1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <uapi/linux/sched/types.h> 33 #include "../time/tick-internal.h" 34 35 #ifdef CONFIG_RCU_BOOST 36 37 #include "../locking/rtmutex_common.h" 38 39 /* 40 * Control variables for per-CPU and per-rcu_node kthreads. These 41 * handle all flavors of RCU. 42 */ 43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 46 DEFINE_PER_CPU(char, rcu_cpu_has_work); 47 48 #else /* #ifdef CONFIG_RCU_BOOST */ 49 50 /* 51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 52 * all uses are in dead code. Provide a definition to keep the compiler 53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 54 * This probably needs to be excluded from -rt builds. 55 */ 56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 57 58 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 59 60 #ifdef CONFIG_RCU_NOCB_CPU 61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 62 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 63 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 65 66 /* 67 * Check the RCU kernel configuration parameters and print informative 68 * messages about anything out of the ordinary. 69 */ 70 static void __init rcu_bootup_announce_oddness(void) 71 { 72 if (IS_ENABLED(CONFIG_RCU_TRACE)) 73 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 74 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 75 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 77 RCU_FANOUT); 78 if (rcu_fanout_exact) 79 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 82 if (IS_ENABLED(CONFIG_PROVE_RCU)) 83 pr_info("\tRCU lockdep checking is enabled.\n"); 84 if (RCU_NUM_LVLS >= 4) 85 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 86 if (RCU_FANOUT_LEAF != 16) 87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 88 RCU_FANOUT_LEAF); 89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 91 if (nr_cpu_ids != NR_CPUS) 92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 93 if (IS_ENABLED(CONFIG_RCU_BOOST)) 94 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 95 } 96 97 #ifdef CONFIG_PREEMPT_RCU 98 99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 102 103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 104 bool wake); 105 106 /* 107 * Tell them what RCU they are running. 108 */ 109 static void __init rcu_bootup_announce(void) 110 { 111 pr_info("Preemptible hierarchical RCU implementation.\n"); 112 rcu_bootup_announce_oddness(); 113 } 114 115 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 116 #define RCU_GP_TASKS 0x8 117 #define RCU_EXP_TASKS 0x4 118 #define RCU_GP_BLKD 0x2 119 #define RCU_EXP_BLKD 0x1 120 121 /* 122 * Queues a task preempted within an RCU-preempt read-side critical 123 * section into the appropriate location within the ->blkd_tasks list, 124 * depending on the states of any ongoing normal and expedited grace 125 * periods. The ->gp_tasks pointer indicates which element the normal 126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 127 * indicates which element the expedited grace period is waiting on (again, 128 * NULL if none). If a grace period is waiting on a given element in the 129 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 130 * adding a task to the tail of the list blocks any grace period that is 131 * already waiting on one of the elements. In contrast, adding a task 132 * to the head of the list won't block any grace period that is already 133 * waiting on one of the elements. 134 * 135 * This queuing is imprecise, and can sometimes make an ongoing grace 136 * period wait for a task that is not strictly speaking blocking it. 137 * Given the choice, we needlessly block a normal grace period rather than 138 * blocking an expedited grace period. 139 * 140 * Note that an endless sequence of expedited grace periods still cannot 141 * indefinitely postpone a normal grace period. Eventually, all of the 142 * fixed number of preempted tasks blocking the normal grace period that are 143 * not also blocking the expedited grace period will resume and complete 144 * their RCU read-side critical sections. At that point, the ->gp_tasks 145 * pointer will equal the ->exp_tasks pointer, at which point the end of 146 * the corresponding expedited grace period will also be the end of the 147 * normal grace period. 148 */ 149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 150 __releases(rnp->lock) /* But leaves rrupts disabled. */ 151 { 152 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 153 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 154 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 155 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 156 struct task_struct *t = current; 157 158 /* 159 * Decide where to queue the newly blocked task. In theory, 160 * this could be an if-statement. In practice, when I tried 161 * that, it was quite messy. 162 */ 163 switch (blkd_state) { 164 case 0: 165 case RCU_EXP_TASKS: 166 case RCU_EXP_TASKS + RCU_GP_BLKD: 167 case RCU_GP_TASKS: 168 case RCU_GP_TASKS + RCU_EXP_TASKS: 169 170 /* 171 * Blocking neither GP, or first task blocking the normal 172 * GP but not blocking the already-waiting expedited GP. 173 * Queue at the head of the list to avoid unnecessarily 174 * blocking the already-waiting GPs. 175 */ 176 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 177 break; 178 179 case RCU_EXP_BLKD: 180 case RCU_GP_BLKD: 181 case RCU_GP_BLKD + RCU_EXP_BLKD: 182 case RCU_GP_TASKS + RCU_EXP_BLKD: 183 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 184 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 185 186 /* 187 * First task arriving that blocks either GP, or first task 188 * arriving that blocks the expedited GP (with the normal 189 * GP already waiting), or a task arriving that blocks 190 * both GPs with both GPs already waiting. Queue at the 191 * tail of the list to avoid any GP waiting on any of the 192 * already queued tasks that are not blocking it. 193 */ 194 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 195 break; 196 197 case RCU_EXP_TASKS + RCU_EXP_BLKD: 198 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 200 201 /* 202 * Second or subsequent task blocking the expedited GP. 203 * The task either does not block the normal GP, or is the 204 * first task blocking the normal GP. Queue just after 205 * the first task blocking the expedited GP. 206 */ 207 list_add(&t->rcu_node_entry, rnp->exp_tasks); 208 break; 209 210 case RCU_GP_TASKS + RCU_GP_BLKD: 211 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 212 213 /* 214 * Second or subsequent task blocking the normal GP. 215 * The task does not block the expedited GP. Queue just 216 * after the first task blocking the normal GP. 217 */ 218 list_add(&t->rcu_node_entry, rnp->gp_tasks); 219 break; 220 221 default: 222 223 /* Yet another exercise in excessive paranoia. */ 224 WARN_ON_ONCE(1); 225 break; 226 } 227 228 /* 229 * We have now queued the task. If it was the first one to 230 * block either grace period, update the ->gp_tasks and/or 231 * ->exp_tasks pointers, respectively, to reference the newly 232 * blocked tasks. 233 */ 234 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 235 rnp->gp_tasks = &t->rcu_node_entry; 236 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 237 rnp->exp_tasks = &t->rcu_node_entry; 238 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 239 240 /* 241 * Report the quiescent state for the expedited GP. This expedited 242 * GP should not be able to end until we report, so there should be 243 * no need to check for a subsequent expedited GP. (Though we are 244 * still in a quiescent state in any case.) 245 */ 246 if (blkd_state & RCU_EXP_BLKD && 247 t->rcu_read_unlock_special.b.exp_need_qs) { 248 t->rcu_read_unlock_special.b.exp_need_qs = false; 249 rcu_report_exp_rdp(rdp->rsp, rdp, true); 250 } else { 251 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 252 } 253 } 254 255 /* 256 * Record a preemptible-RCU quiescent state for the specified CPU. Note 257 * that this just means that the task currently running on the CPU is 258 * not in a quiescent state. There might be any number of tasks blocked 259 * while in an RCU read-side critical section. 260 * 261 * As with the other rcu_*_qs() functions, callers to this function 262 * must disable preemption. 263 */ 264 static void rcu_preempt_qs(void) 265 { 266 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 267 trace_rcu_grace_period(TPS("rcu_preempt"), 268 __this_cpu_read(rcu_data_p->gpnum), 269 TPS("cpuqs")); 270 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 271 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 272 current->rcu_read_unlock_special.b.need_qs = false; 273 } 274 } 275 276 /* 277 * We have entered the scheduler, and the current task might soon be 278 * context-switched away from. If this task is in an RCU read-side 279 * critical section, we will no longer be able to rely on the CPU to 280 * record that fact, so we enqueue the task on the blkd_tasks list. 281 * The task will dequeue itself when it exits the outermost enclosing 282 * RCU read-side critical section. Therefore, the current grace period 283 * cannot be permitted to complete until the blkd_tasks list entries 284 * predating the current grace period drain, in other words, until 285 * rnp->gp_tasks becomes NULL. 286 * 287 * Caller must disable interrupts. 288 */ 289 static void rcu_preempt_note_context_switch(void) 290 { 291 struct task_struct *t = current; 292 struct rcu_data *rdp; 293 struct rcu_node *rnp; 294 295 if (t->rcu_read_lock_nesting > 0 && 296 !t->rcu_read_unlock_special.b.blocked) { 297 298 /* Possibly blocking in an RCU read-side critical section. */ 299 rdp = this_cpu_ptr(rcu_state_p->rda); 300 rnp = rdp->mynode; 301 raw_spin_lock_rcu_node(rnp); 302 t->rcu_read_unlock_special.b.blocked = true; 303 t->rcu_blocked_node = rnp; 304 305 /* 306 * Verify the CPU's sanity, trace the preemption, and 307 * then queue the task as required based on the states 308 * of any ongoing and expedited grace periods. 309 */ 310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 312 trace_rcu_preempt_task(rdp->rsp->name, 313 t->pid, 314 (rnp->qsmask & rdp->grpmask) 315 ? rnp->gpnum 316 : rnp->gpnum + 1); 317 rcu_preempt_ctxt_queue(rnp, rdp); 318 } else if (t->rcu_read_lock_nesting < 0 && 319 t->rcu_read_unlock_special.s) { 320 321 /* 322 * Complete exit from RCU read-side critical section on 323 * behalf of preempted instance of __rcu_read_unlock(). 324 */ 325 rcu_read_unlock_special(t); 326 } 327 328 /* 329 * Either we were not in an RCU read-side critical section to 330 * begin with, or we have now recorded that critical section 331 * globally. Either way, we can now note a quiescent state 332 * for this CPU. Again, if we were in an RCU read-side critical 333 * section, and if that critical section was blocking the current 334 * grace period, then the fact that the task has been enqueued 335 * means that we continue to block the current grace period. 336 */ 337 rcu_preempt_qs(); 338 } 339 340 /* 341 * Check for preempted RCU readers blocking the current grace period 342 * for the specified rcu_node structure. If the caller needs a reliable 343 * answer, it must hold the rcu_node's ->lock. 344 */ 345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 346 { 347 return rnp->gp_tasks != NULL; 348 } 349 350 /* 351 * Advance a ->blkd_tasks-list pointer to the next entry, instead 352 * returning NULL if at the end of the list. 353 */ 354 static struct list_head *rcu_next_node_entry(struct task_struct *t, 355 struct rcu_node *rnp) 356 { 357 struct list_head *np; 358 359 np = t->rcu_node_entry.next; 360 if (np == &rnp->blkd_tasks) 361 np = NULL; 362 return np; 363 } 364 365 /* 366 * Return true if the specified rcu_node structure has tasks that were 367 * preempted within an RCU read-side critical section. 