xref: /openbmc/linux/kernel/rcu/tree_nocb.h (revision d87c25e8)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *	   Paul E. McKenney <paulmck@linux.ibm.com>
13  *	   Frederic Weisbecker <frederic@kernel.org>
14  */
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 	return lockdep_is_held(&rdp->nocb_lock);
22 }
23 
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 	/* Race on early boot between thread creation and assignment */
27 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 		return true;
29 
30 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 		if (in_task())
32 			return true;
33 	return false;
34 }
35 
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57 
58 
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63 
64 static bool rcu_nocb_is_setup;
65 
66 static int __init rcu_nocb_setup(char *str)
67 {
68 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
69 	if (*str == '=') {
70 		if (cpulist_parse(++str, rcu_nocb_mask)) {
71 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
72 			cpumask_setall(rcu_nocb_mask);
73 		}
74 	}
75 	rcu_nocb_is_setup = true;
76 	return 1;
77 }
78 __setup("rcu_nocbs", rcu_nocb_setup);
79 
80 static int __init parse_rcu_nocb_poll(char *arg)
81 {
82 	rcu_nocb_poll = true;
83 	return 0;
84 }
85 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
86 
87 /*
88  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
89  * After all, the main point of bypassing is to avoid lock contention
90  * on ->nocb_lock, which only can happen at high call_rcu() rates.
91  */
92 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
93 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
94 
95 /*
96  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
97  * lock isn't immediately available, increment ->nocb_lock_contended to
98  * flag the contention.
99  */
100 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
101 	__acquires(&rdp->nocb_bypass_lock)
102 {
103 	lockdep_assert_irqs_disabled();
104 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
105 		return;
106 	atomic_inc(&rdp->nocb_lock_contended);
107 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
108 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
109 	raw_spin_lock(&rdp->nocb_bypass_lock);
110 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
111 	atomic_dec(&rdp->nocb_lock_contended);
112 }
113 
114 /*
115  * Spinwait until the specified rcu_data structure's ->nocb_lock is
116  * not contended.  Please note that this is extremely special-purpose,
117  * relying on the fact that at most two kthreads and one CPU contend for
118  * this lock, and also that the two kthreads are guaranteed to have frequent
119  * grace-period-duration time intervals between successive acquisitions
120  * of the lock.  This allows us to use an extremely simple throttling
121  * mechanism, and further to apply it only to the CPU doing floods of
122  * call_rcu() invocations.  Don't try this at home!
123  */
124 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
125 {
126 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
127 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
128 		cpu_relax();
129 }
130 
131 /*
132  * Conditionally acquire the specified rcu_data structure's
133  * ->nocb_bypass_lock.
134  */
135 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
136 {
137 	lockdep_assert_irqs_disabled();
138 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
139 }
140 
141 /*
142  * Release the specified rcu_data structure's ->nocb_bypass_lock.
143  */
144 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
145 	__releases(&rdp->nocb_bypass_lock)
146 {
147 	lockdep_assert_irqs_disabled();
148 	raw_spin_unlock(&rdp->nocb_bypass_lock);
149 }
150 
151 /*
152  * Acquire the specified rcu_data structure's ->nocb_lock, but only
153  * if it corresponds to a no-CBs CPU.
154  */
155 static void rcu_nocb_lock(struct rcu_data *rdp)
156 {
157 	lockdep_assert_irqs_disabled();
158 	if (!rcu_rdp_is_offloaded(rdp))
159 		return;
160 	raw_spin_lock(&rdp->nocb_lock);
161 }
162 
163 /*
164  * Release the specified rcu_data structure's ->nocb_lock, but only
165  * if it corresponds to a no-CBs CPU.
166  */
167 static void rcu_nocb_unlock(struct rcu_data *rdp)
168 {
169 	if (rcu_rdp_is_offloaded(rdp)) {
170 		lockdep_assert_irqs_disabled();
171 		raw_spin_unlock(&rdp->nocb_lock);
172 	}
173 }
174 
175 /*
176  * Release the specified rcu_data structure's ->nocb_lock and restore
177  * interrupts, but only if it corresponds to a no-CBs CPU.
178  */
179 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
180 				       unsigned long flags)
181 {
182 	if (rcu_rdp_is_offloaded(rdp)) {
183 		lockdep_assert_irqs_disabled();
184 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
185 	} else {
186 		local_irq_restore(flags);
187 	}
188 }
189 
190 /* Lockdep check that ->cblist may be safely accessed. */
191 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
192 {
193 	lockdep_assert_irqs_disabled();
194 	if (rcu_rdp_is_offloaded(rdp))
195 		lockdep_assert_held(&rdp->nocb_lock);
196 }
197 
198 /*
199  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
200  * grace period.
201  */
202 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
203 {
204 	swake_up_all(sq);
205 }
206 
207 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
208 {
209 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
210 }
211 
212 static void rcu_init_one_nocb(struct rcu_node *rnp)
213 {
214 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
215 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
216 }
217 
218 /* Is the specified CPU a no-CBs CPU? */
219 bool rcu_is_nocb_cpu(int cpu)
220 {
221 	if (cpumask_available(rcu_nocb_mask))
222 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
223 	return false;
224 }
225 
226 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
227 			   struct rcu_data *rdp,
228 			   bool force, unsigned long flags)
229 	__releases(rdp_gp->nocb_gp_lock)
230 {
231 	bool needwake = false;
232 
233 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
234 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
235 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
236 				    TPS("AlreadyAwake"));
237 		return false;
238 	}
239 
240 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
241 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
242 		del_timer(&rdp_gp->nocb_timer);
243 	}
244 
245 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
246 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
247 		needwake = true;
248 	}
249 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
250 	if (needwake) {
251 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
252 		wake_up_process(rdp_gp->nocb_gp_kthread);
253 	}
254 
255 	return needwake;
256 }
257 
258 /*
259  * Kick the GP kthread for this NOCB group.
