1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 static inline bool rcu_running_nocb_timer(struct rcu_data *rdp) 37 { 38 return (timer_curr_running(&rdp->nocb_timer) && !in_irq()); 39 } 40 #else 41 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 42 { 43 return 0; 44 } 45 46 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 47 { 48 return false; 49 } 50 51 static inline bool rcu_running_nocb_timer(struct rcu_data *rdp) 52 { 53 return false; 54 } 55 56 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 57 58 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) 59 { 60 /* 61 * In order to read the offloaded state of an rdp is a safe 62 * and stable way and prevent from its value to be changed 63 * under us, we must either hold the barrier mutex, the cpu 64 * hotplug lock (read or write) or the nocb lock. Local 65 * non-preemptible reads are also safe. NOCB kthreads and 66 * timers have their own means of synchronization against the 67 * offloaded state updaters. 68 */ 69 RCU_LOCKDEP_WARN( 70 !(lockdep_is_held(&rcu_state.barrier_mutex) || 71 (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || 72 rcu_lockdep_is_held_nocb(rdp) || 73 (rdp == this_cpu_ptr(&rcu_data) && 74 !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || 75 rcu_current_is_nocb_kthread(rdp) || 76 rcu_running_nocb_timer(rdp)), 77 "Unsafe read of RCU_NOCB offloaded state" 78 ); 79 80 return rcu_segcblist_is_offloaded(&rdp->cblist); 81 } 82 83 /* 84 * Check the RCU kernel configuration parameters and print informative 85 * messages about anything out of the ordinary. 86 */ 87 static void __init rcu_bootup_announce_oddness(void) 88 { 89 if (IS_ENABLED(CONFIG_RCU_TRACE)) 90 pr_info("\tRCU event tracing is enabled.\n"); 91 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 92 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 93 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 94 RCU_FANOUT); 95 if (rcu_fanout_exact) 96 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 97 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 98 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 99 if (IS_ENABLED(CONFIG_PROVE_RCU)) 100 pr_info("\tRCU lockdep checking is enabled.\n"); 101 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 102 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); 103 if (RCU_NUM_LVLS >= 4) 104 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 105 if (RCU_FANOUT_LEAF != 16) 106 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 107 RCU_FANOUT_LEAF); 108 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 109 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 110 rcu_fanout_leaf); 111 if (nr_cpu_ids != NR_CPUS) 112 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 113 #ifdef CONFIG_RCU_BOOST 114 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 115 kthread_prio, CONFIG_RCU_BOOST_DELAY); 116 #endif 117 if (blimit != DEFAULT_RCU_BLIMIT) 118 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 119 if (qhimark != DEFAULT_RCU_QHIMARK) 120 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 121 if (qlowmark != DEFAULT_RCU_QLOMARK) 122 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 123 if (qovld != DEFAULT_RCU_QOVLD) 124 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 125 if (jiffies_till_first_fqs != ULONG_MAX) 126 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 127 if (jiffies_till_next_fqs != ULONG_MAX) 128 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 129 if (jiffies_till_sched_qs != ULONG_MAX) 130 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 131 if (rcu_kick_kthreads) 132 pr_info("\tKick kthreads if too-long grace period.\n"); 133 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 134 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 135 if (gp_preinit_delay) 136 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 137 if (gp_init_delay) 138 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 139 if (gp_cleanup_delay) 140 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 141 if (!use_softirq) 142 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 143 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 144 pr_info("\tRCU debug extended QS entry/exit.\n"); 145 rcupdate_announce_bootup_oddness(); 146 } 147 148 #ifdef CONFIG_PREEMPT_RCU 149 150 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 151 static void rcu_read_unlock_special(struct task_struct *t); 152 153 /* 154 * Tell them what RCU they are running. 155 */ 156 static void __init rcu_bootup_announce(void) 157 { 158 pr_info("Preemptible hierarchical RCU implementation.\n"); 159 rcu_bootup_announce_oddness(); 160 } 161 162 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 163 #define RCU_GP_TASKS 0x8 164 #define RCU_EXP_TASKS 0x4 165 #define RCU_GP_BLKD 0x2 166 #define RCU_EXP_BLKD 0x1 167 168 /* 169 * Queues a task preempted within an RCU-preempt read-side critical 170 * section into the appropriate location within the ->blkd_tasks list, 171 * depending on the states of any ongoing normal and expedited grace 172 * periods. The ->gp_tasks pointer indicates which element the normal 173 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 174 * indicates which element the expedited grace period is waiting on (again, 175 * NULL if none). If a grace period is waiting on a given element in the 176 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 177 * adding a task to the tail of the list blocks any grace period that is 178 * already waiting on one of the elements. In contrast, adding a task 179 * to the head of the list won't block any grace period that is already 180 * waiting on one of the elements. 181 * 182 * This queuing is imprecise, and can sometimes make an ongoing grace 183 * period wait for a task that is not strictly speaking blocking it. 184 * Given the choice, we needlessly block a normal grace period rather than 185 * blocking an expedited grace period. 186 * 187 * Note that an endless sequence of expedited grace periods still cannot 188 * indefinitely postpone a normal grace period. Eventually, all of the 189 * fixed number of preempted tasks blocking the normal grace period that are 190 * not also blocking the expedited grace period will resume and complete 191 * their RCU read-side critical sections. At that point, the ->gp_tasks 192 * pointer will equal the ->exp_tasks pointer, at which point the end of 193 * the corresponding expedited grace period will also be the end of the 194 * normal grace period. 195 */ 196 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 197 __releases(rnp->lock) /* But leaves rrupts disabled. */ 198 { 199 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 200 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 201 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 202 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 203 struct task_struct *t = current; 204 205 raw_lockdep_assert_held_rcu_node(rnp); 206 WARN_ON_ONCE(rdp->mynode != rnp); 207 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 208 /* RCU better not be waiting on newly onlined CPUs! */ 209 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 210 rdp->grpmask); 211 212 /* 213 * Decide where to queue the newly blocked task. In theory, 214 * this could be an if-statement. In practice, when I tried 215 * that, it was quite messy. 216 */ 217 switch (blkd_state) { 218 case 0: 219 case RCU_EXP_TASKS: 220 case RCU_EXP_TASKS + RCU_GP_BLKD: 221 case RCU_GP_TASKS: 222 case RCU_GP_TASKS + RCU_EXP_TASKS: 223 224 /* 225 * Blocking neither GP, or first task blocking the normal 226 * GP but not blocking the already-waiting expedited GP. 227 * Queue at the head of the list to avoid unnecessarily 228 * blocking the already-waiting GPs. 229 */ 230 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 231 break; 232 233 case RCU_EXP_BLKD: 234 case RCU_GP_BLKD: 235 case RCU_GP_BLKD + RCU_EXP_BLKD: 236 case RCU_GP_TASKS + RCU_EXP_BLKD: 237 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 238 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 239 240 /* 241 * First task arriving that blocks either GP, or first task 242 * arriving that blocks the expedited GP (with the normal 243 * GP already waiting), or a task arriving that blocks 244 * both GPs with both GPs already waiting. Queue at the 245 * tail of the list to avoid any GP waiting on any of the 246 * already queued tasks that are not blocking it. 247 */ 248 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 249 break; 250 251 case RCU_EXP_TASKS + RCU_EXP_BLKD: 252 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 253 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 254 255 /* 256 * Second or subsequent task blocking the expedited GP. 257 * The task either does not block the normal GP, or is the 258 * first task blocking the normal GP. Queue just after 259 * the first task blocking the expedited GP. 260 */ 261 list_add(&t->rcu_node_entry, rnp->exp_tasks); 262 break; 263 264 case RCU_GP_TASKS + RCU_GP_BLKD: 265 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 266 267 /* 268 * Second or subsequent task blocking the normal GP. 269 * The task does not block the expedited GP. Queue just 270 * after the first task blocking the normal GP. 271 */ 272 list_add(&t->rcu_node_entry, rnp->gp_tasks); 273 break; 274 275 default: 276 277 /* Yet another exercise in excessive paranoia. */ 278 WARN_ON_ONCE(1); 279 break; 280 } 281 282 /* 283 * We have now queued the task. If it was the first one to 284 * block either grace period, update the ->gp_tasks and/or 285 * ->exp_tasks pointers, respectively, to reference the newly 286 * blocked tasks. 287 */ 288 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 289 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 290 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 291 } 292 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 293 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 294 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 295 !(rnp->qsmask & rdp->grpmask)); 296 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 297 !(rnp->expmask & rdp->grpmask)); 298 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 299 300 /* 301 * Report the quiescent state for the expedited GP. This expedited 302 * GP should not be able to end until we report, so there should be 303 * no need to check for a subsequent expedited GP. (Though we are 304 * still in a quiescent state in any case.) 305 */ 306 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) 307 rcu_report_exp_rdp(rdp); 308 else 309 WARN_ON_ONCE(rdp->exp_deferred_qs); 310 } 311 312 /* 313 * Record a preemptible-RCU quiescent state for the specified CPU. 314 * Note that this does not necessarily mean that the task currently running 315 * on the CPU is in a quiescent state: Instead, it means that the current 316 * grace period need not wait on any RCU read-side critical section that 317 * starts later on this CPU. It also means that if the current task is 318 * in an RCU read-side critical section, it has already added itself to 319 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 320 * current task, there might be any number of other tasks blocked while 321 * in an RCU read-side critical section. 322 * 323 * Callers to this function must disable preemption. 324 */ 325 static void rcu_qs(void) 326 { 327 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 328 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 329 trace_rcu_grace_period(TPS("rcu_preempt"), 330 __this_cpu_read(rcu_data.gp_seq), 331 TPS("cpuqs")); 332 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 333 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 334 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 335 } 336 } 337 338 /* 339 * We have entered the scheduler, and the current task might soon be 340 * context-switched away from. If this task is in an RCU read-side 341 * critical section, we will no longer be able to rely on the CPU to 342 * record that fact, so we enqueue the task on the blkd_tasks list. 343 * The task will dequeue itself when it exits the outermost enclosing 344 * RCU read-side critical section. Therefore, the current grace period 345 * cannot be permitted to complete until the blkd_tasks list entries 346 * predating the current grace period drain, in other words, until 347 * rnp->gp_tasks becomes NULL. 348 * 349 * Caller must disable interrupts. 