1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, perform minimal sanity check. 95 */ 96 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 97 __acquires(&rdp->nocb_bypass_lock) 98 { 99 lockdep_assert_irqs_disabled(); 100 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 101 return; 102 /* 103 * Contention expected only when local enqueue collide with 104 * remote flush from kthreads. 105 */ 106 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 107 raw_spin_lock(&rdp->nocb_bypass_lock); 108 } 109 110 /* 111 * Conditionally acquire the specified rcu_data structure's 112 * ->nocb_bypass_lock. 113 */ 114 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 115 { 116 lockdep_assert_irqs_disabled(); 117 return raw_spin_trylock(&rdp->nocb_bypass_lock); 118 } 119 120 /* 121 * Release the specified rcu_data structure's ->nocb_bypass_lock. 122 */ 123 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 124 __releases(&rdp->nocb_bypass_lock) 125 { 126 lockdep_assert_irqs_disabled(); 127 raw_spin_unlock(&rdp->nocb_bypass_lock); 128 } 129 130 /* 131 * Acquire the specified rcu_data structure's ->nocb_lock, but only 132 * if it corresponds to a no-CBs CPU. 133 */ 134 static void rcu_nocb_lock(struct rcu_data *rdp) 135 { 136 lockdep_assert_irqs_disabled(); 137 if (!rcu_rdp_is_offloaded(rdp)) 138 return; 139 raw_spin_lock(&rdp->nocb_lock); 140 } 141 142 /* 143 * Release the specified rcu_data structure's ->nocb_lock, but only 144 * if it corresponds to a no-CBs CPU. 145 */ 146 static void rcu_nocb_unlock(struct rcu_data *rdp) 147 { 148 if (rcu_rdp_is_offloaded(rdp)) { 149 lockdep_assert_irqs_disabled(); 150 raw_spin_unlock(&rdp->nocb_lock); 151 } 152 } 153 154 /* 155 * Release the specified rcu_data structure's ->nocb_lock and restore 156 * interrupts, but only if it corresponds to a no-CBs CPU. 157 */ 158 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 159 unsigned long flags) 160 { 161 if (rcu_rdp_is_offloaded(rdp)) { 162 lockdep_assert_irqs_disabled(); 163 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 164 } else { 165 local_irq_restore(flags); 166 } 167 } 168 169 /* Lockdep check that ->cblist may be safely accessed. */ 170 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 171 { 172 lockdep_assert_irqs_disabled(); 173 if (rcu_rdp_is_offloaded(rdp)) 174 lockdep_assert_held(&rdp->nocb_lock); 175 } 176 177 /* 178 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 179 * grace period. 180 */ 181 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 182 { 183 swake_up_all(sq); 184 } 185 186 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 187 { 188 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 189 } 190 191 static void rcu_init_one_nocb(struct rcu_node *rnp) 192 { 193 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 194 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 195 } 196 197 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 198 struct rcu_data *rdp, 199 bool force, unsigned long flags) 200 __releases(rdp_gp->nocb_gp_lock) 201 { 202 bool needwake = false; 203 204 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 205 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 206 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 207 TPS("AlreadyAwake")); 208 return false; 209 } 210 211 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 212 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 213 del_timer(&rdp_gp->nocb_timer); 214 } 215 216 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 217 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 218 needwake = true; 219 } 220 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 221 if (needwake) { 222 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 223 if (cpu_is_offline(raw_smp_processor_id())) 224 swake_up_one_online(&rdp_gp->nocb_gp_wq); 225 else 226 wake_up_process(rdp_gp->nocb_gp_kthread); 227 } 228 229 return needwake; 230 } 231 232 /* 233 * Kick the GP kthread for this NOCB group. 234 */ 235 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 236 { 237 unsigned long flags; 238 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 239 240 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 241 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 242 } 243 244 /* 245 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 246 * can elapse before lazy callbacks are flushed. Lazy callbacks 247 * could be flushed much earlier for a number of other reasons 248 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 249 * left unsubmitted to RCU after those many jiffies. 250 */ 251 #define LAZY_FLUSH_JIFFIES (10 * HZ) 252 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES; 253 254 #ifdef CONFIG_RCU_LAZY 255 // To be called only from test code. 256 void rcu_lazy_set_jiffies_till_flush(unsigned long jif) 257 { 258 jiffies_till_flush = jif; 259 } 260 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush); 261 262 unsigned long rcu_lazy_get_jiffies_till_flush(void) 263 { 264 return jiffies_till_flush; 265 } 266 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush); 267 #endif 268 269 /* 270 * Arrange to wake the GP kthread for this NOCB group at some future 271 * time when it is safe to do so. 272 */ 273 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 274 const char *reason) 275 { 276 unsigned long flags; 277 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 278 279 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 280 281 /* 282 * Bypass wakeup overrides previous deferments. In case of 283 * callback storms, no need to wake up too early. 284 */ 285 if (waketype == RCU_NOCB_WAKE_LAZY && 286 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 287 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush); 288 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 289 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 290 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 291 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 292 } else { 293 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 294 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 295 if (rdp_gp->nocb_defer_wakeup < waketype) 296 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 297 } 298 299 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 300 301 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 302 } 303 304 /* 305 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 306 * However, if there is a callback to be enqueued and if ->nocb_bypass 307 * proves to be initially empty, just return false because the no-CB GP 308 * kthread may need to be awakened in this case. 309 * 310 * Return true if there was something to be flushed and it succeeded, otherwise 311 * false. 