1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, increment ->nocb_lock_contended to 95 * flag the contention. 96 */ 97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 98 __acquires(&rdp->nocb_bypass_lock) 99 { 100 lockdep_assert_irqs_disabled(); 101 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 102 return; 103 atomic_inc(&rdp->nocb_lock_contended); 104 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 105 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 106 raw_spin_lock(&rdp->nocb_bypass_lock); 107 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 108 atomic_dec(&rdp->nocb_lock_contended); 109 } 110 111 /* 112 * Spinwait until the specified rcu_data structure's ->nocb_lock is 113 * not contended. Please note that this is extremely special-purpose, 114 * relying on the fact that at most two kthreads and one CPU contend for 115 * this lock, and also that the two kthreads are guaranteed to have frequent 116 * grace-period-duration time intervals between successive acquisitions 117 * of the lock. This allows us to use an extremely simple throttling 118 * mechanism, and further to apply it only to the CPU doing floods of 119 * call_rcu() invocations. Don't try this at home! 120 */ 121 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 122 { 123 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 124 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 125 cpu_relax(); 126 } 127 128 /* 129 * Conditionally acquire the specified rcu_data structure's 130 * ->nocb_bypass_lock. 131 */ 132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 133 { 134 lockdep_assert_irqs_disabled(); 135 return raw_spin_trylock(&rdp->nocb_bypass_lock); 136 } 137 138 /* 139 * Release the specified rcu_data structure's ->nocb_bypass_lock. 140 */ 141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 142 __releases(&rdp->nocb_bypass_lock) 143 { 144 lockdep_assert_irqs_disabled(); 145 raw_spin_unlock(&rdp->nocb_bypass_lock); 146 } 147 148 /* 149 * Acquire the specified rcu_data structure's ->nocb_lock, but only 150 * if it corresponds to a no-CBs CPU. 151 */ 152 static void rcu_nocb_lock(struct rcu_data *rdp) 153 { 154 lockdep_assert_irqs_disabled(); 155 if (!rcu_rdp_is_offloaded(rdp)) 156 return; 157 raw_spin_lock(&rdp->nocb_lock); 158 } 159 160 /* 161 * Release the specified rcu_data structure's ->nocb_lock, but only 162 * if it corresponds to a no-CBs CPU. 163 */ 164 static void rcu_nocb_unlock(struct rcu_data *rdp) 165 { 166 if (rcu_rdp_is_offloaded(rdp)) { 167 lockdep_assert_irqs_disabled(); 168 raw_spin_unlock(&rdp->nocb_lock); 169 } 170 } 171 172 /* 173 * Release the specified rcu_data structure's ->nocb_lock and restore 174 * interrupts, but only if it corresponds to a no-CBs CPU. 175 */ 176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 177 unsigned long flags) 178 { 179 if (rcu_rdp_is_offloaded(rdp)) { 180 lockdep_assert_irqs_disabled(); 181 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 182 } else { 183 local_irq_restore(flags); 184 } 185 } 186 187 /* Lockdep check that ->cblist may be safely accessed. */ 188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 189 { 190 lockdep_assert_irqs_disabled(); 191 if (rcu_rdp_is_offloaded(rdp)) 192 lockdep_assert_held(&rdp->nocb_lock); 193 } 194 195 /* 196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 197 * grace period. 198 */ 199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 200 { 201 swake_up_all(sq); 202 } 203 204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 205 { 206 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 207 } 208 209 static void rcu_init_one_nocb(struct rcu_node *rnp) 210 { 211 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 212 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 213 } 214 215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 216 struct rcu_data *rdp, 217 bool force, unsigned long flags) 218 __releases(rdp_gp->nocb_gp_lock) 219 { 220 bool needwake = false; 221 222 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 223 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 224 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 225 TPS("AlreadyAwake")); 226 return false; 227 } 228 229 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 230 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 231 del_timer(&rdp_gp->nocb_timer); 232 } 233 234 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 235 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 236 needwake = true; 237 } 238 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 239 if (needwake) { 240 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 241 wake_up_process(rdp_gp->nocb_gp_kthread); 242 } 243 244 return needwake; 245 } 246 247 /* 248 * Kick the GP kthread for this NOCB group. 249 */ 250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 251 { 252 unsigned long flags; 253 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 254 255 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 256 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 257 } 258 259 /* 260 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 261 * can elapse before lazy callbacks are flushed. Lazy callbacks 262 * could be flushed much earlier for a number of other reasons 263 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 264 * left unsubmitted to RCU after those many jiffies. 265 */ 266 #define LAZY_FLUSH_JIFFIES (10 * HZ) 267 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES; 268 269 #ifdef CONFIG_RCU_LAZY 270 // To be called only from test code. 271 void rcu_lazy_set_jiffies_till_flush(unsigned long jif) 272 { 273 jiffies_till_flush = jif; 274 } 275 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush); 276 277 unsigned long rcu_lazy_get_jiffies_till_flush(void) 278 { 279 return jiffies_till_flush; 280 } 281 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush); 282 #endif 283 284 /* 285 * Arrange to wake the GP kthread for this NOCB group at some future 286 * time when it is safe to do so. 287 */ 288 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 289 const char *reason) 290 { 291 unsigned long flags; 292 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 293 294 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 295 296 /* 297 * Bypass wakeup overrides previous deferments. In case of 298 * callback storms, no need to wake up too early. 299 */ 300 if (waketype == RCU_NOCB_WAKE_LAZY && 301 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 302 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush); 303 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 304 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 305 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 306 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 307 } else { 308 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 309 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 310 if (rdp_gp->nocb_defer_wakeup < waketype) 311 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 312 } 313 314 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 315 316 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 317 } 318 319 /* 320 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 321 * However, if there is a callback to be enqueued and if ->nocb_bypass 322 * proves to be initially empty, just return false because the no-CB GP 323 * kthread may need to be awakened in this case. 324 * 325 * Return true if there was something to be flushed and it succeeded, otherwise 326 * false. 