260  */
261 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
262 {
263 	unsigned long flags;
264 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
265 
266 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
267 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
268 }
269 
270 /*
271  * Arrange to wake the GP kthread for this NOCB group at some future
272  * time when it is safe to do so.
273  */
274 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
275 			       const char *reason)
276 {
277 	unsigned long flags;
278 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
279 
280 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
281 
282 	/*
283 	 * Bypass wakeup overrides previous deferments. In case
284 	 * of callback storm, no need to wake up too early.
285 	 */
286 	if (waketype == RCU_NOCB_WAKE_BYPASS) {
287 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
288 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
289 	} else {
290 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
291 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
292 		if (rdp_gp->nocb_defer_wakeup < waketype)
293 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
294 	}
295 
296 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
297 
298 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
299 }
300 
301 /*
302  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
303  * However, if there is a callback to be enqueued and if ->nocb_bypass
304  * proves to be initially empty, just return false because the no-CB GP
305  * kthread may need to be awakened in this case.
306  *
307  * Note that this function always returns true if rhp is NULL.
308  */
309 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
310 				     unsigned long j)
311 {
312 	struct rcu_cblist rcl;
313 
314 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
315 	rcu_lockdep_assert_cblist_protected(rdp);
316 	lockdep_assert_held(&rdp->nocb_bypass_lock);
317 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
318 		raw_spin_unlock(&rdp->nocb_bypass_lock);
319 		return false;
320 	}
321 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
322 	if (rhp)
323 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
324 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
325 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
326 	WRITE_ONCE(rdp->nocb_bypass_first, j);
327 	rcu_nocb_bypass_unlock(rdp);
328 	return true;
329 }
330 
331 /*
332  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
333  * However, if there is a callback to be enqueued and if ->nocb_bypass
334  * proves to be initially empty, just return false because the no-CB GP
335  * kthread may need to be awakened in this case.
336  *
337  * Note that this function always returns true if rhp is NULL.
338  */
339 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
340 				  unsigned long j)
341 {
342 	if (!rcu_rdp_is_offloaded(rdp))
343 		return true;
344 	rcu_lockdep_assert_cblist_protected(rdp);
345 	rcu_nocb_bypass_lock(rdp);
346 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
347 }
348 
349 /*
350  * If the ->nocb_bypass_lock is immediately available, flush the
351  * ->nocb_bypass queue into ->cblist.
352  */
353 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
354 {
355 	rcu_lockdep_assert_cblist_protected(rdp);
356 	if (!rcu_rdp_is_offloaded(rdp) ||
357 	    !rcu_nocb_bypass_trylock(rdp))
358 		return;
359 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
360 }
361 
362 /*
363  * See whether it is appropriate to use the ->nocb_bypass list in order
364  * to control contention on ->nocb_lock.  A limited number of direct
365  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
366  * is non-empty, further callbacks must be placed into ->nocb_bypass,
367  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
368  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
369  * used if ->cblist is empty, because otherwise callbacks can be stranded
370  * on ->nocb_bypass because we cannot count on the current CPU ever again
371  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
372  * non-empty, the corresponding no-CBs grace-period kthread must not be
373  * in an indefinite sleep state.
374  *
375  * Finally, it is not permitted to use the bypass during early boot,
376  * as doing so would confuse the auto-initialization code.  Besides
377  * which, there is no point in worrying about lock contention while
378  * there is only one CPU in operation.
379  */
380 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
381 				bool *was_alldone, unsigned long flags)
382 {
383 	unsigned long c;
384 	unsigned long cur_gp_seq;
385 	unsigned long j = jiffies;
386 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
387 
388 	lockdep_assert_irqs_disabled();
389 
390 	// Pure softirq/rcuc based processing: no bypassing, no
391 	// locking.
392 	if (!rcu_rdp_is_offloaded(rdp)) {
393 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
394 		return false;
395 	}
396 
397 	// In the process of (de-)offloading: no bypassing, but
398 	// locking.
399 	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
400 		rcu_nocb_lock(rdp);
401 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
402 		return false; /* Not offloaded, no bypassing. */
403 	}
404 
405 	// Don't use ->nocb_bypass during early boot.
406 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
407 		rcu_nocb_lock(rdp);
408 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
409 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
410 		return false;
411 	}
412 
413 	// If we have advanced to a new jiffy, reset counts to allow
414 	// moving back from ->nocb_bypass to ->cblist.
415 	if (j == rdp->nocb_nobypass_last) {
416 		c = rdp->nocb_nobypass_count + 1;
417 	} else {
418 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
419 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
420 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
421 				 nocb_nobypass_lim_per_jiffy))
422 			c = 0;
423 		else if (c > nocb_nobypass_lim_per_jiffy)
424 			c = nocb_nobypass_lim_per_jiffy;
425 	}
426 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
427 
428 	// If there hasn't yet been all that many ->cblist enqueues
429 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
430 	// ->nocb_bypass first.
431 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
432 		rcu_nocb_lock(rdp);
433 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
434 		if (*was_alldone)
435 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
436 					    TPS("FirstQ"));
437 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
438 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
439 		return false; // Caller must enqueue the callback.
440 	}
441 
442 	// If ->nocb_bypass has been used too long or is too full,
443 	// flush ->nocb_bypass to ->cblist.
