xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 15b7cc78)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #ifdef CONFIG_RCU_BOOST
34 
35 #include "../locking/rtmutex_common.h"
36 
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45 
46 #else /* #ifdef CONFIG_RCU_BOOST */
47 
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55 
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57 
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63 
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.
67  */
68 static void __init rcu_bootup_announce_oddness(void)
69 {
70 	if (IS_ENABLED(CONFIG_RCU_TRACE))
71 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75 		       RCU_FANOUT);
76 	if (rcu_fanout_exact)
77 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 	if (IS_ENABLED(CONFIG_PROVE_RCU))
81 		pr_info("\tRCU lockdep checking is enabled.\n");
82 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
83 		pr_info("\tRCU torture testing starts during boot.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 	if (nr_cpu_ids != NR_CPUS)
92 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 	if (IS_ENABLED(CONFIG_RCU_BOOST))
94 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96 
97 #ifdef CONFIG_PREEMPT_RCU
98 
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102 
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 			       bool wake);
105 
106 /*
107  * Tell them what RCU they are running.
108  */
109 static void __init rcu_bootup_announce(void)
110 {
111 	pr_info("Preemptible hierarchical RCU implementation.\n");
112 	rcu_bootup_announce_oddness();
113 }
114 
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS	0x8
117 #define RCU_EXP_TASKS	0x4
118 #define RCU_GP_BLKD	0x2
119 #define RCU_EXP_BLKD	0x1
120 
121 /*
122  * Queues a task preempted within an RCU-preempt read-side critical
123  * section into the appropriate location within the ->blkd_tasks list,
124  * depending on the states of any ongoing normal and expedited grace
125  * periods.  The ->gp_tasks pointer indicates which element the normal
126  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127  * indicates which element the expedited grace period is waiting on (again,
128  * NULL if none).  If a grace period is waiting on a given element in the
129  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
130  * adding a task to the tail of the list blocks any grace period that is
131  * already waiting on one of the elements.  In contrast, adding a task
132  * to the head of the list won't block any grace period that is already
133  * waiting on one of the elements.
134  *
135  * This queuing is imprecise, and can sometimes make an ongoing grace
136  * period wait for a task that is not strictly speaking blocking it.
137  * Given the choice, we needlessly block a normal grace period rather than
138  * blocking an expedited grace period.
139  *
140  * Note that an endless sequence of expedited grace periods still cannot
141  * indefinitely postpone a normal grace period.  Eventually, all of the
142  * fixed number of preempted tasks blocking the normal grace period that are
143  * not also blocking the expedited grace period will resume and complete
144  * their RCU read-side critical sections.  At that point, the ->gp_tasks
145  * pointer will equal the ->exp_tasks pointer, at which point the end of
146  * the corresponding expedited grace period will also be the end of the
147  * normal grace period.
148  */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 	__releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 	struct task_struct *t = current;
157 
158 	/*
159 	 * Decide where to queue the newly blocked task.  In theory,
160 	 * this could be an if-statement.  In practice, when I tried
161 	 * that, it was quite messy.
162 	 */
163 	switch (blkd_state) {
164 	case 0:
165 	case                RCU_EXP_TASKS:
166 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
167 	case RCU_GP_TASKS:
168 	case RCU_GP_TASKS + RCU_EXP_TASKS:
169 
170 		/*
171 		 * Blocking neither GP, or first task blocking the normal
172 		 * GP but not blocking the already-waiting expedited GP.
173 		 * Queue at the head of the list to avoid unnecessarily
174 		 * blocking the already-waiting GPs.
175 		 */
176 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 		break;
178 
179 	case                                              RCU_EXP_BLKD:
180 	case                                RCU_GP_BLKD:
181 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
182 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
183 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
184 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 
186 		/*
187 		 * First task arriving that blocks either GP, or first task
188 		 * arriving that blocks the expedited GP (with the normal
189 		 * GP already waiting), or a task arriving that blocks
190 		 * both GPs with both GPs already waiting.  Queue at the
191 		 * tail of the list to avoid any GP waiting on any of the
192 		 * already queued tasks that are not blocking it.
193 		 */
194 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 		break;
196 
197 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
198 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the expedited GP.
203 		 * The task either does not block the normal GP, or is the
204 		 * first task blocking the normal GP.  Queue just after
205 		 * the first task blocking the expedited GP.
206 		 */
207 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 		break;
209 
210 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
211 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212 
213 		/*
214 		 * Second or subsequent task blocking the normal GP.
215 		 * The task does not block the expedited GP. Queue just
216 		 * after the first task blocking the normal GP.
217 		 */
218 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 		break;
220 
221 	default:
222 
223 		/* Yet another exercise in excessive paranoia. */
224 		WARN_ON_ONCE(1);
225 		break;
226 	}
227 
228 	/*
229 	 * We have now queued the task.  If it was the first one to
230 	 * block either grace period, update the ->gp_tasks and/or
231 	 * ->exp_tasks pointers, respectively, to reference the newly
232 	 * blocked tasks.
233 	 */
234 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 		rnp->gp_tasks = &t->rcu_node_entry;
236 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 		rnp->exp_tasks = &t->rcu_node_entry;
238 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
239 
240 	/*
241 	 * Report the quiescent state for the expedited GP.  This expedited
242 	 * GP should not be able to end until we report, so there should be
243 	 * no need to check for a subsequent expedited GP.  (Though we are
244 	 * still in a quiescent state in any case.)
245 	 */
246 	if (blkd_state & RCU_EXP_BLKD &&
247 	    t->rcu_read_unlock_special.b.exp_need_qs) {
248 		t->rcu_read_unlock_special.b.exp_need_qs = false;
249 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 	} else {
251 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 	}
253 }
254 
255 /*
256  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
257  * that this just means that the task currently running on the CPU is
258  * not in a quiescent state.  There might be any number of tasks blocked
259  * while in an RCU read-side critical section.
260  *
261  * As with the other rcu_*_qs() functions, callers to this function
262  * must disable preemption.
263  */
264 static void rcu_preempt_qs(void)
265 {
266 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267 		trace_rcu_grace_period(TPS("rcu_preempt"),
268 				       __this_cpu_read(rcu_data_p->gpnum),
269 				       TPS("cpuqs"));
270 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 		current->rcu_read_unlock_special.b.need_qs = false;
273 	}
274 }
275 
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 static void rcu_preempt_note_context_switch(void)
290 {
291 	struct task_struct *t = current;
292 	struct rcu_data *rdp;
293 	struct rcu_node *rnp;
294 
295 	if (t->rcu_read_lock_nesting > 0 &&
296 	    !t->rcu_read_unlock_special.b.blocked) {
297 
298 		/* Possibly blocking in an RCU read-side critical section. */
299 		rdp = this_cpu_ptr(rcu_state_p->rda);
300 		rnp = rdp->mynode;
301 		raw_spin_lock_rcu_node(rnp);
302 		t->rcu_read_unlock_special.b.blocked = true;
303 		t->rcu_blocked_node = rnp;
304 
305 		/*
306 		 * Verify the CPU's sanity, trace the preemption, and
307 		 * then queue the task as required based on the states
308 		 * of any ongoing and expedited grace periods.
309 		 */
310 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 		trace_rcu_preempt_task(rdp->rsp->name,
313 				       t->pid,
314 				       (rnp->qsmask & rdp->grpmask)
315 				       ? rnp->gpnum
316 				       : rnp->gpnum + 1);
317 		rcu_preempt_ctxt_queue(rnp, rdp);
318 	} else if (t->rcu_read_lock_nesting < 0 &&
319 		   t->rcu_read_unlock_special.s) {
320 
321 		/*
322 		 * Complete exit from RCU read-side critical section on
323 		 * behalf of preempted instance of __rcu_read_unlock().
324 		 */
325 		rcu_read_unlock_special(t);
326 	}
327 
328 	/*
329 	 * Either we were not in an RCU read-side critical section to
330 	 * begin with, or we have now recorded that critical section
331 	 * globally.  Either way, we can now note a quiescent state
332 	 * for this CPU.  Again, if we were in an RCU read-side critical
333 	 * section, and if that critical section was blocking the current
334 	 * grace period, then the fact that the task has been enqueued
335 	 * means that we continue to block the current grace period.
336 	 */
337 	rcu_preempt_qs();
338 }
339 
340 /*
341  * Check for preempted RCU readers blocking the current grace period
342  * for the specified rcu_node structure.  If the caller needs a reliable
343  * answer, it must hold the rcu_node's ->lock.
344  */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347 	return rnp->gp_tasks != NULL;
348 }
349 
350 /*
351  * Advance a ->blkd_tasks-list pointer to the next entry, instead
352  * returning NULL if at the end of the list.
353  */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 					     struct rcu_node *rnp)
356 {
357 	struct list_head *np;
358 
359 	np = t->rcu_node_entry.next;
360 	if (np == &rnp->blkd_tasks)
361 		np = NULL;
362 	return np;
363 }
364 
365 /*
366  * Return true if the specified rcu_node structure has tasks that were
367  * preempted within an RCU read-side critical section.
368  */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371 	return !list_empty(&rnp->blkd_tasks);
372 }
373 
374 /*
375  * Handle special cases during rcu_read_unlock(), such as needing to
376  * notify RCU core processing or task having blocked during the RCU
377  * read-side critical section.
378  */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381 	bool empty_exp;
382 	bool empty_norm;
383 	bool empty_exp_now;
384 	unsigned long flags;
385 	struct list_head *np;
386 	bool drop_boost_mutex = false;
387 	struct rcu_data *rdp;
388 	struct rcu_node *rnp;
389 	union rcu_special special;
390 
391 	/* NMI handlers cannot block and cannot safely manipulate state. */
392 	if (in_nmi())
393 		return;
394 
395 	local_irq_save(flags);
396 
397 	/*
398 	 * If RCU core is waiting for this CPU to exit its critical section,
399 	 * report the fact that it has exited.  Because irqs are disabled,
400 	 * t->rcu_read_unlock_special cannot change.
401 	 */
402 	special = t->rcu_read_unlock_special;
403 	if (special.b.need_qs) {
404 		rcu_preempt_qs();
405 		t->rcu_read_unlock_special.b.need_qs = false;
406 		if (!t->rcu_read_unlock_special.s) {
407 			local_irq_restore(flags);
408 			return;
409 		}
410 	}
411 
412 	/*
413 	 * Respond to a request for an expedited grace period, but only if
414 	 * we were not preempted, meaning that we were running on the same
415 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
416 	 * would have been cleared at the time of the first preemption,
417 	 * and the quiescent state would be reported when we were dequeued.