368 */ 369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 370 { 371 return !list_empty(&rnp->blkd_tasks); 372 } 373 374 /* 375 * Handle special cases during rcu_read_unlock(), such as needing to 376 * notify RCU core processing or task having blocked during the RCU 377 * read-side critical section. 378 */ 379 void rcu_read_unlock_special(struct task_struct *t) 380 { 381 bool empty_exp; 382 bool empty_norm; 383 bool empty_exp_now; 384 unsigned long flags; 385 struct list_head *np; 386 bool drop_boost_mutex = false; 387 struct rcu_data *rdp; 388 struct rcu_node *rnp; 389 union rcu_special special; 390 391 /* NMI handlers cannot block and cannot safely manipulate state. */ 392 if (in_nmi()) 393 return; 394 395 local_irq_save(flags); 396 397 /* 398 * If RCU core is waiting for this CPU to exit its critical section, 399 * report the fact that it has exited. Because irqs are disabled, 400 * t->rcu_read_unlock_special cannot change. 401 */ 402 special = t->rcu_read_unlock_special; 403 if (special.b.need_qs) { 404 rcu_preempt_qs(); 405 t->rcu_read_unlock_special.b.need_qs = false; 406 if (!t->rcu_read_unlock_special.s) { 407 local_irq_restore(flags); 408 return; 409 } 410 } 411 412 /* 413 * Respond to a request for an expedited grace period, but only if 414 * we were not preempted, meaning that we were running on the same 415 * CPU throughout. If we were preempted, the exp_need_qs flag 416 * would have been cleared at the time of the first preemption, 417 * and the quiescent state would be reported when we were dequeued. 418 */ 419 if (special.b.exp_need_qs) { 420 WARN_ON_ONCE(special.b.blocked); 421 t->rcu_read_unlock_special.b.exp_need_qs = false; 422 rdp = this_cpu_ptr(rcu_state_p->rda); 423 rcu_report_exp_rdp(rcu_state_p, rdp, true); 424 if (!t->rcu_read_unlock_special.s) { 425 local_irq_restore(flags); 426 return; 427 } 428 } 429 430 /* Hardware IRQ handlers cannot block, complain if they get here. */ 431 if (in_irq() || in_serving_softirq()) { 432 lockdep_rcu_suspicious(__FILE__, __LINE__, 433 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 434 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 435 t->rcu_read_unlock_special.s, 436 t->rcu_read_unlock_special.b.blocked, 437 t->rcu_read_unlock_special.b.exp_need_qs, 438 t->rcu_read_unlock_special.b.need_qs); 439 local_irq_restore(flags); 440 return; 441 } 442 443 /* Clean up if blocked during RCU read-side critical section. */ 444 if (special.b.blocked) { 445 t->rcu_read_unlock_special.b.blocked = false; 446 447 /* 448 * Remove this task from the list it blocked on. The task 449 * now remains queued on the rcu_node corresponding to the 450 * CPU it first blocked on, so there is no longer any need 451 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 452 */ 453 rnp = t->rcu_blocked_node; 454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 455 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 456 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 457 empty_exp = sync_rcu_preempt_exp_done(rnp); 458 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 459 np = rcu_next_node_entry(t, rnp); 460 list_del_init(&t->rcu_node_entry); 461 t->rcu_blocked_node = NULL; 462 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 463 rnp->gpnum, t->pid); 464 if (&t->rcu_node_entry == rnp->gp_tasks) 465 rnp->gp_tasks = np; 466 if (&t->rcu_node_entry == rnp->exp_tasks) 467 rnp->exp_tasks = np; 468 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 469 if (&t->rcu_node_entry == rnp->boost_tasks) 470 rnp->boost_tasks = np; 471 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 472 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 473 } 474 475 /* 476 * If this was the last task on the current list, and if 477 * we aren't waiting on any CPUs, report the quiescent state. 478 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 479 * so we must take a snapshot of the expedited state. 480 */ 481 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 482 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 483 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 484 rnp->gpnum, 485 0, rnp->qsmask, 486 rnp->level, 487 rnp->grplo, 488 rnp->grphi, 489 !!rnp->gp_tasks); 490 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 491 } else { 492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 493 } 494 495 /* Unboost if we were boosted. */ 496 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 497 rt_mutex_unlock(&rnp->boost_mtx); 498 499 /* 500 * If this was the last task on the expedited lists, 501 * then we need to report up the rcu_node hierarchy. 502 */ 503 if (!empty_exp && empty_exp_now) 504 rcu_report_exp_rnp(rcu_state_p, rnp, true); 505 } else { 506 local_irq_restore(flags); 507 } 508 } 509 510 /* 511 * Dump detailed information for all tasks blocking the current RCU 512 * grace period on the specified rcu_node structure. 513 */ 514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 515 { 516 unsigned long flags; 517 struct task_struct *t; 518 519 raw_spin_lock_irqsave_rcu_node(rnp, flags); 520 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 522 return; 523 } 524 t = list_entry(rnp->gp_tasks->prev, 525 struct task_struct, rcu_node_entry); 526 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 527 sched_show_task(t); 528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 529 } 530 531 /* 532 * Dump detailed information for all tasks blocking the current RCU 533 * grace period. 534 */ 535 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 536 { 537 struct rcu_node *rnp = rcu_get_root(rsp); 538 539 rcu_print_detail_task_stall_rnp(rnp); 540 rcu_for_each_leaf_node(rsp, rnp) 541 rcu_print_detail_task_stall_rnp(rnp); 542 } 543 544 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 545 { 546 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 547 rnp->level, rnp->grplo, rnp->grphi); 548 } 549 550 static void rcu_print_task_stall_end(void) 551 { 552 pr_cont("\n"); 553 } 554 555 /* 556 * Scan the current list of tasks blocked within RCU read-side critical 557 * sections, printing out the tid of each. 558 */ 559 static int rcu_print_task_stall(struct rcu_node *rnp) 560 { 561 struct task_struct *t; 562 int ndetected = 0; 563 564 if (!rcu_preempt_blocked_readers_cgp(rnp)) 565 return 0; 566 rcu_print_task_stall_begin(rnp); 567 t = list_entry(rnp->gp_tasks->prev, 568 struct task_struct, rcu_node_entry); 569 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 570 pr_cont(" P%d", t->pid); 571 ndetected++; 572 } 573 rcu_print_task_stall_end(); 574 return ndetected; 575 } 576 577 /* 578 * Scan the current list of tasks blocked within RCU read-side critical 579 * sections, printing out the tid of each that is blocking the current 580 * expedited grace period. 581 */ 582 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 583 { 584 struct task_struct *t; 585 int ndetected = 0; 586 587 if (!rnp->exp_tasks) 588 return 0; 589 t = list_entry(rnp->exp_tasks->prev, 590 struct task_struct, rcu_node_entry); 591 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 592 pr_cont(" P%d", t->pid); 593 ndetected++; 594 } 595 return ndetected; 596 } 597 598 /* 599 * Check that the list of blocked tasks for the newly completed grace 600 * period is in fact empty. It is a serious bug to complete a grace 601 * period that still has RCU readers blocked! This function must be 602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 603 * must be held by the caller. 604 * 605 * Also, if there are blocked tasks on the list, they automatically 606 * block the newly created grace period, so set up ->gp_tasks accordingly. 607 */ 608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 609 { 610 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 611 if (rcu_preempt_has_tasks(rnp)) 612 rnp->gp_tasks = rnp->blkd_tasks.next; 613 WARN_ON_ONCE(rnp->qsmask); 614 } 615 616 /* 617 * Check for a quiescent state from the current CPU. When a task blocks, 618 * the task is recorded in the corresponding CPU's rcu_node structure, 619 * which is checked elsewhere. 620 * 621 * Caller must disable hard irqs. 622 */ 623 static void rcu_preempt_check_callbacks(void) 624 { 625 struct task_struct *t = current; 626 627 if (t->rcu_read_lock_nesting == 0) { 628 rcu_preempt_qs(); 629 return; 630 } 631 if (t->rcu_read_lock_nesting > 0 && 632 __this_cpu_read(rcu_data_p->core_needs_qs) && 633 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 634 t->rcu_read_unlock_special.b.need_qs = true; 635 } 636 637 #ifdef CONFIG_RCU_BOOST 638 639 static void rcu_preempt_do_callbacks(void) 640 { 641 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 642 } 643 644 #endif /* #ifdef CONFIG_RCU_BOOST */ 645 646 /* 647 * Queue a preemptible-RCU callback for invocation after a grace period. 648 */ 649 void call_rcu(struct rcu_head *head, rcu_callback_t func) 650 { 651 __call_rcu(head, func, rcu_state_p, -1, 0); 652 } 653 EXPORT_SYMBOL_GPL(call_rcu); 654 655 /** 656 * synchronize_rcu - wait until a grace period has elapsed. 657 * 658 * Control will return to the caller some time after a full grace 659 * period has elapsed, in other words after all currently executing RCU 660 * read-side critical sections have completed. Note, however, that 661 * upon return from synchronize_rcu(), the caller might well be executing 662 * concurrently with new RCU read-side critical sections that began while 663 * synchronize_rcu() was waiting. RCU read-side critical sections are 664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 665 * 666 * See the description of synchronize_sched() for more detailed information 667 * on memory ordering guarantees. 668 */ 669 void synchronize_rcu(void) 670 { 671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 672 lock_is_held(&rcu_lock_map) || 673 lock_is_held(&rcu_sched_lock_map), 674 "Illegal synchronize_rcu() in RCU read-side critical section"); 675 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 676 return; 677 if (rcu_gp_is_expedited()) 678 synchronize_rcu_expedited(); 679 else 680 wait_rcu_gp(call_rcu); 681 } 682 EXPORT_SYMBOL_GPL(synchronize_rcu); 683 684 /** 685 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 686 * 687 * Note that this primitive does not necessarily wait for an RCU grace period 688 * to complete. For example, if there are no RCU callbacks queued anywhere 689 * in the system, then rcu_barrier() is within its rights to return 690 * immediately, without waiting for anything, much less an RCU grace period. 691 */ 692 void rcu_barrier(void) 693 { 694 _rcu_barrier(rcu_state_p); 695 } 696 EXPORT_SYMBOL_GPL(rcu_barrier); 697 698 /* 699 * Initialize preemptible RCU's state structures. 700 */ 701 static void __init __rcu_init_preempt(void) 702 { 703 rcu_init_one(rcu_state_p); 704 } 705 706 /* 707 * Check for a task exiting while in a preemptible-RCU read-side 708 * critical section, clean up if so. No need to issue warnings, 709 * as debug_check_no_locks_held() already does this if lockdep 710 * is enabled. 711 */ 712 void exit_rcu(void) 713 { 714 struct task_struct *t = current; 715 716 if (likely(list_empty(¤t->rcu_node_entry))) 717 return; 718 t->rcu_read_lock_nesting = 1; 719 barrier(); 720 t->rcu_read_unlock_special.b.blocked = true; 721 __rcu_read_unlock(); 722 } 723 724 #else /* #ifdef CONFIG_PREEMPT_RCU */ 725 726 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 727 728 /* 729 * Tell them what RCU they are running. 730 */ 731 static void __init rcu_bootup_announce(void) 732 { 733 pr_info("Hierarchical RCU implementation.\n"); 734 rcu_bootup_announce_oddness(); 735 } 736 737 /* 738 * Because preemptible RCU does not exist, we never have to check for 739 * CPUs being in quiescent states. 740 */ 741 static void rcu_preempt_note_context_switch(void) 742 { 743 } 744 745 /* 746 * Because preemptible RCU does not exist, there are never any preempted 747 * RCU readers. 748 */ 749 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 750 { 751 return 0; 752 } 753 754 /* 755 * Because there is no preemptible RCU, there can be no readers blocked. 