444 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
445 	    ncbs >= qhimark) {
446 		rcu_nocb_lock(rdp);
447 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
448 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
449 			if (*was_alldone)
450 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
451 						    TPS("FirstQ"));
452 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
453 			return false; // Caller must enqueue the callback.
454 		}
455 		if (j != rdp->nocb_gp_adv_time &&
456 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
457 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
458 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
459 			rdp->nocb_gp_adv_time = j;
460 		}
461 		rcu_nocb_unlock_irqrestore(rdp, flags);
462 		return true; // Callback already enqueued.
463 	}
464 
465 	// We need to use the bypass.
466 	rcu_nocb_wait_contended(rdp);
467 	rcu_nocb_bypass_lock(rdp);
468 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
469 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
470 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
471 	if (!ncbs) {
472 		WRITE_ONCE(rdp->nocb_bypass_first, j);
473 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
474 	}
475 	rcu_nocb_bypass_unlock(rdp);
476 	smp_mb(); /* Order enqueue before wake. */
477 	if (ncbs) {
478 		local_irq_restore(flags);
479 	} else {
480 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
481 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
482 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
483 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
484 					    TPS("FirstBQwake"));
485 			__call_rcu_nocb_wake(rdp, true, flags);
486 		} else {
487 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
488 					    TPS("FirstBQnoWake"));
489 			rcu_nocb_unlock_irqrestore(rdp, flags);
490 		}
491 	}
492 	return true; // Callback already enqueued.
493 }
494 
495 /*
496  * Awaken the no-CBs grace-period kthread if needed, either due to it
497  * legitimately being asleep or due to overload conditions.
498  *
499  * If warranted, also wake up the kthread servicing this CPUs queues.
500  */
501 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
502 				 unsigned long flags)
503 				 __releases(rdp->nocb_lock)
504 {
505 	unsigned long cur_gp_seq;
506 	unsigned long j;
507 	long len;
508 	struct task_struct *t;
509 
510 	// If we are being polled or there is no kthread, just leave.
511 	t = READ_ONCE(rdp->nocb_gp_kthread);
512 	if (rcu_nocb_poll || !t) {
513 		rcu_nocb_unlock_irqrestore(rdp, flags);
514 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
515 				    TPS("WakeNotPoll"));
516 		return;
517 	}
518 	// Need to actually to a wakeup.
519 	len = rcu_segcblist_n_cbs(&rdp->cblist);
520 	if (was_alldone) {
521 		rdp->qlen_last_fqs_check = len;
522 		if (!irqs_disabled_flags(flags)) {
523 			/* ... if queue was empty ... */
524 			rcu_nocb_unlock_irqrestore(rdp, flags);
525 			wake_nocb_gp(rdp, false);
526 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
527 					    TPS("WakeEmpty"));
528 		} else {
529 			rcu_nocb_unlock_irqrestore(rdp, flags);
530 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
531 					   TPS("WakeEmptyIsDeferred"));
532 		}
533 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
534 		/* ... or if many callbacks queued. */
535 		rdp->qlen_last_fqs_check = len;
536 		j = jiffies;
537 		if (j != rdp->nocb_gp_adv_time &&
538 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
539 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
540 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
541 			rdp->nocb_gp_adv_time = j;
542 		}
543 		smp_mb(); /* Enqueue before timer_pending(). */
544 		if ((rdp->nocb_cb_sleep ||
545 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
546 		    !timer_pending(&rdp->nocb_timer)) {
547 			rcu_nocb_unlock_irqrestore(rdp, flags);
548 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
549 					   TPS("WakeOvfIsDeferred"));
550 		} else {
551 			rcu_nocb_unlock_irqrestore(rdp, flags);
552 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
553 		}
554 	} else {
555 		rcu_nocb_unlock_irqrestore(rdp, flags);
556 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
557 	}
558 }
559 
560 /*
561  * Check if we ignore this rdp.
562  *
563  * We check that without holding the nocb lock but
564  * we make sure not to miss a freshly offloaded rdp
565  * with the current ordering:
566  *
567  *  rdp_offload_toggle()        nocb_gp_enabled_cb()
568  * -------------------------   ----------------------------
569  *    WRITE flags                 LOCK nocb_gp_lock
570  *    LOCK nocb_gp_lock           READ/WRITE nocb_gp_sleep
571  *    READ/WRITE nocb_gp_sleep    UNLOCK nocb_gp_lock
572  *    UNLOCK nocb_gp_lock         READ flags
573  */
574 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
575 {
576 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
577 
578 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
579 }
580 
581 static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
582 						     bool *needwake_state)
583 {
584 	struct rcu_segcblist *cblist = &rdp->cblist;
585 
586 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
587 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
588 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
589 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
590 				*needwake_state = true;
591 		}
592 		return false;
593 	}
594 
595 	/*
596 	 * De-offloading. Clear our flag and notify the de-offload worker.
597 	 * We will ignore this rdp until it ever gets re-offloaded.
598 	 */
599 	WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
600 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
601 	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
602 		*needwake_state = true;
603 	return true;
604 }
605 
606 
607 /*
608  * No-CBs GP kthreads come here to wait for additional callbacks to show up
609  * or for grace periods to end.
610  */
611 static void nocb_gp_wait(struct rcu_data *my_rdp)
612 {
613 	bool bypass = false;
614 	long bypass_ncbs;
615 	int __maybe_unused cpu = my_rdp->cpu;
616 	unsigned long cur_gp_seq;
617 	unsigned long flags;
618 	bool gotcbs = false;
619 	unsigned long j = jiffies;
620 	bool needwait_gp = false; // This prevents actual uninitialized use.