418 	 */
419 	if (special.b.exp_need_qs) {
420 		WARN_ON_ONCE(special.b.blocked);
421 		t->rcu_read_unlock_special.b.exp_need_qs = false;
422 		rdp = this_cpu_ptr(rcu_state_p->rda);
423 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 		if (!t->rcu_read_unlock_special.s) {
425 			local_irq_restore(flags);
426 			return;
427 		}
428 	}
429 
430 	/* Hardware IRQ handlers cannot block, complain if they get here. */
431 	if (in_irq() || in_serving_softirq()) {
432 		lockdep_rcu_suspicious(__FILE__, __LINE__,
433 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 			 t->rcu_read_unlock_special.s,
436 			 t->rcu_read_unlock_special.b.blocked,
437 			 t->rcu_read_unlock_special.b.exp_need_qs,
438 			 t->rcu_read_unlock_special.b.need_qs);
439 		local_irq_restore(flags);
440 		return;
441 	}
442 
443 	/* Clean up if blocked during RCU read-side critical section. */
444 	if (special.b.blocked) {
445 		t->rcu_read_unlock_special.b.blocked = false;
446 
447 		/*
448 		 * Remove this task from the list it blocked on.  The task
449 		 * now remains queued on the rcu_node corresponding to the
450 		 * CPU it first blocked on, so there is no longer any need
451 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
452 		 */
453 		rnp = t->rcu_blocked_node;
454 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457 		empty_exp = sync_rcu_preempt_exp_done(rnp);
458 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 		np = rcu_next_node_entry(t, rnp);
460 		list_del_init(&t->rcu_node_entry);
461 		t->rcu_blocked_node = NULL;
462 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463 						rnp->gpnum, t->pid);
464 		if (&t->rcu_node_entry == rnp->gp_tasks)
465 			rnp->gp_tasks = np;
466 		if (&t->rcu_node_entry == rnp->exp_tasks)
467 			rnp->exp_tasks = np;
468 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 			if (&t->rcu_node_entry == rnp->boost_tasks)
470 				rnp->boost_tasks = np;
471 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 		}
474 
475 		/*
476 		 * If this was the last task on the current list, and if
477 		 * we aren't waiting on any CPUs, report the quiescent state.
478 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 		 * so we must take a snapshot of the expedited state.
480 		 */
481 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484 							 rnp->gpnum,
485 							 0, rnp->qsmask,
486 							 rnp->level,
487 							 rnp->grplo,
488 							 rnp->grphi,
489 							 !!rnp->gp_tasks);
490 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491 		} else {
492 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
493 		}
494 
495 		/* Unboost if we were boosted. */
496 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497 			rt_mutex_unlock(&rnp->boost_mtx);
498 
499 		/*
500 		 * If this was the last task on the expedited lists,
501 		 * then we need to report up the rcu_node hierarchy.
502 		 */
503 		if (!empty_exp && empty_exp_now)
504 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
505 	} else {
506 		local_irq_restore(flags);
507 	}
508 }
509 
510 /*
511  * Dump detailed information for all tasks blocking the current RCU
512  * grace period on the specified rcu_node structure.
513  */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516 	unsigned long flags;
517 	struct task_struct *t;
518 
519 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
520 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 		return;
523 	}
524 	t = list_entry(rnp->gp_tasks->prev,
525 		       struct task_struct, rcu_node_entry);
526 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 		sched_show_task(t);
528 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530 
531 /*
532  * Dump detailed information for all tasks blocking the current RCU
533  * grace period.
534  */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537 	struct rcu_node *rnp = rcu_get_root(rsp);
538 
539 	rcu_print_detail_task_stall_rnp(rnp);
540 	rcu_for_each_leaf_node(rsp, rnp)
541 		rcu_print_detail_task_stall_rnp(rnp);
542 }
543 
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 	       rnp->level, rnp->grplo, rnp->grphi);
548 }
549 
550 static void rcu_print_task_stall_end(void)
551 {
552 	pr_cont("\n");
553 }
554 
555 /*
556  * Scan the current list of tasks blocked within RCU read-side critical
557  * sections, printing out the tid of each.
558  */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561 	struct task_struct *t;
562 	int ndetected = 0;
563 
564 	if (!rcu_preempt_blocked_readers_cgp(rnp))
565 		return 0;
566 	rcu_print_task_stall_begin(rnp);
567 	t = list_entry(rnp->gp_tasks->prev,
568 		       struct task_struct, rcu_node_entry);
569 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570 		pr_cont(" P%d", t->pid);
571 		ndetected++;
572 	}
573 	rcu_print_task_stall_end();
574 	return ndetected;
575 }
576 
577 /*
578  * Scan the current list of tasks blocked within RCU read-side critical
579  * sections, printing out the tid of each that is blocking the current
580  * expedited grace period.
581  */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584 	struct task_struct *t;
585 	int ndetected = 0;
586 
587 	if (!rnp->exp_tasks)
588 		return 0;
589 	t = list_entry(rnp->exp_tasks->prev,
590 		       struct task_struct, rcu_node_entry);
591 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 		pr_cont(" P%d", t->pid);
593 		ndetected++;
594 	}
595 	return ndetected;
596 }
597 
598 /*
599  * Check that the list of blocked tasks for the newly completed grace
600  * period is in fact empty.  It is a serious bug to complete a grace
601  * period that still has RCU readers blocked!  This function must be
602  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603  * must be held by the caller.
604  *
605  * Also, if there are blocked tasks on the list, they automatically
606  * block the newly created grace period, so set up ->gp_tasks accordingly.
607  */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611 	if (rcu_preempt_has_tasks(rnp))
612 		rnp->gp_tasks = rnp->blkd_tasks.next;
613 	WARN_ON_ONCE(rnp->qsmask);
614 }
615 
616 /*
617  * Check for a quiescent state from the current CPU.  When a task blocks,
618  * the task is recorded in the corresponding CPU's rcu_node structure,
619  * which is checked elsewhere.
620  *
621  * Caller must disable hard irqs.
622  */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 	struct task_struct *t = current;
626 
627 	if (t->rcu_read_lock_nesting == 0) {
628 		rcu_preempt_qs();
629 		return;
630 	}
631 	if (t->rcu_read_lock_nesting > 0 &&
632 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
633 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634 		t->rcu_read_unlock_special.b.need_qs = true;
635 }
636 
637 #ifdef CONFIG_RCU_BOOST
638 
639 static void rcu_preempt_do_callbacks(void)
640 {
641 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643 
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645 
646 /*
647  * Queue a preemptible-RCU callback for invocation after a grace period.
648  */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651 	__call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654 
655 /**
656  * synchronize_rcu - wait until a grace period has elapsed.
657  *
658  * Control will return to the caller some time after a full grace
659  * period has elapsed, in other words after all currently executing RCU
660  * read-side critical sections have completed.  Note, however, that
661  * upon return from synchronize_rcu(), the caller might well be executing
662  * concurrently with new RCU read-side critical sections that began while
663  * synchronize_rcu() was waiting.  RCU read-side critical sections are
664  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665  *
666  * See the description of synchronize_sched() for more detailed information
667  * on memory ordering guarantees.
668  */
669 void synchronize_rcu(void)
670 {
671 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 			 lock_is_held(&rcu_lock_map) ||
673 			 lock_is_held(&rcu_sched_lock_map),
674 			 "Illegal synchronize_rcu() in RCU read-side critical section");
675 	if (!rcu_scheduler_active)
676 		return;
677 	if (rcu_gp_is_expedited())
678 		synchronize_rcu_expedited();
679 	else
680 		wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683 
684 /*
685  * Remote handler for smp_call_function_single().  If there is an
686  * RCU read-side critical section in effect, request that the
687  * next rcu_read_unlock() record the quiescent state up the
688  * ->expmask fields in the rcu_node tree.  Otherwise, immediately
689  * report the quiescent state.
690  */
691 static void sync_rcu_exp_handler(void *info)
692 {
693 	struct rcu_data *rdp;
694 	struct rcu_state *rsp = info;
695 	struct task_struct *t = current;
696 
697 	/*
698 	 * Within an RCU read-side critical section, request that the next
699 	 * rcu_read_unlock() report.  Unless this RCU read-side critical
700 	 * section has already blocked, in which case it is already set
701 	 * up for the expedited grace period to wait on it.
702 	 */
703 	if (t->rcu_read_lock_nesting > 0 &&
704 	    !t->rcu_read_unlock_special.b.blocked) {
705 		t->rcu_read_unlock_special.b.exp_need_qs = true;
706 		return;
707 	}
708 
709 	/*
710 	 * We are either exiting an RCU read-side critical section (negative
711 	 * values of t->rcu_read_lock_nesting) or are not in one at all
712 	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
713 	 * read-side critical section that blocked before this expedited
714 	 * grace period started.  Either way, we can immediately report
715 	 * the quiescent state.
716 	 */
717 	rdp = this_cpu_ptr(rsp->rda);
718 	rcu_report_exp_rdp(rsp, rdp, true);
719 }
720 
721 /**
722  * synchronize_rcu_expedited - Brute-force RCU grace period
723  *
724  * Wait for an RCU-preempt grace period, but expedite it.  The basic
725  * idea is to IPI all non-idle non-nohz online CPUs.  The IPI handler
726  * checks whether the CPU is in an RCU-preempt critical section, and
727  * if so, it sets a flag that causes the outermost rcu_read_unlock()
728  * to report the quiescent state.  On the other hand, if the CPU is
729  * not in an RCU read-side critical section, the IPI handler reports
730  * the quiescent state immediately.
731  *
732  * Although this is a greate improvement over previous expedited
733  * implementations, it is still unfriendly to real-time workloads, so is
734  * thus not recommended for any sort of common-case code.  In fact, if
735  * you are using synchronize_rcu_expedited() in a loop, please restructure
736  * your code to batch your updates, and then Use a single synchronize_rcu()
737  * instead.
738  */
739 void synchronize_rcu_expedited(void)
740 {
741 	struct rcu_state *rsp = rcu_state_p;
742 	unsigned long s;
743 
744 	/* If expedited grace periods are prohibited, fall back to normal. */
745 	if (rcu_gp_is_normal()) {
746 		wait_rcu_gp(call_rcu);
747 		return;
748 	}
749 
750 	s = rcu_exp_gp_seq_snap(rsp);
751 	if (exp_funnel_lock(rsp, s))
752 		return;  /* Someone else did our work for us. */
753 
754 	/* Initialize the rcu_node tree in preparation for the wait. */
755 	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
756 
757 	/* Wait for ->blkd_tasks lists to drain, then wake everyone up. */
758 	rcu_exp_wait_wake(rsp, s);
759 }
760 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
761 
762 /**
763  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
764  *
765  * Note that this primitive does not necessarily wait for an RCU grace period
766  * to complete.  For example, if there are no RCU callbacks queued anywhere
767  * in the system, then rcu_barrier() is within its rights to return
768  * immediately, without waiting for anything, much less an RCU grace period.
769  */
770 void rcu_barrier(void)
771 {
772 	_rcu_barrier(rcu_state_p);
773 }
774 EXPORT_SYMBOL_GPL(rcu_barrier);
775 
776 /*
777  * Initialize preemptible RCU's state structures.
778  */
779 static void __init __rcu_init_preempt(void)
780 {
781 	rcu_init_one(rcu_state_p);
782 }
783 
784 /*
785  * Check for a task exiting while in a preemptible-RCU read-side
786  * critical section, clean up if so.  No need to issue warnings,
787  * as debug_check_no_locks_held() already does this if lockdep
788  * is enabled.
