1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 64 static bool rcu_nocb_is_setup; 65 66 static int __init rcu_nocb_setup(char *str) 67 { 68 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 69 if (*str == '=') { 70 if (cpulist_parse(++str, rcu_nocb_mask)) { 71 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 72 cpumask_setall(rcu_nocb_mask); 73 } 74 } 75 rcu_nocb_is_setup = true; 76 return 1; 77 } 78 __setup("rcu_nocbs", rcu_nocb_setup); 79 80 static int __init parse_rcu_nocb_poll(char *arg) 81 { 82 rcu_nocb_poll = true; 83 return 0; 84 } 85 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 86 87 /* 88 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 89 * After all, the main point of bypassing is to avoid lock contention 90 * on ->nocb_lock, which only can happen at high call_rcu() rates. 91 */ 92 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 93 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 94 95 /* 96 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 97 * lock isn't immediately available, increment ->nocb_lock_contended to 98 * flag the contention. 99 */ 100 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 101 __acquires(&rdp->nocb_bypass_lock) 102 { 103 lockdep_assert_irqs_disabled(); 104 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 105 return; 106 atomic_inc(&rdp->nocb_lock_contended); 107 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 108 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 109 raw_spin_lock(&rdp->nocb_bypass_lock); 110 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 111 atomic_dec(&rdp->nocb_lock_contended); 112 } 113 114 /* 115 * Spinwait until the specified rcu_data structure's ->nocb_lock is 116 * not contended. Please note that this is extremely special-purpose, 117 * relying on the fact that at most two kthreads and one CPU contend for 118 * this lock, and also that the two kthreads are guaranteed to have frequent 119 * grace-period-duration time intervals between successive acquisitions 120 * of the lock. This allows us to use an extremely simple throttling 121 * mechanism, and further to apply it only to the CPU doing floods of 122 * call_rcu() invocations. Don't try this at home! 123 */ 124 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 125 { 126 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 127 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 128 cpu_relax(); 129 } 130 131 /* 132 * Conditionally acquire the specified rcu_data structure's 133 * ->nocb_bypass_lock. 134 */ 135 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 136 { 137 lockdep_assert_irqs_disabled(); 138 return raw_spin_trylock(&rdp->nocb_bypass_lock); 139 } 140 141 /* 142 * Release the specified rcu_data structure's ->nocb_bypass_lock. 143 */ 144 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 145 __releases(&rdp->nocb_bypass_lock) 146 { 147 lockdep_assert_irqs_disabled(); 148 raw_spin_unlock(&rdp->nocb_bypass_lock); 149 } 150 151 /* 152 * Acquire the specified rcu_data structure's ->nocb_lock, but only 153 * if it corresponds to a no-CBs CPU. 154 */ 155 static void rcu_nocb_lock(struct rcu_data *rdp) 156 { 157 lockdep_assert_irqs_disabled(); 158 if (!rcu_rdp_is_offloaded(rdp)) 159 return; 160 raw_spin_lock(&rdp->nocb_lock); 161 } 162 163 /* 164 * Release the specified rcu_data structure's ->nocb_lock, but only 165 * if it corresponds to a no-CBs CPU. 166 */ 167 static void rcu_nocb_unlock(struct rcu_data *rdp) 168 { 169 if (rcu_rdp_is_offloaded(rdp)) { 170 lockdep_assert_irqs_disabled(); 171 raw_spin_unlock(&rdp->nocb_lock); 172 } 173 } 174 175 /* 176 * Release the specified rcu_data structure's ->nocb_lock and restore 177 * interrupts, but only if it corresponds to a no-CBs CPU. 178 */ 179 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 180 unsigned long flags) 181 { 182 if (rcu_rdp_is_offloaded(rdp)) { 183 lockdep_assert_irqs_disabled(); 184 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 185 } else { 186 local_irq_restore(flags); 187 } 188 } 189 190 /* Lockdep check that ->cblist may be safely accessed. */ 191 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 192 { 193 lockdep_assert_irqs_disabled(); 194 if (rcu_rdp_is_offloaded(rdp)) 195 lockdep_assert_held(&rdp->nocb_lock); 196 } 197 198 /* 199 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 200 * grace period. 201 */ 202 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 203 { 204 swake_up_all(sq); 205 } 206 207 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 208 { 209 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 210 } 211 212 static void rcu_init_one_nocb(struct rcu_node *rnp) 213 { 214 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 215 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 216 } 217 218 /* Is the specified CPU a no-CBs CPU? */ 219 bool rcu_is_nocb_cpu(int cpu) 220 { 221 if (cpumask_available(rcu_nocb_mask)) 222 return cpumask_test_cpu(cpu, rcu_nocb_mask); 223 return false; 224 } 225 226 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 227 struct rcu_data *rdp, 228 bool force, unsigned long flags) 229 __releases(rdp_gp->nocb_gp_lock) 230 { 231 bool needwake = false; 232 233 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 234 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 235 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 236 TPS("AlreadyAwake")); 237 return false; 238 } 239 240 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 241 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 242 del_timer(&rdp_gp->nocb_timer); 243 } 244 245 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 246 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 247 needwake = true; 248 } 249 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 250 if (needwake) { 251 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 252 wake_up_process(rdp_gp->nocb_gp_kthread); 253 } 254 255 return needwake; 256 } 257 258 /* 259 * Kick the GP kthread for this NOCB group. 