621 	bool needwake;
622 	bool needwake_gp;
623 	struct rcu_data *rdp;
624 	struct rcu_node *rnp;
625 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
626 	bool wasempty = false;
627 
628 	/*
629 	 * Each pass through the following loop checks for CBs and for the
630 	 * nearest grace period (if any) to wait for next.  The CB kthreads
631 	 * and the global grace-period kthread are awakened if needed.
632 	 */
633 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
634 	/*
635 	 * An rcu_data structure is removed from the list after its
636 	 * CPU is de-offloaded and added to the list before that CPU is
637 	 * (re-)offloaded.  If the following loop happens to be referencing
638 	 * that rcu_data structure during the time that the corresponding
639 	 * CPU is de-offloaded and then immediately re-offloaded, this
640 	 * loop's rdp pointer will be carried to the end of the list by
641 	 * the resulting pair of list operations.  This can cause the loop
642 	 * to skip over some of the rcu_data structures that were supposed
643 	 * to have been scanned.  Fortunately a new iteration through the
644 	 * entire loop is forced after a given CPU's rcu_data structure
645 	 * is added to the list, so the skipped-over rcu_data structures
646 	 * won't be ignored for long.
647 	 */
648 	list_for_each_entry_rcu(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp, 1) {
649 		bool needwake_state = false;
650 
651 		if (!nocb_gp_enabled_cb(rdp))
652 			continue;
653 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
654 		rcu_nocb_lock_irqsave(rdp, flags);
655 		if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
656 			rcu_nocb_unlock_irqrestore(rdp, flags);
657 			if (needwake_state)
658 				swake_up_one(&rdp->nocb_state_wq);
659 			continue;
660 		}
661 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
662 		if (bypass_ncbs &&
663 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
664 		     bypass_ncbs > 2 * qhimark)) {
665 			// Bypass full or old, so flush it.
666 			(void)rcu_nocb_try_flush_bypass(rdp, j);
667 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
668 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
669 			rcu_nocb_unlock_irqrestore(rdp, flags);
670 			if (needwake_state)
671 				swake_up_one(&rdp->nocb_state_wq);
672 			continue; /* No callbacks here, try next. */
673 		}
674 		if (bypass_ncbs) {
675 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
676 					    TPS("Bypass"));
677 			bypass = true;
678 		}
679 		rnp = rdp->mynode;
680 
681 		// Advance callbacks if helpful and low contention.
682 		needwake_gp = false;
683 		if (!rcu_segcblist_restempty(&rdp->cblist,
684 					     RCU_NEXT_READY_TAIL) ||
685 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
686 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
687 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
688 			needwake_gp = rcu_advance_cbs(rnp, rdp);
689 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
690 							   RCU_NEXT_READY_TAIL);
691 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
692 		}
693 		// Need to wait on some grace period?
694 		WARN_ON_ONCE(wasempty &&
695 			     !rcu_segcblist_restempty(&rdp->cblist,
696 						      RCU_NEXT_READY_TAIL));
697 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
698 			if (!needwait_gp ||
699 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
700 				wait_gp_seq = cur_gp_seq;
701 			needwait_gp = true;
702 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
703 					    TPS("NeedWaitGP"));
704 		}
705 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
706 			needwake = rdp->nocb_cb_sleep;
707 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
708 			smp_mb(); /* CB invocation -after- GP end. */
709 		} else {
710 			needwake = false;
711 		}
712 		rcu_nocb_unlock_irqrestore(rdp, flags);
713 		if (needwake) {
714 			swake_up_one(&rdp->nocb_cb_wq);
715 			gotcbs = true;
716 		}
717 		if (needwake_gp)
718 			rcu_gp_kthread_wake();
719 		if (needwake_state)
720 			swake_up_one(&rdp->nocb_state_wq);
721 	}
722 
723 	my_rdp->nocb_gp_bypass = bypass;
724 	my_rdp->nocb_gp_gp = needwait_gp;
725 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
726 
727 	if (bypass && !rcu_nocb_poll) {
728 		// At least one child with non-empty ->nocb_bypass, so set
729 		// timer in order to avoid stranding its callbacks.
730 		wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
731 				   TPS("WakeBypassIsDeferred"));
732 	}
733 	if (rcu_nocb_poll) {
734 		/* Polling, so trace if first poll in the series. */
735 		if (gotcbs)
736 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
737 		schedule_timeout_idle(1);
738 	} else if (!needwait_gp) {
739 		/* Wait for callbacks to appear. */
740 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
741 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
742 				!READ_ONCE(my_rdp->nocb_gp_sleep));
743 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
744 	} else {
745 		rnp = my_rdp->mynode;
746 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
747 		swait_event_interruptible_exclusive(
748 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
749 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
750 			!READ_ONCE(my_rdp->nocb_gp_sleep));
751 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
752 	}
753 	if (!rcu_nocb_poll) {
754 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
755 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
756 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
757 			del_timer(&my_rdp->nocb_timer);
758 		}
759 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
760 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
761 	}
762 	my_rdp->nocb_gp_seq = -1;
763 	WARN_ON(signal_pending(current));
764 }
765 
766 /*
767  * No-CBs grace-period-wait kthread.  There is one of these per group
768  * of CPUs, but only once at least one CPU in that group has come online
769  * at least once since boot.  This kthread checks for newly posted
770  * callbacks from any of the CPUs it is responsible for, waits for a
771  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
772  * that then have callback-invocation work to do.
773  */
774 static int rcu_nocb_gp_kthread(void *arg)
775 {
776 	struct rcu_data *rdp = arg;
777 
778 	for (;;) {
779 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
780 		nocb_gp_wait(rdp);
781 		cond_resched_tasks_rcu_qs();
782 	}
783 	return 0;
784 }
785 
786 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
787 {
788 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
789 
790 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
791 }
792 
793 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
794 {
795 	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
796 }
797 
798 /*
799  * Invoke any ready callbacks from the corresponding no-CBs CPU,
800  * then, if there are no more, wait for more to appear.