789  */
790 void exit_rcu(void)
791 {
792 	struct task_struct *t = current;
793 
794 	if (likely(list_empty(&current->rcu_node_entry)))
795 		return;
796 	t->rcu_read_lock_nesting = 1;
797 	barrier();
798 	t->rcu_read_unlock_special.b.blocked = true;
799 	__rcu_read_unlock();
800 }
801 
802 #else /* #ifdef CONFIG_PREEMPT_RCU */
803 
804 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
805 
806 /*
807  * Tell them what RCU they are running.
808  */
809 static void __init rcu_bootup_announce(void)
810 {
811 	pr_info("Hierarchical RCU implementation.\n");
812 	rcu_bootup_announce_oddness();
813 }
814 
815 /*
816  * Because preemptible RCU does not exist, we never have to check for
817  * CPUs being in quiescent states.
818  */
819 static void rcu_preempt_note_context_switch(void)
820 {
821 }
822 
823 /*
824  * Because preemptible RCU does not exist, there are never any preempted
825  * RCU readers.
826  */
827 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
828 {
829 	return 0;
830 }
831 
832 /*
833  * Because there is no preemptible RCU, there can be no readers blocked.
834  */
835 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
836 {
837 	return false;
838 }
839 
840 /*
841  * Because preemptible RCU does not exist, we never have to check for
842  * tasks blocked within RCU read-side critical sections.
843  */
844 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
845 {
846 }
847 
848 /*
849  * Because preemptible RCU does not exist, we never have to check for
850  * tasks blocked within RCU read-side critical sections.
851  */
852 static int rcu_print_task_stall(struct rcu_node *rnp)
853 {
854 	return 0;
855 }
856 
857 /*
858  * Because preemptible RCU does not exist, we never have to check for
859  * tasks blocked within RCU read-side critical sections that are
860  * blocking the current expedited grace period.
861  */
862 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
863 {
864 	return 0;
865 }
866 
867 /*
868  * Because there is no preemptible RCU, there can be no readers blocked,
869  * so there is no need to check for blocked tasks.  So check only for
870  * bogus qsmask values.
871  */
872 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
873 {
874 	WARN_ON_ONCE(rnp->qsmask);
875 }
876 
877 /*
878  * Because preemptible RCU does not exist, it never has any callbacks
879  * to check.
880  */
881 static void rcu_preempt_check_callbacks(void)
882 {
883 }
884 
885 /*
886  * Wait for an rcu-preempt grace period, but make it happen quickly.
887  * But because preemptible RCU does not exist, map to rcu-sched.
888  */
889 void synchronize_rcu_expedited(void)
890 {
891 	synchronize_sched_expedited();
892 }
893 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
894 
895 /*
896  * Because preemptible RCU does not exist, rcu_barrier() is just
897  * another name for rcu_barrier_sched().
898  */
899 void rcu_barrier(void)
900 {
901 	rcu_barrier_sched();
902 }
903 EXPORT_SYMBOL_GPL(rcu_barrier);
904 
905 /*
906  * Because preemptible RCU does not exist, it need not be initialized.
907  */
908 static void __init __rcu_init_preempt(void)
909 {
910 }
911 
912 /*
913  * Because preemptible RCU does not exist, tasks cannot possibly exit
914  * while in preemptible RCU read-side critical sections.
915  */
916 void exit_rcu(void)
917 {
918 }
919 
920 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
921 
922 #ifdef CONFIG_RCU_BOOST
923 
924 #include "../locking/rtmutex_common.h"
925 
926 #ifdef CONFIG_RCU_TRACE
927 
928 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
929 {
930 	if (!rcu_preempt_has_tasks(rnp))
931 		rnp->n_balk_blkd_tasks++;
932 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
933 		rnp->n_balk_exp_gp_tasks++;
934 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
935 		rnp->n_balk_boost_tasks++;
936 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
937 		rnp->n_balk_notblocked++;
938 	else if (rnp->gp_tasks != NULL &&
939 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
940 		rnp->n_balk_notyet++;
941 	else
942 		rnp->n_balk_nos++;
943 }
944 
945 #else /* #ifdef CONFIG_RCU_TRACE */
946 
947 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
948 {
949 }
950 
951 #endif /* #else #ifdef CONFIG_RCU_TRACE */
952 
953 static void rcu_wake_cond(struct task_struct *t, int status)
954 {
955 	/*
956 	 * If the thread is yielding, only wake it when this
957 	 * is invoked from idle
958 	 */
959 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
960 		wake_up_process(t);
961 }
962 
963 /*
964  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
965  * or ->boost_tasks, advancing the pointer to the next task in the
966  * ->blkd_tasks list.
967  *
968  * Note that irqs must be enabled: boosting the task can block.
969  * Returns 1 if there are more tasks needing to be boosted.
970  */
971 static int rcu_boost(struct rcu_node *rnp)
972 {
973 	unsigned long flags;
974 	struct task_struct *t;
975 	struct list_head *tb;
976 
977 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
978 	    READ_ONCE(rnp->boost_tasks) == NULL)
979 		return 0;  /* Nothing left to boost. */
980 
981 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
982 
983 	/*
984 	 * Recheck under the lock: all tasks in need of boosting
985 	 * might exit their RCU read-side critical sections on their own.
986 	 */
987 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
988 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
989 		return 0;
990 	}
991 
992 	/*
993 	 * Preferentially boost tasks blocking expedited grace periods.
994 	 * This cannot starve the normal grace periods because a second
995 	 * expedited grace period must boost all blocked tasks, including
996 	 * those blocking the pre-existing normal grace period.
997 	 */
998 	if (rnp->exp_tasks != NULL) {
999 		tb = rnp->exp_tasks;
1000 		rnp->n_exp_boosts++;
1001 	} else {
1002 		tb = rnp->boost_tasks;
1003 		rnp->n_normal_boosts++;
1004 	}
1005 	rnp->n_tasks_boosted++;
1006 
1007 	/*
1008 	 * We boost task t by manufacturing an rt_mutex that appears to
1009 	 * be held by task t.  We leave a pointer to that rt_mutex where
1010 	 * task t can find it, and task t will release the mutex when it
1011 	 * exits its outermost RCU read-side critical section.  Then
1012 	 * simply acquiring this artificial rt_mutex will boost task
1013 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1014 	 *
1015 	 * Note that task t must acquire rnp->lock to remove itself from
1016 	 * the ->blkd_tasks list, which it will do from exit() if from
1017 	 * nowhere else.  We therefore are guaranteed that task t will
1018 	 * stay around at least until we drop rnp->lock.  Note that
1019 	 * rnp->lock also resolves races between our priority boosting
1020 	 * and task t's exiting its outermost RCU read-side critical
1021 	 * section.
1022 	 */
1023 	t = container_of(tb, struct task_struct, rcu_node_entry);
1024 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1025 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1026 	/* Lock only for side effect: boosts task t's priority. */
1027 	rt_mutex_lock(&rnp->boost_mtx);
1028 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1029 
1030 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1031 	       READ_ONCE(rnp->boost_tasks) != NULL;
1032 }
1033 
1034 /*
1035  * Priority-boosting kthread, one per leaf rcu_node.
1036  */
1037 static int rcu_boost_kthread(void *arg)
1038 {
1039 	struct rcu_node *rnp = (struct rcu_node *)arg;
1040 	int spincnt = 0;
1041 	int more2boost;
1042 
1043 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1044 	for (;;) {
1045 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1046 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1047 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1048 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1049 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1050 		more2boost = rcu_boost(rnp);
1051 		if (more2boost)
1052 			spincnt++;
1053 		else
1054 			spincnt = 0;
1055 		if (spincnt > 10) {
1056 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1057 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1058 			schedule_timeout_interruptible(2);
1059 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1060 			spincnt = 0;
1061 		}
1062 	}
1063 	/* NOTREACHED */
1064 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1065 	return 0;
1066 }
1067 
1068 /*
1069  * Check to see if it is time to start boosting RCU readers that are
1070  * blocking the current grace period, and, if so, tell the per-rcu_node
1071  * kthread to start boosting them.  If there is an expedited grace
1072  * period in progress, it is always time to boost.
1073  *
1074  * The caller must hold rnp->lock, which this function releases.
1075  * The ->boost_kthread_task is immortal, so we don't need to worry
1076  * about it going away.
1077  */
1078 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1079 	__releases(rnp->lock)
1080 {
1081 	struct task_struct *t;
1082 
1083 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1084 		rnp->n_balk_exp_gp_tasks++;
1085 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086 		return;
1087 	}
1088 	if (rnp->exp_tasks != NULL ||
1089 	    (rnp->gp_tasks != NULL &&
1090 	     rnp->boost_tasks == NULL &&
1091 	     rnp->qsmask == 0 &&
1092 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1093 		if (rnp->exp_tasks == NULL)
1094 			rnp->boost_tasks = rnp->gp_tasks;
1095 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1096 		t = rnp->boost_kthread_task;
1097 		if (t)
1098 			rcu_wake_cond(t, rnp->boost_kthread_status);
1099 	} else {
1100 		rcu_initiate_boost_trace(rnp);
1101 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1102 	}
1103 }
1104 
1105 /*
1106  * Wake up the per-CPU kthread to invoke RCU callbacks.
1107  */
1108 static void invoke_rcu_callbacks_kthread(void)
1109 {
1110 	unsigned long flags;
1111 
1112 	local_irq_save(flags);
1113 	__this_cpu_write(rcu_cpu_has_work, 1);
1114 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1115 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1116 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1117 			      __this_cpu_read(rcu_cpu_kthread_status));
1118 	}
1119 	local_irq_restore(flags);
1120 }
1121 
1122 /*
1123  * Is the current CPU running the RCU-callbacks kthread?
1124  * Caller must have preemption disabled.
1125  */
1126 static bool rcu_is_callbacks_kthread(void)
1127 {
1128 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1129 }
1130 
1131 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1132 
1133 /*
1134  * Do priority-boost accounting for the start of a new grace period.
1135  */
1136 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1137 {
1138 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1139 }
1140 
1141 /*
1142  * Create an RCU-boost kthread for the specified node if one does not
1143  * already exist.  We only create this kthread for preemptible RCU.
1144  * Returns zero if all is well, a negated errno otherwise.
1145  */
1146 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1147 				       struct rcu_node *rnp)
1148 {
1149 	int rnp_index = rnp - &rsp->node[0];
1150 	unsigned long flags;
1151 	struct sched_param sp;
1152 	struct task_struct *t;
1153 
1154 	if (rcu_state_p != rsp)
1155 		return 0;
1156 
1157 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1158 		return 0;
1159 
1160 	rsp->boost = 1;
1161 	if (rnp->boost_kthread_task != NULL)
1162 		return 0;
1163 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1164 			   "rcub/%d", rnp_index);
1165 	if (IS_ERR(t))
1166 		return PTR_ERR(t);
1167 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1168 	rnp->boost_kthread_task = t;
1169 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1170 	sp.sched_priority = kthread_prio;
1171 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1172 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1173 	return 0;
1174 }
1175 
1176 static void rcu_kthread_do_work(void)
1177 {
1178 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1179 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1180 	rcu_preempt_do_callbacks();
1181 }
1182 
1183 static void rcu_cpu_kthread_setup(unsigned int cpu)
1184 {
1185 	struct sched_param sp;
1186 
1187 	sp.sched_priority = kthread_prio;
1188 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1189 }
1190 
1191 static void rcu_cpu_kthread_park(unsigned int cpu)
1192 {
1193 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1194 }
1195 
1196 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1197 {
1198 	return __this_cpu_read(rcu_cpu_has_work);
1199 }
1200 
1201 /*
1202  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1203  * RCU softirq used in flavors and configurations of RCU that do not
1204  * support RCU priority boosting.
