1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, perform minimal sanity check. 95 */ 96 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 97 __acquires(&rdp->nocb_bypass_lock) 98 { 99 lockdep_assert_irqs_disabled(); 100 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 101 return; 102 /* 103 * Contention expected only when local enqueue collide with 104 * remote flush from kthreads. 105 */ 106 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 107 raw_spin_lock(&rdp->nocb_bypass_lock); 108 } 109 110 /* 111 * Conditionally acquire the specified rcu_data structure's 112 * ->nocb_bypass_lock. 113 */ 114 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 115 { 116 lockdep_assert_irqs_disabled(); 117 return raw_spin_trylock(&rdp->nocb_bypass_lock); 118 } 119 120 /* 121 * Release the specified rcu_data structure's ->nocb_bypass_lock. 122 */ 123 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 124 __releases(&rdp->nocb_bypass_lock) 125 { 126 lockdep_assert_irqs_disabled(); 127 raw_spin_unlock(&rdp->nocb_bypass_lock); 128 } 129 130 /* 131 * Acquire the specified rcu_data structure's ->nocb_lock, but only 132 * if it corresponds to a no-CBs CPU. 133 */ 134 static void rcu_nocb_lock(struct rcu_data *rdp) 135 { 136 lockdep_assert_irqs_disabled(); 137 if (!rcu_rdp_is_offloaded(rdp)) 138 return; 139 raw_spin_lock(&rdp->nocb_lock); 140 } 141 142 /* 143 * Release the specified rcu_data structure's ->nocb_lock, but only 144 * if it corresponds to a no-CBs CPU. 145 */ 146 static void rcu_nocb_unlock(struct rcu_data *rdp) 147 { 148 if (rcu_rdp_is_offloaded(rdp)) { 149 lockdep_assert_irqs_disabled(); 150 raw_spin_unlock(&rdp->nocb_lock); 151 } 152 } 153 154 /* 155 * Release the specified rcu_data structure's ->nocb_lock and restore 156 * interrupts, but only if it corresponds to a no-CBs CPU. 157 */ 158 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 159 unsigned long flags) 160 { 161 if (rcu_rdp_is_offloaded(rdp)) { 162 lockdep_assert_irqs_disabled(); 163 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 164 } else { 165 local_irq_restore(flags); 166 } 167 } 168 169 /* Lockdep check that ->cblist may be safely accessed. */ 170 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 171 { 172 lockdep_assert_irqs_disabled(); 173 if (rcu_rdp_is_offloaded(rdp)) 174 lockdep_assert_held(&rdp->nocb_lock); 175 } 176 177 /* 178 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 179 * grace period. 180 */ 181 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 182 { 183 swake_up_all(sq); 184 } 185 186 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 187 { 188 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 189 } 190 191 static void rcu_init_one_nocb(struct rcu_node *rnp) 192 { 193 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 194 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 195 } 196 197 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 198 struct rcu_data *rdp, 199 bool force, unsigned long flags) 200 __releases(rdp_gp->nocb_gp_lock) 201 { 202 bool needwake = false; 203 204 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 205 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 206 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 207 TPS("AlreadyAwake")); 208 return false; 209 } 210 211 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 212 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 213 del_timer(&rdp_gp->nocb_timer); 214 } 215 216 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 217 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 218 needwake = true; 219 } 220 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 221 if (needwake) { 222 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 223 if (cpu_is_offline(raw_smp_processor_id())) 224 swake_up_one_online(&rdp_gp->nocb_gp_wq); 225 else 226 wake_up_process(rdp_gp->nocb_gp_kthread); 227 } 228 229 return needwake; 230 } 231 232 /* 233 * Kick the GP kthread for this NOCB group. 234 */ 235 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 236 { 237 unsigned long flags; 238 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 239 240 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 241 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 242 } 243 244 /* 245 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 246 * can elapse before lazy callbacks are flushed. Lazy callbacks 247 * could be flushed much earlier for a number of other reasons 248 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 249 * left unsubmitted to RCU after those many jiffies. 250 */ 251 #define LAZY_FLUSH_JIFFIES (10 * HZ) 252 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES; 253 254 #ifdef CONFIG_RCU_LAZY 255 // To be called only from test code. 256 void rcu_lazy_set_jiffies_till_flush(unsigned long jif) 257 { 258 jiffies_till_flush = jif; 259 } 260 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush); 261 262 unsigned long rcu_lazy_get_jiffies_till_flush(void) 263 { 264 return jiffies_till_flush; 265 } 266 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush); 267 #endif 268 269 /* 270 * Arrange to wake the GP kthread for this NOCB group at some future 271 * time when it is safe to do so. 272 */ 273 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 274 const char *reason) 275 { 276 unsigned long flags; 277 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 278 279 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 280 281 /* 282 * Bypass wakeup overrides previous deferments. In case of 283 * callback storms, no need to wake up too early. 284 */ 285 if (waketype == RCU_NOCB_WAKE_LAZY && 286 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 287 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush); 288 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 289 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 290 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 291 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 292 } else { 293 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 294 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 295 if (rdp_gp->nocb_defer_wakeup < waketype) 296 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 297 } 298 299 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 300 301 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 302 } 303 304 /* 305 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 306 * However, if there is a callback to be enqueued and if ->nocb_bypass 307 * proves to be initially empty, just return false because the no-CB GP 308 * kthread may need to be awakened in this case. 309 * 310 * Return true if there was something to be flushed and it succeeded, otherwise 311 * false. 