801  */
802 static void nocb_cb_wait(struct rcu_data *rdp)
803 {
804 	struct rcu_segcblist *cblist = &rdp->cblist;
805 	unsigned long cur_gp_seq;
806 	unsigned long flags;
807 	bool needwake_state = false;
808 	bool needwake_gp = false;
809 	bool can_sleep = true;
810 	struct rcu_node *rnp = rdp->mynode;
811 
812 	do {
813 		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
814 						    nocb_cb_wait_cond(rdp));
815 
816 		// VVV Ensure CB invocation follows _sleep test.
817 		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
818 			WARN_ON(signal_pending(current));
819 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
820 		}
821 	} while (!nocb_cb_can_run(rdp));
822 
823 
824 	local_irq_save(flags);
825 	rcu_momentary_dyntick_idle();
826 	local_irq_restore(flags);
827 	/*
828 	 * Disable BH to provide the expected environment.  Also, when
829 	 * transitioning to/from NOCB mode, a self-requeuing callback might
830 	 * be invoked from softirq.  A short grace period could cause both
831 	 * instances of this callback would execute concurrently.
832 	 */
833 	local_bh_disable();
834 	rcu_do_batch(rdp);
835 	local_bh_enable();
836 	lockdep_assert_irqs_enabled();
837 	rcu_nocb_lock_irqsave(rdp, flags);
838 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
839 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
840 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
841 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
842 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
843 	}
844 
845 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
846 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
847 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
848 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
849 				needwake_state = true;
850 		}
851 		if (rcu_segcblist_ready_cbs(cblist))
852 			can_sleep = false;
853 	} else {
854 		/*
855 		 * De-offloading. Clear our flag and notify the de-offload worker.
856 		 * We won't touch the callbacks and keep sleeping until we ever
857 		 * get re-offloaded.
858 		 */
859 		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
860 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
861 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
862 			needwake_state = true;
863 	}
864 
865 	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
866 
867 	if (rdp->nocb_cb_sleep)
868 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
869 
870 	rcu_nocb_unlock_irqrestore(rdp, flags);
871 	if (needwake_gp)
872 		rcu_gp_kthread_wake();
873 
874 	if (needwake_state)
875 		swake_up_one(&rdp->nocb_state_wq);
876 }
877 
878 /*
879  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
880  * nocb_cb_wait() to do the dirty work.
881  */
882 static int rcu_nocb_cb_kthread(void *arg)
883 {
884 	struct rcu_data *rdp = arg;
885 
886 	// Each pass through this loop does one callback batch, and,
887 	// if there are no more ready callbacks, waits for them.
888 	for (;;) {
889 		nocb_cb_wait(rdp);
890 		cond_resched_tasks_rcu_qs();
891 	}
892 	return 0;
893 }
894 
895 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
896 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
897 {
898 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
899 }
900 
901 /* Do a deferred wakeup of rcu_nocb_kthread(). */
902 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
903 					   struct rcu_data *rdp, int level,
904 					   unsigned long flags)
905 	__releases(rdp_gp->nocb_gp_lock)
906 {
907 	int ndw;
908 	int ret;
909 
910 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
911 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
912 		return false;
913 	}
914 
915 	ndw = rdp_gp->nocb_defer_wakeup;
916 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
917 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
918 
919 	return ret;
920 }
921 
922 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
923 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
924 {
925 	unsigned long flags;
926 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
927 
928 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
929 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
930 
931 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
932 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
933 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
934 }
935 
936 /*
937  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
938  * This means we do an inexact common-case check.  Note that if
939  * we miss, ->nocb_timer will eventually clean things up.
940  */
941 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
942 {
943 	unsigned long flags;
944 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
945 
946 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
947 		return false;
948 
949 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
950 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
951 }
952 
953 void rcu_nocb_flush_deferred_wakeup(void)
954 {
955 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
956 }
957 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
958 
959 static int rdp_offload_toggle(struct rcu_data *rdp,
960 			       bool offload, unsigned long flags)
961 	__releases(rdp->nocb_lock)
962 {
963 	struct rcu_segcblist *cblist = &rdp->cblist;
964 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
965 	bool wake_gp = false;
966 
967 	rcu_segcblist_offload(cblist, offload);
968 
969 	if (rdp->nocb_cb_sleep)
970 		rdp->nocb_cb_sleep = false;
971 	rcu_nocb_unlock_irqrestore(rdp, flags);
972 
973 	/*
974 	 * Ignore former value of nocb_cb_sleep and force wake up as it could
975 	 * have been spuriously set to false already.
976 	 */
977 	swake_up_one(&rdp->nocb_cb_wq);
978 
979 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
980 	if (rdp_gp->nocb_gp_sleep) {
981 		rdp_gp->nocb_gp_sleep = false;
982 		wake_gp = true;
983 	}
984 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
985 
986 	if (wake_gp)
987 		wake_up_process(rdp_gp->nocb_gp_kthread);
988 
989 	return 0;
990 }
991 
992 static long rcu_nocb_rdp_deoffload(void *arg)
993 {
994 	struct rcu_data *rdp = arg;
995 	struct rcu_segcblist *cblist = &rdp->cblist;
996 	unsigned long flags;
997 	int ret;
998 
999 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1000 
1001 	pr_info("De-offloading %d\n", rdp->cpu);
1002 
1003 	rcu_nocb_lock_irqsave(rdp, flags);
1004 	/*
1005 	 * Flush once and for all now. This suffices because we are
1006 	 * running on the target CPU holding ->nocb_lock (thus having
1007 	 * interrupts disabled), and because rdp_offload_toggle()
1008 	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1009 	 * Thus future calls to rcu_segcblist_completely_offloaded() will
1010 	 * return false, which means that future calls to rcu_nocb_try_bypass()
1011 	 * will refuse to put anything into the bypass.