1205  */
1206 static void rcu_cpu_kthread(unsigned int cpu)
1207 {
1208 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1209 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1210 	int spincnt;
1211 
1212 	for (spincnt = 0; spincnt < 10; spincnt++) {
1213 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1214 		local_bh_disable();
1215 		*statusp = RCU_KTHREAD_RUNNING;
1216 		this_cpu_inc(rcu_cpu_kthread_loops);
1217 		local_irq_disable();
1218 		work = *workp;
1219 		*workp = 0;
1220 		local_irq_enable();
1221 		if (work)
1222 			rcu_kthread_do_work();
1223 		local_bh_enable();
1224 		if (*workp == 0) {
1225 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1226 			*statusp = RCU_KTHREAD_WAITING;
1227 			return;
1228 		}
1229 	}
1230 	*statusp = RCU_KTHREAD_YIELDING;
1231 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1232 	schedule_timeout_interruptible(2);
1233 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1234 	*statusp = RCU_KTHREAD_WAITING;
1235 }
1236 
1237 /*
1238  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1239  * served by the rcu_node in question.  The CPU hotplug lock is still
1240  * held, so the value of rnp->qsmaskinit will be stable.
1241  *
1242  * We don't include outgoingcpu in the affinity set, use -1 if there is
1243  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1244  * this function allows the kthread to execute on any CPU.
1245  */
1246 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1247 {
1248 	struct task_struct *t = rnp->boost_kthread_task;
1249 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1250 	cpumask_var_t cm;
1251 	int cpu;
1252 
1253 	if (!t)
1254 		return;
1255 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1256 		return;
1257 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1258 		if ((mask & 0x1) && cpu != outgoingcpu)
1259 			cpumask_set_cpu(cpu, cm);
1260 	if (cpumask_weight(cm) == 0)
1261 		cpumask_setall(cm);
1262 	set_cpus_allowed_ptr(t, cm);
1263 	free_cpumask_var(cm);
1264 }
1265 
1266 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1267 	.store			= &rcu_cpu_kthread_task,
1268 	.thread_should_run	= rcu_cpu_kthread_should_run,
1269 	.thread_fn		= rcu_cpu_kthread,
1270 	.thread_comm		= "rcuc/%u",
1271 	.setup			= rcu_cpu_kthread_setup,
1272 	.park			= rcu_cpu_kthread_park,
1273 };
1274 
1275 /*
1276  * Spawn boost kthreads -- called as soon as the scheduler is running.
1277  */
1278 static void __init rcu_spawn_boost_kthreads(void)
1279 {
1280 	struct rcu_node *rnp;
1281 	int cpu;
1282 
1283 	for_each_possible_cpu(cpu)
1284 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1285 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1286 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1287 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1288 }
1289 
1290 static void rcu_prepare_kthreads(int cpu)
1291 {
1292 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1293 	struct rcu_node *rnp = rdp->mynode;
1294 
1295 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1296 	if (rcu_scheduler_fully_active)
1297 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1298 }
1299 
1300 #else /* #ifdef CONFIG_RCU_BOOST */
1301 
1302 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1303 	__releases(rnp->lock)
1304 {
1305 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1306 }
1307 
1308 static void invoke_rcu_callbacks_kthread(void)
1309 {
1310 	WARN_ON_ONCE(1);
1311 }
1312 
1313 static bool rcu_is_callbacks_kthread(void)
1314 {
1315 	return false;
1316 }
1317 
1318 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1319 {
1320 }
1321 
1322 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1323 {
1324 }
1325 
1326 static void __init rcu_spawn_boost_kthreads(void)
1327 {
1328 }
1329 
1330 static void rcu_prepare_kthreads(int cpu)
1331 {
1332 }
1333 
1334 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1335 
1336 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1337 
1338 /*
1339  * Check to see if any future RCU-related work will need to be done
1340  * by the current CPU, even if none need be done immediately, returning
1341  * 1 if so.  This function is part of the RCU implementation; it is -not-
1342  * an exported member of the RCU API.
1343  *
1344  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1345  * any flavor of RCU.
1346  */
1347 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1348 {
1349 	*nextevt = KTIME_MAX;
1350 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1351 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1352 }
1353 
1354 /*
1355  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1356  * after it.
1357  */
1358 static void rcu_cleanup_after_idle(void)
1359 {
1360 }
1361 
1362 /*
1363  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1364  * is nothing.
1365  */
1366 static void rcu_prepare_for_idle(void)
1367 {
1368 }
1369 
1370 /*
1371  * Don't bother keeping a running count of the number of RCU callbacks
1372  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1373  */
1374 static void rcu_idle_count_callbacks_posted(void)
1375 {
1376 }
1377 
1378 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1379 
1380 /*
1381  * This code is invoked when a CPU goes idle, at which point we want
1382  * to have the CPU do everything required for RCU so that it can enter
1383  * the energy-efficient dyntick-idle mode.  This is handled by a
1384  * state machine implemented by rcu_prepare_for_idle() below.
1385  *
1386  * The following three proprocessor symbols control this state machine:
1387  *
1388  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1389  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1390  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1391  *	benchmarkers who might otherwise be tempted to set this to a large
1392  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1393  *	system.  And if you are -that- concerned about energy efficiency,
1394  *	just power the system down and be done with it!
1395  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1396  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1397  *	callbacks pending.  Setting this too high can OOM your system.
1398  *
1399  * The values below work well in practice.  If future workloads require
1400  * adjustment, they can be converted into kernel config parameters, though
1401  * making the state machine smarter might be a better option.
1402  */
1403 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1404 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1405 
1406 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1407 module_param(rcu_idle_gp_delay, int, 0644);
1408 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1409 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1410 
1411 /*
1412  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1413  * only if it has been awhile since the last time we did so.  Afterwards,
1414  * if there are any callbacks ready for immediate invocation, return true.
1415  */
1416 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1417 {
1418 	bool cbs_ready = false;
1419 	struct rcu_data *rdp;
1420 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421 	struct rcu_node *rnp;
1422 	struct rcu_state *rsp;
1423 
1424 	/* Exit early if we advanced recently. */
1425 	if (jiffies == rdtp->last_advance_all)
1426 		return false;
1427 	rdtp->last_advance_all = jiffies;
1428 
1429 	for_each_rcu_flavor(rsp) {
1430 		rdp = this_cpu_ptr(rsp->rda);
1431 		rnp = rdp->mynode;
1432 
1433 		/*
1434 		 * Don't bother checking unless a grace period has
1435 		 * completed since we last checked and there are
1436 		 * callbacks not yet ready to invoke.
1437 		 */
1438 		if ((rdp->completed != rnp->completed ||
1439 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1440 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1441 			note_gp_changes(rsp, rdp);
1442 
1443 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1444 			cbs_ready = true;
1445 	}
1446 	return cbs_ready;
1447 }
1448 
1449 /*
1450  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1451  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1452  * caller to set the timeout based on whether or not there are non-lazy
1453  * callbacks.
1454  *
1455  * The caller must have disabled interrupts.
1456  */
1457 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1458 {
1459 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1460 	unsigned long dj;
1461 
1462 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1463 		*nextevt = KTIME_MAX;
1464 		return 0;
1465 	}
1466 
1467 	/* Snapshot to detect later posting of non-lazy callback. */
1468 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1469 
1470 	/* If no callbacks, RCU doesn't need the CPU. */
1471 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1472 		*nextevt = KTIME_MAX;
1473 		return 0;
1474 	}
1475 
1476 	/* Attempt to advance callbacks. */
1477 	if (rcu_try_advance_all_cbs()) {
1478 		/* Some ready to invoke, so initiate later invocation. */
1479 		invoke_rcu_core();
1480 		return 1;
1481 	}
1482 	rdtp->last_accelerate = jiffies;
1483 
1484 	/* Request timer delay depending on laziness, and round. */
1485 	if (!rdtp->all_lazy) {
1486 		dj = round_up(rcu_idle_gp_delay + jiffies,
1487 			       rcu_idle_gp_delay) - jiffies;
1488 	} else {
1489 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1490 	}
1491 	*nextevt = basemono + dj * TICK_NSEC;
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Prepare a CPU for idle from an RCU perspective.  The first major task
1497  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1498  * The second major task is to check to see if a non-lazy callback has
1499  * arrived at a CPU that previously had only lazy callbacks.  The third
1500  * major task is to accelerate (that is, assign grace-period numbers to)
1501  * any recently arrived callbacks.
1502  *
1503  * The caller must have disabled interrupts.
1504  */
1505 static void rcu_prepare_for_idle(void)
1506 {
1507 	bool needwake;
1508 	struct rcu_data *rdp;
1509 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1510 	struct rcu_node *rnp;
1511 	struct rcu_state *rsp;
1512 	int tne;
1513 
1514 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1515 	    rcu_is_nocb_cpu(smp_processor_id()))
1516 		return;
1517 
1518 	/* Handle nohz enablement switches conservatively. */
1519 	tne = READ_ONCE(tick_nohz_active);
1520 	if (tne != rdtp->tick_nohz_enabled_snap) {
1521 		if (rcu_cpu_has_callbacks(NULL))
1522 			invoke_rcu_core(); /* force nohz to see update. */
1523 		rdtp->tick_nohz_enabled_snap = tne;
1524 		return;
1525 	}
1526 	if (!tne)
1527 		return;
1528 
1529 	/*
1530 	 * If a non-lazy callback arrived at a CPU having only lazy
1531 	 * callbacks, invoke RCU core for the side-effect of recalculating
1532 	 * idle duration on re-entry to idle.
1533 	 */
1534 	if (rdtp->all_lazy &&
1535 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1536 		rdtp->all_lazy = false;
1537 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1538 		invoke_rcu_core();
1539 		return;
1540 	}
1541 
1542 	/*
1543 	 * If we have not yet accelerated this jiffy, accelerate all
1544 	 * callbacks on this CPU.
1545 	 */
1546 	if (rdtp->last_accelerate == jiffies)
1547 		return;
1548 	rdtp->last_accelerate = jiffies;
1549 	for_each_rcu_flavor(rsp) {
1550 		rdp = this_cpu_ptr(rsp->rda);
1551 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1552 			continue;
1553 		rnp = rdp->mynode;
1554 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1555 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1556 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1557 		if (needwake)
1558 			rcu_gp_kthread_wake(rsp);
1559 	}
1560 }
1561 
1562 /*
1563  * Clean up for exit from idle.  Attempt to advance callbacks based on
1564  * any grace periods that elapsed while the CPU was idle, and if any
1565  * callbacks are now ready to invoke, initiate invocation.