350 */ 351 void rcu_note_context_switch(bool preempt) 352 { 353 struct task_struct *t = current; 354 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 355 struct rcu_node *rnp; 356 357 trace_rcu_utilization(TPS("Start context switch")); 358 lockdep_assert_irqs_disabled(); 359 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); 360 if (rcu_preempt_depth() > 0 && 361 !t->rcu_read_unlock_special.b.blocked) { 362 363 /* Possibly blocking in an RCU read-side critical section. */ 364 rnp = rdp->mynode; 365 raw_spin_lock_rcu_node(rnp); 366 t->rcu_read_unlock_special.b.blocked = true; 367 t->rcu_blocked_node = rnp; 368 369 /* 370 * Verify the CPU's sanity, trace the preemption, and 371 * then queue the task as required based on the states 372 * of any ongoing and expedited grace periods. 373 */ 374 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 375 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 376 trace_rcu_preempt_task(rcu_state.name, 377 t->pid, 378 (rnp->qsmask & rdp->grpmask) 379 ? rnp->gp_seq 380 : rcu_seq_snap(&rnp->gp_seq)); 381 rcu_preempt_ctxt_queue(rnp, rdp); 382 } else { 383 rcu_preempt_deferred_qs(t); 384 } 385 386 /* 387 * Either we were not in an RCU read-side critical section to 388 * begin with, or we have now recorded that critical section 389 * globally. Either way, we can now note a quiescent state 390 * for this CPU. Again, if we were in an RCU read-side critical 391 * section, and if that critical section was blocking the current 392 * grace period, then the fact that the task has been enqueued 393 * means that we continue to block the current grace period. 394 */ 395 rcu_qs(); 396 if (rdp->exp_deferred_qs) 397 rcu_report_exp_rdp(rdp); 398 rcu_tasks_qs(current, preempt); 399 trace_rcu_utilization(TPS("End context switch")); 400 } 401 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 402 403 /* 404 * Check for preempted RCU readers blocking the current grace period 405 * for the specified rcu_node structure. If the caller needs a reliable 406 * answer, it must hold the rcu_node's ->lock. 407 */ 408 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 409 { 410 return READ_ONCE(rnp->gp_tasks) != NULL; 411 } 412 413 /* limit value for ->rcu_read_lock_nesting. */ 414 #define RCU_NEST_PMAX (INT_MAX / 2) 415 416 static void rcu_preempt_read_enter(void) 417 { 418 current->rcu_read_lock_nesting++; 419 } 420 421 static int rcu_preempt_read_exit(void) 422 { 423 return --current->rcu_read_lock_nesting; 424 } 425 426 static void rcu_preempt_depth_set(int val) 427 { 428 current->rcu_read_lock_nesting = val; 429 } 430 431 /* 432 * Preemptible RCU implementation for rcu_read_lock(). 433 * Just increment ->rcu_read_lock_nesting, shared state will be updated 434 * if we block. 435 */ 436 void __rcu_read_lock(void) 437 { 438 rcu_preempt_read_enter(); 439 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 440 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 441 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 442 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 443 barrier(); /* critical section after entry code. */ 444 } 445 EXPORT_SYMBOL_GPL(__rcu_read_lock); 446 447 /* 448 * Preemptible RCU implementation for rcu_read_unlock(). 449 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 450 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 451 * invoke rcu_read_unlock_special() to clean up after a context switch 452 * in an RCU read-side critical section and other special cases. 453 */ 454 void __rcu_read_unlock(void) 455 { 456 struct task_struct *t = current; 457 458 barrier(); // critical section before exit code. 459 if (rcu_preempt_read_exit() == 0) { 460 barrier(); // critical-section exit before .s check. 461 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 462 rcu_read_unlock_special(t); 463 } 464 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 465 int rrln = rcu_preempt_depth(); 466 467 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 468 } 469 } 470 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 471 472 /* 473 * Advance a ->blkd_tasks-list pointer to the next entry, instead 474 * returning NULL if at the end of the list. 475 */ 476 static struct list_head *rcu_next_node_entry(struct task_struct *t, 477 struct rcu_node *rnp) 478 { 479 struct list_head *np; 480 481 np = t->rcu_node_entry.next; 482 if (np == &rnp->blkd_tasks) 483 np = NULL; 484 return np; 485 } 486 487 /* 488 * Return true if the specified rcu_node structure has tasks that were 489 * preempted within an RCU read-side critical section. 490 */ 491 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 492 { 493 return !list_empty(&rnp->blkd_tasks); 494 } 495 496 /* 497 * Report deferred quiescent states. The deferral time can 498 * be quite short, for example, in the case of the call from 499 * rcu_read_unlock_special(). 500 */ 501 static void 502 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 503 { 504 bool empty_exp; 505 bool empty_norm; 506 bool empty_exp_now; 507 struct list_head *np; 508 bool drop_boost_mutex = false; 509 struct rcu_data *rdp; 510 struct rcu_node *rnp; 511 union rcu_special special; 512 513 /* 514 * If RCU core is waiting for this CPU to exit its critical section, 515 * report the fact that it has exited. Because irqs are disabled, 516 * t->rcu_read_unlock_special cannot change. 517 */ 518 special = t->rcu_read_unlock_special; 519 rdp = this_cpu_ptr(&rcu_data); 520 if (!special.s && !rdp->exp_deferred_qs) { 521 local_irq_restore(flags); 522 return; 523 } 524 t->rcu_read_unlock_special.s = 0; 525 if (special.b.need_qs) { 526 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 527 rcu_report_qs_rdp(rdp); 528 udelay(rcu_unlock_delay); 529 } else { 530 rcu_qs(); 531 } 532 } 533 534 /* 535 * Respond to a request by an expedited grace period for a 536 * quiescent state from this CPU. Note that requests from 537 * tasks are handled when removing the task from the 538 * blocked-tasks list below. 539 */ 540 if (rdp->exp_deferred_qs) 541 rcu_report_exp_rdp(rdp); 542 543 /* Clean up if blocked during RCU read-side critical section. */ 544 if (special.b.blocked) { 545 546 /* 547 * Remove this task from the list it blocked on. The task 548 * now remains queued on the rcu_node corresponding to the 549 * CPU it first blocked on, so there is no longer any need 550 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 551 */ 552 rnp = t->rcu_blocked_node; 553 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 554 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 555 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 556 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 557 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 558 (!empty_norm || rnp->qsmask)); 559 empty_exp = sync_rcu_exp_done(rnp); 560 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 561 np = rcu_next_node_entry(t, rnp); 562 list_del_init(&t->rcu_node_entry); 563 t->rcu_blocked_node = NULL; 564 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 565 rnp->gp_seq, t->pid); 566 if (&t->rcu_node_entry == rnp->gp_tasks) 567 WRITE_ONCE(rnp->gp_tasks, np); 568 if (&t->rcu_node_entry == rnp->exp_tasks) 569 WRITE_ONCE(rnp->exp_tasks, np); 570 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 571 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 572 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 573 if (&t->rcu_node_entry == rnp->boost_tasks) 574 WRITE_ONCE(rnp->boost_tasks, np); 575 } 576 577 /* 578 * If this was the last task on the current list, and if 579 * we aren't waiting on any CPUs, report the quiescent state. 580 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 581 * so we must take a snapshot of the expedited state. 582 */ 583 empty_exp_now = sync_rcu_exp_done(rnp); 584 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 585 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 586 rnp->gp_seq, 587 0, rnp->qsmask, 588 rnp->level, 589 rnp->grplo, 590 rnp->grphi, 591 !!rnp->gp_tasks); 592 rcu_report_unblock_qs_rnp(rnp, flags); 593 } else { 594 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 595 } 596 597 /* Unboost if we were boosted. */ 598 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 599 rt_mutex_futex_unlock(&rnp->boost_mtx); 600 601 /* 602 * If this was the last task on the expedited lists, 603 * then we need to report up the rcu_node hierarchy. 604 */ 605 if (!empty_exp && empty_exp_now) 606 rcu_report_exp_rnp(rnp, true); 607 } else { 608 local_irq_restore(flags); 609 } 610 } 611 612 /* 613 * Is a deferred quiescent-state pending, and are we also not in 614 * an RCU read-side critical section? It is the caller's responsibility 615 * to ensure it is otherwise safe to report any deferred quiescent 616 * states. The reason for this is that it is safe to report a 617 * quiescent state during context switch even though preemption 618 * is disabled. This function cannot be expected to understand these 619 * nuances, so the caller must handle them. 620 */ 621 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 622 { 623 return (__this_cpu_read(rcu_data.exp_deferred_qs) || 624 READ_ONCE(t->rcu_read_unlock_special.s)) && 625 rcu_preempt_depth() == 0; 626 } 627 628 /* 629 * Report a deferred quiescent state if needed and safe to do so. 630 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 631 * not being in an RCU read-side critical section. The caller must 632 * evaluate safety in terms of interrupt, softirq, and preemption 633 * disabling. 634 */ 635 static void rcu_preempt_deferred_qs(struct task_struct *t) 636 { 637 unsigned long flags; 638 639 if (!rcu_preempt_need_deferred_qs(t)) 640 return; 641 local_irq_save(flags); 642 rcu_preempt_deferred_qs_irqrestore(t, flags); 643 } 644 645 /* 646 * Minimal handler to give the scheduler a chance to re-evaluate. 647 */ 648 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 649 { 650 struct rcu_data *rdp; 651 652 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 653 rdp->defer_qs_iw_pending = false; 654 } 655 656 /* 657 * Handle special cases during rcu_read_unlock(), such as needing to 658 * notify RCU core processing or task having blocked during the RCU 659 * read-side critical section. 660 */ 661 static void rcu_read_unlock_special(struct task_struct *t) 662 { 663 unsigned long flags; 664 bool irqs_were_disabled; 665 bool preempt_bh_were_disabled = 666 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 667 668 /* NMI handlers cannot block and cannot safely manipulate state. */ 669 if (in_nmi()) 670 return; 671 672 local_irq_save(flags); 673 irqs_were_disabled = irqs_disabled_flags(flags); 674 if (preempt_bh_were_disabled || irqs_were_disabled) { 675 bool expboost; // Expedited GP in flight or possible boosting. 676 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 677 struct rcu_node *rnp = rdp->mynode; 678 679 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 680 (rdp->grpmask & READ_ONCE(rnp->expmask)) || 681 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 682 (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && 683 t->rcu_blocked_node); 684 // Need to defer quiescent state until everything is enabled. 685 if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) { 686 // Using softirq, safe to awaken, and either the 687 // wakeup is free or there is either an expedited 688 // GP in flight or a potential need to deboost. 689 raise_softirq_irqoff(RCU_SOFTIRQ); 690 } else { 691 // Enabling BH or preempt does reschedule, so... 692 // Also if no expediting and no possible deboosting, 693 // slow is OK. Plus nohz_full CPUs eventually get 694 // tick enabled. 695 set_tsk_need_resched(current); 696 set_preempt_need_resched(); 697 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 698 expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { 699 // Get scheduler to re-evaluate and call hooks. 700 // If !IRQ_WORK, FQS scan will eventually IPI. 701 init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler); 702 rdp->defer_qs_iw_pending = true; 703 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 704 } 705 } 706 local_irq_restore(flags); 707 return; 708 } 709 rcu_preempt_deferred_qs_irqrestore(t, flags); 710 } 711 712 /* 713 * Check that the list of blocked tasks for the newly completed grace 714 * period is in fact empty. It is a serious bug to complete a grace 715 * period that still has RCU readers blocked! This function must be 716 * invoked -before- updating this rnp's ->gp_seq. 717 * 718 * Also, if there are blocked tasks on the list, they automatically 719 * block the newly created grace period, so set up ->gp_tasks accordingly. 