312 * 313 * Note that this function always returns true if rhp is NULL. 314 */ 315 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 316 unsigned long j, bool lazy) 317 { 318 struct rcu_cblist rcl; 319 struct rcu_head *rhp = rhp_in; 320 321 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 322 rcu_lockdep_assert_cblist_protected(rdp); 323 lockdep_assert_held(&rdp->nocb_bypass_lock); 324 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 325 raw_spin_unlock(&rdp->nocb_bypass_lock); 326 return false; 327 } 328 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 329 if (rhp) 330 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 331 332 /* 333 * If the new CB requested was a lazy one, queue it onto the main 334 * ->cblist so that we can take advantage of the grace-period that will 335 * happen regardless. But queue it onto the bypass list first so that 336 * the lazy CB is ordered with the existing CBs in the bypass list. 337 */ 338 if (lazy && rhp) { 339 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 340 rhp = NULL; 341 } 342 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 343 WRITE_ONCE(rdp->lazy_len, 0); 344 345 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 346 WRITE_ONCE(rdp->nocb_bypass_first, j); 347 rcu_nocb_bypass_unlock(rdp); 348 return true; 349 } 350 351 /* 352 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 353 * However, if there is a callback to be enqueued and if ->nocb_bypass 354 * proves to be initially empty, just return false because the no-CB GP 355 * kthread may need to be awakened in this case. 356 * 357 * Note that this function always returns true if rhp is NULL. 358 */ 359 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 360 unsigned long j, bool lazy) 361 { 362 if (!rcu_rdp_is_offloaded(rdp)) 363 return true; 364 rcu_lockdep_assert_cblist_protected(rdp); 365 rcu_nocb_bypass_lock(rdp); 366 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 367 } 368 369 /* 370 * If the ->nocb_bypass_lock is immediately available, flush the 371 * ->nocb_bypass queue into ->cblist. 372 */ 373 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 374 { 375 rcu_lockdep_assert_cblist_protected(rdp); 376 if (!rcu_rdp_is_offloaded(rdp) || 377 !rcu_nocb_bypass_trylock(rdp)) 378 return; 379 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 380 } 381 382 /* 383 * See whether it is appropriate to use the ->nocb_bypass list in order 384 * to control contention on ->nocb_lock. A limited number of direct 385 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 386 * is non-empty, further callbacks must be placed into ->nocb_bypass, 387 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 388 * back to direct use of ->cblist. However, ->nocb_bypass should not be 389 * used if ->cblist is empty, because otherwise callbacks can be stranded 390 * on ->nocb_bypass because we cannot count on the current CPU ever again 391 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 392 * non-empty, the corresponding no-CBs grace-period kthread must not be 393 * in an indefinite sleep state. 394 * 395 * Finally, it is not permitted to use the bypass during early boot, 396 * as doing so would confuse the auto-initialization code. Besides 397 * which, there is no point in worrying about lock contention while 398 * there is only one CPU in operation. 399 */ 400 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 401 bool *was_alldone, unsigned long flags, 402 bool lazy) 403 { 404 unsigned long c; 405 unsigned long cur_gp_seq; 406 unsigned long j = jiffies; 407 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 408 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 409 410 lockdep_assert_irqs_disabled(); 411 412 // Pure softirq/rcuc based processing: no bypassing, no 413 // locking. 414 if (!rcu_rdp_is_offloaded(rdp)) { 415 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 416 return false; 417 } 418 419 // In the process of (de-)offloading: no bypassing, but 420 // locking. 421 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 422 rcu_nocb_lock(rdp); 423 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 424 return false; /* Not offloaded, no bypassing. */ 425 } 426 427 // Don't use ->nocb_bypass during early boot. 428 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 429 rcu_nocb_lock(rdp); 430 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 431 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 432 return false; 433 } 434 435 // If we have advanced to a new jiffy, reset counts to allow 436 // moving back from ->nocb_bypass to ->cblist. 437 if (j == rdp->nocb_nobypass_last) { 438 c = rdp->nocb_nobypass_count + 1; 439 } else { 440 WRITE_ONCE(rdp->nocb_nobypass_last, j); 441 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 442 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 443 nocb_nobypass_lim_per_jiffy)) 444 c = 0; 445 else if (c > nocb_nobypass_lim_per_jiffy) 446 c = nocb_nobypass_lim_per_jiffy; 447 } 448 WRITE_ONCE(rdp->nocb_nobypass_count, c); 449 450 // If there hasn't yet been all that many ->cblist enqueues 451 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 452 // ->nocb_bypass first. 453 // Lazy CBs throttle this back and do immediate bypass queuing. 454 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 455 rcu_nocb_lock(rdp); 456 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 457 if (*was_alldone) 458 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 459 TPS("FirstQ")); 460 461 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 462 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 463 return false; // Caller must enqueue the callback. 464 } 465 466 // If ->nocb_bypass has been used too long or is too full, 467 // flush ->nocb_bypass to ->cblist. 468 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 469 (ncbs && bypass_is_lazy && 470 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) || 471 ncbs >= qhimark) { 472 rcu_nocb_lock(rdp); 473 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 474 475 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 476 if (*was_alldone) 477 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 478 TPS("FirstQ")); 479 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 480 return false; // Caller must enqueue the callback. 481 } 482 if (j != rdp->nocb_gp_adv_time && 483 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 484 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 485 rcu_advance_cbs_nowake(rdp->mynode, rdp); 486 rdp->nocb_gp_adv_time = j; 487 } 488 489 // The flush succeeded and we moved CBs into the regular list. 490 // Don't wait for the wake up timer as it may be too far ahead. 491 // Wake up the GP thread now instead, if the cblist was empty. 492 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 493 494 return true; // Callback already enqueued. 495 } 496 497 // We need to use the bypass. 