1566  */
1567 static void rcu_cleanup_after_idle(void)
1568 {
1569 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1570 	    rcu_is_nocb_cpu(smp_processor_id()))
1571 		return;
1572 	if (rcu_try_advance_all_cbs())
1573 		invoke_rcu_core();
1574 }
1575 
1576 /*
1577  * Keep a running count of the number of non-lazy callbacks posted
1578  * on this CPU.  This running counter (which is never decremented) allows
1579  * rcu_prepare_for_idle() to detect when something out of the idle loop
1580  * posts a callback, even if an equal number of callbacks are invoked.
1581  * Of course, callbacks should only be posted from within a trace event
1582  * designed to be called from idle or from within RCU_NONIDLE().
1583  */
1584 static void rcu_idle_count_callbacks_posted(void)
1585 {
1586 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1587 }
1588 
1589 /*
1590  * Data for flushing lazy RCU callbacks at OOM time.
1591  */
1592 static atomic_t oom_callback_count;
1593 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1594 
1595 /*
1596  * RCU OOM callback -- decrement the outstanding count and deliver the
1597  * wake-up if we are the last one.
1598  */
1599 static void rcu_oom_callback(struct rcu_head *rhp)
1600 {
1601 	if (atomic_dec_and_test(&oom_callback_count))
1602 		wake_up(&oom_callback_wq);
1603 }
1604 
1605 /*
1606  * Post an rcu_oom_notify callback on the current CPU if it has at
1607  * least one lazy callback.  This will unnecessarily post callbacks
1608  * to CPUs that already have a non-lazy callback at the end of their
1609  * callback list, but this is an infrequent operation, so accept some
1610  * extra overhead to keep things simple.
1611  */
1612 static void rcu_oom_notify_cpu(void *unused)
1613 {
1614 	struct rcu_state *rsp;
1615 	struct rcu_data *rdp;
1616 
1617 	for_each_rcu_flavor(rsp) {
1618 		rdp = raw_cpu_ptr(rsp->rda);
1619 		if (rdp->qlen_lazy != 0) {
1620 			atomic_inc(&oom_callback_count);
1621 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1622 		}
1623 	}
1624 }
1625 
1626 /*
1627  * If low on memory, ensure that each CPU has a non-lazy callback.
1628  * This will wake up CPUs that have only lazy callbacks, in turn
1629  * ensuring that they free up the corresponding memory in a timely manner.
1630  * Because an uncertain amount of memory will be freed in some uncertain
1631  * timeframe, we do not claim to have freed anything.
1632  */
1633 static int rcu_oom_notify(struct notifier_block *self,
1634 			  unsigned long notused, void *nfreed)
1635 {
1636 	int cpu;
1637 
1638 	/* Wait for callbacks from earlier instance to complete. */
1639 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1640 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1641 
1642 	/*
1643 	 * Prevent premature wakeup: ensure that all increments happen
1644 	 * before there is a chance of the counter reaching zero.
1645 	 */
1646 	atomic_set(&oom_callback_count, 1);
1647 
1648 	for_each_online_cpu(cpu) {
1649 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1650 		cond_resched_rcu_qs();
1651 	}
1652 
1653 	/* Unconditionally decrement: no need to wake ourselves up. */
1654 	atomic_dec(&oom_callback_count);
1655 
1656 	return NOTIFY_OK;
1657 }
1658 
1659 static struct notifier_block rcu_oom_nb = {
1660 	.notifier_call = rcu_oom_notify
1661 };
1662 
1663 static int __init rcu_register_oom_notifier(void)
1664 {
1665 	register_oom_notifier(&rcu_oom_nb);
1666 	return 0;
1667 }
1668 early_initcall(rcu_register_oom_notifier);
1669 
1670 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1671 
1672 #ifdef CONFIG_RCU_FAST_NO_HZ
1673 
1674 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1675 {
1676 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1677 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1678 
1679 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1680 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1681 		ulong2long(nlpd),
1682 		rdtp->all_lazy ? 'L' : '.',
1683 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1684 }
1685 
1686 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1687 
1688 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1689 {
1690 	*cp = '\0';
1691 }
1692 
1693 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1694 
1695 /* Initiate the stall-info list. */
1696 static void print_cpu_stall_info_begin(void)
1697 {
1698 	pr_cont("\n");
1699 }
1700 
1701 /*
1702  * Print out diagnostic information for the specified stalled CPU.
1703  *
1704  * If the specified CPU is aware of the current RCU grace period
1705  * (flavor specified by rsp), then print the number of scheduling
1706  * clock interrupts the CPU has taken during the time that it has
1707  * been aware.  Otherwise, print the number of RCU grace periods
1708  * that this CPU is ignorant of, for example, "1" if the CPU was
1709  * aware of the previous grace period.
1710  *
1711  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1712  */
1713 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1714 {
1715 	char fast_no_hz[72];
1716 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1717 	struct rcu_dynticks *rdtp = rdp->dynticks;
1718 	char *ticks_title;
1719 	unsigned long ticks_value;
1720 
1721 	if (rsp->gpnum == rdp->gpnum) {
1722 		ticks_title = "ticks this GP";
1723 		ticks_value = rdp->ticks_this_gp;
1724 	} else {
1725 		ticks_title = "GPs behind";
1726 		ticks_value = rsp->gpnum - rdp->gpnum;
1727 	}
1728 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1729 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1730 	       cpu,
1731 	       "O."[!!cpu_online(cpu)],
1732 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1733 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1734 	       ticks_value, ticks_title,
1735 	       atomic_read(&rdtp->dynticks) & 0xfff,
1736 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1737 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1738 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1739 	       fast_no_hz);
1740 }
1741 
1742 /* Terminate the stall-info list. */
1743 static void print_cpu_stall_info_end(void)
1744 {
1745 	pr_err("\t");
1746 }
1747 
1748 /* Zero ->ticks_this_gp for all flavors of RCU. */
1749 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1750 {
1751 	rdp->ticks_this_gp = 0;
1752 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1753 }
1754 
1755 /* Increment ->ticks_this_gp for all flavors of RCU. */
1756 static void increment_cpu_stall_ticks(void)
1757 {
1758 	struct rcu_state *rsp;
1759 
1760 	for_each_rcu_flavor(rsp)
1761 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1762 }
1763 
1764 #ifdef CONFIG_RCU_NOCB_CPU
1765 
1766 /*
1767  * Offload callback processing from the boot-time-specified set of CPUs
1768  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1769  * kthread created that pulls the callbacks from the corresponding CPU,
1770  * waits for a grace period to elapse, and invokes the callbacks.
1771  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1772  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1773  * has been specified, in which case each kthread actively polls its
1774  * CPU.  (Which isn't so great for energy efficiency, but which does
1775  * reduce RCU's overhead on that CPU.)
1776  *
1777  * This is intended to be used in conjunction with Frederic Weisbecker's
1778  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1779  * running CPU-bound user-mode computations.
1780  *
1781  * Offloading of callback processing could also in theory be used as
1782  * an energy-efficiency measure because CPUs with no RCU callbacks
1783  * queued are more aggressive about entering dyntick-idle mode.
1784  */
1785 
1786 
1787 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1788 static int __init rcu_nocb_setup(char *str)
1789 {
1790 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1791 	have_rcu_nocb_mask = true;
1792 	cpulist_parse(str, rcu_nocb_mask);
1793 	return 1;
1794 }
1795 __setup("rcu_nocbs=", rcu_nocb_setup);
1796 
1797 static int __init parse_rcu_nocb_poll(char *arg)
1798 {
1799 	rcu_nocb_poll = 1;
1800 	return 0;
1801 }
1802 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1803 
1804 /*
1805  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1806  * grace period.
1807  */
1808 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1809 {
1810 	swake_up_all(sq);
1811 }
1812 
1813 /*
1814  * Set the root rcu_node structure's ->need_future_gp field
1815  * based on the sum of those of all rcu_node structures.  This does
1816  * double-count the root rcu_node structure's requests, but this
1817  * is necessary to handle the possibility of a rcu_nocb_kthread()
1818  * having awakened during the time that the rcu_node structures
1819  * were being updated for the end of the previous grace period.
1820  */
1821 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1822 {
1823 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1824 }
1825 
1826 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1827 {
1828 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1829 }
1830 
1831 static void rcu_init_one_nocb(struct rcu_node *rnp)
1832 {
1833 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1834 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1835 }
1836 
1837 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1838 /* Is the specified CPU a no-CBs CPU? */
1839 bool rcu_is_nocb_cpu(int cpu)
1840 {
1841 	if (have_rcu_nocb_mask)
1842 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1843 	return false;
1844 }
1845 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1846 
1847 /*
1848  * Kick the leader kthread for this NOCB group.
1849  */
1850 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1851 {
1852 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1853 
1854 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1855 		return;
1856 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1857 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1858 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1859 		swake_up(&rdp_leader->nocb_wq);
1860 	}
1861 }
1862 
1863 /*
1864  * Does the specified CPU need an RCU callback for the specified flavor
1865  * of rcu_barrier()?
1866  */
1867 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1868 {
1869 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1870 	unsigned long ret;
1871 #ifdef CONFIG_PROVE_RCU
1872 	struct rcu_head *rhp;
1873 #endif /* #ifdef CONFIG_PROVE_RCU */
1874 
1875 	/*
1876 	 * Check count of all no-CBs callbacks awaiting invocation.
1877 	 * There needs to be a barrier before this function is called,
1878 	 * but associated with a prior determination that no more
1879 	 * callbacks would be posted.  In the worst case, the first
1880 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1881 	 * necessarily rely on this, not a substitute for the caller
1882 	 * getting the concurrency design right!).  There must also be
1883 	 * a barrier between the following load an posting of a callback
1884 	 * (if a callback is in fact needed).  This is associated with an
1885 	 * atomic_inc() in the caller.
1886 	 */
1887 	ret = atomic_long_read(&rdp->nocb_q_count);
1888 
1889 #ifdef CONFIG_PROVE_RCU
1890 	rhp = READ_ONCE(rdp->nocb_head);
1891 	if (!rhp)
1892 		rhp = READ_ONCE(rdp->nocb_gp_head);
1893 	if (!rhp)
1894 		rhp = READ_ONCE(rdp->nocb_follower_head);
1895 
1896 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1897 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1898 	    rcu_scheduler_fully_active) {
1899 		/* RCU callback enqueued before CPU first came online??? */
1900 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1901 		       cpu, rhp->func);
1902 		WARN_ON_ONCE(1);
1903 	}
1904 #endif /* #ifdef CONFIG_PROVE_RCU */
1905 
1906 	return !!ret;
1907 }
1908 
1909 /*
1910  * Enqueue the specified string of rcu_head structures onto the specified
1911  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1912  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1913  * counts are supplied by rhcount and rhcount_lazy.
1914  *
1915  * If warranted, also wake up the kthread servicing this CPUs queues.