720 */ 721 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 722 { 723 struct task_struct *t; 724 725 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 726 raw_lockdep_assert_held_rcu_node(rnp); 727 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 728 dump_blkd_tasks(rnp, 10); 729 if (rcu_preempt_has_tasks(rnp) && 730 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 731 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 732 t = container_of(rnp->gp_tasks, struct task_struct, 733 rcu_node_entry); 734 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 735 rnp->gp_seq, t->pid); 736 } 737 WARN_ON_ONCE(rnp->qsmask); 738 } 739 740 /* 741 * Check for a quiescent state from the current CPU, including voluntary 742 * context switches for Tasks RCU. When a task blocks, the task is 743 * recorded in the corresponding CPU's rcu_node structure, which is checked 744 * elsewhere, hence this function need only check for quiescent states 745 * related to the current CPU, not to those related to tasks. 746 */ 747 static void rcu_flavor_sched_clock_irq(int user) 748 { 749 struct task_struct *t = current; 750 751 lockdep_assert_irqs_disabled(); 752 if (user || rcu_is_cpu_rrupt_from_idle()) { 753 rcu_note_voluntary_context_switch(current); 754 } 755 if (rcu_preempt_depth() > 0 || 756 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 757 /* No QS, force context switch if deferred. */ 758 if (rcu_preempt_need_deferred_qs(t)) { 759 set_tsk_need_resched(t); 760 set_preempt_need_resched(); 761 } 762 } else if (rcu_preempt_need_deferred_qs(t)) { 763 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 764 return; 765 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 766 rcu_qs(); /* Report immediate QS. */ 767 return; 768 } 769 770 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 771 if (rcu_preempt_depth() > 0 && 772 __this_cpu_read(rcu_data.core_needs_qs) && 773 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 774 !t->rcu_read_unlock_special.b.need_qs && 775 time_after(jiffies, rcu_state.gp_start + HZ)) 776 t->rcu_read_unlock_special.b.need_qs = true; 777 } 778 779 /* 780 * Check for a task exiting while in a preemptible-RCU read-side 781 * critical section, clean up if so. No need to issue warnings, as 782 * debug_check_no_locks_held() already does this if lockdep is enabled. 783 * Besides, if this function does anything other than just immediately 784 * return, there was a bug of some sort. Spewing warnings from this 785 * function is like as not to simply obscure important prior warnings. 786 */ 787 void exit_rcu(void) 788 { 789 struct task_struct *t = current; 790 791 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 792 rcu_preempt_depth_set(1); 793 barrier(); 794 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 795 } else if (unlikely(rcu_preempt_depth())) { 796 rcu_preempt_depth_set(1); 797 } else { 798 return; 799 } 800 __rcu_read_unlock(); 801 rcu_preempt_deferred_qs(current); 802 } 803 804 /* 805 * Dump the blocked-tasks state, but limit the list dump to the 806 * specified number of elements. 807 */ 808 static void 809 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 810 { 811 int cpu; 812 int i; 813 struct list_head *lhp; 814 bool onl; 815 struct rcu_data *rdp; 816 struct rcu_node *rnp1; 817 818 raw_lockdep_assert_held_rcu_node(rnp); 819 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 820 __func__, rnp->grplo, rnp->grphi, rnp->level, 821 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 822 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 823 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 824 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 825 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 826 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 827 READ_ONCE(rnp->exp_tasks)); 828 pr_info("%s: ->blkd_tasks", __func__); 829 i = 0; 830 list_for_each(lhp, &rnp->blkd_tasks) { 831 pr_cont(" %p", lhp); 832 if (++i >= ncheck) 833 break; 834 } 835 pr_cont("\n"); 836 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 837 rdp = per_cpu_ptr(&rcu_data, cpu); 838 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 839 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 840 cpu, ".o"[onl], 841 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 842 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 843 } 844 } 845 846 #else /* #ifdef CONFIG_PREEMPT_RCU */ 847 848 /* 849 * If strict grace periods are enabled, and if the calling 850 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 851 * report that quiescent state and, if requested, spin for a bit. 852 */ 853 void rcu_read_unlock_strict(void) 854 { 855 struct rcu_data *rdp; 856 857 if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 858 irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 859 return; 860 rdp = this_cpu_ptr(&rcu_data); 861 rcu_report_qs_rdp(rdp); 862 udelay(rcu_unlock_delay); 863 } 864 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 865 866 /* 867 * Tell them what RCU they are running. 868 */ 869 static void __init rcu_bootup_announce(void) 870 { 871 pr_info("Hierarchical RCU implementation.\n"); 872 rcu_bootup_announce_oddness(); 873 } 874 875 /* 876 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 877 * how many quiescent states passed, just if there was at least one since 878 * the start of the grace period, this just sets a flag. The caller must 879 * have disabled preemption. 880 */ 881 static void rcu_qs(void) 882 { 883 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 884 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 885 return; 886 trace_rcu_grace_period(TPS("rcu_sched"), 887 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 888 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 889 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 890 return; 891 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 892 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 893 } 894 895 /* 896 * Register an urgently needed quiescent state. If there is an 897 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 898 * dyntick-idle quiescent state visible to other CPUs, which will in 899 * some cases serve for expedited as well as normal grace periods. 900 * Either way, register a lightweight quiescent state. 901 */ 902 void rcu_all_qs(void) 903 { 904 unsigned long flags; 905 906 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 907 return; 908 preempt_disable(); 909 /* Load rcu_urgent_qs before other flags. */ 910 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 911 preempt_enable(); 912 return; 913 } 914 this_cpu_write(rcu_data.rcu_urgent_qs, false); 915 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 916 local_irq_save(flags); 917 rcu_momentary_dyntick_idle(); 918 local_irq_restore(flags); 919 } 920 rcu_qs(); 921 preempt_enable(); 922 } 923 EXPORT_SYMBOL_GPL(rcu_all_qs); 924 925 /* 926 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 927 */ 928 void rcu_note_context_switch(bool preempt) 929 { 930 trace_rcu_utilization(TPS("Start context switch")); 931 rcu_qs(); 932 /* Load rcu_urgent_qs before other flags. */ 933 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 934 goto out; 935 this_cpu_write(rcu_data.rcu_urgent_qs, false); 936 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 937 rcu_momentary_dyntick_idle(); 938 rcu_tasks_qs(current, preempt); 939 out: 940 trace_rcu_utilization(TPS("End context switch")); 941 } 942 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 943 944 /* 945 * Because preemptible RCU does not exist, there are never any preempted 946 * RCU readers. 947 */ 948 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 949 { 950 return 0; 951 } 952 953 /* 954 * Because there is no preemptible RCU, there can be no readers blocked. 955 */ 956 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 957 { 958 return false; 959 } 960 961 /* 962 * Because there is no preemptible RCU, there can be no deferred quiescent 963 * states. 964 */ 965 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 966 { 967 return false; 968 } 969 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 970 971 /* 972 * Because there is no preemptible RCU, there can be no readers blocked, 973 * so there is no need to check for blocked tasks. So check only for 974 * bogus qsmask values. 975 */ 976 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 977 { 978 WARN_ON_ONCE(rnp->qsmask); 979 } 980 981 /* 982 * Check to see if this CPU is in a non-context-switch quiescent state, 983 * namely user mode and idle loop. 984 */ 985 static void rcu_flavor_sched_clock_irq(int user) 986 { 987 if (user || rcu_is_cpu_rrupt_from_idle()) { 988 989 /* 990 * Get here if this CPU took its interrupt from user 991 * mode or from the idle loop, and if this is not a 992 * nested interrupt. In this case, the CPU is in 993 * a quiescent state, so note it. 994 * 995 * No memory barrier is required here because rcu_qs() 996 * references only CPU-local variables that other CPUs 997 * neither access nor modify, at least not while the 998 * corresponding CPU is online. 999 */ 1000 1001 rcu_qs(); 1002 } 1003 } 1004 1005 /* 1006 * Because preemptible RCU does not exist, tasks cannot possibly exit 1007 * while in preemptible RCU read-side critical sections. 1008 */ 1009 void exit_rcu(void) 1010 { 1011 } 1012 1013 /* 1014 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 1015 */ 1016 static void 1017 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 1018 { 1019 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 1020 } 1021 1022 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 1023 1024 /* 1025 * If boosting, set rcuc kthreads to realtime priority. 1026 */ 1027 static void rcu_cpu_kthread_setup(unsigned int cpu) 1028 { 1029 #ifdef CONFIG_RCU_BOOST 1030 struct sched_param sp; 1031 1032 sp.sched_priority = kthread_prio; 1033 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1034 #endif /* #ifdef CONFIG_RCU_BOOST */ 1035 } 1036 1037 #ifdef CONFIG_RCU_BOOST 1038 1039 /* 1040 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1041 * or ->boost_tasks, advancing the pointer to the next task in the 1042 * ->blkd_tasks list. 1043 * 1044 * Note that irqs must be enabled: boosting the task can block. 1045 * Returns 1 if there are more tasks needing to be boosted. 1046 */ 1047 static int rcu_boost(struct rcu_node *rnp) 1048 { 1049 unsigned long flags; 1050 struct task_struct *t; 1051 struct list_head *tb; 1052 1053 if (READ_ONCE(rnp->exp_tasks) == NULL && 1054 READ_ONCE(rnp->boost_tasks) == NULL) 1055 return 0; /* Nothing left to boost. */ 1056 1057 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1058 1059 /* 1060 * Recheck under the lock: all tasks in need of boosting 1061 * might exit their RCU read-side critical sections on their own. 1062 */ 1063 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1064 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1065 return 0; 1066 } 1067 1068 /* 1069 * Preferentially boost tasks blocking expedited grace periods. 1070 * This cannot starve the normal grace periods because a second 1071 * expedited grace period must boost all blocked tasks, including 1072 * those blocking the pre-existing normal grace period. 1073 */ 1074 if (rnp->exp_tasks != NULL) 1075 tb = rnp->exp_tasks; 1076 else 1077 tb = rnp->boost_tasks; 1078 1079 /* 1080 * We boost task t by manufacturing an rt_mutex that appears to 1081 * be held by task t. We leave a pointer to that rt_mutex where 1082 * task t can find it, and task t will release the mutex when it 1083 * exits its outermost RCU read-side critical section. Then 1084 * simply acquiring this artificial rt_mutex will boost task 1085 * t's priority. (Thanks to tglx for suggesting this approach!) 1086 * 1087 * Note that task t must acquire rnp->lock to remove itself from 1088 * the ->blkd_tasks list, which it will do from exit() if from 1089 * nowhere else. We therefore are guaranteed that task t will 1090 * stay around at least until we drop rnp->lock. Note that 1091 * rnp->lock also resolves races between our priority boosting 1092 * and task t's exiting its outermost RCU read-side critical 1093 * section. 