xref: /openbmc/linux/kernel/rcu/tree_nocb.h (revision 0e407915)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *	   Paul E. McKenney <paulmck@linux.ibm.com>
13  *	   Frederic Weisbecker <frederic@kernel.org>
14  */
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 	return lockdep_is_held(&rdp->nocb_lock);
22 }
23 
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 	/* Race on early boot between thread creation and assignment */
27 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 		return true;
29 
30 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 		if (in_task())
32 			return true;
33 	return false;
34 }
35 
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57 
58 
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63 static int __init rcu_nocb_setup(char *str)
64 {
65 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66 	if (*str == '=') {
67 		if (cpulist_parse(++str, rcu_nocb_mask)) {
68 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69 			cpumask_setall(rcu_nocb_mask);
70 		}
71 	}
72 	rcu_state.nocb_is_setup = true;
73 	return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76 
77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79 	rcu_nocb_poll = true;
80 	return 0;
81 }
82 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
83 
84 /*
85  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86  * After all, the main point of bypassing is to avoid lock contention
87  * on ->nocb_lock, which only can happen at high call_rcu() rates.
88  */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91 
92 /*
93  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
94  * lock isn't immediately available, increment ->nocb_lock_contended to
95  * flag the contention.
96  */
97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
98 	__acquires(&rdp->nocb_bypass_lock)
99 {
100 	lockdep_assert_irqs_disabled();
101 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
102 		return;
103 	atomic_inc(&rdp->nocb_lock_contended);
104 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
105 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
106 	raw_spin_lock(&rdp->nocb_bypass_lock);
107 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
108 	atomic_dec(&rdp->nocb_lock_contended);
109 }
110 
111 /*
112  * Spinwait until the specified rcu_data structure's ->nocb_lock is
113  * not contended.  Please note that this is extremely special-purpose,
114  * relying on the fact that at most two kthreads and one CPU contend for
115  * this lock, and also that the two kthreads are guaranteed to have frequent
116  * grace-period-duration time intervals between successive acquisitions
117  * of the lock.  This allows us to use an extremely simple throttling
118  * mechanism, and further to apply it only to the CPU doing floods of
119  * call_rcu() invocations.  Don't try this at home!
120  */
121 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
122 {
123 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
124 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
125 		cpu_relax();
126 }
127 
128 /*
129  * Conditionally acquire the specified rcu_data structure's
130  * ->nocb_bypass_lock.
131  */
132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
133 {
134 	lockdep_assert_irqs_disabled();
135 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
136 }
137 
138 /*
139  * Release the specified rcu_data structure's ->nocb_bypass_lock.
140  */
141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
142 	__releases(&rdp->nocb_bypass_lock)
143 {
144 	lockdep_assert_irqs_disabled();
145 	raw_spin_unlock(&rdp->nocb_bypass_lock);
146 }
147 
148 /*
149  * Acquire the specified rcu_data structure's ->nocb_lock, but only
150  * if it corresponds to a no-CBs CPU.
151  */
152 static void rcu_nocb_lock(struct rcu_data *rdp)
153 {
154 	lockdep_assert_irqs_disabled();
155 	if (!rcu_rdp_is_offloaded(rdp))
156 		return;
157 	raw_spin_lock(&rdp->nocb_lock);
158 }
159 
160 /*
161  * Release the specified rcu_data structure's ->nocb_lock, but only
162  * if it corresponds to a no-CBs CPU.
163  */
164 static void rcu_nocb_unlock(struct rcu_data *rdp)
165 {
166 	if (rcu_rdp_is_offloaded(rdp)) {
167 		lockdep_assert_irqs_disabled();
168 		raw_spin_unlock(&rdp->nocb_lock);
169 	}
170 }
171 
172 /*
173  * Release the specified rcu_data structure's ->nocb_lock and restore
174  * interrupts, but only if it corresponds to a no-CBs CPU.
175  */
176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
177 				       unsigned long flags)
178 {
179 	if (rcu_rdp_is_offloaded(rdp)) {
180 		lockdep_assert_irqs_disabled();
181 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
182 	} else {
183 		local_irq_restore(flags);
184 	}
185 }
186 
187 /* Lockdep check that ->cblist may be safely accessed. */
188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
189 {
190 	lockdep_assert_irqs_disabled();
191 	if (rcu_rdp_is_offloaded(rdp))
192 		lockdep_assert_held(&rdp->nocb_lock);
193 }
194 
195 /*
196  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
197  * grace period.