498 rcu_nocb_bypass_lock(rdp); 499 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 500 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 501 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 502 503 if (lazy) 504 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 505 506 if (!ncbs) { 507 WRITE_ONCE(rdp->nocb_bypass_first, j); 508 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 509 } 510 rcu_nocb_bypass_unlock(rdp); 511 smp_mb(); /* Order enqueue before wake. */ 512 // A wake up of the grace period kthread or timer adjustment 513 // needs to be done only if: 514 // 1. Bypass list was fully empty before (this is the first 515 // bypass list entry), or: 516 // 2. Both of these conditions are met: 517 // a. The bypass list previously had only lazy CBs, and: 518 // b. The new CB is non-lazy. 519 if (ncbs && (!bypass_is_lazy || lazy)) { 520 local_irq_restore(flags); 521 } else { 522 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 523 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 524 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 525 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 526 TPS("FirstBQwake")); 527 __call_rcu_nocb_wake(rdp, true, flags); 528 } else { 529 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 530 TPS("FirstBQnoWake")); 531 rcu_nocb_unlock_irqrestore(rdp, flags); 532 } 533 } 534 return true; // Callback already enqueued. 535 } 536 537 /* 538 * Awaken the no-CBs grace-period kthread if needed, either due to it 539 * legitimately being asleep or due to overload conditions. 540 * 541 * If warranted, also wake up the kthread servicing this CPUs queues. 542 */ 543 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 544 unsigned long flags) 545 __releases(rdp->nocb_lock) 546 { 547 long bypass_len; 548 unsigned long cur_gp_seq; 549 unsigned long j; 550 long lazy_len; 551 long len; 552 struct task_struct *t; 553 554 // If we are being polled or there is no kthread, just leave. 555 t = READ_ONCE(rdp->nocb_gp_kthread); 556 if (rcu_nocb_poll || !t) { 557 rcu_nocb_unlock_irqrestore(rdp, flags); 558 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 559 TPS("WakeNotPoll")); 560 return; 561 } 562 // Need to actually to a wakeup. 563 len = rcu_segcblist_n_cbs(&rdp->cblist); 564 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 565 lazy_len = READ_ONCE(rdp->lazy_len); 566 if (was_alldone) { 567 rdp->qlen_last_fqs_check = len; 568 // Only lazy CBs in bypass list 569 if (lazy_len && bypass_len == lazy_len) { 570 rcu_nocb_unlock_irqrestore(rdp, flags); 571 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 572 TPS("WakeLazy")); 573 } else if (!irqs_disabled_flags(flags)) { 574 /* ... if queue was empty ... */ 575 rcu_nocb_unlock_irqrestore(rdp, flags); 576 wake_nocb_gp(rdp, false); 577 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 578 TPS("WakeEmpty")); 579 } else { 580 rcu_nocb_unlock_irqrestore(rdp, flags); 581 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 582 TPS("WakeEmptyIsDeferred")); 583 } 584 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 585 /* ... or if many callbacks queued. */ 586 rdp->qlen_last_fqs_check = len; 587 j = jiffies; 588 if (j != rdp->nocb_gp_adv_time && 589 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 590 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 591 rcu_advance_cbs_nowake(rdp->mynode, rdp); 592 rdp->nocb_gp_adv_time = j; 593 } 594 smp_mb(); /* Enqueue before timer_pending(). */ 595 if ((rdp->nocb_cb_sleep || 596 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 597 !timer_pending(&rdp->nocb_timer)) { 598 rcu_nocb_unlock_irqrestore(rdp, flags); 599 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 600 TPS("WakeOvfIsDeferred")); 601 } else { 602 rcu_nocb_unlock_irqrestore(rdp, flags); 603 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 604 } 605 } else { 606 rcu_nocb_unlock_irqrestore(rdp, flags); 607 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 608 } 609 } 610 611 static int nocb_gp_toggle_rdp(struct rcu_data *rdp, 612 bool *wake_state) 613 { 614 struct rcu_segcblist *cblist = &rdp->cblist; 615 unsigned long flags; 616 int ret; 617 618 rcu_nocb_lock_irqsave(rdp, flags); 619 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 620 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 621 /* 622 * Offloading. Set our flag and notify the offload worker. 623 * We will handle this rdp until it ever gets de-offloaded. 624 */ 625 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 626 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 627 *wake_state = true; 628 ret = 1; 629 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 630 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 631 /* 632 * De-offloading. Clear our flag and notify the de-offload worker. 633 * We will ignore this rdp until it ever gets re-offloaded. 634 */ 635 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 636 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 637 *wake_state = true; 638 ret = 0; 639 } else { 640 WARN_ON_ONCE(1); 641 ret = -1; 642 } 643 644 rcu_nocb_unlock_irqrestore(rdp, flags); 645 646 return ret; 647 } 648 649 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 650 { 651 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 652 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 653 !READ_ONCE(my_rdp->nocb_gp_sleep)); 654 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 655 } 656 657 /* 658 * No-CBs GP kthreads come here to wait for additional callbacks to show up 659 * or for grace periods to end. 660 */ 661 static void nocb_gp_wait(struct rcu_data *my_rdp) 662 { 663 bool bypass = false; 664 int __maybe_unused cpu = my_rdp->cpu; 665 unsigned long cur_gp_seq; 666 unsigned long flags; 667 bool gotcbs = false; 668 unsigned long j = jiffies; 669 bool lazy = false; 670 bool needwait_gp = false; // This prevents actual uninitialized use. 671 bool needwake; 672 bool needwake_gp; 673 struct rcu_data *rdp, *rdp_toggling = NULL; 674 struct rcu_node *rnp; 675 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 676 bool wasempty = false; 677 678 /* 679 * Each pass through the following loop checks for CBs and for the 680 * nearest grace period (if any) to wait for next. The CB kthreads 681 * and the global grace-period kthread are awakened if needed. 