312 * 313 * Note that this function always returns true if rhp is NULL. 314 */ 315 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 316 unsigned long j, bool lazy) 317 { 318 struct rcu_cblist rcl; 319 struct rcu_head *rhp = rhp_in; 320 321 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 322 rcu_lockdep_assert_cblist_protected(rdp); 323 lockdep_assert_held(&rdp->nocb_bypass_lock); 324 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 325 raw_spin_unlock(&rdp->nocb_bypass_lock); 326 return false; 327 } 328 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 329 if (rhp) 330 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 331 332 /* 333 * If the new CB requested was a lazy one, queue it onto the main 334 * ->cblist so that we can take advantage of the grace-period that will 335 * happen regardless. But queue it onto the bypass list first so that 336 * the lazy CB is ordered with the existing CBs in the bypass list. 337 */ 338 if (lazy && rhp) { 339 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 340 rhp = NULL; 341 } 342 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 343 WRITE_ONCE(rdp->lazy_len, 0); 344 345 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 346 WRITE_ONCE(rdp->nocb_bypass_first, j); 347 rcu_nocb_bypass_unlock(rdp); 348 return true; 349 } 350 351 /* 352 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 353 * However, if there is a callback to be enqueued and if ->nocb_bypass 354 * proves to be initially empty, just return false because the no-CB GP 355 * kthread may need to be awakened in this case. 356 * 357 * Note that this function always returns true if rhp is NULL. 358 */ 359 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 360 unsigned long j, bool lazy) 361 { 362 if (!rcu_rdp_is_offloaded(rdp)) 363 return true; 364 rcu_lockdep_assert_cblist_protected(rdp); 365 rcu_nocb_bypass_lock(rdp); 366 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 367 } 368 369 /* 370 * If the ->nocb_bypass_lock is immediately available, flush the 371 * ->nocb_bypass queue into ->cblist. 372 */ 373 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 374 { 375 rcu_lockdep_assert_cblist_protected(rdp); 376 if (!rcu_rdp_is_offloaded(rdp) || 377 !rcu_nocb_bypass_trylock(rdp)) 378 return; 379 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 380 } 381 382 /* 383 * See whether it is appropriate to use the ->nocb_bypass list in order 384 * to control contention on ->nocb_lock. A limited number of direct 385 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 386 * is non-empty, further callbacks must be placed into ->nocb_bypass, 387 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 388 * back to direct use of ->cblist. However, ->nocb_bypass should not be 389 * used if ->cblist is empty, because otherwise callbacks can be stranded 390 * on ->nocb_bypass because we cannot count on the current CPU ever again 391 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 392 * non-empty, the corresponding no-CBs grace-period kthread must not be 393 * in an indefinite sleep state. 394 * 395 * Finally, it is not permitted to use the bypass during early boot, 396 * as doing so would confuse the auto-initialization code. Besides 397 * which, there is no point in worrying about lock contention while 398 * there is only one CPU in operation. 399 */ 400 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 401 bool *was_alldone, unsigned long flags, 402 bool lazy) 403 { 404 unsigned long c; 405 unsigned long cur_gp_seq; 406 unsigned long j = jiffies; 407 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 408 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 409 410 lockdep_assert_irqs_disabled(); 411 412 // Pure softirq/rcuc based processing: no bypassing, no 413 // locking. 414 if (!rcu_rdp_is_offloaded(rdp)) { 415 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 416 return false; 417 } 418 419 // In the process of (de-)offloading: no bypassing, but 420 // locking. 421 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 422 rcu_nocb_lock(rdp); 423 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 424 return false; /* Not offloaded, no bypassing. */ 425 } 426 427 // Don't use ->nocb_bypass during early boot. 428 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 429 rcu_nocb_lock(rdp); 430 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 431 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 432 return false; 433 } 434 435 // If we have advanced to a new jiffy, reset counts to allow 436 // moving back from ->nocb_bypass to ->cblist. 437 if (j == rdp->nocb_nobypass_last) { 438 c = rdp->nocb_nobypass_count + 1; 439 } else { 440 WRITE_ONCE(rdp->nocb_nobypass_last, j); 441 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 442 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 443 nocb_nobypass_lim_per_jiffy)) 444 c = 0; 445 else if (c > nocb_nobypass_lim_per_jiffy) 446 c = nocb_nobypass_lim_per_jiffy; 447 } 448 WRITE_ONCE(rdp->nocb_nobypass_count, c); 449 450 // If there hasn't yet been all that many ->cblist enqueues 451 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 452 // ->nocb_bypass first. 453 // Lazy CBs throttle this back and do immediate bypass queuing. 454 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 455 rcu_nocb_lock(rdp); 456 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 457 if (*was_alldone) 458 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 459 TPS("FirstQ")); 460 461 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 462 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 463 return false; // Caller must enqueue the callback. 464 } 465 466 // If ->nocb_bypass has been used too long or is too full, 467 // flush ->nocb_bypass to ->cblist. 468 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 469 (ncbs && bypass_is_lazy && 470 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) || 471 ncbs >= qhimark) { 472 rcu_nocb_lock(rdp); 473 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 474 475 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 476 if (*was_alldone) 477 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 478 TPS("FirstQ")); 479 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 480 return false; // Caller must enqueue the callback. 481 } 482 if (j != rdp->nocb_gp_adv_time && 483 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 484 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 485 rcu_advance_cbs_nowake(rdp->mynode, rdp); 486 rdp->nocb_gp_adv_time = j; 487 } 488 489 // The flush succeeded and we moved CBs into the regular list. 490 // Don't wait for the wake up timer as it may be too far ahead. 491 // Wake up the GP thread now instead, if the cblist was empty. 492 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 493 494 return true; // Callback already enqueued. 495 } 496 497 // We need to use the bypass. 