xref: /openbmc/linux/kernel/rcu/tree_plugin.h (revision 020c5260)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
34 
35 #ifdef CONFIG_RCU_BOOST
36 
37 #include "../locking/rtmutex_common.h"
38 
39 /*
40  * Control variables for per-CPU and per-rcu_node kthreads.  These
41  * handle all flavors of RCU.
42  */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47 
48 #else /* #ifdef CONFIG_RCU_BOOST */
49 
50 /*
51  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52  * all uses are in dead code.  Provide a definition to keep the compiler
53  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54  * This probably needs to be excluded from -rt builds.
55  */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57 
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
59 
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65 
66 /*
67  * Check the RCU kernel configuration parameters and print informative
68  * messages about anything out of the ordinary.
69  */
70 static void __init rcu_bootup_announce_oddness(void)
71 {
72 	if (IS_ENABLED(CONFIG_RCU_TRACE))
73 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
74 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77 		       RCU_FANOUT);
78 	if (rcu_fanout_exact)
79 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 	if (IS_ENABLED(CONFIG_PROVE_RCU))
83 		pr_info("\tRCU lockdep checking is enabled.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 	if (nr_cpu_ids != NR_CPUS)
92 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 	if (IS_ENABLED(CONFIG_RCU_BOOST))
94 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96 
97 #ifdef CONFIG_PREEMPT_RCU
98 
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102 
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 			       bool wake);
105 
106 /*
107  * Tell them what RCU they are running.
108  */
109 static void __init rcu_bootup_announce(void)
110 {
111 	pr_info("Preemptible hierarchical RCU implementation.\n");
112 	rcu_bootup_announce_oddness();
113 }
114 
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS	0x8
117 #define RCU_EXP_TASKS	0x4
118 #define RCU_GP_BLKD	0x2
119 #define RCU_EXP_BLKD	0x1
120 
121 /*
122  * Queues a task preempted within an RCU-preempt read-side critical
123  * section into the appropriate location within the ->blkd_tasks list,
124  * depending on the states of any ongoing normal and expedited grace
125  * periods.  The ->gp_tasks pointer indicates which element the normal
126  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127  * indicates which element the expedited grace period is waiting on (again,
128  * NULL if none).  If a grace period is waiting on a given element in the
129  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
130  * adding a task to the tail of the list blocks any grace period that is
131  * already waiting on one of the elements.  In contrast, adding a task
132  * to the head of the list won't block any grace period that is already
133  * waiting on one of the elements.
134  *
135  * This queuing is imprecise, and can sometimes make an ongoing grace
136  * period wait for a task that is not strictly speaking blocking it.
137  * Given the choice, we needlessly block a normal grace period rather than
138  * blocking an expedited grace period.
139  *
140  * Note that an endless sequence of expedited grace periods still cannot
141  * indefinitely postpone a normal grace period.  Eventually, all of the
142  * fixed number of preempted tasks blocking the normal grace period that are
143  * not also blocking the expedited grace period will resume and complete
144  * their RCU read-side critical sections.  At that point, the ->gp_tasks
145  * pointer will equal the ->exp_tasks pointer, at which point the end of
146  * the corresponding expedited grace period will also be the end of the
147  * normal grace period.
148  */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 	__releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 	struct task_struct *t = current;
157 
158 	/*
159 	 * Decide where to queue the newly blocked task.  In theory,
160 	 * this could be an if-statement.  In practice, when I tried
161 	 * that, it was quite messy.
162 	 */
163 	switch (blkd_state) {
164 	case 0:
165 	case                RCU_EXP_TASKS:
166 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
167 	case RCU_GP_TASKS:
168 	case RCU_GP_TASKS + RCU_EXP_TASKS:
169 
170 		/*
171 		 * Blocking neither GP, or first task blocking the normal
172 		 * GP but not blocking the already-waiting expedited GP.
173 		 * Queue at the head of the list to avoid unnecessarily
174 		 * blocking the already-waiting GPs.
175 		 */
176 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 		break;
178 
179 	case                                              RCU_EXP_BLKD:
180 	case                                RCU_GP_BLKD:
181 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
182 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
183 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
184 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 
186 		/*
187 		 * First task arriving that blocks either GP, or first task
188 		 * arriving that blocks the expedited GP (with the normal
189 		 * GP already waiting), or a task arriving that blocks
190 		 * both GPs with both GPs already waiting.  Queue at the
191 		 * tail of the list to avoid any GP waiting on any of the
192 		 * already queued tasks that are not blocking it.
193 		 */
194 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 		break;
196 
197 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
198 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the expedited GP.
203 		 * The task either does not block the normal GP, or is the
204 		 * first task blocking the normal GP.  Queue just after
205 		 * the first task blocking the expedited GP.
206 		 */
207 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 		break;
209 
210 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
211 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212 
213 		/*
214 		 * Second or subsequent task blocking the normal GP.
215 		 * The task does not block the expedited GP. Queue just
216 		 * after the first task blocking the normal GP.
217 		 */
218 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 		break;
220 
221 	default:
222 
223 		/* Yet another exercise in excessive paranoia. */
224 		WARN_ON_ONCE(1);
225 		break;
226 	}
227 
228 	/*
229 	 * We have now queued the task.  If it was the first one to
230 	 * block either grace period, update the ->gp_tasks and/or
231 	 * ->exp_tasks pointers, respectively, to reference the newly
232 	 * blocked tasks.
233 	 */
234 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 		rnp->gp_tasks = &t->rcu_node_entry;
236 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 		rnp->exp_tasks = &t->rcu_node_entry;
238 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
239 
240 	/*
241 	 * Report the quiescent state for the expedited GP.  This expedited
242 	 * GP should not be able to end until we report, so there should be
243 	 * no need to check for a subsequent expedited GP.  (Though we are
244 	 * still in a quiescent state in any case.)
245 	 */
246 	if (blkd_state & RCU_EXP_BLKD &&
247 	    t->rcu_read_unlock_special.b.exp_need_qs) {
248 		t->rcu_read_unlock_special.b.exp_need_qs = false;
249 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 	} else {
251 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 	}
253 }
254 
255 /*
256  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
257  * that this just means that the task currently running on the CPU is
258  * not in a quiescent state.  There might be any number of tasks blocked
259  * while in an RCU read-side critical section.
260  *
261  * As with the other rcu_*_qs() functions, callers to this function
262  * must disable preemption.
263  */
264 static void rcu_preempt_qs(void)
265 {
266 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267 		trace_rcu_grace_period(TPS("rcu_preempt"),
268 				       __this_cpu_read(rcu_data_p->gpnum),
269 				       TPS("cpuqs"));
270 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 		current->rcu_read_unlock_special.b.need_qs = false;
273 	}
274 }
275 
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 static void rcu_preempt_note_context_switch(void)
290 {
291 	struct task_struct *t = current;
292 	struct rcu_data *rdp;
293 	struct rcu_node *rnp;
294 
295 	if (t->rcu_read_lock_nesting > 0 &&
296 	    !t->rcu_read_unlock_special.b.blocked) {
297 
298 		/* Possibly blocking in an RCU read-side critical section. */
299 		rdp = this_cpu_ptr(rcu_state_p->rda);
300 		rnp = rdp->mynode;
301 		raw_spin_lock_rcu_node(rnp);
302 		t->rcu_read_unlock_special.b.blocked = true;
303 		t->rcu_blocked_node = rnp;
304 
305 		/*
306 		 * Verify the CPU's sanity, trace the preemption, and
307 		 * then queue the task as required based on the states
308 		 * of any ongoing and expedited grace periods.
309 		 */
310 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 		trace_rcu_preempt_task(rdp->rsp->name,
313 				       t->pid,
314 				       (rnp->qsmask & rdp->grpmask)
315 				       ? rnp->gpnum
316 				       : rnp->gpnum + 1);
317 		rcu_preempt_ctxt_queue(rnp, rdp);
318 	} else if (t->rcu_read_lock_nesting < 0 &&
319 		   t->rcu_read_unlock_special.s) {
320 
321 		/*
322 		 * Complete exit from RCU read-side critical section on
323 		 * behalf of preempted instance of __rcu_read_unlock().
324 		 */
325 		rcu_read_unlock_special(t);
326 	}
327 
328 	/*
329 	 * Either we were not in an RCU read-side critical section to
330 	 * begin with, or we have now recorded that critical section
331 	 * globally.  Either way, we can now note a quiescent state
332 	 * for this CPU.  Again, if we were in an RCU read-side critical
333 	 * section, and if that critical section was blocking the current
334 	 * grace period, then the fact that the task has been enqueued
335 	 * means that we continue to block the current grace period.
336 	 */
337 	rcu_preempt_qs();
338 }
339 
340 /*
341  * Check for preempted RCU readers blocking the current grace period
342  * for the specified rcu_node structure.  If the caller needs a reliable
343  * answer, it must hold the rcu_node's ->lock.
344  */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347 	return rnp->gp_tasks != NULL;
348 }
349 
350 /*
351  * Advance a ->blkd_tasks-list pointer to the next entry, instead
352  * returning NULL if at the end of the list.
353  */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 					     struct rcu_node *rnp)
356 {
357 	struct list_head *np;
358 
359 	np = t->rcu_node_entry.next;
360 	if (np == &rnp->blkd_tasks)
361 		np = NULL;
362 	return np;
363 }
364 
365 /*
366  * Return true if the specified rcu_node structure has tasks that were
367  * preempted within an RCU read-side critical section.
368  */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371 	return !list_empty(&rnp->blkd_tasks);
372 }
373 
374 /*
375  * Handle special cases during rcu_read_unlock(), such as needing to
376  * notify RCU core processing or task having blocked during the RCU
377  * read-side critical section.
378  */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381 	bool empty_exp;
382 	bool empty_norm;
383 	bool empty_exp_now;
384 	unsigned long flags;
385 	struct list_head *np;
386 	bool drop_boost_mutex = false;
387 	struct rcu_data *rdp;
388 	struct rcu_node *rnp;
389 	union rcu_special special;
390 
391 	/* NMI handlers cannot block and cannot safely manipulate state. */
392 	if (in_nmi())
393 		return;
394 
395 	local_irq_save(flags);
396 
397 	/*
398 	 * If RCU core is waiting for this CPU to exit its critical section,
399 	 * report the fact that it has exited.  Because irqs are disabled,
400 	 * t->rcu_read_unlock_special cannot change.
401 	 */
402 	special = t->rcu_read_unlock_special;
403 	if (special.b.need_qs) {
404 		rcu_preempt_qs();
405 		t->rcu_read_unlock_special.b.need_qs = false;
406 		if (!t->rcu_read_unlock_special.s) {
407 			local_irq_restore(flags);
408 			return;
409 		}
410 	}
411 
412 	/*
413 	 * Respond to a request for an expedited grace period, but only if
414 	 * we were not preempted, meaning that we were running on the same
415 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
416 	 * would have been cleared at the time of the first preemption,
417 	 * and the quiescent state would be reported when we were dequeued.