682 */ 683 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 684 /* 685 * An rcu_data structure is removed from the list after its 686 * CPU is de-offloaded and added to the list before that CPU is 687 * (re-)offloaded. If the following loop happens to be referencing 688 * that rcu_data structure during the time that the corresponding 689 * CPU is de-offloaded and then immediately re-offloaded, this 690 * loop's rdp pointer will be carried to the end of the list by 691 * the resulting pair of list operations. This can cause the loop 692 * to skip over some of the rcu_data structures that were supposed 693 * to have been scanned. Fortunately a new iteration through the 694 * entire loop is forced after a given CPU's rcu_data structure 695 * is added to the list, so the skipped-over rcu_data structures 696 * won't be ignored for long. 697 */ 698 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 699 long bypass_ncbs; 700 bool flush_bypass = false; 701 long lazy_ncbs; 702 703 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 704 rcu_nocb_lock_irqsave(rdp, flags); 705 lockdep_assert_held(&rdp->nocb_lock); 706 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 707 lazy_ncbs = READ_ONCE(rdp->lazy_len); 708 709 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 710 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) || 711 bypass_ncbs > 2 * qhimark)) { 712 flush_bypass = true; 713 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 714 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 715 bypass_ncbs > 2 * qhimark)) { 716 flush_bypass = true; 717 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 718 rcu_nocb_unlock_irqrestore(rdp, flags); 719 continue; /* No callbacks here, try next. */ 720 } 721 722 if (flush_bypass) { 723 // Bypass full or old, so flush it. 724 (void)rcu_nocb_try_flush_bypass(rdp, j); 725 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 726 lazy_ncbs = READ_ONCE(rdp->lazy_len); 727 } 728 729 if (bypass_ncbs) { 730 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 731 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 732 if (bypass_ncbs == lazy_ncbs) 733 lazy = true; 734 else 735 bypass = true; 736 } 737 rnp = rdp->mynode; 738 739 // Advance callbacks if helpful and low contention. 740 needwake_gp = false; 741 if (!rcu_segcblist_restempty(&rdp->cblist, 742 RCU_NEXT_READY_TAIL) || 743 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 744 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 745 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 746 needwake_gp = rcu_advance_cbs(rnp, rdp); 747 wasempty = rcu_segcblist_restempty(&rdp->cblist, 748 RCU_NEXT_READY_TAIL); 749 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 750 } 751 // Need to wait on some grace period? 752 WARN_ON_ONCE(wasempty && 753 !rcu_segcblist_restempty(&rdp->cblist, 754 RCU_NEXT_READY_TAIL)); 755 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 756 if (!needwait_gp || 757 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 758 wait_gp_seq = cur_gp_seq; 759 needwait_gp = true; 760 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 761 TPS("NeedWaitGP")); 762 } 763 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 764 needwake = rdp->nocb_cb_sleep; 765 WRITE_ONCE(rdp->nocb_cb_sleep, false); 766 smp_mb(); /* CB invocation -after- GP end. */ 767 } else { 768 needwake = false; 769 } 770 rcu_nocb_unlock_irqrestore(rdp, flags); 771 if (needwake) { 772 swake_up_one(&rdp->nocb_cb_wq); 773 gotcbs = true; 774 } 775 if (needwake_gp) 776 rcu_gp_kthread_wake(); 777 } 778 779 my_rdp->nocb_gp_bypass = bypass; 780 my_rdp->nocb_gp_gp = needwait_gp; 781 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 782 783 // At least one child with non-empty ->nocb_bypass, so set 784 // timer in order to avoid stranding its callbacks. 785 if (!rcu_nocb_poll) { 786 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 787 if (lazy && !bypass) { 788 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 789 TPS("WakeLazyIsDeferred")); 790 // Otherwise add a deferred bypass wake up. 791 } else if (bypass) { 792 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 793 TPS("WakeBypassIsDeferred")); 794 } 795 } 796 797 if (rcu_nocb_poll) { 798 /* Polling, so trace if first poll in the series. */ 799 if (gotcbs) 800 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 801 if (list_empty(&my_rdp->nocb_head_rdp)) { 802 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 803 if (!my_rdp->nocb_toggling_rdp) 804 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 805 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 806 /* Wait for any offloading rdp */ 807 nocb_gp_sleep(my_rdp, cpu); 808 } else { 809 schedule_timeout_idle(1); 810 } 811 } else if (!needwait_gp) { 812 /* Wait for callbacks to appear. */ 813 nocb_gp_sleep(my_rdp, cpu); 814 } else { 815 rnp = my_rdp->mynode; 816 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 817 swait_event_interruptible_exclusive( 818 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 819 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 820 !READ_ONCE(my_rdp->nocb_gp_sleep)); 821 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 822 } 823 824 if (!rcu_nocb_poll) { 825 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 826 // (De-)queue an rdp to/from the group if its nocb state is changing 827 rdp_toggling = my_rdp->nocb_toggling_rdp; 828 if (rdp_toggling) 829 my_rdp->nocb_toggling_rdp = NULL; 830 831 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 832 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 833 del_timer(&my_rdp->nocb_timer); 834 } 835 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 836 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 837 } else { 838 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 839 if (rdp_toggling) { 840 /* 841 * Paranoid locking to make sure nocb_toggling_rdp is well 842 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 843 * race with another round of nocb toggling for this rdp. 844 * Nocb locking should prevent from that already but we stick 845 * to paranoia, especially in rare path. 846 */ 847 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 848 my_rdp->nocb_toggling_rdp = NULL; 849 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 850 } 851 } 852 853 if (rdp_toggling) { 854 bool wake_state = false; 855 int ret; 856 857 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state); 858 if (ret == 1) 859 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 860 else if (ret == 0) 861 list_del(&rdp_toggling->nocb_entry_rdp); 862 if (wake_state) 863 swake_up_one(&rdp_toggling->nocb_state_wq); 864 } 865 866 my_rdp->nocb_gp_seq = -1; 867 WARN_ON(signal_pending(current)); 868 } 869 870 /* 871 * No-CBs grace-period-wait kthread. There is one of these per group 872 * of CPUs, but only once at least one CPU in that group has come online 873 * at least once since boot. This kthread checks for newly posted 874 * callbacks from any of the CPUs it is responsible for, waits for a 875 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 876 * that then have callback-invocation work to do. 877 */ 878 static int rcu_nocb_gp_kthread(void *arg) 879 { 880 struct rcu_data *rdp = arg; 881 882 for (;;) { 883 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 884 nocb_gp_wait(rdp); 885 cond_resched_tasks_rcu_qs(); 886 } 887 return 0; 888 } 889 890 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 891 { 892 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 893 894 return rcu_segcblist_test_flags(&rdp->cblist, flags); 895 } 896 897 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 898 { 899 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 900 } 901 902 /* 903 * Invoke any ready callbacks from the corresponding no-CBs CPU, 904 * then, if there are no more, wait for more to appear. 