xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 110e6f26)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #ifdef CONFIG_RCU_BOOST
34 
35 #include "../locking/rtmutex_common.h"
36 
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45 
46 #else /* #ifdef CONFIG_RCU_BOOST */
47 
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55 
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57 
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63 
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.
67  */
68 static void __init rcu_bootup_announce_oddness(void)
69 {
70 	if (IS_ENABLED(CONFIG_RCU_TRACE))
71 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75 		       RCU_FANOUT);
76 	if (rcu_fanout_exact)
77 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 	if (IS_ENABLED(CONFIG_PROVE_RCU))
81 		pr_info("\tRCU lockdep checking is enabled.\n");
82 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
83 		pr_info("\tRCU torture testing starts during boot.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 	if (nr_cpu_ids != NR_CPUS)
92 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 	if (IS_ENABLED(CONFIG_RCU_BOOST))
94 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96 
97 #ifdef CONFIG_PREEMPT_RCU
98 
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102 
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 			       bool wake);
105 
106 /*
107  * Tell them what RCU they are running.
108  */
109 static void __init rcu_bootup_announce(void)
110 {
111 	pr_info("Preemptible hierarchical RCU implementation.\n");
112 	rcu_bootup_announce_oddness();
113 }
114 
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS	0x8
117 #define RCU_EXP_TASKS	0x4
118 #define RCU_GP_BLKD	0x2
119 #define RCU_EXP_BLKD	0x1
120 
121 /*
122  * Queues a task preempted within an RCU-preempt read-side critical
123  * section into the appropriate location within the ->blkd_tasks list,
124  * depending on the states of any ongoing normal and expedited grace
125  * periods.  The ->gp_tasks pointer indicates which element the normal
126  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127  * indicates which element the expedited grace period is waiting on (again,
128  * NULL if none).  If a grace period is waiting on a given element in the
129  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
130  * adding a task to the tail of the list blocks any grace period that is
131  * already waiting on one of the elements.  In contrast, adding a task
132  * to the head of the list won't block any grace period that is already
133  * waiting on one of the elements.
134  *
135  * This queuing is imprecise, and can sometimes make an ongoing grace
136  * period wait for a task that is not strictly speaking blocking it.
137  * Given the choice, we needlessly block a normal grace period rather than
138  * blocking an expedited grace period.
139  *
140  * Note that an endless sequence of expedited grace periods still cannot
141  * indefinitely postpone a normal grace period.  Eventually, all of the
142  * fixed number of preempted tasks blocking the normal grace period that are
143  * not also blocking the expedited grace period will resume and complete
144  * their RCU read-side critical sections.  At that point, the ->gp_tasks
145  * pointer will equal the ->exp_tasks pointer, at which point the end of
146  * the corresponding expedited grace period will also be the end of the
147  * normal grace period.
148  */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 	__releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 	struct task_struct *t = current;
157 
158 	/*
159 	 * Decide where to queue the newly blocked task.  In theory,
160 	 * this could be an if-statement.  In practice, when I tried
161 	 * that, it was quite messy.
162 	 */
163 	switch (blkd_state) {
164 	case 0:
165 	case                RCU_EXP_TASKS:
166 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
167 	case RCU_GP_TASKS:
168 	case RCU_GP_TASKS + RCU_EXP_TASKS:
169 
170 		/*
171 		 * Blocking neither GP, or first task blocking the normal
172 		 * GP but not blocking the already-waiting expedited GP.
173 		 * Queue at the head of the list to avoid unnecessarily
174 		 * blocking the already-waiting GPs.
175 		 */
176 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 		break;
178 
179 	case                                              RCU_EXP_BLKD:
180 	case                                RCU_GP_BLKD:
181 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
182 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
183 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
184 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 
186 		/*
187 		 * First task arriving that blocks either GP, or first task
188 		 * arriving that blocks the expedited GP (with the normal
189 		 * GP already waiting), or a task arriving that blocks
190 		 * both GPs with both GPs already waiting.  Queue at the
191 		 * tail of the list to avoid any GP waiting on any of the
192 		 * already queued tasks that are not blocking it.
193 		 */
194 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 		break;
196 
197 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
198 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the expedited GP.
203 		 * The task either does not block the normal GP, or is the
204 		 * first task blocking the normal GP.  Queue just after
205 		 * the first task blocking the expedited GP.
206 		 */
207 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 		break;
209 
210 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
211 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212 
213 		/*
214 		 * Second or subsequent task blocking the normal GP.
215 		 * The task does not block the expedited GP. Queue just
216 		 * after the first task blocking the normal GP.
217 		 */
218 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 		break;
220 
221 	default:
222 
223 		/* Yet another exercise in excessive paranoia. */
224 		WARN_ON_ONCE(1);
225 		break;
226 	}
227 
228 	/*
229 	 * We have now queued the task.  If it was the first one to
230 	 * block either grace period, update the ->gp_tasks and/or
231 	 * ->exp_tasks pointers, respectively, to reference the newly
232 	 * blocked tasks.
233 	 */
234 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 		rnp->gp_tasks = &t->rcu_node_entry;
236 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 		rnp->exp_tasks = &t->rcu_node_entry;
238 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
239 
240 	/*
241 	 * Report the quiescent state for the expedited GP.  This expedited
242 	 * GP should not be able to end until we report, so there should be
243 	 * no need to check for a subsequent expedited GP.  (Though we are
244 	 * still in a quiescent state in any case.)
245 	 */
246 	if (blkd_state & RCU_EXP_BLKD &&
247 	    t->rcu_read_unlock_special.b.exp_need_qs) {
248 		t->rcu_read_unlock_special.b.exp_need_qs = false;
249 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 	} else {
251 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 	}
253 }
254 
255 /*
256  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
257  * that this just means that the task currently running on the CPU is
258  * not in a quiescent state.  There might be any number of tasks blocked
259  * while in an RCU read-side critical section.
260  *
261  * As with the other rcu_*_qs() functions, callers to this function
262  * must disable preemption.
263  */
264 static void rcu_preempt_qs(void)
265 {
266 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267 		trace_rcu_grace_period(TPS("rcu_preempt"),
268 				       __this_cpu_read(rcu_data_p->gpnum),
269 				       TPS("cpuqs"));
270 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 		current->rcu_read_unlock_special.b.need_qs = false;
273 	}
274 }
275 
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 static void rcu_preempt_note_context_switch(void)
290 {
291 	struct task_struct *t = current;
292 	struct rcu_data *rdp;
293 	struct rcu_node *rnp;
294 
295 	if (t->rcu_read_lock_nesting > 0 &&
296 	    !t->rcu_read_unlock_special.b.blocked) {
297 
298 		/* Possibly blocking in an RCU read-side critical section. */
299 		rdp = this_cpu_ptr(rcu_state_p->rda);
300 		rnp = rdp->mynode;
301 		raw_spin_lock_rcu_node(rnp);
302 		t->rcu_read_unlock_special.b.blocked = true;
303 		t->rcu_blocked_node = rnp;
304 
305 		/*
306 		 * Verify the CPU's sanity, trace the preemption, and
307 		 * then queue the task as required based on the states
308 		 * of any ongoing and expedited grace periods.
309 		 */
310 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 		trace_rcu_preempt_task(rdp->rsp->name,
313 				       t->pid,
314 				       (rnp->qsmask & rdp->grpmask)
315 				       ? rnp->gpnum
316 				       : rnp->gpnum + 1);
317 		rcu_preempt_ctxt_queue(rnp, rdp);
318 	} else if (t->rcu_read_lock_nesting < 0 &&
319 		   t->rcu_read_unlock_special.s) {
320 
321 		/*
322 		 * Complete exit from RCU read-side critical section on
323 		 * behalf of preempted instance of __rcu_read_unlock().
324 		 */
325 		rcu_read_unlock_special(t);
326 	}
327 
328 	/*
329 	 * Either we were not in an RCU read-side critical section to
330 	 * begin with, or we have now recorded that critical section
331 	 * globally.  Either way, we can now note a quiescent state
332 	 * for this CPU.  Again, if we were in an RCU read-side critical
333 	 * section, and if that critical section was blocking the current
334 	 * grace period, then the fact that the task has been enqueued
335 	 * means that we continue to block the current grace period.
336 	 */
337 	rcu_preempt_qs();
338 }
339 
340 /*
341  * Check for preempted RCU readers blocking the current grace period
342  * for the specified rcu_node structure.  If the caller needs a reliable
343  * answer, it must hold the rcu_node's ->lock.
344  */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347 	return rnp->gp_tasks != NULL;
348 }
349 
350 /*
351  * Advance a ->blkd_tasks-list pointer to the next entry, instead
352  * returning NULL if at the end of the list.
353  */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 					     struct rcu_node *rnp)
356 {
357 	struct list_head *np;
358 
359 	np = t->rcu_node_entry.next;
360 	if (np == &rnp->blkd_tasks)
361 		np = NULL;
362 	return np;
363 }
364 
365 /*
366  * Return true if the specified rcu_node structure has tasks that were
367  * preempted within an RCU read-side critical section.
368  */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371 	return !list_empty(&rnp->blkd_tasks);
372 }
373 
374 /*
375  * Handle special cases during rcu_read_unlock(), such as needing to
376  * notify RCU core processing or task having blocked during the RCU
377  * read-side critical section.
378  */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381 	bool empty_exp;
382 	bool empty_norm;
383 	bool empty_exp_now;
384 	unsigned long flags;
385 	struct list_head *np;
386 	bool drop_boost_mutex = false;
387 	struct rcu_data *rdp;
388 	struct rcu_node *rnp;
389 	union rcu_special special;
390 
391 	/* NMI handlers cannot block and cannot safely manipulate state. */
392 	if (in_nmi())
393 		return;
394 
395 	local_irq_save(flags);
396 
397 	/*
398 	 * If RCU core is waiting for this CPU to exit its critical section,
399 	 * report the fact that it has exited.  Because irqs are disabled,
400 	 * t->rcu_read_unlock_special cannot change.
401 	 */
402 	special = t->rcu_read_unlock_special;
403 	if (special.b.need_qs) {
404 		rcu_preempt_qs();
405 		t->rcu_read_unlock_special.b.need_qs = false;
406 		if (!t->rcu_read_unlock_special.s) {
407 			local_irq_restore(flags);
408 			return;
409 		}
410 	}
411 
412 	/*
413 	 * Respond to a request for an expedited grace period, but only if
414 	 * we were not preempted, meaning that we were running on the same
415 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
416 	 * would have been cleared at the time of the first preemption,
417 	 * and the quiescent state would be reported when we were dequeued.