418 	 */
419 	if (special.b.exp_need_qs) {
420 		WARN_ON_ONCE(special.b.blocked);
421 		t->rcu_read_unlock_special.b.exp_need_qs = false;
422 		rdp = this_cpu_ptr(rcu_state_p->rda);
423 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 		if (!t->rcu_read_unlock_special.s) {
425 			local_irq_restore(flags);
426 			return;
427 		}
428 	}
429 
430 	/* Hardware IRQ handlers cannot block, complain if they get here. */
431 	if (in_irq() || in_serving_softirq()) {
432 		lockdep_rcu_suspicious(__FILE__, __LINE__,
433 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 			 t->rcu_read_unlock_special.s,
436 			 t->rcu_read_unlock_special.b.blocked,
437 			 t->rcu_read_unlock_special.b.exp_need_qs,
438 			 t->rcu_read_unlock_special.b.need_qs);
439 		local_irq_restore(flags);
440 		return;
441 	}
442 
443 	/* Clean up if blocked during RCU read-side critical section. */
444 	if (special.b.blocked) {
445 		t->rcu_read_unlock_special.b.blocked = false;
446 
447 		/*
448 		 * Remove this task from the list it blocked on.  The task
449 		 * now remains queued on the rcu_node corresponding to the
450 		 * CPU it first blocked on, so there is no longer any need
451 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
452 		 */
453 		rnp = t->rcu_blocked_node;
454 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457 		empty_exp = sync_rcu_preempt_exp_done(rnp);
458 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 		np = rcu_next_node_entry(t, rnp);
460 		list_del_init(&t->rcu_node_entry);
461 		t->rcu_blocked_node = NULL;
462 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463 						rnp->gpnum, t->pid);
464 		if (&t->rcu_node_entry == rnp->gp_tasks)
465 			rnp->gp_tasks = np;
466 		if (&t->rcu_node_entry == rnp->exp_tasks)
467 			rnp->exp_tasks = np;
468 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 			if (&t->rcu_node_entry == rnp->boost_tasks)
470 				rnp->boost_tasks = np;
471 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 		}
474 
475 		/*
476 		 * If this was the last task on the current list, and if
477 		 * we aren't waiting on any CPUs, report the quiescent state.
478 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 		 * so we must take a snapshot of the expedited state.
480 		 */
481 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484 							 rnp->gpnum,
485 							 0, rnp->qsmask,
486 							 rnp->level,
487 							 rnp->grplo,
488 							 rnp->grphi,
489 							 !!rnp->gp_tasks);
490 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491 		} else {
492 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
493 		}
494 
495 		/* Unboost if we were boosted. */
496 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497 			rt_mutex_unlock(&rnp->boost_mtx);
498 
499 		/*
500 		 * If this was the last task on the expedited lists,
501 		 * then we need to report up the rcu_node hierarchy.
502 		 */
503 		if (!empty_exp && empty_exp_now)
504 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
505 	} else {
506 		local_irq_restore(flags);
507 	}
508 }
509 
510 /*
511  * Dump detailed information for all tasks blocking the current RCU
512  * grace period on the specified rcu_node structure.
513  */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516 	unsigned long flags;
517 	struct task_struct *t;
518 
519 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
520 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 		return;
523 	}
524 	t = list_entry(rnp->gp_tasks->prev,
525 		       struct task_struct, rcu_node_entry);
526 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 		sched_show_task(t);
528 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530 
531 /*
532  * Dump detailed information for all tasks blocking the current RCU
533  * grace period.
534  */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537 	struct rcu_node *rnp = rcu_get_root(rsp);
538 
539 	rcu_print_detail_task_stall_rnp(rnp);
540 	rcu_for_each_leaf_node(rsp, rnp)
541 		rcu_print_detail_task_stall_rnp(rnp);
542 }
543 
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 	       rnp->level, rnp->grplo, rnp->grphi);
548 }
549 
550 static void rcu_print_task_stall_end(void)
551 {
552 	pr_cont("\n");
553 }
554 
555 /*
556  * Scan the current list of tasks blocked within RCU read-side critical
557  * sections, printing out the tid of each.
558  */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561 	struct task_struct *t;
562 	int ndetected = 0;
563 
564 	if (!rcu_preempt_blocked_readers_cgp(rnp))
565 		return 0;
566 	rcu_print_task_stall_begin(rnp);
567 	t = list_entry(rnp->gp_tasks->prev,
568 		       struct task_struct, rcu_node_entry);
569 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570 		pr_cont(" P%d", t->pid);
571 		ndetected++;
572 	}
573 	rcu_print_task_stall_end();
574 	return ndetected;
575 }
576 
577 /*
578  * Scan the current list of tasks blocked within RCU read-side critical
579  * sections, printing out the tid of each that is blocking the current
580  * expedited grace period.
581  */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584 	struct task_struct *t;
585 	int ndetected = 0;
586 
587 	if (!rnp->exp_tasks)
588 		return 0;
589 	t = list_entry(rnp->exp_tasks->prev,
590 		       struct task_struct, rcu_node_entry);
591 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 		pr_cont(" P%d", t->pid);
593 		ndetected++;
594 	}
595 	return ndetected;
596 }
597 
598 /*
599  * Check that the list of blocked tasks for the newly completed grace
600  * period is in fact empty.  It is a serious bug to complete a grace
601  * period that still has RCU readers blocked!  This function must be
602  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603  * must be held by the caller.
604  *
605  * Also, if there are blocked tasks on the list, they automatically
606  * block the newly created grace period, so set up ->gp_tasks accordingly.
607  */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611 	if (rcu_preempt_has_tasks(rnp))
612 		rnp->gp_tasks = rnp->blkd_tasks.next;
613 	WARN_ON_ONCE(rnp->qsmask);
614 }
615 
616 /*
617  * Check for a quiescent state from the current CPU.  When a task blocks,
618  * the task is recorded in the corresponding CPU's rcu_node structure,
619  * which is checked elsewhere.
620  *
621  * Caller must disable hard irqs.
622  */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 	struct task_struct *t = current;
626 
627 	if (t->rcu_read_lock_nesting == 0) {
628 		rcu_preempt_qs();
629 		return;
630 	}
631 	if (t->rcu_read_lock_nesting > 0 &&
632 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
633 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634 		t->rcu_read_unlock_special.b.need_qs = true;
635 }
636 
637 #ifdef CONFIG_RCU_BOOST
638 
639 static void rcu_preempt_do_callbacks(void)
640 {
641 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643 
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645 
646 /*
647  * Queue a preemptible-RCU callback for invocation after a grace period.
648  */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651 	__call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654 
655 /**
656  * synchronize_rcu - wait until a grace period has elapsed.
657  *
658  * Control will return to the caller some time after a full grace
659  * period has elapsed, in other words after all currently executing RCU
660  * read-side critical sections have completed.  Note, however, that
661  * upon return from synchronize_rcu(), the caller might well be executing
662  * concurrently with new RCU read-side critical sections that began while
663  * synchronize_rcu() was waiting.  RCU read-side critical sections are
664  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665  *
666  * See the description of synchronize_sched() for more detailed information
667  * on memory ordering guarantees.
668  */
669 void synchronize_rcu(void)
670 {
671 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 			 lock_is_held(&rcu_lock_map) ||
673 			 lock_is_held(&rcu_sched_lock_map),
674 			 "Illegal synchronize_rcu() in RCU read-side critical section");
675 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
676 		return;
677 	if (rcu_gp_is_expedited())
678 		synchronize_rcu_expedited();
679 	else
680 		wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683 
684 /**
685  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
686  *
687  * Note that this primitive does not necessarily wait for an RCU grace period
688  * to complete.  For example, if there are no RCU callbacks queued anywhere
689  * in the system, then rcu_barrier() is within its rights to return
690  * immediately, without waiting for anything, much less an RCU grace period.
691  */
692 void rcu_barrier(void)
693 {
694 	_rcu_barrier(rcu_state_p);
695 }
696 EXPORT_SYMBOL_GPL(rcu_barrier);
697 
698 /*
699  * Initialize preemptible RCU's state structures.
700  */
701 static void __init __rcu_init_preempt(void)
702 {
703 	rcu_init_one(rcu_state_p);
704 }
705 
706 /*
707  * Check for a task exiting while in a preemptible-RCU read-side
708  * critical section, clean up if so.  No need to issue warnings,
709  * as debug_check_no_locks_held() already does this if lockdep
710  * is enabled.
711  */
712 void exit_rcu(void)
713 {
714 	struct task_struct *t = current;
715 
716 	if (likely(list_empty(&current->rcu_node_entry)))
717 		return;
718 	t->rcu_read_lock_nesting = 1;
719 	barrier();
720 	t->rcu_read_unlock_special.b.blocked = true;
721 	__rcu_read_unlock();
722 }
723 
724 #else /* #ifdef CONFIG_PREEMPT_RCU */
725 
726 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
727 
728 /*
729  * Tell them what RCU they are running.
730  */
731 static void __init rcu_bootup_announce(void)
732 {
733 	pr_info("Hierarchical RCU implementation.\n");
734 	rcu_bootup_announce_oddness();
735 }
736 
737 /*
738  * Because preemptible RCU does not exist, we never have to check for
739  * CPUs being in quiescent states.
740  */
741 static void rcu_preempt_note_context_switch(void)
742 {
743 }
744 
745 /*
746  * Because preemptible RCU does not exist, there are never any preempted
747  * RCU readers.
748  */
749 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
750 {
751 	return 0;
752 }
753 
754 /*
755  * Because there is no preemptible RCU, there can be no readers blocked.
756  */
757 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
758 {
759 	return false;
760 }
761 
762 /*
763  * Because preemptible RCU does not exist, we never have to check for
764  * tasks blocked within RCU read-side critical sections.
765  */
766 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
767 {
768 }
769 
770 /*
771  * Because preemptible RCU does not exist, we never have to check for
772  * tasks blocked within RCU read-side critical sections.
773  */
774 static int rcu_print_task_stall(struct rcu_node *rnp)
775 {
776 	return 0;
777 }
778 
779 /*
780  * Because preemptible RCU does not exist, we never have to check for
781  * tasks blocked within RCU read-side critical sections that are
782  * blocking the current expedited grace period.
783  */
784 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
785 {
786 	return 0;
787 }
788 
789 /*
790  * Because there is no preemptible RCU, there can be no readers blocked,
791  * so there is no need to check for blocked tasks.  So check only for
792  * bogus qsmask values.
793  */
794 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
795 {
796 	WARN_ON_ONCE(rnp->qsmask);
797 }
798 
799 /*
800  * Because preemptible RCU does not exist, it never has any callbacks
801  * to check.