905 */ 906 static void nocb_cb_wait(struct rcu_data *rdp) 907 { 908 struct rcu_segcblist *cblist = &rdp->cblist; 909 unsigned long cur_gp_seq; 910 unsigned long flags; 911 bool needwake_state = false; 912 bool needwake_gp = false; 913 bool can_sleep = true; 914 struct rcu_node *rnp = rdp->mynode; 915 916 do { 917 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 918 nocb_cb_wait_cond(rdp)); 919 920 // VVV Ensure CB invocation follows _sleep test. 921 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 922 WARN_ON(signal_pending(current)); 923 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 924 } 925 } while (!nocb_cb_can_run(rdp)); 926 927 928 local_irq_save(flags); 929 rcu_momentary_dyntick_idle(); 930 local_irq_restore(flags); 931 /* 932 * Disable BH to provide the expected environment. Also, when 933 * transitioning to/from NOCB mode, a self-requeuing callback might 934 * be invoked from softirq. A short grace period could cause both 935 * instances of this callback would execute concurrently. 936 */ 937 local_bh_disable(); 938 rcu_do_batch(rdp); 939 local_bh_enable(); 940 lockdep_assert_irqs_enabled(); 941 rcu_nocb_lock_irqsave(rdp, flags); 942 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 943 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 944 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 945 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 946 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 947 } 948 949 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 950 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 951 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 952 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 953 needwake_state = true; 954 } 955 if (rcu_segcblist_ready_cbs(cblist)) 956 can_sleep = false; 957 } else { 958 /* 959 * De-offloading. Clear our flag and notify the de-offload worker. 960 * We won't touch the callbacks and keep sleeping until we ever 961 * get re-offloaded. 962 */ 963 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 964 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 965 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 966 needwake_state = true; 967 } 968 969 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 970 971 if (rdp->nocb_cb_sleep) 972 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 973 974 rcu_nocb_unlock_irqrestore(rdp, flags); 975 if (needwake_gp) 976 rcu_gp_kthread_wake(); 977 978 if (needwake_state) 979 swake_up_one(&rdp->nocb_state_wq); 980 } 981 982 /* 983 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 984 * nocb_cb_wait() to do the dirty work. 985 */ 986 static int rcu_nocb_cb_kthread(void *arg) 987 { 988 struct rcu_data *rdp = arg; 989 990 // Each pass through this loop does one callback batch, and, 991 // if there are no more ready callbacks, waits for them. 992 for (;;) { 993 nocb_cb_wait(rdp); 994 cond_resched_tasks_rcu_qs(); 995 } 996 return 0; 997 } 998 999 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 1000 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1001 { 1002 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 1003 } 1004 1005 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 1006 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 1007 struct rcu_data *rdp, int level, 1008 unsigned long flags) 1009 __releases(rdp_gp->nocb_gp_lock) 1010 { 1011 int ndw; 1012 int ret; 1013 1014 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 1015 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1016 return false; 1017 } 1018 1019 ndw = rdp_gp->nocb_defer_wakeup; 1020 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 1021 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 1022 1023 return ret; 1024 } 1025 1026 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 1027 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 1028 { 1029 unsigned long flags; 1030 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1031 1032 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1033 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1034 1035 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1036 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1037 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1038 } 1039 1040 /* 1041 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1042 * This means we do an inexact common-case check. Note that if 1043 * we miss, ->nocb_timer will eventually clean things up. 1044 */ 1045 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1046 { 1047 unsigned long flags; 1048 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1049 1050 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1051 return false; 1052 1053 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1054 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1055 } 1056 1057 void rcu_nocb_flush_deferred_wakeup(void) 1058 { 1059 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1060 } 1061 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1062 1063 static int rdp_offload_toggle(struct rcu_data *rdp, 1064 bool offload, unsigned long flags) 1065 __releases(rdp->nocb_lock) 1066 { 1067 struct rcu_segcblist *cblist = &rdp->cblist; 1068 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1069 bool wake_gp = false; 1070 1071 rcu_segcblist_offload(cblist, offload); 1072 1073 if (rdp->nocb_cb_sleep) 1074 rdp->nocb_cb_sleep = false; 1075 rcu_nocb_unlock_irqrestore(rdp, flags); 1076 1077 /* 1078 * Ignore former value of nocb_cb_sleep and force wake up as it could 1079 * have been spuriously set to false already. 1080 */ 1081 swake_up_one(&rdp->nocb_cb_wq); 1082 1083 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1084 // Queue this rdp for add/del to/from the list to iterate on rcuog 1085 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1086 if (rdp_gp->nocb_gp_sleep) { 1087 rdp_gp->nocb_gp_sleep = false; 1088 wake_gp = true; 1089 } 1090 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1091 1092 return wake_gp; 1093 } 1094 1095 static long rcu_nocb_rdp_deoffload(void *arg) 1096 { 1097 struct rcu_data *rdp = arg; 1098 struct rcu_segcblist *cblist = &rdp->cblist; 1099 unsigned long flags; 1100 int wake_gp; 1101 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1102 1103 /* 1104 * rcu_nocb_rdp_deoffload() may be called directly if 1105 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1106 * is not online yet. 1107 */ 1108 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1109 1110 pr_info("De-offloading %d\n", rdp->cpu); 1111 1112 rcu_nocb_lock_irqsave(rdp, flags); 1113 /* 1114 * Flush once and for all now. This suffices because we are 1115 * running on the target CPU holding ->nocb_lock (thus having 1116 * interrupts disabled), and because rdp_offload_toggle() 1117 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1118 * Thus future calls to rcu_segcblist_completely_offloaded() will 1119 * return false, which means that future calls to rcu_nocb_try_bypass() 1120 * will refuse to put anything into the bypass. 