xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 11a163f2)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20 
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 	if (IS_ENABLED(CONFIG_RCU_TRACE))
28 		pr_info("\tRCU event tracing is enabled.\n");
29 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 			RCU_FANOUT);
33 	if (rcu_fanout_exact)
34 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 	if (IS_ENABLED(CONFIG_PROVE_RCU))
38 		pr_info("\tRCU lockdep checking is enabled.\n");
39 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40 		pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
41 	if (RCU_NUM_LVLS >= 4)
42 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
43 	if (RCU_FANOUT_LEAF != 16)
44 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
45 			RCU_FANOUT_LEAF);
46 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
47 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
48 			rcu_fanout_leaf);
49 	if (nr_cpu_ids != NR_CPUS)
50 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
51 #ifdef CONFIG_RCU_BOOST
52 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
54 #endif
55 	if (blimit != DEFAULT_RCU_BLIMIT)
56 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
57 	if (qhimark != DEFAULT_RCU_QHIMARK)
58 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
59 	if (qlowmark != DEFAULT_RCU_QLOMARK)
60 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
61 	if (qovld != DEFAULT_RCU_QOVLD)
62 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
63 	if (jiffies_till_first_fqs != ULONG_MAX)
64 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
65 	if (jiffies_till_next_fqs != ULONG_MAX)
66 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
67 	if (jiffies_till_sched_qs != ULONG_MAX)
68 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
69 	if (rcu_kick_kthreads)
70 		pr_info("\tKick kthreads if too-long grace period.\n");
71 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
72 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
73 	if (gp_preinit_delay)
74 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
75 	if (gp_init_delay)
76 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
77 	if (gp_cleanup_delay)
78 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
79 	if (!use_softirq)
80 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
81 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
82 		pr_info("\tRCU debug extended QS entry/exit.\n");
83 	rcupdate_announce_bootup_oddness();
84 }
85 
86 #ifdef CONFIG_PREEMPT_RCU
87 
88 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
89 static void rcu_read_unlock_special(struct task_struct *t);
90 
91 /*
92  * Tell them what RCU they are running.
93  */
94 static void __init rcu_bootup_announce(void)
95 {
96 	pr_info("Preemptible hierarchical RCU implementation.\n");
97 	rcu_bootup_announce_oddness();
98 }
99 
100 /* Flags for rcu_preempt_ctxt_queue() decision table. */
101 #define RCU_GP_TASKS	0x8
102 #define RCU_EXP_TASKS	0x4
103 #define RCU_GP_BLKD	0x2
104 #define RCU_EXP_BLKD	0x1
105 
106 /*
107  * Queues a task preempted within an RCU-preempt read-side critical
108  * section into the appropriate location within the ->blkd_tasks list,
109  * depending on the states of any ongoing normal and expedited grace
110  * periods.  The ->gp_tasks pointer indicates which element the normal
111  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112  * indicates which element the expedited grace period is waiting on (again,
113  * NULL if none).  If a grace period is waiting on a given element in the
114  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
115  * adding a task to the tail of the list blocks any grace period that is
116  * already waiting on one of the elements.  In contrast, adding a task
117  * to the head of the list won't block any grace period that is already
118  * waiting on one of the elements.
119  *
120  * This queuing is imprecise, and can sometimes make an ongoing grace
121  * period wait for a task that is not strictly speaking blocking it.
122  * Given the choice, we needlessly block a normal grace period rather than
123  * blocking an expedited grace period.
124  *
125  * Note that an endless sequence of expedited grace periods still cannot
126  * indefinitely postpone a normal grace period.  Eventually, all of the
127  * fixed number of preempted tasks blocking the normal grace period that are
128  * not also blocking the expedited grace period will resume and complete
129  * their RCU read-side critical sections.  At that point, the ->gp_tasks
130  * pointer will equal the ->exp_tasks pointer, at which point the end of
131  * the corresponding expedited grace period will also be the end of the
132  * normal grace period.
133  */
134 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
135 	__releases(rnp->lock) /* But leaves rrupts disabled. */
136 {
137 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
138 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
139 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
140 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
141 	struct task_struct *t = current;
142 
143 	raw_lockdep_assert_held_rcu_node(rnp);
144 	WARN_ON_ONCE(rdp->mynode != rnp);
145 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
146 	/* RCU better not be waiting on newly onlined CPUs! */
147 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
148 		     rdp->grpmask);
149 
150 	/*
151 	 * Decide where to queue the newly blocked task.  In theory,
152 	 * this could be an if-statement.  In practice, when I tried
153 	 * that, it was quite messy.
154 	 */
155 	switch (blkd_state) {
156 	case 0:
157 	case                RCU_EXP_TASKS:
158 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
159 	case RCU_GP_TASKS:
160 	case RCU_GP_TASKS + RCU_EXP_TASKS:
161 
162 		/*
163 		 * Blocking neither GP, or first task blocking the normal
164 		 * GP but not blocking the already-waiting expedited GP.
165 		 * Queue at the head of the list to avoid unnecessarily
166 		 * blocking the already-waiting GPs.
167 		 */
168 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
169 		break;
170 
171 	case                                              RCU_EXP_BLKD:
172 	case                                RCU_GP_BLKD:
173 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
174 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
175 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
176 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177 
178 		/*
179 		 * First task arriving that blocks either GP, or first task
180 		 * arriving that blocks the expedited GP (with the normal
181 		 * GP already waiting), or a task arriving that blocks
182 		 * both GPs with both GPs already waiting.  Queue at the
183 		 * tail of the list to avoid any GP waiting on any of the
184 		 * already queued tasks that are not blocking it.
185 		 */
186 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
187 		break;
188 
189 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
190 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
191 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
192 
193 		/*
194 		 * Second or subsequent task blocking the expedited GP.
195 		 * The task either does not block the normal GP, or is the
196 		 * first task blocking the normal GP.  Queue just after
197 		 * the first task blocking the expedited GP.
198 		 */
199 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
200 		break;
201 
202 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
203 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204 
205 		/*
206 		 * Second or subsequent task blocking the normal GP.
207 		 * The task does not block the expedited GP. Queue just
208 		 * after the first task blocking the normal GP.
209 		 */
210 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
211 		break;
212 
213 	default:
214 
215 		/* Yet another exercise in excessive paranoia. */
216 		WARN_ON_ONCE(1);
217 		break;
218 	}
219 
220 	/*
221 	 * We have now queued the task.  If it was the first one to
222 	 * block either grace period, update the ->gp_tasks and/or
223 	 * ->exp_tasks pointers, respectively, to reference the newly
224 	 * blocked tasks.
225 	 */
226 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
227 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
228 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
229 	}
230 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
231 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
232 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
233 		     !(rnp->qsmask & rdp->grpmask));
234 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
235 		     !(rnp->expmask & rdp->grpmask));
236 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237 
238 	/*
239 	 * Report the quiescent state for the expedited GP.  This expedited
240 	 * GP should not be able to end until we report, so there should be
241 	 * no need to check for a subsequent expedited GP.  (Though we are
242 	 * still in a quiescent state in any case.)
243 	 */
244 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
245 		rcu_report_exp_rdp(rdp);
246 	else
247 		WARN_ON_ONCE(rdp->exp_deferred_qs);
248 }
249 
250 /*
251  * Record a preemptible-RCU quiescent state for the specified CPU.
252  * Note that this does not necessarily mean that the task currently running
253  * on the CPU is in a quiescent state:  Instead, it means that the current
254  * grace period need not wait on any RCU read-side critical section that
255  * starts later on this CPU.  It also means that if the current task is
256  * in an RCU read-side critical section, it has already added itself to
257  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
258  * current task, there might be any number of other tasks blocked while
259  * in an RCU read-side critical section.
260  *
261  * Callers to this function must disable preemption.
262  */
263 static void rcu_qs(void)
264 {
265 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
266 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
267 		trace_rcu_grace_period(TPS("rcu_preempt"),
268 				       __this_cpu_read(rcu_data.gp_seq),
269 				       TPS("cpuqs"));
270 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
271 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
272 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
273 	}
274 }
275 
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 void rcu_note_context_switch(bool preempt)
290 {
291 	struct task_struct *t = current;
292 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
293 	struct rcu_node *rnp;
294 
295 	trace_rcu_utilization(TPS("Start context switch"));
296 	lockdep_assert_irqs_disabled();
297 	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298 	if (rcu_preempt_depth() > 0 &&
299 	    !t->rcu_read_unlock_special.b.blocked) {
300 
301 		/* Possibly blocking in an RCU read-side critical section. */
302 		rnp = rdp->mynode;
303 		raw_spin_lock_rcu_node(rnp);
304 		t->rcu_read_unlock_special.b.blocked = true;
305 		t->rcu_blocked_node = rnp;
306 
307 		/*
308 		 * Verify the CPU's sanity, trace the preemption, and
309 		 * then queue the task as required based on the states
310 		 * of any ongoing and expedited grace periods.
311 		 */
312 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
313 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
314 		trace_rcu_preempt_task(rcu_state.name,
315 				       t->pid,
316 				       (rnp->qsmask & rdp->grpmask)
317 				       ? rnp->gp_seq
318 				       : rcu_seq_snap(&rnp->gp_seq));
319 		rcu_preempt_ctxt_queue(rnp, rdp);
320 	} else {
321 		rcu_preempt_deferred_qs(t);
322 	}
323 
324 	/*
325 	 * Either we were not in an RCU read-side critical section to
326 	 * begin with, or we have now recorded that critical section
327 	 * globally.  Either way, we can now note a quiescent state
328 	 * for this CPU.  Again, if we were in an RCU read-side critical
329 	 * section, and if that critical section was blocking the current
330 	 * grace period, then the fact that the task has been enqueued
331 	 * means that we continue to block the current grace period.