802  */
803 static void rcu_preempt_check_callbacks(void)
804 {
805 }
806 
807 /*
808  * Because preemptible RCU does not exist, rcu_barrier() is just
809  * another name for rcu_barrier_sched().
810  */
811 void rcu_barrier(void)
812 {
813 	rcu_barrier_sched();
814 }
815 EXPORT_SYMBOL_GPL(rcu_barrier);
816 
817 /*
818  * Because preemptible RCU does not exist, it need not be initialized.
819  */
820 static void __init __rcu_init_preempt(void)
821 {
822 }
823 
824 /*
825  * Because preemptible RCU does not exist, tasks cannot possibly exit
826  * while in preemptible RCU read-side critical sections.
827  */
828 void exit_rcu(void)
829 {
830 }
831 
832 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
833 
834 #ifdef CONFIG_RCU_BOOST
835 
836 #include "../locking/rtmutex_common.h"
837 
838 #ifdef CONFIG_RCU_TRACE
839 
840 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
841 {
842 	if (!rcu_preempt_has_tasks(rnp))
843 		rnp->n_balk_blkd_tasks++;
844 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
845 		rnp->n_balk_exp_gp_tasks++;
846 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
847 		rnp->n_balk_boost_tasks++;
848 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
849 		rnp->n_balk_notblocked++;
850 	else if (rnp->gp_tasks != NULL &&
851 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
852 		rnp->n_balk_notyet++;
853 	else
854 		rnp->n_balk_nos++;
855 }
856 
857 #else /* #ifdef CONFIG_RCU_TRACE */
858 
859 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
860 {
861 }
862 
863 #endif /* #else #ifdef CONFIG_RCU_TRACE */
864 
865 static void rcu_wake_cond(struct task_struct *t, int status)
866 {
867 	/*
868 	 * If the thread is yielding, only wake it when this
869 	 * is invoked from idle
870 	 */
871 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
872 		wake_up_process(t);
873 }
874 
875 /*
876  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
877  * or ->boost_tasks, advancing the pointer to the next task in the
878  * ->blkd_tasks list.
879  *
880  * Note that irqs must be enabled: boosting the task can block.
881  * Returns 1 if there are more tasks needing to be boosted.
882  */
883 static int rcu_boost(struct rcu_node *rnp)
884 {
885 	unsigned long flags;
886 	struct task_struct *t;
887 	struct list_head *tb;
888 
889 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
890 	    READ_ONCE(rnp->boost_tasks) == NULL)
891 		return 0;  /* Nothing left to boost. */
892 
893 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
894 
895 	/*
896 	 * Recheck under the lock: all tasks in need of boosting
897 	 * might exit their RCU read-side critical sections on their own.
898 	 */
899 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
900 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
901 		return 0;
902 	}
903 
904 	/*
905 	 * Preferentially boost tasks blocking expedited grace periods.
906 	 * This cannot starve the normal grace periods because a second
907 	 * expedited grace period must boost all blocked tasks, including
908 	 * those blocking the pre-existing normal grace period.
909 	 */
910 	if (rnp->exp_tasks != NULL) {
911 		tb = rnp->exp_tasks;
912 		rnp->n_exp_boosts++;
913 	} else {
914 		tb = rnp->boost_tasks;
915 		rnp->n_normal_boosts++;
916 	}
917 	rnp->n_tasks_boosted++;
918 
919 	/*
920 	 * We boost task t by manufacturing an rt_mutex that appears to
921 	 * be held by task t.  We leave a pointer to that rt_mutex where
922 	 * task t can find it, and task t will release the mutex when it
923 	 * exits its outermost RCU read-side critical section.  Then
924 	 * simply acquiring this artificial rt_mutex will boost task
925 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
926 	 *
927 	 * Note that task t must acquire rnp->lock to remove itself from
928 	 * the ->blkd_tasks list, which it will do from exit() if from
929 	 * nowhere else.  We therefore are guaranteed that task t will
930 	 * stay around at least until we drop rnp->lock.  Note that
931 	 * rnp->lock also resolves races between our priority boosting
932 	 * and task t's exiting its outermost RCU read-side critical
933 	 * section.
934 	 */
935 	t = container_of(tb, struct task_struct, rcu_node_entry);
936 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
937 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
938 	/* Lock only for side effect: boosts task t's priority. */
939 	rt_mutex_lock(&rnp->boost_mtx);
940 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
941 
942 	return READ_ONCE(rnp->exp_tasks) != NULL ||
943 	       READ_ONCE(rnp->boost_tasks) != NULL;
944 }
945 
946 /*
947  * Priority-boosting kthread, one per leaf rcu_node.
948  */
949 static int rcu_boost_kthread(void *arg)
950 {
951 	struct rcu_node *rnp = (struct rcu_node *)arg;
952 	int spincnt = 0;
953 	int more2boost;
954 
955 	trace_rcu_utilization(TPS("Start boost kthread@init"));
956 	for (;;) {
957 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
958 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
959 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
960 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
961 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
962 		more2boost = rcu_boost(rnp);
963 		if (more2boost)
964 			spincnt++;
965 		else
966 			spincnt = 0;
967 		if (spincnt > 10) {
968 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
969 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
970 			schedule_timeout_interruptible(2);
971 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
972 			spincnt = 0;
973 		}
974 	}
975 	/* NOTREACHED */
976 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
977 	return 0;
978 }
979 
980 /*
981  * Check to see if it is time to start boosting RCU readers that are
982  * blocking the current grace period, and, if so, tell the per-rcu_node
983  * kthread to start boosting them.  If there is an expedited grace
984  * period in progress, it is always time to boost.
985  *
986  * The caller must hold rnp->lock, which this function releases.
987  * The ->boost_kthread_task is immortal, so we don't need to worry
988  * about it going away.
989  */
990 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
991 	__releases(rnp->lock)
992 {
993 	struct task_struct *t;
994 
995 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
996 		rnp->n_balk_exp_gp_tasks++;
997 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
998 		return;
999 	}
1000 	if (rnp->exp_tasks != NULL ||
1001 	    (rnp->gp_tasks != NULL &&
1002 	     rnp->boost_tasks == NULL &&
1003 	     rnp->qsmask == 0 &&
1004 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1005 		if (rnp->exp_tasks == NULL)
1006 			rnp->boost_tasks = rnp->gp_tasks;
1007 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1008 		t = rnp->boost_kthread_task;
1009 		if (t)
1010 			rcu_wake_cond(t, rnp->boost_kthread_status);
1011 	} else {
1012 		rcu_initiate_boost_trace(rnp);
1013 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014 	}
1015 }
1016 
1017 /*
1018  * Wake up the per-CPU kthread to invoke RCU callbacks.
1019  */
1020 static void invoke_rcu_callbacks_kthread(void)
1021 {
1022 	unsigned long flags;
1023 
1024 	local_irq_save(flags);
1025 	__this_cpu_write(rcu_cpu_has_work, 1);
1026 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1027 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1028 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1029 			      __this_cpu_read(rcu_cpu_kthread_status));
1030 	}
1031 	local_irq_restore(flags);
1032 }
1033 
1034 /*
1035  * Is the current CPU running the RCU-callbacks kthread?
1036  * Caller must have preemption disabled.
1037  */
1038 static bool rcu_is_callbacks_kthread(void)
1039 {
1040 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1041 }
1042 
1043 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1044 
1045 /*
1046  * Do priority-boost accounting for the start of a new grace period.
1047  */
1048 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1049 {
1050 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1051 }
1052 
1053 /*
1054  * Create an RCU-boost kthread for the specified node if one does not
1055  * already exist.  We only create this kthread for preemptible RCU.
1056  * Returns zero if all is well, a negated errno otherwise.
1057  */
1058 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1059 				       struct rcu_node *rnp)
1060 {
1061 	int rnp_index = rnp - &rsp->node[0];
1062 	unsigned long flags;
1063 	struct sched_param sp;
1064 	struct task_struct *t;
1065 
1066 	if (rcu_state_p != rsp)
1067 		return 0;
1068 
1069 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1070 		return 0;
1071 
1072 	rsp->boost = 1;
1073 	if (rnp->boost_kthread_task != NULL)
1074 		return 0;
1075 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1076 			   "rcub/%d", rnp_index);
1077 	if (IS_ERR(t))
1078 		return PTR_ERR(t);
1079 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1080 	rnp->boost_kthread_task = t;
1081 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082 	sp.sched_priority = kthread_prio;
1083 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1084 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1085 	return 0;
1086 }
1087 
1088 static void rcu_kthread_do_work(void)
1089 {
1090 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1091 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1092 	rcu_preempt_do_callbacks();
1093 }
1094 
1095 static void rcu_cpu_kthread_setup(unsigned int cpu)
1096 {
1097 	struct sched_param sp;
1098 
1099 	sp.sched_priority = kthread_prio;
1100 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1101 }
1102 
1103 static void rcu_cpu_kthread_park(unsigned int cpu)
1104 {
1105 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1106 }
1107 
1108 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1109 {
1110 	return __this_cpu_read(rcu_cpu_has_work);
1111 }
1112 
1113 /*
1114  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1115  * RCU softirq used in flavors and configurations of RCU that do not
1116  * support RCU priority boosting.
1117  */
1118 static void rcu_cpu_kthread(unsigned int cpu)
1119 {
1120 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1121 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1122 	int spincnt;
1123 
1124 	for (spincnt = 0; spincnt < 10; spincnt++) {
1125 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1126 		local_bh_disable();
1127 		*statusp = RCU_KTHREAD_RUNNING;
1128 		this_cpu_inc(rcu_cpu_kthread_loops);
1129 		local_irq_disable();
1130 		work = *workp;
1131 		*workp = 0;
1132 		local_irq_enable();
1133 		if (work)
1134 			rcu_kthread_do_work();
1135 		local_bh_enable();
1136 		if (*workp == 0) {
1137 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1138 			*statusp = RCU_KTHREAD_WAITING;
1139 			return;
1140 		}
1141 	}
1142 	*statusp = RCU_KTHREAD_YIELDING;
1143 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1144 	schedule_timeout_interruptible(2);
1145 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1146 	*statusp = RCU_KTHREAD_WAITING;
1147 }
1148 
1149 /*
1150  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1151  * served by the rcu_node in question.  The CPU hotplug lock is still
1152  * held, so the value of rnp->qsmaskinit will be stable.
1153  *
1154  * We don't include outgoingcpu in the affinity set, use -1 if there is
1155  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1156  * this function allows the kthread to execute on any CPU.