1121 */ 1122 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1123 /* 1124 * Start with invoking rcu_core() early. This way if the current thread 1125 * happens to preempt an ongoing call to rcu_core() in the middle, 1126 * leaving some work dismissed because rcu_core() still thinks the rdp is 1127 * completely offloaded, we are guaranteed a nearby future instance of 1128 * rcu_core() to catch up. 1129 */ 1130 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1131 invoke_rcu_core(); 1132 wake_gp = rdp_offload_toggle(rdp, false, flags); 1133 1134 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1135 if (rdp_gp->nocb_gp_kthread) { 1136 if (wake_gp) 1137 wake_up_process(rdp_gp->nocb_gp_kthread); 1138 1139 /* 1140 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB. 1141 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog. 1142 */ 1143 if (!rdp->nocb_cb_kthread) { 1144 rcu_nocb_lock_irqsave(rdp, flags); 1145 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 1146 rcu_nocb_unlock_irqrestore(rdp, flags); 1147 } 1148 1149 swait_event_exclusive(rdp->nocb_state_wq, 1150 !rcu_segcblist_test_flags(cblist, 1151 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP)); 1152 } else { 1153 /* 1154 * No kthread to clear the flags for us or remove the rdp from the nocb list 1155 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1156 * but we stick to paranoia in this rare path. 1157 */ 1158 rcu_nocb_lock_irqsave(rdp, flags); 1159 rcu_segcblist_clear_flags(&rdp->cblist, 1160 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1161 rcu_nocb_unlock_irqrestore(rdp, flags); 1162 1163 list_del(&rdp->nocb_entry_rdp); 1164 } 1165 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1166 1167 /* 1168 * Lock one last time to acquire latest callback updates from kthreads 1169 * so we can later handle callbacks locally without locking. 1170 */ 1171 rcu_nocb_lock_irqsave(rdp, flags); 1172 /* 1173 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1174 * lock is released but how about being paranoid for once? 1175 */ 1176 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1177 /* 1178 * Without SEGCBLIST_LOCKING, we can't use 1179 * rcu_nocb_unlock_irqrestore() anymore. 1180 */ 1181 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1182 1183 /* Sanity check */ 1184 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1185 1186 1187 return 0; 1188 } 1189 1190 int rcu_nocb_cpu_deoffload(int cpu) 1191 { 1192 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1193 int ret = 0; 1194 1195 cpus_read_lock(); 1196 mutex_lock(&rcu_state.barrier_mutex); 1197 if (rcu_rdp_is_offloaded(rdp)) { 1198 if (cpu_online(cpu)) { 1199 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1200 if (!ret) 1201 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1202 } else { 1203 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1204 ret = -EINVAL; 1205 } 1206 } 1207 mutex_unlock(&rcu_state.barrier_mutex); 1208 cpus_read_unlock(); 1209 1210 return ret; 1211 } 1212 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1213 1214 static long rcu_nocb_rdp_offload(void *arg) 1215 { 1216 struct rcu_data *rdp = arg; 1217 struct rcu_segcblist *cblist = &rdp->cblist; 1218 unsigned long flags; 1219 int wake_gp; 1220 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1221 1222 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1223 /* 1224 * For now we only support re-offload, ie: the rdp must have been 1225 * offloaded on boot first. 1226 */ 1227 if (!rdp->nocb_gp_rdp) 1228 return -EINVAL; 1229 1230 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1231 return -EINVAL; 1232 1233 pr_info("Offloading %d\n", rdp->cpu); 1234 1235 /* 1236 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1237 * is set. 1238 */ 1239 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1240 1241 /* 1242 * We didn't take the nocb lock while working on the 1243 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1244 * Every modifications that have been done previously on 1245 * rdp->cblist must be visible remotely by the nocb kthreads 1246 * upon wake up after reading the cblist flags. 1247 * 1248 * The layout against nocb_lock enforces that ordering: 1249 * 1250 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1251 * ------------------------- ---------------------------- 1252 * WRITE callbacks rcu_nocb_lock() 1253 * rcu_nocb_lock() READ flags 1254 * WRITE flags READ callbacks 1255 * rcu_nocb_unlock() rcu_nocb_unlock() 1256 */ 1257 wake_gp = rdp_offload_toggle(rdp, true, flags); 1258 if (wake_gp) 1259 wake_up_process(rdp_gp->nocb_gp_kthread); 1260 swait_event_exclusive(rdp->nocb_state_wq, 1261 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1262 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1263 1264 /* 1265 * All kthreads are ready to work, we can finally relieve rcu_core() and 1266 * enable nocb bypass. 1267 */ 1268 rcu_nocb_lock_irqsave(rdp, flags); 1269 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1270 rcu_nocb_unlock_irqrestore(rdp, flags); 1271 1272 return 0; 1273 } 1274 1275 int rcu_nocb_cpu_offload(int cpu) 1276 { 1277 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1278 int ret = 0; 1279 1280 cpus_read_lock(); 1281 mutex_lock(&rcu_state.barrier_mutex); 1282 if (!rcu_rdp_is_offloaded(rdp)) { 1283 if (cpu_online(cpu)) { 1284 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1285 if (!ret) 1286 cpumask_set_cpu(cpu, rcu_nocb_mask); 1287 } else { 1288 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1289 ret = -EINVAL; 1290 } 1291 } 1292 mutex_unlock(&rcu_state.barrier_mutex); 1293 cpus_read_unlock(); 1294 1295 return ret; 1296 } 1297 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1298 1299 #ifdef CONFIG_RCU_LAZY 1300 static unsigned long 1301 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1302 { 1303 int cpu; 1304 unsigned long count = 0; 1305 1306 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1307 return 0; 1308 1309 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1310 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1311 return 0; 1312 1313 /* Snapshot count of all CPUs */ 1314 for_each_cpu(cpu, rcu_nocb_mask) { 1315 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1316 1317 count += READ_ONCE(rdp->lazy_len); 1318 } 1319 1320 mutex_unlock(&rcu_state.barrier_mutex); 1321 1322 return count ? count : SHRINK_EMPTY; 1323 } 1324 1325 static unsigned long 1326 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1327 { 1328 int cpu; 1329 unsigned long flags; 1330 unsigned long count = 0; 1331 1332 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1333 return 0; 1334 /* 1335 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1336 * may be ignored or imbalanced. 