332 	 */
333 	rcu_qs();
334 	if (rdp->exp_deferred_qs)
335 		rcu_report_exp_rdp(rdp);
336 	rcu_tasks_qs(current, preempt);
337 	trace_rcu_utilization(TPS("End context switch"));
338 }
339 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
340 
341 /*
342  * Check for preempted RCU readers blocking the current grace period
343  * for the specified rcu_node structure.  If the caller needs a reliable
344  * answer, it must hold the rcu_node's ->lock.
345  */
346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
347 {
348 	return READ_ONCE(rnp->gp_tasks) != NULL;
349 }
350 
351 /* limit value for ->rcu_read_lock_nesting. */
352 #define RCU_NEST_PMAX (INT_MAX / 2)
353 
354 static void rcu_preempt_read_enter(void)
355 {
356 	current->rcu_read_lock_nesting++;
357 }
358 
359 static int rcu_preempt_read_exit(void)
360 {
361 	return --current->rcu_read_lock_nesting;
362 }
363 
364 static void rcu_preempt_depth_set(int val)
365 {
366 	current->rcu_read_lock_nesting = val;
367 }
368 
369 /*
370  * Preemptible RCU implementation for rcu_read_lock().
371  * Just increment ->rcu_read_lock_nesting, shared state will be updated
372  * if we block.
373  */
374 void __rcu_read_lock(void)
375 {
376 	rcu_preempt_read_enter();
377 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
378 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
379 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
380 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
381 	barrier();  /* critical section after entry code. */
382 }
383 EXPORT_SYMBOL_GPL(__rcu_read_lock);
384 
385 /*
386  * Preemptible RCU implementation for rcu_read_unlock().
387  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
388  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
389  * invoke rcu_read_unlock_special() to clean up after a context switch
390  * in an RCU read-side critical section and other special cases.
391  */
392 void __rcu_read_unlock(void)
393 {
394 	struct task_struct *t = current;
395 
396 	if (rcu_preempt_read_exit() == 0) {
397 		barrier();  /* critical section before exit code. */
398 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
399 			rcu_read_unlock_special(t);
400 	}
401 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
402 		int rrln = rcu_preempt_depth();
403 
404 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
405 	}
406 }
407 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
408 
409 /*
410  * Advance a ->blkd_tasks-list pointer to the next entry, instead
411  * returning NULL if at the end of the list.
412  */
413 static struct list_head *rcu_next_node_entry(struct task_struct *t,
414 					     struct rcu_node *rnp)
415 {
416 	struct list_head *np;
417 
418 	np = t->rcu_node_entry.next;
419 	if (np == &rnp->blkd_tasks)
420 		np = NULL;
421 	return np;
422 }
423 
424 /*
425  * Return true if the specified rcu_node structure has tasks that were
426  * preempted within an RCU read-side critical section.
427  */
428 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
429 {
430 	return !list_empty(&rnp->blkd_tasks);
431 }
432 
433 /*
434  * Report deferred quiescent states.  The deferral time can
435  * be quite short, for example, in the case of the call from
436  * rcu_read_unlock_special().
437  */
438 static void
439 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
440 {
441 	bool empty_exp;
442 	bool empty_norm;
443 	bool empty_exp_now;
444 	struct list_head *np;
445 	bool drop_boost_mutex = false;
446 	struct rcu_data *rdp;
447 	struct rcu_node *rnp;
448 	union rcu_special special;
449 
450 	/*
451 	 * If RCU core is waiting for this CPU to exit its critical section,
452 	 * report the fact that it has exited.  Because irqs are disabled,
453 	 * t->rcu_read_unlock_special cannot change.
454 	 */
455 	special = t->rcu_read_unlock_special;
456 	rdp = this_cpu_ptr(&rcu_data);
457 	if (!special.s && !rdp->exp_deferred_qs) {
458 		local_irq_restore(flags);
459 		return;
460 	}
461 	t->rcu_read_unlock_special.s = 0;
462 	if (special.b.need_qs) {
463 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
464 			rcu_report_qs_rdp(rdp);
465 			udelay(rcu_unlock_delay);
466 		} else {
467 			rcu_qs();
468 		}
469 	}
470 
471 	/*
472 	 * Respond to a request by an expedited grace period for a
473 	 * quiescent state from this CPU.  Note that requests from
474 	 * tasks are handled when removing the task from the
475 	 * blocked-tasks list below.
476 	 */
477 	if (rdp->exp_deferred_qs)
478 		rcu_report_exp_rdp(rdp);
479 
480 	/* Clean up if blocked during RCU read-side critical section. */
481 	if (special.b.blocked) {
482 
483 		/*
484 		 * Remove this task from the list it blocked on.  The task
485 		 * now remains queued on the rcu_node corresponding to the
486 		 * CPU it first blocked on, so there is no longer any need
487 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
488 		 */
489 		rnp = t->rcu_blocked_node;
490 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
493 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
495 			     (!empty_norm || rnp->qsmask));
496 		empty_exp = sync_rcu_exp_done(rnp);
497 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
498 		np = rcu_next_node_entry(t, rnp);
499 		list_del_init(&t->rcu_node_entry);
500 		t->rcu_blocked_node = NULL;
501 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
502 						rnp->gp_seq, t->pid);
503 		if (&t->rcu_node_entry == rnp->gp_tasks)
504 			WRITE_ONCE(rnp->gp_tasks, np);
505 		if (&t->rcu_node_entry == rnp->exp_tasks)
506 			WRITE_ONCE(rnp->exp_tasks, np);
507 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
508 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
509 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
510 			if (&t->rcu_node_entry == rnp->boost_tasks)
511 				WRITE_ONCE(rnp->boost_tasks, np);
512 		}
513 
514 		/*
515 		 * If this was the last task on the current list, and if
516 		 * we aren't waiting on any CPUs, report the quiescent state.
517 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
518 		 * so we must take a snapshot of the expedited state.
519 		 */
520 		empty_exp_now = sync_rcu_exp_done(rnp);
521 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
522 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
523 							 rnp->gp_seq,
524 							 0, rnp->qsmask,
525 							 rnp->level,
526 							 rnp->grplo,
527 							 rnp->grphi,
528 							 !!rnp->gp_tasks);
529 			rcu_report_unblock_qs_rnp(rnp, flags);
530 		} else {
531 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
532 		}
533 
534 		/* Unboost if we were boosted. */
535 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
536 			rt_mutex_futex_unlock(&rnp->boost_mtx);
537 
538 		/*
539 		 * If this was the last task on the expedited lists,
540 		 * then we need to report up the rcu_node hierarchy.
541 		 */
542 		if (!empty_exp && empty_exp_now)
543 			rcu_report_exp_rnp(rnp, true);
544 	} else {
545 		local_irq_restore(flags);
546 	}
547 }
548 
549 /*
550  * Is a deferred quiescent-state pending, and are we also not in
551  * an RCU read-side critical section?  It is the caller's responsibility
552  * to ensure it is otherwise safe to report any deferred quiescent
553  * states.  The reason for this is that it is safe to report a
554  * quiescent state during context switch even though preemption
555  * is disabled.  This function cannot be expected to understand these
556  * nuances, so the caller must handle them.
557  */
558 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
559 {
560 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
561 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
562 	       rcu_preempt_depth() == 0;
563 }
564 
565 /*
566  * Report a deferred quiescent state if needed and safe to do so.
567  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
568  * not being in an RCU read-side critical section.  The caller must
569  * evaluate safety in terms of interrupt, softirq, and preemption
570  * disabling.
571  */
572 static void rcu_preempt_deferred_qs(struct task_struct *t)
573 {
574 	unsigned long flags;
575 
576 	if (!rcu_preempt_need_deferred_qs(t))
577 		return;
578 	local_irq_save(flags);
579 	rcu_preempt_deferred_qs_irqrestore(t, flags);
580 }
581 
582 /*
583  * Minimal handler to give the scheduler a chance to re-evaluate.
584  */
585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
586 {
587 	struct rcu_data *rdp;
588 
589 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590 	rdp->defer_qs_iw_pending = false;
591 }
592 
593 /*
594  * Handle special cases during rcu_read_unlock(), such as needing to
595  * notify RCU core processing or task having blocked during the RCU
596  * read-side critical section.
597  */
598 static void rcu_read_unlock_special(struct task_struct *t)
599 {
600 	unsigned long flags;
601 	bool preempt_bh_were_disabled =
602 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603 	bool irqs_were_disabled;
604 
605 	/* NMI handlers cannot block and cannot safely manipulate state. */
606 	if (in_nmi())
607 		return;
608 
609 	local_irq_save(flags);
610 	irqs_were_disabled = irqs_disabled_flags(flags);
611 	if (preempt_bh_were_disabled || irqs_were_disabled) {
612 		bool exp;
613 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614 		struct rcu_node *rnp = rdp->mynode;
615 
616 		exp = (t->rcu_blocked_node &&
617 		       READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
618 		      (rdp->grpmask & READ_ONCE(rnp->expmask));
619 		// Need to defer quiescent state until everything is enabled.
620 		if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
621 			// Using softirq, safe to awaken, and either the
622 			// wakeup is free or there is an expedited GP.
623 			raise_softirq_irqoff(RCU_SOFTIRQ);
624 		} else {
625 			// Enabling BH or preempt does reschedule, so...
626 			// Also if no expediting, slow is OK.
627 			// Plus nohz_full CPUs eventually get tick enabled.
628 			set_tsk_need_resched(current);
629 			set_preempt_need_resched();
630 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
631 			    !rdp->defer_qs_iw_pending && exp) {
632 				// Get scheduler to re-evaluate and call hooks.