1094 */ 1095 t = container_of(tb, struct task_struct, rcu_node_entry); 1096 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1097 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1098 /* Lock only for side effect: boosts task t's priority. */ 1099 rt_mutex_lock(&rnp->boost_mtx); 1100 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1101 1102 return READ_ONCE(rnp->exp_tasks) != NULL || 1103 READ_ONCE(rnp->boost_tasks) != NULL; 1104 } 1105 1106 /* 1107 * Priority-boosting kthread, one per leaf rcu_node. 1108 */ 1109 static int rcu_boost_kthread(void *arg) 1110 { 1111 struct rcu_node *rnp = (struct rcu_node *)arg; 1112 int spincnt = 0; 1113 int more2boost; 1114 1115 trace_rcu_utilization(TPS("Start boost kthread@init")); 1116 for (;;) { 1117 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1118 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1119 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1120 READ_ONCE(rnp->exp_tasks)); 1121 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1122 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1123 more2boost = rcu_boost(rnp); 1124 if (more2boost) 1125 spincnt++; 1126 else 1127 spincnt = 0; 1128 if (spincnt > 10) { 1129 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1130 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1131 schedule_timeout_idle(2); 1132 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1133 spincnt = 0; 1134 } 1135 } 1136 /* NOTREACHED */ 1137 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1138 return 0; 1139 } 1140 1141 /* 1142 * Check to see if it is time to start boosting RCU readers that are 1143 * blocking the current grace period, and, if so, tell the per-rcu_node 1144 * kthread to start boosting them. If there is an expedited grace 1145 * period in progress, it is always time to boost. 1146 * 1147 * The caller must hold rnp->lock, which this function releases. 1148 * The ->boost_kthread_task is immortal, so we don't need to worry 1149 * about it going away. 1150 */ 1151 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1152 __releases(rnp->lock) 1153 { 1154 raw_lockdep_assert_held_rcu_node(rnp); 1155 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1156 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1157 return; 1158 } 1159 if (rnp->exp_tasks != NULL || 1160 (rnp->gp_tasks != NULL && 1161 rnp->boost_tasks == NULL && 1162 rnp->qsmask == 0 && 1163 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { 1164 if (rnp->exp_tasks == NULL) 1165 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1166 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1167 rcu_wake_cond(rnp->boost_kthread_task, 1168 READ_ONCE(rnp->boost_kthread_status)); 1169 } else { 1170 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1171 } 1172 } 1173 1174 /* 1175 * Is the current CPU running the RCU-callbacks kthread? 1176 * Caller must have preemption disabled. 1177 */ 1178 static bool rcu_is_callbacks_kthread(void) 1179 { 1180 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1181 } 1182 1183 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1184 1185 /* 1186 * Do priority-boost accounting for the start of a new grace period. 1187 */ 1188 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1189 { 1190 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1191 } 1192 1193 /* 1194 * Create an RCU-boost kthread for the specified node if one does not 1195 * already exist. We only create this kthread for preemptible RCU. 1196 * Returns zero if all is well, a negated errno otherwise. 1197 */ 1198 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1199 { 1200 int rnp_index = rnp - rcu_get_root(); 1201 unsigned long flags; 1202 struct sched_param sp; 1203 struct task_struct *t; 1204 1205 if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) 1206 return; 1207 1208 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1209 return; 1210 1211 rcu_state.boost = 1; 1212 1213 if (rnp->boost_kthread_task != NULL) 1214 return; 1215 1216 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1217 "rcub/%d", rnp_index); 1218 if (WARN_ON_ONCE(IS_ERR(t))) 1219 return; 1220 1221 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1222 rnp->boost_kthread_task = t; 1223 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1224 sp.sched_priority = kthread_prio; 1225 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1226 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1227 } 1228 1229 /* 1230 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1231 * served by the rcu_node in question. The CPU hotplug lock is still 1232 * held, so the value of rnp->qsmaskinit will be stable. 1233 * 1234 * We don't include outgoingcpu in the affinity set, use -1 if there is 1235 * no outgoing CPU. If there are no CPUs left in the affinity set, 1236 * this function allows the kthread to execute on any CPU. 1237 */ 1238 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1239 { 1240 struct task_struct *t = rnp->boost_kthread_task; 1241 unsigned long mask = rcu_rnp_online_cpus(rnp); 1242 cpumask_var_t cm; 1243 int cpu; 1244 1245 if (!t) 1246 return; 1247 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1248 return; 1249 for_each_leaf_node_possible_cpu(rnp, cpu) 1250 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1251 cpu != outgoingcpu) 1252 cpumask_set_cpu(cpu, cm); 1253 if (cpumask_weight(cm) == 0) 1254 cpumask_setall(cm); 1255 set_cpus_allowed_ptr(t, cm); 1256 free_cpumask_var(cm); 1257 } 1258 1259 /* 1260 * Spawn boost kthreads -- called as soon as the scheduler is running. 1261 */ 1262 static void __init rcu_spawn_boost_kthreads(void) 1263 { 1264 struct rcu_node *rnp; 1265 1266 rcu_for_each_leaf_node(rnp) 1267 rcu_spawn_one_boost_kthread(rnp); 1268 } 1269 1270 static void rcu_prepare_kthreads(int cpu) 1271 { 1272 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1273 struct rcu_node *rnp = rdp->mynode; 1274 1275 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1276 if (rcu_scheduler_fully_active) 1277 rcu_spawn_one_boost_kthread(rnp); 1278 } 1279 1280 #else /* #ifdef CONFIG_RCU_BOOST */ 1281 1282 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1283 __releases(rnp->lock) 1284 { 1285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1286 } 1287 1288 static bool rcu_is_callbacks_kthread(void) 1289 { 1290 return false; 1291 } 1292 1293 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1294 { 1295 } 1296 1297 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1298 { 1299 } 1300 1301 static void __init rcu_spawn_boost_kthreads(void) 1302 { 1303 } 1304 1305 static void rcu_prepare_kthreads(int cpu) 1306 { 1307 } 1308 1309 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1310 1311 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1312 1313 /* 1314 * Check to see if any future non-offloaded RCU-related work will need 1315 * to be done by the current CPU, even if none need be done immediately, 1316 * returning 1 if so. This function is part of the RCU implementation; 1317 * it is -not- an exported member of the RCU API. 1318 * 1319 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1320 * CPU has RCU callbacks queued. 1321 */ 1322 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1323 { 1324 *nextevt = KTIME_MAX; 1325 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1326 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 1327 } 1328 1329 /* 1330 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1331 * after it. 1332 */ 1333 static void rcu_cleanup_after_idle(void) 1334 { 1335 } 1336 1337 /* 1338 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1339 * is nothing. 1340 */ 1341 static void rcu_prepare_for_idle(void) 1342 { 1343 } 1344 1345 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1346 1347 /* 1348 * This code is invoked when a CPU goes idle, at which point we want 1349 * to have the CPU do everything required for RCU so that it can enter 1350 * the energy-efficient dyntick-idle mode. 1351 * 1352 * The following preprocessor symbol controls this: 1353 * 1354 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1355 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1356 * is sized to be roughly one RCU grace period. Those energy-efficiency 1357 * benchmarkers who might otherwise be tempted to set this to a large 1358 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1359 * system. And if you are -that- concerned about energy efficiency, 1360 * just power the system down and be done with it! 1361 * 1362 * The value below works well in practice. If future workloads require 1363 * adjustment, they can be converted into kernel config parameters, though 1364 * making the state machine smarter might be a better option. 1365 */ 1366 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1367 1368 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1369 module_param(rcu_idle_gp_delay, int, 0644); 1370 1371 /* 1372 * Try to advance callbacks on the current CPU, but only if it has been 1373 * awhile since the last time we did so. Afterwards, if there are any 1374 * callbacks ready for immediate invocation, return true. 1375 */ 1376 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1377 { 1378 bool cbs_ready = false; 1379 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1380 struct rcu_node *rnp; 1381 1382 /* Exit early if we advanced recently. */ 1383 if (jiffies == rdp->last_advance_all) 1384 return false; 1385 rdp->last_advance_all = jiffies; 1386 1387 rnp = rdp->mynode; 1388 1389 /* 1390 * Don't bother checking unless a grace period has 1391 * completed since we last checked and there are 1392 * callbacks not yet ready to invoke. 1393 */ 1394 if ((rcu_seq_completed_gp(rdp->gp_seq, 1395 rcu_seq_current(&rnp->gp_seq)) || 1396 unlikely(READ_ONCE(rdp->gpwrap))) && 1397 rcu_segcblist_pend_cbs(&rdp->cblist)) 1398 note_gp_changes(rdp); 1399 1400 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1401 cbs_ready = true; 1402 return cbs_ready; 1403 } 1404 1405 /* 1406 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1407 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1408 * caller about what to set the timeout. 1409 * 1410 * The caller must have disabled interrupts. 1411 */ 1412 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1413 { 1414 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1415 unsigned long dj; 1416 1417 lockdep_assert_irqs_disabled(); 1418 1419 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ 1420 if (rcu_segcblist_empty(&rdp->cblist) || 1421 rcu_rdp_is_offloaded(rdp)) { 1422 *nextevt = KTIME_MAX; 1423 return 0; 1424 } 1425 1426 /* Attempt to advance callbacks. */ 1427 if (rcu_try_advance_all_cbs()) { 1428 /* Some ready to invoke, so initiate later invocation. */ 1429 invoke_rcu_core(); 1430 return 1; 1431 } 1432 rdp->last_accelerate = jiffies; 1433 1434 /* Request timer and round. */ 1435 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; 1436 1437 *nextevt = basemono + dj * TICK_NSEC; 1438 return 0; 1439 } 1440 1441 /* 1442 * Prepare a CPU for idle from an RCU perspective. The first major task is to 1443 * sense whether nohz mode has been enabled or disabled via sysfs. The second 1444 * major task is to accelerate (that is, assign grace-period numbers to) any 1445 * recently arrived callbacks. 1446 * 1447 * The caller must have disabled interrupts. 1448 */ 1449 static void rcu_prepare_for_idle(void) 1450 { 1451 bool needwake; 1452 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1453 struct rcu_node *rnp; 1454 int tne; 1455 1456 lockdep_assert_irqs_disabled(); 1457 if (rcu_rdp_is_offloaded(rdp)) 1458 return; 1459 1460 /* Handle nohz enablement switches conservatively. */ 1461 tne = READ_ONCE(tick_nohz_active); 1462 if (tne != rdp->tick_nohz_enabled_snap) { 1463 if (!rcu_segcblist_empty(&rdp->cblist)) 1464 invoke_rcu_core(); /* force nohz to see update. */ 1465 rdp->tick_nohz_enabled_snap = tne; 1466 return; 1467 } 1468 if (!tne) 1469 return; 1470 1471 /* 1472 * If we have not yet accelerated this jiffy, accelerate all 1473 * callbacks on this CPU. 1474 */ 1475 if (rdp->last_accelerate == jiffies) 1476 return; 1477 rdp->last_accelerate = jiffies; 1478 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1479 rnp = rdp->mynode; 1480 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1481 needwake = rcu_accelerate_cbs(rnp, rdp); 1482 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1483 if (needwake) 1484 rcu_gp_kthread_wake(); 1485 } 1486 } 1487 1488 /* 1489 * Clean up for exit from idle. Attempt to advance callbacks based on 1490 * any grace periods that elapsed while the CPU was idle, and if any 1491 * callbacks are now ready to invoke, initiate invocation. 1492 */ 1493 static void rcu_cleanup_after_idle(void) 1494 { 1495 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1496 1497 lockdep_assert_irqs_disabled(); 1498 if (rcu_rdp_is_offloaded(rdp)) 1499 return; 1500 if (rcu_try_advance_all_cbs()) 1501 invoke_rcu_core(); 1502 } 1503 1504 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1505 1506 #ifdef CONFIG_RCU_NOCB_CPU 1507 1508 /* 1509 * Offload callback processing from the boot-time-specified set of CPUs 1510 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 1511 * created that pull the callbacks from the corresponding CPU, wait for 1512 * a grace period to elapse, and invoke the callbacks. These kthreads 1513 * are organized into GP kthreads, which manage incoming callbacks, wait for 1514 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 1515 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 1516 * do a wake_up() on their GP kthread when they insert a callback into any 1517 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 1518 * in which case each kthread actively polls its CPU. (Which isn't so great 1519 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 1520 * 1521 * This is intended to be used in conjunction with Frederic Weisbecker's 1522 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1523 * running CPU-bound user-mode computations. 