756 */ 757 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 758 { 759 return false; 760 } 761 762 /* 763 * Because preemptible RCU does not exist, we never have to check for 764 * tasks blocked within RCU read-side critical sections. 765 */ 766 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 767 { 768 } 769 770 /* 771 * Because preemptible RCU does not exist, we never have to check for 772 * tasks blocked within RCU read-side critical sections. 773 */ 774 static int rcu_print_task_stall(struct rcu_node *rnp) 775 { 776 return 0; 777 } 778 779 /* 780 * Because preemptible RCU does not exist, we never have to check for 781 * tasks blocked within RCU read-side critical sections that are 782 * blocking the current expedited grace period. 783 */ 784 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 785 { 786 return 0; 787 } 788 789 /* 790 * Because there is no preemptible RCU, there can be no readers blocked, 791 * so there is no need to check for blocked tasks. So check only for 792 * bogus qsmask values. 793 */ 794 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 795 { 796 WARN_ON_ONCE(rnp->qsmask); 797 } 798 799 /* 800 * Because preemptible RCU does not exist, it never has any callbacks 801 * to check. 802 */ 803 static void rcu_preempt_check_callbacks(void) 804 { 805 } 806 807 /* 808 * Because preemptible RCU does not exist, rcu_barrier() is just 809 * another name for rcu_barrier_sched(). 810 */ 811 void rcu_barrier(void) 812 { 813 rcu_barrier_sched(); 814 } 815 EXPORT_SYMBOL_GPL(rcu_barrier); 816 817 /* 818 * Because preemptible RCU does not exist, it need not be initialized. 819 */ 820 static void __init __rcu_init_preempt(void) 821 { 822 } 823 824 /* 825 * Because preemptible RCU does not exist, tasks cannot possibly exit 826 * while in preemptible RCU read-side critical sections. 827 */ 828 void exit_rcu(void) 829 { 830 } 831 832 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 833 834 #ifdef CONFIG_RCU_BOOST 835 836 #include "../locking/rtmutex_common.h" 837 838 #ifdef CONFIG_RCU_TRACE 839 840 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 841 { 842 if (!rcu_preempt_has_tasks(rnp)) 843 rnp->n_balk_blkd_tasks++; 844 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 845 rnp->n_balk_exp_gp_tasks++; 846 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 847 rnp->n_balk_boost_tasks++; 848 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 849 rnp->n_balk_notblocked++; 850 else if (rnp->gp_tasks != NULL && 851 ULONG_CMP_LT(jiffies, rnp->boost_time)) 852 rnp->n_balk_notyet++; 853 else 854 rnp->n_balk_nos++; 855 } 856 857 #else /* #ifdef CONFIG_RCU_TRACE */ 858 859 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 860 { 861 } 862 863 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 864 865 static void rcu_wake_cond(struct task_struct *t, int status) 866 { 867 /* 868 * If the thread is yielding, only wake it when this 869 * is invoked from idle 870 */ 871 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 872 wake_up_process(t); 873 } 874 875 /* 876 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 877 * or ->boost_tasks, advancing the pointer to the next task in the 878 * ->blkd_tasks list. 879 * 880 * Note that irqs must be enabled: boosting the task can block. 881 * Returns 1 if there are more tasks needing to be boosted. 882 */ 883 static int rcu_boost(struct rcu_node *rnp) 884 { 885 unsigned long flags; 886 struct task_struct *t; 887 struct list_head *tb; 888 889 if (READ_ONCE(rnp->exp_tasks) == NULL && 890 READ_ONCE(rnp->boost_tasks) == NULL) 891 return 0; /* Nothing left to boost. */ 892 893 raw_spin_lock_irqsave_rcu_node(rnp, flags); 894 895 /* 896 * Recheck under the lock: all tasks in need of boosting 897 * might exit their RCU read-side critical sections on their own. 898 */ 899 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 900 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 901 return 0; 902 } 903 904 /* 905 * Preferentially boost tasks blocking expedited grace periods. 906 * This cannot starve the normal grace periods because a second 907 * expedited grace period must boost all blocked tasks, including 908 * those blocking the pre-existing normal grace period. 909 */ 910 if (rnp->exp_tasks != NULL) { 911 tb = rnp->exp_tasks; 912 rnp->n_exp_boosts++; 913 } else { 914 tb = rnp->boost_tasks; 915 rnp->n_normal_boosts++; 916 } 917 rnp->n_tasks_boosted++; 918 919 /* 920 * We boost task t by manufacturing an rt_mutex that appears to 921 * be held by task t. We leave a pointer to that rt_mutex where 922 * task t can find it, and task t will release the mutex when it 923 * exits its outermost RCU read-side critical section. Then 924 * simply acquiring this artificial rt_mutex will boost task 925 * t's priority. (Thanks to tglx for suggesting this approach!) 926 * 927 * Note that task t must acquire rnp->lock to remove itself from 928 * the ->blkd_tasks list, which it will do from exit() if from 929 * nowhere else. We therefore are guaranteed that task t will 930 * stay around at least until we drop rnp->lock. Note that 931 * rnp->lock also resolves races between our priority boosting 932 * and task t's exiting its outermost RCU read-side critical 933 * section. 934 */ 935 t = container_of(tb, struct task_struct, rcu_node_entry); 936 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 937 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 938 /* Lock only for side effect: boosts task t's priority. */ 939 rt_mutex_lock(&rnp->boost_mtx); 940 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 941 942 return READ_ONCE(rnp->exp_tasks) != NULL || 943 READ_ONCE(rnp->boost_tasks) != NULL; 944 } 945 946 /* 947 * Priority-boosting kthread, one per leaf rcu_node. 948 */ 949 static int rcu_boost_kthread(void *arg) 950 { 951 struct rcu_node *rnp = (struct rcu_node *)arg; 952 int spincnt = 0; 953 int more2boost; 954 955 trace_rcu_utilization(TPS("Start boost kthread@init")); 956 for (;;) { 957 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 958 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 959 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 960 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 961 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 962 more2boost = rcu_boost(rnp); 963 if (more2boost) 964 spincnt++; 965 else 966 spincnt = 0; 967 if (spincnt > 10) { 968 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 969 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 970 schedule_timeout_interruptible(2); 971 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 972 spincnt = 0; 973 } 974 } 975 /* NOTREACHED */ 976 trace_rcu_utilization(TPS("End boost kthread@notreached")); 977 return 0; 978 } 979 980 /* 981 * Check to see if it is time to start boosting RCU readers that are 982 * blocking the current grace period, and, if so, tell the per-rcu_node 983 * kthread to start boosting them. If there is an expedited grace 984 * period in progress, it is always time to boost. 985 * 986 * The caller must hold rnp->lock, which this function releases. 987 * The ->boost_kthread_task is immortal, so we don't need to worry 988 * about it going away. 989 */ 990 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 991 __releases(rnp->lock) 992 { 993 struct task_struct *t; 994 995 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 996 rnp->n_balk_exp_gp_tasks++; 997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 998 return; 999 } 1000 if (rnp->exp_tasks != NULL || 1001 (rnp->gp_tasks != NULL && 1002 rnp->boost_tasks == NULL && 1003 rnp->qsmask == 0 && 1004 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1005 if (rnp->exp_tasks == NULL) 1006 rnp->boost_tasks = rnp->gp_tasks; 1007 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1008 t = rnp->boost_kthread_task; 1009 if (t) 1010 rcu_wake_cond(t, rnp->boost_kthread_status); 1011 } else { 1012 rcu_initiate_boost_trace(rnp); 1013 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1014 } 1015 } 1016 1017 /* 1018 * Wake up the per-CPU kthread to invoke RCU callbacks. 1019 */ 1020 static void invoke_rcu_callbacks_kthread(void) 1021 { 1022 unsigned long flags; 1023 1024 local_irq_save(flags); 1025 __this_cpu_write(rcu_cpu_has_work, 1); 1026 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1027 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1028 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1029 __this_cpu_read(rcu_cpu_kthread_status)); 1030 } 1031 local_irq_restore(flags); 1032 } 1033 1034 /* 1035 * Is the current CPU running the RCU-callbacks kthread? 1036 * Caller must have preemption disabled. 1037 */ 1038 static bool rcu_is_callbacks_kthread(void) 1039 { 1040 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1041 } 1042 1043 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1044 1045 /* 1046 * Do priority-boost accounting for the start of a new grace period. 1047 */ 1048 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1049 { 1050 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1051 } 1052 1053 /* 1054 * Create an RCU-boost kthread for the specified node if one does not 1055 * already exist. We only create this kthread for preemptible RCU. 1056 * Returns zero if all is well, a negated errno otherwise. 1057 */ 1058 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1059 struct rcu_node *rnp) 1060 { 1061 int rnp_index = rnp - &rsp->node[0]; 1062 unsigned long flags; 1063 struct sched_param sp; 1064 struct task_struct *t; 1065 1066 if (rcu_state_p != rsp) 1067 return 0; 1068 1069 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1070 return 0; 1071 1072 rsp->boost = 1; 1073 if (rnp->boost_kthread_task != NULL) 1074 return 0; 1075 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1076 "rcub/%d", rnp_index); 1077 if (IS_ERR(t)) 1078 return PTR_ERR(t); 1079 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1080 rnp->boost_kthread_task = t; 1081 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1082 sp.sched_priority = kthread_prio; 1083 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1084 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1085 return 0; 1086 } 1087 1088 static void rcu_kthread_do_work(void) 1089 { 1090 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1091 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1092 rcu_preempt_do_callbacks(); 1093 } 1094 1095 static void rcu_cpu_kthread_setup(unsigned int cpu) 1096 { 1097 struct sched_param sp; 1098 1099 sp.sched_priority = kthread_prio; 1100 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1101 } 1102 1103 static void rcu_cpu_kthread_park(unsigned int cpu) 1104 { 1105 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1106 } 1107 1108 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1109 { 1110 return __this_cpu_read(rcu_cpu_has_work); 1111 } 1112 1113 /* 1114 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1115 * RCU softirq used in flavors and configurations of RCU that do not 1116 * support RCU priority boosting. 1117 */ 1118 static void rcu_cpu_kthread(unsigned int cpu) 1119 { 1120 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1121 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1122 int spincnt; 1123 1124 for (spincnt = 0; spincnt < 10; spincnt++) { 1125 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1126 local_bh_disable(); 1127 *statusp = RCU_KTHREAD_RUNNING; 1128 this_cpu_inc(rcu_cpu_kthread_loops); 1129 local_irq_disable(); 1130 work = *workp; 1131 *workp = 0; 1132 local_irq_enable(); 1133 if (work) 1134 rcu_kthread_do_work(); 1135 local_bh_enable(); 1136 if (*workp == 0) { 1137 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1138 *statusp = RCU_KTHREAD_WAITING; 1139 return; 1140 } 1141 } 1142 *statusp = RCU_KTHREAD_YIELDING; 1143 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1144 schedule_timeout_interruptible(2); 1145 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1146 *statusp = RCU_KTHREAD_WAITING; 1147 } 1148 1149 /* 1150 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1151 * served by the rcu_node in question. The CPU hotplug lock is still 1152 * held, so the value of rnp->qsmaskinit will be stable. 