260 */ 261 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 262 { 263 unsigned long flags; 264 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 265 266 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 267 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 268 } 269 270 /* 271 * Arrange to wake the GP kthread for this NOCB group at some future 272 * time when it is safe to do so. 273 */ 274 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 275 const char *reason) 276 { 277 unsigned long flags; 278 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 279 280 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 281 282 /* 283 * Bypass wakeup overrides previous deferments. In case 284 * of callback storm, no need to wake up too early. 285 */ 286 if (waketype == RCU_NOCB_WAKE_BYPASS) { 287 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 288 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 289 } else { 290 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 291 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 292 if (rdp_gp->nocb_defer_wakeup < waketype) 293 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 294 } 295 296 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 297 298 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 299 } 300 301 /* 302 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 303 * However, if there is a callback to be enqueued and if ->nocb_bypass 304 * proves to be initially empty, just return false because the no-CB GP 305 * kthread may need to be awakened in this case. 306 * 307 * Note that this function always returns true if rhp is NULL. 308 */ 309 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 310 unsigned long j) 311 { 312 struct rcu_cblist rcl; 313 314 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 315 rcu_lockdep_assert_cblist_protected(rdp); 316 lockdep_assert_held(&rdp->nocb_bypass_lock); 317 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 318 raw_spin_unlock(&rdp->nocb_bypass_lock); 319 return false; 320 } 321 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 322 if (rhp) 323 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 324 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 325 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 326 WRITE_ONCE(rdp->nocb_bypass_first, j); 327 rcu_nocb_bypass_unlock(rdp); 328 return true; 329 } 330 331 /* 332 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 333 * However, if there is a callback to be enqueued and if ->nocb_bypass 334 * proves to be initially empty, just return false because the no-CB GP 335 * kthread may need to be awakened in this case. 336 * 337 * Note that this function always returns true if rhp is NULL. 338 */ 339 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 340 unsigned long j) 341 { 342 if (!rcu_rdp_is_offloaded(rdp)) 343 return true; 344 rcu_lockdep_assert_cblist_protected(rdp); 345 rcu_nocb_bypass_lock(rdp); 346 return rcu_nocb_do_flush_bypass(rdp, rhp, j); 347 } 348 349 /* 350 * If the ->nocb_bypass_lock is immediately available, flush the 351 * ->nocb_bypass queue into ->cblist. 352 */ 353 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 354 { 355 rcu_lockdep_assert_cblist_protected(rdp); 356 if (!rcu_rdp_is_offloaded(rdp) || 357 !rcu_nocb_bypass_trylock(rdp)) 358 return; 359 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); 360 } 361 362 /* 363 * See whether it is appropriate to use the ->nocb_bypass list in order 364 * to control contention on ->nocb_lock. A limited number of direct 365 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 366 * is non-empty, further callbacks must be placed into ->nocb_bypass, 367 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 368 * back to direct use of ->cblist. However, ->nocb_bypass should not be 369 * used if ->cblist is empty, because otherwise callbacks can be stranded 370 * on ->nocb_bypass because we cannot count on the current CPU ever again 371 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 372 * non-empty, the corresponding no-CBs grace-period kthread must not be 373 * in an indefinite sleep state. 374 * 375 * Finally, it is not permitted to use the bypass during early boot, 376 * as doing so would confuse the auto-initialization code. Besides 377 * which, there is no point in worrying about lock contention while 378 * there is only one CPU in operation. 379 */ 380 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 381 bool *was_alldone, unsigned long flags) 382 { 383 unsigned long c; 384 unsigned long cur_gp_seq; 385 unsigned long j = jiffies; 386 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 387 388 lockdep_assert_irqs_disabled(); 389 390 // Pure softirq/rcuc based processing: no bypassing, no 391 // locking. 392 if (!rcu_rdp_is_offloaded(rdp)) { 393 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 394 return false; 395 } 396 397 // In the process of (de-)offloading: no bypassing, but 398 // locking. 399 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 400 rcu_nocb_lock(rdp); 401 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 402 return false; /* Not offloaded, no bypassing. */ 403 } 404 405 // Don't use ->nocb_bypass during early boot. 406 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 407 rcu_nocb_lock(rdp); 408 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 409 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 410 return false; 411 } 412 413 // If we have advanced to a new jiffy, reset counts to allow 414 // moving back from ->nocb_bypass to ->cblist. 415 if (j == rdp->nocb_nobypass_last) { 416 c = rdp->nocb_nobypass_count + 1; 417 } else { 418 WRITE_ONCE(rdp->nocb_nobypass_last, j); 419 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 420 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 421 nocb_nobypass_lim_per_jiffy)) 422 c = 0; 423 else if (c > nocb_nobypass_lim_per_jiffy) 424 c = nocb_nobypass_lim_per_jiffy; 425 } 426 WRITE_ONCE(rdp->nocb_nobypass_count, c); 427 428 // If there hasn't yet been all that many ->cblist enqueues 429 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 430 // ->nocb_bypass first. 