1524 * 1525 * Offloading of callbacks can also be used as an energy-efficiency 1526 * measure because CPUs with no RCU callbacks queued are more aggressive 1527 * about entering dyntick-idle mode. 1528 */ 1529 1530 1531 /* 1532 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 1533 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 1534 */ 1535 static int __init rcu_nocb_setup(char *str) 1536 { 1537 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1538 if (!strcasecmp(str, "all")) /* legacy: use "0-N" instead */ 1539 cpumask_setall(rcu_nocb_mask); 1540 else 1541 if (cpulist_parse(str, rcu_nocb_mask)) { 1542 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 1543 cpumask_setall(rcu_nocb_mask); 1544 } 1545 return 1; 1546 } 1547 __setup("rcu_nocbs=", rcu_nocb_setup); 1548 1549 static int __init parse_rcu_nocb_poll(char *arg) 1550 { 1551 rcu_nocb_poll = true; 1552 return 0; 1553 } 1554 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1555 1556 /* 1557 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 1558 * After all, the main point of bypassing is to avoid lock contention 1559 * on ->nocb_lock, which only can happen at high call_rcu() rates. 1560 */ 1561 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 1562 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 1563 1564 /* 1565 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 1566 * lock isn't immediately available, increment ->nocb_lock_contended to 1567 * flag the contention. 1568 */ 1569 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 1570 __acquires(&rdp->nocb_bypass_lock) 1571 { 1572 lockdep_assert_irqs_disabled(); 1573 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 1574 return; 1575 atomic_inc(&rdp->nocb_lock_contended); 1576 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1577 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 1578 raw_spin_lock(&rdp->nocb_bypass_lock); 1579 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 1580 atomic_dec(&rdp->nocb_lock_contended); 1581 } 1582 1583 /* 1584 * Spinwait until the specified rcu_data structure's ->nocb_lock is 1585 * not contended. Please note that this is extremely special-purpose, 1586 * relying on the fact that at most two kthreads and one CPU contend for 1587 * this lock, and also that the two kthreads are guaranteed to have frequent 1588 * grace-period-duration time intervals between successive acquisitions 1589 * of the lock. This allows us to use an extremely simple throttling 1590 * mechanism, and further to apply it only to the CPU doing floods of 1591 * call_rcu() invocations. Don't try this at home! 1592 */ 1593 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 1594 { 1595 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1596 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 1597 cpu_relax(); 1598 } 1599 1600 /* 1601 * Conditionally acquire the specified rcu_data structure's 1602 * ->nocb_bypass_lock. 1603 */ 1604 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 1605 { 1606 lockdep_assert_irqs_disabled(); 1607 return raw_spin_trylock(&rdp->nocb_bypass_lock); 1608 } 1609 1610 /* 1611 * Release the specified rcu_data structure's ->nocb_bypass_lock. 1612 */ 1613 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 1614 __releases(&rdp->nocb_bypass_lock) 1615 { 1616 lockdep_assert_irqs_disabled(); 1617 raw_spin_unlock(&rdp->nocb_bypass_lock); 1618 } 1619 1620 /* 1621 * Acquire the specified rcu_data structure's ->nocb_lock, but only 1622 * if it corresponds to a no-CBs CPU. 1623 */ 1624 static void rcu_nocb_lock(struct rcu_data *rdp) 1625 { 1626 lockdep_assert_irqs_disabled(); 1627 if (!rcu_rdp_is_offloaded(rdp)) 1628 return; 1629 raw_spin_lock(&rdp->nocb_lock); 1630 } 1631 1632 /* 1633 * Release the specified rcu_data structure's ->nocb_lock, but only 1634 * if it corresponds to a no-CBs CPU. 1635 */ 1636 static void rcu_nocb_unlock(struct rcu_data *rdp) 1637 { 1638 if (rcu_rdp_is_offloaded(rdp)) { 1639 lockdep_assert_irqs_disabled(); 1640 raw_spin_unlock(&rdp->nocb_lock); 1641 } 1642 } 1643 1644 /* 1645 * Release the specified rcu_data structure's ->nocb_lock and restore 1646 * interrupts, but only if it corresponds to a no-CBs CPU. 1647 */ 1648 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1649 unsigned long flags) 1650 { 1651 if (rcu_rdp_is_offloaded(rdp)) { 1652 lockdep_assert_irqs_disabled(); 1653 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1654 } else { 1655 local_irq_restore(flags); 1656 } 1657 } 1658 1659 /* Lockdep check that ->cblist may be safely accessed. */ 1660 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1661 { 1662 lockdep_assert_irqs_disabled(); 1663 if (rcu_rdp_is_offloaded(rdp)) 1664 lockdep_assert_held(&rdp->nocb_lock); 1665 } 1666 1667 /* 1668 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1669 * grace period. 1670 */ 1671 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1672 { 1673 swake_up_all(sq); 1674 } 1675 1676 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1677 { 1678 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 1679 } 1680 1681 static void rcu_init_one_nocb(struct rcu_node *rnp) 1682 { 1683 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1684 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1685 } 1686 1687 /* Is the specified CPU a no-CBs CPU? */ 1688 bool rcu_is_nocb_cpu(int cpu) 1689 { 1690 if (cpumask_available(rcu_nocb_mask)) 1691 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1692 return false; 1693 } 1694 1695 /* 1696 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock 1697 * and this function releases it. 1698 */ 1699 static bool wake_nocb_gp(struct rcu_data *rdp, bool force, 1700 unsigned long flags) 1701 __releases(rdp->nocb_lock) 1702 { 1703 bool needwake = false; 1704 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1705 1706 lockdep_assert_held(&rdp->nocb_lock); 1707 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 1708 rcu_nocb_unlock_irqrestore(rdp, flags); 1709 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1710 TPS("AlreadyAwake")); 1711 return false; 1712 } 1713 1714 if (READ_ONCE(rdp->nocb_defer_wakeup) > RCU_NOCB_WAKE_NOT) { 1715 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 1716 del_timer(&rdp->nocb_timer); 1717 } 1718 rcu_nocb_unlock_irqrestore(rdp, flags); 1719 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1720 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 1721 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 1722 needwake = true; 1723 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 1724 } 1725 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1726 if (needwake) 1727 wake_up_process(rdp_gp->nocb_gp_kthread); 1728 1729 return needwake; 1730 } 1731 1732 /* 1733 * Arrange to wake the GP kthread for this NOCB group at some future 1734 * time when it is safe to do so. 1735 */ 1736 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 1737 const char *reason) 1738 { 1739 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_OFF) 1740 return; 1741 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1742 mod_timer(&rdp->nocb_timer, jiffies + 1); 1743 if (rdp->nocb_defer_wakeup < waketype) 1744 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1745 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 1746 } 1747 1748 /* 1749 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1750 * However, if there is a callback to be enqueued and if ->nocb_bypass 1751 * proves to be initially empty, just return false because the no-CB GP 1752 * kthread may need to be awakened in this case. 1753 * 1754 * Note that this function always returns true if rhp is NULL. 1755 */ 1756 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1757 unsigned long j) 1758 { 1759 struct rcu_cblist rcl; 1760 1761 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 1762 rcu_lockdep_assert_cblist_protected(rdp); 1763 lockdep_assert_held(&rdp->nocb_bypass_lock); 1764 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 1765 raw_spin_unlock(&rdp->nocb_bypass_lock); 1766 return false; 1767 } 1768 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 1769 if (rhp) 1770 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1771 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 1772 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 1773 WRITE_ONCE(rdp->nocb_bypass_first, j); 1774 rcu_nocb_bypass_unlock(rdp); 1775 return true; 1776 } 1777 1778 /* 1779 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1780 * However, if there is a callback to be enqueued and if ->nocb_bypass 1781 * proves to be initially empty, just return false because the no-CB GP 1782 * kthread may need to be awakened in this case. 1783 * 1784 * Note that this function always returns true if rhp is NULL. 1785 */ 1786 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1787 unsigned long j) 1788 { 1789 if (!rcu_rdp_is_offloaded(rdp)) 1790 return true; 1791 rcu_lockdep_assert_cblist_protected(rdp); 1792 rcu_nocb_bypass_lock(rdp); 1793 return rcu_nocb_do_flush_bypass(rdp, rhp, j); 1794 } 1795 1796 /* 1797 * If the ->nocb_bypass_lock is immediately available, flush the 1798 * ->nocb_bypass queue into ->cblist. 1799 */ 1800 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 1801 { 1802 rcu_lockdep_assert_cblist_protected(rdp); 1803 if (!rcu_rdp_is_offloaded(rdp) || 1804 !rcu_nocb_bypass_trylock(rdp)) 1805 return; 1806 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); 1807 } 1808 1809 /* 1810 * See whether it is appropriate to use the ->nocb_bypass list in order 1811 * to control contention on ->nocb_lock. A limited number of direct 1812 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 1813 * is non-empty, further callbacks must be placed into ->nocb_bypass, 1814 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 1815 * back to direct use of ->cblist. However, ->nocb_bypass should not be 1816 * used if ->cblist is empty, because otherwise callbacks can be stranded 1817 * on ->nocb_bypass because we cannot count on the current CPU ever again 1818 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 1819 * non-empty, the corresponding no-CBs grace-period kthread must not be 1820 * in an indefinite sleep state. 1821 * 1822 * Finally, it is not permitted to use the bypass during early boot, 1823 * as doing so would confuse the auto-initialization code. Besides 1824 * which, there is no point in worrying about lock contention while 1825 * there is only one CPU in operation. 1826 */ 1827 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1828 bool *was_alldone, unsigned long flags) 1829 { 1830 unsigned long c; 1831 unsigned long cur_gp_seq; 1832 unsigned long j = jiffies; 1833 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1834 1835 lockdep_assert_irqs_disabled(); 1836 1837 // Pure softirq/rcuc based processing: no bypassing, no 1838 // locking. 1839 if (!rcu_rdp_is_offloaded(rdp)) { 1840 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1841 return false; 1842 } 1843 1844 // In the process of (de-)offloading: no bypassing, but 1845 // locking. 1846 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 1847 rcu_nocb_lock(rdp); 1848 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1849 return false; /* Not offloaded, no bypassing. */ 1850 } 1851 1852 // Don't use ->nocb_bypass during early boot. 1853 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 1854 rcu_nocb_lock(rdp); 1855 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1856 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1857 return false; 1858 } 1859 1860 // If we have advanced to a new jiffy, reset counts to allow 1861 // moving back from ->nocb_bypass to ->cblist. 1862 if (j == rdp->nocb_nobypass_last) { 1863 c = rdp->nocb_nobypass_count + 1; 1864 } else { 1865 WRITE_ONCE(rdp->nocb_nobypass_last, j); 1866 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 1867 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 1868 nocb_nobypass_lim_per_jiffy)) 1869 c = 0; 1870 else if (c > nocb_nobypass_lim_per_jiffy) 1871 c = nocb_nobypass_lim_per_jiffy; 1872 } 1873 WRITE_ONCE(rdp->nocb_nobypass_count, c); 1874 1875 // If there hasn't yet been all that many ->cblist enqueues 1876 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 1877 // ->nocb_bypass first. 