327 * 328 * Note that this function always returns true if rhp is NULL. 329 */ 330 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 331 unsigned long j, bool lazy) 332 { 333 struct rcu_cblist rcl; 334 struct rcu_head *rhp = rhp_in; 335 336 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 337 rcu_lockdep_assert_cblist_protected(rdp); 338 lockdep_assert_held(&rdp->nocb_bypass_lock); 339 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 340 raw_spin_unlock(&rdp->nocb_bypass_lock); 341 return false; 342 } 343 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 344 if (rhp) 345 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 346 347 /* 348 * If the new CB requested was a lazy one, queue it onto the main 349 * ->cblist so that we can take advantage of the grace-period that will 350 * happen regardless. But queue it onto the bypass list first so that 351 * the lazy CB is ordered with the existing CBs in the bypass list. 352 */ 353 if (lazy && rhp) { 354 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 355 rhp = NULL; 356 } 357 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 358 WRITE_ONCE(rdp->lazy_len, 0); 359 360 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 361 WRITE_ONCE(rdp->nocb_bypass_first, j); 362 rcu_nocb_bypass_unlock(rdp); 363 return true; 364 } 365 366 /* 367 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 368 * However, if there is a callback to be enqueued and if ->nocb_bypass 369 * proves to be initially empty, just return false because the no-CB GP 370 * kthread may need to be awakened in this case. 371 * 372 * Note that this function always returns true if rhp is NULL. 373 */ 374 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 375 unsigned long j, bool lazy) 376 { 377 if (!rcu_rdp_is_offloaded(rdp)) 378 return true; 379 rcu_lockdep_assert_cblist_protected(rdp); 380 rcu_nocb_bypass_lock(rdp); 381 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 382 } 383 384 /* 385 * If the ->nocb_bypass_lock is immediately available, flush the 386 * ->nocb_bypass queue into ->cblist. 387 */ 388 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 389 { 390 rcu_lockdep_assert_cblist_protected(rdp); 391 if (!rcu_rdp_is_offloaded(rdp) || 392 !rcu_nocb_bypass_trylock(rdp)) 393 return; 394 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 395 } 396 397 /* 398 * See whether it is appropriate to use the ->nocb_bypass list in order 399 * to control contention on ->nocb_lock. A limited number of direct 400 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 401 * is non-empty, further callbacks must be placed into ->nocb_bypass, 402 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 403 * back to direct use of ->cblist. However, ->nocb_bypass should not be 404 * used if ->cblist is empty, because otherwise callbacks can be stranded 405 * on ->nocb_bypass because we cannot count on the current CPU ever again 406 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 407 * non-empty, the corresponding no-CBs grace-period kthread must not be 408 * in an indefinite sleep state. 409 * 410 * Finally, it is not permitted to use the bypass during early boot, 411 * as doing so would confuse the auto-initialization code. Besides 412 * which, there is no point in worrying about lock contention while 413 * there is only one CPU in operation. 414 */ 415 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 416 bool *was_alldone, unsigned long flags, 417 bool lazy) 418 { 419 unsigned long c; 420 unsigned long cur_gp_seq; 421 unsigned long j = jiffies; 422 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 423 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 424 425 lockdep_assert_irqs_disabled(); 426 427 // Pure softirq/rcuc based processing: no bypassing, no 428 // locking. 429 if (!rcu_rdp_is_offloaded(rdp)) { 430 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 431 return false; 432 } 433 434 // In the process of (de-)offloading: no bypassing, but 435 // locking. 436 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 437 rcu_nocb_lock(rdp); 438 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 439 return false; /* Not offloaded, no bypassing. */ 440 } 441 442 // Don't use ->nocb_bypass during early boot. 443 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 444 rcu_nocb_lock(rdp); 445 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 446 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 447 return false; 448 } 449 450 // If we have advanced to a new jiffy, reset counts to allow 451 // moving back from ->nocb_bypass to ->cblist. 452 if (j == rdp->nocb_nobypass_last) { 453 c = rdp->nocb_nobypass_count + 1; 454 } else { 455 WRITE_ONCE(rdp->nocb_nobypass_last, j); 456 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 457 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 458 nocb_nobypass_lim_per_jiffy)) 459 c = 0; 460 else if (c > nocb_nobypass_lim_per_jiffy) 461 c = nocb_nobypass_lim_per_jiffy; 462 } 463 WRITE_ONCE(rdp->nocb_nobypass_count, c); 464 465 // If there hasn't yet been all that many ->cblist enqueues 466 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 467 // ->nocb_bypass first. 468 // Lazy CBs throttle this back and do immediate bypass queuing. 469 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 470 rcu_nocb_lock(rdp); 471 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 472 if (*was_alldone) 473 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 474 TPS("FirstQ")); 475 476 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 477 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 478 return false; // Caller must enqueue the callback. 479 } 480 481 // If ->nocb_bypass has been used too long or is too full, 482 // flush ->nocb_bypass to ->cblist. 483 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 484 (ncbs && bypass_is_lazy && 485 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) || 486 ncbs >= qhimark) { 487 rcu_nocb_lock(rdp); 488 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 489 490 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 491 if (*was_alldone) 492 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 493 TPS("FirstQ")); 494 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 495 return false; // Caller must enqueue the callback. 496 } 497 if (j != rdp->nocb_gp_adv_time && 498 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 499 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 500 rcu_advance_cbs_nowake(rdp->mynode, rdp); 501 rdp->nocb_gp_adv_time = j; 502 } 503 504 // The flush succeeded and we moved CBs into the regular list. 505 // Don't wait for the wake up timer as it may be too far ahead. 