198  */
199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
200 {
201 	swake_up_all(sq);
202 }
203 
204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
205 {
206 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
207 }
208 
209 static void rcu_init_one_nocb(struct rcu_node *rnp)
210 {
211 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
212 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
213 }
214 
215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
216 			   struct rcu_data *rdp,
217 			   bool force, unsigned long flags)
218 	__releases(rdp_gp->nocb_gp_lock)
219 {
220 	bool needwake = false;
221 
222 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
223 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
224 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
225 				    TPS("AlreadyAwake"));
226 		return false;
227 	}
228 
229 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
230 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
231 		del_timer(&rdp_gp->nocb_timer);
232 	}
233 
234 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
235 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
236 		needwake = true;
237 	}
238 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
239 	if (needwake) {
240 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
241 		wake_up_process(rdp_gp->nocb_gp_kthread);
242 	}
243 
244 	return needwake;
245 }
246 
247 /*
248  * Kick the GP kthread for this NOCB group.
249  */
250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
251 {
252 	unsigned long flags;
253 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
254 
255 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
256 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
257 }
258 
259 /*
260  * Arrange to wake the GP kthread for this NOCB group at some future
261  * time when it is safe to do so.
262  */
263 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
264 			       const char *reason)
265 {
266 	unsigned long flags;
267 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
268 
269 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
270 
271 	/*
272 	 * Bypass wakeup overrides previous deferments. In case
273 	 * of callback storm, no need to wake up too early.
274 	 */
275 	if (waketype == RCU_NOCB_WAKE_BYPASS) {
276 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
277 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
278 	} else {
279 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
280 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
281 		if (rdp_gp->nocb_defer_wakeup < waketype)
282 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
283 	}
284 
285 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
286 
287 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
288 }
289 
290 /*
291  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
292  * However, if there is a callback to be enqueued and if ->nocb_bypass
293  * proves to be initially empty, just return false because the no-CB GP
294  * kthread may need to be awakened in this case.
295  *
296  * Note that this function always returns true if rhp is NULL.
297  */
298 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
299 				     unsigned long j)
300 {
301 	struct rcu_cblist rcl;
302 
303 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
304 	rcu_lockdep_assert_cblist_protected(rdp);
305 	lockdep_assert_held(&rdp->nocb_bypass_lock);
306 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
307 		raw_spin_unlock(&rdp->nocb_bypass_lock);
308 		return false;
309 	}
310 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
311 	if (rhp)
312 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
313 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
314 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
315 	WRITE_ONCE(rdp->nocb_bypass_first, j);
316 	rcu_nocb_bypass_unlock(rdp);
317 	return true;
318 }
319 
320 /*
321  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
322  * However, if there is a callback to be enqueued and if ->nocb_bypass
323  * proves to be initially empty, just return false because the no-CB GP
324  * kthread may need to be awakened in this case.
325  *
326  * Note that this function always returns true if rhp is NULL.
327  */
328 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
329 				  unsigned long j)
330 {
331 	if (!rcu_rdp_is_offloaded(rdp))
332 		return true;
333 	rcu_lockdep_assert_cblist_protected(rdp);
334 	rcu_nocb_bypass_lock(rdp);
335 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
336 }
337 
338 /*
339  * If the ->nocb_bypass_lock is immediately available, flush the
340  * ->nocb_bypass queue into ->cblist.
341  */
342 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
343 {
344 	rcu_lockdep_assert_cblist_protected(rdp);
345 	if (!rcu_rdp_is_offloaded(rdp) ||
346 	    !rcu_nocb_bypass_trylock(rdp))
347 		return;
348 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
349 }
350 
351 /*
352  * See whether it is appropriate to use the ->nocb_bypass list in order
353  * to control contention on ->nocb_lock.  A limited number of direct
354  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
355  * is non-empty, further callbacks must be placed into ->nocb_bypass,
356  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
357  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
358  * used if ->cblist is empty, because otherwise callbacks can be stranded
359  * on ->nocb_bypass because we cannot count on the current CPU ever again
360  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
361  * non-empty, the corresponding no-CBs grace-period kthread must not be
362  * in an indefinite sleep state.