418 	 */
419 	if (special.b.exp_need_qs) {
420 		WARN_ON_ONCE(special.b.blocked);
421 		t->rcu_read_unlock_special.b.exp_need_qs = false;
422 		rdp = this_cpu_ptr(rcu_state_p->rda);
423 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 		if (!t->rcu_read_unlock_special.s) {
425 			local_irq_restore(flags);
426 			return;
427 		}
428 	}
429 
430 	/* Hardware IRQ handlers cannot block, complain if they get here. */
431 	if (in_irq() || in_serving_softirq()) {
432 		lockdep_rcu_suspicious(__FILE__, __LINE__,
433 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 			 t->rcu_read_unlock_special.s,
436 			 t->rcu_read_unlock_special.b.blocked,
437 			 t->rcu_read_unlock_special.b.exp_need_qs,
438 			 t->rcu_read_unlock_special.b.need_qs);
439 		local_irq_restore(flags);
440 		return;
441 	}
442 
443 	/* Clean up if blocked during RCU read-side critical section. */
444 	if (special.b.blocked) {
445 		t->rcu_read_unlock_special.b.blocked = false;
446 
447 		/*
448 		 * Remove this task from the list it blocked on.  The task
449 		 * now remains queued on the rcu_node corresponding to the
450 		 * CPU it first blocked on, so there is no longer any need
451 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
452 		 */
453 		rnp = t->rcu_blocked_node;
454 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457 		empty_exp = sync_rcu_preempt_exp_done(rnp);
458 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 		np = rcu_next_node_entry(t, rnp);
460 		list_del_init(&t->rcu_node_entry);
461 		t->rcu_blocked_node = NULL;
462 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463 						rnp->gpnum, t->pid);
464 		if (&t->rcu_node_entry == rnp->gp_tasks)
465 			rnp->gp_tasks = np;
466 		if (&t->rcu_node_entry == rnp->exp_tasks)
467 			rnp->exp_tasks = np;
468 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 			if (&t->rcu_node_entry == rnp->boost_tasks)
470 				rnp->boost_tasks = np;
471 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 		}
474 
475 		/*
476 		 * If this was the last task on the current list, and if
477 		 * we aren't waiting on any CPUs, report the quiescent state.
478 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 		 * so we must take a snapshot of the expedited state.
480 		 */
481 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484 							 rnp->gpnum,
485 							 0, rnp->qsmask,
486 							 rnp->level,
487 							 rnp->grplo,
488 							 rnp->grphi,
489 							 !!rnp->gp_tasks);
490 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491 		} else {
492 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
493 		}
494 
495 		/* Unboost if we were boosted. */
496 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497 			rt_mutex_unlock(&rnp->boost_mtx);
498 
499 		/*
500 		 * If this was the last task on the expedited lists,
501 		 * then we need to report up the rcu_node hierarchy.
502 		 */
503 		if (!empty_exp && empty_exp_now)
504 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
505 	} else {
506 		local_irq_restore(flags);
507 	}
508 }
509 
510 /*
511  * Dump detailed information for all tasks blocking the current RCU
512  * grace period on the specified rcu_node structure.
513  */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516 	unsigned long flags;
517 	struct task_struct *t;
518 
519 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
520 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 		return;
523 	}
524 	t = list_entry(rnp->gp_tasks->prev,
525 		       struct task_struct, rcu_node_entry);
526 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 		sched_show_task(t);
528 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530 
531 /*
532  * Dump detailed information for all tasks blocking the current RCU
533  * grace period.
534  */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537 	struct rcu_node *rnp = rcu_get_root(rsp);
538 
539 	rcu_print_detail_task_stall_rnp(rnp);
540 	rcu_for_each_leaf_node(rsp, rnp)
541 		rcu_print_detail_task_stall_rnp(rnp);
542 }
543 
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 	       rnp->level, rnp->grplo, rnp->grphi);
548 }
549 
550 static void rcu_print_task_stall_end(void)
551 {
552 	pr_cont("\n");
553 }
554 
555 /*
556  * Scan the current list of tasks blocked within RCU read-side critical
557  * sections, printing out the tid of each.
558  */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561 	struct task_struct *t;
562 	int ndetected = 0;
563 
564 	if (!rcu_preempt_blocked_readers_cgp(rnp))
565 		return 0;
566 	rcu_print_task_stall_begin(rnp);
567 	t = list_entry(rnp->gp_tasks->prev,
568 		       struct task_struct, rcu_node_entry);
569 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570 		pr_cont(" P%d", t->pid);
571 		ndetected++;
572 	}
573 	rcu_print_task_stall_end();
574 	return ndetected;
575 }
576 
577 /*
578  * Scan the current list of tasks blocked within RCU read-side critical
579  * sections, printing out the tid of each that is blocking the current
580  * expedited grace period.
581  */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584 	struct task_struct *t;
585 	int ndetected = 0;
586 
587 	if (!rnp->exp_tasks)
588 		return 0;
589 	t = list_entry(rnp->exp_tasks->prev,
590 		       struct task_struct, rcu_node_entry);
591 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 		pr_cont(" P%d", t->pid);
593 		ndetected++;
594 	}
595 	return ndetected;
596 }
597 
598 /*
599  * Check that the list of blocked tasks for the newly completed grace
600  * period is in fact empty.  It is a serious bug to complete a grace
601  * period that still has RCU readers blocked!  This function must be
602  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603  * must be held by the caller.
604  *
605  * Also, if there are blocked tasks on the list, they automatically
606  * block the newly created grace period, so set up ->gp_tasks accordingly.
607  */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611 	if (rcu_preempt_has_tasks(rnp))
612 		rnp->gp_tasks = rnp->blkd_tasks.next;
613 	WARN_ON_ONCE(rnp->qsmask);
614 }
615 
616 /*
617  * Check for a quiescent state from the current CPU.  When a task blocks,
618  * the task is recorded in the corresponding CPU's rcu_node structure,
619  * which is checked elsewhere.
620  *
621  * Caller must disable hard irqs.
622  */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 	struct task_struct *t = current;
626 
627 	if (t->rcu_read_lock_nesting == 0) {
628 		rcu_preempt_qs();
629 		return;
630 	}
631 	if (t->rcu_read_lock_nesting > 0 &&
632 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
633 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634 		t->rcu_read_unlock_special.b.need_qs = true;
635 }
636 
637 #ifdef CONFIG_RCU_BOOST
638 
639 static void rcu_preempt_do_callbacks(void)
640 {
641 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643 
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645 
646 /*
647  * Queue a preemptible-RCU callback for invocation after a grace period.
648  */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651 	__call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654 
655 /**
656  * synchronize_rcu - wait until a grace period has elapsed.
657  *
658  * Control will return to the caller some time after a full grace
659  * period has elapsed, in other words after all currently executing RCU
660  * read-side critical sections have completed.  Note, however, that
661  * upon return from synchronize_rcu(), the caller might well be executing
662  * concurrently with new RCU read-side critical sections that began while
663  * synchronize_rcu() was waiting.  RCU read-side critical sections are
664  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665  *
666  * See the description of synchronize_sched() for more detailed information
667  * on memory ordering guarantees.
668  */
669 void synchronize_rcu(void)
670 {
671 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 			 lock_is_held(&rcu_lock_map) ||
673 			 lock_is_held(&rcu_sched_lock_map),
674 			 "Illegal synchronize_rcu() in RCU read-side critical section");
675 	if (!rcu_scheduler_active)
676 		return;
677 	if (rcu_gp_is_expedited())
678 		synchronize_rcu_expedited();
679 	else
680 		wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683 
684 /*
685  * Remote handler for smp_call_function_single().  If there is an
686  * RCU read-side critical section in effect, request that the
687  * next rcu_read_unlock() record the quiescent state up the
688  * ->expmask fields in the rcu_node tree.  Otherwise, immediately
689  * report the quiescent state.
690  */
691 static void sync_rcu_exp_handler(void *info)
692 {
693 	struct rcu_data *rdp;
694 	struct rcu_state *rsp = info;
695 	struct task_struct *t = current;
696 
697 	/*
698 	 * Within an RCU read-side critical section, request that the next
699 	 * rcu_read_unlock() report.  Unless this RCU read-side critical
700 	 * section has already blocked, in which case it is already set
701 	 * up for the expedited grace period to wait on it.
702 	 */
703 	if (t->rcu_read_lock_nesting > 0 &&
704 	    !t->rcu_read_unlock_special.b.blocked) {
705 		t->rcu_read_unlock_special.b.exp_need_qs = true;
706 		return;
707 	}
708 
709 	/*
710 	 * We are either exiting an RCU read-side critical section (negative
711 	 * values of t->rcu_read_lock_nesting) or are not in one at all
712 	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
713 	 * read-side critical section that blocked before this expedited
714 	 * grace period started.  Either way, we can immediately report
715 	 * the quiescent state.
716 	 */
717 	rdp = this_cpu_ptr(rsp->rda);
718 	rcu_report_exp_rdp(rsp, rdp, true);
719 }
720 
721 /**
722  * synchronize_rcu_expedited - Brute-force RCU grace period
723  *
724  * Wait for an RCU-preempt grace period, but expedite it.  The basic
725  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
726  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
727  * significant time on all CPUs and is unfriendly to real-time workloads,
728  * so is thus not recommended for any sort of common-case code.
729  * In fact, if you are using synchronize_rcu_expedited() in a loop,
730  * please restructure your code to batch your updates, and then Use a
731  * single synchronize_rcu() instead.
732  */
733 void synchronize_rcu_expedited(void)
734 {
735 	struct rcu_node *rnp;
736 	struct rcu_node *rnp_unlock;
737 	struct rcu_state *rsp = rcu_state_p;
738 	unsigned long s;
739 
740 	/* If expedited grace periods are prohibited, fall back to normal. */
741 	if (rcu_gp_is_normal()) {
742 		wait_rcu_gp(call_rcu);
743 		return;
744 	}
745 
746 	s = rcu_exp_gp_seq_snap(rsp);
747 
748 	rnp_unlock = exp_funnel_lock(rsp, s);
749 	if (rnp_unlock == NULL)
750 		return;  /* Someone else did our work for us. */
751 
752 	rcu_exp_gp_seq_start(rsp);
753 
754 	/* Initialize the rcu_node tree in preparation for the wait. */
755 	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
756 
757 	/* Wait for snapshotted ->blkd_tasks lists to drain. */
758 	rnp = rcu_get_root(rsp);
759 	synchronize_sched_expedited_wait(rsp);
760 
761 	/* Clean up and exit. */
762 	rcu_exp_gp_seq_end(rsp);
763 	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
764 }
765 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
766 
767 /**
768  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
769  *
770  * Note that this primitive does not necessarily wait for an RCU grace period
771  * to complete.  For example, if there are no RCU callbacks queued anywhere
772  * in the system, then rcu_barrier() is within its rights to return
773  * immediately, without waiting for anything, much less an RCU grace period.
774  */
775 void rcu_barrier(void)
776 {
777 	_rcu_barrier(rcu_state_p);
778 }
779 EXPORT_SYMBOL_GPL(rcu_barrier);
780 
781 /*
782  * Initialize preemptible RCU's state structures.
783  */
784 static void __init __rcu_init_preempt(void)
785 {
786 	rcu_init_one(rcu_state_p);
787 }
788 
789 /*
790  * Check for a task exiting while in a preemptible-RCU read-side
791  * critical section, clean up if so.  No need to issue warnings,
792  * as debug_check_no_locks_held() already does this if lockdep
793  * is enabled.