431 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { 432 rcu_nocb_lock(rdp); 433 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 434 if (*was_alldone) 435 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 436 TPS("FirstQ")); 437 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); 438 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 439 return false; // Caller must enqueue the callback. 440 } 441 442 // If ->nocb_bypass has been used too long or is too full, 443 // flush ->nocb_bypass to ->cblist. 444 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || 445 ncbs >= qhimark) { 446 rcu_nocb_lock(rdp); 447 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { 448 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 449 if (*was_alldone) 450 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 451 TPS("FirstQ")); 452 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 453 return false; // Caller must enqueue the callback. 454 } 455 if (j != rdp->nocb_gp_adv_time && 456 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 457 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 458 rcu_advance_cbs_nowake(rdp->mynode, rdp); 459 rdp->nocb_gp_adv_time = j; 460 } 461 rcu_nocb_unlock_irqrestore(rdp, flags); 462 return true; // Callback already enqueued. 463 } 464 465 // We need to use the bypass. 466 rcu_nocb_wait_contended(rdp); 467 rcu_nocb_bypass_lock(rdp); 468 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 469 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 470 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 471 if (!ncbs) { 472 WRITE_ONCE(rdp->nocb_bypass_first, j); 473 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 474 } 475 rcu_nocb_bypass_unlock(rdp); 476 smp_mb(); /* Order enqueue before wake. */ 477 if (ncbs) { 478 local_irq_restore(flags); 479 } else { 480 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 481 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 482 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 483 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 484 TPS("FirstBQwake")); 485 __call_rcu_nocb_wake(rdp, true, flags); 486 } else { 487 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 488 TPS("FirstBQnoWake")); 489 rcu_nocb_unlock_irqrestore(rdp, flags); 490 } 491 } 492 return true; // Callback already enqueued. 493 } 494 495 /* 496 * Awaken the no-CBs grace-period kthread if needed, either due to it 497 * legitimately being asleep or due to overload conditions. 498 * 499 * If warranted, also wake up the kthread servicing this CPUs queues. 500 */ 501 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 502 unsigned long flags) 503 __releases(rdp->nocb_lock) 504 { 505 unsigned long cur_gp_seq; 506 unsigned long j; 507 long len; 508 struct task_struct *t; 509 510 // If we are being polled or there is no kthread, just leave. 511 t = READ_ONCE(rdp->nocb_gp_kthread); 512 if (rcu_nocb_poll || !t) { 513 rcu_nocb_unlock_irqrestore(rdp, flags); 514 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 515 TPS("WakeNotPoll")); 516 return; 517 } 518 // Need to actually to a wakeup. 519 len = rcu_segcblist_n_cbs(&rdp->cblist); 520 if (was_alldone) { 521 rdp->qlen_last_fqs_check = len; 522 if (!irqs_disabled_flags(flags)) { 523 /* ... if queue was empty ... */ 524 rcu_nocb_unlock_irqrestore(rdp, flags); 525 wake_nocb_gp(rdp, false); 526 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 527 TPS("WakeEmpty")); 528 } else { 529 rcu_nocb_unlock_irqrestore(rdp, flags); 530 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 531 TPS("WakeEmptyIsDeferred")); 532 } 533 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 534 /* ... or if many callbacks queued. */ 535 rdp->qlen_last_fqs_check = len; 536 j = jiffies; 537 if (j != rdp->nocb_gp_adv_time && 538 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 539 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 540 rcu_advance_cbs_nowake(rdp->mynode, rdp); 541 rdp->nocb_gp_adv_time = j; 542 } 543 smp_mb(); /* Enqueue before timer_pending(). */ 544 if ((rdp->nocb_cb_sleep || 545 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 546 !timer_pending(&rdp->nocb_timer)) { 547 rcu_nocb_unlock_irqrestore(rdp, flags); 548 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 549 TPS("WakeOvfIsDeferred")); 550 } else { 551 rcu_nocb_unlock_irqrestore(rdp, flags); 552 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 553 } 554 } else { 555 rcu_nocb_unlock_irqrestore(rdp, flags); 556 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 557 } 558 } 559 560 /* 561 * Check if we ignore this rdp. 562 * 563 * We check that without holding the nocb lock but 564 * we make sure not to miss a freshly offloaded rdp 565 * with the current ordering: 566 * 567 * rdp_offload_toggle() nocb_gp_enabled_cb() 568 * ------------------------- ---------------------------- 569 * WRITE flags LOCK nocb_gp_lock 570 * LOCK nocb_gp_lock READ/WRITE nocb_gp_sleep 571 * READ/WRITE nocb_gp_sleep UNLOCK nocb_gp_lock 572 * UNLOCK nocb_gp_lock READ flags 573 */ 574 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp) 575 { 576 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP; 577 578 return rcu_segcblist_test_flags(&rdp->cblist, flags); 579 } 580 581 static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp, 582 bool *needwake_state) 583 { 584 struct rcu_segcblist *cblist = &rdp->cblist; 585 586 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 587 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 588 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 589 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 590 *needwake_state = true; 591 } 592 return false; 593 } 594 595 /* 596 * De-offloading. Clear our flag and notify the de-offload worker. 597 * We will ignore this rdp until it ever gets re-offloaded. 