498 rcu_nocb_bypass_lock(rdp); 499 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 500 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 501 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 502 503 if (lazy) 504 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 505 506 if (!ncbs) { 507 WRITE_ONCE(rdp->nocb_bypass_first, j); 508 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 509 } 510 rcu_nocb_bypass_unlock(rdp); 511 smp_mb(); /* Order enqueue before wake. */ 512 // A wake up of the grace period kthread or timer adjustment 513 // needs to be done only if: 514 // 1. Bypass list was fully empty before (this is the first 515 // bypass list entry), or: 516 // 2. Both of these conditions are met: 517 // a. The bypass list previously had only lazy CBs, and: 518 // b. The new CB is non-lazy. 519 if (!ncbs || (bypass_is_lazy && !lazy)) { 520 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 521 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 522 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 523 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 524 TPS("FirstBQwake")); 525 __call_rcu_nocb_wake(rdp, true, flags); 526 } else { 527 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 528 TPS("FirstBQnoWake")); 529 rcu_nocb_unlock(rdp); 530 } 531 } 532 return true; // Callback already enqueued. 533 } 534 535 /* 536 * Awaken the no-CBs grace-period kthread if needed, either due to it 537 * legitimately being asleep or due to overload conditions. 538 * 539 * If warranted, also wake up the kthread servicing this CPUs queues. 540 */ 541 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 542 unsigned long flags) 543 __releases(rdp->nocb_lock) 544 { 545 long bypass_len; 546 unsigned long cur_gp_seq; 547 unsigned long j; 548 long lazy_len; 549 long len; 550 struct task_struct *t; 551 552 // If we are being polled or there is no kthread, just leave. 553 t = READ_ONCE(rdp->nocb_gp_kthread); 554 if (rcu_nocb_poll || !t) { 555 rcu_nocb_unlock(rdp); 556 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 557 TPS("WakeNotPoll")); 558 return; 559 } 560 // Need to actually to a wakeup. 561 len = rcu_segcblist_n_cbs(&rdp->cblist); 562 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 563 lazy_len = READ_ONCE(rdp->lazy_len); 564 if (was_alldone) { 565 rdp->qlen_last_fqs_check = len; 566 // Only lazy CBs in bypass list 567 if (lazy_len && bypass_len == lazy_len) { 568 rcu_nocb_unlock(rdp); 569 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 570 TPS("WakeLazy")); 571 } else if (!irqs_disabled_flags(flags) && cpu_online(rdp->cpu)) { 572 /* ... if queue was empty ... */ 573 rcu_nocb_unlock(rdp); 574 wake_nocb_gp(rdp, false); 575 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 576 TPS("WakeEmpty")); 577 } else { 578 /* 579 * Don't do the wake-up upfront on fragile paths. 580 * Also offline CPUs can't call swake_up_one_online() from 581 * (soft-)IRQs. Rely on the final deferred wake-up from 582 * rcutree_report_cpu_dead() 583 */ 584 rcu_nocb_unlock(rdp); 585 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 586 TPS("WakeEmptyIsDeferred")); 587 } 588 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 589 /* ... or if many callbacks queued. */ 590 rdp->qlen_last_fqs_check = len; 591 j = jiffies; 592 if (j != rdp->nocb_gp_adv_time && 593 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 594 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 595 rcu_advance_cbs_nowake(rdp->mynode, rdp); 596 rdp->nocb_gp_adv_time = j; 597 } 598 smp_mb(); /* Enqueue before timer_pending(). */ 599 if ((rdp->nocb_cb_sleep || 600 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 601 !timer_pending(&rdp->nocb_timer)) { 602 rcu_nocb_unlock(rdp); 603 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 604 TPS("WakeOvfIsDeferred")); 605 } else { 606 rcu_nocb_unlock(rdp); 607 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 608 } 609 } else { 610 rcu_nocb_unlock(rdp); 611 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 612 } 613 } 614 615 static int nocb_gp_toggle_rdp(struct rcu_data *rdp, 616 bool *wake_state) 617 { 618 struct rcu_segcblist *cblist = &rdp->cblist; 619 unsigned long flags; 620 int ret; 621 622 rcu_nocb_lock_irqsave(rdp, flags); 623 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 624 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 625 /* 626 * Offloading. Set our flag and notify the offload worker. 627 * We will handle this rdp until it ever gets de-offloaded. 628 */ 629 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 630 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 631 *wake_state = true; 632 ret = 1; 633 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 634 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 635 /* 636 * De-offloading. Clear our flag and notify the de-offload worker. 637 * We will ignore this rdp until it ever gets re-offloaded. 638 */ 639 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 640 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 641 *wake_state = true; 642 ret = 0; 643 } else { 644 WARN_ON_ONCE(1); 645 ret = -1; 646 } 647 648 rcu_nocb_unlock_irqrestore(rdp, flags); 649 650 return ret; 651 } 652 653 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 654 { 655 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 656 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 657 !READ_ONCE(my_rdp->nocb_gp_sleep)); 658 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 659 } 660 661 /* 662 * No-CBs GP kthreads come here to wait for additional callbacks to show up 663 * or for grace periods to end. 664 */ 665 static void nocb_gp_wait(struct rcu_data *my_rdp) 666 { 667 bool bypass = false; 668 int __maybe_unused cpu = my_rdp->cpu; 669 unsigned long cur_gp_seq; 670 unsigned long flags; 671 bool gotcbs = false; 672 unsigned long j = jiffies; 673 bool lazy = false; 674 bool needwait_gp = false; // This prevents actual uninitialized use. 675 bool needwake; 676 bool needwake_gp; 677 struct rcu_data *rdp, *rdp_toggling = NULL; 678 struct rcu_node *rnp; 679 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 680 bool wasempty = false; 681 682 /* 683 * Each pass through the following loop checks for CBs and for the 684 * nearest grace period (if any) to wait for next. The CB kthreads 685 * and the global grace-period kthread are awakened if needed. 