1153 * 1154 * We don't include outgoingcpu in the affinity set, use -1 if there is 1155 * no outgoing CPU. If there are no CPUs left in the affinity set, 1156 * this function allows the kthread to execute on any CPU. 1157 */ 1158 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1159 { 1160 struct task_struct *t = rnp->boost_kthread_task; 1161 unsigned long mask = rcu_rnp_online_cpus(rnp); 1162 cpumask_var_t cm; 1163 int cpu; 1164 1165 if (!t) 1166 return; 1167 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1168 return; 1169 for_each_leaf_node_possible_cpu(rnp, cpu) 1170 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1171 cpu != outgoingcpu) 1172 cpumask_set_cpu(cpu, cm); 1173 if (cpumask_weight(cm) == 0) 1174 cpumask_setall(cm); 1175 set_cpus_allowed_ptr(t, cm); 1176 free_cpumask_var(cm); 1177 } 1178 1179 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1180 .store = &rcu_cpu_kthread_task, 1181 .thread_should_run = rcu_cpu_kthread_should_run, 1182 .thread_fn = rcu_cpu_kthread, 1183 .thread_comm = "rcuc/%u", 1184 .setup = rcu_cpu_kthread_setup, 1185 .park = rcu_cpu_kthread_park, 1186 }; 1187 1188 /* 1189 * Spawn boost kthreads -- called as soon as the scheduler is running. 1190 */ 1191 static void __init rcu_spawn_boost_kthreads(void) 1192 { 1193 struct rcu_node *rnp; 1194 int cpu; 1195 1196 for_each_possible_cpu(cpu) 1197 per_cpu(rcu_cpu_has_work, cpu) = 0; 1198 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1199 rcu_for_each_leaf_node(rcu_state_p, rnp) 1200 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1201 } 1202 1203 static void rcu_prepare_kthreads(int cpu) 1204 { 1205 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1206 struct rcu_node *rnp = rdp->mynode; 1207 1208 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1209 if (rcu_scheduler_fully_active) 1210 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1211 } 1212 1213 #else /* #ifdef CONFIG_RCU_BOOST */ 1214 1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1216 __releases(rnp->lock) 1217 { 1218 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1219 } 1220 1221 static void invoke_rcu_callbacks_kthread(void) 1222 { 1223 WARN_ON_ONCE(1); 1224 } 1225 1226 static bool rcu_is_callbacks_kthread(void) 1227 { 1228 return false; 1229 } 1230 1231 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1232 { 1233 } 1234 1235 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1236 { 1237 } 1238 1239 static void __init rcu_spawn_boost_kthreads(void) 1240 { 1241 } 1242 1243 static void rcu_prepare_kthreads(int cpu) 1244 { 1245 } 1246 1247 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1248 1249 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1250 1251 /* 1252 * Check to see if any future RCU-related work will need to be done 1253 * by the current CPU, even if none need be done immediately, returning 1254 * 1 if so. This function is part of the RCU implementation; it is -not- 1255 * an exported member of the RCU API. 1256 * 1257 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1258 * any flavor of RCU. 1259 */ 1260 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1261 { 1262 *nextevt = KTIME_MAX; 1263 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) 1264 ? 0 : rcu_cpu_has_callbacks(NULL); 1265 } 1266 1267 /* 1268 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1269 * after it. 1270 */ 1271 static void rcu_cleanup_after_idle(void) 1272 { 1273 } 1274 1275 /* 1276 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1277 * is nothing. 1278 */ 1279 static void rcu_prepare_for_idle(void) 1280 { 1281 } 1282 1283 /* 1284 * Don't bother keeping a running count of the number of RCU callbacks 1285 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1286 */ 1287 static void rcu_idle_count_callbacks_posted(void) 1288 { 1289 } 1290 1291 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1292 1293 /* 1294 * This code is invoked when a CPU goes idle, at which point we want 1295 * to have the CPU do everything required for RCU so that it can enter 1296 * the energy-efficient dyntick-idle mode. This is handled by a 1297 * state machine implemented by rcu_prepare_for_idle() below. 1298 * 1299 * The following three proprocessor symbols control this state machine: 1300 * 1301 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1302 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1303 * is sized to be roughly one RCU grace period. Those energy-efficiency 1304 * benchmarkers who might otherwise be tempted to set this to a large 1305 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1306 * system. And if you are -that- concerned about energy efficiency, 1307 * just power the system down and be done with it! 1308 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1309 * permitted to sleep in dyntick-idle mode with only lazy RCU 1310 * callbacks pending. Setting this too high can OOM your system. 1311 * 1312 * The values below work well in practice. If future workloads require 1313 * adjustment, they can be converted into kernel config parameters, though 1314 * making the state machine smarter might be a better option. 1315 */ 1316 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1317 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1318 1319 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1320 module_param(rcu_idle_gp_delay, int, 0644); 1321 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1322 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1323 1324 /* 1325 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1326 * only if it has been awhile since the last time we did so. Afterwards, 1327 * if there are any callbacks ready for immediate invocation, return true. 1328 */ 1329 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1330 { 1331 bool cbs_ready = false; 1332 struct rcu_data *rdp; 1333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1334 struct rcu_node *rnp; 1335 struct rcu_state *rsp; 1336 1337 /* Exit early if we advanced recently. */ 1338 if (jiffies == rdtp->last_advance_all) 1339 return false; 1340 rdtp->last_advance_all = jiffies; 1341 1342 for_each_rcu_flavor(rsp) { 1343 rdp = this_cpu_ptr(rsp->rda); 1344 rnp = rdp->mynode; 1345 1346 /* 1347 * Don't bother checking unless a grace period has 1348 * completed since we last checked and there are 1349 * callbacks not yet ready to invoke. 1350 */ 1351 if ((rdp->completed != rnp->completed || 1352 unlikely(READ_ONCE(rdp->gpwrap))) && 1353 rcu_segcblist_pend_cbs(&rdp->cblist)) 1354 note_gp_changes(rsp, rdp); 1355 1356 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1357 cbs_ready = true; 1358 } 1359 return cbs_ready; 1360 } 1361 1362 /* 1363 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1364 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1365 * caller to set the timeout based on whether or not there are non-lazy 1366 * callbacks. 1367 * 1368 * The caller must have disabled interrupts. 1369 */ 1370 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1371 { 1372 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1373 unsigned long dj; 1374 1375 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { 1376 *nextevt = KTIME_MAX; 1377 return 0; 1378 } 1379 1380 /* Snapshot to detect later posting of non-lazy callback. */ 1381 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1382 1383 /* If no callbacks, RCU doesn't need the CPU. */ 1384 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1385 *nextevt = KTIME_MAX; 1386 return 0; 1387 } 1388 1389 /* Attempt to advance callbacks. */ 1390 if (rcu_try_advance_all_cbs()) { 1391 /* Some ready to invoke, so initiate later invocation. */ 1392 invoke_rcu_core(); 1393 return 1; 1394 } 1395 rdtp->last_accelerate = jiffies; 1396 1397 /* Request timer delay depending on laziness, and round. */ 1398 if (!rdtp->all_lazy) { 1399 dj = round_up(rcu_idle_gp_delay + jiffies, 1400 rcu_idle_gp_delay) - jiffies; 1401 } else { 1402 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1403 } 1404 *nextevt = basemono + dj * TICK_NSEC; 1405 return 0; 1406 } 1407 1408 /* 1409 * Prepare a CPU for idle from an RCU perspective. The first major task 1410 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1411 * The second major task is to check to see if a non-lazy callback has 1412 * arrived at a CPU that previously had only lazy callbacks. The third 1413 * major task is to accelerate (that is, assign grace-period numbers to) 1414 * any recently arrived callbacks. 1415 * 1416 * The caller must have disabled interrupts. 1417 */ 1418 static void rcu_prepare_for_idle(void) 1419 { 1420 bool needwake; 1421 struct rcu_data *rdp; 1422 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1423 struct rcu_node *rnp; 1424 struct rcu_state *rsp; 1425 int tne; 1426 1427 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1428 rcu_is_nocb_cpu(smp_processor_id())) 1429 return; 1430 1431 /* Handle nohz enablement switches conservatively. */ 1432 tne = READ_ONCE(tick_nohz_active); 1433 if (tne != rdtp->tick_nohz_enabled_snap) { 1434 if (rcu_cpu_has_callbacks(NULL)) 1435 invoke_rcu_core(); /* force nohz to see update. */ 1436 rdtp->tick_nohz_enabled_snap = tne; 1437 return; 1438 } 1439 if (!tne) 1440 return; 1441 1442 /* 1443 * If a non-lazy callback arrived at a CPU having only lazy 1444 * callbacks, invoke RCU core for the side-effect of recalculating 1445 * idle duration on re-entry to idle. 1446 */ 1447 if (rdtp->all_lazy && 1448 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1449 rdtp->all_lazy = false; 1450 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1451 invoke_rcu_core(); 1452 return; 1453 } 1454 1455 /* 1456 * If we have not yet accelerated this jiffy, accelerate all 1457 * callbacks on this CPU. 1458 */ 1459 if (rdtp->last_accelerate == jiffies) 1460 return; 1461 rdtp->last_accelerate = jiffies; 1462 for_each_rcu_flavor(rsp) { 1463 rdp = this_cpu_ptr(rsp->rda); 1464 if (rcu_segcblist_pend_cbs(&rdp->cblist)) 1465 continue; 1466 rnp = rdp->mynode; 1467 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1468 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1469 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1470 if (needwake) 1471 rcu_gp_kthread_wake(rsp); 1472 } 1473 } 1474 1475 /* 1476 * Clean up for exit from idle. Attempt to advance callbacks based on 1477 * any grace periods that elapsed while the CPU was idle, and if any 1478 * callbacks are now ready to invoke, initiate invocation. 1479 */ 1480 static void rcu_cleanup_after_idle(void) 1481 { 1482 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1483 rcu_is_nocb_cpu(smp_processor_id())) 1484 return; 1485 if (rcu_try_advance_all_cbs()) 1486 invoke_rcu_core(); 1487 } 1488 1489 /* 1490 * Keep a running count of the number of non-lazy callbacks posted 1491 * on this CPU. This running counter (which is never decremented) allows 1492 * rcu_prepare_for_idle() to detect when something out of the idle loop 1493 * posts a callback, even if an equal number of callbacks are invoked. 1494 * Of course, callbacks should only be posted from within a trace event 1495 * designed to be called from idle or from within RCU_NONIDLE(). 1496 */ 1497 static void rcu_idle_count_callbacks_posted(void) 1498 { 1499 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1500 } 1501 1502 /* 1503 * Data for flushing lazy RCU callbacks at OOM time. 1504 */ 1505 static atomic_t oom_callback_count; 1506 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1507 1508 /* 1509 * RCU OOM callback -- decrement the outstanding count and deliver the 1510 * wake-up if we are the last one. 1511 */ 1512 static void rcu_oom_callback(struct rcu_head *rhp) 1513 { 1514 if (atomic_dec_and_test(&oom_callback_count)) 1515 wake_up(&oom_callback_wq); 1516 } 1517 1518 /* 1519 * Post an rcu_oom_notify callback on the current CPU if it has at 1520 * least one lazy callback. This will unnecessarily post callbacks 1521 * to CPUs that already have a non-lazy callback at the end of their 1522 * callback list, but this is an infrequent operation, so accept some 1523 * extra overhead to keep things simple. 