 2087 rcu_nocb_lock_irqsave(rdp, flags); 2088 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 2089 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 2090 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 2091 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 2092 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2093 } 2094 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 2095 rcu_nocb_unlock_irqrestore(rdp, flags); 2096 if (needwake_gp) 2097 rcu_gp_kthread_wake(); 2098 return; 2099 } 2100 2101 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 2102 WRITE_ONCE(rdp->nocb_cb_sleep, true); 2103 rcu_nocb_unlock_irqrestore(rdp, flags); 2104 if (needwake_gp) 2105 rcu_gp_kthread_wake(); 2106 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 2107 !READ_ONCE(rdp->nocb_cb_sleep)); 2108 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */ 2109 /* ^^^ Ensure CB invocation follows _sleep test. */ 2110 return; 2111 } 2112 WARN_ON(signal_pending(current)); 2113 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 2114 } 2115 2116 /* 2117 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 2118 * nocb_cb_wait() to do the dirty work. 2119 */ 2120 static int rcu_nocb_cb_kthread(void *arg) 2121 { 2122 struct rcu_data *rdp = arg; 2123 2124 // Each pass through this loop does one callback batch, and, 2125 // if there are no more ready callbacks, waits for them. 2126 for (;;) { 2127 nocb_cb_wait(rdp); 2128 cond_resched_tasks_rcu_qs(); 2129 } 2130 return 0; 2131 } 2132 2133 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2134 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2135 { 2136 return READ_ONCE(rdp->nocb_defer_wakeup); 2137 } 2138 2139 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2140 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2141 { 2142 unsigned long flags; 2143 int ndw; 2144 2145 rcu_nocb_lock_irqsave(rdp, flags); 2146 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2147 rcu_nocb_unlock_irqrestore(rdp, flags); 2148 return; 2149 } 2150 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2151 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2152 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2153 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 2154 } 2155 2156 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2157 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2158 { 2159 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2160 2161 do_nocb_deferred_wakeup_common(rdp); 2162 } 2163 2164 /* 2165 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2166 * This means we do an inexact common-case check. Note that if 2167 * we miss, ->nocb_timer will eventually clean things up. 2168 */ 2169 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2170 { 2171 if (rcu_nocb_need_deferred_wakeup(rdp)) 2172 do_nocb_deferred_wakeup_common(rdp); 2173 } 2174 2175 void __init rcu_init_nohz(void) 2176 { 2177 int cpu; 2178 bool need_rcu_nocb_mask = false; 2179 struct rcu_data *rdp; 2180 2181 #if defined(CONFIG_NO_HZ_FULL) 2182 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2183 need_rcu_nocb_mask = true; 2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2185 2186 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2187 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2188 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2189 return; 2190 } 2191 } 2192 if (!cpumask_available(rcu_nocb_mask)) 2193 return; 2194 2195 #if defined(CONFIG_NO_HZ_FULL) 2196 if (tick_nohz_full_running) 2197 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2198 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2199 2200 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2201 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2202 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2203 rcu_nocb_mask); 2204 } 2205 if (cpumask_empty(rcu_nocb_mask)) 2206 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2207 else 2208 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2209 cpumask_pr_args(rcu_nocb_mask)); 2210 if (rcu_nocb_poll) 2211 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2212 2213 for_each_cpu(cpu, rcu_nocb_mask) { 2214 rdp = per_cpu_ptr(&rcu_data, cpu); 2215 if (rcu_segcblist_empty(&rdp->cblist)) 2216 rcu_segcblist_init(&rdp->cblist); 2217 rcu_segcblist_offload(&rdp->cblist); 2218 } 2219 rcu_organize_nocb_kthreads(); 2220 } 2221 2222 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2223 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2224 { 2225 init_swait_queue_head(&rdp->nocb_cb_wq); 2226 init_swait_queue_head(&rdp->nocb_gp_wq); 2227 raw_spin_lock_init(&rdp->nocb_lock); 2228 raw_spin_lock_init(&rdp->nocb_bypass_lock); 2229 raw_spin_lock_init(&rdp->nocb_gp_lock); 2230 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2231 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); 2232 rcu_cblist_init(&rdp->nocb_bypass); 2233 } 2234 2235 /* 2236 * If the specified CPU is a no-CBs CPU that does not already have its 2237 