686 */ 687 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 688 /* 689 * An rcu_data structure is removed from the list after its 690 * CPU is de-offloaded and added to the list before that CPU is 691 * (re-)offloaded. If the following loop happens to be referencing 692 * that rcu_data structure during the time that the corresponding 693 * CPU is de-offloaded and then immediately re-offloaded, this 694 * loop's rdp pointer will be carried to the end of the list by 695 * the resulting pair of list operations. This can cause the loop 696 * to skip over some of the rcu_data structures that were supposed 697 * to have been scanned. Fortunately a new iteration through the 698 * entire loop is forced after a given CPU's rcu_data structure 699 * is added to the list, so the skipped-over rcu_data structures 700 * won't be ignored for long. 701 */ 702 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 703 long bypass_ncbs; 704 bool flush_bypass = false; 705 long lazy_ncbs; 706 707 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 708 rcu_nocb_lock_irqsave(rdp, flags); 709 lockdep_assert_held(&rdp->nocb_lock); 710 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 711 lazy_ncbs = READ_ONCE(rdp->lazy_len); 712 713 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 714 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) || 715 bypass_ncbs > 2 * qhimark)) { 716 flush_bypass = true; 717 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 718 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 719 bypass_ncbs > 2 * qhimark)) { 720 flush_bypass = true; 721 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 722 rcu_nocb_unlock_irqrestore(rdp, flags); 723 continue; /* No callbacks here, try next. */ 724 } 725 726 if (flush_bypass) { 727 // Bypass full or old, so flush it. 728 (void)rcu_nocb_try_flush_bypass(rdp, j); 729 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 730 lazy_ncbs = READ_ONCE(rdp->lazy_len); 731 } 732 733 if (bypass_ncbs) { 734 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 735 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 736 if (bypass_ncbs == lazy_ncbs) 737 lazy = true; 738 else 739 bypass = true; 740 } 741 rnp = rdp->mynode; 742 743 // Advance callbacks if helpful and low contention. 744 needwake_gp = false; 745 if (!rcu_segcblist_restempty(&rdp->cblist, 746 RCU_NEXT_READY_TAIL) || 747 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 748 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 749 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 750 needwake_gp = rcu_advance_cbs(rnp, rdp); 751 wasempty = rcu_segcblist_restempty(&rdp->cblist, 752 RCU_NEXT_READY_TAIL); 753 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 754 } 755 // Need to wait on some grace period? 756 WARN_ON_ONCE(wasempty && 757 !rcu_segcblist_restempty(&rdp->cblist, 758 RCU_NEXT_READY_TAIL)); 759 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 760 if (!needwait_gp || 761 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 762 wait_gp_seq = cur_gp_seq; 763 needwait_gp = true; 764 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 765 TPS("NeedWaitGP")); 766 } 767 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 768 needwake = rdp->nocb_cb_sleep; 769 WRITE_ONCE(rdp->nocb_cb_sleep, false); 770 smp_mb(); /* CB invocation -after- GP end. */ 771 } else { 772 needwake = false; 773 } 774 rcu_nocb_unlock_irqrestore(rdp, flags); 775 if (needwake) { 776 swake_up_one(&rdp->nocb_cb_wq); 777 gotcbs = true; 778 } 779 if (needwake_gp) 780 rcu_gp_kthread_wake(); 781 } 782 783 my_rdp->nocb_gp_bypass = bypass; 784 my_rdp->nocb_gp_gp = needwait_gp; 785 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 786 787 // At least one child with non-empty ->nocb_bypass, so set 788 // timer in order to avoid stranding its callbacks. 789 if (!rcu_nocb_poll) { 790 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 791 if (lazy && !bypass) { 792 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 793 TPS("WakeLazyIsDeferred")); 794 // Otherwise add a deferred bypass wake up. 795 } else if (bypass) { 796 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 797 TPS("WakeBypassIsDeferred")); 798 } 799 } 800 801 if (rcu_nocb_poll) { 802 /* Polling, so trace if first poll in the series. */ 803 if (gotcbs) 804 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 805 if (list_empty(&my_rdp->nocb_head_rdp)) { 806 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 807 if (!my_rdp->nocb_toggling_rdp) 808 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 809 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 810 /* Wait for any offloading rdp */ 811 nocb_gp_sleep(my_rdp, cpu); 812 } else { 813 schedule_timeout_idle(1); 814 } 815 } else if (!needwait_gp) { 816 /* Wait for callbacks to appear. */ 817 nocb_gp_sleep(my_rdp, cpu); 818 } else { 819 rnp = my_rdp->mynode; 820 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 821 swait_event_interruptible_exclusive( 822 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 823 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 824 !READ_ONCE(my_rdp->nocb_gp_sleep)); 825 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 826 } 827 828 if (!rcu_nocb_poll) { 829 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 830 // (De-)queue an rdp to/from the group if its nocb state is changing 831 rdp_toggling = my_rdp->nocb_toggling_rdp; 832 if (rdp_toggling) 833 my_rdp->nocb_toggling_rdp = NULL; 834 835 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 836 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 837 del_timer(&my_rdp->nocb_timer); 838 } 839 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 840 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 841 } else { 842 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 843 if (rdp_toggling) { 844 /* 845 * Paranoid locking to make sure nocb_toggling_rdp is well 846 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 847 * race with another round of nocb toggling for this rdp. 848 * Nocb locking should prevent from that already but we stick 849 * to paranoia, especially in rare path. 850 */ 851 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 852 my_rdp->nocb_toggling_rdp = NULL; 853 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 854 } 855 } 856 857 if (rdp_toggling) { 858 bool wake_state = false; 859 int ret; 860 861 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state); 862 if (ret == 1) 863 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 864 else if (ret == 0) 865 list_del(&rdp_toggling->nocb_entry_rdp); 866 if (wake_state) 867 swake_up_one(&rdp_toggling->nocb_state_wq); 868 } 869 870 my_rdp->nocb_gp_seq = -1; 871 WARN_ON(signal_pending(current)); 872 } 873 874 /* 875 * No-CBs grace-period-wait kthread. There is one of these per group 876 * of CPUs, but only once at least one CPU in that group has come online 877 * at least once since boot. This kthread checks for newly posted 878 * callbacks from any of the CPUs it is responsible for, waits for a 879 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 880 * that then have callback-invocation work to do. 881 */ 882 static int rcu_nocb_gp_kthread(void *arg) 883 { 884 struct rcu_data *rdp = arg; 885 886 for (;;) { 887 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 888 nocb_gp_wait(rdp); 889 cond_resched_tasks_rcu_qs(); 890 } 891 return 0; 892 } 893 894 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 895 { 896 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 897 898 return rcu_segcblist_test_flags(&rdp->cblist, flags); 899 } 900 901 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 902 { 903 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 904 } 905 906 /* 907 * Invoke any ready callbacks from the corresponding no-CBs CPU, 908 * then, if there are no more, wait for more to appear. 