xref: /openbmc/linux/kernel/rcu/tree_nocb.h (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *	   Paul E. McKenney <paulmck@linux.ibm.com>
13  *	   Frederic Weisbecker <frederic@kernel.org>
14  */
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 	return lockdep_is_held(&rdp->nocb_lock);
22 }
23 
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 	/* Race on early boot between thread creation and assignment */
27 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 		return true;
29 
30 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 		if (in_task())
32 			return true;
33 	return false;
34 }
35 
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57 
58 
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63 static int __init rcu_nocb_setup(char *str)
64 {
65 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66 	if (*str == '=') {
67 		if (cpulist_parse(++str, rcu_nocb_mask)) {
68 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69 			cpumask_setall(rcu_nocb_mask);
70 		}
71 	}
72 	rcu_state.nocb_is_setup = true;
73 	return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76 
77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79 	rcu_nocb_poll = true;
80 	return 1;
81 }
82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
83 
84 /*
85  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86  * After all, the main point of bypassing is to avoid lock contention
87  * on ->nocb_lock, which only can happen at high call_rcu() rates.
88  */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91 
92 /*
93  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
94  * lock isn't immediately available, perform minimal sanity check.
95  */
96 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
97 	__acquires(&rdp->nocb_bypass_lock)
98 {
99 	lockdep_assert_irqs_disabled();
100 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
101 		return;
102 	/*
103 	 * Contention expected only when local enqueue collide with
104 	 * remote flush from kthreads.
105 	 */
106 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
107 	raw_spin_lock(&rdp->nocb_bypass_lock);
108 }
109 
110 /*
111  * Conditionally acquire the specified rcu_data structure's
112  * ->nocb_bypass_lock.
113  */
114 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
115 {
116 	lockdep_assert_irqs_disabled();
117 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
118 }
119 
120 /*
121  * Release the specified rcu_data structure's ->nocb_bypass_lock.
122  */
123 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
124 	__releases(&rdp->nocb_bypass_lock)
125 {
126 	lockdep_assert_irqs_disabled();
127 	raw_spin_unlock(&rdp->nocb_bypass_lock);
128 }
129 
130 /*
131  * Acquire the specified rcu_data structure's ->nocb_lock, but only
132  * if it corresponds to a no-CBs CPU.
133  */
134 static void rcu_nocb_lock(struct rcu_data *rdp)
135 {
136 	lockdep_assert_irqs_disabled();
137 	if (!rcu_rdp_is_offloaded(rdp))
138 		return;
139 	raw_spin_lock(&rdp->nocb_lock);
140 }
141 
142 /*
143  * Release the specified rcu_data structure's ->nocb_lock, but only
144  * if it corresponds to a no-CBs CPU.
145  */
146 static void rcu_nocb_unlock(struct rcu_data *rdp)
147 {
148 	if (rcu_rdp_is_offloaded(rdp)) {
149 		lockdep_assert_irqs_disabled();
150 		raw_spin_unlock(&rdp->nocb_lock);
151 	}
152 }
153 
154 /*
155  * Release the specified rcu_data structure's ->nocb_lock and restore
156  * interrupts, but only if it corresponds to a no-CBs CPU.
157  */
158 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
159 				       unsigned long flags)
160 {
161 	if (rcu_rdp_is_offloaded(rdp)) {
162 		lockdep_assert_irqs_disabled();
163 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
164 	} else {
165 		local_irq_restore(flags);
166 	}
167 }
168 
169 /* Lockdep check that ->cblist may be safely accessed. */
170 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
171 {
172 	lockdep_assert_irqs_disabled();
173 	if (rcu_rdp_is_offloaded(rdp))
174 		lockdep_assert_held(&rdp->nocb_lock);
175 }
176 
177 /*
178  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
179  * grace period.
180  */
181 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
182 {
183 	swake_up_all(sq);
184 }
185 
186 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
187 {
188 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
189 }
190 
191 static void rcu_init_one_nocb(struct rcu_node *rnp)
192 {
193 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
194 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
195 }
196 
197 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
198 			   struct rcu_data *rdp,
199 			   bool force, unsigned long flags)
200 	__releases(rdp_gp->nocb_gp_lock)
201 {
202 	bool needwake = false;
203 
204 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
205 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
206 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
207 				    TPS("AlreadyAwake"));
208 		return false;
209 	}
210 
211 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
212 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
213 		del_timer(&rdp_gp->nocb_timer);
214 	}
215 
216 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
217 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
218 		needwake = true;
219 	}
220 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
221 	if (needwake) {
222 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
223 		if (cpu_is_offline(raw_smp_processor_id()))
224 			swake_up_one_online(&rdp_gp->nocb_gp_wq);
225 		else
226 			wake_up_process(rdp_gp->nocb_gp_kthread);
227 	}
228 
229 	return needwake;
230 }
231 
232 /*
233  * Kick the GP kthread for this NOCB group.
234  */
235 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
236 {
237 	unsigned long flags;
238 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
239 
240 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
241 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
242 }
243 
244 /*
245  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
246  * can elapse before lazy callbacks are flushed. Lazy callbacks
247  * could be flushed much earlier for a number of other reasons
248  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
249  * left unsubmitted to RCU after those many jiffies.
250  */
251 #define LAZY_FLUSH_JIFFIES (10 * HZ)
252 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
253 
254 #ifdef CONFIG_RCU_LAZY
255 // To be called only from test code.
256 void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
257 {
258 	jiffies_till_flush = jif;
259 }
260 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
261 
262 unsigned long rcu_lazy_get_jiffies_till_flush(void)
263 {
264 	return jiffies_till_flush;
265 }
266 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
267 #endif
268 
269 /*
270  * Arrange to wake the GP kthread for this NOCB group at some future
271  * time when it is safe to do so.
272  */
273 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
274 			       const char *reason)
275 {
276 	unsigned long flags;
277 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
278 
279 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
280 
281 	/*
282 	 * Bypass wakeup overrides previous deferments. In case of
283 	 * callback storms, no need to wake up too early.
284 	 */
285 	if (waketype == RCU_NOCB_WAKE_LAZY &&
286 	    rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
287 		mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
288 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
289 	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
290 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
291 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
292 	} else {
293 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
294 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
295 		if (rdp_gp->nocb_defer_wakeup < waketype)
296 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
297 	}
298 
299 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
300 
301 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
302 }
303 
304 /*
305  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
306  * However, if there is a callback to be enqueued and if ->nocb_bypass
307  * proves to be initially empty, just return false because the no-CB GP
308  * kthread may need to be awakened in this case.