1524 */ 1525 static void rcu_oom_notify_cpu(void *unused) 1526 { 1527 struct rcu_state *rsp; 1528 struct rcu_data *rdp; 1529 1530 for_each_rcu_flavor(rsp) { 1531 rdp = raw_cpu_ptr(rsp->rda); 1532 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { 1533 atomic_inc(&oom_callback_count); 1534 rsp->call(&rdp->oom_head, rcu_oom_callback); 1535 } 1536 } 1537 } 1538 1539 /* 1540 * If low on memory, ensure that each CPU has a non-lazy callback. 1541 * This will wake up CPUs that have only lazy callbacks, in turn 1542 * ensuring that they free up the corresponding memory in a timely manner. 1543 * Because an uncertain amount of memory will be freed in some uncertain 1544 * timeframe, we do not claim to have freed anything. 1545 */ 1546 static int rcu_oom_notify(struct notifier_block *self, 1547 unsigned long notused, void *nfreed) 1548 { 1549 int cpu; 1550 1551 /* Wait for callbacks from earlier instance to complete. */ 1552 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1553 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1554 1555 /* 1556 * Prevent premature wakeup: ensure that all increments happen 1557 * before there is a chance of the counter reaching zero. 1558 */ 1559 atomic_set(&oom_callback_count, 1); 1560 1561 for_each_online_cpu(cpu) { 1562 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1563 cond_resched_rcu_qs(); 1564 } 1565 1566 /* Unconditionally decrement: no need to wake ourselves up. */ 1567 atomic_dec(&oom_callback_count); 1568 1569 return NOTIFY_OK; 1570 } 1571 1572 static struct notifier_block rcu_oom_nb = { 1573 .notifier_call = rcu_oom_notify 1574 }; 1575 1576 static int __init rcu_register_oom_notifier(void) 1577 { 1578 register_oom_notifier(&rcu_oom_nb); 1579 return 0; 1580 } 1581 early_initcall(rcu_register_oom_notifier); 1582 1583 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1584 1585 #ifdef CONFIG_RCU_FAST_NO_HZ 1586 1587 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1588 { 1589 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1590 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1591 1592 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1593 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1594 ulong2long(nlpd), 1595 rdtp->all_lazy ? 'L' : '.', 1596 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1597 } 1598 1599 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1600 1601 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1602 { 1603 *cp = '\0'; 1604 } 1605 1606 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1607 1608 /* Initiate the stall-info list. */ 1609 static void print_cpu_stall_info_begin(void) 1610 { 1611 pr_cont("\n"); 1612 } 1613 1614 /* 1615 * Print out diagnostic information for the specified stalled CPU. 1616 * 1617 * If the specified CPU is aware of the current RCU grace period 1618 * (flavor specified by rsp), then print the number of scheduling 1619 * clock interrupts the CPU has taken during the time that it has 1620 * been aware. Otherwise, print the number of RCU grace periods 1621 * that this CPU is ignorant of, for example, "1" if the CPU was 1622 * aware of the previous grace period. 1623 * 1624 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1625 */ 1626 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1627 { 1628 char fast_no_hz[72]; 1629 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1630 struct rcu_dynticks *rdtp = rdp->dynticks; 1631 char *ticks_title; 1632 unsigned long ticks_value; 1633 1634 if (rsp->gpnum == rdp->gpnum) { 1635 ticks_title = "ticks this GP"; 1636 ticks_value = rdp->ticks_this_gp; 1637 } else { 1638 ticks_title = "GPs behind"; 1639 ticks_value = rsp->gpnum - rdp->gpnum; 1640 } 1641 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1642 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1643 cpu, 1644 "O."[!!cpu_online(cpu)], 1645 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1646 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1647 ticks_value, ticks_title, 1648 rcu_dynticks_snap(rdtp) & 0xfff, 1649 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1650 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1651 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1652 fast_no_hz); 1653 } 1654 1655 /* Terminate the stall-info list. */ 1656 static void print_cpu_stall_info_end(void) 1657 { 1658 pr_err("\t"); 1659 } 1660 1661 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1662 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1663 { 1664 rdp->ticks_this_gp = 0; 1665 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1666 } 1667 1668 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1669 static void increment_cpu_stall_ticks(void) 1670 { 1671 struct rcu_state *rsp; 1672 1673 for_each_rcu_flavor(rsp) 1674 raw_cpu_inc(rsp->rda->ticks_this_gp); 1675 } 1676 1677 #ifdef CONFIG_RCU_NOCB_CPU 1678 1679 /* 1680 * Offload callback processing from the boot-time-specified set of CPUs 1681 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1682 * kthread created that pulls the callbacks from the corresponding CPU, 1683 * waits for a grace period to elapse, and invokes the callbacks. 1684 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1685 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1686 * has been specified, in which case each kthread actively polls its 1687 * CPU. (Which isn't so great for energy efficiency, but which does 1688 * reduce RCU's overhead on that CPU.) 1689 * 1690 * This is intended to be used in conjunction with Frederic Weisbecker's 1691 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1692 * running CPU-bound user-mode computations. 1693 * 1694 * Offloading of callback processing could also in theory be used as 1695 * an energy-efficiency measure because CPUs with no RCU callbacks 1696 * queued are more aggressive about entering dyntick-idle mode. 1697 */ 1698 1699 1700 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1701 static int __init rcu_nocb_setup(char *str) 1702 { 1703 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1704 have_rcu_nocb_mask = true; 1705 cpulist_parse(str, rcu_nocb_mask); 1706 return 1; 1707 } 1708 __setup("rcu_nocbs=", rcu_nocb_setup); 1709 1710 static int __init parse_rcu_nocb_poll(char *arg) 1711 { 1712 rcu_nocb_poll = true; 1713 return 0; 1714 } 1715 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1716 1717 /* 1718 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1719 * grace period. 1720 */ 1721 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1722 { 1723 swake_up_all(sq); 1724 } 1725 1726 /* 1727 * Set the root rcu_node structure's ->need_future_gp field 1728 * based on the sum of those of all rcu_node structures. This does 1729 * double-count the root rcu_node structure's requests, but this 1730 * is necessary to handle the possibility of a rcu_nocb_kthread() 1731 * having awakened during the time that the rcu_node structures 1732 * were being updated for the end of the previous grace period. 1733 */ 1734 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1735 { 1736 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1737 } 1738 1739 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1740 { 1741 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1742 } 1743 1744 static void rcu_init_one_nocb(struct rcu_node *rnp) 1745 { 1746 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1747 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1748 } 1749 1750 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1751 /* Is the specified CPU a no-CBs CPU? */ 1752 bool rcu_is_nocb_cpu(int cpu) 1753 { 1754 if (have_rcu_nocb_mask) 1755 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1756 return false; 1757 } 1758 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1759 1760 /* 1761 * Kick the leader kthread for this NOCB group. 1762 */ 1763 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1764 { 1765 struct rcu_data *rdp_leader = rdp->nocb_leader; 1766 1767 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1768 return; 1769 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1770 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1771 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1772 swake_up(&rdp_leader->nocb_wq); 1773 } 1774 } 1775 1776 /* 1777 * Does the specified CPU need an RCU callback for the specified flavor 1778 * of rcu_barrier()? 1779 */ 1780 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1781 { 1782 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1783 unsigned long ret; 1784 #ifdef CONFIG_PROVE_RCU 1785 struct rcu_head *rhp; 1786 #endif /* #ifdef CONFIG_PROVE_RCU */ 1787 1788 /* 1789 * Check count of all no-CBs callbacks awaiting invocation. 1790 * There needs to be a barrier before this function is called, 1791 * but associated with a prior determination that no more 1792 * callbacks would be posted. In the worst case, the first 1793 * barrier in _rcu_barrier() suffices (but the caller cannot 1794 * necessarily rely on this, not a substitute for the caller 1795 * getting the concurrency design right!). There must also be 1796 * a barrier between the following load an posting of a callback 1797 * (if a callback is in fact needed). This is associated with an 1798 * atomic_inc() in the caller. 1799 */ 1800 ret = atomic_long_read(&rdp->nocb_q_count); 1801 1802 #ifdef CONFIG_PROVE_RCU 1803 rhp = READ_ONCE(rdp->nocb_head); 1804 if (!rhp) 1805 rhp = READ_ONCE(rdp->nocb_gp_head); 1806 if (!rhp) 1807 rhp = READ_ONCE(rdp->nocb_follower_head); 1808 1809 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1810 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1811 rcu_scheduler_fully_active) { 1812 /* RCU callback enqueued before CPU first came online??? */ 1813 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1814 cpu, rhp->func); 1815 WARN_ON_ONCE(1); 1816 } 1817 #endif /* #ifdef CONFIG_PROVE_RCU */ 1818 1819 return !!ret; 1820 } 1821 1822 /* 1823 * Enqueue the specified string of rcu_head structures onto the specified 1824 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1825 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1826 * counts are supplied by rhcount and rhcount_lazy. 1827 * 1828 * If warranted, also wake up the kthread servicing this CPUs queues. 