1012 	 */
1013 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
1014 	/*
1015 	 * Start with invoking rcu_core() early. This way if the current thread
1016 	 * happens to preempt an ongoing call to rcu_core() in the middle,
1017 	 * leaving some work dismissed because rcu_core() still thinks the rdp is
1018 	 * completely offloaded, we are guaranteed a nearby future instance of
1019 	 * rcu_core() to catch up.
1020 	 */
1021 	rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1022 	invoke_rcu_core();
1023 	ret = rdp_offload_toggle(rdp, false, flags);
1024 	swait_event_exclusive(rdp->nocb_state_wq,
1025 			      !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
1026 							SEGCBLIST_KTHREAD_GP));
1027 	/* Stop nocb_gp_wait() from iterating over this structure. */
1028 	list_del_rcu(&rdp->nocb_entry_rdp);
1029 	/*
1030 	 * Lock one last time to acquire latest callback updates from kthreads
1031 	 * so we can later handle callbacks locally without locking.
1032 	 */
1033 	rcu_nocb_lock_irqsave(rdp, flags);
1034 	/*
1035 	 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1036 	 * lock is released but how about being paranoid for once?
1037 	 */
1038 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1039 	/*
1040 	 * Without SEGCBLIST_LOCKING, we can't use
1041 	 * rcu_nocb_unlock_irqrestore() anymore.
1042 	 */
1043 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1044 
1045 	/* Sanity check */
1046 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1047 
1048 
1049 	return ret;
1050 }
1051 
1052 int rcu_nocb_cpu_deoffload(int cpu)
1053 {
1054 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1055 	int ret = 0;
1056 
1057 	mutex_lock(&rcu_state.barrier_mutex);
1058 	cpus_read_lock();
1059 	if (rcu_rdp_is_offloaded(rdp)) {
1060 		if (cpu_online(cpu)) {
1061 			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1062 			if (!ret)
1063 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1064 		} else {
1065 			pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
1066 			ret = -EINVAL;
1067 		}
1068 	}
1069 	cpus_read_unlock();
1070 	mutex_unlock(&rcu_state.barrier_mutex);
1071 
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1075 
1076 static long rcu_nocb_rdp_offload(void *arg)
1077 {
1078 	struct rcu_data *rdp = arg;
1079 	struct rcu_segcblist *cblist = &rdp->cblist;
1080 	unsigned long flags;
1081 	int ret;
1082 
1083 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1084 	/*
1085 	 * For now we only support re-offload, ie: the rdp must have been
1086 	 * offloaded on boot first.
1087 	 */
1088 	if (!rdp->nocb_gp_rdp)
1089 		return -EINVAL;
1090 
1091 	pr_info("Offloading %d\n", rdp->cpu);
1092 
1093 	/*
1094 	 * Cause future nocb_gp_wait() invocations to iterate over
1095 	 * structure, resetting ->nocb_gp_sleep and waking up the related
1096 	 * "rcuog".  Since nocb_gp_wait() in turn locks ->nocb_gp_lock
1097 	 * before setting ->nocb_gp_sleep again, we are guaranteed to
1098 	 * iterate this newly added structure before "rcuog" goes to
1099 	 * sleep again.
1100 	 */
1101 	list_add_tail_rcu(&rdp->nocb_entry_rdp, &rdp->nocb_gp_rdp->nocb_head_rdp);
1102 
1103 	/*
1104 	 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1105 	 * is set.
1106 	 */
1107 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1108 
1109 	/*
1110 	 * We didn't take the nocb lock while working on the
1111 	 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1112 	 * Every modifications that have been done previously on
1113 	 * rdp->cblist must be visible remotely by the nocb kthreads
1114 	 * upon wake up after reading the cblist flags.
1115 	 *
1116 	 * The layout against nocb_lock enforces that ordering:
1117 	 *
1118 	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1119 	 * -------------------------   ----------------------------
1120 	 *      WRITE callbacks           rcu_nocb_lock()
1121 	 *      rcu_nocb_lock()           READ flags
1122 	 *      WRITE flags               READ callbacks
1123 	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
1124 	 */
1125 	ret = rdp_offload_toggle(rdp, true, flags);
1126 	swait_event_exclusive(rdp->nocb_state_wq,
1127 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1128 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1129 
1130 	/*
1131 	 * All kthreads are ready to work, we can finally relieve rcu_core() and
1132 	 * enable nocb bypass.
