1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, perform minimal sanity check. 95 */ 96 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 97 __acquires(&rdp->nocb_bypass_lock) 98 { 99 lockdep_assert_irqs_disabled(); 100 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 101 return; 102 /* 103 * Contention expected only when local enqueue collide with 104 * remote flush from kthreads. 105 */ 106 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 107 raw_spin_lock(&rdp->nocb_bypass_lock); 108 } 109 110 /* 111 * Conditionally acquire the specified rcu_data structure's 112 * ->nocb_bypass_lock. 113 */ 114 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 115 { 116 lockdep_assert_irqs_disabled(); 117 return raw_spin_trylock(&rdp->nocb_bypass_lock); 118 } 119 120 /* 121 * Release the specified rcu_data structure's ->nocb_bypass_lock. 122 */ 123 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 124 __releases(&rdp->nocb_bypass_lock) 125 { 126 lockdep_assert_irqs_disabled(); 127 raw_spin_unlock(&rdp->nocb_bypass_lock); 128 } 129 130 /* 131 * Acquire the specified rcu_data structure's ->nocb_lock, but only 132 * if it corresponds to a no-CBs CPU. 133 */ 134 static void rcu_nocb_lock(struct rcu_data *rdp) 135 { 136 lockdep_assert_irqs_disabled(); 137 if (!rcu_rdp_is_offloaded(rdp)) 138 return; 139 raw_spin_lock(&rdp->nocb_lock); 140 } 141 142 /* 143 * Release the specified rcu_data structure's ->nocb_lock, but only 144 * if it corresponds to a no-CBs CPU. 145 */ 146 static void rcu_nocb_unlock(struct rcu_data *rdp) 147 { 148 if (rcu_rdp_is_offloaded(rdp)) { 149 lockdep_assert_irqs_disabled(); 150 raw_spin_unlock(&rdp->nocb_lock); 151 } 152 } 153 154 /* 155 * Release the specified rcu_data structure's ->nocb_lock and restore 156 * interrupts, but only if it corresponds to a no-CBs CPU. 157 */ 158 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 159 unsigned long flags) 160 { 161 if (rcu_rdp_is_offloaded(rdp)) { 162 lockdep_assert_irqs_disabled(); 163 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 164 } else { 165 local_irq_restore(flags); 166 } 167 } 168 169 /* Lockdep check that ->cblist may be safely accessed. */ 170 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 171 { 172 lockdep_assert_irqs_disabled(); 173 if (rcu_rdp_is_offloaded(rdp)) 174 lockdep_assert_held(&rdp->nocb_lock); 175 } 176 177 /* 178 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 179 * grace period. 180 */ 181 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 182 { 183 swake_up_all(sq); 184 } 185 186 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 187 { 188 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 189 } 190 191 static void rcu_init_one_nocb(struct rcu_node *rnp) 192 { 193 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 194 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 195 } 196 197 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 198 struct rcu_data *rdp, 199 bool force, unsigned long flags) 200 __releases(rdp_gp->nocb_gp_lock) 201 { 202 bool needwake = false; 203 204 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 205 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 206 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 207 TPS("AlreadyAwake")); 208 return false; 209 } 210 211 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 212 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 213 del_timer(&rdp_gp->nocb_timer); 214 } 215 216 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 217 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 218 needwake = true; 219 } 220 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 221 if (needwake) { 222 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 223 wake_up_process(rdp_gp->nocb_gp_kthread); 224 } 225 226 return needwake; 227 } 228 229 /* 230 * Kick the GP kthread for this NOCB group. 231 */ 232 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 233 { 234 unsigned long flags; 235 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 236 237 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 238 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 239 } 240 241 /* 242 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 243 * can elapse before lazy callbacks are flushed. Lazy callbacks 244 * could be flushed much earlier for a number of other reasons 245 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 246 * left unsubmitted to RCU after those many jiffies. 247 */ 248 #define LAZY_FLUSH_JIFFIES (10 * HZ) 249 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES; 250 251 #ifdef CONFIG_RCU_LAZY 252 // To be called only from test code. 253 void rcu_lazy_set_jiffies_till_flush(unsigned long jif) 254 { 255 jiffies_till_flush = jif; 256 } 257 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush); 258 259 unsigned long rcu_lazy_get_jiffies_till_flush(void) 260 { 261 return jiffies_till_flush; 262 } 263 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush); 264 #endif 265 266 /* 267 * Arrange to wake the GP kthread for this NOCB group at some future 268 * time when it is safe to do so. 269 */ 270 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 271 const char *reason) 272 { 273 unsigned long flags; 274 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 275 276 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 277 278 /* 279 * Bypass wakeup overrides previous deferments. In case of 280 * callback storms, no need to wake up too early. 281 */ 282 if (waketype == RCU_NOCB_WAKE_LAZY && 283 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 284 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush); 285 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 286 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 287 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 288 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 289 } else { 290 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 291 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 292 if (rdp_gp->nocb_defer_wakeup < waketype) 293 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 294 } 295 296 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 297 298 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 299 } 300 301 /* 302 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 303 * However, if there is a callback to be enqueued and if ->nocb_bypass 304 * proves to be initially empty, just return false because the no-CB GP 305 * kthread may need to be awakened in this case. 306 * 307 * Return true if there was something to be flushed and it succeeded, otherwise 308 * false. 