909 */ 910 static void nocb_cb_wait(struct rcu_data *rdp) 911 { 912 struct rcu_segcblist *cblist = &rdp->cblist; 913 unsigned long cur_gp_seq; 914 unsigned long flags; 915 bool needwake_state = false; 916 bool needwake_gp = false; 917 bool can_sleep = true; 918 struct rcu_node *rnp = rdp->mynode; 919 920 do { 921 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 922 nocb_cb_wait_cond(rdp)); 923 924 // VVV Ensure CB invocation follows _sleep test. 925 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 926 WARN_ON(signal_pending(current)); 927 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 928 } 929 } while (!nocb_cb_can_run(rdp)); 930 931 932 local_irq_save(flags); 933 rcu_momentary_dyntick_idle(); 934 local_irq_restore(flags); 935 /* 936 * Disable BH to provide the expected environment. Also, when 937 * transitioning to/from NOCB mode, a self-requeuing callback might 938 * be invoked from softirq. A short grace period could cause both 939 * instances of this callback would execute concurrently. 940 */ 941 local_bh_disable(); 942 rcu_do_batch(rdp); 943 local_bh_enable(); 944 lockdep_assert_irqs_enabled(); 945 rcu_nocb_lock_irqsave(rdp, flags); 946 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 947 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 948 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 949 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 950 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 951 } 952 953 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 954 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 955 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 956 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 957 needwake_state = true; 958 } 959 if (rcu_segcblist_ready_cbs(cblist)) 960 can_sleep = false; 961 } else { 962 /* 963 * De-offloading. Clear our flag and notify the de-offload worker. 964 * We won't touch the callbacks and keep sleeping until we ever 965 * get re-offloaded. 966 */ 967 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 968 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 969 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 970 needwake_state = true; 971 } 972 973 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 974 975 if (rdp->nocb_cb_sleep) 976 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 977 978 rcu_nocb_unlock_irqrestore(rdp, flags); 979 if (needwake_gp) 980 rcu_gp_kthread_wake(); 981 982 if (needwake_state) 983 swake_up_one(&rdp->nocb_state_wq); 984 } 985 986 /* 987 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 988 * nocb_cb_wait() to do the dirty work. 989 */ 990 static int rcu_nocb_cb_kthread(void *arg) 991 { 992 struct rcu_data *rdp = arg; 993 994 // Each pass through this loop does one callback batch, and, 995 // if there are no more ready callbacks, waits for them. 996 for (;;) { 997 nocb_cb_wait(rdp); 998 cond_resched_tasks_rcu_qs(); 999 } 1000 return 0; 1001 } 1002 1003 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 1004 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1005 { 1006 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 1007 } 1008 1009 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 1010 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 1011 struct rcu_data *rdp, int level, 1012 unsigned long flags) 1013 __releases(rdp_gp->nocb_gp_lock) 1014 { 1015 int ndw; 1016 int ret; 1017 1018 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 1019 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1020 return false; 1021 } 1022 1023 ndw = rdp_gp->nocb_defer_wakeup; 1024 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 1025 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 1026 1027 return ret; 1028 } 1029 1030 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 1031 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 1032 { 1033 unsigned long flags; 1034 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1035 1036 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1037 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1038 1039 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1040 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1041 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1042 } 1043 1044 /* 1045 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1046 * This means we do an inexact common-case check. Note that if 1047 * we miss, ->nocb_timer will eventually clean things up. 1048 */ 1049 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1050 { 1051 unsigned long flags; 1052 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1053 1054 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1055 return false; 1056 1057 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1058 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1059 } 1060 1061 void rcu_nocb_flush_deferred_wakeup(void) 1062 { 1063 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1064 } 1065 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1066 1067 static int rdp_offload_toggle(struct rcu_data *rdp, 1068 bool offload, unsigned long flags) 1069 __releases(rdp->nocb_lock) 1070 { 1071 struct rcu_segcblist *cblist = &rdp->cblist; 1072 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1073 bool wake_gp = false; 1074 1075 rcu_segcblist_offload(cblist, offload); 1076 1077 if (rdp->nocb_cb_sleep) 1078 rdp->nocb_cb_sleep = false; 1079 rcu_nocb_unlock_irqrestore(rdp, flags); 1080 1081 /* 1082 * Ignore former value of nocb_cb_sleep and force wake up as it could 1083 * have been spuriously set to false already. 1084 */ 1085 swake_up_one(&rdp->nocb_cb_wq); 1086 1087 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1088 // Queue this rdp for add/del to/from the list to iterate on rcuog 1089 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1090 if (rdp_gp->nocb_gp_sleep) { 1091 rdp_gp->nocb_gp_sleep = false; 1092 wake_gp = true; 1093 } 1094 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1095 1096 return wake_gp; 1097 } 1098 1099 static long rcu_nocb_rdp_deoffload(void *arg) 1100 { 1101 struct rcu_data *rdp = arg; 1102 struct rcu_segcblist *cblist = &rdp->cblist; 1103 unsigned long flags; 1104 int wake_gp; 1105 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1106 1107 /* 1108 * rcu_nocb_rdp_deoffload() may be called directly if 1109 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1110 * is not online yet. 1111 */ 1112 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1113 1114 pr_info("De-offloading %d\n", rdp->cpu); 1115 1116 rcu_nocb_lock_irqsave(rdp, flags); 1117 /* 1118 * Flush once and for all now. This suffices because we are 1119 * running on the target CPU holding ->nocb_lock (thus having 1120 * interrupts disabled), and because rdp_offload_toggle() 1121 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1122 * Thus future calls to rcu_segcblist_completely_offloaded() will 1123 * return false, which means that future calls to rcu_nocb_try_bypass() 1124 * will refuse to put anything into the bypass. 