633 				// If !IRQ_WORK, FQS scan will eventually IPI.
634 				init_irq_work(&rdp->defer_qs_iw,
635 					      rcu_preempt_deferred_qs_handler);
636 				rdp->defer_qs_iw_pending = true;
637 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
638 			}
639 		}
640 		local_irq_restore(flags);
641 		return;
642 	}
643 	rcu_preempt_deferred_qs_irqrestore(t, flags);
644 }
645 
646 /*
647  * Check that the list of blocked tasks for the newly completed grace
648  * period is in fact empty.  It is a serious bug to complete a grace
649  * period that still has RCU readers blocked!  This function must be
650  * invoked -before- updating this rnp's ->gp_seq.
651  *
652  * Also, if there are blocked tasks on the list, they automatically
653  * block the newly created grace period, so set up ->gp_tasks accordingly.
654  */
655 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
656 {
657 	struct task_struct *t;
658 
659 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
660 	raw_lockdep_assert_held_rcu_node(rnp);
661 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
662 		dump_blkd_tasks(rnp, 10);
663 	if (rcu_preempt_has_tasks(rnp) &&
664 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
665 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
666 		t = container_of(rnp->gp_tasks, struct task_struct,
667 				 rcu_node_entry);
668 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
669 						rnp->gp_seq, t->pid);
670 	}
671 	WARN_ON_ONCE(rnp->qsmask);
672 }
673 
674 /*
675  * Check for a quiescent state from the current CPU, including voluntary
676  * context switches for Tasks RCU.  When a task blocks, the task is
677  * recorded in the corresponding CPU's rcu_node structure, which is checked
678  * elsewhere, hence this function need only check for quiescent states
679  * related to the current CPU, not to those related to tasks.
680  */
681 static void rcu_flavor_sched_clock_irq(int user)
682 {
683 	struct task_struct *t = current;
684 
685 	if (user || rcu_is_cpu_rrupt_from_idle()) {
686 		rcu_note_voluntary_context_switch(current);
687 	}
688 	if (rcu_preempt_depth() > 0 ||
689 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
690 		/* No QS, force context switch if deferred. */
691 		if (rcu_preempt_need_deferred_qs(t)) {
692 			set_tsk_need_resched(t);
693 			set_preempt_need_resched();
694 		}
695 	} else if (rcu_preempt_need_deferred_qs(t)) {
696 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
697 		return;
698 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
699 		rcu_qs(); /* Report immediate QS. */
700 		return;
701 	}
702 
703 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
704 	if (rcu_preempt_depth() > 0 &&
705 	    __this_cpu_read(rcu_data.core_needs_qs) &&
706 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
707 	    !t->rcu_read_unlock_special.b.need_qs &&
708 	    time_after(jiffies, rcu_state.gp_start + HZ))
709 		t->rcu_read_unlock_special.b.need_qs = true;
710 }
711 
712 /*
713  * Check for a task exiting while in a preemptible-RCU read-side
714  * critical section, clean up if so.  No need to issue warnings, as
715  * debug_check_no_locks_held() already does this if lockdep is enabled.
716  * Besides, if this function does anything other than just immediately
717  * return, there was a bug of some sort.  Spewing warnings from this
718  * function is like as not to simply obscure important prior warnings.
719  */
720 void exit_rcu(void)
721 {
722 	struct task_struct *t = current;
723 
724 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
725 		rcu_preempt_depth_set(1);
726 		barrier();
727 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
728 	} else if (unlikely(rcu_preempt_depth())) {
729 		rcu_preempt_depth_set(1);
730 	} else {
731 		return;
732 	}
733 	__rcu_read_unlock();
734 	rcu_preempt_deferred_qs(current);
735 }
736 
737 /*
738  * Dump the blocked-tasks state, but limit the list dump to the
739  * specified number of elements.
740  */
741 static void
742 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
743 {
744 	int cpu;
745 	int i;
746 	struct list_head *lhp;
747 	bool onl;
748 	struct rcu_data *rdp;
749 	struct rcu_node *rnp1;
750 
751 	raw_lockdep_assert_held_rcu_node(rnp);
752 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
753 		__func__, rnp->grplo, rnp->grphi, rnp->level,
754 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
755 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
756 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
757 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
758 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
759 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
760 		READ_ONCE(rnp->exp_tasks));
761 	pr_info("%s: ->blkd_tasks", __func__);
762 	i = 0;
763 	list_for_each(lhp, &rnp->blkd_tasks) {
764 		pr_cont(" %p", lhp);
765 		if (++i >= ncheck)
766 			break;
767 	}
768 	pr_cont("\n");
769 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
770 		rdp = per_cpu_ptr(&rcu_data, cpu);
771 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
772 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
773 			cpu, ".o"[onl],
774 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
775 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
776 	}
777 }
778 
779 #else /* #ifdef CONFIG_PREEMPT_RCU */
780 
781 /*
782  * If strict grace periods are enabled, and if the calling
783  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
784  * report that quiescent state and, if requested, spin for a bit.
785  */
786 void rcu_read_unlock_strict(void)
787 {
788 	struct rcu_data *rdp;
789 
790 	if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
791 	   irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
792 		return;
793 	rdp = this_cpu_ptr(&rcu_data);
794 	rcu_report_qs_rdp(rdp);
795 	udelay(rcu_unlock_delay);
796 }
797 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
798 
799 /*
800  * Tell them what RCU they are running.
801  */
802 static void __init rcu_bootup_announce(void)
803 {
804 	pr_info("Hierarchical RCU implementation.\n");
805 	rcu_bootup_announce_oddness();
806 }
807 
808 /*
809  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
810  * how many quiescent states passed, just if there was at least one since
811  * the start of the grace period, this just sets a flag.  The caller must
812  * have disabled preemption.
813  */
814 static void rcu_qs(void)
815 {
816 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
817 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
818 		return;
819 	trace_rcu_grace_period(TPS("rcu_sched"),
820 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
821 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
822 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
823 		return;
824 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
825 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
826 }
827 
828 /*
829  * Register an urgently needed quiescent state.  If there is an
830  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
831  * dyntick-idle quiescent state visible to other CPUs, which will in
832  * some cases serve for expedited as well as normal grace periods.
833  * Either way, register a lightweight quiescent state.
834  */
835 void rcu_all_qs(void)
836 {
837 	unsigned long flags;
838 
839 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
840 		return;
841 	preempt_disable();
842 	/* Load rcu_urgent_qs before other flags. */
843 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
844 		preempt_enable();
845 		return;
846 	}
847 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
848 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
849 		local_irq_save(flags);
850 		rcu_momentary_dyntick_idle();
851 		local_irq_restore(flags);
852 	}
853 	rcu_qs();
854 	preempt_enable();
855 }
856 EXPORT_SYMBOL_GPL(rcu_all_qs);
857 
858 /*
859  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
860  */
861 void rcu_note_context_switch(bool preempt)
862 {
863 	trace_rcu_utilization(TPS("Start context switch"));
864 	rcu_qs();
865 	/* Load rcu_urgent_qs before other flags. */
866 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
867 		goto out;
868 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
869 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
870 		rcu_momentary_dyntick_idle();
871 	rcu_tasks_qs(current, preempt);
872 out:
873 	trace_rcu_utilization(TPS("End context switch"));
874 }
875 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
876 
877 /*
878  * Because preemptible RCU does not exist, there are never any preempted
879  * RCU readers.
880  */
881 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
882 {
883 	return 0;
884 }
885 
886 /*
887  * Because there is no preemptible RCU, there can be no readers blocked.
888  */
889 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
890 {
891 	return false;
892 }
893 
894 /*
895  * Because there is no preemptible RCU, there can be no deferred quiescent
896  * states.
897  */
898 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
899 {
900 	return false;
901 }
902 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
903 
904 /*
905  * Because there is no preemptible RCU, there can be no readers blocked,
906  * so there is no need to check for blocked tasks.  So check only for
907  * bogus qsmask values.
908  */
909 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
910 {
911 	WARN_ON_ONCE(rnp->qsmask);
912 }
913 
914 /*
915  * Check to see if this CPU is in a non-context-switch quiescent state,
916  * namely user mode and idle loop.
917  */
918 static void rcu_flavor_sched_clock_irq(int user)
919 {
920 	if (user || rcu_is_cpu_rrupt_from_idle()) {
921 
922 		/*
923 		 * Get here if this CPU took its interrupt from user
924 		 * mode or from the idle loop, and if this is not a
925 		 * nested interrupt.  In this case, the CPU is in
926 		 * a quiescent state, so note it.
927 		 *
928 		 * No memory barrier is required here because rcu_qs()
929 		 * references only CPU-local variables that other CPUs
930 		 * neither access nor modify, at least not while the
931 		 * corresponding CPU is online.
932 		 */
933 
934 		rcu_qs();
935 	}
936 }
937 
938 /*
939  * Because preemptible RCU does not exist, tasks cannot possibly exit
940  * while in preemptible RCU read-side critical sections.
941  */
942 void exit_rcu(void)
943 {
944 }
945 
946 /*
947  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
948  */
949 static void
950 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
951 {
952 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
953 }
954 
955 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
956 
957 /*
958  * If boosting, set rcuc kthreads to realtime priority.
959  */
960 static void rcu_cpu_kthread_setup(unsigned int cpu)
961 {
962 #ifdef CONFIG_RCU_BOOST
963 	struct sched_param sp;
964 
965 	sp.sched_priority = kthread_prio;
966 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
967 #endif /* #ifdef CONFIG_RCU_BOOST */
968 }
969 
970 #ifdef CONFIG_RCU_BOOST
971 
972 /*
973  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
974  * or ->boost_tasks, advancing the pointer to the next task in the
975  * ->blkd_tasks list.