309  *
310  * Return true if there was something to be flushed and it succeeded, otherwise
311  * false.
312  *
313  * Note that this function always returns true if rhp is NULL.
314  */
315 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
316 				     unsigned long j, bool lazy)
317 {
318 	struct rcu_cblist rcl;
319 	struct rcu_head *rhp = rhp_in;
320 
321 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
322 	rcu_lockdep_assert_cblist_protected(rdp);
323 	lockdep_assert_held(&rdp->nocb_bypass_lock);
324 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
325 		raw_spin_unlock(&rdp->nocb_bypass_lock);
326 		return false;
327 	}
328 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
329 	if (rhp)
330 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
331 
332 	/*
333 	 * If the new CB requested was a lazy one, queue it onto the main
334 	 * ->cblist so that we can take advantage of the grace-period that will
335 	 * happen regardless. But queue it onto the bypass list first so that
336 	 * the lazy CB is ordered with the existing CBs in the bypass list.
337 	 */
338 	if (lazy && rhp) {
339 		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
340 		rhp = NULL;
341 	}
342 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
343 	WRITE_ONCE(rdp->lazy_len, 0);
344 
345 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
346 	WRITE_ONCE(rdp->nocb_bypass_first, j);
347 	rcu_nocb_bypass_unlock(rdp);
348 	return true;
349 }
350 
351 /*
352  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
353  * However, if there is a callback to be enqueued and if ->nocb_bypass
354  * proves to be initially empty, just return false because the no-CB GP
355  * kthread may need to be awakened in this case.
356  *
357  * Note that this function always returns true if rhp is NULL.
358  */
359 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
360 				  unsigned long j, bool lazy)
361 {
362 	if (!rcu_rdp_is_offloaded(rdp))
363 		return true;
364 	rcu_lockdep_assert_cblist_protected(rdp);
365 	rcu_nocb_bypass_lock(rdp);
366 	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
367 }
368 
369 /*
370  * If the ->nocb_bypass_lock is immediately available, flush the
371  * ->nocb_bypass queue into ->cblist.
372  */
373 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
374 {
375 	rcu_lockdep_assert_cblist_protected(rdp);
376 	if (!rcu_rdp_is_offloaded(rdp) ||
377 	    !rcu_nocb_bypass_trylock(rdp))
378 		return;
379 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
380 }
381 
382 /*
383  * See whether it is appropriate to use the ->nocb_bypass list in order
384  * to control contention on ->nocb_lock.  A limited number of direct
385  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
386  * is non-empty, further callbacks must be placed into ->nocb_bypass,
387  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
388  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
389  * used if ->cblist is empty, because otherwise callbacks can be stranded
390  * on ->nocb_bypass because we cannot count on the current CPU ever again
391  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
392  * non-empty, the corresponding no-CBs grace-period kthread must not be
393  * in an indefinite sleep state.
394  *
395  * Finally, it is not permitted to use the bypass during early boot,
396  * as doing so would confuse the auto-initialization code.  Besides
397  * which, there is no point in worrying about lock contention while
398  * there is only one CPU in operation.
399  */
400 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
401 				bool *was_alldone, unsigned long flags,
402 				bool lazy)
403 {
404 	unsigned long c;
405 	unsigned long cur_gp_seq;
406 	unsigned long j = jiffies;
407 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
408 	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
409 
410 	lockdep_assert_irqs_disabled();
411 
412 	// Pure softirq/rcuc based processing: no bypassing, no
413 	// locking.
414 	if (!rcu_rdp_is_offloaded(rdp)) {
415 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
416 		return false;
417 	}
418 
419 	// In the process of (de-)offloading: no bypassing, but
420 	// locking.
421 	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
422 		rcu_nocb_lock(rdp);
423 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
424 		return false; /* Not offloaded, no bypassing. */
425 	}
426 
427 	// Don't use ->nocb_bypass during early boot.
428 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
429 		rcu_nocb_lock(rdp);
430 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
431 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
432 		return false;
433 	}
434 
435 	// If we have advanced to a new jiffy, reset counts to allow
436 	// moving back from ->nocb_bypass to ->cblist.
437 	if (j == rdp->nocb_nobypass_last) {
438 		c = rdp->nocb_nobypass_count + 1;
439 	} else {
440 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
441 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
442 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
443 				 nocb_nobypass_lim_per_jiffy))
444 			c = 0;
445 		else if (c > nocb_nobypass_lim_per_jiffy)
446 			c = nocb_nobypass_lim_per_jiffy;
447 	}
448 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
449 
450 	// If there hasn't yet been all that many ->cblist enqueues
451 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
452 	// ->nocb_bypass first.
453 	// Lazy CBs throttle this back and do immediate bypass queuing.
454 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
455 		rcu_nocb_lock(rdp);
456 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
457 		if (*was_alldone)
458 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
459 					    TPS("FirstQ"));
460 
461 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
462 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
463 		return false; // Caller must enqueue the callback.
464 	}
465 
466 	// If ->nocb_bypass has been used too long or is too full,
467 	// flush ->nocb_bypass to ->cblist.
468 	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
469 	    (ncbs &&  bypass_is_lazy &&
470 	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
471 	    ncbs >= qhimark) {
472 		rcu_nocb_lock(rdp);
473 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
474 
475 		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
476 			if (*was_alldone)
477 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
478 						    TPS("FirstQ"));
479 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
480 			return false; // Caller must enqueue the callback.
481 		}
482 		if (j != rdp->nocb_gp_adv_time &&
483 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
484 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
485 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
486 			rdp->nocb_gp_adv_time = j;
487 		}
488 
489 		// The flush succeeded and we moved CBs into the regular list.
490 		// Don't wait for the wake up timer as it may be too far ahead.
491 		// Wake up the GP thread now instead, if the cblist was empty.
492 		__call_rcu_nocb_wake(rdp, *was_alldone, flags);
493 
494 		return true; // Callback already enqueued.
495 	}
496 
497 	// We need to use the bypass.
498 	rcu_nocb_bypass_lock(rdp);
499 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
500 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
501 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
502 
503 	if (lazy)
504 		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
505 
506 	if (!ncbs) {
507 		WRITE_ONCE(rdp->nocb_bypass_first, j);
508 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
509 	}
510 	rcu_nocb_bypass_unlock(rdp);
511 	smp_mb(); /* Order enqueue before wake. */
512 	// A wake up of the grace period kthread or timer adjustment
513 	// needs to be done only if:
514 	// 1. Bypass list was fully empty before (this is the first
515 	//    bypass list entry), or:
516 	// 2. Both of these conditions are met:
517 	//    a. The bypass list previously had only lazy CBs, and:
518 	//    b. The new CB is non-lazy.