1125 */ 1126 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1127 /* 1128 * Start with invoking rcu_core() early. This way if the current thread 1129 * happens to preempt an ongoing call to rcu_core() in the middle, 1130 * leaving some work dismissed because rcu_core() still thinks the rdp is 1131 * completely offloaded, we are guaranteed a nearby future instance of 1132 * rcu_core() to catch up. 1133 */ 1134 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1135 invoke_rcu_core(); 1136 wake_gp = rdp_offload_toggle(rdp, false, flags); 1137 1138 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1139 if (rdp_gp->nocb_gp_kthread) { 1140 if (wake_gp) 1141 wake_up_process(rdp_gp->nocb_gp_kthread); 1142 1143 /* 1144 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB. 1145 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog. 1146 */ 1147 if (!rdp->nocb_cb_kthread) { 1148 rcu_nocb_lock_irqsave(rdp, flags); 1149 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 1150 rcu_nocb_unlock_irqrestore(rdp, flags); 1151 } 1152 1153 swait_event_exclusive(rdp->nocb_state_wq, 1154 !rcu_segcblist_test_flags(cblist, 1155 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP)); 1156 } else { 1157 /* 1158 * No kthread to clear the flags for us or remove the rdp from the nocb list 1159 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1160 * but we stick to paranoia in this rare path. 1161 */ 1162 rcu_nocb_lock_irqsave(rdp, flags); 1163 rcu_segcblist_clear_flags(&rdp->cblist, 1164 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1165 rcu_nocb_unlock_irqrestore(rdp, flags); 1166 1167 list_del(&rdp->nocb_entry_rdp); 1168 } 1169 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1170 1171 /* 1172 * Lock one last time to acquire latest callback updates from kthreads 1173 * so we can later handle callbacks locally without locking. 1174 */ 1175 rcu_nocb_lock_irqsave(rdp, flags); 1176 /* 1177 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1178 * lock is released but how about being paranoid for once? 1179 */ 1180 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1181 /* 1182 * Without SEGCBLIST_LOCKING, we can't use 1183 * rcu_nocb_unlock_irqrestore() anymore. 1184 */ 1185 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1186 1187 /* Sanity check */ 1188 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1189 1190 1191 return 0; 1192 } 1193 1194 int rcu_nocb_cpu_deoffload(int cpu) 1195 { 1196 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1197 int ret = 0; 1198 1199 cpus_read_lock(); 1200 mutex_lock(&rcu_state.barrier_mutex); 1201 if (rcu_rdp_is_offloaded(rdp)) { 1202 if (cpu_online(cpu)) { 1203 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1204 if (!ret) 1205 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1206 } else { 1207 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1208 ret = -EINVAL; 1209 } 1210 } 1211 mutex_unlock(&rcu_state.barrier_mutex); 1212 cpus_read_unlock(); 1213 1214 return ret; 1215 } 1216 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1217 1218 static long rcu_nocb_rdp_offload(void *arg) 1219 { 1220 struct rcu_data *rdp = arg; 1221 struct rcu_segcblist *cblist = &rdp->cblist; 1222 unsigned long flags; 1223 int wake_gp; 1224 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1225 1226 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1227 /* 1228 * For now we only support re-offload, ie: the rdp must have been 1229 * offloaded on boot first. 1230 */ 1231 if (!rdp->nocb_gp_rdp) 1232 return -EINVAL; 1233 1234 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1235 return -EINVAL; 1236 1237 pr_info("Offloading %d\n", rdp->cpu); 1238 1239 /* 1240 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1241 * is set. 1242 */ 1243 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1244 1245 /* 1246 * We didn't take the nocb lock while working on the 1247 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1248 * Every modifications that have been done previously on 1249 * rdp->cblist must be visible remotely by the nocb kthreads 1250 * upon wake up after reading the cblist flags. 1251 * 1252 * The layout against nocb_lock enforces that ordering: 1253 * 1254 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1255 * ------------------------- ---------------------------- 1256 * WRITE callbacks rcu_nocb_lock() 1257 * rcu_nocb_lock() READ flags 1258 * WRITE flags READ callbacks 1259 * rcu_nocb_unlock() rcu_nocb_unlock() 1260 */ 1261 wake_gp = rdp_offload_toggle(rdp, true, flags); 1262 if (wake_gp) 1263 wake_up_process(rdp_gp->nocb_gp_kthread); 1264 swait_event_exclusive(rdp->nocb_state_wq, 1265 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1266 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1267 1268 /* 1269 * All kthreads are ready to work, we can finally relieve rcu_core() and 1270 * enable nocb bypass. 1271 */ 1272 rcu_nocb_lock_irqsave(rdp, flags); 1273 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1274 rcu_nocb_unlock_irqrestore(rdp, flags); 1275 1276 return 0; 1277 } 1278 1279 int rcu_nocb_cpu_offload(int cpu) 1280 { 1281 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1282 int ret = 0; 1283 1284 cpus_read_lock(); 1285 mutex_lock(&rcu_state.barrier_mutex); 1286 if (!rcu_rdp_is_offloaded(rdp)) { 1287 if (cpu_online(cpu)) { 1288 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1289 if (!ret) 1290 cpumask_set_cpu(cpu, rcu_nocb_mask); 1291 } else { 1292 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1293 ret = -EINVAL; 1294 } 1295 } 1296 mutex_unlock(&rcu_state.barrier_mutex); 1297 cpus_read_unlock(); 1298 1299 return ret; 1300 } 1301 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1302 1303 #ifdef CONFIG_RCU_LAZY 1304 static unsigned long 1305 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1306 { 1307 int cpu; 1308 unsigned long count = 0; 1309 1310 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1311 return 0; 1312 1313 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1314 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1315 return 0; 1316 1317 /* Snapshot count of all CPUs */ 1318 for_each_cpu(cpu, rcu_nocb_mask) { 1319 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1320 1321 count += READ_ONCE(rdp->lazy_len); 1322 } 1323 1324 mutex_unlock(&rcu_state.barrier_mutex); 1325 1326 return count ? count : SHRINK_EMPTY; 1327 } 1328 1329 static unsigned long 1330 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1331 { 1332 int cpu; 1333 unsigned long flags; 1334 unsigned long count = 0; 1335 1336 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1337 return 0; 1338 /* 1339 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1340 * may be ignored or imbalanced. 