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 2238 * for this CPU's group has not yet been created, spawn it as well. 2239 */ 2240 static void rcu_spawn_one_nocb_kthread(int cpu) 2241 { 2242 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2243 struct rcu_data *rdp_gp; 2244 struct task_struct *t; 2245 2246 /* 2247 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2248 * then nothing to do. 2249 */ 2250 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) 2251 return; 2252 2253 /* If we didn't spawn the GP kthread first, reorganize! */ 2254 rdp_gp = rdp->nocb_gp_rdp; 2255 if (!rdp_gp->nocb_gp_kthread) { 2256 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 2257 "rcuog/%d", rdp_gp->cpu); 2258 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) 2259 return; 2260 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 2261 } 2262 2263 /* Spawn the kthread for this CPU. */ 2264 t = kthread_run(rcu_nocb_cb_kthread, rdp, 2265 "rcuo%c/%d", rcu_state.abbr, cpu); 2266 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 2267 return; 2268 WRITE_ONCE(rdp->nocb_cb_kthread, t); 2269 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 2270 } 2271 2272 /* 2273 * If the specified CPU is a no-CBs CPU that does not already have its 2274 * rcuo kthread, spawn it. 2275 */ 2276 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2277 { 2278 if (rcu_scheduler_fully_active) 2279 rcu_spawn_one_nocb_kthread(cpu); 2280 } 2281 2282 /* 2283 * Once the scheduler is running, spawn rcuo kthreads for all online 2284 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2285 * non-boot CPUs come online -- if this changes, we will need to add 2286 * some mutual exclusion. 2287 */ 2288 static void __init rcu_spawn_nocb_kthreads(void) 2289 { 2290 int cpu; 2291 2292 for_each_online_cpu(cpu) 2293 rcu_spawn_cpu_nocb_kthread(cpu); 2294 } 2295 2296 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 2297 static int rcu_nocb_gp_stride = -1; 2298 module_param(rcu_nocb_gp_stride, int, 0444); 2299 2300 /* 2301 * Initialize GP-CB relationships for all no-CBs CPU. 2302 */ 2303 static void __init rcu_organize_nocb_kthreads(void) 2304 { 2305 int cpu; 2306 bool firsttime = true; 2307 bool gotnocbs = false; 2308 bool gotnocbscbs = true; 2309 int ls = rcu_nocb_gp_stride; 2310 int nl = 0; /* Next GP kthread. */ 2311 struct rcu_data *rdp; 2312 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 2313 struct rcu_data *rdp_prev = NULL; 2314 2315 if (!cpumask_available(rcu_nocb_mask)) 2316 return; 2317 if (ls == -1) { 2318 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 2319 rcu_nocb_gp_stride = ls; 2320 } 2321 2322 /* 2323 * Each pass through this loop sets up one rcu_data structure. 2324 * Should the corresponding CPU come online in the future, then 2325 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2326 */ 2327 for_each_cpu(cpu, rcu_nocb_mask) { 2328 rdp = per_cpu_ptr(&rcu_data, cpu); 2329 if (rdp->cpu >= nl) { 2330 /* New GP kthread, set up for CBs & next GP. */ 2331 gotnocbs = true; 2332 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2333 rdp->nocb_gp_rdp = rdp; 2334 rdp_gp = rdp; 2335 if (dump_tree) { 2336 if (!firsttime) 2337 pr_cont("%s\n", gotnocbscbs 2338 ? "" : " (self only)"); 2339 gotnocbscbs = false; 2340 firsttime = false; 2341 pr_alert("%s: No-CB GP kthread CPU %d:", 2342 __func__, cpu); 2343 } 2344 } else { 2345 /* Another CB kthread, link to previous GP kthread. */ 2346 gotnocbscbs = true; 2347 rdp->nocb_gp_rdp = rdp_gp; 2348 rdp_prev->nocb_next_cb_rdp = rdp; 2349 if (dump_tree) 2350 pr_cont(" %d", cpu); 2351 } 2352 rdp_prev = rdp; 2353 } 2354 if (gotnocbs && dump_tree) 2355 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 2356 } 2357 2358 /* 2359 * Bind the current task to the offloaded CPUs. If there are no offloaded 2360 * CPUs, leave the task unbound. Splat if the bind attempt fails. 2361 */ 2362 void rcu_bind_current_to_nocb(void) 2363 { 2364 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) 2365 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 2366 } 2367 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 2368 2369 /* 2370 * Dump out nocb grace-period kthread state for the specified rcu_data 2371 * structure. 2372 */ 2373 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 2374 { 2375 struct rcu_node *rnp = rdp->mynode; 2376 2377 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n", 2378 rdp->cpu, 2379 "kK"[!!rdp->nocb_gp_kthread], 2380 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 2381 "dD"[!!rdp->nocb_defer_wakeup], 2382 "tT"[timer_pending(&rdp->nocb_timer)], 2383 "bB"[timer_pending(&rdp->nocb_bypass_timer)], 2384 "sS"[!!rdp->nocb_gp_sleep], 2385 ".W"[swait_active(&rdp->nocb_gp_wq)], 2386 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 2387 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 2388 ".B"[!!rdp->nocb_gp_bypass], 2389 ".G"[!!rdp->nocb_gp_gp], 2390 (long)rdp->nocb_gp_seq, 2391 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops)); 2392 } 2393 2394 /* Dump out nocb kthread state