506 // Wake up the GP thread now instead, if the cblist was empty. 507 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 508 509 return true; // Callback already enqueued. 510 } 511 512 // We need to use the bypass. 513 rcu_nocb_wait_contended(rdp); 514 rcu_nocb_bypass_lock(rdp); 515 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 516 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 517 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 518 519 if (lazy) 520 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 521 522 if (!ncbs) { 523 WRITE_ONCE(rdp->nocb_bypass_first, j); 524 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 525 } 526 rcu_nocb_bypass_unlock(rdp); 527 smp_mb(); /* Order enqueue before wake. */ 528 // A wake up of the grace period kthread or timer adjustment 529 // needs to be done only if: 530 // 1. Bypass list was fully empty before (this is the first 531 // bypass list entry), or: 532 // 2. Both of these conditions are met: 533 // a. The bypass list previously had only lazy CBs, and: 534 // b. The new CB is non-lazy. 535 if (ncbs && (!bypass_is_lazy || lazy)) { 536 local_irq_restore(flags); 537 } else { 538 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 539 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 540 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 541 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 542 TPS("FirstBQwake")); 543 __call_rcu_nocb_wake(rdp, true, flags); 544 } else { 545 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 546 TPS("FirstBQnoWake")); 547 rcu_nocb_unlock_irqrestore(rdp, flags); 548 } 549 } 550 return true; // Callback already enqueued. 551 } 552 553 /* 554 * Awaken the no-CBs grace-period kthread if needed, either due to it 555 * legitimately being asleep or due to overload conditions. 556 * 557 * If warranted, also wake up the kthread servicing this CPUs queues. 558 */ 559 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 560 unsigned long flags) 561 __releases(rdp->nocb_lock) 562 { 563 long bypass_len; 564 unsigned long cur_gp_seq; 565 unsigned long j; 566 long lazy_len; 567 long len; 568 struct task_struct *t; 569 570 // If we are being polled or there is no kthread, just leave. 571 t = READ_ONCE(rdp->nocb_gp_kthread); 572 if (rcu_nocb_poll || !t) { 573 rcu_nocb_unlock_irqrestore(rdp, flags); 574 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 575 TPS("WakeNotPoll")); 576 return; 577 } 578 // Need to actually to a wakeup. 579 len = rcu_segcblist_n_cbs(&rdp->cblist); 580 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 581 lazy_len = READ_ONCE(rdp->lazy_len); 582 if (was_alldone) { 583 rdp->qlen_last_fqs_check = len; 584 // Only lazy CBs in bypass list 585 if (lazy_len && bypass_len == lazy_len) { 586 rcu_nocb_unlock_irqrestore(rdp, flags); 587 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 588 TPS("WakeLazy")); 589 } else if (!irqs_disabled_flags(flags)) { 590 /* ... if queue was empty ... */ 591 rcu_nocb_unlock_irqrestore(rdp, flags); 592 wake_nocb_gp(rdp, false); 593 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 594 TPS("WakeEmpty")); 595 } else { 596 rcu_nocb_unlock_irqrestore(rdp, flags); 597 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 598 TPS("WakeEmptyIsDeferred")); 599 } 600 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 601 /* ... or if many callbacks queued. */ 602 rdp->qlen_last_fqs_check = len; 603 j = jiffies; 604 if (j != rdp->nocb_gp_adv_time && 605 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 606 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 607 rcu_advance_cbs_nowake(rdp->mynode, rdp); 608 rdp->nocb_gp_adv_time = j; 609 } 610 smp_mb(); /* Enqueue before timer_pending(). */ 611 if ((rdp->nocb_cb_sleep || 612 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 613 !timer_pending(&rdp->nocb_timer)) { 614 rcu_nocb_unlock_irqrestore(rdp, flags); 615 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 616 TPS("WakeOvfIsDeferred")); 617 } else { 618 rcu_nocb_unlock_irqrestore(rdp, flags); 619 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 620 } 621 } else { 622 rcu_nocb_unlock_irqrestore(rdp, flags); 623 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 624 } 625 } 626 627 static int nocb_gp_toggle_rdp(struct rcu_data *rdp, 628 bool *wake_state) 629 { 630 struct rcu_segcblist *cblist = &rdp->cblist; 631 unsigned long flags; 632 int ret; 633 634 rcu_nocb_lock_irqsave(rdp, flags); 635 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 636 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 637 /* 638 * Offloading. Set our flag and notify the offload worker. 639 * We will handle this rdp until it ever gets de-offloaded. 640 */ 641 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 642 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 643 *wake_state = true; 644 ret = 1; 645 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 646 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 647 /* 648 * De-offloading. Clear our flag and notify the de-offload worker. 649 * We will ignore this rdp until it ever gets re-offloaded. 650 */ 651 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 652 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 653 *wake_state = true; 654 ret = 0; 655 } else { 656 WARN_ON_ONCE(1); 657 ret = -1; 658 } 659 660 rcu_nocb_unlock_irqrestore(rdp, flags); 661 662 return ret; 663 } 664 665 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 666 { 667 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 668 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 669 !READ_ONCE(my_rdp->nocb_gp_sleep)); 670 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 671 } 672 673 /* 674 * No-CBs GP kthreads come here to wait for additional callbacks to show up 675 * or for grace periods to end. 676 */ 677 static void nocb_gp_wait(struct rcu_data *my_rdp) 678 { 679 bool bypass = false; 680 int __maybe_unused cpu = my_rdp->cpu; 681 unsigned long cur_gp_seq; 682 unsigned long flags; 683 bool gotcbs = false; 684 unsigned long j = jiffies; 685 bool lazy = false; 686 bool needwait_gp = false; // This prevents actual uninitialized use. 687 bool needwake; 688 bool needwake_gp; 689 struct rcu_data *rdp, *rdp_toggling = NULL; 690 struct rcu_node *rnp; 691 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 692 bool wasempty = false; 693 694 /* 695 * Each pass through the following loop checks for CBs and for the 696 * nearest grace period (if any) to wait for next. The CB kthreads 697 * and the global grace-period kthread are awakened if needed. 