309 * 310 * Note that this function always returns true if rhp is NULL. 311 */ 312 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 313 unsigned long j, bool lazy) 314 { 315 struct rcu_cblist rcl; 316 struct rcu_head *rhp = rhp_in; 317 318 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 319 rcu_lockdep_assert_cblist_protected(rdp); 320 lockdep_assert_held(&rdp->nocb_bypass_lock); 321 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 322 raw_spin_unlock(&rdp->nocb_bypass_lock); 323 return false; 324 } 325 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 326 if (rhp) 327 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 328 329 /* 330 * If the new CB requested was a lazy one, queue it onto the main 331 * ->cblist so that we can take advantage of the grace-period that will 332 * happen regardless. But queue it onto the bypass list first so that 333 * the lazy CB is ordered with the existing CBs in the bypass list. 334 */ 335 if (lazy && rhp) { 336 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 337 rhp = NULL; 338 } 339 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 340 WRITE_ONCE(rdp->lazy_len, 0); 341 342 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 343 WRITE_ONCE(rdp->nocb_bypass_first, j); 344 rcu_nocb_bypass_unlock(rdp); 345 return true; 346 } 347 348 /* 349 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 350 * However, if there is a callback to be enqueued and if ->nocb_bypass 351 * proves to be initially empty, just return false because the no-CB GP 352 * kthread may need to be awakened in this case. 353 * 354 * Note that this function always returns true if rhp is NULL. 355 */ 356 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 357 unsigned long j, bool lazy) 358 { 359 if (!rcu_rdp_is_offloaded(rdp)) 360 return true; 361 rcu_lockdep_assert_cblist_protected(rdp); 362 rcu_nocb_bypass_lock(rdp); 363 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 364 } 365 366 /* 367 * If the ->nocb_bypass_lock is immediately available, flush the 368 * ->nocb_bypass queue into ->cblist. 369 */ 370 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 371 { 372 rcu_lockdep_assert_cblist_protected(rdp); 373 if (!rcu_rdp_is_offloaded(rdp) || 374 !rcu_nocb_bypass_trylock(rdp)) 375 return; 376 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 377 } 378 379 /* 380 * See whether it is appropriate to use the ->nocb_bypass list in order 381 * to control contention on ->nocb_lock. A limited number of direct 382 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 383 * is non-empty, further callbacks must be placed into ->nocb_bypass, 384 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 385 * back to direct use of ->cblist. However, ->nocb_bypass should not be 386 * used if ->cblist is empty, because otherwise callbacks can be stranded 387 * on ->nocb_bypass because we cannot count on the current CPU ever again 388 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 389 * non-empty, the corresponding no-CBs grace-period kthread must not be 390 * in an indefinite sleep state. 391 * 392 * Finally, it is not permitted to use the bypass during early boot, 393 * as doing so would confuse the auto-initialization code. Besides 394 * which, there is no point in worrying about lock contention while 395 * there is only one CPU in operation. 396 */ 397 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 398 bool *was_alldone, unsigned long flags, 399 bool lazy) 400 { 401 unsigned long c; 402 unsigned long cur_gp_seq; 403 unsigned long j = jiffies; 404 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 405 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 406 407 lockdep_assert_irqs_disabled(); 408 409 // Pure softirq/rcuc based processing: no bypassing, no 410 // locking. 411 if (!rcu_rdp_is_offloaded(rdp)) { 412 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 413 return false; 414 } 415 416 // In the process of (de-)offloading: no bypassing, but 417 // locking. 418 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 419 rcu_nocb_lock(rdp); 420 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 421 return false; /* Not offloaded, no bypassing. */ 422 } 423 424 // Don't use ->nocb_bypass during early boot. 425 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 426 rcu_nocb_lock(rdp); 427 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 428 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 429 return false; 430 } 431 432 // If we have advanced to a new jiffy, reset counts to allow 433 // moving back from ->nocb_bypass to ->cblist. 434 if (j == rdp->nocb_nobypass_last) { 435 c = rdp->nocb_nobypass_count + 1; 436 } else { 437 WRITE_ONCE(rdp->nocb_nobypass_last, j); 438 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 439 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 440 nocb_nobypass_lim_per_jiffy)) 441 c = 0; 442 else if (c > nocb_nobypass_lim_per_jiffy) 443 c = nocb_nobypass_lim_per_jiffy; 444 } 445 WRITE_ONCE(rdp->nocb_nobypass_count, c); 446 447 // If there hasn't yet been all that many ->cblist enqueues 448 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 449 // ->nocb_bypass first. 450 // Lazy CBs throttle this back and do immediate bypass queuing. 451 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 452 rcu_nocb_lock(rdp); 453 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 454 if (*was_alldone) 455 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 456 TPS("FirstQ")); 457 458 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 459 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 460 return false; // Caller must enqueue the callback. 461 } 462 463 // If ->nocb_bypass has been used too long or is too full, 464 // flush ->nocb_bypass to ->cblist. 465 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 466 (ncbs && bypass_is_lazy && 467 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) || 468 ncbs >= qhimark) { 469 rcu_nocb_lock(rdp); 470 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 471 472 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 473 if (*was_alldone) 474 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 475 TPS("FirstQ")); 476 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 477 return false; // Caller must enqueue the callback. 478 } 479 if (j != rdp->nocb_gp_adv_time && 480 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 481 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 482 rcu_advance_cbs_nowake(rdp->mynode, rdp); 483 rdp->nocb_gp_adv_time = j; 484 } 485 486 // The flush succeeded and we moved CBs into the regular list. 487 // Don't wait for the wake up timer as it may be too far ahead. 488 // Wake up the GP thread now instead, if the cblist was empty. 489 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 490 491 return true; // Callback already enqueued. 492 } 493 494 // We need to use the bypass. 