1157  */
1158 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1159 {
1160 	struct task_struct *t = rnp->boost_kthread_task;
1161 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1162 	cpumask_var_t cm;
1163 	int cpu;
1164 
1165 	if (!t)
1166 		return;
1167 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1168 		return;
1169 	for_each_leaf_node_possible_cpu(rnp, cpu)
1170 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1171 		    cpu != outgoingcpu)
1172 			cpumask_set_cpu(cpu, cm);
1173 	if (cpumask_weight(cm) == 0)
1174 		cpumask_setall(cm);
1175 	set_cpus_allowed_ptr(t, cm);
1176 	free_cpumask_var(cm);
1177 }
1178 
1179 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1180 	.store			= &rcu_cpu_kthread_task,
1181 	.thread_should_run	= rcu_cpu_kthread_should_run,
1182 	.thread_fn		= rcu_cpu_kthread,
1183 	.thread_comm		= "rcuc/%u",
1184 	.setup			= rcu_cpu_kthread_setup,
1185 	.park			= rcu_cpu_kthread_park,
1186 };
1187 
1188 /*
1189  * Spawn boost kthreads -- called as soon as the scheduler is running.
1190  */
1191 static void __init rcu_spawn_boost_kthreads(void)
1192 {
1193 	struct rcu_node *rnp;
1194 	int cpu;
1195 
1196 	for_each_possible_cpu(cpu)
1197 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1198 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1199 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1200 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1201 }
1202 
1203 static void rcu_prepare_kthreads(int cpu)
1204 {
1205 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1206 	struct rcu_node *rnp = rdp->mynode;
1207 
1208 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209 	if (rcu_scheduler_fully_active)
1210 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1211 }
1212 
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1214 
1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216 	__releases(rnp->lock)
1217 {
1218 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 }
1220 
1221 static void invoke_rcu_callbacks_kthread(void)
1222 {
1223 	WARN_ON_ONCE(1);
1224 }
1225 
1226 static bool rcu_is_callbacks_kthread(void)
1227 {
1228 	return false;
1229 }
1230 
1231 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1232 {
1233 }
1234 
1235 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1236 {
1237 }
1238 
1239 static void __init rcu_spawn_boost_kthreads(void)
1240 {
1241 }
1242 
1243 static void rcu_prepare_kthreads(int cpu)
1244 {
1245 }
1246 
1247 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1248 
1249 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1250 
1251 /*
1252  * Check to see if any future RCU-related work will need to be done
1253  * by the current CPU, even if none need be done immediately, returning
1254  * 1 if so.  This function is part of the RCU implementation; it is -not-
1255  * an exported member of the RCU API.
1256  *
1257  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1258  * any flavor of RCU.
1259  */
1260 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1261 {
1262 	*nextevt = KTIME_MAX;
1263 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1264 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1265 }
1266 
1267 /*
1268  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1269  * after it.
1270  */
1271 static void rcu_cleanup_after_idle(void)
1272 {
1273 }
1274 
1275 /*
1276  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1277  * is nothing.
1278  */
1279 static void rcu_prepare_for_idle(void)
1280 {
1281 }
1282 
1283 /*
1284  * Don't bother keeping a running count of the number of RCU callbacks
1285  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1286  */
1287 static void rcu_idle_count_callbacks_posted(void)
1288 {
1289 }
1290 
1291 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1292 
1293 /*
1294  * This code is invoked when a CPU goes idle, at which point we want
1295  * to have the CPU do everything required for RCU so that it can enter
1296  * the energy-efficient dyntick-idle mode.  This is handled by a
1297  * state machine implemented by rcu_prepare_for_idle() below.
1298  *
1299  * The following three proprocessor symbols control this state machine:
1300  *
1301  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1302  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1303  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1304  *	benchmarkers who might otherwise be tempted to set this to a large
1305  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1306  *	system.  And if you are -that- concerned about energy efficiency,
1307  *	just power the system down and be done with it!
1308  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1309  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1310  *	callbacks pending.  Setting this too high can OOM your system.
1311  *
1312  * The values below work well in practice.  If future workloads require
1313  * adjustment, they can be converted into kernel config parameters, though
1314  * making the state machine smarter might be a better option.
1315  */
1316 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1317 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1318 
1319 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1320 module_param(rcu_idle_gp_delay, int, 0644);
1321 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1322 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1323 
1324 /*
1325  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1326  * only if it has been awhile since the last time we did so.  Afterwards,
1327  * if there are any callbacks ready for immediate invocation, return true.
1328  */
1329 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1330 {
1331 	bool cbs_ready = false;
1332 	struct rcu_data *rdp;
1333 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1334 	struct rcu_node *rnp;
1335 	struct rcu_state *rsp;
1336 
1337 	/* Exit early if we advanced recently. */
1338 	if (jiffies == rdtp->last_advance_all)
1339 		return false;
1340 	rdtp->last_advance_all = jiffies;
1341 
1342 	for_each_rcu_flavor(rsp) {
1343 		rdp = this_cpu_ptr(rsp->rda);
1344 		rnp = rdp->mynode;
1345 
1346 		/*
1347 		 * Don't bother checking unless a grace period has
1348 		 * completed since we last checked and there are
1349 		 * callbacks not yet ready to invoke.
1350 		 */
1351 		if ((rdp->completed != rnp->completed ||
1352 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1353 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1354 			note_gp_changes(rsp, rdp);
1355 
1356 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1357 			cbs_ready = true;
1358 	}
1359 	return cbs_ready;
1360 }
1361 
1362 /*
1363  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1364  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1365  * caller to set the timeout based on whether or not there are non-lazy
1366  * callbacks.
1367  *
1368  * The caller must have disabled interrupts.
1369  */
1370 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1371 {
1372 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1373 	unsigned long dj;
1374 
1375 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1376 		*nextevt = KTIME_MAX;
1377 		return 0;
1378 	}
1379 
1380 	/* Snapshot to detect later posting of non-lazy callback. */
1381 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1382 
1383 	/* If no callbacks, RCU doesn't need the CPU. */
1384 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1385 		*nextevt = KTIME_MAX;
1386 		return 0;
1387 	}
1388 
1389 	/* Attempt to advance callbacks. */
1390 	if (rcu_try_advance_all_cbs()) {
1391 		/* Some ready to invoke, so initiate later invocation. */
1392 		invoke_rcu_core();
1393 		return 1;
1394 	}
1395 	rdtp->last_accelerate = jiffies;
1396 
1397 	/* Request timer delay depending on laziness, and round. */
1398 	if (!rdtp->all_lazy) {
1399 		dj = round_up(rcu_idle_gp_delay + jiffies,
1400 			       rcu_idle_gp_delay) - jiffies;
1401 	} else {
1402 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1403 	}
1404 	*nextevt = basemono + dj * TICK_NSEC;
1405 	return 0;
1406 }
1407 
1408 /*
1409  * Prepare a CPU for idle from an RCU perspective.  The first major task
1410  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1411  * The second major task is to check to see if a non-lazy callback has
1412  * arrived at a CPU that previously had only lazy callbacks.  The third
1413  * major task is to accelerate (that is, assign grace-period numbers to)
1414  * any recently arrived callbacks.
1415  *
1416  * The caller must have disabled interrupts.
1417  */
1418 static void rcu_prepare_for_idle(void)
1419 {
1420 	bool needwake;
1421 	struct rcu_data *rdp;
1422 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423 	struct rcu_node *rnp;
1424 	struct rcu_state *rsp;
1425 	int tne;
1426 
1427 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1428 	    rcu_is_nocb_cpu(smp_processor_id()))
1429 		return;
1430 
1431 	/* Handle nohz enablement switches conservatively. */
1432 	tne = READ_ONCE(tick_nohz_active);
1433 	if (tne != rdtp->tick_nohz_enabled_snap) {
1434 		if (rcu_cpu_has_callbacks(NULL))
1435 			invoke_rcu_core(); /* force nohz to see update. */
1436 		rdtp->tick_nohz_enabled_snap = tne;
1437 		return;
1438 	}
1439 	if (!tne)
1440 		return;
1441 
1442 	/*
1443 	 * If a non-lazy callback arrived at a CPU having only lazy
1444 	 * callbacks, invoke RCU core for the side-effect of recalculating
1445 	 * idle duration on re-entry to idle.
1446 	 */
1447 	if (rdtp->all_lazy &&
1448 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1449 		rdtp->all_lazy = false;
1450 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1451 		invoke_rcu_core();
1452 		return;
1453 	}
1454 
1455 	/*
1456 	 * If we have not yet accelerated this jiffy, accelerate all
1457 	 * callbacks on this CPU.
1458 	 */
1459 	if (rdtp->last_accelerate == jiffies)
1460 		return;
1461 	rdtp->last_accelerate = jiffies;
1462 	for_each_rcu_flavor(rsp) {
1463 		rdp = this_cpu_ptr(rsp->rda);
1464 		if (rcu_segcblist_pend_cbs(&rdp->cblist))
1465 			continue;
1466 		rnp = rdp->mynode;
1467 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1468 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1469 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1470 		if (needwake)
1471 			rcu_gp_kthread_wake(rsp);
1472 	}
1473 }
1474 
1475 /*
1476  * Clean up for exit from idle.  Attempt to advance callbacks based on
1477  * any grace periods that elapsed while the CPU was idle, and if any
1478  * callbacks are now ready to invoke, initiate invocation.
1479  */
1480 static void rcu_cleanup_after_idle(void)
1481 {
1482 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1483 	    rcu_is_nocb_cpu(smp_processor_id()))
1484 		return;
1485 	if (rcu_try_advance_all_cbs())
1486 		invoke_rcu_core();
1487 }
1488 
1489 /*
1490  * Keep a running count of the number of non-lazy callbacks posted
1491  * on this CPU.  This running counter (which is never decremented) allows
1492  * rcu_prepare_for_idle() to detect when something out of the idle loop
1493  * posts a callback, even if an equal number of callbacks are invoked.
1494  * Of course, callbacks should only be posted from within a trace event
1495  * designed to be called from idle or from within RCU_NONIDLE().
1496  */
1497 static void rcu_idle_count_callbacks_posted(void)
1498 {
1499 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1500 }
1501 
1502 /*
1503  * Data for flushing lazy RCU callbacks at OOM time.
1504  */
1505 static atomic_t oom_callback_count;
1506 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1507 
1508 /*
1509  * RCU OOM callback -- decrement the outstanding count and deliver the
1510  * wake-up if we are the last one.
1511  */
1512 static void rcu_oom_callback(struct rcu_head *rhp)
1513 {
1514 	if (atomic_dec_and_test(&oom_callback_count))
1515 		wake_up(&oom_callback_wq);
1516 }
1517 
1518 /*
1519  * Post an rcu_oom_notify callback on the current CPU if it has at
1520  * least one lazy callback.  This will unnecessarily post callbacks
1521  * to CPUs that already have a non-lazy callback at the end of their
1522  * callback list, but this is an infrequent operation, so accept some
1523  * extra overhead to keep things simple.