519 	if (!ncbs || (bypass_is_lazy && !lazy)) {
520 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
521 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
522 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
523 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
524 					    TPS("FirstBQwake"));
525 			__call_rcu_nocb_wake(rdp, true, flags);
526 		} else {
527 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
528 					    TPS("FirstBQnoWake"));
529 			rcu_nocb_unlock(rdp);
530 		}
531 	}
532 	return true; // Callback already enqueued.
533 }
534 
535 /*
536  * Awaken the no-CBs grace-period kthread if needed, either due to it
537  * legitimately being asleep or due to overload conditions.
538  *
539  * If warranted, also wake up the kthread servicing this CPUs queues.
540  */
541 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
542 				 unsigned long flags)
543 				 __releases(rdp->nocb_lock)
544 {
545 	long bypass_len;
546 	unsigned long cur_gp_seq;
547 	unsigned long j;
548 	long lazy_len;
549 	long len;
550 	struct task_struct *t;
551 
552 	// If we are being polled or there is no kthread, just leave.
553 	t = READ_ONCE(rdp->nocb_gp_kthread);
554 	if (rcu_nocb_poll || !t) {
555 		rcu_nocb_unlock(rdp);
556 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
557 				    TPS("WakeNotPoll"));
558 		return;
559 	}
560 	// Need to actually to a wakeup.
561 	len = rcu_segcblist_n_cbs(&rdp->cblist);
562 	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
563 	lazy_len = READ_ONCE(rdp->lazy_len);
564 	if (was_alldone) {
565 		rdp->qlen_last_fqs_check = len;
566 		// Only lazy CBs in bypass list
567 		if (lazy_len && bypass_len == lazy_len) {
568 			rcu_nocb_unlock(rdp);
569 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
570 					   TPS("WakeLazy"));
571 		} else if (!irqs_disabled_flags(flags) && cpu_online(rdp->cpu)) {
572 			/* ... if queue was empty ... */
573 			rcu_nocb_unlock(rdp);
574 			wake_nocb_gp(rdp, false);
575 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
576 					    TPS("WakeEmpty"));
577 		} else {
578 			/*
579 			 * Don't do the wake-up upfront on fragile paths.
580 			 * Also offline CPUs can't call swake_up_one_online() from
581 			 * (soft-)IRQs. Rely on the final deferred wake-up from
582 			 * rcutree_report_cpu_dead()
583 			 */
584 			rcu_nocb_unlock(rdp);
585 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
586 					   TPS("WakeEmptyIsDeferred"));
587 		}
588 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
589 		/* ... or if many callbacks queued. */
590 		rdp->qlen_last_fqs_check = len;
591 		j = jiffies;
592 		if (j != rdp->nocb_gp_adv_time &&
593 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
594 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
595 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
596 			rdp->nocb_gp_adv_time = j;
597 		}
598 		smp_mb(); /* Enqueue before timer_pending(). */
599 		if ((rdp->nocb_cb_sleep ||
600 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
601 		    !timer_pending(&rdp->nocb_timer)) {
602 			rcu_nocb_unlock(rdp);
603 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
604 					   TPS("WakeOvfIsDeferred"));
605 		} else {
606 			rcu_nocb_unlock(rdp);
607 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
608 		}
609 	} else {
610 		rcu_nocb_unlock(rdp);
611 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
612 	}
613 }
614 
615 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
616 			       bool *wake_state)
617 {
618 	struct rcu_segcblist *cblist = &rdp->cblist;
619 	unsigned long flags;
620 	int ret;
621 
622 	rcu_nocb_lock_irqsave(rdp, flags);
623 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
624 	    !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
625 		/*
626 		 * Offloading. Set our flag and notify the offload worker.
627 		 * We will handle this rdp until it ever gets de-offloaded.
628 		 */
629 		rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
630 		if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
631 			*wake_state = true;
632 		ret = 1;
633 	} else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
634 		   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
635 		/*
636 		 * De-offloading. Clear our flag and notify the de-offload worker.
637 		 * We will ignore this rdp until it ever gets re-offloaded.
638 		 */
639 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
640 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
641 			*wake_state = true;
642 		ret = 0;
643 	} else {
644 		WARN_ON_ONCE(1);
645 		ret = -1;
646 	}
647 
648 	rcu_nocb_unlock_irqrestore(rdp, flags);
649 
650 	return ret;
651 }
652 
653 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
654 {
655 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
656 	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
657 					!READ_ONCE(my_rdp->nocb_gp_sleep));
658 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
659 }
660 
661 /*
662  * No-CBs GP kthreads come here to wait for additional callbacks to show up
663  * or for grace periods to end.
664  */
665 static void nocb_gp_wait(struct rcu_data *my_rdp)
666 {
667 	bool bypass = false;
668 	int __maybe_unused cpu = my_rdp->cpu;
669 	unsigned long cur_gp_seq;
670 	unsigned long flags;
671 	bool gotcbs = false;
672 	unsigned long j = jiffies;
673 	bool lazy = false;
674 	bool needwait_gp = false; // This prevents actual uninitialized use.
675 	bool needwake;
676 	bool needwake_gp;
677 	struct rcu_data *rdp, *rdp_toggling = NULL;
678 	struct rcu_node *rnp;
679 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
680 	bool wasempty = false;
681 
682 	/*
683 	 * Each pass through the following loop checks for CBs and for the
684 	 * nearest grace period (if any) to wait for next.  The CB kthreads
685 	 * and the global grace-period kthread are awakened if needed.
686 	 */
687 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
688 	/*
689 	 * An rcu_data structure is removed from the list after its
690 	 * CPU is de-offloaded and added to the list before that CPU is
691 	 * (re-)offloaded.  If the following loop happens to be referencing
692 	 * that rcu_data structure during the time that the corresponding
693 	 * CPU is de-offloaded and then immediately re-offloaded, this
694 	 * loop's rdp pointer will be carried to the end of the list by
695 	 * the resulting pair of list operations.  This can cause the loop
696 	 * to skip over some of the rcu_data structures that were supposed
697 	 * to have been scanned.  Fortunately a new iteration through the
698 	 * entire loop is forced after a given CPU's rcu_data structure
699 	 * is added to the list, so the skipped-over rcu_data structures
700 	 * won't be ignored for long.