794  */
795 void exit_rcu(void)
796 {
797 	struct task_struct *t = current;
798 
799 	if (likely(list_empty(&current->rcu_node_entry)))
800 		return;
801 	t->rcu_read_lock_nesting = 1;
802 	barrier();
803 	t->rcu_read_unlock_special.b.blocked = true;
804 	__rcu_read_unlock();
805 }
806 
807 #else /* #ifdef CONFIG_PREEMPT_RCU */
808 
809 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
810 
811 /*
812  * Tell them what RCU they are running.
813  */
814 static void __init rcu_bootup_announce(void)
815 {
816 	pr_info("Hierarchical RCU implementation.\n");
817 	rcu_bootup_announce_oddness();
818 }
819 
820 /*
821  * Because preemptible RCU does not exist, we never have to check for
822  * CPUs being in quiescent states.
823  */
824 static void rcu_preempt_note_context_switch(void)
825 {
826 }
827 
828 /*
829  * Because preemptible RCU does not exist, there are never any preempted
830  * RCU readers.
831  */
832 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
833 {
834 	return 0;
835 }
836 
837 /*
838  * Because there is no preemptible RCU, there can be no readers blocked.
839  */
840 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
841 {
842 	return false;
843 }
844 
845 /*
846  * Because preemptible RCU does not exist, we never have to check for
847  * tasks blocked within RCU read-side critical sections.
848  */
849 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
850 {
851 }
852 
853 /*
854  * Because preemptible RCU does not exist, we never have to check for
855  * tasks blocked within RCU read-side critical sections.
856  */
857 static int rcu_print_task_stall(struct rcu_node *rnp)
858 {
859 	return 0;
860 }
861 
862 /*
863  * Because preemptible RCU does not exist, we never have to check for
864  * tasks blocked within RCU read-side critical sections that are
865  * blocking the current expedited grace period.
866  */
867 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
868 {
869 	return 0;
870 }
871 
872 /*
873  * Because there is no preemptible RCU, there can be no readers blocked,
874  * so there is no need to check for blocked tasks.  So check only for
875  * bogus qsmask values.
876  */
877 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
878 {
879 	WARN_ON_ONCE(rnp->qsmask);
880 }
881 
882 /*
883  * Because preemptible RCU does not exist, it never has any callbacks
884  * to check.
885  */
886 static void rcu_preempt_check_callbacks(void)
887 {
888 }
889 
890 /*
891  * Wait for an rcu-preempt grace period, but make it happen quickly.
892  * But because preemptible RCU does not exist, map to rcu-sched.
893  */
894 void synchronize_rcu_expedited(void)
895 {
896 	synchronize_sched_expedited();
897 }
898 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
899 
900 /*
901  * Because preemptible RCU does not exist, rcu_barrier() is just
902  * another name for rcu_barrier_sched().
903  */
904 void rcu_barrier(void)
905 {
906 	rcu_barrier_sched();
907 }
908 EXPORT_SYMBOL_GPL(rcu_barrier);
909 
910 /*
911  * Because preemptible RCU does not exist, it need not be initialized.
912  */
913 static void __init __rcu_init_preempt(void)
914 {
915 }
916 
917 /*
918  * Because preemptible RCU does not exist, tasks cannot possibly exit
919  * while in preemptible RCU read-side critical sections.
920  */
921 void exit_rcu(void)
922 {
923 }
924 
925 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
926 
927 #ifdef CONFIG_RCU_BOOST
928 
929 #include "../locking/rtmutex_common.h"
930 
931 #ifdef CONFIG_RCU_TRACE
932 
933 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
934 {
935 	if (!rcu_preempt_has_tasks(rnp))
936 		rnp->n_balk_blkd_tasks++;
937 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
938 		rnp->n_balk_exp_gp_tasks++;
939 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
940 		rnp->n_balk_boost_tasks++;
941 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
942 		rnp->n_balk_notblocked++;
943 	else if (rnp->gp_tasks != NULL &&
944 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
945 		rnp->n_balk_notyet++;
946 	else
947 		rnp->n_balk_nos++;
948 }
949 
950 #else /* #ifdef CONFIG_RCU_TRACE */
951 
952 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
953 {
954 }
955 
956 #endif /* #else #ifdef CONFIG_RCU_TRACE */
957 
958 static void rcu_wake_cond(struct task_struct *t, int status)
959 {
960 	/*
961 	 * If the thread is yielding, only wake it when this
962 	 * is invoked from idle
963 	 */
964 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
965 		wake_up_process(t);
966 }
967 
968 /*
969  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
970  * or ->boost_tasks, advancing the pointer to the next task in the
971  * ->blkd_tasks list.
972  *
973  * Note that irqs must be enabled: boosting the task can block.
974  * Returns 1 if there are more tasks needing to be boosted.
975  */
976 static int rcu_boost(struct rcu_node *rnp)
977 {
978 	unsigned long flags;
979 	struct task_struct *t;
980 	struct list_head *tb;
981 
982 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
983 	    READ_ONCE(rnp->boost_tasks) == NULL)
984 		return 0;  /* Nothing left to boost. */
985 
986 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
987 
988 	/*
989 	 * Recheck under the lock: all tasks in need of boosting
990 	 * might exit their RCU read-side critical sections on their own.
991 	 */
992 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
993 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
994 		return 0;
995 	}
996 
997 	/*
998 	 * Preferentially boost tasks blocking expedited grace periods.
999 	 * This cannot starve the normal grace periods because a second
1000 	 * expedited grace period must boost all blocked tasks, including
1001 	 * those blocking the pre-existing normal grace period.
1002 	 */
1003 	if (rnp->exp_tasks != NULL) {
1004 		tb = rnp->exp_tasks;
1005 		rnp->n_exp_boosts++;
1006 	} else {
1007 		tb = rnp->boost_tasks;
1008 		rnp->n_normal_boosts++;
1009 	}
1010 	rnp->n_tasks_boosted++;
1011 
1012 	/*
1013 	 * We boost task t by manufacturing an rt_mutex that appears to
1014 	 * be held by task t.  We leave a pointer to that rt_mutex where
1015 	 * task t can find it, and task t will release the mutex when it
1016 	 * exits its outermost RCU read-side critical section.  Then
1017 	 * simply acquiring this artificial rt_mutex will boost task
1018 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1019 	 *
1020 	 * Note that task t must acquire rnp->lock to remove itself from
1021 	 * the ->blkd_tasks list, which it will do from exit() if from
1022 	 * nowhere else.  We therefore are guaranteed that task t will
1023 	 * stay around at least until we drop rnp->lock.  Note that
1024 	 * rnp->lock also resolves races between our priority boosting
1025 	 * and task t's exiting its outermost RCU read-side critical
1026 	 * section.
1027 	 */
1028 	t = container_of(tb, struct task_struct, rcu_node_entry);
1029 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1030 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1031 	/* Lock only for side effect: boosts task t's priority. */
1032 	rt_mutex_lock(&rnp->boost_mtx);
1033 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1034 
1035 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1036 	       READ_ONCE(rnp->boost_tasks) != NULL;
1037 }
1038 
1039 /*
1040  * Priority-boosting kthread, one per leaf rcu_node.
1041  */
1042 static int rcu_boost_kthread(void *arg)
1043 {
1044 	struct rcu_node *rnp = (struct rcu_node *)arg;
1045 	int spincnt = 0;
1046 	int more2boost;
1047 
1048 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1049 	for (;;) {
1050 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1051 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1053 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1054 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1055 		more2boost = rcu_boost(rnp);
1056 		if (more2boost)
1057 			spincnt++;
1058 		else
1059 			spincnt = 0;
1060 		if (spincnt > 10) {
1061 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1062 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1063 			schedule_timeout_interruptible(2);
1064 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1065 			spincnt = 0;
1066 		}
1067 	}
1068 	/* NOTREACHED */
1069 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Check to see if it is time to start boosting RCU readers that are
1075  * blocking the current grace period, and, if so, tell the per-rcu_node
1076  * kthread to start boosting them.  If there is an expedited grace
1077  * period in progress, it is always time to boost.
1078  *
1079  * The caller must hold rnp->lock, which this function releases.
1080  * The ->boost_kthread_task is immortal, so we don't need to worry
1081  * about it going away.
1082  */
1083 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1084 	__releases(rnp->lock)
1085 {
1086 	struct task_struct *t;
1087 
1088 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1089 		rnp->n_balk_exp_gp_tasks++;
1090 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1091 		return;
1092 	}
1093 	if (rnp->exp_tasks != NULL ||
1094 	    (rnp->gp_tasks != NULL &&
1095 	     rnp->boost_tasks == NULL &&
1096 	     rnp->qsmask == 0 &&
1097 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1098 		if (rnp->exp_tasks == NULL)
1099 			rnp->boost_tasks = rnp->gp_tasks;
1100 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1101 		t = rnp->boost_kthread_task;
1102 		if (t)
1103 			rcu_wake_cond(t, rnp->boost_kthread_status);
1104 	} else {
1105 		rcu_initiate_boost_trace(rnp);
1106 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1107 	}
1108 }
1109 
1110 /*
1111  * Wake up the per-CPU kthread to invoke RCU callbacks.
1112  */
1113 static void invoke_rcu_callbacks_kthread(void)
1114 {
1115 	unsigned long flags;
1116 
1117 	local_irq_save(flags);
1118 	__this_cpu_write(rcu_cpu_has_work, 1);
1119 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1120 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1121 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1122 			      __this_cpu_read(rcu_cpu_kthread_status));
1123 	}
1124 	local_irq_restore(flags);
1125 }
1126 
1127 /*
1128  * Is the current CPU running the RCU-callbacks kthread?
1129  * Caller must have preemption disabled.
1130  */
1131 static bool rcu_is_callbacks_kthread(void)
1132 {
1133 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1134 }
1135 
1136 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1137 
1138 /*
1139  * Do priority-boost accounting for the start of a new grace period.
1140  */
1141 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1142 {
1143 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1144 }
1145 
1146 /*
1147  * Create an RCU-boost kthread for the specified node if one does not
1148  * already exist.  We only create this kthread for preemptible RCU.
1149  * Returns zero if all is well, a negated errno otherwise.
1150  */
1151 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1152 				       struct rcu_node *rnp)
1153 {
1154 	int rnp_index = rnp - &rsp->node[0];
1155 	unsigned long flags;
1156 	struct sched_param sp;
1157 	struct task_struct *t;
1158 
1159 	if (rcu_state_p != rsp)
1160 		return 0;
1161 
1162 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1163 		return 0;
1164 
1165 	rsp->boost = 1;
1166 	if (rnp->boost_kthread_task != NULL)
1167 		return 0;
1168 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1169 			   "rcub/%d", rnp_index);
1170 	if (IS_ERR(t))
1171 		return PTR_ERR(t);
1172 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1173 	rnp->boost_kthread_task = t;
1174 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1175 	sp.sched_priority = kthread_prio;
1176 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1177 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1178 	return 0;
1179 }
1180 
1181 static void rcu_kthread_do_work(void)
1182 {
1183 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1184 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1185 	rcu_preempt_do_callbacks();
1186 }
1187 
1188 static void rcu_cpu_kthread_setup(unsigned int cpu)
1189 {
1190 	struct sched_param sp;
1191 
1192 	sp.sched_priority = kthread_prio;
1193 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1194 }
1195 
1196 static void rcu_cpu_kthread_park(unsigned int cpu)
1197 {
1198 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1199 }
1200 
1201 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1202 {
1203 	return __this_cpu_read(rcu_cpu_has_work);
1204 }
1205 
1206 /*
1207  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1208  * RCU softirq used in flavors and configurations of RCU that do not
1209  * support RCU priority boosting.