495 rcu_nocb_bypass_lock(rdp); 496 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 497 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 498 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 499 500 if (lazy) 501 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 502 503 if (!ncbs) { 504 WRITE_ONCE(rdp->nocb_bypass_first, j); 505 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 506 } 507 rcu_nocb_bypass_unlock(rdp); 508 smp_mb(); /* Order enqueue before wake. */ 509 // A wake up of the grace period kthread or timer adjustment 510 // needs to be done only if: 511 // 1. Bypass list was fully empty before (this is the first 512 // bypass list entry), or: 513 // 2. Both of these conditions are met: 514 // a. The bypass list previously had only lazy CBs, and: 515 // b. The new CB is non-lazy. 516 if (ncbs && (!bypass_is_lazy || lazy)) { 517 local_irq_restore(flags); 518 } else { 519 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 520 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 521 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 522 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 523 TPS("FirstBQwake")); 524 __call_rcu_nocb_wake(rdp, true, flags); 525 } else { 526 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 527 TPS("FirstBQnoWake")); 528 rcu_nocb_unlock_irqrestore(rdp, flags); 529 } 530 } 531 return true; // Callback already enqueued. 532 } 533 534 /* 535 * Awaken the no-CBs grace-period kthread if needed, either due to it 536 * legitimately being asleep or due to overload conditions. 537 * 538 * If warranted, also wake up the kthread servicing this CPUs queues. 539 */ 540 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 541 unsigned long flags) 542 __releases(rdp->nocb_lock) 543 { 544 long bypass_len; 545 unsigned long cur_gp_seq; 546 unsigned long j; 547 long lazy_len; 548 long len; 549 struct task_struct *t; 550 551 // If we are being polled or there is no kthread, just leave. 552 t = READ_ONCE(rdp->nocb_gp_kthread); 553 if (rcu_nocb_poll || !t) { 554 rcu_nocb_unlock_irqrestore(rdp, flags); 555 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 556 TPS("WakeNotPoll")); 557 return; 558 } 559 // Need to actually to a wakeup. 560 len = rcu_segcblist_n_cbs(&rdp->cblist); 561 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 562 lazy_len = READ_ONCE(rdp->lazy_len); 563 if (was_alldone) { 564 rdp->qlen_last_fqs_check = len; 565 // Only lazy CBs in bypass list 566 if (lazy_len && bypass_len == lazy_len) { 567 rcu_nocb_unlock_irqrestore(rdp, flags); 568 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 569 TPS("WakeLazy")); 570 } else if (!irqs_disabled_flags(flags)) { 571 /* ... if queue was empty ... */ 572 rcu_nocb_unlock_irqrestore(rdp, flags); 573 wake_nocb_gp(rdp, false); 574 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 575 TPS("WakeEmpty")); 576 } else { 577 rcu_nocb_unlock_irqrestore(rdp, flags); 578 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 579 TPS("WakeEmptyIsDeferred")); 580 } 581 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 582 /* ... or if many callbacks queued. */ 583 rdp->qlen_last_fqs_check = len; 584 j = jiffies; 585 if (j != rdp->nocb_gp_adv_time && 586 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 587 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 588 rcu_advance_cbs_nowake(rdp->mynode, rdp); 589 rdp->nocb_gp_adv_time = j; 590 } 591 smp_mb(); /* Enqueue before timer_pending(). */ 592 if ((rdp->nocb_cb_sleep || 593 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 594 !timer_pending(&rdp->nocb_timer)) { 595 rcu_nocb_unlock_irqrestore(rdp, flags); 596 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 597 TPS("WakeOvfIsDeferred")); 598 } else { 599 rcu_nocb_unlock_irqrestore(rdp, flags); 600 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 601 } 602 } else { 603 rcu_nocb_unlock_irqrestore(rdp, flags); 604 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 605 } 606 } 607 608 static int nocb_gp_toggle_rdp(struct rcu_data *rdp, 609 bool *wake_state) 610 { 611 struct rcu_segcblist *cblist = &rdp->cblist; 612 unsigned long flags; 613 int ret; 614 615 rcu_nocb_lock_irqsave(rdp, flags); 616 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 617 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 618 /* 619 * Offloading. Set our flag and notify the offload worker. 620 * We will handle this rdp until it ever gets de-offloaded. 621 */ 622 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 623 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 624 *wake_state = true; 625 ret = 1; 626 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 627 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 628 /* 629 * De-offloading. Clear our flag and notify the de-offload worker. 630 * We will ignore this rdp until it ever gets re-offloaded. 631 */ 632 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 633 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 634 *wake_state = true; 635 ret = 0; 636 } else { 637 WARN_ON_ONCE(1); 638 ret = -1; 639 } 640 641 rcu_nocb_unlock_irqrestore(rdp, flags); 642 643 return ret; 644 } 645 646 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 647 { 648 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 649 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 650 !READ_ONCE(my_rdp->nocb_gp_sleep)); 651 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 652 } 653 654 /* 655 * No-CBs GP kthreads come here to wait for additional callbacks to show up 656 * or for grace periods to end. 657 */ 658 static void nocb_gp_wait(struct rcu_data *my_rdp) 659 { 660 bool bypass = false; 661 int __maybe_unused cpu = my_rdp->cpu; 662 unsigned long cur_gp_seq; 663 unsigned long flags; 664 bool gotcbs = false; 665 unsigned long j = jiffies; 666 bool lazy = false; 667 bool needwait_gp = false; // This prevents actual uninitialized use. 668 bool needwake; 669 bool needwake_gp; 670 struct rcu_data *rdp, *rdp_toggling = NULL; 671 struct rcu_node *rnp; 672 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 673 bool wasempty = false; 674 675 /* 676 * Each pass through the following loop checks for CBs and for the 677 * nearest grace period (if any) to wait for next. The CB kthreads 678 * and the global grace-period kthread are awakened if needed. 