363  *
364  * Finally, it is not permitted to use the bypass during early boot,
365  * as doing so would confuse the auto-initialization code.  Besides
366  * which, there is no point in worrying about lock contention while
367  * there is only one CPU in operation.
368  */
369 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
370 				bool *was_alldone, unsigned long flags)
371 {
372 	unsigned long c;
373 	unsigned long cur_gp_seq;
374 	unsigned long j = jiffies;
375 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
376 
377 	lockdep_assert_irqs_disabled();
378 
379 	// Pure softirq/rcuc based processing: no bypassing, no
380 	// locking.
381 	if (!rcu_rdp_is_offloaded(rdp)) {
382 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
383 		return false;
384 	}
385 
386 	// In the process of (de-)offloading: no bypassing, but
387 	// locking.
388 	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
389 		rcu_nocb_lock(rdp);
390 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
391 		return false; /* Not offloaded, no bypassing. */
392 	}
393 
394 	// Don't use ->nocb_bypass during early boot.
395 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
396 		rcu_nocb_lock(rdp);
397 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
398 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
399 		return false;
400 	}
401 
402 	// If we have advanced to a new jiffy, reset counts to allow
403 	// moving back from ->nocb_bypass to ->cblist.
404 	if (j == rdp->nocb_nobypass_last) {
405 		c = rdp->nocb_nobypass_count + 1;
406 	} else {
407 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
408 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
409 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
410 				 nocb_nobypass_lim_per_jiffy))
411 			c = 0;
412 		else if (c > nocb_nobypass_lim_per_jiffy)
413 			c = nocb_nobypass_lim_per_jiffy;
414 	}
415 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
416 
417 	// If there hasn't yet been all that many ->cblist enqueues
418 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
419 	// ->nocb_bypass first.
420 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
421 		rcu_nocb_lock(rdp);
422 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
423 		if (*was_alldone)
424 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
425 					    TPS("FirstQ"));
426 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
427 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
428 		return false; // Caller must enqueue the callback.
429 	}
430 
431 	// If ->nocb_bypass has been used too long or is too full,
432 	// flush ->nocb_bypass to ->cblist.
433 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
434 	    ncbs >= qhimark) {
435 		rcu_nocb_lock(rdp);
436 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
437 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
438 			if (*was_alldone)
439 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
440 						    TPS("FirstQ"));
441 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
442 			return false; // Caller must enqueue the callback.
443 		}
444 		if (j != rdp->nocb_gp_adv_time &&
445 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
446 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
447 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
448 			rdp->nocb_gp_adv_time = j;
449 		}
450 		rcu_nocb_unlock_irqrestore(rdp, flags);
451 		return true; // Callback already enqueued.
452 	}
453 
454 	// We need to use the bypass.
455 	rcu_nocb_wait_contended(rdp);
456 	rcu_nocb_bypass_lock(rdp);
457 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
458 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
459 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
460 	if (!ncbs) {
461 		WRITE_ONCE(rdp->nocb_bypass_first, j);
462 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
463 	}
464 	rcu_nocb_bypass_unlock(rdp);
465 	smp_mb(); /* Order enqueue before wake. */
466 	if (ncbs) {
467 		local_irq_restore(flags);
468 	} else {
469 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
470 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
471 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
472 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
473 					    TPS("FirstBQwake"));
474 			__call_rcu_nocb_wake(rdp, true, flags);
475 		} else {
476 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
477 					    TPS("FirstBQnoWake"));
478 			rcu_nocb_unlock_irqrestore(rdp, flags);
479 		}
480 	}
481 	return true; // Callback already enqueued.
482 }
483 
484 /*
485  * Awaken the no-CBs grace-period kthread if needed, either due to it
486  * legitimately being asleep or due to overload conditions.
487  *
488  * If warranted, also wake up the kthread servicing this CPUs queues.
489  */
490 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
491 				 unsigned long flags)
492 				 __releases(rdp->nocb_lock)
493 {
494 	unsigned long cur_gp_seq;
495 	unsigned long j;
496 	long len;
497 	struct task_struct *t;
498 
499 	// If we are being polled or there is no kthread, just leave.
500 	t = READ_ONCE(rdp->nocb_gp_kthread);
501 	if (rcu_nocb_poll || !t) {
502 		rcu_nocb_unlock_irqrestore(rdp, flags);
503 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
504 				    TPS("WakeNotPoll"));
505 		return;
506 	}
507 	// Need to actually to a wakeup.