1878 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { 1879 rcu_nocb_lock(rdp); 1880 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1881 if (*was_alldone) 1882 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1883 TPS("FirstQ")); 1884 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); 1885 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1886 return false; // Caller must enqueue the callback. 1887 } 1888 1889 // If ->nocb_bypass has been used too long or is too full, 1890 // flush ->nocb_bypass to ->cblist. 1891 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || 1892 ncbs >= qhimark) { 1893 rcu_nocb_lock(rdp); 1894 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { 1895 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1896 if (*was_alldone) 1897 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1898 TPS("FirstQ")); 1899 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1900 return false; // Caller must enqueue the callback. 1901 } 1902 if (j != rdp->nocb_gp_adv_time && 1903 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1904 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1905 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1906 rdp->nocb_gp_adv_time = j; 1907 } 1908 rcu_nocb_unlock_irqrestore(rdp, flags); 1909 return true; // Callback already enqueued. 1910 } 1911 1912 // We need to use the bypass. 1913 rcu_nocb_wait_contended(rdp); 1914 rcu_nocb_bypass_lock(rdp); 1915 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1916 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1917 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 1918 if (!ncbs) { 1919 WRITE_ONCE(rdp->nocb_bypass_first, j); 1920 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 1921 } 1922 rcu_nocb_bypass_unlock(rdp); 1923 smp_mb(); /* Order enqueue before wake. */ 1924 if (ncbs) { 1925 local_irq_restore(flags); 1926 } else { 1927 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 1928 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 1929 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 1930 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1931 TPS("FirstBQwake")); 1932 __call_rcu_nocb_wake(rdp, true, flags); 1933 } else { 1934 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1935 TPS("FirstBQnoWake")); 1936 rcu_nocb_unlock_irqrestore(rdp, flags); 1937 } 1938 } 1939 return true; // Callback already enqueued. 1940 } 1941 1942 /* 1943 * Awaken the no-CBs grace-period kthead if needed, either due to it 1944 * legitimately being asleep or due to overload conditions. 1945 * 1946 * If warranted, also wake up the kthread servicing this CPUs queues. 1947 */ 1948 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 1949 unsigned long flags) 1950 __releases(rdp->nocb_lock) 1951 { 1952 unsigned long cur_gp_seq; 1953 unsigned long j; 1954 long len; 1955 struct task_struct *t; 1956 1957 // If we are being polled or there is no kthread, just leave. 1958 t = READ_ONCE(rdp->nocb_gp_kthread); 1959 if (rcu_nocb_poll || !t) { 1960 rcu_nocb_unlock_irqrestore(rdp, flags); 1961 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1962 TPS("WakeNotPoll")); 1963 return; 1964 } 1965 // Need to actually to a wakeup. 1966 len = rcu_segcblist_n_cbs(&rdp->cblist); 1967 if (was_alldone) { 1968 rdp->qlen_last_fqs_check = len; 1969 if (!irqs_disabled_flags(flags)) { 1970 /* ... if queue was empty ... */ 1971 wake_nocb_gp(rdp, false, flags); 1972 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1973 TPS("WakeEmpty")); 1974 } else { 1975 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 1976 TPS("WakeEmptyIsDeferred")); 1977 rcu_nocb_unlock_irqrestore(rdp, flags); 1978 } 1979 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1980 /* ... or if many callbacks queued. */ 1981 rdp->qlen_last_fqs_check = len; 1982 j = jiffies; 1983 if (j != rdp->nocb_gp_adv_time && 1984 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1985 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1986 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1987 rdp->nocb_gp_adv_time = j; 1988 } 1989 smp_mb(); /* Enqueue before timer_pending(). */ 1990 if ((rdp->nocb_cb_sleep || 1991 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 1992 !timer_pending(&rdp->nocb_bypass_timer)) 1993 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 1994 TPS("WakeOvfIsDeferred")); 1995 rcu_nocb_unlock_irqrestore(rdp, flags); 1996 } else { 1997 rcu_nocb_unlock_irqrestore(rdp, flags); 1998 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 1999 } 2000 return; 2001 } 2002 2003 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ 2004 static void do_nocb_bypass_wakeup_timer(struct timer_list *t) 2005 { 2006 unsigned long flags; 2007 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); 2008 2009 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 2010 rcu_nocb_lock_irqsave(rdp, flags); 2011 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 2012 __call_rcu_nocb_wake(rdp, true, flags); 2013 } 2014 2015 /* 2016 * Check if we ignore this rdp. 2017 * 2018 * We check that without holding the nocb lock but 2019 * we make sure not to miss a freshly offloaded rdp 2020 * with the current ordering: 2021 * 2022 * rdp_offload_toggle() nocb_gp_enabled_cb() 2023 * ------------------------- ---------------------------- 2024 * WRITE flags LOCK nocb_gp_lock 2025 * LOCK nocb_gp_lock READ/WRITE nocb_gp_sleep 2026 * READ/WRITE nocb_gp_sleep UNLOCK nocb_gp_lock 2027 * UNLOCK nocb_gp_lock READ flags 2028 */ 2029 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp) 2030 { 2031 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP; 2032 2033 return rcu_segcblist_test_flags(&rdp->cblist, flags); 2034 } 2035 2036 static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp, 2037 bool *needwake_state) 2038 { 2039 struct rcu_segcblist *cblist = &rdp->cblist; 2040 2041 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 2042 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 2043 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 2044 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 2045 *needwake_state = true; 2046 } 2047 return false; 2048 } 2049 2050 /* 2051 * De-offloading. Clear our flag and notify the de-offload worker. 2052 * We will ignore this rdp until it ever gets re-offloaded. 2053 */ 2054 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 2055 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 2056 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 2057 *needwake_state = true; 2058 return true; 2059 } 2060 2061 2062 /* 2063 * No-CBs GP kthreads come here to wait for additional callbacks to show up 2064 * or for grace periods to end. 2065 */ 2066 static void nocb_gp_wait(struct rcu_data *my_rdp) 2067 { 2068 bool bypass = false; 2069 long bypass_ncbs; 2070 int __maybe_unused cpu = my_rdp->cpu; 2071 unsigned long cur_gp_seq; 2072 unsigned long flags; 2073 bool gotcbs = false; 2074 unsigned long j = jiffies; 2075 bool needwait_gp = false; // This prevents actual uninitialized use. 2076 bool needwake; 2077 bool needwake_gp; 2078 struct rcu_data *rdp; 2079 struct rcu_node *rnp; 2080 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 2081 bool wasempty = false; 2082 2083 /* 2084 * Each pass through the following loop checks for CBs and for the 2085 * nearest grace period (if any) to wait for next. The CB kthreads 2086 * and the global grace-period kthread are awakened if needed. 2087 */ 2088 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 2089 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { 2090 bool needwake_state = false; 2091 2092 if (!nocb_gp_enabled_cb(rdp)) 2093 continue; 2094 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 2095 rcu_nocb_lock_irqsave(rdp, flags); 2096 if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) { 2097 rcu_nocb_unlock_irqrestore(rdp, flags); 2098 if (needwake_state) 2099 swake_up_one(&rdp->nocb_state_wq); 2100 continue; 2101 } 2102 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 2103 if (bypass_ncbs && 2104 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 2105 bypass_ncbs > 2 * qhimark)) { 2106 // Bypass full or old, so flush it. 2107 (void)rcu_nocb_try_flush_bypass(rdp, j); 2108 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 2109 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 2110 rcu_nocb_unlock_irqrestore(rdp, flags); 2111 if (needwake_state) 2112 swake_up_one(&rdp->nocb_state_wq); 2113 continue; /* No callbacks here, try next. */ 2114 } 2115 if (bypass_ncbs) { 2116 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2117 TPS("Bypass")); 2118 bypass = true; 2119 } 2120 rnp = rdp->mynode; 2121 if (bypass) { // Avoid race with first bypass CB. 2122 WRITE_ONCE(my_rdp->nocb_defer_wakeup, 2123 RCU_NOCB_WAKE_NOT); 2124 del_timer(&my_rdp->nocb_timer); 2125 } 2126 // Advance callbacks if helpful and low contention. 2127 needwake_gp = false; 2128 if (!rcu_segcblist_restempty(&rdp->cblist, 2129 RCU_NEXT_READY_TAIL) || 2130 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 2131 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 2132 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 2133 needwake_gp = rcu_advance_cbs(rnp, rdp); 2134 wasempty = rcu_segcblist_restempty(&rdp->cblist, 2135 RCU_NEXT_READY_TAIL); 2136 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 2137 } 2138 // Need to wait on some grace period? 2139 WARN_ON_ONCE(wasempty && 2140 !rcu_segcblist_restempty(&rdp->cblist, 2141 RCU_NEXT_READY_TAIL)); 2142 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 2143 if (!needwait_gp || 2144 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 2145 wait_gp_seq = cur_gp_seq; 2146 needwait_gp = true; 2147 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2148 TPS("NeedWaitGP")); 2149 } 2150 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 2151 needwake = rdp->nocb_cb_sleep; 2152 WRITE_ONCE(rdp->nocb_cb_sleep, false); 2153 smp_mb(); /* CB invocation -after- GP end. */ 2154 } else { 2155 needwake = false; 2156 } 2157 rcu_nocb_unlock_irqrestore(rdp, flags); 2158 if (needwake) { 2159 swake_up_one(&rdp->nocb_cb_wq); 2160 gotcbs = true; 2161 } 2162 if (needwake_gp) 2163 rcu_gp_kthread_wake(); 2164 if (needwake_state) 2165 swake_up_one(&rdp->nocb_state_wq); 2166 } 2167 2168 my_rdp->nocb_gp_bypass = bypass; 2169 my_rdp->nocb_gp_gp = needwait_gp; 2170 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 2171 if (bypass && !rcu_nocb_poll) { 2172 // At least one child with non-empty ->nocb_bypass, so set 2173 // timer in order to avoid stranding its callbacks. 2174 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2175 mod_timer(&my_rdp->nocb_bypass_timer, j + 2); 2176 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2177 } 2178 if (rcu_nocb_poll) { 2179 /* Polling, so trace if first poll in the series. */ 2180 if (gotcbs) 2181 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 2182 schedule_timeout_idle(1); 2183 } else if (!needwait_gp) { 2184 /* Wait for callbacks to appear. */ 2185 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 2186 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 2187 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2188 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 2189 } else { 2190 rnp = my_rdp->mynode; 2191 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 2192 swait_event_interruptible_exclusive( 2193 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 2194 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 2195 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2196 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 2197 } 2198 if (!rcu_nocb_poll) { 2199 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2200 if (bypass) 2201 del_timer(&my_rdp->nocb_bypass_timer); 2202 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 2203 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2204 } 2205 my_rdp->nocb_gp_seq = -1; 2206 WARN_ON(signal_pending(current)); 2207 } 2208 2209 /* 2210 * No-CBs grace-period-wait kthread. There is one of these per group 2211 * of CPUs, but only once at least one CPU in that group has come online 2212 * at least once since boot. This kthread checks for newly posted 2213 * callbacks from any of the CPUs it is responsible for, waits for a 2214 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 2215 * that then have callback-invocation work to do. 2216 */ 2217 static int rcu_nocb_gp_kthread(void *arg) 2218 { 2219 struct rcu_data *rdp = arg; 2220 2221 for (;;) { 2222 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 2223 nocb_gp_wait(rdp); 2224 cond_resched_tasks_rcu_qs(); 2225 } 2226 return 0; 2227 } 2228 2229 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 2230 { 2231 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 2232 return rcu_segcblist_test_flags(&rdp->cblist, flags); 2233 } 2234 2235 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 2236 { 2237 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 2238 } 2239 2240 /* 2241 * Invoke any ready callbacks from the corresponding no-CBs CPU, 2242 * then, if there are no more, wait for more to appear. 