1916  */
1917 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1918 				    struct rcu_head *rhp,
1919 				    struct rcu_head **rhtp,
1920 				    int rhcount, int rhcount_lazy,
1921 				    unsigned long flags)
1922 {
1923 	int len;
1924 	struct rcu_head **old_rhpp;
1925 	struct task_struct *t;
1926 
1927 	/* Enqueue the callback on the nocb list and update counts. */
1928 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1929 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1930 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1931 	WRITE_ONCE(*old_rhpp, rhp);
1932 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1933 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1934 
1935 	/* If we are not being polled and there is a kthread, awaken it ... */
1936 	t = READ_ONCE(rdp->nocb_kthread);
1937 	if (rcu_nocb_poll || !t) {
1938 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1939 				    TPS("WakeNotPoll"));
1940 		return;
1941 	}
1942 	len = atomic_long_read(&rdp->nocb_q_count);
1943 	if (old_rhpp == &rdp->nocb_head) {
1944 		if (!irqs_disabled_flags(flags)) {
1945 			/* ... if queue was empty ... */
1946 			wake_nocb_leader(rdp, false);
1947 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1948 					    TPS("WakeEmpty"));
1949 		} else {
1950 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1951 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1952 					    TPS("WakeEmptyIsDeferred"));
1953 		}
1954 		rdp->qlen_last_fqs_check = 0;
1955 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1956 		/* ... or if many callbacks queued. */
1957 		if (!irqs_disabled_flags(flags)) {
1958 			wake_nocb_leader(rdp, true);
1959 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1960 					    TPS("WakeOvf"));
1961 		} else {
1962 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1963 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1964 					    TPS("WakeOvfIsDeferred"));
1965 		}
1966 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1967 	} else {
1968 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1969 	}
1970 	return;
1971 }
1972 
1973 /*
1974  * This is a helper for __call_rcu(), which invokes this when the normal
1975  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1976  * function returns failure back to __call_rcu(), which can complain
1977  * appropriately.
1978  *
1979  * Otherwise, this function queues the callback where the corresponding
1980  * "rcuo" kthread can find it.
1981  */
1982 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1983 			    bool lazy, unsigned long flags)
1984 {
1985 
1986 	if (!rcu_is_nocb_cpu(rdp->cpu))
1987 		return false;
1988 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1989 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1990 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1991 					 (unsigned long)rhp->func,
1992 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1993 					 -atomic_long_read(&rdp->nocb_q_count));
1994 	else
1995 		trace_rcu_callback(rdp->rsp->name, rhp,
1996 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1997 				   -atomic_long_read(&rdp->nocb_q_count));
1998 
1999 	/*
2000 	 * If called from an extended quiescent state with interrupts
2001 	 * disabled, invoke the RCU core in order to allow the idle-entry
2002 	 * deferred-wakeup check to function.
2003 	 */
2004 	if (irqs_disabled_flags(flags) &&
2005 	    !rcu_is_watching() &&
2006 	    cpu_online(smp_processor_id()))
2007 		invoke_rcu_core();
2008 
2009 	return true;
2010 }
2011 
2012 /*
2013  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2014  * not a no-CBs CPU.
2015  */
2016 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2017 						     struct rcu_data *rdp,
2018 						     unsigned long flags)
2019 {
2020 	long ql = rsp->qlen;
2021 	long qll = rsp->qlen_lazy;
2022 
2023 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2024 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2025 		return false;
2026 	rsp->qlen = 0;
2027 	rsp->qlen_lazy = 0;
2028 
2029 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2030 	if (rsp->orphan_donelist != NULL) {
2031 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2032 					rsp->orphan_donetail, ql, qll, flags);
2033 		ql = qll = 0;
2034 		rsp->orphan_donelist = NULL;
2035 		rsp->orphan_donetail = &rsp->orphan_donelist;
2036 	}
2037 	if (rsp->orphan_nxtlist != NULL) {
2038 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2039 					rsp->orphan_nxttail, ql, qll, flags);
2040 		ql = qll = 0;
2041 		rsp->orphan_nxtlist = NULL;
2042 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2043 	}
2044 	return true;
2045 }
2046 
2047 /*
2048  * If necessary, kick off a new grace period, and either way wait
2049  * for a subsequent grace period to complete.
2050  */
2051 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2052 {
2053 	unsigned long c;
2054 	bool d;
2055 	unsigned long flags;
2056 	bool needwake;
2057 	struct rcu_node *rnp = rdp->mynode;
2058 
2059 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2060 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2061 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2062 	if (needwake)
2063 		rcu_gp_kthread_wake(rdp->rsp);
2064 
2065 	/*
2066 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2067 	 * up the load average.
2068 	 */
2069 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2070 	for (;;) {
2071 		swait_event_interruptible(
2072 			rnp->nocb_gp_wq[c & 0x1],
2073 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2074 		if (likely(d))
2075 			break;
2076 		WARN_ON(signal_pending(current));
2077 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2078 	}
2079 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2080 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2081 }
2082 
2083 /*
2084  * Leaders come here to wait for additional callbacks to show up.
2085  * This function does not return until callbacks appear.
2086  */
2087 static void nocb_leader_wait(struct rcu_data *my_rdp)
2088 {
2089 	bool firsttime = true;
2090 	bool gotcbs;
2091 	struct rcu_data *rdp;
2092 	struct rcu_head **tail;
2093 
2094 wait_again:
2095 
2096 	/* Wait for callbacks to appear. */
2097 	if (!rcu_nocb_poll) {
2098 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2099 		swait_event_interruptible(my_rdp->nocb_wq,
2100 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2101 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2102 	} else if (firsttime) {
2103 		firsttime = false; /* Don't drown trace log with "Poll"! */
2104 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2105 	}
2106 
2107 	/*
2108 	 * Each pass through the following loop checks a follower for CBs.
2109 	 * We are our own first follower.  Any CBs found are moved to
2110 	 * nocb_gp_head, where they await a grace period.
2111 	 */
2112 	gotcbs = false;
2113 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2114 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2115 		if (!rdp->nocb_gp_head)
2116 			continue;  /* No CBs here, try next follower. */
2117 
2118 		/* Move callbacks to wait-for-GP list, which is empty. */
2119 		WRITE_ONCE(rdp->nocb_head, NULL);
2120 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2121 		gotcbs = true;
2122 	}
2123 
2124 	/*
2125 	 * If there were no callbacks, sleep a bit, rescan after a
2126 	 * memory barrier, and go retry.
2127 	 */
2128 	if (unlikely(!gotcbs)) {
2129 		if (!rcu_nocb_poll)
2130 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2131 					    "WokeEmpty");
2132 		WARN_ON(signal_pending(current));
2133 		schedule_timeout_interruptible(1);
2134 
2135 		/* Rescan in case we were a victim of memory ordering. */
2136 		my_rdp->nocb_leader_sleep = true;
2137 		smp_mb();  /* Ensure _sleep true before scan. */
2138 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2139 			if (READ_ONCE(rdp->nocb_head)) {
2140 				/* Found CB, so short-circuit next wait. */
2141 				my_rdp->nocb_leader_sleep = false;
2142 				break;
2143 			}
2144 		goto wait_again;
2145 	}
2146 
2147 	/* Wait for one grace period. */
2148 	rcu_nocb_wait_gp(my_rdp);
2149 
2150 	/*
2151 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2152 	 * We set it now, but recheck for new callbacks while
2153 	 * traversing our follower list.
2154 	 */
2155 	my_rdp->nocb_leader_sleep = true;
2156 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2157 
2158 	/* Each pass through the following loop wakes a follower, if needed. */
2159 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2160 		if (READ_ONCE(rdp->nocb_head))
2161 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2162 		if (!rdp->nocb_gp_head)
2163 			continue; /* No CBs, so no need to wake follower. */
2164 
2165 		/* Append callbacks to follower's "done" list. */
2166 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2167 		*tail = rdp->nocb_gp_head;
2168 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2169 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2170 			/*
2171 			 * List was empty, wake up the follower.
2172 			 * Memory barriers supplied by atomic_long_add().
2173 			 */
2174 			swake_up(&rdp->nocb_wq);
2175 		}
2176 	}
2177 
2178 	/* If we (the leader) don't have CBs, go wait some more. */
2179 	if (!my_rdp->nocb_follower_head)
2180 		goto wait_again;
2181 }
2182 
2183 /*
2184  * Followers come here to wait for additional callbacks to show up.
2185  * This function does not return until callbacks appear.
2186  */
2187 static void nocb_follower_wait(struct rcu_data *rdp)
2188 {
2189 	bool firsttime = true;
2190 
2191 	for (;;) {
2192 		if (!rcu_nocb_poll) {
2193 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2194 					    "FollowerSleep");
2195 			swait_event_interruptible(rdp->nocb_wq,
2196 						 READ_ONCE(rdp->nocb_follower_head));
2197 		} else if (firsttime) {
2198 			/* Don't drown trace log with "Poll"! */
2199 			firsttime = false;
2200 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2201 		}
2202 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2203 			/* ^^^ Ensure CB invocation follows _head test. */
2204 			return;
2205 		}
2206 		if (!rcu_nocb_poll)
2207 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2208 					    "WokeEmpty");
2209 		WARN_ON(signal_pending(current));
2210 		schedule_timeout_interruptible(1);
2211 	}
2212 }
2213 
2214 /*
2215  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2216  * callbacks queued by the corresponding no-CBs CPU, however, there is
2217  * an optional leader-follower relationship so that the grace-period
2218  * kthreads don't have to do quite so many wakeups.
2219  */
2220 static int rcu_nocb_kthread(void *arg)
2221 {
2222 	int c, cl;
2223 	struct rcu_head *list;
2224 	struct rcu_head *next;
2225 	struct rcu_head **tail;
2226 	struct rcu_data *rdp = arg;
2227 
2228 	/* Each pass through this loop invokes one batch of callbacks */
2229 	for (;;) {
2230 		/* Wait for callbacks. */
2231 		if (rdp->nocb_leader == rdp)
2232 			nocb_leader_wait(rdp);
2233 		else
2234 			nocb_follower_wait(rdp);
2235 
2236 		/* Pull the ready-to-invoke callbacks onto local list. */
2237 		list = READ_ONCE(rdp->nocb_follower_head);
2238 		BUG_ON(!list);
2239 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2240 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2241 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2242 
2243 		/* Each pass through the following loop invokes a callback. */
2244 		trace_rcu_batch_start(rdp->rsp->name,
2245 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2246 				      atomic_long_read(&rdp->nocb_q_count), -1);
2247 		c = cl = 0;
2248 		while (list) {
2249 			next = list->next;
2250 			/* Wait for enqueuing to complete, if needed. */
2251 			while (next == NULL && &list->next != tail) {
2252 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2253 						    TPS("WaitQueue"));
2254 				schedule_timeout_interruptible(1);
2255 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2256 						    TPS("WokeQueue"));
2257 				next = list->next;
2258 			}
2259 			debug_rcu_head_unqueue(list);
2260 			local_bh_disable();
2261 			if (__rcu_reclaim(rdp->rsp->name, list))
2262 				cl++;
2263 			c++;
2264 			local_bh_enable();
2265 			list = next;
2266 		}
2267 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2268 		smp_mb__before_atomic();  /* _add after CB invocation. */
2269 		atomic_long_add(-c, &rdp->nocb_q_count);
2270 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2271 		rdp->n_nocbs_invoked += c;
2272 	}
2273 	return 0;
2274 }
2275 
2276 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2277 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2278 {
2279 	return READ_ONCE(rdp->nocb_defer_wakeup);
2280 }
2281 
2282 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2283 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2284 {
2285 	int ndw;
2286 
2287 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2288 		return;
2289 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2290 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2291 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2292 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2293 }
2294 
2295 void __init rcu_init_nohz(void)
2296 {
2297 	int cpu;
2298 	bool need_rcu_nocb_mask = true;
2299 	struct rcu_state *rsp;
2300 
2301 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2302 	need_rcu_nocb_mask = false;
2303 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2304 
2305 #if defined(CONFIG_NO_HZ_FULL)
2306 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2307 		need_rcu_nocb_mask = true;
2308 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2309 
2310 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2311 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2312 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2313 			return;
2314 		}
2315 		have_rcu_nocb_mask = true;
2316 	}
2317 	if (!have_rcu_nocb_mask)
2318 		return;
2319 
2320 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2321 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2322 	cpumask_set_cpu(0, rcu_nocb_mask);
2323 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2324 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2325 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2326 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2327 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2328 #if defined(CONFIG_NO_HZ_FULL)
2329 	if (tick_nohz_full_running)
2330 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2331 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2332 
2333 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2334 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2335 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2336 			    rcu_nocb_mask);
2337 	}
2338 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2339 		cpumask_pr_args(rcu_nocb_mask));
2340 	if (rcu_nocb_poll)
2341 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2342 
2343 	for_each_rcu_flavor(rsp) {
2344 		for_each_cpu(cpu, rcu_nocb_mask)
2345 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2346 		rcu_organize_nocb_kthreads(rsp);
2347 	}
2348 }
2349 
2350 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2351 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2352 {
2353 	rdp->nocb_tail = &rdp->nocb_head;
2354 	init_swait_queue_head(&rdp->nocb_wq);
2355 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2356 }
2357 
2358 /*
2359  * If the specified CPU is a no-CBs CPU that does not already have its
2360  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2361  * brought online out of order, this can require re-organizing the
2362  * leader-follower relationships.