508 	len = rcu_segcblist_n_cbs(&rdp->cblist);
509 	if (was_alldone) {
510 		rdp->qlen_last_fqs_check = len;
511 		if (!irqs_disabled_flags(flags)) {
512 			/* ... if queue was empty ... */
513 			rcu_nocb_unlock_irqrestore(rdp, flags);
514 			wake_nocb_gp(rdp, false);
515 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
516 					    TPS("WakeEmpty"));
517 		} else {
518 			rcu_nocb_unlock_irqrestore(rdp, flags);
519 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
520 					   TPS("WakeEmptyIsDeferred"));
521 		}
522 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
523 		/* ... or if many callbacks queued. */
524 		rdp->qlen_last_fqs_check = len;
525 		j = jiffies;
526 		if (j != rdp->nocb_gp_adv_time &&
527 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
528 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
529 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
530 			rdp->nocb_gp_adv_time = j;
531 		}
532 		smp_mb(); /* Enqueue before timer_pending(). */
533 		if ((rdp->nocb_cb_sleep ||
534 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
535 		    !timer_pending(&rdp->nocb_timer)) {
536 			rcu_nocb_unlock_irqrestore(rdp, flags);
537 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
538 					   TPS("WakeOvfIsDeferred"));
539 		} else {
540 			rcu_nocb_unlock_irqrestore(rdp, flags);
541 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
542 		}
543 	} else {
544 		rcu_nocb_unlock_irqrestore(rdp, flags);
545 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
546 	}
547 }
548 
549 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
550 			       bool *wake_state)
551 {
552 	struct rcu_segcblist *cblist = &rdp->cblist;
553 	unsigned long flags;
554 	int ret;
555 
556 	rcu_nocb_lock_irqsave(rdp, flags);
557 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
558 	    !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
559 		/*
560 		 * Offloading. Set our flag and notify the offload worker.
561 		 * We will handle this rdp until it ever gets de-offloaded.
562 		 */
563 		rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
564 		if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
565 			*wake_state = true;
566 		ret = 1;
567 	} else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
568 		   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
569 		/*
570 		 * De-offloading. Clear our flag and notify the de-offload worker.
571 		 * We will ignore this rdp until it ever gets re-offloaded.
572 		 */
573 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
574 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
575 			*wake_state = true;
576 		ret = 0;
577 	} else {
578 		WARN_ON_ONCE(1);
579 		ret = -1;
580 	}
581 
582 	rcu_nocb_unlock_irqrestore(rdp, flags);
583 
584 	return ret;
585 }
586 
587 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
588 {
589 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
590 	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
591 					!READ_ONCE(my_rdp->nocb_gp_sleep));
592 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
593 }
594 
595 /*
596  * No-CBs GP kthreads come here to wait for additional callbacks to show up
597  * or for grace periods to end.
598  */
599 static void nocb_gp_wait(struct rcu_data *my_rdp)
600 {
601 	bool bypass = false;
602 	long bypass_ncbs;
603 	int __maybe_unused cpu = my_rdp->cpu;
604 	unsigned long cur_gp_seq;
605 	unsigned long flags;
606 	bool gotcbs = false;
607 	unsigned long j = jiffies;
608 	bool needwait_gp = false; // This prevents actual uninitialized use.
609 	bool needwake;
610 	bool needwake_gp;
611 	struct rcu_data *rdp, *rdp_toggling = NULL;
612 	struct rcu_node *rnp;
613 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
614 	bool wasempty = false;
615 
616 	/*
617 	 * Each pass through the following loop checks for CBs and for the
618 	 * nearest grace period (if any) to wait for next.  The CB kthreads
619 	 * and the global grace-period kthread are awakened if needed.
620 	 */
621 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
622 	/*
623 	 * An rcu_data structure is removed from the list after its
624 	 * CPU is de-offloaded and added to the list before that CPU is
625 	 * (re-)offloaded.  If the following loop happens to be referencing
626 	 * that rcu_data structure during the time that the corresponding
627 	 * CPU is de-offloaded and then immediately re-offloaded, this
628 	 * loop's rdp pointer will be carried to the end of the list by
629 	 * the resulting pair of list operations.  This can cause the loop
630 	 * to skip over some of the rcu_data structures that were supposed
631 	 * to have been scanned.  Fortunately a new iteration through the
632 	 * entire loop is forced after a given CPU's rcu_data structure
633 	 * is added to the list, so the skipped-over rcu_data structures
634 	 * won't be ignored for long.