2243 */ 2244 static void nocb_cb_wait(struct rcu_data *rdp) 2245 { 2246 struct rcu_segcblist *cblist = &rdp->cblist; 2247 unsigned long cur_gp_seq; 2248 unsigned long flags; 2249 bool needwake_state = false; 2250 bool needwake_gp = false; 2251 bool can_sleep = true; 2252 struct rcu_node *rnp = rdp->mynode; 2253 2254 local_irq_save(flags); 2255 rcu_momentary_dyntick_idle(); 2256 local_irq_restore(flags); 2257 /* 2258 * Disable BH to provide the expected environment. Also, when 2259 * transitioning to/from NOCB mode, a self-requeuing callback might 2260 * be invoked from softirq. A short grace period could cause both 2261 * instances of this callback would execute concurrently. 2262 */ 2263 local_bh_disable(); 2264 rcu_do_batch(rdp); 2265 local_bh_enable(); 2266 lockdep_assert_irqs_enabled(); 2267 rcu_nocb_lock_irqsave(rdp, flags); 2268 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 2269 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 2270 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 2271 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 2272 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2273 } 2274 2275 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 2276 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 2277 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 2278 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 2279 needwake_state = true; 2280 } 2281 if (rcu_segcblist_ready_cbs(cblist)) 2282 can_sleep = false; 2283 } else { 2284 /* 2285 * De-offloading. Clear our flag and notify the de-offload worker. 2286 * We won't touch the callbacks and keep sleeping until we ever 2287 * get re-offloaded. 2288 */ 2289 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 2290 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 2291 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 2292 needwake_state = true; 2293 } 2294 2295 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 2296 2297 if (rdp->nocb_cb_sleep) 2298 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 2299 2300 rcu_nocb_unlock_irqrestore(rdp, flags); 2301 if (needwake_gp) 2302 rcu_gp_kthread_wake(); 2303 2304 if (needwake_state) 2305 swake_up_one(&rdp->nocb_state_wq); 2306 2307 do { 2308 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 2309 nocb_cb_wait_cond(rdp)); 2310 2311 // VVV Ensure CB invocation follows _sleep test. 2312 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 2313 WARN_ON(signal_pending(current)); 2314 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 2315 } 2316 } while (!nocb_cb_can_run(rdp)); 2317 } 2318 2319 /* 2320 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 2321 * nocb_cb_wait() to do the dirty work. 2322 */ 2323 static int rcu_nocb_cb_kthread(void *arg) 2324 { 2325 struct rcu_data *rdp = arg; 2326 2327 // Each pass through this loop does one callback batch, and, 2328 // if there are no more ready callbacks, waits for them. 2329 for (;;) { 2330 nocb_cb_wait(rdp); 2331 cond_resched_tasks_rcu_qs(); 2332 } 2333 return 0; 2334 } 2335 2336 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2337 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2338 { 2339 return READ_ONCE(rdp->nocb_defer_wakeup) > RCU_NOCB_WAKE_NOT; 2340 } 2341 2342 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2343 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2344 { 2345 unsigned long flags; 2346 int ndw; 2347 int ret; 2348 2349 rcu_nocb_lock_irqsave(rdp, flags); 2350 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2351 rcu_nocb_unlock_irqrestore(rdp, flags); 2352 return false; 2353 } 2354 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2355 ret = wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2356 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 2357 2358 return ret; 2359 } 2360 2361 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2362 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2363 { 2364 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2365 2366 do_nocb_deferred_wakeup_common(rdp); 2367 } 2368 2369 /* 2370 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2371 * This means we do an inexact common-case check. Note that if 2372 * we miss, ->nocb_timer will eventually clean things up. 2373 */ 2374 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 2375 { 2376 if (rcu_nocb_need_deferred_wakeup(rdp)) 2377 return do_nocb_deferred_wakeup_common(rdp); 2378 return false; 2379 } 2380 2381 void rcu_nocb_flush_deferred_wakeup(void) 2382 { 2383 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 2384 } 2385 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 2386 2387 static int rdp_offload_toggle(struct rcu_data *rdp, 2388 bool offload, unsigned long flags) 2389 __releases(rdp->nocb_lock) 2390 { 2391 struct rcu_segcblist *cblist = &rdp->cblist; 2392 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 2393 bool wake_gp = false; 2394 2395 rcu_segcblist_offload(cblist, offload); 2396 2397 if (rdp->nocb_cb_sleep) 2398 rdp->nocb_cb_sleep = false; 2399 rcu_nocb_unlock_irqrestore(rdp, flags); 2400 2401 /* 2402 * Ignore former value of nocb_cb_sleep and force wake up as it could 2403 * have been spuriously set to false already. 2404 */ 2405 swake_up_one(&rdp->nocb_cb_wq); 2406 2407 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 2408 if (rdp_gp->nocb_gp_sleep) { 2409 rdp_gp->nocb_gp_sleep = false; 2410 wake_gp = true; 2411 } 2412 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 2413 2414 if (wake_gp) 2415 wake_up_process(rdp_gp->nocb_gp_kthread); 2416 2417 return 0; 2418 } 2419 2420 static long rcu_nocb_rdp_deoffload(void *arg) 2421 { 2422 struct rcu_data *rdp = arg; 2423 struct rcu_segcblist *cblist = &rdp->cblist; 2424 unsigned long flags; 2425 int ret; 2426 2427 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 2428 2429 pr_info("De-offloading %d\n", rdp->cpu); 2430 2431 rcu_nocb_lock_irqsave(rdp, flags); 2432 /* 2433 * Flush once and for all now. This suffices because we are 2434 * running on the target CPU holding ->nocb_lock (thus having 2435 * interrupts disabled), and because rdp_offload_toggle() 2436 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 2437 * Thus future calls to rcu_segcblist_completely_offloaded() will 2438 * return false, which means that future calls to rcu_nocb_try_bypass() 2439 * will refuse to put anything into the bypass. 2440 */ 2441 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 2442 ret = rdp_offload_toggle(rdp, false, flags); 2443 swait_event_exclusive(rdp->nocb_state_wq, 2444 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB | 2445 SEGCBLIST_KTHREAD_GP)); 2446 rcu_nocb_lock_irqsave(rdp, flags); 2447 /* Make sure nocb timer won't stay around */ 2448 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_OFF); 2449 rcu_nocb_unlock_irqrestore(rdp, flags); 2450 del_timer_sync(&rdp->nocb_timer); 2451 2452 /* 2453 * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY with CB unlocked 2454 * and IRQs disabled but let's be paranoid. 2455 */ 2456 rcu_nocb_lock_irqsave(rdp, flags); 2457 rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY); 2458 /* 2459 * With SEGCBLIST_SOFTIRQ_ONLY, we can't use 2460 * rcu_nocb_unlock_irqrestore() anymore. 2461 */ 2462 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2463 2464 /* Sanity check */ 2465 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 2466 2467 2468 return ret; 2469 } 2470 2471 int rcu_nocb_cpu_deoffload(int cpu) 2472 { 2473 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2474 int ret = 0; 2475 2476 if (rdp == rdp->nocb_gp_rdp) { 2477 pr_info("Can't deoffload an rdp GP leader (yet)\n"); 2478 return -EINVAL; 2479 } 2480 mutex_lock(&rcu_state.barrier_mutex); 2481 cpus_read_lock(); 2482 if (rcu_rdp_is_offloaded(rdp)) { 2483 if (cpu_online(cpu)) { 2484 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 2485 if (!ret) 2486 cpumask_clear_cpu(cpu, rcu_nocb_mask); 2487 } else { 2488 pr_info("NOCB: Can't CB-deoffload an offline CPU\n"); 2489 ret = -EINVAL; 2490 } 2491 } 2492 cpus_read_unlock(); 2493 mutex_unlock(&rcu_state.barrier_mutex); 2494 2495 return ret; 2496 } 2497 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 2498 2499 static long rcu_nocb_rdp_offload(void *arg) 2500 { 2501 struct rcu_data *rdp = arg; 2502 struct rcu_segcblist *cblist = &rdp->cblist; 2503 unsigned long flags; 2504 int ret; 2505 2506 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 2507 /* 2508 * For now we only support re-offload, ie: the rdp must have been 2509 * offloaded on boot first. 2510 */ 2511 if (!rdp->nocb_gp_rdp) 2512 return -EINVAL; 2513 2514 pr_info("Offloading %d\n", rdp->cpu); 2515 /* 2516 * Can't use rcu_nocb_lock_irqsave() while we are in 2517 * SEGCBLIST_SOFTIRQ_ONLY mode. 2518 */ 2519 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2520 /* Re-enable nocb timer */ 2521 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2522 /* 2523 * We didn't take the nocb lock while working on the 2524 * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode. 2525 * Every modifications that have been done previously on 2526 * rdp->cblist must be visible remotely by the nocb kthreads 2527 * upon wake up after reading the cblist flags. 2528 * 2529 * The layout against nocb_lock enforces that ordering: 2530 * 2531 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 2532 * ------------------------- ---------------------------- 2533 * WRITE callbacks rcu_nocb_lock() 2534 * rcu_nocb_lock() READ flags 2535 * WRITE flags READ callbacks 2536 * rcu_nocb_unlock() rcu_nocb_unlock() 2537 */ 2538 ret = rdp_offload_toggle(rdp, true, flags); 2539 swait_event_exclusive(rdp->nocb_state_wq, 2540 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 2541 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 2542 2543 return ret; 2544 } 2545 2546 int rcu_nocb_cpu_offload(int cpu) 2547 { 2548 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2549 int ret = 0; 2550 2551 mutex_lock(&rcu_state.barrier_mutex); 2552 cpus_read_lock(); 2553 if (!rcu_rdp_is_offloaded(rdp)) { 2554 if (cpu_online(cpu)) { 2555 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 2556 if (!ret) 2557 cpumask_set_cpu(cpu, rcu_nocb_mask); 2558 } else { 2559 pr_info("NOCB: Can't CB-offload an offline CPU\n"); 2560 ret = -EINVAL; 2561 } 2562 } 2563 cpus_read_unlock(); 2564 mutex_unlock(&rcu_state.barrier_mutex); 2565 2566 return ret; 2567 } 2568 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 2569 2570 void __init rcu_init_nohz(void) 2571 { 2572 int cpu; 2573 bool need_rcu_nocb_mask = false; 2574 struct rcu_data *rdp; 2575 2576 #if defined(CONFIG_NO_HZ_FULL) 2577 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2578 need_rcu_nocb_mask = true; 2579 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2580 2581 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2582 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2583 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2584 return; 2585 } 2586 } 2587 if (!cpumask_available(rcu_nocb_mask)) 2588 return; 2589 2590 #if defined(CONFIG_NO_HZ_FULL) 2591 if (tick_nohz_full_running) 2592 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2593 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2594 2595 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2596 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2597 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2598 rcu_nocb_mask); 2599 } 2600 if (cpumask_empty(rcu_nocb_mask)) 2601 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2602 else 2603 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2604 cpumask_pr_args(rcu_nocb_mask)); 2605 if (rcu_nocb_poll) 2606 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2607 2608 for_each_cpu(cpu, rcu_nocb_mask) { 2609 rdp = per_cpu_ptr(&rcu_data, cpu); 2610 if (rcu_segcblist_empty(&rdp->cblist)) 2611 rcu_segcblist_init(&rdp->cblist); 2612 rcu_segcblist_offload(&rdp->cblist, true); 2613 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 