1829 */ 1830 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1831 struct rcu_head *rhp, 1832 struct rcu_head **rhtp, 1833 int rhcount, int rhcount_lazy, 1834 unsigned long flags) 1835 { 1836 int len; 1837 struct rcu_head **old_rhpp; 1838 struct task_struct *t; 1839 1840 /* Enqueue the callback on the nocb list and update counts. */ 1841 atomic_long_add(rhcount, &rdp->nocb_q_count); 1842 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1843 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1844 WRITE_ONCE(*old_rhpp, rhp); 1845 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1846 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1847 1848 /* If we are not being polled and there is a kthread, awaken it ... */ 1849 t = READ_ONCE(rdp->nocb_kthread); 1850 if (rcu_nocb_poll || !t) { 1851 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1852 TPS("WakeNotPoll")); 1853 return; 1854 } 1855 len = atomic_long_read(&rdp->nocb_q_count); 1856 if (old_rhpp == &rdp->nocb_head) { 1857 if (!irqs_disabled_flags(flags)) { 1858 /* ... if queue was empty ... */ 1859 wake_nocb_leader(rdp, false); 1860 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1861 TPS("WakeEmpty")); 1862 } else { 1863 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE); 1864 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */ 1865 smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true); 1866 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1867 TPS("WakeEmptyIsDeferred")); 1868 } 1869 rdp->qlen_last_fqs_check = 0; 1870 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1871 /* ... or if many callbacks queued. */ 1872 if (!irqs_disabled_flags(flags)) { 1873 wake_nocb_leader(rdp, true); 1874 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1875 TPS("WakeOvf")); 1876 } else { 1877 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_FORCE); 1878 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */ 1879 smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true); 1880 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1881 TPS("WakeOvfIsDeferred")); 1882 } 1883 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1884 } else { 1885 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1886 } 1887 return; 1888 } 1889 1890 /* 1891 * This is a helper for __call_rcu(), which invokes this when the normal 1892 * callback queue is inoperable. If this is not a no-CBs CPU, this 1893 * function returns failure back to __call_rcu(), which can complain 1894 * appropriately. 1895 * 1896 * Otherwise, this function queues the callback where the corresponding 1897 * "rcuo" kthread can find it. 1898 */ 1899 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1900 bool lazy, unsigned long flags) 1901 { 1902 1903 if (!rcu_is_nocb_cpu(rdp->cpu)) 1904 return false; 1905 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1906 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1907 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1908 (unsigned long)rhp->func, 1909 -atomic_long_read(&rdp->nocb_q_count_lazy), 1910 -atomic_long_read(&rdp->nocb_q_count)); 1911 else 1912 trace_rcu_callback(rdp->rsp->name, rhp, 1913 -atomic_long_read(&rdp->nocb_q_count_lazy), 1914 -atomic_long_read(&rdp->nocb_q_count)); 1915 1916 /* 1917 * If called from an extended quiescent state with interrupts 1918 * disabled, invoke the RCU core in order to allow the idle-entry 1919 * deferred-wakeup check to function. 1920 */ 1921 if (irqs_disabled_flags(flags) && 1922 !rcu_is_watching() && 1923 cpu_online(smp_processor_id())) 1924 invoke_rcu_core(); 1925 1926 return true; 1927 } 1928 1929 /* 1930 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 1931 * not a no-CBs CPU. 1932 */ 1933 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 1934 struct rcu_data *rdp, 1935 unsigned long flags) 1936 { 1937 long ql = rsp->orphan_done.len; 1938 long qll = rsp->orphan_done.len_lazy; 1939 1940 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 1941 if (!rcu_is_nocb_cpu(smp_processor_id())) 1942 return false; 1943 1944 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 1945 if (rsp->orphan_done.head) { 1946 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done), 1947 rcu_cblist_tail(&rsp->orphan_done), 1948 ql, qll, flags); 1949 } 1950 if (rsp->orphan_pend.head) { 1951 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend), 1952 rcu_cblist_tail(&rsp->orphan_pend), 1953 ql, qll, flags); 1954 } 1955 rcu_cblist_init(&rsp->orphan_done); 1956 rcu_cblist_init(&rsp->orphan_pend); 1957 return true; 1958 } 1959 1960 /* 1961 * If necessary, kick off a new grace period, and either way wait 1962 * for a subsequent grace period to complete. 1963 */ 1964 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 1965 { 1966 unsigned long c; 1967 bool d; 1968 unsigned long flags; 1969 bool needwake; 1970 struct rcu_node *rnp = rdp->mynode; 1971 1972 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1973 needwake = rcu_start_future_gp(rnp, rdp, &c); 1974 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1975 if (needwake) 1976 rcu_gp_kthread_wake(rdp->rsp); 1977 1978 /* 1979 * Wait for the grace period. Do so interruptibly to avoid messing 1980 * up the load average. 1981 */ 1982 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 1983 for (;;) { 1984 swait_event_interruptible( 1985 rnp->nocb_gp_wq[c & 0x1], 1986 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 1987 if (likely(d)) 1988 break; 1989 WARN_ON(signal_pending(current)); 1990 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 1991 } 1992 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 1993 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 1994 } 1995 1996 /* 1997 * Leaders come here to wait for additional callbacks to show up. 1998 * This function does not return until callbacks appear. 1999 */ 2000 static void nocb_leader_wait(struct rcu_data *my_rdp) 2001 { 2002 bool firsttime = true; 2003 bool gotcbs; 2004 struct rcu_data *rdp; 2005 struct rcu_head **tail; 2006 2007 wait_again: 2008 2009 /* Wait for callbacks to appear. */ 2010 if (!rcu_nocb_poll) { 2011 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2012 swait_event_interruptible(my_rdp->nocb_wq, 2013 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2014 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2015 } else if (firsttime) { 2016 firsttime = false; /* Don't drown trace log with "Poll"! */ 2017 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2018 } 2019 2020 /* 2021 * Each pass through the following loop checks a follower for CBs. 2022 * We are our own first follower. Any CBs found are moved to 2023 * nocb_gp_head, where they await a grace period. 2024 */ 2025 gotcbs = false; 2026 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2027 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2028 if (!rdp->nocb_gp_head) 2029 continue; /* No CBs here, try next follower. */ 2030 2031 /* Move callbacks to wait-for-GP list, which is empty. */ 2032 WRITE_ONCE(rdp->nocb_head, NULL); 2033 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2034 gotcbs = true; 2035 } 2036 2037 /* 2038 * If there were no callbacks, sleep a bit, rescan after a 2039 * memory barrier, and go retry. 2040 */ 2041 if (unlikely(!gotcbs)) { 2042 if (!rcu_nocb_poll) 2043 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2044 "WokeEmpty"); 2045 WARN_ON(signal_pending(current)); 2046 schedule_timeout_interruptible(1); 2047 2048 /* Rescan in case we were a victim of memory ordering. */ 2049 my_rdp->nocb_leader_sleep = true; 2050 smp_mb(); /* Ensure _sleep true before scan. */ 2051 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2052 if (READ_ONCE(rdp->nocb_head)) { 2053 /* Found CB, so short-circuit next wait. */ 2054 my_rdp->nocb_leader_sleep = false; 2055 break; 2056 } 2057 goto wait_again; 2058 } 2059 2060 /* Wait for one grace period. */ 2061 rcu_nocb_wait_gp(my_rdp); 2062 2063 /* 2064 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2065 * We set it now, but recheck for new callbacks while 2066 * traversing our follower list. 2067 */ 2068 my_rdp->nocb_leader_sleep = true; 2069 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2070 2071 /* Each pass through the following loop wakes a follower, if needed. */ 2072 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2073 if (READ_ONCE(rdp->nocb_head)) 2074 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2075 if (!rdp->nocb_gp_head) 2076 continue; /* No CBs, so no need to wake follower. */ 2077 2078 /* Append callbacks to follower's "done" list. */ 2079 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2080 *tail = rdp->nocb_gp_head; 2081 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2082 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2083 /* 2084 * List was empty, wake up the follower. 2085 * Memory barriers supplied by atomic_long_add(). 2086 */ 2087 swake_up(&rdp->nocb_wq); 2088 } 2089 } 2090 2091 /* If we (the leader) don't have CBs, go wait some more. */ 2092 if (!my_rdp->nocb_follower_head) 2093 goto wait_again; 2094 } 2095 2096 /* 2097 * Followers come here to wait for additional callbacks to show up. 2098 * This function does not return until callbacks appear. 2099 */ 2100 static void nocb_follower_wait(struct rcu_data *rdp) 2101 { 2102 bool firsttime = true; 2103 2104 for (;;) { 2105 if (!rcu_nocb_poll) { 2106 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2107 "FollowerSleep"); 2108 swait_event_interruptible(rdp->nocb_wq, 2109 READ_ONCE(rdp->nocb_follower_head)); 2110 } else if (firsttime) { 2111 /* Don't drown trace log with "Poll"! */ 2112 firsttime = false; 2113 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2114 } 2115 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2116 /* ^^^ Ensure CB invocation follows _head test. */ 2117 return; 2118 } 2119 if (!rcu_nocb_poll) 2120 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2121 "WokeEmpty"); 2122 WARN_ON(signal_pending(current)); 2123 schedule_timeout_interruptible(1); 2124 } 2125 } 2126 2127 /* 2128 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2129 * callbacks queued by the corresponding no-CBs CPU, however, there is 2130 * an optional leader-follower relationship so that the grace-period 2131 * kthreads don't have to do quite so many wakeups. 2132 */ 2133 static int rcu_nocb_kthread(void *arg) 2134 { 2135 int c, cl; 2136 struct rcu_head *list; 2137 struct rcu_head *next; 2138 struct rcu_head **tail; 2139 struct rcu_data *rdp = arg; 2140 2141 /* Each pass through this loop invokes one batch of callbacks */ 2142 for (;;) { 2143 /* Wait for callbacks. */ 2144 if (rdp->nocb_leader == rdp) 2145 nocb_leader_wait(rdp); 2146 else 2147 nocb_follower_wait(rdp); 2148 2149 /* Pull the ready-to-invoke callbacks onto local list. */ 2150 list = READ_ONCE(rdp->nocb_follower_head); 2151 BUG_ON(!list); 2152 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2153 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2154 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2155 2156 /* Each pass through the following loop invokes a callback. */ 2157 trace_rcu_batch_start(rdp->rsp->name, 2158 atomic_long_read(&rdp->nocb_q_count_lazy), 2159 atomic_long_read(&rdp->nocb_q_count), -1); 2160 c = cl = 0; 2161 while (list) { 2162 next = list->next; 2163 /* Wait for enqueuing to complete, if needed. */ 2164 while (next == NULL && &list->next != tail) { 2165 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2166 TPS("WaitQueue")); 2167 schedule_timeout_interruptible(1); 2168 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2169 TPS("WokeQueue")); 2170 next = list->next; 2171 } 2172 debug_rcu_head_unqueue(list); 2173 local_bh_disable(); 2174 if (__rcu_reclaim(rdp->rsp->name, list)) 2175 cl++; 2176 c++; 2177 local_bh_enable(); 2178 cond_resched_rcu_qs(); 2179 list = next; 2180 } 2181 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2182 smp_mb__before_atomic(); /* _add after CB invocation. */ 2183 atomic_long_add(-c, &rdp->nocb_q_count); 2184 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2185 rdp->n_nocbs_invoked += c; 2186 } 2187 return 0; 2188 } 2189 2190 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2191 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2192 { 2193 return READ_ONCE(rdp->nocb_defer_wakeup); 2194 } 2195 2196 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2197 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2198 { 2199 int ndw; 2200 2201 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2202 return; 2203 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2204 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); 2205 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2206 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2207 } 2208 2209 void __init rcu_init_nohz(void) 2210 { 2211 int cpu; 2212 bool need_rcu_nocb_mask = true; 2213 struct rcu_state *rsp; 2214 2215 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2216 need_rcu_nocb_mask = false; 2217 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2218 2219 #if defined(CONFIG_NO_HZ_FULL) 2220 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2221 