598 */ 599 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 600 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 601 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 602 *needwake_state = true; 603 return true; 604 } 605 606 607 /* 608 * No-CBs GP kthreads come here to wait for additional callbacks to show up 609 * or for grace periods to end. 610 */ 611 static void nocb_gp_wait(struct rcu_data *my_rdp) 612 { 613 bool bypass = false; 614 long bypass_ncbs; 615 int __maybe_unused cpu = my_rdp->cpu; 616 unsigned long cur_gp_seq; 617 unsigned long flags; 618 bool gotcbs = false; 619 unsigned long j = jiffies; 620 bool needwait_gp = false; // This prevents actual uninitialized use. 621 bool needwake; 622 bool needwake_gp; 623 struct rcu_data *rdp; 624 struct rcu_node *rnp; 625 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 626 bool wasempty = false; 627 628 /* 629 * Each pass through the following loop checks for CBs and for the 630 * nearest grace period (if any) to wait for next. The CB kthreads 631 * and the global grace-period kthread are awakened if needed. 632 */ 633 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 634 /* 635 * An rcu_data structure is removed from the list after its 636 * CPU is de-offloaded and added to the list before that CPU is 637 * (re-)offloaded. If the following loop happens to be referencing 638 * that rcu_data structure during the time that the corresponding 639 * CPU is de-offloaded and then immediately re-offloaded, this 640 * loop's rdp pointer will be carried to the end of the list by 641 * the resulting pair of list operations. This can cause the loop 642 * to skip over some of the rcu_data structures that were supposed 643 * to have been scanned. Fortunately a new iteration through the 644 * entire loop is forced after a given CPU's rcu_data structure 645 * is added to the list, so the skipped-over rcu_data structures 646 * won't be ignored for long. 647 */ 648 list_for_each_entry_rcu(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp, 1) { 649 bool needwake_state = false; 650 651 if (!nocb_gp_enabled_cb(rdp)) 652 continue; 653 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 654 rcu_nocb_lock_irqsave(rdp, flags); 655 if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) { 656 rcu_nocb_unlock_irqrestore(rdp, flags); 657 if (needwake_state) 658 swake_up_one(&rdp->nocb_state_wq); 659 continue; 660 } 661 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 662 if (bypass_ncbs && 663 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 664 bypass_ncbs > 2 * qhimark)) { 665 // Bypass full or old, so flush it. 666 (void)rcu_nocb_try_flush_bypass(rdp, j); 667 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 668 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 669 rcu_nocb_unlock_irqrestore(rdp, flags); 670 if (needwake_state) 671 swake_up_one(&rdp->nocb_state_wq); 672 continue; /* No callbacks here, try next. */ 673 } 674 if (bypass_ncbs) { 675 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 676 TPS("Bypass")); 677 bypass = true; 678 } 679 rnp = rdp->mynode; 680 681 // Advance callbacks if helpful and low contention. 682 needwake_gp = false; 683 if (!rcu_segcblist_restempty(&rdp->cblist, 684 RCU_NEXT_READY_TAIL) || 685 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 686 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 687 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 688 needwake_gp = rcu_advance_cbs(rnp, rdp); 689 wasempty = rcu_segcblist_restempty(&rdp->cblist, 690 RCU_NEXT_READY_TAIL); 691 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 692 } 693 // Need to wait on some grace period? 694 WARN_ON_ONCE(wasempty && 695 !rcu_segcblist_restempty(&rdp->cblist, 696 RCU_NEXT_READY_TAIL)); 697 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 698 if (!needwait_gp || 699 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 700 wait_gp_seq = cur_gp_seq; 701 needwait_gp = true; 702 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 703 TPS("NeedWaitGP")); 704 } 705 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 706 needwake = rdp->nocb_cb_sleep; 707 WRITE_ONCE(rdp->nocb_cb_sleep, false); 708 smp_mb(); /* CB invocation -after- GP end. */ 709 } else { 710 needwake = false; 711 } 712 rcu_nocb_unlock_irqrestore(rdp, flags); 713 if (needwake) { 714 swake_up_one(&rdp->nocb_cb_wq); 715 gotcbs = true; 716 } 717 if (needwake_gp) 718 rcu_gp_kthread_wake(); 719 if (needwake_state) 720 swake_up_one(&rdp->nocb_state_wq); 721 } 722 723 my_rdp->nocb_gp_bypass = bypass; 724 my_rdp->nocb_gp_gp = needwait_gp; 725 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 726 727 if (bypass && !rcu_nocb_poll) { 728 // At least one child with non-empty ->nocb_bypass, so set 729 // timer in order to avoid stranding its callbacks. 730 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 731 TPS("WakeBypassIsDeferred")); 732 } 733 if (rcu_nocb_poll) { 734 /* Polling, so trace if first poll in the series. */ 735 if (gotcbs) 736 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 737 schedule_timeout_idle(1); 738 } else if (!needwait_gp) { 739 /* Wait for callbacks to appear. */ 740 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 741 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 742 !READ_ONCE(my_rdp->nocb_gp_sleep)); 743 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 744 } else { 745 rnp = my_rdp->mynode; 746 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 747 swait_event_interruptible_exclusive( 748 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 749 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 750 !READ_ONCE(my_rdp->nocb_gp_sleep)); 751 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 752 } 753 if (!rcu_nocb_poll) { 754 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 755 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 756 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 757 del_timer(&my_rdp->nocb_timer); 758 } 759 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 760 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 761 } 762 my_rdp->nocb_gp_seq = -1; 763 WARN_ON(signal_pending(current)); 764 } 765 766 /* 767 * No-CBs grace-period-wait kthread. There is one of these per group 768 * of CPUs, but only once at least one CPU in that group has come online 769 * at least once since boot. This kthread checks for newly posted 770 * callbacks from any of the CPUs it is responsible for, waits for a 771 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 772 * that then have callback-invocation work to do. 773 */ 774 static int rcu_nocb_gp_kthread(void *arg) 775 { 776 struct rcu_data *rdp = arg; 777 778 for (;;) { 779 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 780 nocb_gp_wait(rdp); 781 cond_resched_tasks_rcu_qs(); 782 } 783 return 0; 784 } 785 786 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 787 { 788 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 789 790 return rcu_segcblist_test_flags(&rdp->cblist, flags); 791 } 792 793 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 794 { 795 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 796 } 797 798 /* 799 * Invoke any ready callbacks from the corresponding no-CBs CPU, 800 * then, if there are no more, wait for more to appear. 