1210  */
1211 static void rcu_cpu_kthread(unsigned int cpu)
1212 {
1213 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1214 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1215 	int spincnt;
1216 
1217 	for (spincnt = 0; spincnt < 10; spincnt++) {
1218 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1219 		local_bh_disable();
1220 		*statusp = RCU_KTHREAD_RUNNING;
1221 		this_cpu_inc(rcu_cpu_kthread_loops);
1222 		local_irq_disable();
1223 		work = *workp;
1224 		*workp = 0;
1225 		local_irq_enable();
1226 		if (work)
1227 			rcu_kthread_do_work();
1228 		local_bh_enable();
1229 		if (*workp == 0) {
1230 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1231 			*statusp = RCU_KTHREAD_WAITING;
1232 			return;
1233 		}
1234 	}
1235 	*statusp = RCU_KTHREAD_YIELDING;
1236 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1237 	schedule_timeout_interruptible(2);
1238 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1239 	*statusp = RCU_KTHREAD_WAITING;
1240 }
1241 
1242 /*
1243  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1244  * served by the rcu_node in question.  The CPU hotplug lock is still
1245  * held, so the value of rnp->qsmaskinit will be stable.
1246  *
1247  * We don't include outgoingcpu in the affinity set, use -1 if there is
1248  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1249  * this function allows the kthread to execute on any CPU.
1250  */
1251 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1252 {
1253 	struct task_struct *t = rnp->boost_kthread_task;
1254 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1255 	cpumask_var_t cm;
1256 	int cpu;
1257 
1258 	if (!t)
1259 		return;
1260 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1261 		return;
1262 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1263 		if ((mask & 0x1) && cpu != outgoingcpu)
1264 			cpumask_set_cpu(cpu, cm);
1265 	if (cpumask_weight(cm) == 0)
1266 		cpumask_setall(cm);
1267 	set_cpus_allowed_ptr(t, cm);
1268 	free_cpumask_var(cm);
1269 }
1270 
1271 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1272 	.store			= &rcu_cpu_kthread_task,
1273 	.thread_should_run	= rcu_cpu_kthread_should_run,
1274 	.thread_fn		= rcu_cpu_kthread,
1275 	.thread_comm		= "rcuc/%u",
1276 	.setup			= rcu_cpu_kthread_setup,
1277 	.park			= rcu_cpu_kthread_park,
1278 };
1279 
1280 /*
1281  * Spawn boost kthreads -- called as soon as the scheduler is running.
1282  */
1283 static void __init rcu_spawn_boost_kthreads(void)
1284 {
1285 	struct rcu_node *rnp;
1286 	int cpu;
1287 
1288 	for_each_possible_cpu(cpu)
1289 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1290 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1291 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1292 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1293 }
1294 
1295 static void rcu_prepare_kthreads(int cpu)
1296 {
1297 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1298 	struct rcu_node *rnp = rdp->mynode;
1299 
1300 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1301 	if (rcu_scheduler_fully_active)
1302 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1303 }
1304 
1305 #else /* #ifdef CONFIG_RCU_BOOST */
1306 
1307 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308 	__releases(rnp->lock)
1309 {
1310 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1311 }
1312 
1313 static void invoke_rcu_callbacks_kthread(void)
1314 {
1315 	WARN_ON_ONCE(1);
1316 }
1317 
1318 static bool rcu_is_callbacks_kthread(void)
1319 {
1320 	return false;
1321 }
1322 
1323 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1324 {
1325 }
1326 
1327 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1328 {
1329 }
1330 
1331 static void __init rcu_spawn_boost_kthreads(void)
1332 {
1333 }
1334 
1335 static void rcu_prepare_kthreads(int cpu)
1336 {
1337 }
1338 
1339 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1340 
1341 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1342 
1343 /*
1344  * Check to see if any future RCU-related work will need to be done
1345  * by the current CPU, even if none need be done immediately, returning
1346  * 1 if so.  This function is part of the RCU implementation; it is -not-
1347  * an exported member of the RCU API.
1348  *
1349  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1350  * any flavor of RCU.
1351  */
1352 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1353 {
1354 	*nextevt = KTIME_MAX;
1355 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1356 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1357 }
1358 
1359 /*
1360  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1361  * after it.
1362  */
1363 static void rcu_cleanup_after_idle(void)
1364 {
1365 }
1366 
1367 /*
1368  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1369  * is nothing.
1370  */
1371 static void rcu_prepare_for_idle(void)
1372 {
1373 }
1374 
1375 /*
1376  * Don't bother keeping a running count of the number of RCU callbacks
1377  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1378  */
1379 static void rcu_idle_count_callbacks_posted(void)
1380 {
1381 }
1382 
1383 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1384 
1385 /*
1386  * This code is invoked when a CPU goes idle, at which point we want
1387  * to have the CPU do everything required for RCU so that it can enter
1388  * the energy-efficient dyntick-idle mode.  This is handled by a
1389  * state machine implemented by rcu_prepare_for_idle() below.
1390  *
1391  * The following three proprocessor symbols control this state machine:
1392  *
1393  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1394  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1395  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1396  *	benchmarkers who might otherwise be tempted to set this to a large
1397  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1398  *	system.  And if you are -that- concerned about energy efficiency,
1399  *	just power the system down and be done with it!
1400  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1401  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1402  *	callbacks pending.  Setting this too high can OOM your system.
1403  *
1404  * The values below work well in practice.  If future workloads require
1405  * adjustment, they can be converted into kernel config parameters, though
1406  * making the state machine smarter might be a better option.
1407  */
1408 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1409 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1410 
1411 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1412 module_param(rcu_idle_gp_delay, int, 0644);
1413 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1414 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1415 
1416 /*
1417  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1418  * only if it has been awhile since the last time we did so.  Afterwards,
1419  * if there are any callbacks ready for immediate invocation, return true.
1420  */
1421 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1422 {
1423 	bool cbs_ready = false;
1424 	struct rcu_data *rdp;
1425 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1426 	struct rcu_node *rnp;
1427 	struct rcu_state *rsp;
1428 
1429 	/* Exit early if we advanced recently. */
1430 	if (jiffies == rdtp->last_advance_all)
1431 		return false;
1432 	rdtp->last_advance_all = jiffies;
1433 
1434 	for_each_rcu_flavor(rsp) {
1435 		rdp = this_cpu_ptr(rsp->rda);
1436 		rnp = rdp->mynode;
1437 
1438 		/*
1439 		 * Don't bother checking unless a grace period has
1440 		 * completed since we last checked and there are
1441 		 * callbacks not yet ready to invoke.
1442 		 */
1443 		if ((rdp->completed != rnp->completed ||
1444 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1445 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1446 			note_gp_changes(rsp, rdp);
1447 
1448 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1449 			cbs_ready = true;
1450 	}
1451 	return cbs_ready;
1452 }
1453 
1454 /*
1455  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1456  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1457  * caller to set the timeout based on whether or not there are non-lazy
1458  * callbacks.
1459  *
1460  * The caller must have disabled interrupts.
1461  */
1462 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1463 {
1464 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1465 	unsigned long dj;
1466 
1467 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1468 		*nextevt = KTIME_MAX;
1469 		return 0;
1470 	}
1471 
1472 	/* Snapshot to detect later posting of non-lazy callback. */
1473 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1474 
1475 	/* If no callbacks, RCU doesn't need the CPU. */
1476 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1477 		*nextevt = KTIME_MAX;
1478 		return 0;
1479 	}
1480 
1481 	/* Attempt to advance callbacks. */
1482 	if (rcu_try_advance_all_cbs()) {
1483 		/* Some ready to invoke, so initiate later invocation. */
1484 		invoke_rcu_core();
1485 		return 1;
1486 	}
1487 	rdtp->last_accelerate = jiffies;
1488 
1489 	/* Request timer delay depending on laziness, and round. */
1490 	if (!rdtp->all_lazy) {
1491 		dj = round_up(rcu_idle_gp_delay + jiffies,
1492 			       rcu_idle_gp_delay) - jiffies;
1493 	} else {
1494 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1495 	}
1496 	*nextevt = basemono + dj * TICK_NSEC;
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Prepare a CPU for idle from an RCU perspective.  The first major task
1502  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1503  * The second major task is to check to see if a non-lazy callback has
1504  * arrived at a CPU that previously had only lazy callbacks.  The third
1505  * major task is to accelerate (that is, assign grace-period numbers to)
1506  * any recently arrived callbacks.
1507  *
1508  * The caller must have disabled interrupts.
1509  */
1510 static void rcu_prepare_for_idle(void)
1511 {
1512 	bool needwake;
1513 	struct rcu_data *rdp;
1514 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1515 	struct rcu_node *rnp;
1516 	struct rcu_state *rsp;
1517 	int tne;
1518 
1519 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1520 	    rcu_is_nocb_cpu(smp_processor_id()))
1521 		return;
1522 
1523 	/* Handle nohz enablement switches conservatively. */
1524 	tne = READ_ONCE(tick_nohz_active);
1525 	if (tne != rdtp->tick_nohz_enabled_snap) {
1526 		if (rcu_cpu_has_callbacks(NULL))
1527 			invoke_rcu_core(); /* force nohz to see update. */
1528 		rdtp->tick_nohz_enabled_snap = tne;
1529 		return;
1530 	}
1531 	if (!tne)
1532 		return;
1533 
1534 	/*
1535 	 * If a non-lazy callback arrived at a CPU having only lazy
1536 	 * callbacks, invoke RCU core for the side-effect of recalculating
1537 	 * idle duration on re-entry to idle.
1538 	 */
1539 	if (rdtp->all_lazy &&
1540 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1541 		rdtp->all_lazy = false;
1542 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1543 		invoke_rcu_core();
1544 		return;
1545 	}
1546 
1547 	/*
1548 	 * If we have not yet accelerated this jiffy, accelerate all
1549 	 * callbacks on this CPU.
1550 	 */
1551 	if (rdtp->last_accelerate == jiffies)
1552 		return;
1553 	rdtp->last_accelerate = jiffies;
1554 	for_each_rcu_flavor(rsp) {
1555 		rdp = this_cpu_ptr(rsp->rda);
1556 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1557 			continue;
1558 		rnp = rdp->mynode;
1559 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1560 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1561 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1562 		if (needwake)
1563 			rcu_gp_kthread_wake(rsp);
1564 	}
1565 }
1566 
1567 /*
1568  * Clean up for exit from idle.  Attempt to advance callbacks based on
1569  * any grace periods that elapsed while the CPU was idle, and if any
1570  * callbacks are now ready to invoke, initiate invocation.