1341 */ 1342 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1343 /* 1344 * But really don't insist if barrier_mutex is contended since we 1345 * can't guarantee that it will never engage in a dependency 1346 * chain involving memory allocation. The lock is seldom contended 1347 * anyway. 1348 */ 1349 return 0; 1350 } 1351 1352 /* Snapshot count of all CPUs */ 1353 for_each_cpu(cpu, rcu_nocb_mask) { 1354 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1355 int _count; 1356 1357 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1358 continue; 1359 1360 if (!READ_ONCE(rdp->lazy_len)) 1361 continue; 1362 1363 rcu_nocb_lock_irqsave(rdp, flags); 1364 /* 1365 * Recheck under the nocb lock. Since we are not holding the bypass 1366 * lock we may still race with increments from the enqueuer but still 1367 * we know for sure if there is at least one lazy callback. 1368 */ 1369 _count = READ_ONCE(rdp->lazy_len); 1370 if (!_count) { 1371 rcu_nocb_unlock_irqrestore(rdp, flags); 1372 continue; 1373 } 1374 rcu_nocb_try_flush_bypass(rdp, jiffies); 1375 rcu_nocb_unlock_irqrestore(rdp, flags); 1376 wake_nocb_gp(rdp, false); 1377 sc->nr_to_scan -= _count; 1378 count += _count; 1379 if (sc->nr_to_scan <= 0) 1380 break; 1381 } 1382 1383 mutex_unlock(&rcu_state.barrier_mutex); 1384 1385 return count ? count : SHRINK_STOP; 1386 } 1387 1388 static struct shrinker lazy_rcu_shrinker = { 1389 .count_objects = lazy_rcu_shrink_count, 1390 .scan_objects = lazy_rcu_shrink_scan, 1391 .batch = 0, 1392 .seeks = DEFAULT_SEEKS, 1393 }; 1394 #endif // #ifdef CONFIG_RCU_LAZY 1395 1396 void __init rcu_init_nohz(void) 1397 { 1398 int cpu; 1399 struct rcu_data *rdp; 1400 const struct cpumask *cpumask = NULL; 1401 1402 #if defined(CONFIG_NO_HZ_FULL) 1403 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1404 cpumask = tick_nohz_full_mask; 1405 #endif 1406 1407 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1408 !rcu_state.nocb_is_setup && !cpumask) 1409 cpumask = cpu_possible_mask; 1410 1411 if (cpumask) { 1412 if (!cpumask_available(rcu_nocb_mask)) { 1413 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1414 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1415 return; 1416 } 1417 } 1418 1419 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1420 rcu_state.nocb_is_setup = true; 1421 } 1422 1423 if (!rcu_state.nocb_is_setup) 1424 return; 1425 1426 #ifdef CONFIG_RCU_LAZY 1427 if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy")) 1428 pr_err("Failed to register lazy_rcu shrinker!\n"); 1429 #endif // #ifdef CONFIG_RCU_LAZY 1430 1431 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1432 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1433 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1434 rcu_nocb_mask); 1435 } 1436 if (cpumask_empty(rcu_nocb_mask)) 1437 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1438 else 1439 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1440 cpumask_pr_args(rcu_nocb_mask)); 1441 if (rcu_nocb_poll) 1442 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1443 1444 for_each_cpu(cpu, rcu_nocb_mask) { 1445 rdp = per_cpu_ptr(&rcu_data, cpu); 1446 if (rcu_segcblist_empty(&rdp->cblist)) 1447 rcu_segcblist_init(&rdp->cblist); 1448 rcu_segcblist_offload(&rdp->cblist, true); 1449 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1450 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1451 } 1452 rcu_organize_nocb_kthreads(); 1453 } 1454 1455 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1456 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1457 { 1458 init_swait_queue_head(&rdp->nocb_cb_wq); 1459 init_swait_queue_head(&rdp->nocb_gp_wq); 1460 init_swait_queue_head(&rdp->nocb_state_wq); 1461 raw_spin_lock_init(&rdp->nocb_lock); 1462 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1463 raw_spin_lock_init(&rdp->nocb_gp_lock); 1464 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1465 rcu_cblist_init(&rdp->nocb_bypass); 1466 WRITE_ONCE(rdp->lazy_len, 0); 1467 mutex_init(&rdp->nocb_gp_kthread_mutex); 1468 } 1469 1470 /* 1471 * If the specified CPU is a no-CBs CPU that does not already have its 1472 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1473 * for this CPU's group has not yet been created, spawn it as well. 1474 */ 1475 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1476 { 1477 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1478 struct rcu_data *rdp_gp; 1479 struct task_struct *t; 1480 struct sched_param sp; 1481 1482 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1483 return; 1484 1485 /* If there already is an rcuo kthread, then nothing to do. */ 1486 if (rdp->nocb_cb_kthread) 1487 return; 1488 1489 /* If we didn't spawn the GP kthread first, reorganize! */ 1490 sp.sched_priority = kthread_prio; 1491 rdp_gp = rdp->nocb_gp_rdp; 1492 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1493 if (!rdp_gp->nocb_gp_kthread) { 1494 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1495 "rcuog/%d", rdp_gp->cpu); 1496 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1497 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1498 goto end; 1499 } 1500 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1501 if (kthread_prio) 1502 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1503 } 1504 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1505 1506 /* Spawn the kthread for this CPU. */ 1507 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1508 "rcuo%c/%d", rcu_state.abbr, cpu); 1509 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1510 goto end; 1511 1512 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1513 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1514 1515 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1516 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1517 return; 1518 end: 1519 mutex_lock(&rcu_state.barrier_mutex); 1520 if (rcu_rdp_is_offloaded(rdp)) { 1521 rcu_nocb_rdp_deoffload(rdp); 1522 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1523 } 1524 mutex_unlock(&rcu_state.barrier_mutex); 1525 } 1526 1527 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1528 static int rcu_nocb_gp_stride = -1; 1529 module_param(rcu_nocb_gp_stride, int, 0444); 1530 1531 /* 1532 * Initialize GP-CB relationships for all no-CBs CPU. 1533 */ 1534 static void __init rcu_organize_nocb_kthreads(void) 1535 { 1536 int cpu; 1537 bool firsttime = true; 1538 bool gotnocbs = false; 1539 bool gotnocbscbs = true; 1540 int ls = rcu_nocb_gp_stride; 1541 int nl = 0; /* Next GP kthread. */ 1542 struct rcu_data *rdp; 1543 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1544 1545 if (!cpumask_available(rcu_nocb_mask)) 1546 return; 1547 if (ls == -1) { 1548 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1549 rcu_nocb_gp_stride = ls; 1550 } 1551 1552 /* 1553 * Each pass through this loop sets up one rcu_data structure. 