701 	 */
702 	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
703 		long bypass_ncbs;
704 		bool flush_bypass = false;
705 		long lazy_ncbs;
706 
707 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
708 		rcu_nocb_lock_irqsave(rdp, flags);
709 		lockdep_assert_held(&rdp->nocb_lock);
710 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
711 		lazy_ncbs = READ_ONCE(rdp->lazy_len);
712 
713 		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
714 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
715 		     bypass_ncbs > 2 * qhimark)) {
716 			flush_bypass = true;
717 		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
718 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
719 		     bypass_ncbs > 2 * qhimark)) {
720 			flush_bypass = true;
721 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
722 			rcu_nocb_unlock_irqrestore(rdp, flags);
723 			continue; /* No callbacks here, try next. */
724 		}
725 
726 		if (flush_bypass) {
727 			// Bypass full or old, so flush it.
728 			(void)rcu_nocb_try_flush_bypass(rdp, j);
729 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
730 			lazy_ncbs = READ_ONCE(rdp->lazy_len);
731 		}
732 
733 		if (bypass_ncbs) {
734 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
735 					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
736 			if (bypass_ncbs == lazy_ncbs)
737 				lazy = true;
738 			else
739 				bypass = true;
740 		}
741 		rnp = rdp->mynode;
742 
743 		// Advance callbacks if helpful and low contention.
744 		needwake_gp = false;
745 		if (!rcu_segcblist_restempty(&rdp->cblist,
746 					     RCU_NEXT_READY_TAIL) ||
747 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
748 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
749 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
750 			needwake_gp = rcu_advance_cbs(rnp, rdp);
751 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
752 							   RCU_NEXT_READY_TAIL);
753 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
754 		}
755 		// Need to wait on some grace period?
756 		WARN_ON_ONCE(wasempty &&
757 			     !rcu_segcblist_restempty(&rdp->cblist,
758 						      RCU_NEXT_READY_TAIL));
759 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
760 			if (!needwait_gp ||
761 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
762 				wait_gp_seq = cur_gp_seq;
763 			needwait_gp = true;
764 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
765 					    TPS("NeedWaitGP"));
766 		}
767 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
768 			needwake = rdp->nocb_cb_sleep;
769 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
770 			smp_mb(); /* CB invocation -after- GP end. */
771 		} else {
772 			needwake = false;
773 		}
774 		rcu_nocb_unlock_irqrestore(rdp, flags);
775 		if (needwake) {
776 			swake_up_one(&rdp->nocb_cb_wq);
777 			gotcbs = true;
778 		}
779 		if (needwake_gp)
780 			rcu_gp_kthread_wake();
781 	}
782 
783 	my_rdp->nocb_gp_bypass = bypass;
784 	my_rdp->nocb_gp_gp = needwait_gp;
785 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
786 
787 	// At least one child with non-empty ->nocb_bypass, so set
788 	// timer in order to avoid stranding its callbacks.
789 	if (!rcu_nocb_poll) {
790 		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
791 		if (lazy && !bypass) {
792 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
793 					TPS("WakeLazyIsDeferred"));
794 		// Otherwise add a deferred bypass wake up.
795 		} else if (bypass) {
796 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
797 					TPS("WakeBypassIsDeferred"));
798 		}
799 	}
800 
801 	if (rcu_nocb_poll) {
802 		/* Polling, so trace if first poll in the series. */
803 		if (gotcbs)
804 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
805 		if (list_empty(&my_rdp->nocb_head_rdp)) {
806 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
807 			if (!my_rdp->nocb_toggling_rdp)
808 				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
809 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
810 			/* Wait for any offloading rdp */
811 			nocb_gp_sleep(my_rdp, cpu);
812 		} else {
813 			schedule_timeout_idle(1);
814 		}
815 	} else if (!needwait_gp) {
816 		/* Wait for callbacks to appear. */
817 		nocb_gp_sleep(my_rdp, cpu);
818 	} else {
819 		rnp = my_rdp->mynode;
820 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
821 		swait_event_interruptible_exclusive(
822 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
823 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
824 			!READ_ONCE(my_rdp->nocb_gp_sleep));
825 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
826 	}
827 
828 	if (!rcu_nocb_poll) {
829 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
830 		// (De-)queue an rdp to/from the group if its nocb state is changing
831 		rdp_toggling = my_rdp->nocb_toggling_rdp;
832 		if (rdp_toggling)
833 			my_rdp->nocb_toggling_rdp = NULL;
834 
835 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
836 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
837 			del_timer(&my_rdp->nocb_timer);
838 		}
839 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
840 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
841 	} else {
842 		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
843 		if (rdp_toggling) {
844 			/*
845 			 * Paranoid locking to make sure nocb_toggling_rdp is well
846 			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
847 			 * race with another round of nocb toggling for this rdp.
848 			 * Nocb locking should prevent from that already but we stick
849 			 * to paranoia, especially in rare path.
850 			 */
851 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
852 			my_rdp->nocb_toggling_rdp = NULL;
853 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
854 		}
855 	}
856 
857 	if (rdp_toggling) {
858 		bool wake_state = false;
859 		int ret;
860 
861 		ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
862 		if (ret == 1)
863 			list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
864 		else if (ret == 0)
865 			list_del(&rdp_toggling->nocb_entry_rdp);
866 		if (wake_state)
867 			swake_up_one(&rdp_toggling->nocb_state_wq);
868 	}
869 
870 	my_rdp->nocb_gp_seq = -1;
871 	WARN_ON(signal_pending(current));
872 }
873 
874 /*
875  * No-CBs grace-period-wait kthread.  There is one of these per group
876  * of CPUs, but only once at least one CPU in that group has come online
877  * at least once since boot.  This kthread checks for newly posted
878  * callbacks from any of the CPUs it is responsible for, waits for a
879  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
880  * that then have callback-invocation work to do.
881  */
882 static int rcu_nocb_gp_kthread(void *arg)
883 {
884 	struct rcu_data *rdp = arg;
885 
886 	for (;;) {
887 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
888 		nocb_gp_wait(rdp);
889 		cond_resched_tasks_rcu_qs();
890 	}
891 	return 0;
892 }
893 
894 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
895 {
896 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
897 
898 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
899 }
900 
901 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
902 {
903 	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
904 }
905 
906 /*
907  * Invoke any ready callbacks from the corresponding no-CBs CPU,
908  * then, if there are no more, wait for more to appear.
909  */
910 static void nocb_cb_wait(struct rcu_data *rdp)
911 {
912 	struct rcu_segcblist *cblist = &rdp->cblist;
913 	unsigned long cur_gp_seq;
914 	unsigned long flags;
915 	bool needwake_state = false;
916 	bool needwake_gp = false;
917 	bool can_sleep = true;
918 	struct rcu_node *rnp = rdp->mynode;
919 
920 	do {
921 		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
922 						    nocb_cb_wait_cond(rdp));
923 
924 		// VVV Ensure CB invocation follows _sleep test.