1571  */
1572 static void rcu_cleanup_after_idle(void)
1573 {
1574 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1575 	    rcu_is_nocb_cpu(smp_processor_id()))
1576 		return;
1577 	if (rcu_try_advance_all_cbs())
1578 		invoke_rcu_core();
1579 }
1580 
1581 /*
1582  * Keep a running count of the number of non-lazy callbacks posted
1583  * on this CPU.  This running counter (which is never decremented) allows
1584  * rcu_prepare_for_idle() to detect when something out of the idle loop
1585  * posts a callback, even if an equal number of callbacks are invoked.
1586  * Of course, callbacks should only be posted from within a trace event
1587  * designed to be called from idle or from within RCU_NONIDLE().
1588  */
1589 static void rcu_idle_count_callbacks_posted(void)
1590 {
1591 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1592 }
1593 
1594 /*
1595  * Data for flushing lazy RCU callbacks at OOM time.
1596  */
1597 static atomic_t oom_callback_count;
1598 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1599 
1600 /*
1601  * RCU OOM callback -- decrement the outstanding count and deliver the
1602  * wake-up if we are the last one.
1603  */
1604 static void rcu_oom_callback(struct rcu_head *rhp)
1605 {
1606 	if (atomic_dec_and_test(&oom_callback_count))
1607 		wake_up(&oom_callback_wq);
1608 }
1609 
1610 /*
1611  * Post an rcu_oom_notify callback on the current CPU if it has at
1612  * least one lazy callback.  This will unnecessarily post callbacks
1613  * to CPUs that already have a non-lazy callback at the end of their
1614  * callback list, but this is an infrequent operation, so accept some
1615  * extra overhead to keep things simple.
1616  */
1617 static void rcu_oom_notify_cpu(void *unused)
1618 {
1619 	struct rcu_state *rsp;
1620 	struct rcu_data *rdp;
1621 
1622 	for_each_rcu_flavor(rsp) {
1623 		rdp = raw_cpu_ptr(rsp->rda);
1624 		if (rdp->qlen_lazy != 0) {
1625 			atomic_inc(&oom_callback_count);
1626 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1627 		}
1628 	}
1629 }
1630 
1631 /*
1632  * If low on memory, ensure that each CPU has a non-lazy callback.
1633  * This will wake up CPUs that have only lazy callbacks, in turn
1634  * ensuring that they free up the corresponding memory in a timely manner.
1635  * Because an uncertain amount of memory will be freed in some uncertain
1636  * timeframe, we do not claim to have freed anything.
1637  */
1638 static int rcu_oom_notify(struct notifier_block *self,
1639 			  unsigned long notused, void *nfreed)
1640 {
1641 	int cpu;
1642 
1643 	/* Wait for callbacks from earlier instance to complete. */
1644 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1645 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1646 
1647 	/*
1648 	 * Prevent premature wakeup: ensure that all increments happen
1649 	 * before there is a chance of the counter reaching zero.
1650 	 */
1651 	atomic_set(&oom_callback_count, 1);
1652 
1653 	for_each_online_cpu(cpu) {
1654 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1655 		cond_resched_rcu_qs();
1656 	}
1657 
1658 	/* Unconditionally decrement: no need to wake ourselves up. */
1659 	atomic_dec(&oom_callback_count);
1660 
1661 	return NOTIFY_OK;
1662 }
1663 
1664 static struct notifier_block rcu_oom_nb = {
1665 	.notifier_call = rcu_oom_notify
1666 };
1667 
1668 static int __init rcu_register_oom_notifier(void)
1669 {
1670 	register_oom_notifier(&rcu_oom_nb);
1671 	return 0;
1672 }
1673 early_initcall(rcu_register_oom_notifier);
1674 
1675 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1676 
1677 #ifdef CONFIG_RCU_FAST_NO_HZ
1678 
1679 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1680 {
1681 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1682 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1683 
1684 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1685 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1686 		ulong2long(nlpd),
1687 		rdtp->all_lazy ? 'L' : '.',
1688 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1689 }
1690 
1691 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1692 
1693 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1694 {
1695 	*cp = '\0';
1696 }
1697 
1698 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1699 
1700 /* Initiate the stall-info list. */
1701 static void print_cpu_stall_info_begin(void)
1702 {
1703 	pr_cont("\n");
1704 }
1705 
1706 /*
1707  * Print out diagnostic information for the specified stalled CPU.
1708  *
1709  * If the specified CPU is aware of the current RCU grace period
1710  * (flavor specified by rsp), then print the number of scheduling
1711  * clock interrupts the CPU has taken during the time that it has
1712  * been aware.  Otherwise, print the number of RCU grace periods
1713  * that this CPU is ignorant of, for example, "1" if the CPU was
1714  * aware of the previous grace period.
1715  *
1716  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1717  */
1718 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1719 {
1720 	char fast_no_hz[72];
1721 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1722 	struct rcu_dynticks *rdtp = rdp->dynticks;
1723 	char *ticks_title;
1724 	unsigned long ticks_value;
1725 
1726 	if (rsp->gpnum == rdp->gpnum) {
1727 		ticks_title = "ticks this GP";
1728 		ticks_value = rdp->ticks_this_gp;
1729 	} else {
1730 		ticks_title = "GPs behind";
1731 		ticks_value = rsp->gpnum - rdp->gpnum;
1732 	}
1733 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1734 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1735 	       cpu,
1736 	       "O."[!!cpu_online(cpu)],
1737 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1738 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1739 	       ticks_value, ticks_title,
1740 	       atomic_read(&rdtp->dynticks) & 0xfff,
1741 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1742 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1743 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1744 	       fast_no_hz);
1745 }
1746 
1747 /* Terminate the stall-info list. */
1748 static void print_cpu_stall_info_end(void)
1749 {
1750 	pr_err("\t");
1751 }
1752 
1753 /* Zero ->ticks_this_gp for all flavors of RCU. */
1754 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1755 {
1756 	rdp->ticks_this_gp = 0;
1757 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1758 }
1759 
1760 /* Increment ->ticks_this_gp for all flavors of RCU. */
1761 static void increment_cpu_stall_ticks(void)
1762 {
1763 	struct rcu_state *rsp;
1764 
1765 	for_each_rcu_flavor(rsp)
1766 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1767 }
1768 
1769 #ifdef CONFIG_RCU_NOCB_CPU
1770 
1771 /*
1772  * Offload callback processing from the boot-time-specified set of CPUs
1773  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1774  * kthread created that pulls the callbacks from the corresponding CPU,
1775  * waits for a grace period to elapse, and invokes the callbacks.
1776  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1777  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1778  * has been specified, in which case each kthread actively polls its
1779  * CPU.  (Which isn't so great for energy efficiency, but which does
1780  * reduce RCU's overhead on that CPU.)
1781  *
1782  * This is intended to be used in conjunction with Frederic Weisbecker's
1783  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1784  * running CPU-bound user-mode computations.
1785  *
1786  * Offloading of callback processing could also in theory be used as
1787  * an energy-efficiency measure because CPUs with no RCU callbacks
1788  * queued are more aggressive about entering dyntick-idle mode.
1789  */
1790 
1791 
1792 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1793 static int __init rcu_nocb_setup(char *str)
1794 {
1795 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1796 	have_rcu_nocb_mask = true;
1797 	cpulist_parse(str, rcu_nocb_mask);
1798 	return 1;
1799 }
1800 __setup("rcu_nocbs=", rcu_nocb_setup);
1801 
1802 static int __init parse_rcu_nocb_poll(char *arg)
1803 {
1804 	rcu_nocb_poll = 1;
1805 	return 0;
1806 }
1807 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1808 
1809 /*
1810  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1811  * grace period.
1812  */
1813 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1814 {
1815 	swake_up_all(sq);
1816 }
1817 
1818 /*
1819  * Set the root rcu_node structure's ->need_future_gp field
1820  * based on the sum of those of all rcu_node structures.  This does
1821  * double-count the root rcu_node structure's requests, but this
1822  * is necessary to handle the possibility of a rcu_nocb_kthread()
1823  * having awakened during the time that the rcu_node structures
1824  * were being updated for the end of the previous grace period.
1825  */
1826 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1827 {
1828 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1829 }
1830 
1831 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1832 {
1833 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1834 }
1835 
1836 static void rcu_init_one_nocb(struct rcu_node *rnp)
1837 {
1838 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1839 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1840 }
1841 
1842 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1843 /* Is the specified CPU a no-CBs CPU? */
1844 bool rcu_is_nocb_cpu(int cpu)
1845 {
1846 	if (have_rcu_nocb_mask)
1847 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1848 	return false;
1849 }
1850 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1851 
1852 /*
1853  * Kick the leader kthread for this NOCB group.
1854  */
1855 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1856 {
1857 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1858 
1859 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1860 		return;
1861 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1862 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1863 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1864 		swake_up(&rdp_leader->nocb_wq);
1865 	}
1866 }
1867 
1868 /*
1869  * Does the specified CPU need an RCU callback for the specified flavor
1870  * of rcu_barrier()?
1871  */
1872 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1873 {
1874 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1875 	unsigned long ret;
1876 #ifdef CONFIG_PROVE_RCU
1877 	struct rcu_head *rhp;
1878 #endif /* #ifdef CONFIG_PROVE_RCU */
1879 
1880 	/*
1881 	 * Check count of all no-CBs callbacks awaiting invocation.
1882 	 * There needs to be a barrier before this function is called,
1883 	 * but associated with a prior determination that no more
1884 	 * callbacks would be posted.  In the worst case, the first
1885 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1886 	 * necessarily rely on this, not a substitute for the caller
1887 	 * getting the concurrency design right!).  There must also be
1888 	 * a barrier between the following load an posting of a callback
1889 	 * (if a callback is in fact needed).  This is associated with an
1890 	 * atomic_inc() in the caller.
1891 	 */
1892 	ret = atomic_long_read(&rdp->nocb_q_count);
1893 
1894 #ifdef CONFIG_PROVE_RCU
1895 	rhp = READ_ONCE(rdp->nocb_head);
1896 	if (!rhp)
1897 		rhp = READ_ONCE(rdp->nocb_gp_head);
1898 	if (!rhp)
1899 		rhp = READ_ONCE(rdp->nocb_follower_head);
1900 
1901 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1902 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1903 	    rcu_scheduler_fully_active) {
1904 		/* RCU callback enqueued before CPU first came online??? */
1905 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1906 		       cpu, rhp->func);
1907 		WARN_ON_ONCE(1);
1908 	}
1909 #endif /* #ifdef CONFIG_PROVE_RCU */
1910 
1911 	return !!ret;
1912 }
1913 
1914 /*
1915  * Enqueue the specified string of rcu_head structures onto the specified
1916  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1917  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1918  * counts are supplied by rhcount and rhcount_lazy.
1919  *
1920  * If warranted, also wake up the kthread servicing this CPUs queues.