1524  */
1525 static void rcu_oom_notify_cpu(void *unused)
1526 {
1527 	struct rcu_state *rsp;
1528 	struct rcu_data *rdp;
1529 
1530 	for_each_rcu_flavor(rsp) {
1531 		rdp = raw_cpu_ptr(rsp->rda);
1532 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1533 			atomic_inc(&oom_callback_count);
1534 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1535 		}
1536 	}
1537 }
1538 
1539 /*
1540  * If low on memory, ensure that each CPU has a non-lazy callback.
1541  * This will wake up CPUs that have only lazy callbacks, in turn
1542  * ensuring that they free up the corresponding memory in a timely manner.
1543  * Because an uncertain amount of memory will be freed in some uncertain
1544  * timeframe, we do not claim to have freed anything.
1545  */
1546 static int rcu_oom_notify(struct notifier_block *self,
1547 			  unsigned long notused, void *nfreed)
1548 {
1549 	int cpu;
1550 
1551 	/* Wait for callbacks from earlier instance to complete. */
1552 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1553 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1554 
1555 	/*
1556 	 * Prevent premature wakeup: ensure that all increments happen
1557 	 * before there is a chance of the counter reaching zero.
1558 	 */
1559 	atomic_set(&oom_callback_count, 1);
1560 
1561 	for_each_online_cpu(cpu) {
1562 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1563 		cond_resched_rcu_qs();
1564 	}
1565 
1566 	/* Unconditionally decrement: no need to wake ourselves up. */
1567 	atomic_dec(&oom_callback_count);
1568 
1569 	return NOTIFY_OK;
1570 }
1571 
1572 static struct notifier_block rcu_oom_nb = {
1573 	.notifier_call = rcu_oom_notify
1574 };
1575 
1576 static int __init rcu_register_oom_notifier(void)
1577 {
1578 	register_oom_notifier(&rcu_oom_nb);
1579 	return 0;
1580 }
1581 early_initcall(rcu_register_oom_notifier);
1582 
1583 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1584 
1585 #ifdef CONFIG_RCU_FAST_NO_HZ
1586 
1587 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1588 {
1589 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1590 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1591 
1592 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1593 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1594 		ulong2long(nlpd),
1595 		rdtp->all_lazy ? 'L' : '.',
1596 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1597 }
1598 
1599 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1600 
1601 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1602 {
1603 	*cp = '\0';
1604 }
1605 
1606 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1607 
1608 /* Initiate the stall-info list. */
1609 static void print_cpu_stall_info_begin(void)
1610 {
1611 	pr_cont("\n");
1612 }
1613 
1614 /*
1615  * Print out diagnostic information for the specified stalled CPU.
1616  *
1617  * If the specified CPU is aware of the current RCU grace period
1618  * (flavor specified by rsp), then print the number of scheduling
1619  * clock interrupts the CPU has taken during the time that it has
1620  * been aware.  Otherwise, print the number of RCU grace periods
1621  * that this CPU is ignorant of, for example, "1" if the CPU was
1622  * aware of the previous grace period.
1623  *
1624  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1625  */
1626 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1627 {
1628 	char fast_no_hz[72];
1629 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1630 	struct rcu_dynticks *rdtp = rdp->dynticks;
1631 	char *ticks_title;
1632 	unsigned long ticks_value;
1633 
1634 	if (rsp->gpnum == rdp->gpnum) {
1635 		ticks_title = "ticks this GP";
1636 		ticks_value = rdp->ticks_this_gp;
1637 	} else {
1638 		ticks_title = "GPs behind";
1639 		ticks_value = rsp->gpnum - rdp->gpnum;
1640 	}
1641 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1642 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1643 	       cpu,
1644 	       "O."[!!cpu_online(cpu)],
1645 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1646 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1647 	       ticks_value, ticks_title,
1648 	       rcu_dynticks_snap(rdtp) & 0xfff,
1649 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1650 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1651 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1652 	       fast_no_hz);
1653 }
1654 
1655 /* Terminate the stall-info list. */
1656 static void print_cpu_stall_info_end(void)
1657 {
1658 	pr_err("\t");
1659 }
1660 
1661 /* Zero ->ticks_this_gp for all flavors of RCU. */
1662 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1663 {
1664 	rdp->ticks_this_gp = 0;
1665 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1666 }
1667 
1668 /* Increment ->ticks_this_gp for all flavors of RCU. */
1669 static void increment_cpu_stall_ticks(void)
1670 {
1671 	struct rcu_state *rsp;
1672 
1673 	for_each_rcu_flavor(rsp)
1674 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1675 }
1676 
1677 #ifdef CONFIG_RCU_NOCB_CPU
1678 
1679 /*
1680  * Offload callback processing from the boot-time-specified set of CPUs
1681  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1682  * kthread created that pulls the callbacks from the corresponding CPU,
1683  * waits for a grace period to elapse, and invokes the callbacks.
1684  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1685  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1686  * has been specified, in which case each kthread actively polls its
1687  * CPU.  (Which isn't so great for energy efficiency, but which does
1688  * reduce RCU's overhead on that CPU.)
1689  *
1690  * This is intended to be used in conjunction with Frederic Weisbecker's
1691  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1692  * running CPU-bound user-mode computations.
1693  *
1694  * Offloading of callback processing could also in theory be used as
1695  * an energy-efficiency measure because CPUs with no RCU callbacks
1696  * queued are more aggressive about entering dyntick-idle mode.
1697  */
1698 
1699 
1700 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1701 static int __init rcu_nocb_setup(char *str)
1702 {
1703 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1704 	have_rcu_nocb_mask = true;
1705 	cpulist_parse(str, rcu_nocb_mask);
1706 	return 1;
1707 }
1708 __setup("rcu_nocbs=", rcu_nocb_setup);
1709 
1710 static int __init parse_rcu_nocb_poll(char *arg)
1711 {
1712 	rcu_nocb_poll = true;
1713 	return 0;
1714 }
1715 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1716 
1717 /*
1718  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1719  * grace period.
1720  */
1721 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1722 {
1723 	swake_up_all(sq);
1724 }
1725 
1726 /*
1727  * Set the root rcu_node structure's ->need_future_gp field
1728  * based on the sum of those of all rcu_node structures.  This does
1729  * double-count the root rcu_node structure's requests, but this
1730  * is necessary to handle the possibility of a rcu_nocb_kthread()
1731  * having awakened during the time that the rcu_node structures
1732  * were being updated for the end of the previous grace period.
1733  */
1734 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1735 {
1736 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1737 }
1738 
1739 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1740 {
1741 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1742 }
1743 
1744 static void rcu_init_one_nocb(struct rcu_node *rnp)
1745 {
1746 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1747 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1748 }
1749 
1750 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1751 /* Is the specified CPU a no-CBs CPU? */
1752 bool rcu_is_nocb_cpu(int cpu)
1753 {
1754 	if (have_rcu_nocb_mask)
1755 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1756 	return false;
1757 }
1758 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759 
1760 /*
1761  * Kick the leader kthread for this NOCB group.
1762  */
1763 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1764 {
1765 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1766 
1767 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1768 		return;
1769 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1770 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1771 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1772 		swake_up(&rdp_leader->nocb_wq);
1773 	}
1774 }
1775 
1776 /*
1777  * Does the specified CPU need an RCU callback for the specified flavor
1778  * of rcu_barrier()?
1779  */
1780 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1781 {
1782 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1783 	unsigned long ret;
1784 #ifdef CONFIG_PROVE_RCU
1785 	struct rcu_head *rhp;
1786 #endif /* #ifdef CONFIG_PROVE_RCU */
1787 
1788 	/*
1789 	 * Check count of all no-CBs callbacks awaiting invocation.
1790 	 * There needs to be a barrier before this function is called,
1791 	 * but associated with a prior determination that no more
1792 	 * callbacks would be posted.  In the worst case, the first
1793 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1794 	 * necessarily rely on this, not a substitute for the caller
1795 	 * getting the concurrency design right!).  There must also be
1796 	 * a barrier between the following load an posting of a callback
1797 	 * (if a callback is in fact needed).  This is associated with an
1798 	 * atomic_inc() in the caller.
1799 	 */
1800 	ret = atomic_long_read(&rdp->nocb_q_count);
1801 
1802 #ifdef CONFIG_PROVE_RCU
1803 	rhp = READ_ONCE(rdp->nocb_head);
1804 	if (!rhp)
1805 		rhp = READ_ONCE(rdp->nocb_gp_head);
1806 	if (!rhp)
1807 		rhp = READ_ONCE(rdp->nocb_follower_head);
1808 
1809 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1810 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1811 	    rcu_scheduler_fully_active) {
1812 		/* RCU callback enqueued before CPU first came online??? */
1813 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1814 		       cpu, rhp->func);
1815 		WARN_ON_ONCE(1);
1816 	}
1817 #endif /* #ifdef CONFIG_PROVE_RCU */
1818 
1819 	return !!ret;
1820 }
1821 
1822 /*
1823  * Enqueue the specified string of rcu_head structures onto the specified
1824  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1825  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1826  * counts are supplied by rhcount and rhcount_lazy.
1827  *
1828  * If warranted, also wake up the kthread servicing this CPUs queues.
1829  */
1830 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1831 				    struct rcu_head *rhp,
1832 				    struct rcu_head **rhtp,
1833 				    int rhcount, int rhcount_lazy,
1834 				    unsigned long flags)
1835 {
1836 	int len;
1837 	struct rcu_head **old_rhpp;
1838 	struct task_struct *t;
1839 
1840 	/* Enqueue the callback on the nocb list and update counts. */
1841 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1842 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1843 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1844 	WRITE_ONCE(*old_rhpp, rhp);
1845 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1846 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1847 
1848 	/* If we are not being polled and there is a kthread, awaken it ... */
1849 	t = READ_ONCE(rdp->nocb_kthread);
1850 	if (rcu_nocb_poll || !t) {
1851 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1852 				    TPS("WakeNotPoll"));
1853 		return;
1854 	}
1855 	len = atomic_long_read(&rdp->nocb_q_count);
1856 	if (old_rhpp == &rdp->nocb_head) {
1857 		if (!irqs_disabled_flags(flags)) {
1858 			/* ... if queue was empty ... */
1859 			wake_nocb_leader(rdp, false);
1860 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1861 					    TPS("WakeEmpty"));
1862 		} else {
1863 			WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE);
1864 			/* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1865 			smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1866 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1867 					    TPS("WakeEmptyIsDeferred"));
1868 		}
1869 		rdp->qlen_last_fqs_check = 0;
1870 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1871 		/* ... or if many callbacks queued. */
1872 		if (!irqs_disabled_flags(flags)) {
1873 			wake_nocb_leader(rdp, true);
1874 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1875 					    TPS("WakeOvf"));
1876 		} else {
1877 			WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_FORCE);
1878 			/* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1879 			smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1880 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1881 					    TPS("WakeOvfIsDeferred"));
1882 		}
1883 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1884 	} else {
1885 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1886 	}
1887 	return;
1888 }
1889 
1890 /*
1891  * This is a helper for __call_rcu(), which invokes this when the normal
1892  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1893  * function returns failure back to __call_rcu(), which can complain
1894  * appropriately.