698 */ 699 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 700 /* 701 * An rcu_data structure is removed from the list after its 702 * CPU is de-offloaded and added to the list before that CPU is 703 * (re-)offloaded. If the following loop happens to be referencing 704 * that rcu_data structure during the time that the corresponding 705 * CPU is de-offloaded and then immediately re-offloaded, this 706 * loop's rdp pointer will be carried to the end of the list by 707 * the resulting pair of list operations. This can cause the loop 708 * to skip over some of the rcu_data structures that were supposed 709 * to have been scanned. Fortunately a new iteration through the 710 * entire loop is forced after a given CPU's rcu_data structure 711 * is added to the list, so the skipped-over rcu_data structures 712 * won't be ignored for long. 713 */ 714 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 715 long bypass_ncbs; 716 bool flush_bypass = false; 717 long lazy_ncbs; 718 719 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 720 rcu_nocb_lock_irqsave(rdp, flags); 721 lockdep_assert_held(&rdp->nocb_lock); 722 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 723 lazy_ncbs = READ_ONCE(rdp->lazy_len); 724 725 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 726 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) || 727 bypass_ncbs > 2 * qhimark)) { 728 flush_bypass = true; 729 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 730 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 731 bypass_ncbs > 2 * qhimark)) { 732 flush_bypass = true; 733 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 734 rcu_nocb_unlock_irqrestore(rdp, flags); 735 continue; /* No callbacks here, try next. */ 736 } 737 738 if (flush_bypass) { 739 // Bypass full or old, so flush it. 740 (void)rcu_nocb_try_flush_bypass(rdp, j); 741 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 742 lazy_ncbs = READ_ONCE(rdp->lazy_len); 743 } 744 745 if (bypass_ncbs) { 746 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 747 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 748 if (bypass_ncbs == lazy_ncbs) 749 lazy = true; 750 else 751 bypass = true; 752 } 753 rnp = rdp->mynode; 754 755 // Advance callbacks if helpful and low contention. 756 needwake_gp = false; 757 if (!rcu_segcblist_restempty(&rdp->cblist, 758 RCU_NEXT_READY_TAIL) || 759 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 760 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 761 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 762 needwake_gp = rcu_advance_cbs(rnp, rdp); 763 wasempty = rcu_segcblist_restempty(&rdp->cblist, 764 RCU_NEXT_READY_TAIL); 765 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 766 } 767 // Need to wait on some grace period? 768 WARN_ON_ONCE(wasempty && 769 !rcu_segcblist_restempty(&rdp->cblist, 770 RCU_NEXT_READY_TAIL)); 771 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 772 if (!needwait_gp || 773 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 774 wait_gp_seq = cur_gp_seq; 775 needwait_gp = true; 776 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 777 TPS("NeedWaitGP")); 778 } 779 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 780 needwake = rdp->nocb_cb_sleep; 781 WRITE_ONCE(rdp->nocb_cb_sleep, false); 782 smp_mb(); /* CB invocation -after- GP end. */ 783 } else { 784 needwake = false; 785 } 786 rcu_nocb_unlock_irqrestore(rdp, flags); 787 if (needwake) { 788 swake_up_one(&rdp->nocb_cb_wq); 789 gotcbs = true; 790 } 791 if (needwake_gp) 792 rcu_gp_kthread_wake(); 793 } 794 795 my_rdp->nocb_gp_bypass = bypass; 796 my_rdp->nocb_gp_gp = needwait_gp; 797 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 798 799 // At least one child with non-empty ->nocb_bypass, so set 800 // timer in order to avoid stranding its callbacks. 801 if (!rcu_nocb_poll) { 802 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 803 if (lazy && !bypass) { 804 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 805 TPS("WakeLazyIsDeferred")); 806 // Otherwise add a deferred bypass wake up. 807 } else if (bypass) { 808 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 809 TPS("WakeBypassIsDeferred")); 810 } 811 } 812 813 if (rcu_nocb_poll) { 814 /* Polling, so trace if first poll in the series. */ 815 if (gotcbs) 816 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 817 if (list_empty(&my_rdp->nocb_head_rdp)) { 818 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 819 if (!my_rdp->nocb_toggling_rdp) 820 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 821 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 822 /* Wait for any offloading rdp */ 823 nocb_gp_sleep(my_rdp, cpu); 824 } else { 825 schedule_timeout_idle(1); 826 } 827 } else if (!needwait_gp) { 828 /* Wait for callbacks to appear. */ 829 nocb_gp_sleep(my_rdp, cpu); 830 } else { 831 rnp = my_rdp->mynode; 832 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 833 swait_event_interruptible_exclusive( 834 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 835 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 836 !READ_ONCE(my_rdp->nocb_gp_sleep)); 837 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 838 } 839 840 if (!rcu_nocb_poll) { 841 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 842 // (De-)queue an rdp to/from the group if its nocb state is changing 843 rdp_toggling = my_rdp->nocb_toggling_rdp; 844 if (rdp_toggling) 845 my_rdp->nocb_toggling_rdp = NULL; 846 847 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 848 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 849 del_timer(&my_rdp->nocb_timer); 850 } 851 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 852 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 853 } else { 854 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 855 if (rdp_toggling) { 856 /* 857 * Paranoid locking to make sure nocb_toggling_rdp is well 858 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 859 * race with another round of nocb toggling for this rdp. 860 * Nocb locking should prevent from that already but we stick 861 * to paranoia, especially in rare path. 862 */ 863 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 864 my_rdp->nocb_toggling_rdp = NULL; 865 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 866 } 867 } 868 869 if (rdp_toggling) { 870 bool wake_state = false; 871 int ret; 872 873 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state); 874 if (ret == 1) 875 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 876 else if (ret == 0) 877 list_del(&rdp_toggling->nocb_entry_rdp); 878 if (wake_state) 879 swake_up_one(&rdp_toggling->nocb_state_wq); 880 } 881 882 my_rdp->nocb_gp_seq = -1; 883 WARN_ON(signal_pending(current)); 884 } 885 886 /* 887 * No-CBs grace-period-wait kthread. There is one of these per group 888 * of CPUs, but only once at least one CPU in that group has come online 889 * at least once since boot. This kthread checks for newly posted 890 * callbacks from any of the CPUs it is responsible for, waits for a 891 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 892 * that then have callback-invocation work to do. 893 */ 894 static int rcu_nocb_gp_kthread(void *arg) 895 { 896 struct rcu_data *rdp = arg; 897 898 for (;;) { 899 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 900 nocb_gp_wait(rdp); 901 cond_resched_tasks_rcu_qs(); 902 } 903 return 0; 904 } 905 906 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 907 { 908 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 909 910 return rcu_segcblist_test_flags(&rdp->cblist, flags); 911 } 912 913 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 914 { 915 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 916 } 917 918 /* 919 * Invoke any ready callbacks from the corresponding no-CBs CPU, 920 * then, if there are no more, wait for more to appear. 