1554 * Should the corresponding CPU come online in the future, then 1555 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1556 */ 1557 for_each_possible_cpu(cpu) { 1558 rdp = per_cpu_ptr(&rcu_data, cpu); 1559 if (rdp->cpu >= nl) { 1560 /* New GP kthread, set up for CBs & next GP. */ 1561 gotnocbs = true; 1562 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1563 rdp_gp = rdp; 1564 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1565 if (dump_tree) { 1566 if (!firsttime) 1567 pr_cont("%s\n", gotnocbscbs 1568 ? "" : " (self only)"); 1569 gotnocbscbs = false; 1570 firsttime = false; 1571 pr_alert("%s: No-CB GP kthread CPU %d:", 1572 __func__, cpu); 1573 } 1574 } else { 1575 /* Another CB kthread, link to previous GP kthread. */ 1576 gotnocbscbs = true; 1577 if (dump_tree) 1578 pr_cont(" %d", cpu); 1579 } 1580 rdp->nocb_gp_rdp = rdp_gp; 1581 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1582 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1583 } 1584 if (gotnocbs && dump_tree) 1585 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1586 } 1587 1588 /* 1589 * Bind the current task to the offloaded CPUs. If there are no offloaded 1590 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1591 */ 1592 void rcu_bind_current_to_nocb(void) 1593 { 1594 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1595 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1596 } 1597 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1598 1599 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1600 #ifdef CONFIG_SMP 1601 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1602 { 1603 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1604 } 1605 #else // #ifdef CONFIG_SMP 1606 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1607 { 1608 return ""; 1609 } 1610 #endif // #else #ifdef CONFIG_SMP 1611 1612 /* 1613 * Dump out nocb grace-period kthread state for the specified rcu_data 1614 * structure. 1615 */ 1616 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1617 { 1618 struct rcu_node *rnp = rdp->mynode; 1619 1620 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1621 rdp->cpu, 1622 "kK"[!!rdp->nocb_gp_kthread], 1623 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1624 "dD"[!!rdp->nocb_defer_wakeup], 1625 "tT"[timer_pending(&rdp->nocb_timer)], 1626 "sS"[!!rdp->nocb_gp_sleep], 1627 ".W"[swait_active(&rdp->nocb_gp_wq)], 1628 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1629 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1630 ".B"[!!rdp->nocb_gp_bypass], 1631 ".G"[!!rdp->nocb_gp_gp], 1632 (long)rdp->nocb_gp_seq, 1633 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1634 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1635 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1636 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1637 } 1638 1639 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1640 static void show_rcu_nocb_state(struct rcu_data *rdp) 1641 { 1642 char bufw[20]; 1643 char bufr[20]; 1644 struct rcu_data *nocb_next_rdp; 1645 struct rcu_segcblist *rsclp = &rdp->cblist; 1646 bool waslocked; 1647 bool wassleep; 1648 1649 if (rdp->nocb_gp_rdp == rdp) 1650 show_rcu_nocb_gp_state(rdp); 1651 1652 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1653 &rdp->nocb_entry_rdp, 1654 typeof(*rdp), 1655 nocb_entry_rdp); 1656 1657 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1658 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1659 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1660 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1661 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1662 "kK"[!!rdp->nocb_cb_kthread], 1663 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1664 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1665 "sS"[!!rdp->nocb_cb_sleep], 1666 ".W"[swait_active(&rdp->nocb_cb_wq)], 1667 jiffies - rdp->nocb_bypass_first, 1668 jiffies - rdp->nocb_nobypass_last, 1669 rdp->nocb_nobypass_count, 1670 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1671 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1672 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1673 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1674 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1675 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1676 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1677 rcu_segcblist_n_cbs(&rdp->cblist), 1678 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1679 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1680 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1681 1682 /* It is OK for GP kthreads to have GP state. */ 1683 if (rdp->nocb_gp_rdp == rdp) 1684 return; 1685 1686 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1687 wassleep = swait_active(&rdp->nocb_gp_wq); 1688 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1689 return; /* Nothing untoward. */ 1690 1691 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1692 "lL"[waslocked], 1693 "dD"[!!rdp->nocb_defer_wakeup], 1694 "sS"[!!rdp->nocb_gp_sleep], 1695 ".W"[wassleep]); 1696 } 1697 1698 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1699 1700 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1701 { 1702 return 0; 1703 } 1704 1705 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1706 { 1707 return false; 1708 } 1709 1710 /* No ->nocb_lock to acquire. */ 1711 static void rcu_nocb_lock(struct rcu_data *rdp) 1712 { 1713 } 1714 1715 /* No ->nocb_lock to release. */ 1716 static void rcu_nocb_unlock(struct rcu_data *rdp) 1717 { 1718 } 1719 1720 /* No ->nocb_lock to release. */ 1721 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1722 unsigned long flags) 1723 { 1724 local_irq_restore(flags); 1725 } 1726 1727 /* Lockdep check that ->cblist may be safely accessed. */ 1728 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1729 { 1730 lockdep_assert_irqs_disabled(); 1731 } 1732 1733 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1734 { 1735 } 1736 1737 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1738 { 1739 return NULL; 1740 } 1741 1742 static void rcu_init_one_nocb(struct rcu_node *rnp) 1743 { 1744 } 1745 1746 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1747 { 1748 return false; 1749 } 1750 1751 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1752 unsigned long j, bool lazy) 1753 { 1754 return true; 1755 } 1756 1757 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1758 bool *was_alldone, unsigned long flags, bool lazy) 1759 { 1760 return false; 1761 } 1762 1763 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1764 unsigned long flags) 1765 { 1766 WARN_ON_ONCE(1); /* Should be dead code! */ 1767 } 1768 1769 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1770 { 1771 } 1772 1773 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1774 { 1775 return false; 1776 } 1777 1778 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1779 { 1780 return false; 1781 } 1782 1783 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1784 { 1785 } 1786 1787 static void show_rcu_nocb_state(struct rcu_data *rdp) 1788 { 1789 } 1790 1791 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1792