1895  *
1896  * Otherwise, this function queues the callback where the corresponding
1897  * "rcuo" kthread can find it.
1898  */
1899 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1900 			    bool lazy, unsigned long flags)
1901 {
1902 
1903 	if (!rcu_is_nocb_cpu(rdp->cpu))
1904 		return false;
1905 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1906 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1907 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1908 					 (unsigned long)rhp->func,
1909 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1910 					 -atomic_long_read(&rdp->nocb_q_count));
1911 	else
1912 		trace_rcu_callback(rdp->rsp->name, rhp,
1913 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1914 				   -atomic_long_read(&rdp->nocb_q_count));
1915 
1916 	/*
1917 	 * If called from an extended quiescent state with interrupts
1918 	 * disabled, invoke the RCU core in order to allow the idle-entry
1919 	 * deferred-wakeup check to function.
1920 	 */
1921 	if (irqs_disabled_flags(flags) &&
1922 	    !rcu_is_watching() &&
1923 	    cpu_online(smp_processor_id()))
1924 		invoke_rcu_core();
1925 
1926 	return true;
1927 }
1928 
1929 /*
1930  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1931  * not a no-CBs CPU.
1932  */
1933 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1934 						     struct rcu_data *rdp,
1935 						     unsigned long flags)
1936 {
1937 	long ql = rsp->orphan_done.len;
1938 	long qll = rsp->orphan_done.len_lazy;
1939 
1940 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1941 	if (!rcu_is_nocb_cpu(smp_processor_id()))
1942 		return false;
1943 
1944 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1945 	if (rsp->orphan_done.head) {
1946 		__call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done),
1947 					rcu_cblist_tail(&rsp->orphan_done),
1948 					ql, qll, flags);
1949 	}
1950 	if (rsp->orphan_pend.head) {
1951 		__call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend),
1952 					rcu_cblist_tail(&rsp->orphan_pend),
1953 					ql, qll, flags);
1954 	}
1955 	rcu_cblist_init(&rsp->orphan_done);
1956 	rcu_cblist_init(&rsp->orphan_pend);
1957 	return true;
1958 }
1959 
1960 /*
1961  * If necessary, kick off a new grace period, and either way wait
1962  * for a subsequent grace period to complete.
1963  */
1964 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1965 {
1966 	unsigned long c;
1967 	bool d;
1968 	unsigned long flags;
1969 	bool needwake;
1970 	struct rcu_node *rnp = rdp->mynode;
1971 
1972 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1973 	needwake = rcu_start_future_gp(rnp, rdp, &c);
1974 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975 	if (needwake)
1976 		rcu_gp_kthread_wake(rdp->rsp);
1977 
1978 	/*
1979 	 * Wait for the grace period.  Do so interruptibly to avoid messing
1980 	 * up the load average.
1981 	 */
1982 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1983 	for (;;) {
1984 		swait_event_interruptible(
1985 			rnp->nocb_gp_wq[c & 0x1],
1986 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1987 		if (likely(d))
1988 			break;
1989 		WARN_ON(signal_pending(current));
1990 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1991 	}
1992 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1993 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
1994 }
1995 
1996 /*
1997  * Leaders come here to wait for additional callbacks to show up.
1998  * This function does not return until callbacks appear.
1999  */
2000 static void nocb_leader_wait(struct rcu_data *my_rdp)
2001 {
2002 	bool firsttime = true;
2003 	bool gotcbs;
2004 	struct rcu_data *rdp;
2005 	struct rcu_head **tail;
2006 
2007 wait_again:
2008 
2009 	/* Wait for callbacks to appear. */
2010 	if (!rcu_nocb_poll) {
2011 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2012 		swait_event_interruptible(my_rdp->nocb_wq,
2013 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2014 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2015 	} else if (firsttime) {
2016 		firsttime = false; /* Don't drown trace log with "Poll"! */
2017 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2018 	}
2019 
2020 	/*
2021 	 * Each pass through the following loop checks a follower for CBs.
2022 	 * We are our own first follower.  Any CBs found are moved to
2023 	 * nocb_gp_head, where they await a grace period.
2024 	 */
2025 	gotcbs = false;
2026 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2027 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2028 		if (!rdp->nocb_gp_head)
2029 			continue;  /* No CBs here, try next follower. */
2030 
2031 		/* Move callbacks to wait-for-GP list, which is empty. */
2032 		WRITE_ONCE(rdp->nocb_head, NULL);
2033 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2034 		gotcbs = true;
2035 	}
2036 
2037 	/*
2038 	 * If there were no callbacks, sleep a bit, rescan after a
2039 	 * memory barrier, and go retry.
2040 	 */
2041 	if (unlikely(!gotcbs)) {
2042 		if (!rcu_nocb_poll)
2043 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2044 					    "WokeEmpty");
2045 		WARN_ON(signal_pending(current));
2046 		schedule_timeout_interruptible(1);
2047 
2048 		/* Rescan in case we were a victim of memory ordering. */
2049 		my_rdp->nocb_leader_sleep = true;
2050 		smp_mb();  /* Ensure _sleep true before scan. */
2051 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2052 			if (READ_ONCE(rdp->nocb_head)) {
2053 				/* Found CB, so short-circuit next wait. */
2054 				my_rdp->nocb_leader_sleep = false;
2055 				break;
2056 			}
2057 		goto wait_again;
2058 	}
2059 
2060 	/* Wait for one grace period. */
2061 	rcu_nocb_wait_gp(my_rdp);
2062 
2063 	/*
2064 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2065 	 * We set it now, but recheck for new callbacks while
2066 	 * traversing our follower list.
2067 	 */
2068 	my_rdp->nocb_leader_sleep = true;
2069 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2070 
2071 	/* Each pass through the following loop wakes a follower, if needed. */
2072 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2073 		if (READ_ONCE(rdp->nocb_head))
2074 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2075 		if (!rdp->nocb_gp_head)
2076 			continue; /* No CBs, so no need to wake follower. */
2077 
2078 		/* Append callbacks to follower's "done" list. */
2079 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2080 		*tail = rdp->nocb_gp_head;
2081 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2082 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2083 			/*
2084 			 * List was empty, wake up the follower.
2085 			 * Memory barriers supplied by atomic_long_add().
2086 			 */
2087 			swake_up(&rdp->nocb_wq);
2088 		}
2089 	}
2090 
2091 	/* If we (the leader) don't have CBs, go wait some more. */
2092 	if (!my_rdp->nocb_follower_head)
2093 		goto wait_again;
2094 }
2095 
2096 /*
2097  * Followers come here to wait for additional callbacks to show up.
2098  * This function does not return until callbacks appear.
2099  */
2100 static void nocb_follower_wait(struct rcu_data *rdp)
2101 {
2102 	bool firsttime = true;
2103 
2104 	for (;;) {
2105 		if (!rcu_nocb_poll) {
2106 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2107 					    "FollowerSleep");
2108 			swait_event_interruptible(rdp->nocb_wq,
2109 						 READ_ONCE(rdp->nocb_follower_head));
2110 		} else if (firsttime) {
2111 			/* Don't drown trace log with "Poll"! */
2112 			firsttime = false;
2113 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2114 		}
2115 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2116 			/* ^^^ Ensure CB invocation follows _head test. */
2117 			return;
2118 		}
2119 		if (!rcu_nocb_poll)
2120 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 					    "WokeEmpty");
2122 		WARN_ON(signal_pending(current));
2123 		schedule_timeout_interruptible(1);
2124 	}
2125 }
2126 
2127 /*
2128  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2129  * callbacks queued by the corresponding no-CBs CPU, however, there is
2130  * an optional leader-follower relationship so that the grace-period
2131  * kthreads don't have to do quite so many wakeups.
2132  */
2133 static int rcu_nocb_kthread(void *arg)
2134 {
2135 	int c, cl;
2136 	struct rcu_head *list;
2137 	struct rcu_head *next;
2138 	struct rcu_head **tail;
2139 	struct rcu_data *rdp = arg;
2140 
2141 	/* Each pass through this loop invokes one batch of callbacks */
2142 	for (;;) {
2143 		/* Wait for callbacks. */
2144 		if (rdp->nocb_leader == rdp)
2145 			nocb_leader_wait(rdp);
2146 		else
2147 			nocb_follower_wait(rdp);
2148 
2149 		/* Pull the ready-to-invoke callbacks onto local list. */
2150 		list = READ_ONCE(rdp->nocb_follower_head);
2151 		BUG_ON(!list);
2152 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2153 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2154 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2155 
2156 		/* Each pass through the following loop invokes a callback. */
2157 		trace_rcu_batch_start(rdp->rsp->name,
2158 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2159 				      atomic_long_read(&rdp->nocb_q_count), -1);
2160 		c = cl = 0;
2161 		while (list) {
2162 			next = list->next;
2163 			/* Wait for enqueuing to complete, if needed. */
2164 			while (next == NULL && &list->next != tail) {
2165 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2166 						    TPS("WaitQueue"));
2167 				schedule_timeout_interruptible(1);
2168 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2169 						    TPS("WokeQueue"));
2170 				next = list->next;
2171 			}
2172 			debug_rcu_head_unqueue(list);
2173 			local_bh_disable();
2174 			if (__rcu_reclaim(rdp->rsp->name, list))
2175 				cl++;
2176 			c++;
2177 			local_bh_enable();
2178 			cond_resched_rcu_qs();
2179 			list = next;
2180 		}
2181 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2182 		smp_mb__before_atomic();  /* _add after CB invocation. */
2183 		atomic_long_add(-c, &rdp->nocb_q_count);
2184 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2185 		rdp->n_nocbs_invoked += c;
2186 	}
2187 	return 0;
2188 }
2189 
2190 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2191 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2192 {
2193 	return READ_ONCE(rdp->nocb_defer_wakeup);
2194 }
2195 
2196 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2197 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2198 {
2199 	int ndw;
2200 
2201 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2202 		return;
2203 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2204 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2205 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2206 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2207 }
2208 
2209 void __init rcu_init_nohz(void)
2210 {
2211 	int cpu;
2212 	bool need_rcu_nocb_mask = true;
2213 	struct rcu_state *rsp;
2214 
2215 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2216 	need_rcu_nocb_mask = false;
2217 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2218 
2219 #if defined(CONFIG_NO_HZ_FULL)
2220 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2221 		need_rcu_nocb_mask = true;
2222 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2223 
2224 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2225 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2226 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2227 			return;
2228 		}
2229 		have_rcu_nocb_mask = true;
2230 	}
2231 	if (!have_rcu_nocb_mask)
2232 		return;
2233 
2234 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2235 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2236 	cpumask_set_cpu(0, rcu_nocb_mask);
2237 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2238 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2239 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2240 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2241 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2242 #if defined(CONFIG_NO_HZ_FULL)
2243 	if (tick_nohz_full_running)
2244 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2245 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2246 
2247 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2248 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2249 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2250 			    rcu_nocb_mask);
2251 	}
2252 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2253 		cpumask_pr_args(rcu_nocb_mask));
2254 	if (rcu_nocb_poll)
2255 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2256 
2257 	for_each_rcu_flavor(rsp) {
2258 		for_each_cpu(cpu, rcu_nocb_mask)
2259 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2260 		rcu_organize_nocb_kthreads(rsp);
2261 	}
2262 }
2263 
2264 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2265 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2266 {
2267 	rdp->nocb_tail = &rdp->nocb_head;
2268 	init_swait_queue_head(&rdp->nocb_wq);
2269 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2270 }
2271 
2272 /*
2273  * If the specified CPU is a no-CBs CPU that does not already have its
2274  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2275  * brought online out of order, this can require re-organizing the
2276  * leader-follower relationships.