976  *
977  * Note that irqs must be enabled: boosting the task can block.
978  * Returns 1 if there are more tasks needing to be boosted.
979  */
980 static int rcu_boost(struct rcu_node *rnp)
981 {
982 	unsigned long flags;
983 	struct task_struct *t;
984 	struct list_head *tb;
985 
986 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
987 	    READ_ONCE(rnp->boost_tasks) == NULL)
988 		return 0;  /* Nothing left to boost. */
989 
990 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
991 
992 	/*
993 	 * Recheck under the lock: all tasks in need of boosting
994 	 * might exit their RCU read-side critical sections on their own.
995 	 */
996 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
997 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
998 		return 0;
999 	}
1000 
1001 	/*
1002 	 * Preferentially boost tasks blocking expedited grace periods.
1003 	 * This cannot starve the normal grace periods because a second
1004 	 * expedited grace period must boost all blocked tasks, including
1005 	 * those blocking the pre-existing normal grace period.
1006 	 */
1007 	if (rnp->exp_tasks != NULL)
1008 		tb = rnp->exp_tasks;
1009 	else
1010 		tb = rnp->boost_tasks;
1011 
1012 	/*
1013 	 * We boost task t by manufacturing an rt_mutex that appears to
1014 	 * be held by task t.  We leave a pointer to that rt_mutex where
1015 	 * task t can find it, and task t will release the mutex when it
1016 	 * exits its outermost RCU read-side critical section.  Then
1017 	 * simply acquiring this artificial rt_mutex will boost task
1018 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1019 	 *
1020 	 * Note that task t must acquire rnp->lock to remove itself from
1021 	 * the ->blkd_tasks list, which it will do from exit() if from
1022 	 * nowhere else.  We therefore are guaranteed that task t will
1023 	 * stay around at least until we drop rnp->lock.  Note that
1024 	 * rnp->lock also resolves races between our priority boosting
1025 	 * and task t's exiting its outermost RCU read-side critical
1026 	 * section.
1027 	 */
1028 	t = container_of(tb, struct task_struct, rcu_node_entry);
1029 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1030 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1031 	/* Lock only for side effect: boosts task t's priority. */
1032 	rt_mutex_lock(&rnp->boost_mtx);
1033 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1034 
1035 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1036 	       READ_ONCE(rnp->boost_tasks) != NULL;
1037 }
1038 
1039 /*
1040  * Priority-boosting kthread, one per leaf rcu_node.
1041  */
1042 static int rcu_boost_kthread(void *arg)
1043 {
1044 	struct rcu_node *rnp = (struct rcu_node *)arg;
1045 	int spincnt = 0;
1046 	int more2boost;
1047 
1048 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1049 	for (;;) {
1050 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1051 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1053 			 READ_ONCE(rnp->exp_tasks));
1054 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1055 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1056 		more2boost = rcu_boost(rnp);
1057 		if (more2boost)
1058 			spincnt++;
1059 		else
1060 			spincnt = 0;
1061 		if (spincnt > 10) {
1062 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1063 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1064 			schedule_timeout_idle(2);
1065 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1066 			spincnt = 0;
1067 		}
1068 	}
1069 	/* NOTREACHED */
1070 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Check to see if it is time to start boosting RCU readers that are
1076  * blocking the current grace period, and, if so, tell the per-rcu_node
1077  * kthread to start boosting them.  If there is an expedited grace
1078  * period in progress, it is always time to boost.
1079  *
1080  * The caller must hold rnp->lock, which this function releases.
1081  * The ->boost_kthread_task is immortal, so we don't need to worry
1082  * about it going away.
1083  */
1084 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1085 	__releases(rnp->lock)
1086 {
1087 	raw_lockdep_assert_held_rcu_node(rnp);
1088 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1089 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1090 		return;
1091 	}
1092 	if (rnp->exp_tasks != NULL ||
1093 	    (rnp->gp_tasks != NULL &&
1094 	     rnp->boost_tasks == NULL &&
1095 	     rnp->qsmask == 0 &&
1096 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1097 		if (rnp->exp_tasks == NULL)
1098 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1099 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1100 		rcu_wake_cond(rnp->boost_kthread_task,
1101 			      READ_ONCE(rnp->boost_kthread_status));
1102 	} else {
1103 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1104 	}
1105 }
1106 
1107 /*
1108  * Is the current CPU running the RCU-callbacks kthread?
1109  * Caller must have preemption disabled.
1110  */
1111 static bool rcu_is_callbacks_kthread(void)
1112 {
1113 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1114 }
1115 
1116 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1117 
1118 /*
1119  * Do priority-boost accounting for the start of a new grace period.
1120  */
1121 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1122 {
1123 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1124 }
1125 
1126 /*
1127  * Create an RCU-boost kthread for the specified node if one does not
1128  * already exist.  We only create this kthread for preemptible RCU.
1129  * Returns zero if all is well, a negated errno otherwise.
1130  */
1131 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1132 {
1133 	int rnp_index = rnp - rcu_get_root();
1134 	unsigned long flags;
1135 	struct sched_param sp;
1136 	struct task_struct *t;
1137 
1138 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1139 		return;
1140 
1141 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1142 		return;
1143 
1144 	rcu_state.boost = 1;
1145 
1146 	if (rnp->boost_kthread_task != NULL)
1147 		return;
1148 
1149 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1150 			   "rcub/%d", rnp_index);
1151 	if (WARN_ON_ONCE(IS_ERR(t)))
1152 		return;
1153 
1154 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1155 	rnp->boost_kthread_task = t;
1156 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1157 	sp.sched_priority = kthread_prio;
1158 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1159 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1160 }
1161 
1162 /*
1163  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1164  * served by the rcu_node in question.  The CPU hotplug lock is still
1165  * held, so the value of rnp->qsmaskinit will be stable.
1166  *
1167  * We don't include outgoingcpu in the affinity set, use -1 if there is
1168  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1169  * this function allows the kthread to execute on any CPU.
1170  */
1171 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1172 {
1173 	struct task_struct *t = rnp->boost_kthread_task;
1174 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1175 	cpumask_var_t cm;
1176 	int cpu;
1177 
1178 	if (!t)
1179 		return;
1180 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1181 		return;
1182 	for_each_leaf_node_possible_cpu(rnp, cpu)
1183 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1184 		    cpu != outgoingcpu)
1185 			cpumask_set_cpu(cpu, cm);
1186 	if (cpumask_weight(cm) == 0)
1187 		cpumask_setall(cm);
1188 	set_cpus_allowed_ptr(t, cm);
1189 	free_cpumask_var(cm);
1190 }
1191 
1192 /*
1193  * Spawn boost kthreads -- called as soon as the scheduler is running.
1194  */
1195 static void __init rcu_spawn_boost_kthreads(void)
1196 {
1197 	struct rcu_node *rnp;
1198 
1199 	rcu_for_each_leaf_node(rnp)
1200 		rcu_spawn_one_boost_kthread(rnp);
1201 }
1202 
1203 static void rcu_prepare_kthreads(int cpu)
1204 {
1205 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1206 	struct rcu_node *rnp = rdp->mynode;
1207 
1208 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209 	if (rcu_scheduler_fully_active)
1210 		rcu_spawn_one_boost_kthread(rnp);
1211 }
1212 
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1214 
1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216 	__releases(rnp->lock)
1217 {
1218 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 }
1220 
1221 static bool rcu_is_callbacks_kthread(void)
1222 {
1223 	return false;
1224 }
1225 
1226 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1227 {
1228 }
1229 
1230 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1231 {
1232 }
1233 
1234 static void __init rcu_spawn_boost_kthreads(void)
1235 {
1236 }
1237 
1238 static void rcu_prepare_kthreads(int cpu)
1239 {
1240 }
1241 
1242 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1243 
1244 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1245 
1246 /*
1247  * Check to see if any future non-offloaded RCU-related work will need
1248  * to be done by the current CPU, even if none need be done immediately,
1249  * returning 1 if so.  This function is part of the RCU implementation;
1250  * it is -not- an exported member of the RCU API.
1251  *
1252  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1253  * CPU has RCU callbacks queued.
1254  */
1255 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1256 {
1257 	*nextevt = KTIME_MAX;
1258 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1259 	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1260 }
1261 
1262 /*
1263  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1264  * after it.
1265  */
1266 static void rcu_cleanup_after_idle(void)
1267 {
1268 }
1269 
1270 /*
1271  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1272  * is nothing.
1273  */
1274 static void rcu_prepare_for_idle(void)
1275 {
1276 }
1277 
1278 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1279 
1280 /*
1281  * This code is invoked when a CPU goes idle, at which point we want
1282  * to have the CPU do everything required for RCU so that it can enter
1283  * the energy-efficient dyntick-idle mode.
1284  *
1285  * The following preprocessor symbol controls this:
1286  *
1287  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1288  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1289  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1290  *	benchmarkers who might otherwise be tempted to set this to a large
1291  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1292  *	system.  And if you are -that- concerned about energy efficiency,
1293  *	just power the system down and be done with it!
1294  *
1295  * The value below works well in practice.  If future workloads require
1296  * adjustment, they can be converted into kernel config parameters, though
1297  * making the state machine smarter might be a better option.
1298  */
1299 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1300 
1301 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1302 module_param(rcu_idle_gp_delay, int, 0644);
1303 
1304 /*
1305  * Try to advance callbacks on the current CPU, but only if it has been
1306  * awhile since the last time we did so.  Afterwards, if there are any
1307  * callbacks ready for immediate invocation, return true.