1921  */
1922 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1923 				    struct rcu_head *rhp,
1924 				    struct rcu_head **rhtp,
1925 				    int rhcount, int rhcount_lazy,
1926 				    unsigned long flags)
1927 {
1928 	int len;
1929 	struct rcu_head **old_rhpp;
1930 	struct task_struct *t;
1931 
1932 	/* Enqueue the callback on the nocb list and update counts. */
1933 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1934 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1935 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1936 	WRITE_ONCE(*old_rhpp, rhp);
1937 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1938 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1939 
1940 	/* If we are not being polled and there is a kthread, awaken it ... */
1941 	t = READ_ONCE(rdp->nocb_kthread);
1942 	if (rcu_nocb_poll || !t) {
1943 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1944 				    TPS("WakeNotPoll"));
1945 		return;
1946 	}
1947 	len = atomic_long_read(&rdp->nocb_q_count);
1948 	if (old_rhpp == &rdp->nocb_head) {
1949 		if (!irqs_disabled_flags(flags)) {
1950 			/* ... if queue was empty ... */
1951 			wake_nocb_leader(rdp, false);
1952 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1953 					    TPS("WakeEmpty"));
1954 		} else {
1955 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1956 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1957 					    TPS("WakeEmptyIsDeferred"));
1958 		}
1959 		rdp->qlen_last_fqs_check = 0;
1960 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1961 		/* ... or if many callbacks queued. */
1962 		if (!irqs_disabled_flags(flags)) {
1963 			wake_nocb_leader(rdp, true);
1964 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1965 					    TPS("WakeOvf"));
1966 		} else {
1967 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1968 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1969 					    TPS("WakeOvfIsDeferred"));
1970 		}
1971 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1972 	} else {
1973 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1974 	}
1975 	return;
1976 }
1977 
1978 /*
1979  * This is a helper for __call_rcu(), which invokes this when the normal
1980  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1981  * function returns failure back to __call_rcu(), which can complain
1982  * appropriately.
1983  *
1984  * Otherwise, this function queues the callback where the corresponding
1985  * "rcuo" kthread can find it.
1986  */
1987 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1988 			    bool lazy, unsigned long flags)
1989 {
1990 
1991 	if (!rcu_is_nocb_cpu(rdp->cpu))
1992 		return false;
1993 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1994 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1995 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1996 					 (unsigned long)rhp->func,
1997 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1998 					 -atomic_long_read(&rdp->nocb_q_count));
1999 	else
2000 		trace_rcu_callback(rdp->rsp->name, rhp,
2001 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2002 				   -atomic_long_read(&rdp->nocb_q_count));
2003 
2004 	/*
2005 	 * If called from an extended quiescent state with interrupts
2006 	 * disabled, invoke the RCU core in order to allow the idle-entry
2007 	 * deferred-wakeup check to function.
2008 	 */
2009 	if (irqs_disabled_flags(flags) &&
2010 	    !rcu_is_watching() &&
2011 	    cpu_online(smp_processor_id()))
2012 		invoke_rcu_core();
2013 
2014 	return true;
2015 }
2016 
2017 /*
2018  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2019  * not a no-CBs CPU.
2020  */
2021 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2022 						     struct rcu_data *rdp,
2023 						     unsigned long flags)
2024 {
2025 	long ql = rsp->qlen;
2026 	long qll = rsp->qlen_lazy;
2027 
2028 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2029 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2030 		return false;
2031 	rsp->qlen = 0;
2032 	rsp->qlen_lazy = 0;
2033 
2034 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2035 	if (rsp->orphan_donelist != NULL) {
2036 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2037 					rsp->orphan_donetail, ql, qll, flags);
2038 		ql = qll = 0;
2039 		rsp->orphan_donelist = NULL;
2040 		rsp->orphan_donetail = &rsp->orphan_donelist;
2041 	}
2042 	if (rsp->orphan_nxtlist != NULL) {
2043 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2044 					rsp->orphan_nxttail, ql, qll, flags);
2045 		ql = qll = 0;
2046 		rsp->orphan_nxtlist = NULL;
2047 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2048 	}
2049 	return true;
2050 }
2051 
2052 /*
2053  * If necessary, kick off a new grace period, and either way wait
2054  * for a subsequent grace period to complete.
2055  */
2056 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2057 {
2058 	unsigned long c;
2059 	bool d;
2060 	unsigned long flags;
2061 	bool needwake;
2062 	struct rcu_node *rnp = rdp->mynode;
2063 
2064 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2065 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2066 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2067 	if (needwake)
2068 		rcu_gp_kthread_wake(rdp->rsp);
2069 
2070 	/*
2071 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2072 	 * up the load average.
2073 	 */
2074 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2075 	for (;;) {
2076 		swait_event_interruptible(
2077 			rnp->nocb_gp_wq[c & 0x1],
2078 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2079 		if (likely(d))
2080 			break;
2081 		WARN_ON(signal_pending(current));
2082 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2083 	}
2084 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2085 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2086 }
2087 
2088 /*
2089  * Leaders come here to wait for additional callbacks to show up.
2090  * This function does not return until callbacks appear.
2091  */
2092 static void nocb_leader_wait(struct rcu_data *my_rdp)
2093 {
2094 	bool firsttime = true;
2095 	bool gotcbs;
2096 	struct rcu_data *rdp;
2097 	struct rcu_head **tail;
2098 
2099 wait_again:
2100 
2101 	/* Wait for callbacks to appear. */
2102 	if (!rcu_nocb_poll) {
2103 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2104 		swait_event_interruptible(my_rdp->nocb_wq,
2105 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2106 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2107 	} else if (firsttime) {
2108 		firsttime = false; /* Don't drown trace log with "Poll"! */
2109 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2110 	}
2111 
2112 	/*
2113 	 * Each pass through the following loop checks a follower for CBs.
2114 	 * We are our own first follower.  Any CBs found are moved to
2115 	 * nocb_gp_head, where they await a grace period.
2116 	 */
2117 	gotcbs = false;
2118 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2119 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2120 		if (!rdp->nocb_gp_head)
2121 			continue;  /* No CBs here, try next follower. */
2122 
2123 		/* Move callbacks to wait-for-GP list, which is empty. */
2124 		WRITE_ONCE(rdp->nocb_head, NULL);
2125 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2126 		gotcbs = true;
2127 	}
2128 
2129 	/*
2130 	 * If there were no callbacks, sleep a bit, rescan after a
2131 	 * memory barrier, and go retry.
2132 	 */
2133 	if (unlikely(!gotcbs)) {
2134 		if (!rcu_nocb_poll)
2135 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2136 					    "WokeEmpty");
2137 		WARN_ON(signal_pending(current));
2138 		schedule_timeout_interruptible(1);
2139 
2140 		/* Rescan in case we were a victim of memory ordering. */
2141 		my_rdp->nocb_leader_sleep = true;
2142 		smp_mb();  /* Ensure _sleep true before scan. */
2143 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2144 			if (READ_ONCE(rdp->nocb_head)) {
2145 				/* Found CB, so short-circuit next wait. */
2146 				my_rdp->nocb_leader_sleep = false;
2147 				break;
2148 			}
2149 		goto wait_again;
2150 	}
2151 
2152 	/* Wait for one grace period. */
2153 	rcu_nocb_wait_gp(my_rdp);
2154 
2155 	/*
2156 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2157 	 * We set it now, but recheck for new callbacks while
2158 	 * traversing our follower list.
2159 	 */
2160 	my_rdp->nocb_leader_sleep = true;
2161 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2162 
2163 	/* Each pass through the following loop wakes a follower, if needed. */
2164 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2165 		if (READ_ONCE(rdp->nocb_head))
2166 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2167 		if (!rdp->nocb_gp_head)
2168 			continue; /* No CBs, so no need to wake follower. */
2169 
2170 		/* Append callbacks to follower's "done" list. */
2171 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2172 		*tail = rdp->nocb_gp_head;
2173 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2174 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2175 			/*
2176 			 * List was empty, wake up the follower.
2177 			 * Memory barriers supplied by atomic_long_add().
2178 			 */
2179 			swake_up(&rdp->nocb_wq);
2180 		}
2181 	}
2182 
2183 	/* If we (the leader) don't have CBs, go wait some more. */
2184 	if (!my_rdp->nocb_follower_head)
2185 		goto wait_again;
2186 }
2187 
2188 /*
2189  * Followers come here to wait for additional callbacks to show up.
2190  * This function does not return until callbacks appear.
2191  */
2192 static void nocb_follower_wait(struct rcu_data *rdp)
2193 {
2194 	bool firsttime = true;
2195 
2196 	for (;;) {
2197 		if (!rcu_nocb_poll) {
2198 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2199 					    "FollowerSleep");
2200 			swait_event_interruptible(rdp->nocb_wq,
2201 						 READ_ONCE(rdp->nocb_follower_head));
2202 		} else if (firsttime) {
2203 			/* Don't drown trace log with "Poll"! */
2204 			firsttime = false;
2205 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2206 		}
2207 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2208 			/* ^^^ Ensure CB invocation follows _head test. */
2209 			return;
2210 		}
2211 		if (!rcu_nocb_poll)
2212 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2213 					    "WokeEmpty");
2214 		WARN_ON(signal_pending(current));
2215 		schedule_timeout_interruptible(1);
2216 	}
2217 }
2218 
2219 /*
2220  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2221  * callbacks queued by the corresponding no-CBs CPU, however, there is
2222  * an optional leader-follower relationship so that the grace-period
2223  * kthreads don't have to do quite so many wakeups.
2224  */
2225 static int rcu_nocb_kthread(void *arg)
2226 {
2227 	int c, cl;
2228 	struct rcu_head *list;
2229 	struct rcu_head *next;
2230 	struct rcu_head **tail;
2231 	struct rcu_data *rdp = arg;
2232 
2233 	/* Each pass through this loop invokes one batch of callbacks */
2234 	for (;;) {
2235 		/* Wait for callbacks. */
2236 		if (rdp->nocb_leader == rdp)
2237 			nocb_leader_wait(rdp);
2238 		else
2239 			nocb_follower_wait(rdp);
2240 
2241 		/* Pull the ready-to-invoke callbacks onto local list. */
2242 		list = READ_ONCE(rdp->nocb_follower_head);
2243 		BUG_ON(!list);
2244 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2245 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2246 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2247 
2248 		/* Each pass through the following loop invokes a callback. */
2249 		trace_rcu_batch_start(rdp->rsp->name,
2250 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2251 				      atomic_long_read(&rdp->nocb_q_count), -1);
2252 		c = cl = 0;
2253 		while (list) {
2254 			next = list->next;
2255 			/* Wait for enqueuing to complete, if needed. */
2256 			while (next == NULL && &list->next != tail) {
2257 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2258 						    TPS("WaitQueue"));
2259 				schedule_timeout_interruptible(1);
2260 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2261 						    TPS("WokeQueue"));
2262 				next = list->next;
2263 			}
2264 			debug_rcu_head_unqueue(list);
2265 			local_bh_disable();
2266 			if (__rcu_reclaim(rdp->rsp->name, list))
2267 				cl++;
2268 			c++;
2269 			local_bh_enable();
2270 			list = next;
2271 		}
2272 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2273 		smp_mb__before_atomic();  /* _add after CB invocation. */
2274 		atomic_long_add(-c, &rdp->nocb_q_count);
2275 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2276 		rdp->n_nocbs_invoked += c;
2277 	}
2278 	return 0;
2279 }
2280 
2281 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2282 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2283 {
2284 	return READ_ONCE(rdp->nocb_defer_wakeup);
2285 }
2286 
2287 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2288 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2289 {
2290 	int ndw;
2291 
2292 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2293 		return;
2294 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2295 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2296 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2297 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2298 }
2299 
2300 void __init rcu_init_nohz(void)
2301 {
2302 	int cpu;
2303 	bool need_rcu_nocb_mask = true;
2304 	struct rcu_state *rsp;
2305 
2306 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2307 	need_rcu_nocb_mask = false;
2308 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2309 
2310 #if defined(CONFIG_NO_HZ_FULL)
2311 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2312 		need_rcu_nocb_mask = true;
2313 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2314 
2315 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2316 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2317 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2318 			return;
2319 		}
2320 		have_rcu_nocb_mask = true;
2321 	}
2322 	if (!have_rcu_nocb_mask)
2323 		return;
2324 
2325 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2326 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2327 	cpumask_set_cpu(0, rcu_nocb_mask);
2328 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2329 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2330 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2331 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2332 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2333 #if defined(CONFIG_NO_HZ_FULL)
2334 	if (tick_nohz_full_running)
2335 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2336 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2337 
2338 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2339 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2340 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2341 			    rcu_nocb_mask);
2342 	}
2343 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2344 		cpumask_pr_args(rcu_nocb_mask));
2345 	if (rcu_nocb_poll)
2346 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2347 
2348 	for_each_rcu_flavor(rsp) {
2349 		for_each_cpu(cpu, rcu_nocb_mask)
2350 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2351 		rcu_organize_nocb_kthreads(rsp);
2352 	}
2353 }
2354 
2355 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2356 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2357 {
2358 	rdp->nocb_tail = &rdp->nocb_head;
2359 	init_swait_queue_head(&rdp->nocb_wq);
2360 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2361 }
2362 
2363 /*
2364  * If the specified CPU is a no-CBs CPU that does not already have its
2365  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2366  * brought online out of order, this can require re-organizing the
2367  * leader-follower relationships.