2614 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); 2615 } 2616 rcu_organize_nocb_kthreads(); 2617 } 2618 2619 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2620 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2621 { 2622 init_swait_queue_head(&rdp->nocb_cb_wq); 2623 init_swait_queue_head(&rdp->nocb_gp_wq); 2624 init_swait_queue_head(&rdp->nocb_state_wq); 2625 raw_spin_lock_init(&rdp->nocb_lock); 2626 raw_spin_lock_init(&rdp->nocb_bypass_lock); 2627 raw_spin_lock_init(&rdp->nocb_gp_lock); 2628 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2629 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); 2630 rcu_cblist_init(&rdp->nocb_bypass); 2631 } 2632 2633 /* 2634 * If the specified CPU is a no-CBs CPU that does not already have its 2635 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 2636 * for this CPU's group has not yet been created, spawn it as well. 2637 */ 2638 static void rcu_spawn_one_nocb_kthread(int cpu) 2639 { 2640 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2641 struct rcu_data *rdp_gp; 2642 struct task_struct *t; 2643 2644 /* 2645 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2646 * then nothing to do. 2647 */ 2648 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) 2649 return; 2650 2651 /* If we didn't spawn the GP kthread first, reorganize! */ 2652 rdp_gp = rdp->nocb_gp_rdp; 2653 if (!rdp_gp->nocb_gp_kthread) { 2654 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 2655 "rcuog/%d", rdp_gp->cpu); 2656 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) 2657 return; 2658 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 2659 } 2660 2661 /* Spawn the kthread for this CPU. */ 2662 t = kthread_run(rcu_nocb_cb_kthread, rdp, 2663 "rcuo%c/%d", rcu_state.abbr, cpu); 2664 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 2665 return; 2666 WRITE_ONCE(rdp->nocb_cb_kthread, t); 2667 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 2668 } 2669 2670 /* 2671 * If the specified CPU is a no-CBs CPU that does not already have its 2672 * rcuo kthread, spawn it. 2673 */ 2674 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2675 { 2676 if (rcu_scheduler_fully_active) 2677 rcu_spawn_one_nocb_kthread(cpu); 2678 } 2679 2680 /* 2681 * Once the scheduler is running, spawn rcuo kthreads for all online 2682 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2683 * non-boot CPUs come online -- if this changes, we will need to add 2684 * some mutual exclusion. 2685 */ 2686 static void __init rcu_spawn_nocb_kthreads(void) 2687 { 2688 int cpu; 2689 2690 for_each_online_cpu(cpu) 2691 rcu_spawn_cpu_nocb_kthread(cpu); 2692 } 2693 2694 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 2695 static int rcu_nocb_gp_stride = -1; 2696 module_param(rcu_nocb_gp_stride, int, 0444); 2697 2698 /* 2699 * Initialize GP-CB relationships for all no-CBs CPU. 2700 */ 2701 static void __init rcu_organize_nocb_kthreads(void) 2702 { 2703 int cpu; 2704 bool firsttime = true; 2705 bool gotnocbs = false; 2706 bool gotnocbscbs = true; 2707 int ls = rcu_nocb_gp_stride; 2708 int nl = 0; /* Next GP kthread. */ 2709 struct rcu_data *rdp; 2710 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 2711 struct rcu_data *rdp_prev = NULL; 2712 2713 if (!cpumask_available(rcu_nocb_mask)) 2714 return; 2715 if (ls == -1) { 2716 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 2717 rcu_nocb_gp_stride = ls; 2718 } 2719 2720 /* 2721 * Each pass through this loop sets up one rcu_data structure. 2722 * Should the corresponding CPU come online in the future, then 2723 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2724 */ 2725 for_each_cpu(cpu, rcu_nocb_mask) { 2726 rdp = per_cpu_ptr(&rcu_data, cpu); 2727 if (rdp->cpu >= nl) { 2728 /* New GP kthread, set up for CBs & next GP. */ 2729 gotnocbs = true; 2730 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2731 rdp->nocb_gp_rdp = rdp; 2732 rdp_gp = rdp; 2733 if (dump_tree) { 2734 if (!firsttime) 2735 pr_cont("%s\n", gotnocbscbs 2736 ? "" : " (self only)"); 2737 gotnocbscbs = false; 2738 firsttime = false; 2739 pr_alert("%s: No-CB GP kthread CPU %d:", 2740 __func__, cpu); 2741 } 2742 } else { 2743 /* Another CB kthread, link to previous GP kthread. */ 2744 gotnocbscbs = true; 2745 rdp->nocb_gp_rdp = rdp_gp; 2746 rdp_prev->nocb_next_cb_rdp = rdp; 2747 if (dump_tree) 2748 pr_cont(" %d", cpu); 2749 } 2750 rdp_prev = rdp; 2751 } 2752 if (gotnocbs && dump_tree) 2753 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 2754 } 2755 2756 /* 2757 * Bind the current task to the offloaded CPUs. If there are no offloaded 2758 * CPUs, leave the task unbound. Splat if the bind attempt fails. 2759 */ 2760 void rcu_bind_current_to_nocb(void) 2761 { 2762 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) 2763 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 2764 } 2765 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 2766 2767 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 2768 #ifdef CONFIG_SMP 2769 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 2770 { 2771 return tsp && tsp->state == TASK_RUNNING && !tsp->on_cpu ? "!" : ""; 2772 } 2773 #else // #ifdef CONFIG_SMP 2774 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 2775 { 2776 return ""; 2777 } 2778 #endif // #else #ifdef CONFIG_SMP 2779 2780 /* 2781 * Dump out nocb grace-period kthread state for the specified rcu_data 2782 * structure. 2783 */ 2784 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 2785 { 2786 struct rcu_node *rnp = rdp->mynode; 2787 2788 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 2789 rdp->cpu, 2790 "kK"[!!rdp->nocb_gp_kthread], 2791 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 2792 "dD"[!!rdp->nocb_defer_wakeup], 2793 "tT"[timer_pending(&rdp->nocb_timer)], 2794 "bB"[timer_pending(&rdp->nocb_bypass_timer)], 2795 "sS"[!!rdp->nocb_gp_sleep], 2796 ".W"[swait_active(&rdp->nocb_gp_wq)], 2797 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 2798 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 2799 ".B"[!!rdp->nocb_gp_bypass], 2800 ".G"[!!rdp->nocb_gp_gp], 2801 (long)rdp->nocb_gp_seq, 2802 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 2803 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 2804 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 2805 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 2806 } 2807 2808 /* Dump out nocb kthread state for the specified rcu_data structure. */ 2809 static void show_rcu_nocb_state(struct rcu_data *rdp) 2810 { 2811 char bufw[20]; 2812 char bufr[20]; 2813 struct rcu_segcblist *rsclp = &rdp->cblist; 2814 bool waslocked; 2815 bool wastimer; 2816 bool wassleep; 2817 2818 if (rdp->nocb_gp_rdp == rdp) 2819 show_rcu_nocb_gp_state(rdp); 2820 2821 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 2822 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 2823 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 2824 rdp->cpu, rdp->nocb_gp_rdp->cpu, 2825 rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1, 2826 "kK"[!!rdp->nocb_cb_kthread], 2827 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 2828 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 2829 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 2830 "sS"[!!rdp->nocb_cb_sleep], 2831 ".W"[swait_active(&rdp->nocb_cb_wq)], 2832 jiffies - rdp->nocb_bypass_first, 2833 jiffies - rdp->nocb_nobypass_last, 2834 rdp->nocb_nobypass_count, 2835 ".D"[rcu_segcblist_ready_cbs(rsclp)], 2836 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 2837 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 2838 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 2839 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 2840 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 2841 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 2842 rcu_segcblist_n_cbs(&rdp->cblist), 2843 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 2844 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 2845 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 2846 2847 /* It is OK for GP kthreads to have GP state. */ 2848 if (rdp->nocb_gp_rdp == rdp) 2849 return; 2850 2851 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 2852 wastimer = timer_pending(&rdp->nocb_bypass_timer); 2853 wassleep = swait_active(&rdp->nocb_gp_wq); 2854 if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep) 2855 return; /* Nothing untowards. */ 2856 2857 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n", 2858 "lL"[waslocked], 2859 "dD"[!!rdp->nocb_defer_wakeup], 2860 "tT"[wastimer], 2861 "sS"[!!rdp->nocb_gp_sleep], 2862 ".W"[wassleep]); 2863 } 2864 2865 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2866 2867 /* No ->nocb_lock to acquire. */ 2868 static void rcu_nocb_lock(struct rcu_data *rdp) 2869 { 2870 } 2871 2872 /* No ->nocb_lock to release. */ 2873 static void rcu_nocb_unlock(struct rcu_data *rdp) 2874 { 2875 } 2876 2877 /* No ->nocb_lock to release. */ 2878 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 2879 unsigned long flags) 2880 { 2881 local_irq_restore(flags); 2882 } 2883 2884 /* Lockdep check that ->cblist may be safely accessed. */ 2885 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 2886 { 2887 lockdep_assert_irqs_disabled(); 2888 } 2889 2890 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2891 { 2892 } 2893 2894 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2895 { 2896 return NULL; 2897 } 2898 2899 static void rcu_init_one_nocb(struct rcu_node *rnp) 2900 { 2901 } 2902 2903 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2904 unsigned long j) 2905 { 2906 return true; 2907 } 2908 2909 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2910 bool *was_alldone, unsigned long flags) 2911 { 2912 return false; 2913 } 2914 2915 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 2916 unsigned long flags) 2917 { 2918 WARN_ON_ONCE(1); /* Should be dead code! */ 2919 } 2920 2921 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2922 { 2923 } 2924 2925 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2926 { 2927 return false; 2928 } 2929 2930 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 2931 { 2932 return false; 2933 } 2934 2935 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2936 { 2937 } 2938 2939 static void __init rcu_spawn_nocb_kthreads(void) 2940 { 2941 } 2942 2943 static void show_rcu_nocb_state(struct rcu_data *rdp) 2944 { 2945 } 2946 2947 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2948 2949 /* 2950 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2951 * grace-period kthread will do force_quiescent_state() processing? 2952 * The idea is to avoid waking up RCU core processing on such a 2953 * CPU unless the grace period has extended for too long. 2954 * 2955 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2956 * CONFIG_RCU_NOCB_CPU CPUs. 2957 */ 2958 static bool rcu_nohz_full_cpu(void) 2959 { 2960 #ifdef CONFIG_NO_HZ_FULL 2961 if (tick_nohz_full_cpu(smp_processor_id()) && 2962 (!rcu_gp_in_progress() || 2963 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 2964 return true; 2965 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2966 return false; 2967 } 2968 2969 /* 2970 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2971 */ 2972 static void rcu_bind_gp_kthread(void) 2973 { 2974 if (!tick_nohz_full_enabled()) 2975 return; 2976 housekeeping_affine(current, HK_FLAG_RCU); 2977 } 2978 2979 /* Record the current task on dyntick-idle entry. */ 2980 static void noinstr rcu_dynticks_task_enter(void) 2981 { 2982 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2983 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2984 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2985 } 2986 2987 /* Record no current task on dyntick-idle exit. */ 2988 static void noinstr rcu_dynticks_task_exit(void) 2989 { 2990 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2991 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2992 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2993 } 2994 2995 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 2996 static void rcu_dynticks_task_trace_enter(void) 2997 { 2998 #ifdef CONFIG_TASKS_RCU_TRACE 2999 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 3000 current->trc_reader_special.b.need_mb = true; 3001 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 3002 } 3003 3004 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 3005 static void rcu_dynticks_task_trace_exit(void) 3006 { 3007 #ifdef CONFIG_TASKS_RCU_TRACE 3008 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 3009 current->trc_reader_special.b.need_mb = false; 3010 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 3011 } 3012