635 	 */
636 	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
637 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
638 		rcu_nocb_lock_irqsave(rdp, flags);
639 		lockdep_assert_held(&rdp->nocb_lock);
640 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
641 		if (bypass_ncbs &&
642 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
643 		     bypass_ncbs > 2 * qhimark)) {
644 			// Bypass full or old, so flush it.
645 			(void)rcu_nocb_try_flush_bypass(rdp, j);
646 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
647 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
648 			rcu_nocb_unlock_irqrestore(rdp, flags);
649 			continue; /* No callbacks here, try next. */
650 		}
651 		if (bypass_ncbs) {
652 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
653 					    TPS("Bypass"));
654 			bypass = true;
655 		}
656 		rnp = rdp->mynode;
657 
658 		// Advance callbacks if helpful and low contention.
659 		needwake_gp = false;
660 		if (!rcu_segcblist_restempty(&rdp->cblist,
661 					     RCU_NEXT_READY_TAIL) ||
662 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
663 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
664 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
665 			needwake_gp = rcu_advance_cbs(rnp, rdp);
666 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
667 							   RCU_NEXT_READY_TAIL);
668 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
669 		}
670 		// Need to wait on some grace period?
671 		WARN_ON_ONCE(wasempty &&
672 			     !rcu_segcblist_restempty(&rdp->cblist,
673 						      RCU_NEXT_READY_TAIL));
674 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
675 			if (!needwait_gp ||
676 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
677 				wait_gp_seq = cur_gp_seq;
678 			needwait_gp = true;
679 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
680 					    TPS("NeedWaitGP"));
681 		}
682 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
683 			needwake = rdp->nocb_cb_sleep;
684 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
685 			smp_mb(); /* CB invocation -after- GP end. */
686 		} else {
687 			needwake = false;
688 		}
689 		rcu_nocb_unlock_irqrestore(rdp, flags);
690 		if (needwake) {
691 			swake_up_one(&rdp->nocb_cb_wq);
692 			gotcbs = true;
693 		}
694 		if (needwake_gp)
695 			rcu_gp_kthread_wake();
696 	}
697 
698 	my_rdp->nocb_gp_bypass = bypass;
699 	my_rdp->nocb_gp_gp = needwait_gp;
700 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
701 
702 	if (bypass && !rcu_nocb_poll) {
703 		// At least one child with non-empty ->nocb_bypass, so set
704 		// timer in order to avoid stranding its callbacks.
705 		wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
706 				   TPS("WakeBypassIsDeferred"));
707 	}
708 	if (rcu_nocb_poll) {
709 		/* Polling, so trace if first poll in the series. */
710 		if (gotcbs)
711 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
712 		if (list_empty(&my_rdp->nocb_head_rdp)) {
713 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
714 			if (!my_rdp->nocb_toggling_rdp)
715 				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
716 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
717 			/* Wait for any offloading rdp */
718 			nocb_gp_sleep(my_rdp, cpu);
719 		} else {
720 			schedule_timeout_idle(1);
721 		}
722 	} else if (!needwait_gp) {
723 		/* Wait for callbacks to appear. */
724 		nocb_gp_sleep(my_rdp, cpu);
725 	} else {
726 		rnp = my_rdp->mynode;
727 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
728 		swait_event_interruptible_exclusive(
729 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
730 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
731 			!READ_ONCE(my_rdp->nocb_gp_sleep));
732 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
733 	}
734 
735 	if (!rcu_nocb_poll) {
736 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
737 		// (De-)queue an rdp to/from the group if its nocb state is changing
738 		rdp_toggling = my_rdp->nocb_toggling_rdp;
739 		if (rdp_toggling)
740 			my_rdp->nocb_toggling_rdp = NULL;
741 
742 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
743 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
744 			del_timer(&my_rdp->nocb_timer);
745 		}
746 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
747 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
748 	} else {
749 		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
750 		if (rdp_toggling) {
751 			/*
752 			 * Paranoid locking to make sure nocb_toggling_rdp is well
753 			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
754 			 * race with another round of nocb toggling for this rdp.
755 			 * Nocb locking should prevent from that already but we stick
756 			 * to paranoia, especially in rare path.