925 		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
926 			WARN_ON(signal_pending(current));
927 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
928 		}
929 	} while (!nocb_cb_can_run(rdp));
930 
931 
932 	local_irq_save(flags);
933 	rcu_momentary_dyntick_idle();
934 	local_irq_restore(flags);
935 	/*
936 	 * Disable BH to provide the expected environment.  Also, when
937 	 * transitioning to/from NOCB mode, a self-requeuing callback might
938 	 * be invoked from softirq.  A short grace period could cause both
939 	 * instances of this callback would execute concurrently.
940 	 */
941 	local_bh_disable();
942 	rcu_do_batch(rdp);
943 	local_bh_enable();
944 	lockdep_assert_irqs_enabled();
945 	rcu_nocb_lock_irqsave(rdp, flags);
946 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
947 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
948 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
949 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
950 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
951 	}
952 
953 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
954 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
955 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
956 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
957 				needwake_state = true;
958 		}
959 		if (rcu_segcblist_ready_cbs(cblist))
960 			can_sleep = false;
961 	} else {
962 		/*
963 		 * De-offloading. Clear our flag and notify the de-offload worker.
964 		 * We won't touch the callbacks and keep sleeping until we ever
965 		 * get re-offloaded.
966 		 */
967 		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
968 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
969 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
970 			needwake_state = true;
971 	}
972 
973 	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
974 
975 	if (rdp->nocb_cb_sleep)
976 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
977 
978 	rcu_nocb_unlock_irqrestore(rdp, flags);
979 	if (needwake_gp)
980 		rcu_gp_kthread_wake();
981 
982 	if (needwake_state)
983 		swake_up_one(&rdp->nocb_state_wq);
984 }
985 
986 /*
987  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
988  * nocb_cb_wait() to do the dirty work.
989  */
990 static int rcu_nocb_cb_kthread(void *arg)
991 {
992 	struct rcu_data *rdp = arg;
993 
994 	// Each pass through this loop does one callback batch, and,
995 	// if there are no more ready callbacks, waits for them.
996 	for (;;) {
997 		nocb_cb_wait(rdp);
998 		cond_resched_tasks_rcu_qs();
999 	}
1000 	return 0;
1001 }
1002 
1003 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
1004 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1005 {
1006 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1007 }
1008 
1009 /* Do a deferred wakeup of rcu_nocb_kthread(). */
1010 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1011 					   struct rcu_data *rdp, int level,
1012 					   unsigned long flags)
1013 	__releases(rdp_gp->nocb_gp_lock)
1014 {
1015 	int ndw;
1016 	int ret;
1017 
1018 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1019 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1020 		return false;
1021 	}
1022 
1023 	ndw = rdp_gp->nocb_defer_wakeup;
1024 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1025 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1026 
1027 	return ret;
1028 }
1029 
1030 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
1031 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1032 {
1033 	unsigned long flags;
1034 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1035 
1036 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1037 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1038 
1039 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1040 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1041 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1042 }
1043 
1044 /*
1045  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1046  * This means we do an inexact common-case check.  Note that if
1047  * we miss, ->nocb_timer will eventually clean things up.
1048  */
1049 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1050 {
1051 	unsigned long flags;
1052 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1053 
1054 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1055 		return false;
1056 
1057 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1058 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1059 }
1060 
1061 void rcu_nocb_flush_deferred_wakeup(void)
1062 {
1063 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1064 }
1065 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1066 
1067 static int rdp_offload_toggle(struct rcu_data *rdp,
1068 			       bool offload, unsigned long flags)
1069 	__releases(rdp->nocb_lock)
1070 {
1071 	struct rcu_segcblist *cblist = &rdp->cblist;
1072 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1073 	bool wake_gp = false;
1074 
1075 	rcu_segcblist_offload(cblist, offload);
1076 
1077 	if (rdp->nocb_cb_sleep)
1078 		rdp->nocb_cb_sleep = false;
1079 	rcu_nocb_unlock_irqrestore(rdp, flags);
1080 
1081 	/*
1082 	 * Ignore former value of nocb_cb_sleep and force wake up as it could
1083 	 * have been spuriously set to false already.
1084 	 */
1085 	swake_up_one(&rdp->nocb_cb_wq);
1086 
1087 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1088 	// Queue this rdp for add/del to/from the list to iterate on rcuog
1089 	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1090 	if (rdp_gp->nocb_gp_sleep) {
1091 		rdp_gp->nocb_gp_sleep = false;
1092 		wake_gp = true;
1093 	}
1094 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1095 
1096 	return wake_gp;
1097 }
1098 
1099 static long rcu_nocb_rdp_deoffload(void *arg)
1100 {
1101 	struct rcu_data *rdp = arg;
1102 	struct rcu_segcblist *cblist = &rdp->cblist;
1103 	unsigned long flags;
1104 	int wake_gp;
1105 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1106 
1107 	/*
1108 	 * rcu_nocb_rdp_deoffload() may be called directly if
1109 	 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1110 	 * is not online yet.
1111 	 */
1112 	WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1113 
1114 	pr_info("De-offloading %d\n", rdp->cpu);
1115 
1116 	rcu_nocb_lock_irqsave(rdp, flags);
1117 	/*
1118 	 * Flush once and for all now. This suffices because we are
1119 	 * running on the target CPU holding ->nocb_lock (thus having
1120 	 * interrupts disabled), and because rdp_offload_toggle()
1121 	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1122 	 * Thus future calls to rcu_segcblist_completely_offloaded() will
1123 	 * return false, which means that future calls to rcu_nocb_try_bypass()
1124 	 * will refuse to put anything into the bypass.
1125 	 */
1126 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1127 	/*
1128 	 * Start with invoking rcu_core() early. This way if the current thread
1129 	 * happens to preempt an ongoing call to rcu_core() in the middle,
1130 	 * leaving some work dismissed because rcu_core() still thinks the rdp is
1131 	 * completely offloaded, we are guaranteed a nearby future instance of
1132 	 * rcu_core() to catch up.