921 */ 922 static void nocb_cb_wait(struct rcu_data *rdp) 923 { 924 struct rcu_segcblist *cblist = &rdp->cblist; 925 unsigned long cur_gp_seq; 926 unsigned long flags; 927 bool needwake_state = false; 928 bool needwake_gp = false; 929 bool can_sleep = true; 930 struct rcu_node *rnp = rdp->mynode; 931 932 do { 933 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 934 nocb_cb_wait_cond(rdp)); 935 936 // VVV Ensure CB invocation follows _sleep test. 937 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 938 WARN_ON(signal_pending(current)); 939 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 940 } 941 } while (!nocb_cb_can_run(rdp)); 942 943 944 local_irq_save(flags); 945 rcu_momentary_dyntick_idle(); 946 local_irq_restore(flags); 947 /* 948 * Disable BH to provide the expected environment. Also, when 949 * transitioning to/from NOCB mode, a self-requeuing callback might 950 * be invoked from softirq. A short grace period could cause both 951 * instances of this callback would execute concurrently. 952 */ 953 local_bh_disable(); 954 rcu_do_batch(rdp); 955 local_bh_enable(); 956 lockdep_assert_irqs_enabled(); 957 rcu_nocb_lock_irqsave(rdp, flags); 958 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 959 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 960 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 961 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 962 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 963 } 964 965 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 966 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 967 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 968 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 969 needwake_state = true; 970 } 971 if (rcu_segcblist_ready_cbs(cblist)) 972 can_sleep = false; 973 } else { 974 /* 975 * De-offloading. Clear our flag and notify the de-offload worker. 976 * We won't touch the callbacks and keep sleeping until we ever 977 * get re-offloaded. 978 */ 979 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 980 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 981 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 982 needwake_state = true; 983 } 984 985 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 986 987 if (rdp->nocb_cb_sleep) 988 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 989 990 rcu_nocb_unlock_irqrestore(rdp, flags); 991 if (needwake_gp) 992 rcu_gp_kthread_wake(); 993 994 if (needwake_state) 995 swake_up_one(&rdp->nocb_state_wq); 996 } 997 998 /* 999 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 1000 * nocb_cb_wait() to do the dirty work. 1001 */ 1002 static int rcu_nocb_cb_kthread(void *arg) 1003 { 1004 struct rcu_data *rdp = arg; 1005 1006 // Each pass through this loop does one callback batch, and, 1007 // if there are no more ready callbacks, waits for them. 1008 for (;;) { 1009 nocb_cb_wait(rdp); 1010 cond_resched_tasks_rcu_qs(); 1011 } 1012 return 0; 1013 } 1014 1015 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 1016 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1017 { 1018 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 1019 } 1020 1021 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 1022 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 1023 struct rcu_data *rdp, int level, 1024 unsigned long flags) 1025 __releases(rdp_gp->nocb_gp_lock) 1026 { 1027 int ndw; 1028 int ret; 1029 1030 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 1031 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1032 return false; 1033 } 1034 1035 ndw = rdp_gp->nocb_defer_wakeup; 1036 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 1037 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 1038 1039 return ret; 1040 } 1041 1042 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 1043 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 1044 { 1045 unsigned long flags; 1046 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1047 1048 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1049 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1050 1051 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1052 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1053 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1054 } 1055 1056 /* 1057 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1058 * This means we do an inexact common-case check. Note that if 1059 * we miss, ->nocb_timer will eventually clean things up. 1060 */ 1061 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1062 { 1063 unsigned long flags; 1064 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1065 1066 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1067 return false; 1068 1069 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1070 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1071 } 1072 1073 void rcu_nocb_flush_deferred_wakeup(void) 1074 { 1075 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1076 } 1077 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1078 1079 static int rdp_offload_toggle(struct rcu_data *rdp, 1080 bool offload, unsigned long flags) 1081 __releases(rdp->nocb_lock) 1082 { 1083 struct rcu_segcblist *cblist = &rdp->cblist; 1084 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1085 bool wake_gp = false; 1086 1087 rcu_segcblist_offload(cblist, offload); 1088 1089 if (rdp->nocb_cb_sleep) 1090 rdp->nocb_cb_sleep = false; 1091 rcu_nocb_unlock_irqrestore(rdp, flags); 1092 1093 /* 1094 * Ignore former value of nocb_cb_sleep and force wake up as it could 1095 * have been spuriously set to false already. 1096 */ 1097 swake_up_one(&rdp->nocb_cb_wq); 1098 1099 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1100 // Queue this rdp for add/del to/from the list to iterate on rcuog 1101 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1102 if (rdp_gp->nocb_gp_sleep) { 1103 rdp_gp->nocb_gp_sleep = false; 1104 wake_gp = true; 1105 } 1106 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1107 1108 return wake_gp; 1109 } 1110 1111 static long rcu_nocb_rdp_deoffload(void *arg) 1112 { 1113 struct rcu_data *rdp = arg; 1114 struct rcu_segcblist *cblist = &rdp->cblist; 1115 unsigned long flags; 1116 int wake_gp; 1117 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1118 1119 /* 1120 * rcu_nocb_rdp_deoffload() may be called directly if 1121 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1122 * is not online yet. 1123 */ 1124 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1125 1126 pr_info("De-offloading %d\n", rdp->cpu); 1127 1128 rcu_nocb_lock_irqsave(rdp, flags); 1129 /* 1130 * Flush once and for all now. This suffices because we are 1131 * running on the target CPU holding ->nocb_lock (thus having 1132 * interrupts disabled), and because rdp_offload_toggle() 1133 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1134 * Thus future calls to rcu_segcblist_completely_offloaded() will 1135 * return false, which means that future calls to rcu_nocb_try_bypass() 1136 * will refuse to put anything into the bypass. 