679 */ 680 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 681 /* 682 * An rcu_data structure is removed from the list after its 683 * CPU is de-offloaded and added to the list before that CPU is 684 * (re-)offloaded. If the following loop happens to be referencing 685 * that rcu_data structure during the time that the corresponding 686 * CPU is de-offloaded and then immediately re-offloaded, this 687 * loop's rdp pointer will be carried to the end of the list by 688 * the resulting pair of list operations. This can cause the loop 689 * to skip over some of the rcu_data structures that were supposed 690 * to have been scanned. Fortunately a new iteration through the 691 * entire loop is forced after a given CPU's rcu_data structure 692 * is added to the list, so the skipped-over rcu_data structures 693 * won't be ignored for long. 694 */ 695 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 696 long bypass_ncbs; 697 bool flush_bypass = false; 698 long lazy_ncbs; 699 700 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 701 rcu_nocb_lock_irqsave(rdp, flags); 702 lockdep_assert_held(&rdp->nocb_lock); 703 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 704 lazy_ncbs = READ_ONCE(rdp->lazy_len); 705 706 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 707 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) || 708 bypass_ncbs > 2 * qhimark)) { 709 flush_bypass = true; 710 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 711 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 712 bypass_ncbs > 2 * qhimark)) { 713 flush_bypass = true; 714 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 715 rcu_nocb_unlock_irqrestore(rdp, flags); 716 continue; /* No callbacks here, try next. */ 717 } 718 719 if (flush_bypass) { 720 // Bypass full or old, so flush it. 721 (void)rcu_nocb_try_flush_bypass(rdp, j); 722 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 723 lazy_ncbs = READ_ONCE(rdp->lazy_len); 724 } 725 726 if (bypass_ncbs) { 727 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 728 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 729 if (bypass_ncbs == lazy_ncbs) 730 lazy = true; 731 else 732 bypass = true; 733 } 734 rnp = rdp->mynode; 735 736 // Advance callbacks if helpful and low contention. 737 needwake_gp = false; 738 if (!rcu_segcblist_restempty(&rdp->cblist, 739 RCU_NEXT_READY_TAIL) || 740 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 741 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 742 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 743 needwake_gp = rcu_advance_cbs(rnp, rdp); 744 wasempty = rcu_segcblist_restempty(&rdp->cblist, 745 RCU_NEXT_READY_TAIL); 746 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 747 } 748 // Need to wait on some grace period? 749 WARN_ON_ONCE(wasempty && 750 !rcu_segcblist_restempty(&rdp->cblist, 751 RCU_NEXT_READY_TAIL)); 752 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 753 if (!needwait_gp || 754 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 755 wait_gp_seq = cur_gp_seq; 756 needwait_gp = true; 757 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 758 TPS("NeedWaitGP")); 759 } 760 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 761 needwake = rdp->nocb_cb_sleep; 762 WRITE_ONCE(rdp->nocb_cb_sleep, false); 763 smp_mb(); /* CB invocation -after- GP end. */ 764 } else { 765 needwake = false; 766 } 767 rcu_nocb_unlock_irqrestore(rdp, flags); 768 if (needwake) { 769 swake_up_one(&rdp->nocb_cb_wq); 770 gotcbs = true; 771 } 772 if (needwake_gp) 773 rcu_gp_kthread_wake(); 774 } 775 776 my_rdp->nocb_gp_bypass = bypass; 777 my_rdp->nocb_gp_gp = needwait_gp; 778 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 779 780 // At least one child with non-empty ->nocb_bypass, so set 781 // timer in order to avoid stranding its callbacks. 782 if (!rcu_nocb_poll) { 783 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 784 if (lazy && !bypass) { 785 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 786 TPS("WakeLazyIsDeferred")); 787 // Otherwise add a deferred bypass wake up. 788 } else if (bypass) { 789 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 790 TPS("WakeBypassIsDeferred")); 791 } 792 } 793 794 if (rcu_nocb_poll) { 795 /* Polling, so trace if first poll in the series. */ 796 if (gotcbs) 797 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 798 if (list_empty(&my_rdp->nocb_head_rdp)) { 799 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 800 if (!my_rdp->nocb_toggling_rdp) 801 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 802 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 803 /* Wait for any offloading rdp */ 804 nocb_gp_sleep(my_rdp, cpu); 805 } else { 806 schedule_timeout_idle(1); 807 } 808 } else if (!needwait_gp) { 809 /* Wait for callbacks to appear. */ 810 nocb_gp_sleep(my_rdp, cpu); 811 } else { 812 rnp = my_rdp->mynode; 813 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 814 swait_event_interruptible_exclusive( 815 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 816 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 817 !READ_ONCE(my_rdp->nocb_gp_sleep)); 818 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 819 } 820 821 if (!rcu_nocb_poll) { 822 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 823 // (De-)queue an rdp to/from the group if its nocb state is changing 824 rdp_toggling = my_rdp->nocb_toggling_rdp; 825 if (rdp_toggling) 826 my_rdp->nocb_toggling_rdp = NULL; 827 828 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 829 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 830 del_timer(&my_rdp->nocb_timer); 831 } 832 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 833 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 834 } else { 835 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 836 if (rdp_toggling) { 837 /* 838 * Paranoid locking to make sure nocb_toggling_rdp is well 839 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 840 * race with another round of nocb toggling for this rdp. 841 * Nocb locking should prevent from that already but we stick 842 * to paranoia, especially in rare path. 843 */ 844 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 845 my_rdp->nocb_toggling_rdp = NULL; 846 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 847 } 848 } 849 850 if (rdp_toggling) { 851 bool wake_state = false; 852 int ret; 853 854 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state); 855 if (ret == 1) 856 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 857 else if (ret == 0) 858 list_del(&rdp_toggling->nocb_entry_rdp); 859 if (wake_state) 860 swake_up_one(&rdp_toggling->nocb_state_wq); 861 } 862 863 my_rdp->nocb_gp_seq = -1; 864 WARN_ON(signal_pending(current)); 865 } 866 867 /* 868 * No-CBs grace-period-wait kthread. There is one of these per group 869 * of CPUs, but only once at least one CPU in that group has come online 870 * at least once since boot. This kthread checks for newly posted 871 * callbacks from any of the CPUs it is responsible for, waits for a 872 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 873 * that then have callback-invocation work to do. 874 */ 875 static int rcu_nocb_gp_kthread(void *arg) 876 { 877 struct rcu_data *rdp = arg; 878 879 for (;;) { 880 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 881 nocb_gp_wait(rdp); 882 cond_resched_tasks_rcu_qs(); 883 } 884 return 0; 885 } 886 887 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 888 { 889 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 890 891 return rcu_segcblist_test_flags(&rdp->cblist, flags); 892 } 893 894 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 895 { 896 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 897 } 898 899 /* 900 * Invoke any ready callbacks from the corresponding no-CBs CPU, 901 * then, if there are no more, wait for more to appear. 