for the specified rcu_data structure. */ 2395 static void show_rcu_nocb_state(struct rcu_data *rdp) 2396 { 2397 struct rcu_segcblist *rsclp = &rdp->cblist; 2398 bool waslocked; 2399 bool wastimer; 2400 bool wassleep; 2401 2402 if (rdp->nocb_gp_rdp == rdp) 2403 show_rcu_nocb_gp_state(rdp); 2404 2405 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n", 2406 rdp->cpu, rdp->nocb_gp_rdp->cpu, 2407 "kK"[!!rdp->nocb_cb_kthread], 2408 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 2409 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 2410 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 2411 "sS"[!!rdp->nocb_cb_sleep], 2412 ".W"[swait_active(&rdp->nocb_cb_wq)], 2413 jiffies - rdp->nocb_bypass_first, 2414 jiffies - rdp->nocb_nobypass_last, 2415 rdp->nocb_nobypass_count, 2416 ".D"[rcu_segcblist_ready_cbs(rsclp)], 2417 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)], 2418 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)], 2419 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)], 2420 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 2421 rcu_segcblist_n_cbs(&rdp->cblist)); 2422 2423 /* It is OK for GP kthreads to have GP state. */ 2424 if (rdp->nocb_gp_rdp == rdp) 2425 return; 2426 2427 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 2428 wastimer = timer_pending(&rdp->nocb_timer); 2429 wassleep = swait_active(&rdp->nocb_gp_wq); 2430 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep && 2431 !waslocked && !wastimer && !wassleep) 2432 return; /* Nothing untowards. */ 2433 2434 pr_info(" !!! %c%c%c%c %c\n", 2435 "lL"[waslocked], 2436 "dD"[!!rdp->nocb_defer_wakeup], 2437 "tT"[wastimer], 2438 "sS"[!!rdp->nocb_gp_sleep], 2439 ".W"[wassleep]); 2440 } 2441 2442 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2443 2444 /* No ->nocb_lock to acquire. */ 2445 static void rcu_nocb_lock(struct rcu_data *rdp) 2446 { 2447 } 2448 2449 /* No ->nocb_lock to release. */ 2450 static void rcu_nocb_unlock(struct rcu_data *rdp) 2451 { 2452 } 2453 2454 /* No ->nocb_lock to release. */ 2455 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 2456 unsigned long flags) 2457 { 2458 local_irq_restore(flags); 2459 } 2460 2461 /* Lockdep check that ->cblist may be safely accessed. */ 2462 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 2463 { 2464 lockdep_assert_irqs_disabled(); 2465 } 2466 2467 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2468 { 2469 } 2470 2471 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2472 { 2473 return NULL; 2474 } 2475 2476 static void rcu_init_one_nocb(struct rcu_node *rnp) 2477 { 2478 } 2479 2480 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2481 unsigned long j) 2482 { 2483 return true; 2484 } 2485 2486 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2487 bool *was_alldone, unsigned long flags) 2488 { 2489 return false; 2490 } 2491 2492 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 2493 unsigned long flags) 2494 { 2495 WARN_ON_ONCE(1); /* Should be dead code! */ 2496 } 2497 2498 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2499 { 2500 } 2501 2502 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2503 { 2504 return false; 2505 } 2506 2507 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2508 { 2509 } 2510 2511 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2512 { 2513 } 2514 2515 static void __init rcu_spawn_nocb_kthreads(void) 2516 { 2517 } 2518 2519 static void show_rcu_nocb_state(struct rcu_data *rdp) 2520 { 2521 } 2522 2523 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2524 2525 /* 2526 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2527 * grace-period kthread will do force_quiescent_state() processing? 2528 * The idea is to avoid waking up RCU core processing on such a 2529 * CPU unless the grace period has extended for too long. 2530 * 2531 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2532 * CONFIG_RCU_NOCB_CPU CPUs. 2533 */ 2534 static bool rcu_nohz_full_cpu(void) 2535 { 2536 #ifdef CONFIG_NO_HZ_FULL 2537 if (tick_nohz_full_cpu(smp_processor_id()) && 2538 (!rcu_gp_in_progress() || 2539 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 2540 return true; 2541 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2542 return false; 2543 } 2544 2545 /* 2546 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2547 */ 2548 static void rcu_bind_gp_kthread(void) 2549 { 2550 if (!tick_nohz_full_enabled()) 2551 return; 2552 housekeeping_affine(current, HK_FLAG_RCU); 2553 } 2554 2555 /* Record the current task on dyntick-idle entry. */ 2556 static void rcu_dynticks_task_enter(void) 2557 { 2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2559 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2561 } 2562 2563 /* Record no current task on dyntick-idle exit. */ 2564 static void rcu_dynticks_task_exit(void) 2565 { 2566 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2567 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2568 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2569 } 2570