2363  */
2364 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2365 {
2366 	struct rcu_data *rdp;
2367 	struct rcu_data *rdp_last;
2368 	struct rcu_data *rdp_old_leader;
2369 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2370 	struct task_struct *t;
2371 
2372 	/*
2373 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2374 	 * then nothing to do.
2375 	 */
2376 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2377 		return;
2378 
2379 	/* If we didn't spawn the leader first, reorganize! */
2380 	rdp_old_leader = rdp_spawn->nocb_leader;
2381 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2382 		rdp_last = NULL;
2383 		rdp = rdp_old_leader;
2384 		do {
2385 			rdp->nocb_leader = rdp_spawn;
2386 			if (rdp_last && rdp != rdp_spawn)
2387 				rdp_last->nocb_next_follower = rdp;
2388 			if (rdp == rdp_spawn) {
2389 				rdp = rdp->nocb_next_follower;
2390 			} else {
2391 				rdp_last = rdp;
2392 				rdp = rdp->nocb_next_follower;
2393 				rdp_last->nocb_next_follower = NULL;
2394 			}
2395 		} while (rdp);
2396 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2397 	}
2398 
2399 	/* Spawn the kthread for this CPU and RCU flavor. */
2400 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2401 			"rcuo%c/%d", rsp->abbr, cpu);
2402 	BUG_ON(IS_ERR(t));
2403 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2404 }
2405 
2406 /*
2407  * If the specified CPU is a no-CBs CPU that does not already have its
2408  * rcuo kthreads, spawn them.
2409  */
2410 static void rcu_spawn_all_nocb_kthreads(int cpu)
2411 {
2412 	struct rcu_state *rsp;
2413 
2414 	if (rcu_scheduler_fully_active)
2415 		for_each_rcu_flavor(rsp)
2416 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2417 }
2418 
2419 /*
2420  * Once the scheduler is running, spawn rcuo kthreads for all online
2421  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2422  * non-boot CPUs come online -- if this changes, we will need to add
2423  * some mutual exclusion.
2424  */
2425 static void __init rcu_spawn_nocb_kthreads(void)
2426 {
2427 	int cpu;
2428 
2429 	for_each_online_cpu(cpu)
2430 		rcu_spawn_all_nocb_kthreads(cpu);
2431 }
2432 
2433 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2434 static int rcu_nocb_leader_stride = -1;
2435 module_param(rcu_nocb_leader_stride, int, 0444);
2436 
2437 /*
2438  * Initialize leader-follower relationships for all no-CBs CPU.
2439  */
2440 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2441 {
2442 	int cpu;
2443 	int ls = rcu_nocb_leader_stride;
2444 	int nl = 0;  /* Next leader. */
2445 	struct rcu_data *rdp;
2446 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2447 	struct rcu_data *rdp_prev = NULL;
2448 
2449 	if (!have_rcu_nocb_mask)
2450 		return;
2451 	if (ls == -1) {
2452 		ls = int_sqrt(nr_cpu_ids);
2453 		rcu_nocb_leader_stride = ls;
2454 	}
2455 
2456 	/*
2457 	 * Each pass through this loop sets up one rcu_data structure and
2458 	 * spawns one rcu_nocb_kthread().
2459 	 */
2460 	for_each_cpu(cpu, rcu_nocb_mask) {
2461 		rdp = per_cpu_ptr(rsp->rda, cpu);
2462 		if (rdp->cpu >= nl) {
2463 			/* New leader, set up for followers & next leader. */
2464 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2465 			rdp->nocb_leader = rdp;
2466 			rdp_leader = rdp;
2467 		} else {
2468 			/* Another follower, link to previous leader. */
2469 			rdp->nocb_leader = rdp_leader;
2470 			rdp_prev->nocb_next_follower = rdp;
2471 		}
2472 		rdp_prev = rdp;
2473 	}
2474 }
2475 
2476 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2477 static bool init_nocb_callback_list(struct rcu_data *rdp)
2478 {
2479 	if (!rcu_is_nocb_cpu(rdp->cpu))
2480 		return false;
2481 
2482 	/* If there are early-boot callbacks, move them to nocb lists. */
2483 	if (rdp->nxtlist) {
2484 		rdp->nocb_head = rdp->nxtlist;
2485 		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2486 		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2487 		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2488 		rdp->nxtlist = NULL;
2489 		rdp->qlen = 0;
2490 		rdp->qlen_lazy = 0;
2491 	}
2492 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2493 	return true;
2494 }
2495 
2496 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2497 
2498 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2499 {
2500 	WARN_ON_ONCE(1); /* Should be dead code. */
2501 	return false;
2502 }
2503 
2504 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2505 {
2506 }
2507 
2508 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2509 {
2510 }
2511 
2512 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2513 {
2514 	return NULL;
2515 }
2516 
2517 static void rcu_init_one_nocb(struct rcu_node *rnp)
2518 {
2519 }
2520 
2521 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2522 			    bool lazy, unsigned long flags)
2523 {
2524 	return false;
2525 }
2526 
2527 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2528 						     struct rcu_data *rdp,
2529 						     unsigned long flags)
2530 {
2531 	return false;
2532 }
2533 
2534 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2535 {
2536 }
2537 
2538 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2539 {
2540 	return false;
2541 }
2542 
2543 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2544 {
2545 }
2546 
2547 static void rcu_spawn_all_nocb_kthreads(int cpu)
2548 {
2549 }
2550 
2551 static void __init rcu_spawn_nocb_kthreads(void)
2552 {
2553 }
2554 
2555 static bool init_nocb_callback_list(struct rcu_data *rdp)
2556 {
2557 	return false;
2558 }
2559 
2560 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2561 
2562 /*
2563  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2564  * arbitrarily long period of time with the scheduling-clock tick turned
2565  * off.  RCU will be paying attention to this CPU because it is in the
2566  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2567  * machine because the scheduling-clock tick has been disabled.  Therefore,
2568  * if an adaptive-ticks CPU is failing to respond to the current grace
2569  * period and has not be idle from an RCU perspective, kick it.
2570  */
2571 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2572 {
2573 #ifdef CONFIG_NO_HZ_FULL
2574 	if (tick_nohz_full_cpu(cpu))
2575 		smp_send_reschedule(cpu);
2576 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2577 }
2578 
2579 
2580 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2581 
2582 static int full_sysidle_state;		/* Current system-idle state. */
2583 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2584 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2585 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2586 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2587 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2588 
2589 /*
2590  * Invoked to note exit from irq or task transition to idle.  Note that
2591  * usermode execution does -not- count as idle here!  After all, we want
2592  * to detect full-system idle states, not RCU quiescent states and grace
2593  * periods.  The caller must have disabled interrupts.
2594  */
2595 static void rcu_sysidle_enter(int irq)
2596 {
2597 	unsigned long j;
2598 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2599 
2600 	/* If there are no nohz_full= CPUs, no need to track this. */
2601 	if (!tick_nohz_full_enabled())
2602 		return;
2603 
2604 	/* Adjust nesting, check for fully idle. */
2605 	if (irq) {
2606 		rdtp->dynticks_idle_nesting--;
2607 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2608 		if (rdtp->dynticks_idle_nesting != 0)
2609 			return;  /* Still not fully idle. */
2610 	} else {
2611 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2612 		    DYNTICK_TASK_NEST_VALUE) {
2613 			rdtp->dynticks_idle_nesting = 0;
2614 		} else {
2615 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2616 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2617 			return;  /* Still not fully idle. */
2618 		}
2619 	}
2620 
2621 	/* Record start of fully idle period. */
2622 	j = jiffies;
2623 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2624 	smp_mb__before_atomic();
2625 	atomic_inc(&rdtp->dynticks_idle);
2626 	smp_mb__after_atomic();
2627 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2628 }
2629 
2630 /*
2631  * Unconditionally force exit from full system-idle state.  This is
2632  * invoked when a normal CPU exits idle, but must be called separately
2633  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2634  * is that the timekeeping CPU is permitted to take scheduling-clock
2635  * interrupts while the system is in system-idle state, and of course
2636  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2637  * interrupt from any other type of interrupt.
2638  */
2639 void rcu_sysidle_force_exit(void)
2640 {
2641 	int oldstate = READ_ONCE(full_sysidle_state);
2642 	int newoldstate;
2643 
2644 	/*
2645 	 * Each pass through the following loop attempts to exit full
2646 	 * system-idle state.  If contention proves to be a problem,
2647 	 * a trylock-based contention tree could be used here.
2648 	 */
2649 	while (oldstate > RCU_SYSIDLE_SHORT) {
2650 		newoldstate = cmpxchg(&full_sysidle_state,
2651 				      oldstate, RCU_SYSIDLE_NOT);
2652 		if (oldstate == newoldstate &&
2653 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2654 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2655 			return; /* We cleared it, done! */
2656 		}
2657 		oldstate = newoldstate;
2658 	}
2659 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2660 }
2661 
2662 /*
2663  * Invoked to note entry to irq or task transition from idle.  Note that
2664  * usermode execution does -not- count as idle here!  The caller must
2665  * have disabled interrupts.