1308  */
1309 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1310 {
1311 	bool cbs_ready = false;
1312 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1313 	struct rcu_node *rnp;
1314 
1315 	/* Exit early if we advanced recently. */
1316 	if (jiffies == rdp->last_advance_all)
1317 		return false;
1318 	rdp->last_advance_all = jiffies;
1319 
1320 	rnp = rdp->mynode;
1321 
1322 	/*
1323 	 * Don't bother checking unless a grace period has
1324 	 * completed since we last checked and there are
1325 	 * callbacks not yet ready to invoke.
1326 	 */
1327 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1328 				  rcu_seq_current(&rnp->gp_seq)) ||
1329 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1330 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1331 		note_gp_changes(rdp);
1332 
1333 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1334 		cbs_ready = true;
1335 	return cbs_ready;
1336 }
1337 
1338 /*
1339  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1340  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1341  * caller about what to set the timeout.
1342  *
1343  * The caller must have disabled interrupts.
1344  */
1345 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1346 {
1347 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1348 	unsigned long dj;
1349 
1350 	lockdep_assert_irqs_disabled();
1351 
1352 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1353 	if (rcu_segcblist_empty(&rdp->cblist) ||
1354 	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1355 		*nextevt = KTIME_MAX;
1356 		return 0;
1357 	}
1358 
1359 	/* Attempt to advance callbacks. */
1360 	if (rcu_try_advance_all_cbs()) {
1361 		/* Some ready to invoke, so initiate later invocation. */
1362 		invoke_rcu_core();
1363 		return 1;
1364 	}
1365 	rdp->last_accelerate = jiffies;
1366 
1367 	/* Request timer and round. */
1368 	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1369 
1370 	*nextevt = basemono + dj * TICK_NSEC;
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1376  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1377  * major task is to accelerate (that is, assign grace-period numbers to) any
1378  * recently arrived callbacks.
1379  *
1380  * The caller must have disabled interrupts.
1381  */
1382 static void rcu_prepare_for_idle(void)
1383 {
1384 	bool needwake;
1385 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1386 	struct rcu_node *rnp;
1387 	int tne;
1388 
1389 	lockdep_assert_irqs_disabled();
1390 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1391 		return;
1392 
1393 	/* Handle nohz enablement switches conservatively. */
1394 	tne = READ_ONCE(tick_nohz_active);
1395 	if (tne != rdp->tick_nohz_enabled_snap) {
1396 		if (!rcu_segcblist_empty(&rdp->cblist))
1397 			invoke_rcu_core(); /* force nohz to see update. */
1398 		rdp->tick_nohz_enabled_snap = tne;
1399 		return;
1400 	}
1401 	if (!tne)
1402 		return;
1403 
1404 	/*
1405 	 * If we have not yet accelerated this jiffy, accelerate all
1406 	 * callbacks on this CPU.
1407 	 */
1408 	if (rdp->last_accelerate == jiffies)
1409 		return;
1410 	rdp->last_accelerate = jiffies;
1411 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1412 		rnp = rdp->mynode;
1413 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1414 		needwake = rcu_accelerate_cbs(rnp, rdp);
1415 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1416 		if (needwake)
1417 			rcu_gp_kthread_wake();
1418 	}
1419 }
1420 
1421 /*
1422  * Clean up for exit from idle.  Attempt to advance callbacks based on
1423  * any grace periods that elapsed while the CPU was idle, and if any
1424  * callbacks are now ready to invoke, initiate invocation.
1425  */
1426 static void rcu_cleanup_after_idle(void)
1427 {
1428 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1429 
1430 	lockdep_assert_irqs_disabled();
1431 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1432 		return;
1433 	if (rcu_try_advance_all_cbs())
1434 		invoke_rcu_core();
1435 }
1436 
1437 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1438 
1439 #ifdef CONFIG_RCU_NOCB_CPU
1440 
1441 /*
1442  * Offload callback processing from the boot-time-specified set of CPUs
1443  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1444  * created that pull the callbacks from the corresponding CPU, wait for
1445  * a grace period to elapse, and invoke the callbacks.  These kthreads
1446  * are organized into GP kthreads, which manage incoming callbacks, wait for
1447  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1448  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1449  * do a wake_up() on their GP kthread when they insert a callback into any
1450  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1451  * in which case each kthread actively polls its CPU.  (Which isn't so great
1452  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1453  *
1454  * This is intended to be used in conjunction with Frederic Weisbecker's
1455  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1456  * running CPU-bound user-mode computations.
1457  *
1458  * Offloading of callbacks can also be used as an energy-efficiency
1459  * measure because CPUs with no RCU callbacks queued are more aggressive
1460  * about entering dyntick-idle mode.
1461  */
1462 
1463 
1464 /*
1465  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1466  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1467  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1468  * given, a warning is emitted and all CPUs are offloaded.
1469  */
1470 static int __init rcu_nocb_setup(char *str)
1471 {
1472 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1473 	if (!strcasecmp(str, "all"))
1474 		cpumask_setall(rcu_nocb_mask);
1475 	else
1476 		if (cpulist_parse(str, rcu_nocb_mask)) {
1477 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1478 			cpumask_setall(rcu_nocb_mask);
1479 		}
1480 	return 1;
1481 }
1482 __setup("rcu_nocbs=", rcu_nocb_setup);
1483 
1484 static int __init parse_rcu_nocb_poll(char *arg)
1485 {
1486 	rcu_nocb_poll = true;
1487 	return 0;
1488 }
1489 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1490 
1491 /*
1492  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1493  * After all, the main point of bypassing is to avoid lock contention
1494  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1495  */
1496 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1497 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1498 
1499 /*
1500  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1501  * lock isn't immediately available, increment ->nocb_lock_contended to
1502  * flag the contention.
1503  */
1504 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1505 	__acquires(&rdp->nocb_bypass_lock)
1506 {
1507 	lockdep_assert_irqs_disabled();
1508 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1509 		return;
1510 	atomic_inc(&rdp->nocb_lock_contended);
1511 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1512 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1513 	raw_spin_lock(&rdp->nocb_bypass_lock);
1514 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1515 	atomic_dec(&rdp->nocb_lock_contended);
1516 }
1517 
1518 /*
1519  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1520  * not contended.  Please note that this is extremely special-purpose,
1521  * relying on the fact that at most two kthreads and one CPU contend for
1522  * this lock, and also that the two kthreads are guaranteed to have frequent
1523  * grace-period-duration time intervals between successive acquisitions
1524  * of the lock.  This allows us to use an extremely simple throttling
1525  * mechanism, and further to apply it only to the CPU doing floods of
1526  * call_rcu() invocations.  Don't try this at home!
1527  */
1528 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1529 {
1530 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1531 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1532 		cpu_relax();
1533 }
1534 
1535 /*
1536  * Conditionally acquire the specified rcu_data structure's
1537  * ->nocb_bypass_lock.
1538  */
1539 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1540 {
1541 	lockdep_assert_irqs_disabled();
1542 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1543 }
1544 
1545 /*
1546  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1547  */
1548 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1549 	__releases(&rdp->nocb_bypass_lock)
1550 {
1551 	lockdep_assert_irqs_disabled();
1552 	raw_spin_unlock(&rdp->nocb_bypass_lock);
1553 }
1554 
1555 /*
1556  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1557  * if it corresponds to a no-CBs CPU.
1558  */
1559 static void rcu_nocb_lock(struct rcu_data *rdp)
1560 {
1561 	lockdep_assert_irqs_disabled();
1562 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1563 		return;
1564 	raw_spin_lock(&rdp->nocb_lock);
1565 }
1566 
1567 /*
1568  * Release the specified rcu_data structure's ->nocb_lock, but only
1569  * if it corresponds to a no-CBs CPU.
1570  */
1571 static void rcu_nocb_unlock(struct rcu_data *rdp)
1572 {
1573 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1574 		lockdep_assert_irqs_disabled();
1575 		raw_spin_unlock(&rdp->nocb_lock);
1576 	}
1577 }
1578 
1579 /*
1580  * Release the specified rcu_data structure's ->nocb_lock and restore
1581  * interrupts, but only if it corresponds to a no-CBs CPU.
1582  */
1583 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1584 				       unsigned long flags)
1585 {
1586 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1587 		lockdep_assert_irqs_disabled();
1588 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1589 	} else {
1590 		local_irq_restore(flags);
1591 	}
1592 }
1593 
1594 /* Lockdep check that ->cblist may be safely accessed. */
1595 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1596 {
1597 	lockdep_assert_irqs_disabled();
1598 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1599 		lockdep_assert_held(&rdp->nocb_lock);
1600 }
1601 
1602 /*
1603  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1604  * grace period.
1605  */
1606 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1607 {
1608 	swake_up_all(sq);
1609 }
1610 
1611 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1612 {
1613 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1614 }
1615 
1616 static void rcu_init_one_nocb(struct rcu_node *rnp)
1617 {
1618 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1619 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1620 }
1621 
1622 /* Is the specified CPU a no-CBs CPU? */
1623 bool rcu_is_nocb_cpu(int cpu)
1624 {
1625 	if (cpumask_available(rcu_nocb_mask))
1626 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1627 	return false;
1628 }
1629 
1630 /*
1631  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1632  * and this function releases it.
1633  */
1634 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1635 			   unsigned long flags)
1636 	__releases(rdp->nocb_lock)
1637 {
1638 	bool needwake = false;
1639 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1640 
1641 	lockdep_assert_held(&rdp->nocb_lock);
1642 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1643 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1644 				    TPS("AlreadyAwake"));
1645 		rcu_nocb_unlock_irqrestore(rdp, flags);
1646 		return;
1647 	}
1648 	del_timer(&rdp->nocb_timer);
1649 	rcu_nocb_unlock_irqrestore(rdp, flags);
1650 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1651 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1652 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1653 		needwake = true;
1654 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1655 	}
1656 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1657 	if (needwake)
1658 		wake_up_process(rdp_gp->nocb_gp_kthread);
1659 }
1660 
1661 /*
1662  * Arrange to wake the GP kthread for this NOCB group at some future
1663  * time when it is safe to do so.