need_rcu_nocb_mask = true; 2222 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2223 2224 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2225 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2226 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2227 return; 2228 } 2229 have_rcu_nocb_mask = true; 2230 } 2231 if (!have_rcu_nocb_mask) 2232 return; 2233 2234 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2235 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2236 cpumask_set_cpu(0, rcu_nocb_mask); 2237 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2238 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2239 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2240 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2241 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2242 #if defined(CONFIG_NO_HZ_FULL) 2243 if (tick_nohz_full_running) 2244 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2245 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2246 2247 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2248 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2249 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2250 rcu_nocb_mask); 2251 } 2252 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2253 cpumask_pr_args(rcu_nocb_mask)); 2254 if (rcu_nocb_poll) 2255 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2256 2257 for_each_rcu_flavor(rsp) { 2258 for_each_cpu(cpu, rcu_nocb_mask) 2259 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2260 rcu_organize_nocb_kthreads(rsp); 2261 } 2262 } 2263 2264 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2265 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2266 { 2267 rdp->nocb_tail = &rdp->nocb_head; 2268 init_swait_queue_head(&rdp->nocb_wq); 2269 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2270 } 2271 2272 /* 2273 * If the specified CPU is a no-CBs CPU that does not already have its 2274 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2275 * brought online out of order, this can require re-organizing the 2276 * leader-follower relationships. 2277 */ 2278 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2279 { 2280 struct rcu_data *rdp; 2281 struct rcu_data *rdp_last; 2282 struct rcu_data *rdp_old_leader; 2283 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2284 struct task_struct *t; 2285 2286 /* 2287 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2288 * then nothing to do. 2289 */ 2290 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2291 return; 2292 2293 /* If we didn't spawn the leader first, reorganize! */ 2294 rdp_old_leader = rdp_spawn->nocb_leader; 2295 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2296 rdp_last = NULL; 2297 rdp = rdp_old_leader; 2298 do { 2299 rdp->nocb_leader = rdp_spawn; 2300 if (rdp_last && rdp != rdp_spawn) 2301 rdp_last->nocb_next_follower = rdp; 2302 if (rdp == rdp_spawn) { 2303 rdp = rdp->nocb_next_follower; 2304 } else { 2305 rdp_last = rdp; 2306 rdp = rdp->nocb_next_follower; 2307 rdp_last->nocb_next_follower = NULL; 2308 } 2309 } while (rdp); 2310 rdp_spawn->nocb_next_follower = rdp_old_leader; 2311 } 2312 2313 /* Spawn the kthread for this CPU and RCU flavor. */ 2314 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2315 "rcuo%c/%d", rsp->abbr, cpu); 2316 BUG_ON(IS_ERR(t)); 2317 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2318 } 2319 2320 /* 2321 * If the specified CPU is a no-CBs CPU that does not already have its 2322 * rcuo kthreads, spawn them. 2323 */ 2324 static void rcu_spawn_all_nocb_kthreads(int cpu) 2325 { 2326 struct rcu_state *rsp; 2327 2328 if (rcu_scheduler_fully_active) 2329 for_each_rcu_flavor(rsp) 2330 rcu_spawn_one_nocb_kthread(rsp, cpu); 2331 } 2332 2333 /* 2334 * Once the scheduler is running, spawn rcuo kthreads for all online 2335 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2336 * non-boot CPUs come online -- if this changes, we will need to add 2337 * some mutual exclusion. 2338 */ 2339 static void __init rcu_spawn_nocb_kthreads(void) 2340 { 2341 int cpu; 2342 2343 for_each_online_cpu(cpu) 2344 rcu_spawn_all_nocb_kthreads(cpu); 2345 } 2346 2347 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2348 static int rcu_nocb_leader_stride = -1; 2349 module_param(rcu_nocb_leader_stride, int, 0444); 2350 2351 /* 2352 * Initialize leader-follower relationships for all no-CBs CPU. 2353 */ 2354 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2355 { 2356 int cpu; 2357 int ls = rcu_nocb_leader_stride; 2358 int nl = 0; /* Next leader. */ 2359 struct rcu_data *rdp; 2360 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2361 struct rcu_data *rdp_prev = NULL; 2362 2363 if (!have_rcu_nocb_mask) 2364 return; 2365 if (ls == -1) { 2366 ls = int_sqrt(nr_cpu_ids); 2367 rcu_nocb_leader_stride = ls; 2368 } 2369 2370 /* 2371 * Each pass through this loop sets up one rcu_data structure. 2372 * Should the corresponding CPU come online in the future, then 2373 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2374 */ 2375 for_each_cpu(cpu, rcu_nocb_mask) { 2376 rdp = per_cpu_ptr(rsp->rda, cpu); 2377 if (rdp->cpu >= nl) { 2378 /* New leader, set up for followers & next leader. */ 2379 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2380 rdp->nocb_leader = rdp; 2381 rdp_leader = rdp; 2382 } else { 2383 /* Another follower, link to previous leader. */ 2384 rdp->nocb_leader = rdp_leader; 2385 rdp_prev->nocb_next_follower = rdp; 2386 } 2387 rdp_prev = rdp; 2388 } 2389 } 2390 2391 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2392 static bool init_nocb_callback_list(struct rcu_data *rdp) 2393 { 2394 if (!rcu_is_nocb_cpu(rdp->cpu)) 2395 return false; 2396 2397 /* If there are early-boot callbacks, move them to nocb lists. */ 2398 if (!rcu_segcblist_empty(&rdp->cblist)) { 2399 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2400 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2401 atomic_long_set(&rdp->nocb_q_count, 2402 rcu_segcblist_n_cbs(&rdp->cblist)); 2403 atomic_long_set(&rdp->nocb_q_count_lazy, 2404 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2405 rcu_segcblist_init(&rdp->cblist); 2406 } 2407 rcu_segcblist_disable(&rdp->cblist); 2408 return true; 2409 } 2410 2411 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2412 2413 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2414 { 2415 WARN_ON_ONCE(1); /* Should be dead code. */ 2416 return false; 2417 } 2418 2419 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2420 { 2421 } 2422 2423 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2424 { 2425 } 2426 2427 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2428 { 2429 return NULL; 2430 } 2431 2432 static void rcu_init_one_nocb(struct rcu_node *rnp) 2433 { 2434 } 2435 2436 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2437 bool lazy, unsigned long flags) 2438 { 2439 return false; 2440 } 2441 2442 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2443 struct rcu_data *rdp, 2444 unsigned long flags) 2445 { 2446 return false; 2447 } 2448 2449 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2450 { 2451 } 2452 2453 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2454 { 2455 return false; 2456 } 2457 2458 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2459 { 2460 } 2461 2462 static void rcu_spawn_all_nocb_kthreads(int cpu) 2463 { 2464 } 2465 2466 static void __init rcu_spawn_nocb_kthreads(void) 2467 { 2468 } 2469 2470 static bool init_nocb_callback_list(struct rcu_data *rdp) 2471 { 2472 return false; 2473 } 2474 2475 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2476 2477 /* 2478 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2479 * arbitrarily long period of time with the scheduling-clock tick turned 2480 * off. RCU will be paying attention to this CPU because it is in the 2481 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2482 * machine because the scheduling-clock tick has been disabled. Therefore, 2483 * if an adaptive-ticks CPU is failing to respond to the current grace 2484 * period and has not be idle from an RCU perspective, kick it. 2485 */ 2486 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2487 { 2488 #ifdef CONFIG_NO_HZ_FULL 2489 if (tick_nohz_full_cpu(cpu)) 2490 smp_send_reschedule(cpu); 2491 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2492 } 2493 2494 2495 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2496 2497 static int full_sysidle_state; /* Current system-idle state. */ 2498 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2499 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2500 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2501 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2502 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2503 2504 /* 2505 * Invoked to note exit from irq or task transition to idle. Note that 2506 * usermode execution does -not- count as idle here! After all, we want 2507 * to detect full-system idle states, not RCU quiescent states and grace 2508 * periods. The caller must have disabled interrupts. 2509 */ 2510 static void rcu_sysidle_enter(int irq) 2511 { 2512 unsigned long j; 2513 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2514 2515 /* If there are no nohz_full= CPUs, no need to track this. */ 2516 if (!tick_nohz_full_enabled()) 2517 return; 2518 2519 /* Adjust nesting, check for fully idle. */ 2520 if (irq) { 2521 rdtp->dynticks_idle_nesting--; 2522 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2523 if (rdtp->dynticks_idle_nesting != 0) 2524 return; /* Still not fully idle. */ 2525 } else { 2526 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2527 DYNTICK_TASK_NEST_VALUE) { 2528 rdtp->dynticks_idle_nesting = 0; 2529 } else { 2530 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2531 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2532 return; /* Still not fully idle. */ 2533 } 2534 } 2535 2536 /* Record start of fully idle period. */ 2537 j = jiffies; 2538 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); 2539 smp_mb__before_atomic(); 2540 atomic_inc(&rdtp->dynticks_idle); 2541 smp_mb__after_atomic(); 2542 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2543 } 2544 2545 /* 2546 * Unconditionally force exit from full system-idle state. This is 2547 * invoked when a normal CPU exits idle, but must be called separately 2548 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2549 * is that the timekeeping CPU is permitted to take scheduling-clock 2550 * interrupts while the system is in system-idle state, and of course 2551 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2552 * interrupt from any other type of interrupt. 2553 */ 2554 void rcu_sysidle_force_exit(void) 2555 { 2556 int oldstate = READ_ONCE(full_sysidle_state); 2557 int newoldstate; 2558 2559 /* 2560 * Each pass through the following loop attempts to exit full 2561 * system-idle state. If contention proves to be a problem, 2562 * a trylock-based contention tree could be used here. 2563 */ 2564 while (oldstate > RCU_SYSIDLE_SHORT) { 2565 newoldstate = cmpxchg(&full_sysidle_state, 2566 oldstate, RCU_SYSIDLE_NOT); 2567 if (oldstate == newoldstate && 2568 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2569 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2570 return; /* We cleared it, done! */ 2571 } 2572 oldstate = newoldstate; 2573 } 2574 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2575 } 2576 2577 /* 2578 * Invoked to note entry to irq or task transition from idle. Note that 2579 * usermode execution does -not- count as idle here! The caller must 2580 * have disabled interrupts. 