1337 */ 1338 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1339 /* 1340 * But really don't insist if barrier_mutex is contended since we 1341 * can't guarantee that it will never engage in a dependency 1342 * chain involving memory allocation. The lock is seldom contended 1343 * anyway. 1344 */ 1345 return 0; 1346 } 1347 1348 /* Snapshot count of all CPUs */ 1349 for_each_cpu(cpu, rcu_nocb_mask) { 1350 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1351 int _count; 1352 1353 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1354 continue; 1355 1356 if (!READ_ONCE(rdp->lazy_len)) 1357 continue; 1358 1359 rcu_nocb_lock_irqsave(rdp, flags); 1360 /* 1361 * Recheck under the nocb lock. Since we are not holding the bypass 1362 * lock we may still race with increments from the enqueuer but still 1363 * we know for sure if there is at least one lazy callback. 1364 */ 1365 _count = READ_ONCE(rdp->lazy_len); 1366 if (!_count) { 1367 rcu_nocb_unlock_irqrestore(rdp, flags); 1368 continue; 1369 } 1370 rcu_nocb_try_flush_bypass(rdp, jiffies); 1371 rcu_nocb_unlock_irqrestore(rdp, flags); 1372 wake_nocb_gp(rdp, false); 1373 sc->nr_to_scan -= _count; 1374 count += _count; 1375 if (sc->nr_to_scan <= 0) 1376 break; 1377 } 1378 1379 mutex_unlock(&rcu_state.barrier_mutex); 1380 1381 return count ? count : SHRINK_STOP; 1382 } 1383 1384 static struct shrinker lazy_rcu_shrinker = { 1385 .count_objects = lazy_rcu_shrink_count, 1386 .scan_objects = lazy_rcu_shrink_scan, 1387 .batch = 0, 1388 .seeks = DEFAULT_SEEKS, 1389 }; 1390 #endif // #ifdef CONFIG_RCU_LAZY 1391 1392 void __init rcu_init_nohz(void) 1393 { 1394 int cpu; 1395 struct rcu_data *rdp; 1396 const struct cpumask *cpumask = NULL; 1397 1398 #if defined(CONFIG_NO_HZ_FULL) 1399 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1400 cpumask = tick_nohz_full_mask; 1401 #endif 1402 1403 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1404 !rcu_state.nocb_is_setup && !cpumask) 1405 cpumask = cpu_possible_mask; 1406 1407 if (cpumask) { 1408 if (!cpumask_available(rcu_nocb_mask)) { 1409 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1410 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1411 return; 1412 } 1413 } 1414 1415 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1416 rcu_state.nocb_is_setup = true; 1417 } 1418 1419 if (!rcu_state.nocb_is_setup) 1420 return; 1421 1422 #ifdef CONFIG_RCU_LAZY 1423 if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy")) 1424 pr_err("Failed to register lazy_rcu shrinker!\n"); 1425 #endif // #ifdef CONFIG_RCU_LAZY 1426 1427 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1428 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1429 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1430 rcu_nocb_mask); 1431 } 1432 if (cpumask_empty(rcu_nocb_mask)) 1433 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1434 else 1435 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1436 cpumask_pr_args(rcu_nocb_mask)); 1437 if (rcu_nocb_poll) 1438 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1439 1440 for_each_cpu(cpu, rcu_nocb_mask) { 1441 rdp = per_cpu_ptr(&rcu_data, cpu); 1442 if (rcu_segcblist_empty(&rdp->cblist)) 1443 rcu_segcblist_init(&rdp->cblist); 1444 rcu_segcblist_offload(&rdp->cblist, true); 1445 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1446 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1447 } 1448 rcu_organize_nocb_kthreads(); 1449 } 1450 1451 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1452 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1453 { 1454 init_swait_queue_head(&rdp->nocb_cb_wq); 1455 init_swait_queue_head(&rdp->nocb_gp_wq); 1456 init_swait_queue_head(&rdp->nocb_state_wq); 1457 raw_spin_lock_init(&rdp->nocb_lock); 1458 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1459 raw_spin_lock_init(&rdp->nocb_gp_lock); 1460 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1461 rcu_cblist_init(&rdp->nocb_bypass); 1462 WRITE_ONCE(rdp->lazy_len, 0); 1463 mutex_init(&rdp->nocb_gp_kthread_mutex); 1464 } 1465 1466 /* 1467 * If the specified CPU is a no-CBs CPU that does not already have its 1468 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1469 * for this CPU's group has not yet been created, spawn it as well. 1470 */ 1471 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1472 { 1473 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1474 struct rcu_data *rdp_gp; 1475 struct task_struct *t; 1476 struct sched_param sp; 1477 1478 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1479 return; 1480 1481 /* If there already is an rcuo kthread, then nothing to do. */ 1482 if (rdp->nocb_cb_kthread) 1483 return; 1484 1485 /* If we didn't spawn the GP kthread first, reorganize! */ 1486 sp.sched_priority = kthread_prio; 1487 rdp_gp = rdp->nocb_gp_rdp; 1488 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1489 if (!rdp_gp->nocb_gp_kthread) { 1490 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1491 "rcuog/%d", rdp_gp->cpu); 1492 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1493 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1494 goto end; 1495 } 1496 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1497 if (kthread_prio) 1498 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1499 } 1500 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1501 1502 /* Spawn the kthread for this CPU. */ 1503 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1504 "rcuo%c/%d", rcu_state.abbr, cpu); 1505 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1506 goto end; 1507 1508 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1509 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1510 1511 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1512 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1513 return; 1514 end: 1515 mutex_lock(&rcu_state.barrier_mutex); 1516 if (rcu_rdp_is_offloaded(rdp)) { 1517 rcu_nocb_rdp_deoffload(rdp); 1518 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1519 } 1520 mutex_unlock(&rcu_state.barrier_mutex); 1521 } 1522 1523 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1524 static int rcu_nocb_gp_stride = -1; 1525 module_param(rcu_nocb_gp_stride, int, 0444); 1526 1527 /* 1528 * Initialize GP-CB relationships for all no-CBs CPU. 1529 */ 1530 static void __init rcu_organize_nocb_kthreads(void) 1531 { 1532 int cpu; 1533 bool firsttime = true; 1534 bool gotnocbs = false; 1535 bool gotnocbscbs = true; 1536 int ls = rcu_nocb_gp_stride; 1537 int nl = 0; /* Next GP kthread. */ 1538 struct rcu_data *rdp; 1539 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1540 1541 if (!cpumask_available(rcu_nocb_mask)) 1542 return; 1543 if (ls == -1) { 1544 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1545 rcu_nocb_gp_stride = ls; 1546 } 1547 1548 /* 1549 * Each pass through this loop sets up one rcu_data structure. 