757 			 */
758 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
759 			my_rdp->nocb_toggling_rdp = NULL;
760 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
761 		}
762 	}
763 
764 	if (rdp_toggling) {
765 		bool wake_state = false;
766 		int ret;
767 
768 		ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
769 		if (ret == 1)
770 			list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
771 		else if (ret == 0)
772 			list_del(&rdp_toggling->nocb_entry_rdp);
773 		if (wake_state)
774 			swake_up_one(&rdp_toggling->nocb_state_wq);
775 	}
776 
777 	my_rdp->nocb_gp_seq = -1;
778 	WARN_ON(signal_pending(current));
779 }
780 
781 /*
782  * No-CBs grace-period-wait kthread.  There is one of these per group
783  * of CPUs, but only once at least one CPU in that group has come online
784  * at least once since boot.  This kthread checks for newly posted
785  * callbacks from any of the CPUs it is responsible for, waits for a
786  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
787  * that then have callback-invocation work to do.
788  */
789 static int rcu_nocb_gp_kthread(void *arg)
790 {
791 	struct rcu_data *rdp = arg;
792 
793 	for (;;) {
794 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
795 		nocb_gp_wait(rdp);
796 		cond_resched_tasks_rcu_qs();
797 	}
798 	return 0;
799 }
800 
801 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
802 {
803 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
804 
805 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
806 }
807 
808 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
809 {
810 	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
811 }
812 
813 /*
814  * Invoke any ready callbacks from the corresponding no-CBs CPU,
815  * then, if there are no more, wait for more to appear.
816  */
817 static void nocb_cb_wait(struct rcu_data *rdp)
818 {
819 	struct rcu_segcblist *cblist = &rdp->cblist;
820 	unsigned long cur_gp_seq;
821 	unsigned long flags;
822 	bool needwake_state = false;
823 	bool needwake_gp = false;
824 	bool can_sleep = true;
825 	struct rcu_node *rnp = rdp->mynode;
826 
827 	do {
828 		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
829 						    nocb_cb_wait_cond(rdp));
830 
831 		// VVV Ensure CB invocation follows _sleep test.
832 		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
833 			WARN_ON(signal_pending(current));
834 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
835 		}
836 	} while (!nocb_cb_can_run(rdp));
837 
838 
839 	local_irq_save(flags);
840 	rcu_momentary_dyntick_idle();
841 	local_irq_restore(flags);
842 	/*
843 	 * Disable BH to provide the expected environment.  Also, when
844 	 * transitioning to/from NOCB mode, a self-requeuing callback might
845 	 * be invoked from softirq.  A short grace period could cause both
846 	 * instances of this callback would execute concurrently.
847 	 */
848 	local_bh_disable();
849 	rcu_do_batch(rdp);
850 	local_bh_enable();
851 	lockdep_assert_irqs_enabled();
852 	rcu_nocb_lock_irqsave(rdp, flags);
853 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
854 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
855 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
856 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
857 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
858 	}
859 
860 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
861 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
862 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
863 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
864 				needwake_state = true;
865 		}
866 		if (rcu_segcblist_ready_cbs(cblist))
867 			can_sleep = false;
868 	} else {
869 		/*
870 		 * De-offloading. Clear our flag and notify the de-offload worker.
871 		 * We won't touch the callbacks and keep sleeping until we ever
872 		 * get re-offloaded.
873 		 */
874 		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
875 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
876 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
877 			needwake_state = true;
878 	}
879 
880 	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
881 
882 	if (rdp->nocb_cb_sleep)
883 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
884 
885 	rcu_nocb_unlock_irqrestore(rdp, flags);
886 	if (needwake_gp)
887 		rcu_gp_kthread_wake();
888 
889 	if (needwake_state)
890 		swake_up_one(&rdp->nocb_state_wq);
891 }
892 
893 /*
894  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
895  * nocb_cb_wait() to do the dirty work.
896  */
897 static int rcu_nocb_cb_kthread(void *arg)
898 {
899 	struct rcu_data *rdp = arg;
900 
901 	// Each pass through this loop does one callback batch, and,
902 	// if there are no more ready callbacks, waits for them.