1133 	 */
1134 	rcu_nocb_lock_irqsave(rdp, flags);
1135 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1136 	rcu_nocb_unlock_irqrestore(rdp, flags);
1137 
1138 	return ret;
1139 }
1140 
1141 int rcu_nocb_cpu_offload(int cpu)
1142 {
1143 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1144 	int ret = 0;
1145 
1146 	mutex_lock(&rcu_state.barrier_mutex);
1147 	cpus_read_lock();
1148 	if (!rcu_rdp_is_offloaded(rdp)) {
1149 		if (cpu_online(cpu)) {
1150 			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1151 			if (!ret)
1152 				cpumask_set_cpu(cpu, rcu_nocb_mask);
1153 		} else {
1154 			pr_info("NOCB: Can't CB-offload an offline CPU\n");
1155 			ret = -EINVAL;
1156 		}
1157 	}
1158 	cpus_read_unlock();
1159 	mutex_unlock(&rcu_state.barrier_mutex);
1160 
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1164 
1165 void __init rcu_init_nohz(void)
1166 {
1167 	int cpu;
1168 	bool need_rcu_nocb_mask = false;
1169 	struct rcu_data *rdp;
1170 
1171 #if defined(CONFIG_NO_HZ_FULL)
1172 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
1173 		need_rcu_nocb_mask = true;
1174 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1175 
1176 	if (need_rcu_nocb_mask) {
1177 		if (!cpumask_available(rcu_nocb_mask)) {
1178 			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1179 				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1180 				return;
1181 			}
1182 		}
1183 		rcu_nocb_is_setup = true;
1184 	}
1185 
1186 	if (!rcu_nocb_is_setup)
1187 		return;
1188 
1189 #if defined(CONFIG_NO_HZ_FULL)
1190 	if (tick_nohz_full_running)
1191 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
1192 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1193 
1194 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1195 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1196 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1197 			    rcu_nocb_mask);
1198 	}
1199 	if (cpumask_empty(rcu_nocb_mask))
1200 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1201 	else
1202 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1203 			cpumask_pr_args(rcu_nocb_mask));
1204 	if (rcu_nocb_poll)
1205 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1206 
1207 	for_each_cpu(cpu, rcu_nocb_mask) {
1208 		rdp = per_cpu_ptr(&rcu_data, cpu);
1209 		if (rcu_segcblist_empty(&rdp->cblist))
1210 			rcu_segcblist_init(&rdp->cblist);
1211 		rcu_segcblist_offload(&rdp->cblist, true);
1212 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1213 		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1214 	}
1215 	rcu_organize_nocb_kthreads();
1216 }
1217 
1218 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1219 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1220 {
1221 	init_swait_queue_head(&rdp->nocb_cb_wq);
1222 	init_swait_queue_head(&rdp->nocb_gp_wq);
1223 	init_swait_queue_head(&rdp->nocb_state_wq);
1224 	raw_spin_lock_init(&rdp->nocb_lock);
1225 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1226 	raw_spin_lock_init(&rdp->nocb_gp_lock);
1227 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1228 	rcu_cblist_init(&rdp->nocb_bypass);
1229 }
1230 
1231 /*
1232  * If the specified CPU is a no-CBs CPU that does not already have its
1233  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1234  * for this CPU's group has not yet been created, spawn it as well.
1235  */
1236 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1237 {
1238 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1239 	struct rcu_data *rdp_gp;
1240 	struct task_struct *t;
1241 
1242 	if (!rcu_scheduler_fully_active || !rcu_nocb_is_setup)
1243 		return;
1244 
1245 	/* If there already is an rcuo kthread, then nothing to do. */
1246 	if (rdp->nocb_cb_kthread)
1247 		return;
1248 
1249 	/* If we didn't spawn the GP kthread first, reorganize! */
1250 	rdp_gp = rdp->nocb_gp_rdp;
1251 	if (!rdp_gp->nocb_gp_kthread) {
1252 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1253 				"rcuog/%d", rdp_gp->cpu);
1254 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
1255 			return;
1256 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1257 	}
1258 
1259 	/* Spawn the kthread for this CPU. */
1260 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
1261 			"rcuo%c/%d", rcu_state.abbr, cpu);
1262 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1263 		return;
1264 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1265 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1266 }
1267 
1268 /*
1269  * Once the scheduler is running, spawn rcuo kthreads for all online
1270  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
1271  * non-boot CPUs come online -- if this changes, we will need to add
1272  * some mutual exclusion.
1273  */
1274 static void __init rcu_spawn_nocb_kthreads(void)
1275 {
1276 	int cpu;
1277 
1278 	if (rcu_nocb_is_setup) {
1279 		for_each_online_cpu(cpu)
1280 			rcu_spawn_cpu_nocb_kthread(cpu);
1281 	}
1282 }
1283 
1284 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1285 static int rcu_nocb_gp_stride = -1;
1286 module_param(rcu_nocb_gp_stride, int, 0444);
1287 
1288 /*
1289  * Initialize GP-CB relationships for all no-CBs CPU.
1290  */
1291 static void __init rcu_organize_nocb_kthreads(void)
1292 {
1293 	int cpu;
1294 	bool firsttime = true;
1295 	bool gotnocbs = false;
1296 	bool gotnocbscbs = true;
1297 	int ls = rcu_nocb_gp_stride;
1298 	int nl = 0;  /* Next GP kthread. */
1299 	struct rcu_data *rdp;
1300 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1301 
1302 	if (!cpumask_available(rcu_nocb_mask))
1303 		return;
1304 	if (ls == -1) {
1305 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1306 		rcu_nocb_gp_stride = ls;
1307 	}
1308 
1309 	/*
1310 	 * Each pass through this loop sets up one rcu_data structure.