1664  */
1665 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1666 			       const char *reason)
1667 {
1668 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1669 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1670 	if (rdp->nocb_defer_wakeup < waketype)
1671 		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1672 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1673 }
1674 
1675 /*
1676  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1677  * However, if there is a callback to be enqueued and if ->nocb_bypass
1678  * proves to be initially empty, just return false because the no-CB GP
1679  * kthread may need to be awakened in this case.
1680  *
1681  * Note that this function always returns true if rhp is NULL.
1682  */
1683 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1684 				     unsigned long j)
1685 {
1686 	struct rcu_cblist rcl;
1687 
1688 	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1689 	rcu_lockdep_assert_cblist_protected(rdp);
1690 	lockdep_assert_held(&rdp->nocb_bypass_lock);
1691 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1692 		raw_spin_unlock(&rdp->nocb_bypass_lock);
1693 		return false;
1694 	}
1695 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1696 	if (rhp)
1697 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1698 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1699 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1700 	WRITE_ONCE(rdp->nocb_bypass_first, j);
1701 	rcu_nocb_bypass_unlock(rdp);
1702 	return true;
1703 }
1704 
1705 /*
1706  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1707  * However, if there is a callback to be enqueued and if ->nocb_bypass
1708  * proves to be initially empty, just return false because the no-CB GP
1709  * kthread may need to be awakened in this case.
1710  *
1711  * Note that this function always returns true if rhp is NULL.
1712  */
1713 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1714 				  unsigned long j)
1715 {
1716 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1717 		return true;
1718 	rcu_lockdep_assert_cblist_protected(rdp);
1719 	rcu_nocb_bypass_lock(rdp);
1720 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1721 }
1722 
1723 /*
1724  * If the ->nocb_bypass_lock is immediately available, flush the
1725  * ->nocb_bypass queue into ->cblist.
1726  */
1727 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1728 {
1729 	rcu_lockdep_assert_cblist_protected(rdp);
1730 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1731 	    !rcu_nocb_bypass_trylock(rdp))
1732 		return;
1733 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1734 }
1735 
1736 /*
1737  * See whether it is appropriate to use the ->nocb_bypass list in order
1738  * to control contention on ->nocb_lock.  A limited number of direct
1739  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1740  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1741  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1742  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1743  * used if ->cblist is empty, because otherwise callbacks can be stranded
1744  * on ->nocb_bypass because we cannot count on the current CPU ever again
1745  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1746  * non-empty, the corresponding no-CBs grace-period kthread must not be
1747  * in an indefinite sleep state.
1748  *
1749  * Finally, it is not permitted to use the bypass during early boot,
1750  * as doing so would confuse the auto-initialization code.  Besides
1751  * which, there is no point in worrying about lock contention while
1752  * there is only one CPU in operation.
1753  */
1754 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1755 				bool *was_alldone, unsigned long flags)
1756 {
1757 	unsigned long c;
1758 	unsigned long cur_gp_seq;
1759 	unsigned long j = jiffies;
1760 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1761 
1762 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1763 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1764 		return false; /* Not offloaded, no bypassing. */
1765 	}
1766 	lockdep_assert_irqs_disabled();
1767 
1768 	// Don't use ->nocb_bypass during early boot.
1769 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1770 		rcu_nocb_lock(rdp);
1771 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1772 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1773 		return false;
1774 	}
1775 
1776 	// If we have advanced to a new jiffy, reset counts to allow
1777 	// moving back from ->nocb_bypass to ->cblist.
1778 	if (j == rdp->nocb_nobypass_last) {
1779 		c = rdp->nocb_nobypass_count + 1;
1780 	} else {
1781 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1782 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1783 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1784 				 nocb_nobypass_lim_per_jiffy))
1785 			c = 0;
1786 		else if (c > nocb_nobypass_lim_per_jiffy)
1787 			c = nocb_nobypass_lim_per_jiffy;
1788 	}
1789 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1790 
1791 	// If there hasn't yet been all that many ->cblist enqueues
1792 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1793 	// ->nocb_bypass first.
1794 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1795 		rcu_nocb_lock(rdp);
1796 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1797 		if (*was_alldone)
1798 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1799 					    TPS("FirstQ"));
1800 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1801 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1802 		return false; // Caller must enqueue the callback.
1803 	}
1804 
1805 	// If ->nocb_bypass has been used too long or is too full,
1806 	// flush ->nocb_bypass to ->cblist.
1807 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1808 	    ncbs >= qhimark) {
1809 		rcu_nocb_lock(rdp);
1810 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1811 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1812 			if (*was_alldone)
1813 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1814 						    TPS("FirstQ"));
1815 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1816 			return false; // Caller must enqueue the callback.
1817 		}
1818 		if (j != rdp->nocb_gp_adv_time &&
1819 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1820 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1821 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1822 			rdp->nocb_gp_adv_time = j;
1823 		}
1824 		rcu_nocb_unlock_irqrestore(rdp, flags);
1825 		return true; // Callback already enqueued.
1826 	}
1827 
1828 	// We need to use the bypass.
1829 	rcu_nocb_wait_contended(rdp);
1830 	rcu_nocb_bypass_lock(rdp);
1831 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1832 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1833 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1834 	if (!ncbs) {
1835 		WRITE_ONCE(rdp->nocb_bypass_first, j);
1836 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1837 	}
1838 	rcu_nocb_bypass_unlock(rdp);
1839 	smp_mb(); /* Order enqueue before wake. */
1840 	if (ncbs) {
1841 		local_irq_restore(flags);
1842 	} else {
1843 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1844 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1845 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1846 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1847 					    TPS("FirstBQwake"));
1848 			__call_rcu_nocb_wake(rdp, true, flags);
1849 		} else {
1850 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1851 					    TPS("FirstBQnoWake"));
1852 			rcu_nocb_unlock_irqrestore(rdp, flags);
1853 		}
1854 	}
1855 	return true; // Callback already enqueued.
1856 }
1857 
1858 /*
1859  * Awaken the no-CBs grace-period kthead if needed, either due to it
1860  * legitimately being asleep or due to overload conditions.
1861  *
1862  * If warranted, also wake up the kthread servicing this CPUs queues.
1863  */
1864 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1865 				 unsigned long flags)
1866 				 __releases(rdp->nocb_lock)
1867 {
1868 	unsigned long cur_gp_seq;
1869 	unsigned long j;
1870 	long len;
1871 	struct task_struct *t;
1872 
1873 	// If we are being polled or there is no kthread, just leave.
1874 	t = READ_ONCE(rdp->nocb_gp_kthread);
1875 	if (rcu_nocb_poll || !t) {
1876 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1877 				    TPS("WakeNotPoll"));
1878 		rcu_nocb_unlock_irqrestore(rdp, flags);
1879 		return;
1880 	}
1881 	// Need to actually to a wakeup.
1882 	len = rcu_segcblist_n_cbs(&rdp->cblist);
1883 	if (was_alldone) {
1884 		rdp->qlen_last_fqs_check = len;
1885 		if (!irqs_disabled_flags(flags)) {
1886 			/* ... if queue was empty ... */
1887 			wake_nocb_gp(rdp, false, flags);
1888 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1889 					    TPS("WakeEmpty"));
1890 		} else {
1891 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1892 					   TPS("WakeEmptyIsDeferred"));
1893 			rcu_nocb_unlock_irqrestore(rdp, flags);
1894 		}
1895 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1896 		/* ... or if many callbacks queued. */
1897 		rdp->qlen_last_fqs_check = len;
1898 		j = jiffies;
1899 		if (j != rdp->nocb_gp_adv_time &&
1900 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1901 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1902 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1903 			rdp->nocb_gp_adv_time = j;
1904 		}
1905 		smp_mb(); /* Enqueue before timer_pending(). */
1906 		if ((rdp->nocb_cb_sleep ||
1907 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1908 		    !timer_pending(&rdp->nocb_bypass_timer))
1909 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1910 					   TPS("WakeOvfIsDeferred"));
1911 		rcu_nocb_unlock_irqrestore(rdp, flags);
1912 	} else {
1913 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1914 		rcu_nocb_unlock_irqrestore(rdp, flags);
1915 	}
1916 	return;
1917 }
1918 
1919 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1920 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1921 {
1922 	unsigned long flags;
1923 	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1924 
1925 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1926 	rcu_nocb_lock_irqsave(rdp, flags);
1927 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1928 	__call_rcu_nocb_wake(rdp, true, flags);
1929 }
1930 
1931 /*
1932  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1933  * or for grace periods to end.
1934  */
1935 static void nocb_gp_wait(struct rcu_data *my_rdp)
1936 {
1937 	bool bypass = false;
1938 	long bypass_ncbs;
1939 	int __maybe_unused cpu = my_rdp->cpu;
1940 	unsigned long cur_gp_seq;
1941 	unsigned long flags;
1942 	bool gotcbs = false;
1943 	unsigned long j = jiffies;
1944 	bool needwait_gp = false; // This prevents actual uninitialized use.
1945 	bool needwake;
1946 	bool needwake_gp;
1947 	struct rcu_data *rdp;
1948 	struct rcu_node *rnp;
1949 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1950 	bool wasempty = false;
1951 
1952 	/*
1953 	 * Each pass through the following loop checks for CBs and for the
1954 	 * nearest grace period (if any) to wait for next.  The CB kthreads
1955 	 * and the global grace-period kthread are awakened if needed.