903 	for (;;) {
904 		nocb_cb_wait(rdp);
905 		cond_resched_tasks_rcu_qs();
906 	}
907 	return 0;
908 }
909 
910 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
911 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
912 {
913 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
914 }
915 
916 /* Do a deferred wakeup of rcu_nocb_kthread(). */
917 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
918 					   struct rcu_data *rdp, int level,
919 					   unsigned long flags)
920 	__releases(rdp_gp->nocb_gp_lock)
921 {
922 	int ndw;
923 	int ret;
924 
925 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
926 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
927 		return false;
928 	}
929 
930 	ndw = rdp_gp->nocb_defer_wakeup;
931 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
932 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
933 
934 	return ret;
935 }
936 
937 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
938 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
939 {
940 	unsigned long flags;
941 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
942 
943 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
944 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
945 
946 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
947 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
948 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
949 }
950 
951 /*
952  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
953  * This means we do an inexact common-case check.  Note that if
954  * we miss, ->nocb_timer will eventually clean things up.
955  */
956 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
957 {
958 	unsigned long flags;
959 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
960 
961 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
962 		return false;
963 
964 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
965 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
966 }
967 
968 void rcu_nocb_flush_deferred_wakeup(void)
969 {
970 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
971 }
972 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
973 
974 static int rdp_offload_toggle(struct rcu_data *rdp,
975 			       bool offload, unsigned long flags)
976 	__releases(rdp->nocb_lock)
977 {
978 	struct rcu_segcblist *cblist = &rdp->cblist;
979 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
980 	bool wake_gp = false;
981 
982 	rcu_segcblist_offload(cblist, offload);
983 
984 	if (rdp->nocb_cb_sleep)
985 		rdp->nocb_cb_sleep = false;
986 	rcu_nocb_unlock_irqrestore(rdp, flags);
987 
988 	/*
989 	 * Ignore former value of nocb_cb_sleep and force wake up as it could
990 	 * have been spuriously set to false already.
991 	 */
992 	swake_up_one(&rdp->nocb_cb_wq);
993 
994 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
995 	// Queue this rdp for add/del to/from the list to iterate on rcuog
996 	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
997 	if (rdp_gp->nocb_gp_sleep) {
998 		rdp_gp->nocb_gp_sleep = false;
999 		wake_gp = true;
1000 	}
1001 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1002 
1003 	return wake_gp;
1004 }
1005 
1006 static long rcu_nocb_rdp_deoffload(void *arg)
1007 {
1008 	struct rcu_data *rdp = arg;
1009 	struct rcu_segcblist *cblist = &rdp->cblist;
1010 	unsigned long flags;
1011 	int wake_gp;
1012 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1013 
1014 	/*
1015 	 * rcu_nocb_rdp_deoffload() may be called directly if
1016 	 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1017 	 * is not online yet.
1018 	 */
1019 	WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1020 
1021 	pr_info("De-offloading %d\n", rdp->cpu);
1022 
1023 	rcu_nocb_lock_irqsave(rdp, flags);
1024 	/*
1025 	 * Flush once and for all now. This suffices because we are
1026 	 * running on the target CPU holding ->nocb_lock (thus having
1027 	 * interrupts disabled), and because rdp_offload_toggle()
1028 	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1029 	 * Thus future calls to rcu_segcblist_completely_offloaded() will
1030 	 * return false, which means that future calls to rcu_nocb_try_bypass()
1031 	 * will refuse to put anything into the bypass.
1032 	 */
1033 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
1034 	/*
1035 	 * Start with invoking rcu_core() early. This way if the current thread
1036 	 * happens to preempt an ongoing call to rcu_core() in the middle,
1037 	 * leaving some work dismissed because rcu_core() still thinks the rdp is
1038 	 * completely offloaded, we are guaranteed a nearby future instance of
1039 	 * rcu_core() to catch up.
1040 	 */
1041 	rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1042 	invoke_rcu_core();
1043 	wake_gp = rdp_offload_toggle(rdp, false, flags);
1044 
1045 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1046 	if (rdp_gp->nocb_gp_kthread) {
1047 		if (wake_gp)
1048 			wake_up_process(rdp_gp->nocb_gp_kthread);
1049 
1050 		/*
1051 		 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1052 		 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1053 		 */
1054 		if (!rdp->nocb_cb_kthread) {
1055 			rcu_nocb_lock_irqsave(rdp, flags);
1056 			rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1057 			rcu_nocb_unlock_irqrestore(rdp, flags);
1058 		}
1059 
1060 		swait_event_exclusive(rdp->nocb_state_wq,
1061 					!rcu_segcblist_test_flags(cblist,
1062 					  SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1063 	} else {
1064 		/*
1065 		 * No kthread to clear the flags for us or remove the rdp from the nocb list
1066 		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1067 		 * but we stick to paranoia in this rare path.