2666  */
2667 static void rcu_sysidle_exit(int irq)
2668 {
2669 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2670 
2671 	/* If there are no nohz_full= CPUs, no need to track this. */
2672 	if (!tick_nohz_full_enabled())
2673 		return;
2674 
2675 	/* Adjust nesting, check for already non-idle. */
2676 	if (irq) {
2677 		rdtp->dynticks_idle_nesting++;
2678 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2679 		if (rdtp->dynticks_idle_nesting != 1)
2680 			return; /* Already non-idle. */
2681 	} else {
2682 		/*
2683 		 * Allow for irq misnesting.  Yes, it really is possible
2684 		 * to enter an irq handler then never leave it, and maybe
2685 		 * also vice versa.  Handle both possibilities.
2686 		 */
2687 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2688 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2689 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2690 			return; /* Already non-idle. */
2691 		} else {
2692 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2693 		}
2694 	}
2695 
2696 	/* Record end of idle period. */
2697 	smp_mb__before_atomic();
2698 	atomic_inc(&rdtp->dynticks_idle);
2699 	smp_mb__after_atomic();
2700 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2701 
2702 	/*
2703 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2704 	 * during a system-idle state.  This must be the case, because
2705 	 * the timekeeping CPU has to take scheduling-clock interrupts
2706 	 * during the time that the system is transitioning to full
2707 	 * system-idle state.  This means that the timekeeping CPU must
2708 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2709 	 * more than take a scheduling-clock interrupt.
2710 	 */
2711 	if (smp_processor_id() == tick_do_timer_cpu)
2712 		return;
2713 
2714 	/* Update system-idle state: We are clearly no longer fully idle! */
2715 	rcu_sysidle_force_exit();
2716 }
2717 
2718 /*
2719  * Check to see if the current CPU is idle.  Note that usermode execution
2720  * does not count as idle.  The caller must have disabled interrupts,
2721  * and must be running on tick_do_timer_cpu.
2722  */
2723 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2724 				  unsigned long *maxj)
2725 {
2726 	int cur;
2727 	unsigned long j;
2728 	struct rcu_dynticks *rdtp = rdp->dynticks;
2729 
2730 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2731 	if (!tick_nohz_full_enabled())
2732 		return;
2733 
2734 	/*
2735 	 * If some other CPU has already reported non-idle, if this is
2736 	 * not the flavor of RCU that tracks sysidle state, or if this
2737 	 * is an offline or the timekeeping CPU, nothing to do.
2738 	 */
2739 	if (!*isidle || rdp->rsp != rcu_state_p ||
2740 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2741 		return;
2742 	/* Verify affinity of current kthread. */
2743 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2744 
2745 	/* Pick up current idle and NMI-nesting counter and check. */
2746 	cur = atomic_read(&rdtp->dynticks_idle);
2747 	if (cur & 0x1) {
2748 		*isidle = false; /* We are not idle! */
2749 		return;
2750 	}
2751 	smp_mb(); /* Read counters before timestamps. */
2752 
2753 	/* Pick up timestamps. */
2754 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2755 	/* If this CPU entered idle more recently, update maxj timestamp. */
2756 	if (ULONG_CMP_LT(*maxj, j))
2757 		*maxj = j;
2758 }
2759 
2760 /*
2761  * Is this the flavor of RCU that is handling full-system idle?
2762  */
2763 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2764 {
2765 	return rsp == rcu_state_p;
2766 }
2767 
2768 /*
2769  * Return a delay in jiffies based on the number of CPUs, rcu_node
2770  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2771  * systems more time to transition to full-idle state in order to
2772  * avoid the cache thrashing that otherwise occur on the state variable.
2773  * Really small systems (less than a couple of tens of CPUs) should
2774  * instead use a single global atomically incremented counter, and later
2775  * versions of this will automatically reconfigure themselves accordingly.
2776  */
2777 static unsigned long rcu_sysidle_delay(void)
2778 {
2779 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2780 		return 0;
2781 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2782 }
2783 
2784 /*
2785  * Advance the full-system-idle state.  This is invoked when all of
2786  * the non-timekeeping CPUs are idle.
2787  */
2788 static void rcu_sysidle(unsigned long j)
2789 {
2790 	/* Check the current state. */
2791 	switch (READ_ONCE(full_sysidle_state)) {
2792 	case RCU_SYSIDLE_NOT:
2793 
2794 		/* First time all are idle, so note a short idle period. */
2795 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2796 		break;
2797 
2798 	case RCU_SYSIDLE_SHORT:
2799 
2800 		/*
2801 		 * Idle for a bit, time to advance to next state?
2802 		 * cmpxchg failure means race with non-idle, let them win.
2803 		 */
2804 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2805 			(void)cmpxchg(&full_sysidle_state,
2806 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2807 		break;
2808 
2809 	case RCU_SYSIDLE_LONG:
2810 
2811 		/*
2812 		 * Do an additional check pass before advancing to full.
2813 		 * cmpxchg failure means race with non-idle, let them win.
2814 		 */
2815 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2816 			(void)cmpxchg(&full_sysidle_state,
2817 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2818 		break;
2819 
2820 	default:
2821 		break;
2822 	}
2823 }
2824 
2825 /*
2826  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2827  * back to the beginning.
2828  */
2829 static void rcu_sysidle_cancel(void)
2830 {
2831 	smp_mb();
2832 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2833 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2834 }
2835 
2836 /*
2837  * Update the sysidle state based on the results of a force-quiescent-state
2838  * scan of the CPUs' dyntick-idle state.
2839  */
2840 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2841 			       unsigned long maxj, bool gpkt)
2842 {
2843 	if (rsp != rcu_state_p)
2844 		return;  /* Wrong flavor, ignore. */
2845 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2846 		return;  /* Running state machine from timekeeping CPU. */
2847 	if (isidle)
2848 		rcu_sysidle(maxj);    /* More idle! */
2849 	else
2850 		rcu_sysidle_cancel(); /* Idle is over. */
2851 }
2852 
2853 /*
2854  * Wrapper for rcu_sysidle_report() when called from the grace-period
2855  * kthread's context.
2856  */
2857 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2858 				  unsigned long maxj)
2859 {
2860 	/* If there are no nohz_full= CPUs, no need to track this. */
2861 	if (!tick_nohz_full_enabled())
2862 		return;
2863 
2864 	rcu_sysidle_report(rsp, isidle, maxj, true);
2865 }
2866 
2867 /* Callback and function for forcing an RCU grace period. */
2868 struct rcu_sysidle_head {
2869 	struct rcu_head rh;
2870 	int inuse;
2871 };
2872 
2873 static void rcu_sysidle_cb(struct rcu_head *rhp)
2874 {
2875 	struct rcu_sysidle_head *rshp;
2876 
2877 	/*
2878 	 * The following memory barrier is needed to replace the
2879 	 * memory barriers that would normally be in the memory
2880 	 * allocator.
2881 	 */
2882 	smp_mb();  /* grace period precedes setting inuse. */
2883 
2884 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2885 	WRITE_ONCE(rshp->inuse, 0);
2886 }
2887 
2888 /*
2889  * Check to see if the system is fully idle, other than the timekeeping CPU.
2890  * The caller must have disabled interrupts.  This is not intended to be
2891  * called unless tick_nohz_full_enabled().
2892  */
2893 bool rcu_sys_is_idle(void)
2894 {
2895 	static struct rcu_sysidle_head rsh;
2896 	int rss = READ_ONCE(full_sysidle_state);
2897 
2898 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2899 		return false;
2900 
2901 	/* Handle small-system case by doing a full scan of CPUs. */
2902 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2903 		int oldrss = rss - 1;
2904 
2905 		/*
2906 		 * One pass to advance to each state up to _FULL.
2907 		 * Give up if any pass fails to advance the state.
2908 		 */
2909 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2910 			int cpu;
2911 			bool isidle = true;
2912 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2913 			struct rcu_data *rdp;
2914 
2915 			/* Scan all the CPUs looking for nonidle CPUs. */
2916 			for_each_possible_cpu(cpu) {
2917 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2918 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2919 				if (!isidle)
2920 					break;
2921 			}
2922 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2923 			oldrss = rss;
2924 			rss = READ_ONCE(full_sysidle_state);
2925 		}
2926 	}
2927 
2928 	/* If this is the first observation of an idle period, record it. */
2929 	if (rss == RCU_SYSIDLE_FULL) {
2930 		rss = cmpxchg(&full_sysidle_state,
2931 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2932 		return rss == RCU_SYSIDLE_FULL;
2933 	}
2934 
2935 	smp_mb(); /* ensure rss load happens before later caller actions. */
2936 
2937 	/* If already fully idle, tell the caller (in case of races). */
2938 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2939 		return true;
2940 
2941 	/*
2942 	 * If we aren't there yet, and a grace period is not in flight,
2943 	 * initiate a grace period.  Either way, tell the caller that
2944 	 * we are not there yet.  We use an xchg() rather than an assignment
2945 	 * to make up for the memory barriers that would otherwise be
2946 	 * provided by the memory allocator.
2947 	 */
2948 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2949 	    !rcu_gp_in_progress(rcu_state_p) &&
2950 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2951 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2952 	return false;
2953 }
2954 
2955 /*
2956  * Initialize dynticks sysidle state for CPUs coming online.
2957  */
2958 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2959 {
2960 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2961 }
2962 
2963 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2964 
2965 static void rcu_sysidle_enter(int irq)
2966 {
2967 }
2968 
2969 static void rcu_sysidle_exit(int irq)
2970 {
2971 }
2972 
2973 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2974 				  unsigned long *maxj)
2975 {
2976 }
2977 
2978 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2979 {
2980 	return false;
2981 }
2982 
2983 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2984 				  unsigned long maxj)
2985 {
2986 }
2987 
2988 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2989 {
2990 }
2991 
2992 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2993 
2994 /*
2995  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2996  * grace-period kthread will do force_quiescent_state() processing?
2997  * The idea is to avoid waking up RCU core processing on such a
2998  * CPU unless the grace period has extended for too long.
2999  *
3000  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3001  * CONFIG_RCU_NOCB_CPU CPUs.
3002  */
3003 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3004 {
3005 #ifdef CONFIG_NO_HZ_FULL
3006 	if (tick_nohz_full_cpu(smp_processor_id()) &&
3007 	    (!rcu_gp_in_progress(rsp) ||
3008 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3009 		return true;
3010 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3011 	return false;
3012 }
3013 
3014 /*
3015  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3016  * timekeeping CPU.
3017  */
3018 static void rcu_bind_gp_kthread(void)
3019 {
3020 	int __maybe_unused cpu;
3021 
3022 	if (!tick_nohz_full_enabled())
3023 		return;
3024 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3025 	cpu = tick_do_timer_cpu;
3026 	if (cpu >= 0 && cpu < nr_cpu_ids)
3027 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3028 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3029 	housekeeping_affine(current);
3030 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3031 }
3032 
3033 /* Record the current task on dyntick-idle entry. */
3034 static void rcu_dynticks_task_enter(void)
3035 {
3036 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3037 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3038 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3039 }
3040 
3041 /* Record no current task on dyntick-idle exit. */
3042 static void rcu_dynticks_task_exit(void)
3043 {
3044 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3045 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3046 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3047 }
3048