1133 	 */
1134 	rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1135 	invoke_rcu_core();
1136 	wake_gp = rdp_offload_toggle(rdp, false, flags);
1137 
1138 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1139 	if (rdp_gp->nocb_gp_kthread) {
1140 		if (wake_gp)
1141 			wake_up_process(rdp_gp->nocb_gp_kthread);
1142 
1143 		/*
1144 		 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1145 		 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1146 		 */
1147 		if (!rdp->nocb_cb_kthread) {
1148 			rcu_nocb_lock_irqsave(rdp, flags);
1149 			rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1150 			rcu_nocb_unlock_irqrestore(rdp, flags);
1151 		}
1152 
1153 		swait_event_exclusive(rdp->nocb_state_wq,
1154 					!rcu_segcblist_test_flags(cblist,
1155 					  SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1156 	} else {
1157 		/*
1158 		 * No kthread to clear the flags for us or remove the rdp from the nocb list
1159 		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1160 		 * but we stick to paranoia in this rare path.
1161 		 */
1162 		rcu_nocb_lock_irqsave(rdp, flags);
1163 		rcu_segcblist_clear_flags(&rdp->cblist,
1164 				SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1165 		rcu_nocb_unlock_irqrestore(rdp, flags);
1166 
1167 		list_del(&rdp->nocb_entry_rdp);
1168 	}
1169 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1170 
1171 	/*
1172 	 * Lock one last time to acquire latest callback updates from kthreads
1173 	 * so we can later handle callbacks locally without locking.
1174 	 */
1175 	rcu_nocb_lock_irqsave(rdp, flags);
1176 	/*
1177 	 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1178 	 * lock is released but how about being paranoid for once?
1179 	 */
1180 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1181 	/*
1182 	 * Without SEGCBLIST_LOCKING, we can't use
1183 	 * rcu_nocb_unlock_irqrestore() anymore.
1184 	 */
1185 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1186 
1187 	/* Sanity check */
1188 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1189 
1190 
1191 	return 0;
1192 }
1193 
1194 int rcu_nocb_cpu_deoffload(int cpu)
1195 {
1196 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1197 	int ret = 0;
1198 
1199 	cpus_read_lock();
1200 	mutex_lock(&rcu_state.barrier_mutex);
1201 	if (rcu_rdp_is_offloaded(rdp)) {
1202 		if (cpu_online(cpu)) {
1203 			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1204 			if (!ret)
1205 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1206 		} else {
1207 			pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1208 			ret = -EINVAL;
1209 		}
1210 	}
1211 	mutex_unlock(&rcu_state.barrier_mutex);
1212 	cpus_read_unlock();
1213 
1214 	return ret;
1215 }
1216 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1217 
1218 static long rcu_nocb_rdp_offload(void *arg)
1219 {
1220 	struct rcu_data *rdp = arg;
1221 	struct rcu_segcblist *cblist = &rdp->cblist;
1222 	unsigned long flags;
1223 	int wake_gp;
1224 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1225 
1226 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1227 	/*
1228 	 * For now we only support re-offload, ie: the rdp must have been
1229 	 * offloaded on boot first.
1230 	 */
1231 	if (!rdp->nocb_gp_rdp)
1232 		return -EINVAL;
1233 
1234 	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1235 		return -EINVAL;
1236 
1237 	pr_info("Offloading %d\n", rdp->cpu);
1238 
1239 	/*
1240 	 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1241 	 * is set.
1242 	 */
1243 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1244 
1245 	/*
1246 	 * We didn't take the nocb lock while working on the
1247 	 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1248 	 * Every modifications that have been done previously on
1249 	 * rdp->cblist must be visible remotely by the nocb kthreads
1250 	 * upon wake up after reading the cblist flags.
1251 	 *
1252 	 * The layout against nocb_lock enforces that ordering:
1253 	 *
1254 	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1255 	 * -------------------------   ----------------------------
1256 	 *      WRITE callbacks           rcu_nocb_lock()
1257 	 *      rcu_nocb_lock()           READ flags
1258 	 *      WRITE flags               READ callbacks
1259 	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
1260 	 */
1261 	wake_gp = rdp_offload_toggle(rdp, true, flags);
1262 	if (wake_gp)
1263 		wake_up_process(rdp_gp->nocb_gp_kthread);
1264 	swait_event_exclusive(rdp->nocb_state_wq,
1265 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1266 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1267 
1268 	/*
1269 	 * All kthreads are ready to work, we can finally relieve rcu_core() and
1270 	 * enable nocb bypass.
1271 	 */
1272 	rcu_nocb_lock_irqsave(rdp, flags);
1273 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1274 	rcu_nocb_unlock_irqrestore(rdp, flags);
1275 
1276 	return 0;
1277 }
1278 
1279 int rcu_nocb_cpu_offload(int cpu)
1280 {
1281 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1282 	int ret = 0;
1283 
1284 	cpus_read_lock();
1285 	mutex_lock(&rcu_state.barrier_mutex);
1286 	if (!rcu_rdp_is_offloaded(rdp)) {
1287 		if (cpu_online(cpu)) {
1288 			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1289 			if (!ret)
1290 				cpumask_set_cpu(cpu, rcu_nocb_mask);
1291 		} else {
1292 			pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1293 			ret = -EINVAL;
1294 		}
1295 	}
1296 	mutex_unlock(&rcu_state.barrier_mutex);
1297 	cpus_read_unlock();
1298 
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1302 
1303 #ifdef CONFIG_RCU_LAZY
1304 static unsigned long
1305 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1306 {
1307 	int cpu;
1308 	unsigned long count = 0;
1309 
1310 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1311 		return 0;
1312 
1313 	/*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1314 	if (!mutex_trylock(&rcu_state.barrier_mutex))
1315 		return 0;
1316 
1317 	/* Snapshot count of all CPUs */
1318 	for_each_cpu(cpu, rcu_nocb_mask) {
1319 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1320 
1321 		count +=  READ_ONCE(rdp->lazy_len);
1322 	}
1323 
1324 	mutex_unlock(&rcu_state.barrier_mutex);
1325 
1326 	return count ? count : SHRINK_EMPTY;
1327 }
1328 
1329 static unsigned long
1330 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1331 {
1332 	int cpu;
1333 	unsigned long flags;
1334 	unsigned long count = 0;
1335 
1336 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1337 		return 0;
1338 	/*
1339 	 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1340 	 * may be ignored or imbalanced.
1341 	 */
1342 	if (!mutex_trylock(&rcu_state.barrier_mutex)) {
1343 		/*
1344 		 * But really don't insist if barrier_mutex is contended since we
1345 		 * can't guarantee that it will never engage in a dependency
1346 		 * chain involving memory allocation. The lock is seldom contended
1347 		 * anyway.