2368  */
2369 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2370 {
2371 	struct rcu_data *rdp;
2372 	struct rcu_data *rdp_last;
2373 	struct rcu_data *rdp_old_leader;
2374 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2375 	struct task_struct *t;
2376 
2377 	/*
2378 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2379 	 * then nothing to do.
2380 	 */
2381 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2382 		return;
2383 
2384 	/* If we didn't spawn the leader first, reorganize! */
2385 	rdp_old_leader = rdp_spawn->nocb_leader;
2386 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2387 		rdp_last = NULL;
2388 		rdp = rdp_old_leader;
2389 		do {
2390 			rdp->nocb_leader = rdp_spawn;
2391 			if (rdp_last && rdp != rdp_spawn)
2392 				rdp_last->nocb_next_follower = rdp;
2393 			if (rdp == rdp_spawn) {
2394 				rdp = rdp->nocb_next_follower;
2395 			} else {
2396 				rdp_last = rdp;
2397 				rdp = rdp->nocb_next_follower;
2398 				rdp_last->nocb_next_follower = NULL;
2399 			}
2400 		} while (rdp);
2401 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2402 	}
2403 
2404 	/* Spawn the kthread for this CPU and RCU flavor. */
2405 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2406 			"rcuo%c/%d", rsp->abbr, cpu);
2407 	BUG_ON(IS_ERR(t));
2408 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2409 }
2410 
2411 /*
2412  * If the specified CPU is a no-CBs CPU that does not already have its
2413  * rcuo kthreads, spawn them.
2414  */
2415 static void rcu_spawn_all_nocb_kthreads(int cpu)
2416 {
2417 	struct rcu_state *rsp;
2418 
2419 	if (rcu_scheduler_fully_active)
2420 		for_each_rcu_flavor(rsp)
2421 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2422 }
2423 
2424 /*
2425  * Once the scheduler is running, spawn rcuo kthreads for all online
2426  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2427  * non-boot CPUs come online -- if this changes, we will need to add
2428  * some mutual exclusion.
2429  */
2430 static void __init rcu_spawn_nocb_kthreads(void)
2431 {
2432 	int cpu;
2433 
2434 	for_each_online_cpu(cpu)
2435 		rcu_spawn_all_nocb_kthreads(cpu);
2436 }
2437 
2438 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2439 static int rcu_nocb_leader_stride = -1;
2440 module_param(rcu_nocb_leader_stride, int, 0444);
2441 
2442 /*
2443  * Initialize leader-follower relationships for all no-CBs CPU.
2444  */
2445 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2446 {
2447 	int cpu;
2448 	int ls = rcu_nocb_leader_stride;
2449 	int nl = 0;  /* Next leader. */
2450 	struct rcu_data *rdp;
2451 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2452 	struct rcu_data *rdp_prev = NULL;
2453 
2454 	if (!have_rcu_nocb_mask)
2455 		return;
2456 	if (ls == -1) {
2457 		ls = int_sqrt(nr_cpu_ids);
2458 		rcu_nocb_leader_stride = ls;
2459 	}
2460 
2461 	/*
2462 	 * Each pass through this loop sets up one rcu_data structure and
2463 	 * spawns one rcu_nocb_kthread().
2464 	 */
2465 	for_each_cpu(cpu, rcu_nocb_mask) {
2466 		rdp = per_cpu_ptr(rsp->rda, cpu);
2467 		if (rdp->cpu >= nl) {
2468 			/* New leader, set up for followers & next leader. */
2469 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2470 			rdp->nocb_leader = rdp;
2471 			rdp_leader = rdp;
2472 		} else {
2473 			/* Another follower, link to previous leader. */
2474 			rdp->nocb_leader = rdp_leader;
2475 			rdp_prev->nocb_next_follower = rdp;
2476 		}
2477 		rdp_prev = rdp;
2478 	}
2479 }
2480 
2481 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2482 static bool init_nocb_callback_list(struct rcu_data *rdp)
2483 {
2484 	if (!rcu_is_nocb_cpu(rdp->cpu))
2485 		return false;
2486 
2487 	/* If there are early-boot callbacks, move them to nocb lists. */
2488 	if (rdp->nxtlist) {
2489 		rdp->nocb_head = rdp->nxtlist;
2490 		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2491 		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2492 		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2493 		rdp->nxtlist = NULL;
2494 		rdp->qlen = 0;
2495 		rdp->qlen_lazy = 0;
2496 	}
2497 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2498 	return true;
2499 }
2500 
2501 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2502 
2503 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2504 {
2505 	WARN_ON_ONCE(1); /* Should be dead code. */
2506 	return false;
2507 }
2508 
2509 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2510 {
2511 }
2512 
2513 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2514 {
2515 }
2516 
2517 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2518 {
2519 	return NULL;
2520 }
2521 
2522 static void rcu_init_one_nocb(struct rcu_node *rnp)
2523 {
2524 }
2525 
2526 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2527 			    bool lazy, unsigned long flags)
2528 {
2529 	return false;
2530 }
2531 
2532 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2533 						     struct rcu_data *rdp,
2534 						     unsigned long flags)
2535 {
2536 	return false;
2537 }
2538 
2539 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2540 {
2541 }
2542 
2543 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2544 {
2545 	return false;
2546 }
2547 
2548 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2549 {
2550 }
2551 
2552 static void rcu_spawn_all_nocb_kthreads(int cpu)
2553 {
2554 }
2555 
2556 static void __init rcu_spawn_nocb_kthreads(void)
2557 {
2558 }
2559 
2560 static bool init_nocb_callback_list(struct rcu_data *rdp)
2561 {
2562 	return false;
2563 }
2564 
2565 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2566 
2567 /*
2568  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2569  * arbitrarily long period of time with the scheduling-clock tick turned
2570  * off.  RCU will be paying attention to this CPU because it is in the
2571  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2572  * machine because the scheduling-clock tick has been disabled.  Therefore,
2573  * if an adaptive-ticks CPU is failing to respond to the current grace
2574  * period and has not be idle from an RCU perspective, kick it.
2575  */
2576 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2577 {
2578 #ifdef CONFIG_NO_HZ_FULL
2579 	if (tick_nohz_full_cpu(cpu))
2580 		smp_send_reschedule(cpu);
2581 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2582 }
2583 
2584 
2585 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2586 
2587 static int full_sysidle_state;		/* Current system-idle state. */
2588 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2589 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2590 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2591 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2592 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2593 
2594 /*
2595  * Invoked to note exit from irq or task transition to idle.  Note that
2596  * usermode execution does -not- count as idle here!  After all, we want
2597  * to detect full-system idle states, not RCU quiescent states and grace
2598  * periods.  The caller must have disabled interrupts.
2599  */
2600 static void rcu_sysidle_enter(int irq)
2601 {
2602 	unsigned long j;
2603 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2604 
2605 	/* If there are no nohz_full= CPUs, no need to track this. */
2606 	if (!tick_nohz_full_enabled())
2607 		return;
2608 
2609 	/* Adjust nesting, check for fully idle. */
2610 	if (irq) {
2611 		rdtp->dynticks_idle_nesting--;
2612 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2613 		if (rdtp->dynticks_idle_nesting != 0)
2614 			return;  /* Still not fully idle. */
2615 	} else {
2616 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2617 		    DYNTICK_TASK_NEST_VALUE) {
2618 			rdtp->dynticks_idle_nesting = 0;
2619 		} else {
2620 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2621 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2622 			return;  /* Still not fully idle. */
2623 		}
2624 	}
2625 
2626 	/* Record start of fully idle period. */
2627 	j = jiffies;
2628 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2629 	smp_mb__before_atomic();
2630 	atomic_inc(&rdtp->dynticks_idle);
2631 	smp_mb__after_atomic();
2632 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2633 }
2634 
2635 /*
2636  * Unconditionally force exit from full system-idle state.  This is
2637  * invoked when a normal CPU exits idle, but must be called separately
2638  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2639  * is that the timekeeping CPU is permitted to take scheduling-clock
2640  * interrupts while the system is in system-idle state, and of course
2641  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2642  * interrupt from any other type of interrupt.
2643  */
2644 void rcu_sysidle_force_exit(void)
2645 {
2646 	int oldstate = READ_ONCE(full_sysidle_state);
2647 	int newoldstate;
2648 
2649 	/*
2650 	 * Each pass through the following loop attempts to exit full
2651 	 * system-idle state.  If contention proves to be a problem,
2652 	 * a trylock-based contention tree could be used here.
2653 	 */
2654 	while (oldstate > RCU_SYSIDLE_SHORT) {
2655 		newoldstate = cmpxchg(&full_sysidle_state,
2656 				      oldstate, RCU_SYSIDLE_NOT);
2657 		if (oldstate == newoldstate &&
2658 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2659 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2660 			return; /* We cleared it, done! */
2661 		}
2662 		oldstate = newoldstate;
2663 	}
2664 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2665 }
2666 
2667 /*
2668  * Invoked to note entry to irq or task transition from idle.  Note that
2669  * usermode execution does -not- count as idle here!  The caller must
2670  * have disabled interrupts.