1550 * Should the corresponding CPU come online in the future, then 1551 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1552 */ 1553 for_each_possible_cpu(cpu) { 1554 rdp = per_cpu_ptr(&rcu_data, cpu); 1555 if (rdp->cpu >= nl) { 1556 /* New GP kthread, set up for CBs & next GP. */ 1557 gotnocbs = true; 1558 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1559 rdp_gp = rdp; 1560 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1561 if (dump_tree) { 1562 if (!firsttime) 1563 pr_cont("%s\n", gotnocbscbs 1564 ? "" : " (self only)"); 1565 gotnocbscbs = false; 1566 firsttime = false; 1567 pr_alert("%s: No-CB GP kthread CPU %d:", 1568 __func__, cpu); 1569 } 1570 } else { 1571 /* Another CB kthread, link to previous GP kthread. */ 1572 gotnocbscbs = true; 1573 if (dump_tree) 1574 pr_cont(" %d", cpu); 1575 } 1576 rdp->nocb_gp_rdp = rdp_gp; 1577 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1578 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1579 } 1580 if (gotnocbs && dump_tree) 1581 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1582 } 1583 1584 /* 1585 * Bind the current task to the offloaded CPUs. If there are no offloaded 1586 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1587 */ 1588 void rcu_bind_current_to_nocb(void) 1589 { 1590 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1591 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1592 } 1593 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1594 1595 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1596 #ifdef CONFIG_SMP 1597 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1598 { 1599 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1600 } 1601 #else // #ifdef CONFIG_SMP 1602 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1603 { 1604 return ""; 1605 } 1606 #endif // #else #ifdef CONFIG_SMP 1607 1608 /* 1609 * Dump out nocb grace-period kthread state for the specified rcu_data 1610 * structure. 1611 */ 1612 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1613 { 1614 struct rcu_node *rnp = rdp->mynode; 1615 1616 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1617 rdp->cpu, 1618 "kK"[!!rdp->nocb_gp_kthread], 1619 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1620 "dD"[!!rdp->nocb_defer_wakeup], 1621 "tT"[timer_pending(&rdp->nocb_timer)], 1622 "sS"[!!rdp->nocb_gp_sleep], 1623 ".W"[swait_active(&rdp->nocb_gp_wq)], 1624 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1625 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1626 ".B"[!!rdp->nocb_gp_bypass], 1627 ".G"[!!rdp->nocb_gp_gp], 1628 (long)rdp->nocb_gp_seq, 1629 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1630 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1631 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1632 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1633 } 1634 1635 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1636 static void show_rcu_nocb_state(struct rcu_data *rdp) 1637 { 1638 char bufw[20]; 1639 char bufr[20]; 1640 struct rcu_data *nocb_next_rdp; 1641 struct rcu_segcblist *rsclp = &rdp->cblist; 1642 bool waslocked; 1643 bool wassleep; 1644 1645 if (rdp->nocb_gp_rdp == rdp) 1646 show_rcu_nocb_gp_state(rdp); 1647 1648 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1649 &rdp->nocb_entry_rdp, 1650 typeof(*rdp), 1651 nocb_entry_rdp); 1652 1653 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1654 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1655 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1656 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1657 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1658 "kK"[!!rdp->nocb_cb_kthread], 1659 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1660 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1661 "sS"[!!rdp->nocb_cb_sleep], 1662 ".W"[swait_active(&rdp->nocb_cb_wq)], 1663 jiffies - rdp->nocb_bypass_first, 1664 jiffies - rdp->nocb_nobypass_last, 1665 rdp->nocb_nobypass_count, 1666 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1667 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1668 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1669 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1670 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1671 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1672 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1673 rcu_segcblist_n_cbs(&rdp->cblist), 1674 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1675 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1676 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1677 1678 /* It is OK for GP kthreads to have GP state. */ 1679 if (rdp->nocb_gp_rdp == rdp) 1680 return; 1681 1682 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1683 wassleep = swait_active(&rdp->nocb_gp_wq); 1684 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1685 return; /* Nothing untoward. */ 1686 1687 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1688 "lL"[waslocked], 1689 "dD"[!!rdp->nocb_defer_wakeup], 1690 "sS"[!!rdp->nocb_gp_sleep], 1691 ".W"[wassleep]); 1692 } 1693 1694 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1695 1696 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1697 { 1698 return 0; 1699 } 1700 1701 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1702 { 1703 return false; 1704 } 1705 1706 /* No ->nocb_lock to acquire. */ 1707 static void rcu_nocb_lock(struct rcu_data *rdp) 1708 { 1709 } 1710 1711 /* No ->nocb_lock to release. */ 1712 static void rcu_nocb_unlock(struct rcu_data *rdp) 1713 { 1714 } 1715 1716 /* No ->nocb_lock to release. */ 1717 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1718 unsigned long flags) 1719 { 1720 local_irq_restore(flags); 1721 } 1722 1723 /* Lockdep check that ->cblist may be safely accessed. */ 1724 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1725 { 1726 lockdep_assert_irqs_disabled(); 1727 } 1728 1729 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1730 { 1731 } 1732 1733 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1734 { 1735 return NULL; 1736 } 1737 1738 static void rcu_init_one_nocb(struct rcu_node *rnp) 1739 { 1740 } 1741 1742 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1743 { 1744 return false; 1745 } 1746 1747 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1748 unsigned long j, bool lazy) 1749 { 1750 return true; 1751 } 1752 1753 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1754 bool *was_alldone, unsigned long flags, bool lazy) 1755 { 1756 return false; 1757 } 1758 1759 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1760 unsigned long flags) 1761 { 1762 WARN_ON_ONCE(1); /* Should be dead code! */ 1763 } 1764 1765 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1766 { 1767 } 1768 1769 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1770 { 1771 return false; 1772 } 1773 1774 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1775 { 1776 return false; 1777 } 1778 1779 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1780 { 1781 } 1782 1783 static void show_rcu_nocb_state(struct rcu_data *rdp) 1784 { 1785 } 1786 1787 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1788