2277  */
2278 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2279 {
2280 	struct rcu_data *rdp;
2281 	struct rcu_data *rdp_last;
2282 	struct rcu_data *rdp_old_leader;
2283 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2284 	struct task_struct *t;
2285 
2286 	/*
2287 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2288 	 * then nothing to do.
2289 	 */
2290 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2291 		return;
2292 
2293 	/* If we didn't spawn the leader first, reorganize! */
2294 	rdp_old_leader = rdp_spawn->nocb_leader;
2295 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2296 		rdp_last = NULL;
2297 		rdp = rdp_old_leader;
2298 		do {
2299 			rdp->nocb_leader = rdp_spawn;
2300 			if (rdp_last && rdp != rdp_spawn)
2301 				rdp_last->nocb_next_follower = rdp;
2302 			if (rdp == rdp_spawn) {
2303 				rdp = rdp->nocb_next_follower;
2304 			} else {
2305 				rdp_last = rdp;
2306 				rdp = rdp->nocb_next_follower;
2307 				rdp_last->nocb_next_follower = NULL;
2308 			}
2309 		} while (rdp);
2310 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2311 	}
2312 
2313 	/* Spawn the kthread for this CPU and RCU flavor. */
2314 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2315 			"rcuo%c/%d", rsp->abbr, cpu);
2316 	BUG_ON(IS_ERR(t));
2317 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2318 }
2319 
2320 /*
2321  * If the specified CPU is a no-CBs CPU that does not already have its
2322  * rcuo kthreads, spawn them.
2323  */
2324 static void rcu_spawn_all_nocb_kthreads(int cpu)
2325 {
2326 	struct rcu_state *rsp;
2327 
2328 	if (rcu_scheduler_fully_active)
2329 		for_each_rcu_flavor(rsp)
2330 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2331 }
2332 
2333 /*
2334  * Once the scheduler is running, spawn rcuo kthreads for all online
2335  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2336  * non-boot CPUs come online -- if this changes, we will need to add
2337  * some mutual exclusion.
2338  */
2339 static void __init rcu_spawn_nocb_kthreads(void)
2340 {
2341 	int cpu;
2342 
2343 	for_each_online_cpu(cpu)
2344 		rcu_spawn_all_nocb_kthreads(cpu);
2345 }
2346 
2347 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2348 static int rcu_nocb_leader_stride = -1;
2349 module_param(rcu_nocb_leader_stride, int, 0444);
2350 
2351 /*
2352  * Initialize leader-follower relationships for all no-CBs CPU.
2353  */
2354 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2355 {
2356 	int cpu;
2357 	int ls = rcu_nocb_leader_stride;
2358 	int nl = 0;  /* Next leader. */
2359 	struct rcu_data *rdp;
2360 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2361 	struct rcu_data *rdp_prev = NULL;
2362 
2363 	if (!have_rcu_nocb_mask)
2364 		return;
2365 	if (ls == -1) {
2366 		ls = int_sqrt(nr_cpu_ids);
2367 		rcu_nocb_leader_stride = ls;
2368 	}
2369 
2370 	/*
2371 	 * Each pass through this loop sets up one rcu_data structure.
2372 	 * Should the corresponding CPU come online in the future, then
2373 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2374 	 */
2375 	for_each_cpu(cpu, rcu_nocb_mask) {
2376 		rdp = per_cpu_ptr(rsp->rda, cpu);
2377 		if (rdp->cpu >= nl) {
2378 			/* New leader, set up for followers & next leader. */
2379 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2380 			rdp->nocb_leader = rdp;
2381 			rdp_leader = rdp;
2382 		} else {
2383 			/* Another follower, link to previous leader. */
2384 			rdp->nocb_leader = rdp_leader;
2385 			rdp_prev->nocb_next_follower = rdp;
2386 		}
2387 		rdp_prev = rdp;
2388 	}
2389 }
2390 
2391 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2392 static bool init_nocb_callback_list(struct rcu_data *rdp)
2393 {
2394 	if (!rcu_is_nocb_cpu(rdp->cpu))
2395 		return false;
2396 
2397 	/* If there are early-boot callbacks, move them to nocb lists. */
2398 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2399 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2400 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2401 		atomic_long_set(&rdp->nocb_q_count,
2402 				rcu_segcblist_n_cbs(&rdp->cblist));
2403 		atomic_long_set(&rdp->nocb_q_count_lazy,
2404 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2405 		rcu_segcblist_init(&rdp->cblist);
2406 	}
2407 	rcu_segcblist_disable(&rdp->cblist);
2408 	return true;
2409 }
2410 
2411 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2412 
2413 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2414 {
2415 	WARN_ON_ONCE(1); /* Should be dead code. */
2416 	return false;
2417 }
2418 
2419 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2420 {
2421 }
2422 
2423 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2424 {
2425 }
2426 
2427 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2428 {
2429 	return NULL;
2430 }
2431 
2432 static void rcu_init_one_nocb(struct rcu_node *rnp)
2433 {
2434 }
2435 
2436 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2437 			    bool lazy, unsigned long flags)
2438 {
2439 	return false;
2440 }
2441 
2442 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2443 						     struct rcu_data *rdp,
2444 						     unsigned long flags)
2445 {
2446 	return false;
2447 }
2448 
2449 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2450 {
2451 }
2452 
2453 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2454 {
2455 	return false;
2456 }
2457 
2458 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2459 {
2460 }
2461 
2462 static void rcu_spawn_all_nocb_kthreads(int cpu)
2463 {
2464 }
2465 
2466 static void __init rcu_spawn_nocb_kthreads(void)
2467 {
2468 }
2469 
2470 static bool init_nocb_callback_list(struct rcu_data *rdp)
2471 {
2472 	return false;
2473 }
2474 
2475 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2476 
2477 /*
2478  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2479  * arbitrarily long period of time with the scheduling-clock tick turned
2480  * off.  RCU will be paying attention to this CPU because it is in the
2481  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2482  * machine because the scheduling-clock tick has been disabled.  Therefore,
2483  * if an adaptive-ticks CPU is failing to respond to the current grace
2484  * period and has not be idle from an RCU perspective, kick it.
2485  */
2486 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2487 {
2488 #ifdef CONFIG_NO_HZ_FULL
2489 	if (tick_nohz_full_cpu(cpu))
2490 		smp_send_reschedule(cpu);
2491 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2492 }
2493 
2494 
2495 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2496 
2497 static int full_sysidle_state;		/* Current system-idle state. */
2498 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2499 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2500 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2501 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2502 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2503 
2504 /*
2505  * Invoked to note exit from irq or task transition to idle.  Note that
2506  * usermode execution does -not- count as idle here!  After all, we want
2507  * to detect full-system idle states, not RCU quiescent states and grace
2508  * periods.  The caller must have disabled interrupts.
2509  */
2510 static void rcu_sysidle_enter(int irq)
2511 {
2512 	unsigned long j;
2513 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2514 
2515 	/* If there are no nohz_full= CPUs, no need to track this. */
2516 	if (!tick_nohz_full_enabled())
2517 		return;
2518 
2519 	/* Adjust nesting, check for fully idle. */
2520 	if (irq) {
2521 		rdtp->dynticks_idle_nesting--;
2522 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2523 		if (rdtp->dynticks_idle_nesting != 0)
2524 			return;  /* Still not fully idle. */
2525 	} else {
2526 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2527 		    DYNTICK_TASK_NEST_VALUE) {
2528 			rdtp->dynticks_idle_nesting = 0;
2529 		} else {
2530 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2531 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2532 			return;  /* Still not fully idle. */
2533 		}
2534 	}
2535 
2536 	/* Record start of fully idle period. */
2537 	j = jiffies;
2538 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2539 	smp_mb__before_atomic();
2540 	atomic_inc(&rdtp->dynticks_idle);
2541 	smp_mb__after_atomic();
2542 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2543 }
2544 
2545 /*
2546  * Unconditionally force exit from full system-idle state.  This is
2547  * invoked when a normal CPU exits idle, but must be called separately
2548  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2549  * is that the timekeeping CPU is permitted to take scheduling-clock
2550  * interrupts while the system is in system-idle state, and of course
2551  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2552  * interrupt from any other type of interrupt.
2553  */
2554 void rcu_sysidle_force_exit(void)
2555 {
2556 	int oldstate = READ_ONCE(full_sysidle_state);
2557 	int newoldstate;
2558 
2559 	/*
2560 	 * Each pass through the following loop attempts to exit full
2561 	 * system-idle state.  If contention proves to be a problem,
2562 	 * a trylock-based contention tree could be used here.
2563 	 */
2564 	while (oldstate > RCU_SYSIDLE_SHORT) {
2565 		newoldstate = cmpxchg(&full_sysidle_state,
2566 				      oldstate, RCU_SYSIDLE_NOT);
2567 		if (oldstate == newoldstate &&
2568 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2569 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2570 			return; /* We cleared it, done! */
2571 		}
2572 		oldstate = newoldstate;
2573 	}
2574 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2575 }
2576 
2577 /*
2578  * Invoked to note entry to irq or task transition from idle.  Note that
2579  * usermode execution does -not- count as idle here!  The caller must
2580  * have disabled interrupts.
2581  */
2582 static void rcu_sysidle_exit(int irq)
2583 {
2584 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2585 
2586 	/* If there are no nohz_full= CPUs, no need to track this. */
2587 	if (!tick_nohz_full_enabled())
2588 		return;
2589 
2590 	/* Adjust nesting, check for already non-idle. */
2591 	if (irq) {
2592 		rdtp->dynticks_idle_nesting++;
2593 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2594 		if (rdtp->dynticks_idle_nesting != 1)
2595 			return; /* Already non-idle. */
2596 	} else {
2597 		/*
2598 		 * Allow for irq misnesting.  Yes, it really is possible
2599 		 * to enter an irq handler then never leave it, and maybe
2600 		 * also vice versa.  Handle both possibilities.