1348 		 */
1349 		return 0;
1350 	}
1351 
1352 	/* Snapshot count of all CPUs */
1353 	for_each_cpu(cpu, rcu_nocb_mask) {
1354 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1355 		int _count;
1356 
1357 		if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1358 			continue;
1359 
1360 		if (!READ_ONCE(rdp->lazy_len))
1361 			continue;
1362 
1363 		rcu_nocb_lock_irqsave(rdp, flags);
1364 		/*
1365 		 * Recheck under the nocb lock. Since we are not holding the bypass
1366 		 * lock we may still race with increments from the enqueuer but still
1367 		 * we know for sure if there is at least one lazy callback.
1368 		 */
1369 		_count = READ_ONCE(rdp->lazy_len);
1370 		if (!_count) {
1371 			rcu_nocb_unlock_irqrestore(rdp, flags);
1372 			continue;
1373 		}
1374 		rcu_nocb_try_flush_bypass(rdp, jiffies);
1375 		rcu_nocb_unlock_irqrestore(rdp, flags);
1376 		wake_nocb_gp(rdp, false);
1377 		sc->nr_to_scan -= _count;
1378 		count += _count;
1379 		if (sc->nr_to_scan <= 0)
1380 			break;
1381 	}
1382 
1383 	mutex_unlock(&rcu_state.barrier_mutex);
1384 
1385 	return count ? count : SHRINK_STOP;
1386 }
1387 
1388 static struct shrinker lazy_rcu_shrinker = {
1389 	.count_objects = lazy_rcu_shrink_count,
1390 	.scan_objects = lazy_rcu_shrink_scan,
1391 	.batch = 0,
1392 	.seeks = DEFAULT_SEEKS,
1393 };
1394 #endif // #ifdef CONFIG_RCU_LAZY
1395 
1396 void __init rcu_init_nohz(void)
1397 {
1398 	int cpu;
1399 	struct rcu_data *rdp;
1400 	const struct cpumask *cpumask = NULL;
1401 
1402 #if defined(CONFIG_NO_HZ_FULL)
1403 	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1404 		cpumask = tick_nohz_full_mask;
1405 #endif
1406 
1407 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1408 	    !rcu_state.nocb_is_setup && !cpumask)
1409 		cpumask = cpu_possible_mask;
1410 
1411 	if (cpumask) {
1412 		if (!cpumask_available(rcu_nocb_mask)) {
1413 			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1414 				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1415 				return;
1416 			}
1417 		}
1418 
1419 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1420 		rcu_state.nocb_is_setup = true;
1421 	}
1422 
1423 	if (!rcu_state.nocb_is_setup)
1424 		return;
1425 
1426 #ifdef CONFIG_RCU_LAZY
1427 	if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy"))
1428 		pr_err("Failed to register lazy_rcu shrinker!\n");
1429 #endif // #ifdef CONFIG_RCU_LAZY
1430 
1431 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1432 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1433 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1434 			    rcu_nocb_mask);
1435 	}
1436 	if (cpumask_empty(rcu_nocb_mask))
1437 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1438 	else
1439 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1440 			cpumask_pr_args(rcu_nocb_mask));
1441 	if (rcu_nocb_poll)
1442 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1443 
1444 	for_each_cpu(cpu, rcu_nocb_mask) {
1445 		rdp = per_cpu_ptr(&rcu_data, cpu);
1446 		if (rcu_segcblist_empty(&rdp->cblist))
1447 			rcu_segcblist_init(&rdp->cblist);
1448 		rcu_segcblist_offload(&rdp->cblist, true);
1449 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1450 		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1451 	}
1452 	rcu_organize_nocb_kthreads();
1453 }
1454 
1455 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1456 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1457 {
1458 	init_swait_queue_head(&rdp->nocb_cb_wq);
1459 	init_swait_queue_head(&rdp->nocb_gp_wq);
1460 	init_swait_queue_head(&rdp->nocb_state_wq);
1461 	raw_spin_lock_init(&rdp->nocb_lock);
1462 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1463 	raw_spin_lock_init(&rdp->nocb_gp_lock);
1464 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1465 	rcu_cblist_init(&rdp->nocb_bypass);
1466 	WRITE_ONCE(rdp->lazy_len, 0);
1467 	mutex_init(&rdp->nocb_gp_kthread_mutex);
1468 }
1469 
1470 /*
1471  * If the specified CPU is a no-CBs CPU that does not already have its
1472  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1473  * for this CPU's group has not yet been created, spawn it as well.
1474  */
1475 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1476 {
1477 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1478 	struct rcu_data *rdp_gp;
1479 	struct task_struct *t;
1480 	struct sched_param sp;
1481 
1482 	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1483 		return;
1484 
1485 	/* If there already is an rcuo kthread, then nothing to do. */
1486 	if (rdp->nocb_cb_kthread)
1487 		return;
1488 
1489 	/* If we didn't spawn the GP kthread first, reorganize! */
1490 	sp.sched_priority = kthread_prio;
1491 	rdp_gp = rdp->nocb_gp_rdp;
1492 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1493 	if (!rdp_gp->nocb_gp_kthread) {
1494 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1495 				"rcuog/%d", rdp_gp->cpu);
1496 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1497 			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1498 			goto end;
1499 		}
1500 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1501 		if (kthread_prio)
1502 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1503 	}
1504 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1505 
1506 	/* Spawn the kthread for this CPU. */
1507 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
1508 			"rcuo%c/%d", rcu_state.abbr, cpu);
1509 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1510 		goto end;
1511 
1512 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1513 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1514 
1515 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1516 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1517 	return;
1518 end:
1519 	mutex_lock(&rcu_state.barrier_mutex);
1520 	if (rcu_rdp_is_offloaded(rdp)) {
1521 		rcu_nocb_rdp_deoffload(rdp);
1522 		cpumask_clear_cpu(cpu, rcu_nocb_mask);
1523 	}
1524 	mutex_unlock(&rcu_state.barrier_mutex);
1525 }
1526 
1527 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1528 static int rcu_nocb_gp_stride = -1;
1529 module_param(rcu_nocb_gp_stride, int, 0444);
1530 
1531 /*
1532  * Initialize GP-CB relationships for all no-CBs CPU.
1533  */
1534 static void __init rcu_organize_nocb_kthreads(void)
1535 {
1536 	int cpu;
1537 	bool firsttime = true;
1538 	bool gotnocbs = false;
1539 	bool gotnocbscbs = true;
1540 	int ls = rcu_nocb_gp_stride;
1541 	int nl = 0;  /* Next GP kthread. */
1542 	struct rcu_data *rdp;
1543 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1544 
1545 	if (!cpumask_available(rcu_nocb_mask))
1546 		return;
1547 	if (ls == -1) {
1548 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1549 		rcu_nocb_gp_stride = ls;
1550 	}
1551 
1552 	/*
1553 	 * Each pass through this loop sets up one rcu_data structure.