801 */ 802 static void nocb_cb_wait(struct rcu_data *rdp) 803 { 804 struct rcu_segcblist *cblist = &rdp->cblist; 805 unsigned long cur_gp_seq; 806 unsigned long flags; 807 bool needwake_state = false; 808 bool needwake_gp = false; 809 bool can_sleep = true; 810 struct rcu_node *rnp = rdp->mynode; 811 812 do { 813 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 814 nocb_cb_wait_cond(rdp)); 815 816 // VVV Ensure CB invocation follows _sleep test. 817 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 818 WARN_ON(signal_pending(current)); 819 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 820 } 821 } while (!nocb_cb_can_run(rdp)); 822 823 824 local_irq_save(flags); 825 rcu_momentary_dyntick_idle(); 826 local_irq_restore(flags); 827 /* 828 * Disable BH to provide the expected environment. Also, when 829 * transitioning to/from NOCB mode, a self-requeuing callback might 830 * be invoked from softirq. A short grace period could cause both 831 * instances of this callback would execute concurrently. 832 */ 833 local_bh_disable(); 834 rcu_do_batch(rdp); 835 local_bh_enable(); 836 lockdep_assert_irqs_enabled(); 837 rcu_nocb_lock_irqsave(rdp, flags); 838 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 839 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 840 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 841 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 842 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 843 } 844 845 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 846 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 847 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 848 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 849 needwake_state = true; 850 } 851 if (rcu_segcblist_ready_cbs(cblist)) 852 can_sleep = false; 853 } else { 854 /* 855 * De-offloading. Clear our flag and notify the de-offload worker. 856 * We won't touch the callbacks and keep sleeping until we ever 857 * get re-offloaded. 858 */ 859 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 860 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 861 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 862 needwake_state = true; 863 } 864 865 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 866 867 if (rdp->nocb_cb_sleep) 868 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 869 870 rcu_nocb_unlock_irqrestore(rdp, flags); 871 if (needwake_gp) 872 rcu_gp_kthread_wake(); 873 874 if (needwake_state) 875 swake_up_one(&rdp->nocb_state_wq); 876 } 877 878 /* 879 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 880 * nocb_cb_wait() to do the dirty work. 881 */ 882 static int rcu_nocb_cb_kthread(void *arg) 883 { 884 struct rcu_data *rdp = arg; 885 886 // Each pass through this loop does one callback batch, and, 887 // if there are no more ready callbacks, waits for them. 888 for (;;) { 889 nocb_cb_wait(rdp); 890 cond_resched_tasks_rcu_qs(); 891 } 892 return 0; 893 } 894 895 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 896 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 897 { 898 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 899 } 900 901 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 902 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 903 struct rcu_data *rdp, int level, 904 unsigned long flags) 905 __releases(rdp_gp->nocb_gp_lock) 906 { 907 int ndw; 908 int ret; 909 910 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 911 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 912 return false; 913 } 914 915 ndw = rdp_gp->nocb_defer_wakeup; 916 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 917 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 918 919 return ret; 920 } 921 922 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 923 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 924 { 925 unsigned long flags; 926 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 927 928 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 929 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 930 931 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 932 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 933 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 934 } 935 936 /* 937 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 938 * This means we do an inexact common-case check. Note that if 939 * we miss, ->nocb_timer will eventually clean things up. 940 */ 941 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 942 { 943 unsigned long flags; 944 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 945 946 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 947 return false; 948 949 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 950 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 951 } 952 953 void rcu_nocb_flush_deferred_wakeup(void) 954 { 955 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 956 } 957 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 958 959 static int rdp_offload_toggle(struct rcu_data *rdp, 960 bool offload, unsigned long flags) 961 __releases(rdp->nocb_lock) 962 { 963 struct rcu_segcblist *cblist = &rdp->cblist; 964 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 965 bool wake_gp = false; 966 967 rcu_segcblist_offload(cblist, offload); 968 969 if (rdp->nocb_cb_sleep) 970 rdp->nocb_cb_sleep = false; 971 rcu_nocb_unlock_irqrestore(rdp, flags); 972 973 /* 974 * Ignore former value of nocb_cb_sleep and force wake up as it could 975 * have been spuriously set to false already. 