1311 	 * Should the corresponding CPU come online in the future, then
1312 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1313 	 */
1314 	for_each_possible_cpu(cpu) {
1315 		rdp = per_cpu_ptr(&rcu_data, cpu);
1316 		if (rdp->cpu >= nl) {
1317 			/* New GP kthread, set up for CBs & next GP. */
1318 			gotnocbs = true;
1319 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1320 			rdp_gp = rdp;
1321 			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1322 			if (dump_tree) {
1323 				if (!firsttime)
1324 					pr_cont("%s\n", gotnocbscbs
1325 							? "" : " (self only)");
1326 				gotnocbscbs = false;
1327 				firsttime = false;
1328 				pr_alert("%s: No-CB GP kthread CPU %d:",
1329 					 __func__, cpu);
1330 			}
1331 		} else {
1332 			/* Another CB kthread, link to previous GP kthread. */
1333 			gotnocbscbs = true;
1334 			if (dump_tree)
1335 				pr_cont(" %d", cpu);
1336 		}
1337 		rdp->nocb_gp_rdp = rdp_gp;
1338 		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1339 			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1340 	}
1341 	if (gotnocbs && dump_tree)
1342 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1343 }
1344 
1345 /*
1346  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1347  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1348  */
1349 void rcu_bind_current_to_nocb(void)
1350 {
1351 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
1352 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1353 }
1354 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1355 
1356 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1357 #ifdef CONFIG_SMP
1358 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1359 {
1360 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1361 }
1362 #else // #ifdef CONFIG_SMP
1363 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1364 {
1365 	return "";
1366 }
1367 #endif // #else #ifdef CONFIG_SMP
1368 
1369 /*
1370  * Dump out nocb grace-period kthread state for the specified rcu_data
1371  * structure.
1372  */
1373 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1374 {
1375 	struct rcu_node *rnp = rdp->mynode;
1376 
1377 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1378 		rdp->cpu,
1379 		"kK"[!!rdp->nocb_gp_kthread],
1380 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1381 		"dD"[!!rdp->nocb_defer_wakeup],
1382 		"tT"[timer_pending(&rdp->nocb_timer)],
1383 		"sS"[!!rdp->nocb_gp_sleep],
1384 		".W"[swait_active(&rdp->nocb_gp_wq)],
1385 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1386 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1387 		".B"[!!rdp->nocb_gp_bypass],
1388 		".G"[!!rdp->nocb_gp_gp],
1389 		(long)rdp->nocb_gp_seq,
1390 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1391 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1392 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1393 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1394 }
1395 
1396 /* Dump out nocb kthread state for the specified rcu_data structure. */
1397 static void show_rcu_nocb_state(struct rcu_data *rdp)
1398 {
1399 	char bufw[20];
1400 	char bufr[20];
1401 	struct rcu_data *nocb_next_rdp;
1402 	struct rcu_segcblist *rsclp = &rdp->cblist;
1403 	bool waslocked;
1404 	bool wassleep;
1405 
1406 	if (rdp->nocb_gp_rdp == rdp)
1407 		show_rcu_nocb_gp_state(rdp);
1408 
1409 	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1410 					      &rdp->nocb_entry_rdp,
1411 					      typeof(*rdp),
1412 					      nocb_entry_rdp);
1413 
1414 	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1415 	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1416 	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1417 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1418 		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1419 		"kK"[!!rdp->nocb_cb_kthread],
1420 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1421 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1422 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1423 		"sS"[!!rdp->nocb_cb_sleep],
1424 		".W"[swait_active(&rdp->nocb_cb_wq)],
1425 		jiffies - rdp->nocb_bypass_first,
1426 		jiffies - rdp->nocb_nobypass_last,
1427 		rdp->nocb_nobypass_count,
1428 		".D"[rcu_segcblist_ready_cbs(rsclp)],
1429 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1430 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1431 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1432 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1433 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1434 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1435 		rcu_segcblist_n_cbs(&rdp->cblist),
1436 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1437 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1438 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1439 
1440 	/* It is OK for GP kthreads to have GP state. */
1441 	if (rdp->nocb_gp_rdp == rdp)
1442 		return;
1443 
1444 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1445 	wassleep = swait_active(&rdp->nocb_gp_wq);
1446 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1447 		return;  /* Nothing untoward. */
1448 
1449 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1450 		"lL"[waslocked],
1451 		"dD"[!!rdp->nocb_defer_wakeup],
1452 		"sS"[!!rdp->nocb_gp_sleep],
1453 		".W"[wassleep]);
1454 }
1455 
1456 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1457 
1458 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1459 {
1460 	return 0;
1461 }
1462 
1463 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1464 {
1465 	return false;
1466 }
1467 
1468 /* No ->nocb_lock to acquire.  */
1469 static void rcu_nocb_lock(struct rcu_data *rdp)
1470 {
1471 }
1472 
1473 /* No ->nocb_lock to release.  */
1474 static void rcu_nocb_unlock(struct rcu_data *rdp)
1475 {
1476 }
1477 
1478 /* No ->nocb_lock to release.  */
1479 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1480 				       unsigned long flags)
1481 {
1482 	local_irq_restore(flags);
1483 }
1484 
1485 /* Lockdep check that ->cblist may be safely accessed. */
1486 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1487 {
1488 	lockdep_assert_irqs_disabled();
1489 }
1490 
1491 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1492 {
1493 }
1494 
1495 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1496 {
1497 	return NULL;
1498 }
1499 
1500 static void rcu_init_one_nocb(struct rcu_node *rnp)
1501 {
1502 }
1503 
1504 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1505 				  unsigned long j)
1506 {
1507 	return true;
1508 }
1509 
1510 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1511 				bool *was_alldone, unsigned long flags)
1512 {
1513 	return false;
1514 }
1515 
1516 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1517 				 unsigned long flags)
1518 {
1519 	WARN_ON_ONCE(1);  /* Should be dead code! */
1520 }
1521 
1522 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1523 {
1524 }
1525 
1526 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1527 {
1528 	return false;
1529 }
1530 
1531 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1532 {
1533 	return false;
1534 }
1535 
1536 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1537 {
1538 }
1539 
1540 static void __init rcu_spawn_nocb_kthreads(void)
1541 {
1542 }
1543 
1544 static void show_rcu_nocb_state(struct rcu_data *rdp)
1545 {
1546 }
1547 
1548 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1549