1956 	 */
1957 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
1958 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1959 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1960 		rcu_nocb_lock_irqsave(rdp, flags);
1961 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1962 		if (bypass_ncbs &&
1963 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1964 		     bypass_ncbs > 2 * qhimark)) {
1965 			// Bypass full or old, so flush it.
1966 			(void)rcu_nocb_try_flush_bypass(rdp, j);
1967 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1969 			rcu_nocb_unlock_irqrestore(rdp, flags);
1970 			continue; /* No callbacks here, try next. */
1971 		}
1972 		if (bypass_ncbs) {
1973 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1974 					    TPS("Bypass"));
1975 			bypass = true;
1976 		}
1977 		rnp = rdp->mynode;
1978 		if (bypass) {  // Avoid race with first bypass CB.
1979 			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1980 				   RCU_NOCB_WAKE_NOT);
1981 			del_timer(&my_rdp->nocb_timer);
1982 		}
1983 		// Advance callbacks if helpful and low contention.
1984 		needwake_gp = false;
1985 		if (!rcu_segcblist_restempty(&rdp->cblist,
1986 					     RCU_NEXT_READY_TAIL) ||
1987 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1988 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1989 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1990 			needwake_gp = rcu_advance_cbs(rnp, rdp);
1991 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
1992 							   RCU_NEXT_READY_TAIL);
1993 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1994 		}
1995 		// Need to wait on some grace period?
1996 		WARN_ON_ONCE(wasempty &&
1997 			     !rcu_segcblist_restempty(&rdp->cblist,
1998 						      RCU_NEXT_READY_TAIL));
1999 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2000 			if (!needwait_gp ||
2001 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2002 				wait_gp_seq = cur_gp_seq;
2003 			needwait_gp = true;
2004 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2005 					    TPS("NeedWaitGP"));
2006 		}
2007 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2008 			needwake = rdp->nocb_cb_sleep;
2009 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
2010 			smp_mb(); /* CB invocation -after- GP end. */
2011 		} else {
2012 			needwake = false;
2013 		}
2014 		rcu_nocb_unlock_irqrestore(rdp, flags);
2015 		if (needwake) {
2016 			swake_up_one(&rdp->nocb_cb_wq);
2017 			gotcbs = true;
2018 		}
2019 		if (needwake_gp)
2020 			rcu_gp_kthread_wake();
2021 	}
2022 
2023 	my_rdp->nocb_gp_bypass = bypass;
2024 	my_rdp->nocb_gp_gp = needwait_gp;
2025 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2026 	if (bypass && !rcu_nocb_poll) {
2027 		// At least one child with non-empty ->nocb_bypass, so set
2028 		// timer in order to avoid stranding its callbacks.
2029 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2030 		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2031 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2032 	}
2033 	if (rcu_nocb_poll) {
2034 		/* Polling, so trace if first poll in the series. */
2035 		if (gotcbs)
2036 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2037 		schedule_timeout_idle(1);
2038 	} else if (!needwait_gp) {
2039 		/* Wait for callbacks to appear. */
2040 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2041 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2042 				!READ_ONCE(my_rdp->nocb_gp_sleep));
2043 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2044 	} else {
2045 		rnp = my_rdp->mynode;
2046 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2047 		swait_event_interruptible_exclusive(
2048 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2049 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2050 			!READ_ONCE(my_rdp->nocb_gp_sleep));
2051 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2052 	}
2053 	if (!rcu_nocb_poll) {
2054 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2055 		if (bypass)
2056 			del_timer(&my_rdp->nocb_bypass_timer);
2057 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2058 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2059 	}
2060 	my_rdp->nocb_gp_seq = -1;
2061 	WARN_ON(signal_pending(current));
2062 }
2063 
2064 /*
2065  * No-CBs grace-period-wait kthread.  There is one of these per group
2066  * of CPUs, but only once at least one CPU in that group has come online
2067  * at least once since boot.  This kthread checks for newly posted
2068  * callbacks from any of the CPUs it is responsible for, waits for a
2069  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2070  * that then have callback-invocation work to do.
2071  */
2072 static int rcu_nocb_gp_kthread(void *arg)
2073 {
2074 	struct rcu_data *rdp = arg;
2075 
2076 	for (;;) {
2077 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2078 		nocb_gp_wait(rdp);
2079 		cond_resched_tasks_rcu_qs();
2080 	}
2081 	return 0;
2082 }
2083 
2084 /*
2085  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2086  * then, if there are no more, wait for more to appear.
2087  */
2088 static void nocb_cb_wait(struct rcu_data *rdp)
2089 {
2090 	unsigned long cur_gp_seq;
2091 	unsigned long flags;
2092 	bool needwake_gp = false;
2093 	struct rcu_node *rnp = rdp->mynode;
2094 
2095 	local_irq_save(flags);
2096 	rcu_momentary_dyntick_idle();
2097 	local_irq_restore(flags);
2098 	local_bh_disable();
2099 	rcu_do_batch(rdp);
2100 	local_bh_enable();
2101 	lockdep_assert_irqs_enabled();
2102 	rcu_nocb_lock_irqsave(rdp, flags);
2103 	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2104 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2105 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2106 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2107 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2108 	}
2109 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2110 		rcu_nocb_unlock_irqrestore(rdp, flags);
2111 		if (needwake_gp)
2112 			rcu_gp_kthread_wake();
2113 		return;
2114 	}
2115 
2116 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2117 	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2118 	rcu_nocb_unlock_irqrestore(rdp, flags);
2119 	if (needwake_gp)
2120 		rcu_gp_kthread_wake();
2121 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2122 				 !READ_ONCE(rdp->nocb_cb_sleep));
2123 	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2124 		/* ^^^ Ensure CB invocation follows _sleep test. */
2125 		return;
2126 	}
2127 	WARN_ON(signal_pending(current));
2128 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2129 }
2130 
2131 /*
2132  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2133  * nocb_cb_wait() to do the dirty work.
2134  */
2135 static int rcu_nocb_cb_kthread(void *arg)
2136 {
2137 	struct rcu_data *rdp = arg;
2138 
2139 	// Each pass through this loop does one callback batch, and,
2140 	// if there are no more ready callbacks, waits for them.
2141 	for (;;) {
2142 		nocb_cb_wait(rdp);
2143 		cond_resched_tasks_rcu_qs();
2144 	}
2145 	return 0;
2146 }
2147 
2148 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2149 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2150 {
2151 	return READ_ONCE(rdp->nocb_defer_wakeup);
2152 }
2153 
2154 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2155 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2156 {
2157 	unsigned long flags;
2158 	int ndw;
2159 
2160 	rcu_nocb_lock_irqsave(rdp, flags);
2161 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2162 		rcu_nocb_unlock_irqrestore(rdp, flags);
2163 		return;
2164 	}
2165 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2166 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2167 	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2168 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2169 }
2170 
2171 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2172 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2173 {
2174 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2175 
2176 	do_nocb_deferred_wakeup_common(rdp);
2177 }
2178 
2179 /*
2180  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2181  * This means we do an inexact common-case check.  Note that if
2182  * we miss, ->nocb_timer will eventually clean things up.
2183  */
2184 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2185 {
2186 	if (rcu_nocb_need_deferred_wakeup(rdp))
2187 		do_nocb_deferred_wakeup_common(rdp);
2188 }
2189 
2190 void __init rcu_init_nohz(void)
2191 {
2192 	int cpu;
2193 	bool need_rcu_nocb_mask = false;
2194 	struct rcu_data *rdp;
2195 
2196 #if defined(CONFIG_NO_HZ_FULL)
2197 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2198 		need_rcu_nocb_mask = true;
2199 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2200 
2201 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2202 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2203 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2204 			return;
2205 		}
2206 	}
2207 	if (!cpumask_available(rcu_nocb_mask))
2208 		return;
2209 
2210 #if defined(CONFIG_NO_HZ_FULL)
2211 	if (tick_nohz_full_running)
2212 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2213 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2214 
2215 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2216 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2217 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2218 			    rcu_nocb_mask);
2219 	}
2220 	if (cpumask_empty(rcu_nocb_mask))
2221 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2222 	else
2223 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2224 			cpumask_pr_args(rcu_nocb_mask));
2225 	if (rcu_nocb_poll)
2226 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2227 
2228 	for_each_cpu(cpu, rcu_nocb_mask) {
2229 		rdp = per_cpu_ptr(&rcu_data, cpu);
2230 		if (rcu_segcblist_empty(&rdp->cblist))
2231 			rcu_segcblist_init(&rdp->cblist);
2232 		rcu_segcblist_offload(&rdp->cblist);
2233 	}
2234 	rcu_organize_nocb_kthreads();
2235 }
2236 
2237 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2238 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2239 {
2240 	init_swait_queue_head(&rdp->nocb_cb_wq);
2241 	init_swait_queue_head(&rdp->nocb_gp_wq);
2242 	raw_spin_lock_init(&rdp->nocb_lock);
2243 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2244 	raw_spin_lock_init(&rdp->nocb_gp_lock);
2245 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2246 	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2247 	rcu_cblist_init(&rdp->nocb_bypass);
2248 }
2249 
2250 /*
2251  * If the specified CPU is a no-CBs CPU that does not already have its
2252  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2253  * for this CPU's group has not yet been created, spawn it as well.
2254  */
2255 static void rcu_spawn_one_nocb_kthread(int cpu)
2256 {
2257 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2258 	struct rcu_data *rdp_gp;
2259 	struct task_struct *t;
2260 
2261 	/*
2262 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2263 	 * then nothing to do.