902 */ 903 static void nocb_cb_wait(struct rcu_data *rdp) 904 { 905 struct rcu_segcblist *cblist = &rdp->cblist; 906 unsigned long cur_gp_seq; 907 unsigned long flags; 908 bool needwake_state = false; 909 bool needwake_gp = false; 910 bool can_sleep = true; 911 struct rcu_node *rnp = rdp->mynode; 912 913 do { 914 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 915 nocb_cb_wait_cond(rdp)); 916 917 // VVV Ensure CB invocation follows _sleep test. 918 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 919 WARN_ON(signal_pending(current)); 920 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 921 } 922 } while (!nocb_cb_can_run(rdp)); 923 924 925 local_irq_save(flags); 926 rcu_momentary_dyntick_idle(); 927 local_irq_restore(flags); 928 /* 929 * Disable BH to provide the expected environment. Also, when 930 * transitioning to/from NOCB mode, a self-requeuing callback might 931 * be invoked from softirq. A short grace period could cause both 932 * instances of this callback would execute concurrently. 933 */ 934 local_bh_disable(); 935 rcu_do_batch(rdp); 936 local_bh_enable(); 937 lockdep_assert_irqs_enabled(); 938 rcu_nocb_lock_irqsave(rdp, flags); 939 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 940 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 941 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 942 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 943 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 944 } 945 946 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 947 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 948 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 949 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 950 needwake_state = true; 951 } 952 if (rcu_segcblist_ready_cbs(cblist)) 953 can_sleep = false; 954 } else { 955 /* 956 * De-offloading. Clear our flag and notify the de-offload worker. 957 * We won't touch the callbacks and keep sleeping until we ever 958 * get re-offloaded. 959 */ 960 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 961 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 962 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 963 needwake_state = true; 964 } 965 966 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 967 968 if (rdp->nocb_cb_sleep) 969 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 970 971 rcu_nocb_unlock_irqrestore(rdp, flags); 972 if (needwake_gp) 973 rcu_gp_kthread_wake(); 974 975 if (needwake_state) 976 swake_up_one(&rdp->nocb_state_wq); 977 } 978 979 /* 980 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 981 * nocb_cb_wait() to do the dirty work. 982 */ 983 static int rcu_nocb_cb_kthread(void *arg) 984 { 985 struct rcu_data *rdp = arg; 986 987 // Each pass through this loop does one callback batch, and, 988 // if there are no more ready callbacks, waits for them. 989 for (;;) { 990 nocb_cb_wait(rdp); 991 cond_resched_tasks_rcu_qs(); 992 } 993 return 0; 994 } 995 996 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 997 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 998 { 999 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 1000 } 1001 1002 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 1003 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 1004 struct rcu_data *rdp, int level, 1005 unsigned long flags) 1006 __releases(rdp_gp->nocb_gp_lock) 1007 { 1008 int ndw; 1009 int ret; 1010 1011 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 1012 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1013 return false; 1014 } 1015 1016 ndw = rdp_gp->nocb_defer_wakeup; 1017 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 1018 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 1019 1020 return ret; 1021 } 1022 1023 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 1024 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 1025 { 1026 unsigned long flags; 1027 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1028 1029 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1030 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1031 1032 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1033 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1034 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1035 } 1036 1037 /* 1038 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1039 * This means we do an inexact common-case check. Note that if 1040 * we miss, ->nocb_timer will eventually clean things up. 1041 */ 1042 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1043 { 1044 unsigned long flags; 1045 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1046 1047 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1048 return false; 1049 1050 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1051 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1052 } 1053 1054 void rcu_nocb_flush_deferred_wakeup(void) 1055 { 1056 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1057 } 1058 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1059 1060 static int rdp_offload_toggle(struct rcu_data *rdp, 1061 bool offload, unsigned long flags) 1062 __releases(rdp->nocb_lock) 1063 { 1064 struct rcu_segcblist *cblist = &rdp->cblist; 1065 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1066 bool wake_gp = false; 1067 1068 rcu_segcblist_offload(cblist, offload); 1069 1070 if (rdp->nocb_cb_sleep) 1071 rdp->nocb_cb_sleep = false; 1072 rcu_nocb_unlock_irqrestore(rdp, flags); 1073 1074 /* 1075 * Ignore former value of nocb_cb_sleep and force wake up as it could 1076 * have been spuriously set to false already. 1077 */ 1078 swake_up_one(&rdp->nocb_cb_wq); 1079 1080 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1081 // Queue this rdp for add/del to/from the list to iterate on rcuog 1082 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1083 if (rdp_gp->nocb_gp_sleep) { 1084 rdp_gp->nocb_gp_sleep = false; 1085 wake_gp = true; 1086 } 1087 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1088 1089 return wake_gp; 1090 } 1091 1092 static long rcu_nocb_rdp_deoffload(void *arg) 1093 { 1094 struct rcu_data *rdp = arg; 1095 struct rcu_segcblist *cblist = &rdp->cblist; 1096 unsigned long flags; 1097 int wake_gp; 1098 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1099 1100 /* 1101 * rcu_nocb_rdp_deoffload() may be called directly if 1102 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1103 * is not online yet. 1104 */ 1105 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1106 1107 pr_info("De-offloading %d\n", rdp->cpu); 1108 1109 rcu_nocb_lock_irqsave(rdp, flags); 1110 /* 1111 * Flush once and for all now. This suffices because we are 1112 * running on the target CPU holding ->nocb_lock (thus having 1113 * interrupts disabled), and because rdp_offload_toggle() 1114 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1115 * Thus future calls to rcu_segcblist_completely_offloaded() will 1116 * return false, which means that future calls to rcu_nocb_try_bypass() 1117 * will refuse to put anything into the bypass. 