976 */ 977 swake_up_one(&rdp->nocb_cb_wq); 978 979 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 980 if (rdp_gp->nocb_gp_sleep) { 981 rdp_gp->nocb_gp_sleep = false; 982 wake_gp = true; 983 } 984 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 985 986 if (wake_gp) 987 wake_up_process(rdp_gp->nocb_gp_kthread); 988 989 return 0; 990 } 991 992 static long rcu_nocb_rdp_deoffload(void *arg) 993 { 994 struct rcu_data *rdp = arg; 995 struct rcu_segcblist *cblist = &rdp->cblist; 996 unsigned long flags; 997 int ret; 998 999 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1000 1001 pr_info("De-offloading %d\n", rdp->cpu); 1002 1003 rcu_nocb_lock_irqsave(rdp, flags); 1004 /* 1005 * Flush once and for all now. This suffices because we are 1006 * running on the target CPU holding ->nocb_lock (thus having 1007 * interrupts disabled), and because rdp_offload_toggle() 1008 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1009 * Thus future calls to rcu_segcblist_completely_offloaded() will 1010 * return false, which means that future calls to rcu_nocb_try_bypass() 1011 * will refuse to put anything into the bypass. 1012 */ 1013 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 1014 /* 1015 * Start with invoking rcu_core() early. This way if the current thread 1016 * happens to preempt an ongoing call to rcu_core() in the middle, 1017 * leaving some work dismissed because rcu_core() still thinks the rdp is 1018 * completely offloaded, we are guaranteed a nearby future instance of 1019 * rcu_core() to catch up. 1020 */ 1021 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1022 invoke_rcu_core(); 1023 ret = rdp_offload_toggle(rdp, false, flags); 1024 swait_event_exclusive(rdp->nocb_state_wq, 1025 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB | 1026 SEGCBLIST_KTHREAD_GP)); 1027 /* Stop nocb_gp_wait() from iterating over this structure. */ 1028 list_del_rcu(&rdp->nocb_entry_rdp); 1029 /* 1030 * Lock one last time to acquire latest callback updates from kthreads 1031 * so we can later handle callbacks locally without locking. 1032 */ 1033 rcu_nocb_lock_irqsave(rdp, flags); 1034 /* 1035 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1036 * lock is released but how about being paranoid for once? 1037 */ 1038 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1039 /* 1040 * Without SEGCBLIST_LOCKING, we can't use 1041 * rcu_nocb_unlock_irqrestore() anymore. 1042 */ 1043 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1044 1045 /* Sanity check */ 1046 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1047 1048 1049 return ret; 1050 } 1051 1052 int rcu_nocb_cpu_deoffload(int cpu) 1053 { 1054 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1055 int ret = 0; 1056 1057 mutex_lock(&rcu_state.barrier_mutex); 1058 cpus_read_lock(); 1059 if (rcu_rdp_is_offloaded(rdp)) { 1060 if (cpu_online(cpu)) { 1061 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1062 if (!ret) 1063 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1064 } else { 1065 pr_info("NOCB: Can't CB-deoffload an offline CPU\n"); 1066 ret = -EINVAL; 1067 } 1068 } 1069 cpus_read_unlock(); 1070 mutex_unlock(&rcu_state.barrier_mutex); 1071 1072 return ret; 1073 } 1074 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1075 1076 static long rcu_nocb_rdp_offload(void *arg) 1077 { 1078 struct rcu_data *rdp = arg; 1079 struct rcu_segcblist *cblist = &rdp->cblist; 1080 unsigned long flags; 1081 int ret; 1082 1083 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1084 /* 1085 * For now we only support re-offload, ie: the rdp must have been 1086 * offloaded on boot first. 1087 */ 1088 if (!rdp->nocb_gp_rdp) 1089 return -EINVAL; 1090 1091 pr_info("Offloading %d\n", rdp->cpu); 1092 1093 /* 1094 * Cause future nocb_gp_wait() invocations to iterate over 1095 * structure, resetting ->nocb_gp_sleep and waking up the related 1096 * "rcuog". Since nocb_gp_wait() in turn locks ->nocb_gp_lock 1097 * before setting ->nocb_gp_sleep again, we are guaranteed to 1098 * iterate this newly added structure before "rcuog" goes to 1099 * sleep again. 1100 */ 1101 list_add_tail_rcu(&rdp->nocb_entry_rdp, &rdp->nocb_gp_rdp->nocb_head_rdp); 1102 1103 /* 1104 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1105 * is set. 1106 */ 1107 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1108 1109 /* 1110 * We didn't take the nocb lock while working on the 1111 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1112 * Every modifications that have been done previously on 1113 * rdp->cblist must be visible remotely by the nocb kthreads 1114 * upon wake up after reading the cblist flags. 1115 * 1116 * The layout against nocb_lock enforces that ordering: 1117 * 1118 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1119 * ------------------------- ---------------------------- 1120 * WRITE callbacks rcu_nocb_lock() 1121 * rcu_nocb_lock() READ flags 1122 * WRITE flags READ callbacks 1123 * rcu_nocb_unlock() rcu_nocb_unlock() 1124 */ 1125 ret = rdp_offload_toggle(rdp, true, flags); 1126 swait_event_exclusive(rdp->nocb_state_wq, 1127 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1128 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1129 1130 /* 1131 * All kthreads are ready to work, we can finally relieve rcu_core() and 1132 * enable nocb bypass. 