2264 	 */
2265 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2266 		return;
2267 
2268 	/* If we didn't spawn the GP kthread first, reorganize! */
2269 	rdp_gp = rdp->nocb_gp_rdp;
2270 	if (!rdp_gp->nocb_gp_kthread) {
2271 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2272 				"rcuog/%d", rdp_gp->cpu);
2273 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2274 			return;
2275 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2276 	}
2277 
2278 	/* Spawn the kthread for this CPU. */
2279 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2280 			"rcuo%c/%d", rcu_state.abbr, cpu);
2281 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2282 		return;
2283 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2284 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2285 }
2286 
2287 /*
2288  * If the specified CPU is a no-CBs CPU that does not already have its
2289  * rcuo kthread, spawn it.
2290  */
2291 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2292 {
2293 	if (rcu_scheduler_fully_active)
2294 		rcu_spawn_one_nocb_kthread(cpu);
2295 }
2296 
2297 /*
2298  * Once the scheduler is running, spawn rcuo kthreads for all online
2299  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2300  * non-boot CPUs come online -- if this changes, we will need to add
2301  * some mutual exclusion.
2302  */
2303 static void __init rcu_spawn_nocb_kthreads(void)
2304 {
2305 	int cpu;
2306 
2307 	for_each_online_cpu(cpu)
2308 		rcu_spawn_cpu_nocb_kthread(cpu);
2309 }
2310 
2311 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2312 static int rcu_nocb_gp_stride = -1;
2313 module_param(rcu_nocb_gp_stride, int, 0444);
2314 
2315 /*
2316  * Initialize GP-CB relationships for all no-CBs CPU.
2317  */
2318 static void __init rcu_organize_nocb_kthreads(void)
2319 {
2320 	int cpu;
2321 	bool firsttime = true;
2322 	bool gotnocbs = false;
2323 	bool gotnocbscbs = true;
2324 	int ls = rcu_nocb_gp_stride;
2325 	int nl = 0;  /* Next GP kthread. */
2326 	struct rcu_data *rdp;
2327 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328 	struct rcu_data *rdp_prev = NULL;
2329 
2330 	if (!cpumask_available(rcu_nocb_mask))
2331 		return;
2332 	if (ls == -1) {
2333 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334 		rcu_nocb_gp_stride = ls;
2335 	}
2336 
2337 	/*
2338 	 * Each pass through this loop sets up one rcu_data structure.
2339 	 * Should the corresponding CPU come online in the future, then
2340 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341 	 */
2342 	for_each_cpu(cpu, rcu_nocb_mask) {
2343 		rdp = per_cpu_ptr(&rcu_data, cpu);
2344 		if (rdp->cpu >= nl) {
2345 			/* New GP kthread, set up for CBs & next GP. */
2346 			gotnocbs = true;
2347 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2348 			rdp->nocb_gp_rdp = rdp;
2349 			rdp_gp = rdp;
2350 			if (dump_tree) {
2351 				if (!firsttime)
2352 					pr_cont("%s\n", gotnocbscbs
2353 							? "" : " (self only)");
2354 				gotnocbscbs = false;
2355 				firsttime = false;
2356 				pr_alert("%s: No-CB GP kthread CPU %d:",
2357 					 __func__, cpu);
2358 			}
2359 		} else {
2360 			/* Another CB kthread, link to previous GP kthread. */
2361 			gotnocbscbs = true;
2362 			rdp->nocb_gp_rdp = rdp_gp;
2363 			rdp_prev->nocb_next_cb_rdp = rdp;
2364 			if (dump_tree)
2365 				pr_cont(" %d", cpu);
2366 		}
2367 		rdp_prev = rdp;
2368 	}
2369 	if (gotnocbs && dump_tree)
2370 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2371 }
2372 
2373 /*
2374  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2375  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2376  */
2377 void rcu_bind_current_to_nocb(void)
2378 {
2379 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2380 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2381 }
2382 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2383 
2384 /*
2385  * Dump out nocb grace-period kthread state for the specified rcu_data
2386  * structure.
2387  */
2388 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2389 {
2390 	struct rcu_node *rnp = rdp->mynode;
2391 
2392 	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2393 		rdp->cpu,
2394 		"kK"[!!rdp->nocb_gp_kthread],
2395 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2396 		"dD"[!!rdp->nocb_defer_wakeup],
2397 		"tT"[timer_pending(&rdp->nocb_timer)],
2398 		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2399 		"sS"[!!rdp->nocb_gp_sleep],
2400 		".W"[swait_active(&rdp->nocb_gp_wq)],
2401 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2402 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2403 		".B"[!!rdp->nocb_gp_bypass],
2404 		".G"[!!rdp->nocb_gp_gp],
2405 		(long)rdp->nocb_gp_seq,
2406 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2407 }
2408 
2409 /* Dump out nocb kthread state for the specified rcu_data structure. */
2410 static void show_rcu_nocb_state(struct rcu_data *rdp)
2411 {
2412 	struct rcu_segcblist *rsclp = &rdp->cblist;
2413 	bool waslocked;
2414 	bool wastimer;
2415 	bool wassleep;
2416 
2417 	if (rdp->nocb_gp_rdp == rdp)
2418 		show_rcu_nocb_gp_state(rdp);
2419 
2420 	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2421 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2422 		"kK"[!!rdp->nocb_cb_kthread],
2423 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2424 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2425 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2426 		"sS"[!!rdp->nocb_cb_sleep],
2427 		".W"[swait_active(&rdp->nocb_cb_wq)],
2428 		jiffies - rdp->nocb_bypass_first,
2429 		jiffies - rdp->nocb_nobypass_last,
2430 		rdp->nocb_nobypass_count,
2431 		".D"[rcu_segcblist_ready_cbs(rsclp)],
2432 		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2433 		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2434 		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2435 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2436 		rcu_segcblist_n_cbs(&rdp->cblist));
2437 
2438 	/* It is OK for GP kthreads to have GP state. */
2439 	if (rdp->nocb_gp_rdp == rdp)
2440 		return;
2441 
2442 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2443 	wastimer = timer_pending(&rdp->nocb_bypass_timer);
2444 	wassleep = swait_active(&rdp->nocb_gp_wq);
2445 	if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
2446 		return;  /* Nothing untowards. */
2447 
2448 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2449 		"lL"[waslocked],
2450 		"dD"[!!rdp->nocb_defer_wakeup],
2451 		"tT"[wastimer],
2452 		"sS"[!!rdp->nocb_gp_sleep],
2453 		".W"[wassleep]);
2454 }
2455 
2456 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2457 
2458 /* No ->nocb_lock to acquire.  */
2459 static void rcu_nocb_lock(struct rcu_data *rdp)
2460 {
2461 }
2462 
2463 /* No ->nocb_lock to release.  */
2464 static void rcu_nocb_unlock(struct rcu_data *rdp)
2465 {
2466 }
2467 
2468 /* No ->nocb_lock to release.  */
2469 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2470 				       unsigned long flags)
2471 {
2472 	local_irq_restore(flags);
2473 }
2474 
2475 /* Lockdep check that ->cblist may be safely accessed. */
2476 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2477 {
2478 	lockdep_assert_irqs_disabled();
2479 }
2480 
2481 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2482 {
2483 }
2484 
2485 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2486 {
2487 	return NULL;
2488 }
2489 
2490 static void rcu_init_one_nocb(struct rcu_node *rnp)
2491 {
2492 }
2493 
2494 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2495 				  unsigned long j)
2496 {
2497 	return true;
2498 }
2499 
2500 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2501 				bool *was_alldone, unsigned long flags)
2502 {
2503 	return false;
2504 }
2505 
2506 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2507 				 unsigned long flags)
2508 {
2509 	WARN_ON_ONCE(1);  /* Should be dead code! */
2510 }
2511 
2512 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2513 {
2514 }
2515 
2516 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2517 {
2518 	return false;
2519 }
2520 
2521 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2522 {
2523 }
2524 
2525 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2526 {
2527 }
2528 
2529 static void __init rcu_spawn_nocb_kthreads(void)
2530 {
2531 }
2532 
2533 static void show_rcu_nocb_state(struct rcu_data *rdp)
2534 {
2535 }
2536 
2537 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2538 
2539 /*
2540  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2541  * grace-period kthread will do force_quiescent_state() processing?
2542  * The idea is to avoid waking up RCU core processing on such a
2543  * CPU unless the grace period has extended for too long.
2544  *
2545  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2546  * CONFIG_RCU_NOCB_CPU CPUs.
2547  */
2548 static bool rcu_nohz_full_cpu(void)
2549 {
2550 #ifdef CONFIG_NO_HZ_FULL
2551 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2552 	    (!rcu_gp_in_progress() ||
2553 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2554 		return true;
2555 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2556 	return false;
2557 }
2558 
2559 /*
2560  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2561  */
2562 static void rcu_bind_gp_kthread(void)
2563 {
2564 	if (!tick_nohz_full_enabled())
2565 		return;
2566 	housekeeping_affine(current, HK_FLAG_RCU);
2567 }
2568 
2569 /* Record the current task on dyntick-idle entry. */
2570 static void noinstr rcu_dynticks_task_enter(void)
2571 {
2572 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2573 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2574 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2575 }
2576 
2577 /* Record no current task on dyntick-idle exit. */
2578 static void noinstr rcu_dynticks_task_exit(void)
2579 {
2580 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2581 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2582 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2583 }
2584 
2585 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2586 static void rcu_dynticks_task_trace_enter(void)
2587 {
2588 #ifdef CONFIG_TASKS_RCU_TRACE
2589 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2590 		current->trc_reader_special.b.need_mb = true;
2591 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2592 }
2593 
2594 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2595 static void rcu_dynticks_task_trace_exit(void)
2596 {
2597 #ifdef CONFIG_TASKS_RCU_TRACE
2598 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2599 		current->trc_reader_special.b.need_mb = false;
2600 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2601 }
2602