1118 */ 1119 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1120 /* 1121 * Start with invoking rcu_core() early. This way if the current thread 1122 * happens to preempt an ongoing call to rcu_core() in the middle, 1123 * leaving some work dismissed because rcu_core() still thinks the rdp is 1124 * completely offloaded, we are guaranteed a nearby future instance of 1125 * rcu_core() to catch up. 1126 */ 1127 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1128 invoke_rcu_core(); 1129 wake_gp = rdp_offload_toggle(rdp, false, flags); 1130 1131 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1132 if (rdp_gp->nocb_gp_kthread) { 1133 if (wake_gp) 1134 wake_up_process(rdp_gp->nocb_gp_kthread); 1135 1136 /* 1137 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB. 1138 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog. 1139 */ 1140 if (!rdp->nocb_cb_kthread) { 1141 rcu_nocb_lock_irqsave(rdp, flags); 1142 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 1143 rcu_nocb_unlock_irqrestore(rdp, flags); 1144 } 1145 1146 swait_event_exclusive(rdp->nocb_state_wq, 1147 !rcu_segcblist_test_flags(cblist, 1148 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP)); 1149 } else { 1150 /* 1151 * No kthread to clear the flags for us or remove the rdp from the nocb list 1152 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1153 * but we stick to paranoia in this rare path. 1154 */ 1155 rcu_nocb_lock_irqsave(rdp, flags); 1156 rcu_segcblist_clear_flags(&rdp->cblist, 1157 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1158 rcu_nocb_unlock_irqrestore(rdp, flags); 1159 1160 list_del(&rdp->nocb_entry_rdp); 1161 } 1162 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1163 1164 /* 1165 * Lock one last time to acquire latest callback updates from kthreads 1166 * so we can later handle callbacks locally without locking. 1167 */ 1168 rcu_nocb_lock_irqsave(rdp, flags); 1169 /* 1170 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1171 * lock is released but how about being paranoid for once? 1172 */ 1173 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1174 /* 1175 * Without SEGCBLIST_LOCKING, we can't use 1176 * rcu_nocb_unlock_irqrestore() anymore. 1177 */ 1178 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1179 1180 /* Sanity check */ 1181 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1182 1183 1184 return 0; 1185 } 1186 1187 int rcu_nocb_cpu_deoffload(int cpu) 1188 { 1189 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1190 int ret = 0; 1191 1192 cpus_read_lock(); 1193 mutex_lock(&rcu_state.barrier_mutex); 1194 if (rcu_rdp_is_offloaded(rdp)) { 1195 if (cpu_online(cpu)) { 1196 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1197 if (!ret) 1198 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1199 } else { 1200 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1201 ret = -EINVAL; 1202 } 1203 } 1204 mutex_unlock(&rcu_state.barrier_mutex); 1205 cpus_read_unlock(); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1210 1211 static long rcu_nocb_rdp_offload(void *arg) 1212 { 1213 struct rcu_data *rdp = arg; 1214 struct rcu_segcblist *cblist = &rdp->cblist; 1215 unsigned long flags; 1216 int wake_gp; 1217 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1218 1219 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1220 /* 1221 * For now we only support re-offload, ie: the rdp must have been 1222 * offloaded on boot first. 1223 */ 1224 if (!rdp->nocb_gp_rdp) 1225 return -EINVAL; 1226 1227 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1228 return -EINVAL; 1229 1230 pr_info("Offloading %d\n", rdp->cpu); 1231 1232 /* 1233 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1234 * is set. 1235 */ 1236 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1237 1238 /* 1239 * We didn't take the nocb lock while working on the 1240 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1241 * Every modifications that have been done previously on 1242 * rdp->cblist must be visible remotely by the nocb kthreads 1243 * upon wake up after reading the cblist flags. 1244 * 1245 * The layout against nocb_lock enforces that ordering: 1246 * 1247 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1248 * ------------------------- ---------------------------- 1249 * WRITE callbacks rcu_nocb_lock() 1250 * rcu_nocb_lock() READ flags 1251 * WRITE flags READ callbacks 1252 * rcu_nocb_unlock() rcu_nocb_unlock() 1253 */ 1254 wake_gp = rdp_offload_toggle(rdp, true, flags); 1255 if (wake_gp) 1256 wake_up_process(rdp_gp->nocb_gp_kthread); 1257 swait_event_exclusive(rdp->nocb_state_wq, 1258 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1259 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1260 1261 /* 1262 * All kthreads are ready to work, we can finally relieve rcu_core() and 1263 * enable nocb bypass. 1264 */ 1265 rcu_nocb_lock_irqsave(rdp, flags); 1266 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1267 rcu_nocb_unlock_irqrestore(rdp, flags); 1268 1269 return 0; 1270 } 1271 1272 int rcu_nocb_cpu_offload(int cpu) 1273 { 1274 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1275 int ret = 0; 1276 1277 cpus_read_lock(); 1278 mutex_lock(&rcu_state.barrier_mutex); 1279 if (!rcu_rdp_is_offloaded(rdp)) { 1280 if (cpu_online(cpu)) { 1281 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1282 if (!ret) 1283 cpumask_set_cpu(cpu, rcu_nocb_mask); 1284 } else { 1285 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1286 ret = -EINVAL; 1287 } 1288 } 1289 mutex_unlock(&rcu_state.barrier_mutex); 1290 cpus_read_unlock(); 1291 1292 return ret; 1293 } 1294 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1295 1296 #ifdef CONFIG_RCU_LAZY 1297 static unsigned long 1298 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1299 { 1300 int cpu; 1301 unsigned long count = 0; 1302 1303 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1304 return 0; 1305 1306 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1307 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1308 return 0; 1309 1310 /* Snapshot count of all CPUs */ 1311 for_each_cpu(cpu, rcu_nocb_mask) { 1312 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1313 1314 count += READ_ONCE(rdp->lazy_len); 1315 } 1316 1317 mutex_unlock(&rcu_state.barrier_mutex); 1318 1319 return count ? count : SHRINK_EMPTY; 1320 } 1321 1322 static unsigned long 1323 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1324 { 1325 int cpu; 1326 unsigned long flags; 1327 unsigned long count = 0; 1328 1329 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1330 return 0; 1331 /* 1332 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1333 * may be ignored or imbalanced. 1334 */ 1335 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1336 /* 1337 * But really don't insist if barrier_mutex is contended since we 1338 * can't guarantee that it will never engage in a dependency 1339 * chain involving memory allocation. The lock is seldom contended 1340 * anyway. 