1137 */ 1138 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1139 /* 1140 * Start with invoking rcu_core() early. This way if the current thread 1141 * happens to preempt an ongoing call to rcu_core() in the middle, 1142 * leaving some work dismissed because rcu_core() still thinks the rdp is 1143 * completely offloaded, we are guaranteed a nearby future instance of 1144 * rcu_core() to catch up. 1145 */ 1146 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1147 invoke_rcu_core(); 1148 wake_gp = rdp_offload_toggle(rdp, false, flags); 1149 1150 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1151 if (rdp_gp->nocb_gp_kthread) { 1152 if (wake_gp) 1153 wake_up_process(rdp_gp->nocb_gp_kthread); 1154 1155 /* 1156 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB. 1157 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog. 1158 */ 1159 if (!rdp->nocb_cb_kthread) { 1160 rcu_nocb_lock_irqsave(rdp, flags); 1161 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 1162 rcu_nocb_unlock_irqrestore(rdp, flags); 1163 } 1164 1165 swait_event_exclusive(rdp->nocb_state_wq, 1166 !rcu_segcblist_test_flags(cblist, 1167 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP)); 1168 } else { 1169 /* 1170 * No kthread to clear the flags for us or remove the rdp from the nocb list 1171 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1172 * but we stick to paranoia in this rare path. 1173 */ 1174 rcu_nocb_lock_irqsave(rdp, flags); 1175 rcu_segcblist_clear_flags(&rdp->cblist, 1176 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1177 rcu_nocb_unlock_irqrestore(rdp, flags); 1178 1179 list_del(&rdp->nocb_entry_rdp); 1180 } 1181 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1182 1183 /* 1184 * Lock one last time to acquire latest callback updates from kthreads 1185 * so we can later handle callbacks locally without locking. 1186 */ 1187 rcu_nocb_lock_irqsave(rdp, flags); 1188 /* 1189 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1190 * lock is released but how about being paranoid for once? 1191 */ 1192 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1193 /* 1194 * Without SEGCBLIST_LOCKING, we can't use 1195 * rcu_nocb_unlock_irqrestore() anymore. 1196 */ 1197 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1198 1199 /* Sanity check */ 1200 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1201 1202 1203 return 0; 1204 } 1205 1206 int rcu_nocb_cpu_deoffload(int cpu) 1207 { 1208 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1209 int ret = 0; 1210 1211 cpus_read_lock(); 1212 mutex_lock(&rcu_state.barrier_mutex); 1213 if (rcu_rdp_is_offloaded(rdp)) { 1214 if (cpu_online(cpu)) { 1215 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1216 if (!ret) 1217 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1218 } else { 1219 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1220 ret = -EINVAL; 1221 } 1222 } 1223 mutex_unlock(&rcu_state.barrier_mutex); 1224 cpus_read_unlock(); 1225 1226 return ret; 1227 } 1228 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1229 1230 static long rcu_nocb_rdp_offload(void *arg) 1231 { 1232 struct rcu_data *rdp = arg; 1233 struct rcu_segcblist *cblist = &rdp->cblist; 1234 unsigned long flags; 1235 int wake_gp; 1236 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1237 1238 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1239 /* 1240 * For now we only support re-offload, ie: the rdp must have been 1241 * offloaded on boot first. 1242 */ 1243 if (!rdp->nocb_gp_rdp) 1244 return -EINVAL; 1245 1246 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1247 return -EINVAL; 1248 1249 pr_info("Offloading %d\n", rdp->cpu); 1250 1251 /* 1252 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1253 * is set. 1254 */ 1255 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1256 1257 /* 1258 * We didn't take the nocb lock while working on the 1259 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1260 * Every modifications that have been done previously on 1261 * rdp->cblist must be visible remotely by the nocb kthreads 1262 * upon wake up after reading the cblist flags. 1263 * 1264 * The layout against nocb_lock enforces that ordering: 1265 * 1266 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1267 * ------------------------- ---------------------------- 1268 * WRITE callbacks rcu_nocb_lock() 1269 * rcu_nocb_lock() READ flags 1270 * WRITE flags READ callbacks 1271 * rcu_nocb_unlock() rcu_nocb_unlock() 1272 */ 1273 wake_gp = rdp_offload_toggle(rdp, true, flags); 1274 if (wake_gp) 1275 wake_up_process(rdp_gp->nocb_gp_kthread); 1276 swait_event_exclusive(rdp->nocb_state_wq, 1277 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1278 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1279 1280 /* 1281 * All kthreads are ready to work, we can finally relieve rcu_core() and 1282 * enable nocb bypass. 1283 */ 1284 rcu_nocb_lock_irqsave(rdp, flags); 1285 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1286 rcu_nocb_unlock_irqrestore(rdp, flags); 1287 1288 return 0; 1289 } 1290 1291 int rcu_nocb_cpu_offload(int cpu) 1292 { 1293 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1294 int ret = 0; 1295 1296 cpus_read_lock(); 1297 mutex_lock(&rcu_state.barrier_mutex); 1298 if (!rcu_rdp_is_offloaded(rdp)) { 1299 if (cpu_online(cpu)) { 1300 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1301 if (!ret) 1302 cpumask_set_cpu(cpu, rcu_nocb_mask); 1303 } else { 1304 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1305 ret = -EINVAL; 1306 } 1307 } 1308 mutex_unlock(&rcu_state.barrier_mutex); 1309 cpus_read_unlock(); 1310 1311 return ret; 1312 } 1313 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1314 1315 #ifdef CONFIG_RCU_LAZY 1316 static unsigned long 1317 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1318 { 1319 int cpu; 1320 unsigned long count = 0; 1321 1322 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1323 return 0; 1324 1325 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1326 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1327 return 0; 1328 1329 /* Snapshot count of all CPUs */ 1330 for_each_cpu(cpu, rcu_nocb_mask) { 1331 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1332 1333 count += READ_ONCE(rdp->lazy_len); 1334 } 1335 1336 mutex_unlock(&rcu_state.barrier_mutex); 1337 1338 return count ? count : SHRINK_EMPTY; 1339 } 1340 1341 static unsigned long 1342 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1343 { 1344 int cpu; 1345 unsigned long flags; 1346 unsigned long count = 0; 1347 1348 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1349 return 0; 1350 /* 1351 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1352 * may be ignored or imbalanced. 