2671  */
2672 static void rcu_sysidle_exit(int irq)
2673 {
2674 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2675 
2676 	/* If there are no nohz_full= CPUs, no need to track this. */
2677 	if (!tick_nohz_full_enabled())
2678 		return;
2679 
2680 	/* Adjust nesting, check for already non-idle. */
2681 	if (irq) {
2682 		rdtp->dynticks_idle_nesting++;
2683 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2684 		if (rdtp->dynticks_idle_nesting != 1)
2685 			return; /* Already non-idle. */
2686 	} else {
2687 		/*
2688 		 * Allow for irq misnesting.  Yes, it really is possible
2689 		 * to enter an irq handler then never leave it, and maybe
2690 		 * also vice versa.  Handle both possibilities.
2691 		 */
2692 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2693 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2694 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2695 			return; /* Already non-idle. */
2696 		} else {
2697 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2698 		}
2699 	}
2700 
2701 	/* Record end of idle period. */
2702 	smp_mb__before_atomic();
2703 	atomic_inc(&rdtp->dynticks_idle);
2704 	smp_mb__after_atomic();
2705 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2706 
2707 	/*
2708 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2709 	 * during a system-idle state.  This must be the case, because
2710 	 * the timekeeping CPU has to take scheduling-clock interrupts
2711 	 * during the time that the system is transitioning to full
2712 	 * system-idle state.  This means that the timekeeping CPU must
2713 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2714 	 * more than take a scheduling-clock interrupt.
2715 	 */
2716 	if (smp_processor_id() == tick_do_timer_cpu)
2717 		return;
2718 
2719 	/* Update system-idle state: We are clearly no longer fully idle! */
2720 	rcu_sysidle_force_exit();
2721 }
2722 
2723 /*
2724  * Check to see if the current CPU is idle.  Note that usermode execution
2725  * does not count as idle.  The caller must have disabled interrupts,
2726  * and must be running on tick_do_timer_cpu.
2727  */
2728 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2729 				  unsigned long *maxj)
2730 {
2731 	int cur;
2732 	unsigned long j;
2733 	struct rcu_dynticks *rdtp = rdp->dynticks;
2734 
2735 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2736 	if (!tick_nohz_full_enabled())
2737 		return;
2738 
2739 	/*
2740 	 * If some other CPU has already reported non-idle, if this is
2741 	 * not the flavor of RCU that tracks sysidle state, or if this
2742 	 * is an offline or the timekeeping CPU, nothing to do.
2743 	 */
2744 	if (!*isidle || rdp->rsp != rcu_state_p ||
2745 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2746 		return;
2747 	/* Verify affinity of current kthread. */
2748 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2749 
2750 	/* Pick up current idle and NMI-nesting counter and check. */
2751 	cur = atomic_read(&rdtp->dynticks_idle);
2752 	if (cur & 0x1) {
2753 		*isidle = false; /* We are not idle! */
2754 		return;
2755 	}
2756 	smp_mb(); /* Read counters before timestamps. */
2757 
2758 	/* Pick up timestamps. */
2759 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2760 	/* If this CPU entered idle more recently, update maxj timestamp. */
2761 	if (ULONG_CMP_LT(*maxj, j))
2762 		*maxj = j;
2763 }
2764 
2765 /*
2766  * Is this the flavor of RCU that is handling full-system idle?
2767  */
2768 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2769 {
2770 	return rsp == rcu_state_p;
2771 }
2772 
2773 /*
2774  * Return a delay in jiffies based on the number of CPUs, rcu_node
2775  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2776  * systems more time to transition to full-idle state in order to
2777  * avoid the cache thrashing that otherwise occur on the state variable.
2778  * Really small systems (less than a couple of tens of CPUs) should
2779  * instead use a single global atomically incremented counter, and later
2780  * versions of this will automatically reconfigure themselves accordingly.
2781  */
2782 static unsigned long rcu_sysidle_delay(void)
2783 {
2784 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2785 		return 0;
2786 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2787 }
2788 
2789 /*
2790  * Advance the full-system-idle state.  This is invoked when all of
2791  * the non-timekeeping CPUs are idle.
2792  */
2793 static void rcu_sysidle(unsigned long j)
2794 {
2795 	/* Check the current state. */
2796 	switch (READ_ONCE(full_sysidle_state)) {
2797 	case RCU_SYSIDLE_NOT:
2798 
2799 		/* First time all are idle, so note a short idle period. */
2800 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2801 		break;
2802 
2803 	case RCU_SYSIDLE_SHORT:
2804 
2805 		/*
2806 		 * Idle for a bit, time to advance to next state?
2807 		 * cmpxchg failure means race with non-idle, let them win.
2808 		 */
2809 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2810 			(void)cmpxchg(&full_sysidle_state,
2811 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2812 		break;
2813 
2814 	case RCU_SYSIDLE_LONG:
2815 
2816 		/*
2817 		 * Do an additional check pass before advancing to full.
2818 		 * cmpxchg failure means race with non-idle, let them win.
2819 		 */
2820 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2821 			(void)cmpxchg(&full_sysidle_state,
2822 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2823 		break;
2824 
2825 	default:
2826 		break;
2827 	}
2828 }
2829 
2830 /*
2831  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2832  * back to the beginning.
2833  */
2834 static void rcu_sysidle_cancel(void)
2835 {
2836 	smp_mb();
2837 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2838 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2839 }
2840 
2841 /*
2842  * Update the sysidle state based on the results of a force-quiescent-state
2843  * scan of the CPUs' dyntick-idle state.
2844  */
2845 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2846 			       unsigned long maxj, bool gpkt)
2847 {
2848 	if (rsp != rcu_state_p)
2849 		return;  /* Wrong flavor, ignore. */
2850 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2851 		return;  /* Running state machine from timekeeping CPU. */
2852 	if (isidle)
2853 		rcu_sysidle(maxj);    /* More idle! */
2854 	else
2855 		rcu_sysidle_cancel(); /* Idle is over. */
2856 }
2857 
2858 /*
2859  * Wrapper for rcu_sysidle_report() when called from the grace-period
2860  * kthread's context.
2861  */
2862 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2863 				  unsigned long maxj)
2864 {
2865 	/* If there are no nohz_full= CPUs, no need to track this. */
2866 	if (!tick_nohz_full_enabled())
2867 		return;
2868 
2869 	rcu_sysidle_report(rsp, isidle, maxj, true);
2870 }
2871 
2872 /* Callback and function for forcing an RCU grace period. */
2873 struct rcu_sysidle_head {
2874 	struct rcu_head rh;
2875 	int inuse;
2876 };
2877 
2878 static void rcu_sysidle_cb(struct rcu_head *rhp)
2879 {
2880 	struct rcu_sysidle_head *rshp;
2881 
2882 	/*
2883 	 * The following memory barrier is needed to replace the
2884 	 * memory barriers that would normally be in the memory
2885 	 * allocator.
2886 	 */
2887 	smp_mb();  /* grace period precedes setting inuse. */
2888 
2889 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2890 	WRITE_ONCE(rshp->inuse, 0);
2891 }
2892 
2893 /*
2894  * Check to see if the system is fully idle, other than the timekeeping CPU.
2895  * The caller must have disabled interrupts.  This is not intended to be
2896  * called unless tick_nohz_full_enabled().
2897  */
2898 bool rcu_sys_is_idle(void)
2899 {
2900 	static struct rcu_sysidle_head rsh;
2901 	int rss = READ_ONCE(full_sysidle_state);
2902 
2903 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2904 		return false;
2905 
2906 	/* Handle small-system case by doing a full scan of CPUs. */
2907 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2908 		int oldrss = rss - 1;
2909 
2910 		/*
2911 		 * One pass to advance to each state up to _FULL.
2912 		 * Give up if any pass fails to advance the state.
2913 		 */
2914 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2915 			int cpu;
2916 			bool isidle = true;
2917 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2918 			struct rcu_data *rdp;
2919 
2920 			/* Scan all the CPUs looking for nonidle CPUs. */
2921 			for_each_possible_cpu(cpu) {
2922 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2923 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2924 				if (!isidle)
2925 					break;
2926 			}
2927 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2928 			oldrss = rss;
2929 			rss = READ_ONCE(full_sysidle_state);
2930 		}
2931 	}
2932 
2933 	/* If this is the first observation of an idle period, record it. */
2934 	if (rss == RCU_SYSIDLE_FULL) {
2935 		rss = cmpxchg(&full_sysidle_state,
2936 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2937 		return rss == RCU_SYSIDLE_FULL;
2938 	}
2939 
2940 	smp_mb(); /* ensure rss load happens before later caller actions. */
2941 
2942 	/* If already fully idle, tell the caller (in case of races). */
2943 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2944 		return true;
2945 
2946 	/*
2947 	 * If we aren't there yet, and a grace period is not in flight,
2948 	 * initiate a grace period.  Either way, tell the caller that
2949 	 * we are not there yet.  We use an xchg() rather than an assignment
2950 	 * to make up for the memory barriers that would otherwise be
2951 	 * provided by the memory allocator.
2952 	 */
2953 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2954 	    !rcu_gp_in_progress(rcu_state_p) &&
2955 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2956 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2957 	return false;
2958 }
2959 
2960 /*
2961  * Initialize dynticks sysidle state for CPUs coming online.
2962  */
2963 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2964 {
2965 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2966 }
2967 
2968 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2969 
2970 static void rcu_sysidle_enter(int irq)
2971 {
2972 }
2973 
2974 static void rcu_sysidle_exit(int irq)
2975 {
2976 }
2977 
2978 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2979 				  unsigned long *maxj)
2980 {
2981 }
2982 
2983 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2984 {
2985 	return false;
2986 }
2987 
2988 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2989 				  unsigned long maxj)
2990 {
2991 }
2992 
2993 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2994 {
2995 }
2996 
2997 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2998 
2999 /*
3000  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3001  * grace-period kthread will do force_quiescent_state() processing?
3002  * The idea is to avoid waking up RCU core processing on such a
3003  * CPU unless the grace period has extended for too long.
3004  *
3005  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3006  * CONFIG_RCU_NOCB_CPU CPUs.
3007  */
3008 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3009 {
3010 #ifdef CONFIG_NO_HZ_FULL
3011 	if (tick_nohz_full_cpu(smp_processor_id()) &&
3012 	    (!rcu_gp_in_progress(rsp) ||
3013 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3014 		return true;
3015 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3016 	return false;
3017 }
3018 
3019 /*
3020  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3021  * timekeeping CPU.
3022  */
3023 static void rcu_bind_gp_kthread(void)
3024 {
3025 	int __maybe_unused cpu;
3026 
3027 	if (!tick_nohz_full_enabled())
3028 		return;
3029 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3030 	cpu = tick_do_timer_cpu;
3031 	if (cpu >= 0 && cpu < nr_cpu_ids)
3032 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3033 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3034 	housekeeping_affine(current);
3035 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3036 }
3037 
3038 /* Record the current task on dyntick-idle entry. */
3039 static void rcu_dynticks_task_enter(void)
3040 {
3041 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3042 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3043 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3044 }
3045 
3046 /* Record no current task on dyntick-idle exit. */
3047 static void rcu_dynticks_task_exit(void)
3048 {
3049 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3050 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3051 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3052 }
3053