2581 */ 2582 static void rcu_sysidle_exit(int irq) 2583 { 2584 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2585 2586 /* If there are no nohz_full= CPUs, no need to track this. */ 2587 if (!tick_nohz_full_enabled()) 2588 return; 2589 2590 /* Adjust nesting, check for already non-idle. */ 2591 if (irq) { 2592 rdtp->dynticks_idle_nesting++; 2593 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2594 if (rdtp->dynticks_idle_nesting != 1) 2595 return; /* Already non-idle. */ 2596 } else { 2597 /* 2598 * Allow for irq misnesting. Yes, it really is possible 2599 * to enter an irq handler then never leave it, and maybe 2600 * also vice versa. Handle both possibilities. 2601 */ 2602 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2603 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2604 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2605 return; /* Already non-idle. */ 2606 } else { 2607 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2608 } 2609 } 2610 2611 /* Record end of idle period. */ 2612 smp_mb__before_atomic(); 2613 atomic_inc(&rdtp->dynticks_idle); 2614 smp_mb__after_atomic(); 2615 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2616 2617 /* 2618 * If we are the timekeeping CPU, we are permitted to be non-idle 2619 * during a system-idle state. This must be the case, because 2620 * the timekeeping CPU has to take scheduling-clock interrupts 2621 * during the time that the system is transitioning to full 2622 * system-idle state. This means that the timekeeping CPU must 2623 * invoke rcu_sysidle_force_exit() directly if it does anything 2624 * more than take a scheduling-clock interrupt. 2625 */ 2626 if (smp_processor_id() == tick_do_timer_cpu) 2627 return; 2628 2629 /* Update system-idle state: We are clearly no longer fully idle! */ 2630 rcu_sysidle_force_exit(); 2631 } 2632 2633 /* 2634 * Check to see if the current CPU is idle. Note that usermode execution 2635 * does not count as idle. The caller must have disabled interrupts, 2636 * and must be running on tick_do_timer_cpu. 2637 */ 2638 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2639 unsigned long *maxj) 2640 { 2641 int cur; 2642 unsigned long j; 2643 struct rcu_dynticks *rdtp = rdp->dynticks; 2644 2645 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2646 if (!tick_nohz_full_enabled()) 2647 return; 2648 2649 /* 2650 * If some other CPU has already reported non-idle, if this is 2651 * not the flavor of RCU that tracks sysidle state, or if this 2652 * is an offline or the timekeeping CPU, nothing to do. 2653 */ 2654 if (!*isidle || rdp->rsp != rcu_state_p || 2655 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2656 return; 2657 /* Verify affinity of current kthread. */ 2658 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2659 2660 /* Pick up current idle and NMI-nesting counter and check. */ 2661 cur = atomic_read(&rdtp->dynticks_idle); 2662 if (cur & 0x1) { 2663 *isidle = false; /* We are not idle! */ 2664 return; 2665 } 2666 smp_mb(); /* Read counters before timestamps. */ 2667 2668 /* Pick up timestamps. */ 2669 j = READ_ONCE(rdtp->dynticks_idle_jiffies); 2670 /* If this CPU entered idle more recently, update maxj timestamp. */ 2671 if (ULONG_CMP_LT(*maxj, j)) 2672 *maxj = j; 2673 } 2674 2675 /* 2676 * Is this the flavor of RCU that is handling full-system idle? 2677 */ 2678 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2679 { 2680 return rsp == rcu_state_p; 2681 } 2682 2683 /* 2684 * Return a delay in jiffies based on the number of CPUs, rcu_node 2685 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2686 * systems more time to transition to full-idle state in order to 2687 * avoid the cache thrashing that otherwise occur on the state variable. 2688 * Really small systems (less than a couple of tens of CPUs) should 2689 * instead use a single global atomically incremented counter, and later 2690 * versions of this will automatically reconfigure themselves accordingly. 2691 */ 2692 static unsigned long rcu_sysidle_delay(void) 2693 { 2694 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2695 return 0; 2696 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2697 } 2698 2699 /* 2700 * Advance the full-system-idle state. This is invoked when all of 2701 * the non-timekeeping CPUs are idle. 2702 */ 2703 static void rcu_sysidle(unsigned long j) 2704 { 2705 /* Check the current state. */ 2706 switch (READ_ONCE(full_sysidle_state)) { 2707 case RCU_SYSIDLE_NOT: 2708 2709 /* First time all are idle, so note a short idle period. */ 2710 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); 2711 break; 2712 2713 case RCU_SYSIDLE_SHORT: 2714 2715 /* 2716 * Idle for a bit, time to advance to next state? 2717 * cmpxchg failure means race with non-idle, let them win. 2718 */ 2719 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2720 (void)cmpxchg(&full_sysidle_state, 2721 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2722 break; 2723 2724 case RCU_SYSIDLE_LONG: 2725 2726 /* 2727 * Do an additional check pass before advancing to full. 2728 * cmpxchg failure means race with non-idle, let them win. 2729 */ 2730 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2731 (void)cmpxchg(&full_sysidle_state, 2732 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2733 break; 2734 2735 default: 2736 break; 2737 } 2738 } 2739 2740 /* 2741 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2742 * back to the beginning. 2743 */ 2744 static void rcu_sysidle_cancel(void) 2745 { 2746 smp_mb(); 2747 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2748 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); 2749 } 2750 2751 /* 2752 * Update the sysidle state based on the results of a force-quiescent-state 2753 * scan of the CPUs' dyntick-idle state. 2754 */ 2755 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2756 unsigned long maxj, bool gpkt) 2757 { 2758 if (rsp != rcu_state_p) 2759 return; /* Wrong flavor, ignore. */ 2760 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2761 return; /* Running state machine from timekeeping CPU. */ 2762 if (isidle) 2763 rcu_sysidle(maxj); /* More idle! */ 2764 else 2765 rcu_sysidle_cancel(); /* Idle is over. */ 2766 } 2767 2768 /* 2769 * Wrapper for rcu_sysidle_report() when called from the grace-period 2770 * kthread's context. 2771 */ 2772 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2773 unsigned long maxj) 2774 { 2775 /* If there are no nohz_full= CPUs, no need to track this. */ 2776 if (!tick_nohz_full_enabled()) 2777 return; 2778 2779 rcu_sysidle_report(rsp, isidle, maxj, true); 2780 } 2781 2782 /* Callback and function for forcing an RCU grace period. */ 2783 struct rcu_sysidle_head { 2784 struct rcu_head rh; 2785 int inuse; 2786 }; 2787 2788 static void rcu_sysidle_cb(struct rcu_head *rhp) 2789 { 2790 struct rcu_sysidle_head *rshp; 2791 2792 /* 2793 * The following memory barrier is needed to replace the 2794 * memory barriers that would normally be in the memory 2795 * allocator. 2796 */ 2797 smp_mb(); /* grace period precedes setting inuse. */ 2798 2799 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2800 WRITE_ONCE(rshp->inuse, 0); 2801 } 2802 2803 /* 2804 * Check to see if the system is fully idle, other than the timekeeping CPU. 2805 * The caller must have disabled interrupts. This is not intended to be 2806 * called unless tick_nohz_full_enabled(). 2807 */ 2808 bool rcu_sys_is_idle(void) 2809 { 2810 static struct rcu_sysidle_head rsh; 2811 int rss = READ_ONCE(full_sysidle_state); 2812 2813 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2814 return false; 2815 2816 /* Handle small-system case by doing a full scan of CPUs. */ 2817 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2818 int oldrss = rss - 1; 2819 2820 /* 2821 * One pass to advance to each state up to _FULL. 2822 * Give up if any pass fails to advance the state. 2823 */ 2824 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2825 int cpu; 2826 bool isidle = true; 2827 unsigned long maxj = jiffies - ULONG_MAX / 4; 2828 struct rcu_data *rdp; 2829 2830 /* Scan all the CPUs looking for nonidle CPUs. */ 2831 for_each_possible_cpu(cpu) { 2832 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2833 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2834 if (!isidle) 2835 break; 2836 } 2837 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2838 oldrss = rss; 2839 rss = READ_ONCE(full_sysidle_state); 2840 } 2841 } 2842 2843 /* If this is the first observation of an idle period, record it. */ 2844 if (rss == RCU_SYSIDLE_FULL) { 2845 rss = cmpxchg(&full_sysidle_state, 2846 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2847 return rss == RCU_SYSIDLE_FULL; 2848 } 2849 2850 smp_mb(); /* ensure rss load happens before later caller actions. */ 2851 2852 /* If already fully idle, tell the caller (in case of races). */ 2853 if (rss == RCU_SYSIDLE_FULL_NOTED) 2854 return true; 2855 2856 /* 2857 * If we aren't there yet, and a grace period is not in flight, 2858 * initiate a grace period. Either way, tell the caller that 2859 * we are not there yet. We use an xchg() rather than an assignment 2860 * to make up for the memory barriers that would otherwise be 2861 * provided by the memory allocator. 2862 */ 2863 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2864 !rcu_gp_in_progress(rcu_state_p) && 2865 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2866 call_rcu(&rsh.rh, rcu_sysidle_cb); 2867 return false; 2868 } 2869 2870 /* 2871 * Initialize dynticks sysidle state for CPUs coming online. 2872 */ 2873 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2874 { 2875 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 2876 } 2877 2878 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2879 2880 static void rcu_sysidle_enter(int irq) 2881 { 2882 } 2883 2884 static void rcu_sysidle_exit(int irq) 2885 { 2886 } 2887 2888 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2889 unsigned long *maxj) 2890 { 2891 } 2892 2893 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2894 { 2895 return false; 2896 } 2897 2898 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2899 unsigned long maxj) 2900 { 2901 } 2902 2903 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2904 { 2905 } 2906 2907 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2908 2909 /* 2910 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2911 * grace-period kthread will do force_quiescent_state() processing? 2912 * The idea is to avoid waking up RCU core processing on such a 2913 * CPU unless the grace period has extended for too long. 2914 * 2915 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2916 * CONFIG_RCU_NOCB_CPU CPUs. 2917 */ 2918 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2919 { 2920 #ifdef CONFIG_NO_HZ_FULL 2921 if (tick_nohz_full_cpu(smp_processor_id()) && 2922 (!rcu_gp_in_progress(rsp) || 2923 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2924 return true; 2925 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2926 return false; 2927 } 2928 2929 /* 2930 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2931 * timekeeping CPU. 2932 */ 2933 static void rcu_bind_gp_kthread(void) 2934 { 2935 int __maybe_unused cpu; 2936 2937 if (!tick_nohz_full_enabled()) 2938 return; 2939 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2940 cpu = tick_do_timer_cpu; 2941 if (cpu >= 0 && cpu < nr_cpu_ids) 2942 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 2943 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2944 housekeeping_affine(current); 2945 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2946 } 2947 2948 /* Record the current task on dyntick-idle entry. */ 2949 static void rcu_dynticks_task_enter(void) 2950 { 2951 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2952 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2953 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2954 } 2955 2956 /* Record no current task on dyntick-idle exit. */ 2957 static void rcu_dynticks_task_exit(void) 2958 { 2959 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2960 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2961 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2962 } 2963