1353 */ 1354 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1355 /* 1356 * But really don't insist if barrier_mutex is contended since we 1357 * can't guarantee that it will never engage in a dependency 1358 * chain involving memory allocation. The lock is seldom contended 1359 * anyway. 1360 */ 1361 return 0; 1362 } 1363 1364 /* Snapshot count of all CPUs */ 1365 for_each_cpu(cpu, rcu_nocb_mask) { 1366 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1367 int _count; 1368 1369 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1370 continue; 1371 1372 if (!READ_ONCE(rdp->lazy_len)) 1373 continue; 1374 1375 rcu_nocb_lock_irqsave(rdp, flags); 1376 /* 1377 * Recheck under the nocb lock. Since we are not holding the bypass 1378 * lock we may still race with increments from the enqueuer but still 1379 * we know for sure if there is at least one lazy callback. 1380 */ 1381 _count = READ_ONCE(rdp->lazy_len); 1382 if (!_count) { 1383 rcu_nocb_unlock_irqrestore(rdp, flags); 1384 continue; 1385 } 1386 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1387 rcu_nocb_unlock_irqrestore(rdp, flags); 1388 wake_nocb_gp(rdp, false); 1389 sc->nr_to_scan -= _count; 1390 count += _count; 1391 if (sc->nr_to_scan <= 0) 1392 break; 1393 } 1394 1395 mutex_unlock(&rcu_state.barrier_mutex); 1396 1397 return count ? count : SHRINK_STOP; 1398 } 1399 1400 static struct shrinker lazy_rcu_shrinker = { 1401 .count_objects = lazy_rcu_shrink_count, 1402 .scan_objects = lazy_rcu_shrink_scan, 1403 .batch = 0, 1404 .seeks = DEFAULT_SEEKS, 1405 }; 1406 #endif // #ifdef CONFIG_RCU_LAZY 1407 1408 void __init rcu_init_nohz(void) 1409 { 1410 int cpu; 1411 struct rcu_data *rdp; 1412 const struct cpumask *cpumask = NULL; 1413 1414 #if defined(CONFIG_NO_HZ_FULL) 1415 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1416 cpumask = tick_nohz_full_mask; 1417 #endif 1418 1419 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1420 !rcu_state.nocb_is_setup && !cpumask) 1421 cpumask = cpu_possible_mask; 1422 1423 if (cpumask) { 1424 if (!cpumask_available(rcu_nocb_mask)) { 1425 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1426 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1427 return; 1428 } 1429 } 1430 1431 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1432 rcu_state.nocb_is_setup = true; 1433 } 1434 1435 if (!rcu_state.nocb_is_setup) 1436 return; 1437 1438 #ifdef CONFIG_RCU_LAZY 1439 if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy")) 1440 pr_err("Failed to register lazy_rcu shrinker!\n"); 1441 #endif // #ifdef CONFIG_RCU_LAZY 1442 1443 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1444 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1445 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1446 rcu_nocb_mask); 1447 } 1448 if (cpumask_empty(rcu_nocb_mask)) 1449 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1450 else 1451 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1452 cpumask_pr_args(rcu_nocb_mask)); 1453 if (rcu_nocb_poll) 1454 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1455 1456 for_each_cpu(cpu, rcu_nocb_mask) { 1457 rdp = per_cpu_ptr(&rcu_data, cpu); 1458 if (rcu_segcblist_empty(&rdp->cblist)) 1459 rcu_segcblist_init(&rdp->cblist); 1460 rcu_segcblist_offload(&rdp->cblist, true); 1461 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1462 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1463 } 1464 rcu_organize_nocb_kthreads(); 1465 } 1466 1467 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1468 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1469 { 1470 init_swait_queue_head(&rdp->nocb_cb_wq); 1471 init_swait_queue_head(&rdp->nocb_gp_wq); 1472 init_swait_queue_head(&rdp->nocb_state_wq); 1473 raw_spin_lock_init(&rdp->nocb_lock); 1474 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1475 raw_spin_lock_init(&rdp->nocb_gp_lock); 1476 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1477 rcu_cblist_init(&rdp->nocb_bypass); 1478 WRITE_ONCE(rdp->lazy_len, 0); 1479 mutex_init(&rdp->nocb_gp_kthread_mutex); 1480 } 1481 1482 /* 1483 * If the specified CPU is a no-CBs CPU that does not already have its 1484 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1485 * for this CPU's group has not yet been created, spawn it as well. 1486 */ 1487 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1488 { 1489 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1490 struct rcu_data *rdp_gp; 1491 struct task_struct *t; 1492 struct sched_param sp; 1493 1494 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1495 return; 1496 1497 /* If there already is an rcuo kthread, then nothing to do. */ 1498 if (rdp->nocb_cb_kthread) 1499 return; 1500 1501 /* If we didn't spawn the GP kthread first, reorganize! */ 1502 sp.sched_priority = kthread_prio; 1503 rdp_gp = rdp->nocb_gp_rdp; 1504 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1505 if (!rdp_gp->nocb_gp_kthread) { 1506 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1507 "rcuog/%d", rdp_gp->cpu); 1508 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1509 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1510 goto end; 1511 } 1512 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1513 if (kthread_prio) 1514 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1515 } 1516 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1517 1518 /* Spawn the kthread for this CPU. */ 1519 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1520 "rcuo%c/%d", rcu_state.abbr, cpu); 1521 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1522 goto end; 1523 1524 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1525 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1526 1527 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1528 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1529 return; 1530 end: 1531 mutex_lock(&rcu_state.barrier_mutex); 1532 if (rcu_rdp_is_offloaded(rdp)) { 1533 rcu_nocb_rdp_deoffload(rdp); 1534 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1535 } 1536 mutex_unlock(&rcu_state.barrier_mutex); 1537 } 1538 1539 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1540 static int rcu_nocb_gp_stride = -1; 1541 module_param(rcu_nocb_gp_stride, int, 0444); 1542 1543 /* 1544 * Initialize GP-CB relationships for all no-CBs CPU. 1545 */ 1546 static void __init rcu_organize_nocb_kthreads(void) 1547 { 1548 int cpu; 1549 bool firsttime = true; 1550 bool gotnocbs = false; 1551 bool gotnocbscbs = true; 1552 int ls = rcu_nocb_gp_stride; 1553 int nl = 0; /* Next GP kthread. */ 1554 struct rcu_data *rdp; 1555 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1556 1557 if (!cpumask_available(rcu_nocb_mask)) 1558 return; 1559 if (ls == -1) { 1560 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1561 rcu_nocb_gp_stride = ls; 1562 } 1563 1564 /* 1565 * Each pass through this loop sets up one rcu_data structure. 