1341 */ 1342 return 0; 1343 } 1344 1345 /* Snapshot count of all CPUs */ 1346 for_each_cpu(cpu, rcu_nocb_mask) { 1347 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1348 int _count; 1349 1350 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1351 continue; 1352 1353 if (!READ_ONCE(rdp->lazy_len)) 1354 continue; 1355 1356 rcu_nocb_lock_irqsave(rdp, flags); 1357 /* 1358 * Recheck under the nocb lock. Since we are not holding the bypass 1359 * lock we may still race with increments from the enqueuer but still 1360 * we know for sure if there is at least one lazy callback. 1361 */ 1362 _count = READ_ONCE(rdp->lazy_len); 1363 if (!_count) { 1364 rcu_nocb_unlock_irqrestore(rdp, flags); 1365 continue; 1366 } 1367 rcu_nocb_try_flush_bypass(rdp, jiffies); 1368 rcu_nocb_unlock_irqrestore(rdp, flags); 1369 wake_nocb_gp(rdp, false); 1370 sc->nr_to_scan -= _count; 1371 count += _count; 1372 if (sc->nr_to_scan <= 0) 1373 break; 1374 } 1375 1376 mutex_unlock(&rcu_state.barrier_mutex); 1377 1378 return count ? count : SHRINK_STOP; 1379 } 1380 1381 static struct shrinker lazy_rcu_shrinker = { 1382 .count_objects = lazy_rcu_shrink_count, 1383 .scan_objects = lazy_rcu_shrink_scan, 1384 .batch = 0, 1385 .seeks = DEFAULT_SEEKS, 1386 }; 1387 #endif // #ifdef CONFIG_RCU_LAZY 1388 1389 void __init rcu_init_nohz(void) 1390 { 1391 int cpu; 1392 struct rcu_data *rdp; 1393 const struct cpumask *cpumask = NULL; 1394 1395 #if defined(CONFIG_NO_HZ_FULL) 1396 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1397 cpumask = tick_nohz_full_mask; 1398 #endif 1399 1400 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1401 !rcu_state.nocb_is_setup && !cpumask) 1402 cpumask = cpu_possible_mask; 1403 1404 if (cpumask) { 1405 if (!cpumask_available(rcu_nocb_mask)) { 1406 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1407 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1408 return; 1409 } 1410 } 1411 1412 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1413 rcu_state.nocb_is_setup = true; 1414 } 1415 1416 if (!rcu_state.nocb_is_setup) 1417 return; 1418 1419 #ifdef CONFIG_RCU_LAZY 1420 if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy")) 1421 pr_err("Failed to register lazy_rcu shrinker!\n"); 1422 #endif // #ifdef CONFIG_RCU_LAZY 1423 1424 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1425 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1426 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1427 rcu_nocb_mask); 1428 } 1429 if (cpumask_empty(rcu_nocb_mask)) 1430 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1431 else 1432 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1433 cpumask_pr_args(rcu_nocb_mask)); 1434 if (rcu_nocb_poll) 1435 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1436 1437 for_each_cpu(cpu, rcu_nocb_mask) { 1438 rdp = per_cpu_ptr(&rcu_data, cpu); 1439 if (rcu_segcblist_empty(&rdp->cblist)) 1440 rcu_segcblist_init(&rdp->cblist); 1441 rcu_segcblist_offload(&rdp->cblist, true); 1442 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1443 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1444 } 1445 rcu_organize_nocb_kthreads(); 1446 } 1447 1448 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1449 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1450 { 1451 init_swait_queue_head(&rdp->nocb_cb_wq); 1452 init_swait_queue_head(&rdp->nocb_gp_wq); 1453 init_swait_queue_head(&rdp->nocb_state_wq); 1454 raw_spin_lock_init(&rdp->nocb_lock); 1455 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1456 raw_spin_lock_init(&rdp->nocb_gp_lock); 1457 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1458 rcu_cblist_init(&rdp->nocb_bypass); 1459 WRITE_ONCE(rdp->lazy_len, 0); 1460 mutex_init(&rdp->nocb_gp_kthread_mutex); 1461 } 1462 1463 /* 1464 * If the specified CPU is a no-CBs CPU that does not already have its 1465 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1466 * for this CPU's group has not yet been created, spawn it as well. 1467 */ 1468 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1469 { 1470 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1471 struct rcu_data *rdp_gp; 1472 struct task_struct *t; 1473 struct sched_param sp; 1474 1475 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1476 return; 1477 1478 /* If there already is an rcuo kthread, then nothing to do. */ 1479 if (rdp->nocb_cb_kthread) 1480 return; 1481 1482 /* If we didn't spawn the GP kthread first, reorganize! */ 1483 sp.sched_priority = kthread_prio; 1484 rdp_gp = rdp->nocb_gp_rdp; 1485 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1486 if (!rdp_gp->nocb_gp_kthread) { 1487 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1488 "rcuog/%d", rdp_gp->cpu); 1489 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1490 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1491 goto end; 1492 } 1493 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1494 if (kthread_prio) 1495 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1496 } 1497 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1498 1499 /* Spawn the kthread for this CPU. */ 1500 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1501 "rcuo%c/%d", rcu_state.abbr, cpu); 1502 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1503 goto end; 1504 1505 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1506 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1507 1508 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1509 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1510 return; 1511 end: 1512 mutex_lock(&rcu_state.barrier_mutex); 1513 if (rcu_rdp_is_offloaded(rdp)) { 1514 rcu_nocb_rdp_deoffload(rdp); 1515 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1516 } 1517 mutex_unlock(&rcu_state.barrier_mutex); 1518 } 1519 1520 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1521 static int rcu_nocb_gp_stride = -1; 1522 module_param(rcu_nocb_gp_stride, int, 0444); 1523 1524 /* 1525 * Initialize GP-CB relationships for all no-CBs CPU. 1526 */ 1527 static void __init rcu_organize_nocb_kthreads(void) 1528 { 1529 int cpu; 1530 bool firsttime = true; 1531 bool gotnocbs = false; 1532 bool gotnocbscbs = true; 1533 int ls = rcu_nocb_gp_stride; 1534 int nl = 0; /* Next GP kthread. */ 1535 struct rcu_data *rdp; 1536 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1537 1538 if (!cpumask_available(rcu_nocb_mask)) 1539 return; 1540 if (ls == -1) { 1541 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1542 rcu_nocb_gp_stride = ls; 1543 } 1544 1545 /* 1546 * Each pass through this loop sets up one rcu_data structure. 