2601 		 */
2602 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2603 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2604 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2605 			return; /* Already non-idle. */
2606 		} else {
2607 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2608 		}
2609 	}
2610 
2611 	/* Record end of idle period. */
2612 	smp_mb__before_atomic();
2613 	atomic_inc(&rdtp->dynticks_idle);
2614 	smp_mb__after_atomic();
2615 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2616 
2617 	/*
2618 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2619 	 * during a system-idle state.  This must be the case, because
2620 	 * the timekeeping CPU has to take scheduling-clock interrupts
2621 	 * during the time that the system is transitioning to full
2622 	 * system-idle state.  This means that the timekeeping CPU must
2623 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2624 	 * more than take a scheduling-clock interrupt.
2625 	 */
2626 	if (smp_processor_id() == tick_do_timer_cpu)
2627 		return;
2628 
2629 	/* Update system-idle state: We are clearly no longer fully idle! */
2630 	rcu_sysidle_force_exit();
2631 }
2632 
2633 /*
2634  * Check to see if the current CPU is idle.  Note that usermode execution
2635  * does not count as idle.  The caller must have disabled interrupts,
2636  * and must be running on tick_do_timer_cpu.
2637  */
2638 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2639 				  unsigned long *maxj)
2640 {
2641 	int cur;
2642 	unsigned long j;
2643 	struct rcu_dynticks *rdtp = rdp->dynticks;
2644 
2645 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2646 	if (!tick_nohz_full_enabled())
2647 		return;
2648 
2649 	/*
2650 	 * If some other CPU has already reported non-idle, if this is
2651 	 * not the flavor of RCU that tracks sysidle state, or if this
2652 	 * is an offline or the timekeeping CPU, nothing to do.
2653 	 */
2654 	if (!*isidle || rdp->rsp != rcu_state_p ||
2655 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2656 		return;
2657 	/* Verify affinity of current kthread. */
2658 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2659 
2660 	/* Pick up current idle and NMI-nesting counter and check. */
2661 	cur = atomic_read(&rdtp->dynticks_idle);
2662 	if (cur & 0x1) {
2663 		*isidle = false; /* We are not idle! */
2664 		return;
2665 	}
2666 	smp_mb(); /* Read counters before timestamps. */
2667 
2668 	/* Pick up timestamps. */
2669 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2670 	/* If this CPU entered idle more recently, update maxj timestamp. */
2671 	if (ULONG_CMP_LT(*maxj, j))
2672 		*maxj = j;
2673 }
2674 
2675 /*
2676  * Is this the flavor of RCU that is handling full-system idle?
2677  */
2678 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2679 {
2680 	return rsp == rcu_state_p;
2681 }
2682 
2683 /*
2684  * Return a delay in jiffies based on the number of CPUs, rcu_node
2685  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2686  * systems more time to transition to full-idle state in order to
2687  * avoid the cache thrashing that otherwise occur on the state variable.
2688  * Really small systems (less than a couple of tens of CPUs) should
2689  * instead use a single global atomically incremented counter, and later
2690  * versions of this will automatically reconfigure themselves accordingly.
2691  */
2692 static unsigned long rcu_sysidle_delay(void)
2693 {
2694 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2695 		return 0;
2696 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2697 }
2698 
2699 /*
2700  * Advance the full-system-idle state.  This is invoked when all of
2701  * the non-timekeeping CPUs are idle.
2702  */
2703 static void rcu_sysidle(unsigned long j)
2704 {
2705 	/* Check the current state. */
2706 	switch (READ_ONCE(full_sysidle_state)) {
2707 	case RCU_SYSIDLE_NOT:
2708 
2709 		/* First time all are idle, so note a short idle period. */
2710 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2711 		break;
2712 
2713 	case RCU_SYSIDLE_SHORT:
2714 
2715 		/*
2716 		 * Idle for a bit, time to advance to next state?
2717 		 * cmpxchg failure means race with non-idle, let them win.
2718 		 */
2719 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2720 			(void)cmpxchg(&full_sysidle_state,
2721 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2722 		break;
2723 
2724 	case RCU_SYSIDLE_LONG:
2725 
2726 		/*
2727 		 * Do an additional check pass before advancing to full.
2728 		 * cmpxchg failure means race with non-idle, let them win.
2729 		 */
2730 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2731 			(void)cmpxchg(&full_sysidle_state,
2732 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2733 		break;
2734 
2735 	default:
2736 		break;
2737 	}
2738 }
2739 
2740 /*
2741  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2742  * back to the beginning.
2743  */
2744 static void rcu_sysidle_cancel(void)
2745 {
2746 	smp_mb();
2747 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2748 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2749 }
2750 
2751 /*
2752  * Update the sysidle state based on the results of a force-quiescent-state
2753  * scan of the CPUs' dyntick-idle state.
2754  */
2755 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2756 			       unsigned long maxj, bool gpkt)
2757 {
2758 	if (rsp != rcu_state_p)
2759 		return;  /* Wrong flavor, ignore. */
2760 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2761 		return;  /* Running state machine from timekeeping CPU. */
2762 	if (isidle)
2763 		rcu_sysidle(maxj);    /* More idle! */
2764 	else
2765 		rcu_sysidle_cancel(); /* Idle is over. */
2766 }
2767 
2768 /*
2769  * Wrapper for rcu_sysidle_report() when called from the grace-period
2770  * kthread's context.
2771  */
2772 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2773 				  unsigned long maxj)
2774 {
2775 	/* If there are no nohz_full= CPUs, no need to track this. */
2776 	if (!tick_nohz_full_enabled())
2777 		return;
2778 
2779 	rcu_sysidle_report(rsp, isidle, maxj, true);
2780 }
2781 
2782 /* Callback and function for forcing an RCU grace period. */
2783 struct rcu_sysidle_head {
2784 	struct rcu_head rh;
2785 	int inuse;
2786 };
2787 
2788 static void rcu_sysidle_cb(struct rcu_head *rhp)
2789 {
2790 	struct rcu_sysidle_head *rshp;
2791 
2792 	/*
2793 	 * The following memory barrier is needed to replace the
2794 	 * memory barriers that would normally be in the memory
2795 	 * allocator.
2796 	 */
2797 	smp_mb();  /* grace period precedes setting inuse. */
2798 
2799 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2800 	WRITE_ONCE(rshp->inuse, 0);
2801 }
2802 
2803 /*
2804  * Check to see if the system is fully idle, other than the timekeeping CPU.
2805  * The caller must have disabled interrupts.  This is not intended to be
2806  * called unless tick_nohz_full_enabled().
2807  */
2808 bool rcu_sys_is_idle(void)
2809 {
2810 	static struct rcu_sysidle_head rsh;
2811 	int rss = READ_ONCE(full_sysidle_state);
2812 
2813 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2814 		return false;
2815 
2816 	/* Handle small-system case by doing a full scan of CPUs. */
2817 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2818 		int oldrss = rss - 1;
2819 
2820 		/*
2821 		 * One pass to advance to each state up to _FULL.
2822 		 * Give up if any pass fails to advance the state.
2823 		 */
2824 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2825 			int cpu;
2826 			bool isidle = true;
2827 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2828 			struct rcu_data *rdp;
2829 
2830 			/* Scan all the CPUs looking for nonidle CPUs. */
2831 			for_each_possible_cpu(cpu) {
2832 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2833 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2834 				if (!isidle)
2835 					break;
2836 			}
2837 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2838 			oldrss = rss;
2839 			rss = READ_ONCE(full_sysidle_state);
2840 		}
2841 	}
2842 
2843 	/* If this is the first observation of an idle period, record it. */
2844 	if (rss == RCU_SYSIDLE_FULL) {
2845 		rss = cmpxchg(&full_sysidle_state,
2846 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2847 		return rss == RCU_SYSIDLE_FULL;
2848 	}
2849 
2850 	smp_mb(); /* ensure rss load happens before later caller actions. */
2851 
2852 	/* If already fully idle, tell the caller (in case of races). */
2853 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2854 		return true;
2855 
2856 	/*
2857 	 * If we aren't there yet, and a grace period is not in flight,
2858 	 * initiate a grace period.  Either way, tell the caller that
2859 	 * we are not there yet.  We use an xchg() rather than an assignment
2860 	 * to make up for the memory barriers that would otherwise be
2861 	 * provided by the memory allocator.
2862 	 */
2863 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2864 	    !rcu_gp_in_progress(rcu_state_p) &&
2865 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2866 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2867 	return false;
2868 }
2869 
2870 /*
2871  * Initialize dynticks sysidle state for CPUs coming online.
2872  */
2873 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2874 {
2875 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2876 }
2877 
2878 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2879 
2880 static void rcu_sysidle_enter(int irq)
2881 {
2882 }
2883 
2884 static void rcu_sysidle_exit(int irq)
2885 {
2886 }
2887 
2888 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2889 				  unsigned long *maxj)
2890 {
2891 }
2892 
2893 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2894 {
2895 	return false;
2896 }
2897 
2898 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2899 				  unsigned long maxj)
2900 {
2901 }
2902 
2903 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2904 {
2905 }
2906 
2907 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2908 
2909 /*
2910  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2911  * grace-period kthread will do force_quiescent_state() processing?
2912  * The idea is to avoid waking up RCU core processing on such a
2913  * CPU unless the grace period has extended for too long.
2914  *
2915  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2916  * CONFIG_RCU_NOCB_CPU CPUs.
2917  */
2918 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2919 {
2920 #ifdef CONFIG_NO_HZ_FULL
2921 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2922 	    (!rcu_gp_in_progress(rsp) ||
2923 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2924 		return true;
2925 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2926 	return false;
2927 }
2928 
2929 /*
2930  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2931  * timekeeping CPU.
2932  */
2933 static void rcu_bind_gp_kthread(void)
2934 {
2935 	int __maybe_unused cpu;
2936 
2937 	if (!tick_nohz_full_enabled())
2938 		return;
2939 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2940 	cpu = tick_do_timer_cpu;
2941 	if (cpu >= 0 && cpu < nr_cpu_ids)
2942 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2943 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2944 	housekeeping_affine(current);
2945 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2946 }
2947 
2948 /* Record the current task on dyntick-idle entry. */
2949 static void rcu_dynticks_task_enter(void)
2950 {
2951 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2952 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2953 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2954 }
2955 
2956 /* Record no current task on dyntick-idle exit. */
2957 static void rcu_dynticks_task_exit(void)
2958 {
2959 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2960 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2961 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2962 }
2963