1566 * Should the corresponding CPU come online in the future, then 1567 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1568 */ 1569 for_each_possible_cpu(cpu) { 1570 rdp = per_cpu_ptr(&rcu_data, cpu); 1571 if (rdp->cpu >= nl) { 1572 /* New GP kthread, set up for CBs & next GP. */ 1573 gotnocbs = true; 1574 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1575 rdp_gp = rdp; 1576 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1577 if (dump_tree) { 1578 if (!firsttime) 1579 pr_cont("%s\n", gotnocbscbs 1580 ? "" : " (self only)"); 1581 gotnocbscbs = false; 1582 firsttime = false; 1583 pr_alert("%s: No-CB GP kthread CPU %d:", 1584 __func__, cpu); 1585 } 1586 } else { 1587 /* Another CB kthread, link to previous GP kthread. */ 1588 gotnocbscbs = true; 1589 if (dump_tree) 1590 pr_cont(" %d", cpu); 1591 } 1592 rdp->nocb_gp_rdp = rdp_gp; 1593 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1594 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1595 } 1596 if (gotnocbs && dump_tree) 1597 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1598 } 1599 1600 /* 1601 * Bind the current task to the offloaded CPUs. If there are no offloaded 1602 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1603 */ 1604 void rcu_bind_current_to_nocb(void) 1605 { 1606 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1607 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1608 } 1609 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1610 1611 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1612 #ifdef CONFIG_SMP 1613 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1614 { 1615 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1616 } 1617 #else // #ifdef CONFIG_SMP 1618 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1619 { 1620 return ""; 1621 } 1622 #endif // #else #ifdef CONFIG_SMP 1623 1624 /* 1625 * Dump out nocb grace-period kthread state for the specified rcu_data 1626 * structure. 1627 */ 1628 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1629 { 1630 struct rcu_node *rnp = rdp->mynode; 1631 1632 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1633 rdp->cpu, 1634 "kK"[!!rdp->nocb_gp_kthread], 1635 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1636 "dD"[!!rdp->nocb_defer_wakeup], 1637 "tT"[timer_pending(&rdp->nocb_timer)], 1638 "sS"[!!rdp->nocb_gp_sleep], 1639 ".W"[swait_active(&rdp->nocb_gp_wq)], 1640 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1641 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1642 ".B"[!!rdp->nocb_gp_bypass], 1643 ".G"[!!rdp->nocb_gp_gp], 1644 (long)rdp->nocb_gp_seq, 1645 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1646 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1647 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1648 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1649 } 1650 1651 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1652 static void show_rcu_nocb_state(struct rcu_data *rdp) 1653 { 1654 char bufw[20]; 1655 char bufr[20]; 1656 struct rcu_data *nocb_next_rdp; 1657 struct rcu_segcblist *rsclp = &rdp->cblist; 1658 bool waslocked; 1659 bool wassleep; 1660 1661 if (rdp->nocb_gp_rdp == rdp) 1662 show_rcu_nocb_gp_state(rdp); 1663 1664 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1665 &rdp->nocb_entry_rdp, 1666 typeof(*rdp), 1667 nocb_entry_rdp); 1668 1669 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1670 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1671 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1672 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1673 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1674 "kK"[!!rdp->nocb_cb_kthread], 1675 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1676 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 1677 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1678 "sS"[!!rdp->nocb_cb_sleep], 1679 ".W"[swait_active(&rdp->nocb_cb_wq)], 1680 jiffies - rdp->nocb_bypass_first, 1681 jiffies - rdp->nocb_nobypass_last, 1682 rdp->nocb_nobypass_count, 1683 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1684 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1685 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1686 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1687 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1688 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1689 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1690 rcu_segcblist_n_cbs(&rdp->cblist), 1691 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1692 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1693 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1694 1695 /* It is OK for GP kthreads to have GP state. */ 1696 if (rdp->nocb_gp_rdp == rdp) 1697 return; 1698 1699 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1700 wassleep = swait_active(&rdp->nocb_gp_wq); 1701 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1702 return; /* Nothing untoward. */ 1703 1704 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1705 "lL"[waslocked], 1706 "dD"[!!rdp->nocb_defer_wakeup], 1707 "sS"[!!rdp->nocb_gp_sleep], 1708 ".W"[wassleep]); 1709 } 1710 1711 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1712 1713 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1714 { 1715 return 0; 1716 } 1717 1718 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1719 { 1720 return false; 1721 } 1722 1723 /* No ->nocb_lock to acquire. */ 1724 static void rcu_nocb_lock(struct rcu_data *rdp) 1725 { 1726 } 1727 1728 /* No ->nocb_lock to release. */ 1729 static void rcu_nocb_unlock(struct rcu_data *rdp) 1730 { 1731 } 1732 1733 /* No ->nocb_lock to release. */ 1734 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1735 unsigned long flags) 1736 { 1737 local_irq_restore(flags); 1738 } 1739 1740 /* Lockdep check that ->cblist may be safely accessed. */ 1741 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1742 { 1743 lockdep_assert_irqs_disabled(); 1744 } 1745 1746 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1747 { 1748 } 1749 1750 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1751 { 1752 return NULL; 1753 } 1754 1755 static void rcu_init_one_nocb(struct rcu_node *rnp) 1756 { 1757 } 1758 1759 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1760 { 1761 return false; 1762 } 1763 1764 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1765 unsigned long j, bool lazy) 1766 { 1767 return true; 1768 } 1769 1770 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1771 bool *was_alldone, unsigned long flags, bool lazy) 1772 { 1773 return false; 1774 } 1775 1776 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1777 unsigned long flags) 1778 { 1779 WARN_ON_ONCE(1); /* Should be dead code! */ 1780 } 1781 1782 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1783 { 1784 } 1785 1786 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1787 { 1788 return false; 1789 } 1790 1791 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1792 { 1793 return false; 1794 } 1795 1796 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1797 { 1798 } 1799 1800 static void show_rcu_nocb_state(struct rcu_data *rdp) 1801 { 1802 } 1803 1804 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1805