1547 * Should the corresponding CPU come online in the future, then 1548 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1549 */ 1550 for_each_possible_cpu(cpu) { 1551 rdp = per_cpu_ptr(&rcu_data, cpu); 1552 if (rdp->cpu >= nl) { 1553 /* New GP kthread, set up for CBs & next GP. */ 1554 gotnocbs = true; 1555 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1556 rdp_gp = rdp; 1557 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1558 if (dump_tree) { 1559 if (!firsttime) 1560 pr_cont("%s\n", gotnocbscbs 1561 ? "" : " (self only)"); 1562 gotnocbscbs = false; 1563 firsttime = false; 1564 pr_alert("%s: No-CB GP kthread CPU %d:", 1565 __func__, cpu); 1566 } 1567 } else { 1568 /* Another CB kthread, link to previous GP kthread. */ 1569 gotnocbscbs = true; 1570 if (dump_tree) 1571 pr_cont(" %d", cpu); 1572 } 1573 rdp->nocb_gp_rdp = rdp_gp; 1574 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1575 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1576 } 1577 if (gotnocbs && dump_tree) 1578 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1579 } 1580 1581 /* 1582 * Bind the current task to the offloaded CPUs. If there are no offloaded 1583 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1584 */ 1585 void rcu_bind_current_to_nocb(void) 1586 { 1587 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1588 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1589 } 1590 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1591 1592 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1593 #ifdef CONFIG_SMP 1594 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1595 { 1596 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1597 } 1598 #else // #ifdef CONFIG_SMP 1599 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1600 { 1601 return ""; 1602 } 1603 #endif // #else #ifdef CONFIG_SMP 1604 1605 /* 1606 * Dump out nocb grace-period kthread state for the specified rcu_data 1607 * structure. 1608 */ 1609 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1610 { 1611 struct rcu_node *rnp = rdp->mynode; 1612 1613 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1614 rdp->cpu, 1615 "kK"[!!rdp->nocb_gp_kthread], 1616 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1617 "dD"[!!rdp->nocb_defer_wakeup], 1618 "tT"[timer_pending(&rdp->nocb_timer)], 1619 "sS"[!!rdp->nocb_gp_sleep], 1620 ".W"[swait_active(&rdp->nocb_gp_wq)], 1621 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1622 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1623 ".B"[!!rdp->nocb_gp_bypass], 1624 ".G"[!!rdp->nocb_gp_gp], 1625 (long)rdp->nocb_gp_seq, 1626 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1627 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1628 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1629 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1630 } 1631 1632 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1633 static void show_rcu_nocb_state(struct rcu_data *rdp) 1634 { 1635 char bufw[20]; 1636 char bufr[20]; 1637 struct rcu_data *nocb_next_rdp; 1638 struct rcu_segcblist *rsclp = &rdp->cblist; 1639 bool waslocked; 1640 bool wassleep; 1641 1642 if (rdp->nocb_gp_rdp == rdp) 1643 show_rcu_nocb_gp_state(rdp); 1644 1645 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1646 &rdp->nocb_entry_rdp, 1647 typeof(*rdp), 1648 nocb_entry_rdp); 1649 1650 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1651 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1652 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1653 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1654 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1655 "kK"[!!rdp->nocb_cb_kthread], 1656 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1657 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1658 "sS"[!!rdp->nocb_cb_sleep], 1659 ".W"[swait_active(&rdp->nocb_cb_wq)], 1660 jiffies - rdp->nocb_bypass_first, 1661 jiffies - rdp->nocb_nobypass_last, 1662 rdp->nocb_nobypass_count, 1663 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1664 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1665 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1666 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1667 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1668 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1669 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1670 rcu_segcblist_n_cbs(&rdp->cblist), 1671 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1672 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1673 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1674 1675 /* It is OK for GP kthreads to have GP state. */ 1676 if (rdp->nocb_gp_rdp == rdp) 1677 return; 1678 1679 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1680 wassleep = swait_active(&rdp->nocb_gp_wq); 1681 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1682 return; /* Nothing untoward. */ 1683 1684 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1685 "lL"[waslocked], 1686 "dD"[!!rdp->nocb_defer_wakeup], 1687 "sS"[!!rdp->nocb_gp_sleep], 1688 ".W"[wassleep]); 1689 } 1690 1691 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1692 1693 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1694 { 1695 return 0; 1696 } 1697 1698 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1699 { 1700 return false; 1701 } 1702 1703 /* No ->nocb_lock to acquire. */ 1704 static void rcu_nocb_lock(struct rcu_data *rdp) 1705 { 1706 } 1707 1708 /* No ->nocb_lock to release. */ 1709 static void rcu_nocb_unlock(struct rcu_data *rdp) 1710 { 1711 } 1712 1713 /* No ->nocb_lock to release. */ 1714 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1715 unsigned long flags) 1716 { 1717 local_irq_restore(flags); 1718 } 1719 1720 /* Lockdep check that ->cblist may be safely accessed. */ 1721 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1722 { 1723 lockdep_assert_irqs_disabled(); 1724 } 1725 1726 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1727 { 1728 } 1729 1730 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1731 { 1732 return NULL; 1733 } 1734 1735 static void rcu_init_one_nocb(struct rcu_node *rnp) 1736 { 1737 } 1738 1739 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1740 { 1741 return false; 1742 } 1743 1744 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1745 unsigned long j, bool lazy) 1746 { 1747 return true; 1748 } 1749 1750 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1751 bool *was_alldone, unsigned long flags, bool lazy) 1752 { 1753 return false; 1754 } 1755 1756 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1757 unsigned long flags) 1758 { 1759 WARN_ON_ONCE(1); /* Should be dead code! */ 1760 } 1761 1762 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1763 { 1764 } 1765 1766 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1767 { 1768 return false; 1769 } 1770 1771 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1772 { 1773 return false; 1774 } 1775 1776 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1777 { 1778 } 1779 1780 static void show_rcu_nocb_state(struct rcu_data *rdp) 1781 { 1782 } 1783 1784 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1785