1133 */ 1134 rcu_nocb_lock_irqsave(rdp, flags); 1135 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1136 rcu_nocb_unlock_irqrestore(rdp, flags); 1137 1138 return ret; 1139 } 1140 1141 int rcu_nocb_cpu_offload(int cpu) 1142 { 1143 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1144 int ret = 0; 1145 1146 mutex_lock(&rcu_state.barrier_mutex); 1147 cpus_read_lock(); 1148 if (!rcu_rdp_is_offloaded(rdp)) { 1149 if (cpu_online(cpu)) { 1150 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1151 if (!ret) 1152 cpumask_set_cpu(cpu, rcu_nocb_mask); 1153 } else { 1154 pr_info("NOCB: Can't CB-offload an offline CPU\n"); 1155 ret = -EINVAL; 1156 } 1157 } 1158 cpus_read_unlock(); 1159 mutex_unlock(&rcu_state.barrier_mutex); 1160 1161 return ret; 1162 } 1163 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1164 1165 void __init rcu_init_nohz(void) 1166 { 1167 int cpu; 1168 bool need_rcu_nocb_mask = false; 1169 struct rcu_data *rdp; 1170 1171 #if defined(CONFIG_NO_HZ_FULL) 1172 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1173 need_rcu_nocb_mask = true; 1174 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 1175 1176 if (need_rcu_nocb_mask) { 1177 if (!cpumask_available(rcu_nocb_mask)) { 1178 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1179 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1180 return; 1181 } 1182 } 1183 rcu_nocb_is_setup = true; 1184 } 1185 1186 if (!rcu_nocb_is_setup) 1187 return; 1188 1189 #if defined(CONFIG_NO_HZ_FULL) 1190 if (tick_nohz_full_running) 1191 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 1192 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 1193 1194 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1195 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1196 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1197 rcu_nocb_mask); 1198 } 1199 if (cpumask_empty(rcu_nocb_mask)) 1200 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1201 else 1202 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1203 cpumask_pr_args(rcu_nocb_mask)); 1204 if (rcu_nocb_poll) 1205 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1206 1207 for_each_cpu(cpu, rcu_nocb_mask) { 1208 rdp = per_cpu_ptr(&rcu_data, cpu); 1209 if (rcu_segcblist_empty(&rdp->cblist)) 1210 rcu_segcblist_init(&rdp->cblist); 1211 rcu_segcblist_offload(&rdp->cblist, true); 1212 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1213 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1214 } 1215 rcu_organize_nocb_kthreads(); 1216 } 1217 1218 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1219 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1220 { 1221 init_swait_queue_head(&rdp->nocb_cb_wq); 1222 init_swait_queue_head(&rdp->nocb_gp_wq); 1223 init_swait_queue_head(&rdp->nocb_state_wq); 1224 raw_spin_lock_init(&rdp->nocb_lock); 1225 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1226 raw_spin_lock_init(&rdp->nocb_gp_lock); 1227 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1228 rcu_cblist_init(&rdp->nocb_bypass); 1229 mutex_init(&rdp->nocb_gp_kthread_mutex); 1230 } 1231 1232 /* 1233 * If the specified CPU is a no-CBs CPU that does not already have its 1234 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1235 * for this CPU's group has not yet been created, spawn it as well. 1236 */ 1237 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1238 { 1239 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1240 struct rcu_data *rdp_gp; 1241 struct task_struct *t; 1242 struct sched_param sp; 1243 1244 if (!rcu_scheduler_fully_active || !rcu_nocb_is_setup) 1245 return; 1246 1247 /* If there already is an rcuo kthread, then nothing to do. */ 1248 if (rdp->nocb_cb_kthread) 1249 return; 1250 1251 /* If we didn't spawn the GP kthread first, reorganize! */ 1252 sp.sched_priority = kthread_prio; 1253 rdp_gp = rdp->nocb_gp_rdp; 1254 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1255 if (!rdp_gp->nocb_gp_kthread) { 1256 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1257 "rcuog/%d", rdp_gp->cpu); 1258 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1259 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1260 return; 1261 } 1262 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1263 if (kthread_prio) 1264 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1265 } 1266 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1267 1268 /* Spawn the kthread for this CPU. */ 1269 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1270 "rcuo%c/%d", rcu_state.abbr, cpu); 1271 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1272 return; 1273 1274 if (kthread_prio) 1275 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1276 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1277 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1278 } 1279 1280 /* 1281 * Once the scheduler is running, spawn rcuo kthreads for all online 1282 * no-CBs CPUs. This assumes that the early_initcall()s happen before 1283 * non-boot CPUs come online -- if this changes, we will need to add 1284 * some mutual exclusion. 1285 */ 1286 static void __init rcu_spawn_nocb_kthreads(void) 1287 { 1288 int cpu; 1289 1290 if (rcu_nocb_is_setup) { 1291 for_each_online_cpu(cpu) 1292 rcu_spawn_cpu_nocb_kthread(cpu); 1293 } 1294 } 1295 1296 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1297 static int rcu_nocb_gp_stride = -1; 1298 module_param(rcu_nocb_gp_stride, int, 0444); 1299 1300 /* 1301 * Initialize GP-CB relationships for all no-CBs CPU. 1302 */ 1303 static void __init rcu_organize_nocb_kthreads(void) 1304 { 1305 int cpu; 1306 bool firsttime = true; 1307 bool gotnocbs = false; 1308 bool gotnocbscbs = true; 1309 int ls = rcu_nocb_gp_stride; 1310 int nl = 0; /* Next GP kthread. */ 1311 struct rcu_data *rdp; 1312 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1313 1314 if (!cpumask_available(rcu_nocb_mask)) 1315 return; 1316 if (ls == -1) { 1317 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1318 rcu_nocb_gp_stride = ls; 1319 } 1320 1321 /* 1322 * Each pass through this loop sets up one rcu_data structure. 1323 * Should the corresponding CPU come online in the future, then 1324 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1325 */ 1326 for_each_possible_cpu(cpu) { 1327 rdp = per_cpu_ptr(&rcu_data, cpu); 1328 if (rdp->cpu >= nl) { 1329 /* New GP kthread, set up for CBs & next GP. */ 1330 gotnocbs = true; 1331 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1332 rdp_gp = rdp; 1333 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1334 if (dump_tree) { 1335 if (!firsttime) 1336 pr_cont("%s\n", gotnocbscbs 1337 ? "" : " (self only)"); 1338 gotnocbscbs = false; 1339 firsttime = false; 1340 pr_alert("%s: No-CB GP kthread CPU %d:", 1341 __func__, cpu); 1342 } 1343 } else { 1344 /* Another CB kthread, link to previous GP kthread. */ 1345 gotnocbscbs = true; 1346 if (dump_tree) 1347 pr_cont(" %d", cpu); 1348 } 1349 rdp->nocb_gp_rdp = rdp_gp; 1350 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1351 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1352 } 1353 if (gotnocbs && dump_tree) 