1554 	 * Should the corresponding CPU come online in the future, then
1555 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1556 	 */
1557 	for_each_possible_cpu(cpu) {
1558 		rdp = per_cpu_ptr(&rcu_data, cpu);
1559 		if (rdp->cpu >= nl) {
1560 			/* New GP kthread, set up for CBs & next GP. */
1561 			gotnocbs = true;
1562 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1563 			rdp_gp = rdp;
1564 			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1565 			if (dump_tree) {
1566 				if (!firsttime)
1567 					pr_cont("%s\n", gotnocbscbs
1568 							? "" : " (self only)");
1569 				gotnocbscbs = false;
1570 				firsttime = false;
1571 				pr_alert("%s: No-CB GP kthread CPU %d:",
1572 					 __func__, cpu);
1573 			}
1574 		} else {
1575 			/* Another CB kthread, link to previous GP kthread. */
1576 			gotnocbscbs = true;
1577 			if (dump_tree)
1578 				pr_cont(" %d", cpu);
1579 		}
1580 		rdp->nocb_gp_rdp = rdp_gp;
1581 		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1582 			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1583 	}
1584 	if (gotnocbs && dump_tree)
1585 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1586 }
1587 
1588 /*
1589  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1590  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1591  */
1592 void rcu_bind_current_to_nocb(void)
1593 {
1594 	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1595 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1596 }
1597 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1598 
1599 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1600 #ifdef CONFIG_SMP
1601 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1602 {
1603 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1604 }
1605 #else // #ifdef CONFIG_SMP
1606 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1607 {
1608 	return "";
1609 }
1610 #endif // #else #ifdef CONFIG_SMP
1611 
1612 /*
1613  * Dump out nocb grace-period kthread state for the specified rcu_data
1614  * structure.
1615  */
1616 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1617 {
1618 	struct rcu_node *rnp = rdp->mynode;
1619 
1620 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1621 		rdp->cpu,
1622 		"kK"[!!rdp->nocb_gp_kthread],
1623 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1624 		"dD"[!!rdp->nocb_defer_wakeup],
1625 		"tT"[timer_pending(&rdp->nocb_timer)],
1626 		"sS"[!!rdp->nocb_gp_sleep],
1627 		".W"[swait_active(&rdp->nocb_gp_wq)],
1628 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1629 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1630 		".B"[!!rdp->nocb_gp_bypass],
1631 		".G"[!!rdp->nocb_gp_gp],
1632 		(long)rdp->nocb_gp_seq,
1633 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1634 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1635 		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1636 		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1637 }
1638 
1639 /* Dump out nocb kthread state for the specified rcu_data structure. */
1640 static void show_rcu_nocb_state(struct rcu_data *rdp)
1641 {
1642 	char bufw[20];
1643 	char bufr[20];
1644 	struct rcu_data *nocb_next_rdp;
1645 	struct rcu_segcblist *rsclp = &rdp->cblist;
1646 	bool waslocked;
1647 	bool wassleep;
1648 
1649 	if (rdp->nocb_gp_rdp == rdp)
1650 		show_rcu_nocb_gp_state(rdp);
1651 
1652 	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1653 					      &rdp->nocb_entry_rdp,
1654 					      typeof(*rdp),
1655 					      nocb_entry_rdp);
1656 
1657 	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1658 	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1659 	pr_info("   CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1660 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1661 		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1662 		"kK"[!!rdp->nocb_cb_kthread],
1663 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1664 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1665 		"sS"[!!rdp->nocb_cb_sleep],
1666 		".W"[swait_active(&rdp->nocb_cb_wq)],
1667 		jiffies - rdp->nocb_bypass_first,
1668 		jiffies - rdp->nocb_nobypass_last,
1669 		rdp->nocb_nobypass_count,
1670 		".D"[rcu_segcblist_ready_cbs(rsclp)],
1671 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1672 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1673 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1674 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1675 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1676 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1677 		rcu_segcblist_n_cbs(&rdp->cblist),
1678 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1679 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1680 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1681 
1682 	/* It is OK for GP kthreads to have GP state. */
1683 	if (rdp->nocb_gp_rdp == rdp)
1684 		return;
1685 
1686 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1687 	wassleep = swait_active(&rdp->nocb_gp_wq);
1688 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1689 		return;  /* Nothing untoward. */
1690 
1691 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1692 		"lL"[waslocked],
1693 		"dD"[!!rdp->nocb_defer_wakeup],
1694 		"sS"[!!rdp->nocb_gp_sleep],
1695 		".W"[wassleep]);
1696 }
1697 
1698 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1699 
1700 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1701 {
1702 	return 0;
1703 }
1704 
1705 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1706 {
1707 	return false;
1708 }
1709 
1710 /* No ->nocb_lock to acquire.  */
1711 static void rcu_nocb_lock(struct rcu_data *rdp)
1712 {
1713 }
1714 
1715 /* No ->nocb_lock to release.  */
1716 static void rcu_nocb_unlock(struct rcu_data *rdp)
1717 {
1718 }
1719 
1720 /* No ->nocb_lock to release.  */
1721 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1722 				       unsigned long flags)
1723 {
1724 	local_irq_restore(flags);
1725 }
1726 
1727 /* Lockdep check that ->cblist may be safely accessed. */
1728 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1729 {
1730 	lockdep_assert_irqs_disabled();
1731 }
1732 
1733 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1734 {
1735 }
1736 
1737 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1738 {
1739 	return NULL;
1740 }
1741 
1742 static void rcu_init_one_nocb(struct rcu_node *rnp)
1743 {
1744 }
1745 
1746 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1747 {
1748 	return false;
1749 }
1750 
1751 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1752 				  unsigned long j, bool lazy)
1753 {
1754 	return true;
1755 }
1756 
1757 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1758 				bool *was_alldone, unsigned long flags, bool lazy)
1759 {
1760 	return false;
1761 }
1762 
1763 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1764 				 unsigned long flags)
1765 {
1766 	WARN_ON_ONCE(1);  /* Should be dead code! */
1767 }
1768 
1769 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1770 {
1771 }
1772 
1773 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1774 {
1775 	return false;
1776 }
1777 
1778 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1779 {
1780 	return false;
1781 }
1782 
1783 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1784 {
1785 }
1786 
1787 static void show_rcu_nocb_state(struct rcu_data *rdp)
1788 {
1789 }
1790 
1791 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1792