1354 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1355 } 1356 1357 /* 1358 * Bind the current task to the offloaded CPUs. If there are no offloaded 1359 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1360 */ 1361 void rcu_bind_current_to_nocb(void) 1362 { 1363 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1364 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1365 } 1366 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1367 1368 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1369 #ifdef CONFIG_SMP 1370 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1371 { 1372 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1373 } 1374 #else // #ifdef CONFIG_SMP 1375 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1376 { 1377 return ""; 1378 } 1379 #endif // #else #ifdef CONFIG_SMP 1380 1381 /* 1382 * Dump out nocb grace-period kthread state for the specified rcu_data 1383 * structure. 1384 */ 1385 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1386 { 1387 struct rcu_node *rnp = rdp->mynode; 1388 1389 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1390 rdp->cpu, 1391 "kK"[!!rdp->nocb_gp_kthread], 1392 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1393 "dD"[!!rdp->nocb_defer_wakeup], 1394 "tT"[timer_pending(&rdp->nocb_timer)], 1395 "sS"[!!rdp->nocb_gp_sleep], 1396 ".W"[swait_active(&rdp->nocb_gp_wq)], 1397 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1398 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1399 ".B"[!!rdp->nocb_gp_bypass], 1400 ".G"[!!rdp->nocb_gp_gp], 1401 (long)rdp->nocb_gp_seq, 1402 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1403 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1404 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1405 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1406 } 1407 1408 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1409 static void show_rcu_nocb_state(struct rcu_data *rdp) 1410 { 1411 char bufw[20]; 1412 char bufr[20]; 1413 struct rcu_data *nocb_next_rdp; 1414 struct rcu_segcblist *rsclp = &rdp->cblist; 1415 bool waslocked; 1416 bool wassleep; 1417 1418 if (rdp->nocb_gp_rdp == rdp) 1419 show_rcu_nocb_gp_state(rdp); 1420 1421 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1422 &rdp->nocb_entry_rdp, 1423 typeof(*rdp), 1424 nocb_entry_rdp); 1425 1426 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1427 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1428 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1429 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1430 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1431 "kK"[!!rdp->nocb_cb_kthread], 1432 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1433 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 1434 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1435 "sS"[!!rdp->nocb_cb_sleep], 1436 ".W"[swait_active(&rdp->nocb_cb_wq)], 1437 jiffies - rdp->nocb_bypass_first, 1438 jiffies - rdp->nocb_nobypass_last, 1439 rdp->nocb_nobypass_count, 1440 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1441 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1442 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1443 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1444 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1445 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1446 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1447 rcu_segcblist_n_cbs(&rdp->cblist), 1448 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1449 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1450 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1451 1452 /* It is OK for GP kthreads to have GP state. */ 1453 if (rdp->nocb_gp_rdp == rdp) 1454 return; 1455 1456 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1457 wassleep = swait_active(&rdp->nocb_gp_wq); 1458 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1459 return; /* Nothing untoward. */ 1460 1461 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1462 "lL"[waslocked], 1463 "dD"[!!rdp->nocb_defer_wakeup], 1464 "sS"[!!rdp->nocb_gp_sleep], 1465 ".W"[wassleep]); 1466 } 1467 1468 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1469 1470 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1471 { 1472 return 0; 1473 } 1474 1475 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1476 { 1477 return false; 1478 } 1479 1480 /* No ->nocb_lock to acquire. */ 1481 static void rcu_nocb_lock(struct rcu_data *rdp) 1482 { 1483 } 1484 1485 /* No ->nocb_lock to release. */ 1486 static void rcu_nocb_unlock(struct rcu_data *rdp) 1487 { 1488 } 1489 1490 /* No ->nocb_lock to release. */ 1491 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1492 unsigned long flags) 1493 { 1494 local_irq_restore(flags); 1495 } 1496 1497 /* Lockdep check that ->cblist may be safely accessed. */ 1498 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1499 { 1500 lockdep_assert_irqs_disabled(); 1501 } 1502 1503 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1504 { 1505 } 1506 1507 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1508 { 1509 return NULL; 1510 } 1511 1512 static void rcu_init_one_nocb(struct rcu_node *rnp) 1513 { 1514 } 1515 1516 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1517 unsigned long j) 1518 { 1519 return true; 1520 } 1521 1522 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1523 bool *was_alldone, unsigned long flags) 1524 { 1525 return false; 1526 } 1527 1528 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1529 unsigned long flags) 1530 { 1531 WARN_ON_ONCE(1); /* Should be dead code! */ 1532 } 1533 1534 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1535 { 1536 } 1537 1538 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1539 { 1540 return false; 1541 } 1542 1543 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1544 { 1545 return false; 1546 } 1547 1548 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1549 { 1550 } 1551 1552 static void __init rcu_spawn_nocb_kthreads(void) 1553 { 1554 } 1555 1556 static void show_rcu_nocb_state(struct rcu_data *rdp) 1557 { 1558 } 1559 1560 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1561