1068 		 */
1069 		rcu_nocb_lock_irqsave(rdp, flags);
1070 		rcu_segcblist_clear_flags(&rdp->cblist,
1071 				SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1072 		rcu_nocb_unlock_irqrestore(rdp, flags);
1073 
1074 		list_del(&rdp->nocb_entry_rdp);
1075 	}
1076 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1077 
1078 	/*
1079 	 * Lock one last time to acquire latest callback updates from kthreads
1080 	 * so we can later handle callbacks locally without locking.
1081 	 */
1082 	rcu_nocb_lock_irqsave(rdp, flags);
1083 	/*
1084 	 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1085 	 * lock is released but how about being paranoid for once?
1086 	 */
1087 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1088 	/*
1089 	 * Without SEGCBLIST_LOCKING, we can't use
1090 	 * rcu_nocb_unlock_irqrestore() anymore.
1091 	 */
1092 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1093 
1094 	/* Sanity check */
1095 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1096 
1097 
1098 	return 0;
1099 }
1100 
1101 int rcu_nocb_cpu_deoffload(int cpu)
1102 {
1103 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1104 	int ret = 0;
1105 
1106 	cpus_read_lock();
1107 	mutex_lock(&rcu_state.barrier_mutex);
1108 	if (rcu_rdp_is_offloaded(rdp)) {
1109 		if (cpu_online(cpu)) {
1110 			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1111 			if (!ret)
1112 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1113 		} else {
1114 			pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1115 			ret = -EINVAL;
1116 		}
1117 	}
1118 	mutex_unlock(&rcu_state.barrier_mutex);
1119 	cpus_read_unlock();
1120 
1121 	return ret;
1122 }
1123 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1124 
1125 static long rcu_nocb_rdp_offload(void *arg)
1126 {
1127 	struct rcu_data *rdp = arg;
1128 	struct rcu_segcblist *cblist = &rdp->cblist;
1129 	unsigned long flags;
1130 	int wake_gp;
1131 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1132 
1133 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1134 	/*
1135 	 * For now we only support re-offload, ie: the rdp must have been
1136 	 * offloaded on boot first.
1137 	 */
1138 	if (!rdp->nocb_gp_rdp)
1139 		return -EINVAL;
1140 
1141 	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1142 		return -EINVAL;
1143 
1144 	pr_info("Offloading %d\n", rdp->cpu);
1145 
1146 	/*
1147 	 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1148 	 * is set.
1149 	 */
1150 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1151 
1152 	/*
1153 	 * We didn't take the nocb lock while working on the
1154 	 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1155 	 * Every modifications that have been done previously on
1156 	 * rdp->cblist must be visible remotely by the nocb kthreads
1157 	 * upon wake up after reading the cblist flags.
1158 	 *
1159 	 * The layout against nocb_lock enforces that ordering:
1160 	 *
1161 	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1162 	 * -------------------------   ----------------------------
1163 	 *      WRITE callbacks           rcu_nocb_lock()
1164 	 *      rcu_nocb_lock()           READ flags
1165 	 *      WRITE flags               READ callbacks
1166 	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
1167 	 */
1168 	wake_gp = rdp_offload_toggle(rdp, true, flags);
1169 	if (wake_gp)
1170 		wake_up_process(rdp_gp->nocb_gp_kthread);
1171 	swait_event_exclusive(rdp->nocb_state_wq,
1172 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1173 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1174 
1175 	/*
1176 	 * All kthreads are ready to work, we can finally relieve rcu_core() and
1177 	 * enable nocb bypass.
1178 	 */
1179 	rcu_nocb_lock_irqsave(rdp, flags);
1180 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1181 	rcu_nocb_unlock_irqrestore(rdp, flags);
1182 
1183 	return 0;
1184 }
1185 
1186 int rcu_nocb_cpu_offload(int cpu)
1187 {
1188 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1189 	int ret = 0;
1190 
1191 	cpus_read_lock();
1192 	mutex_lock(&rcu_state.barrier_mutex);
1193 	if (!rcu_rdp_is_offloaded(rdp)) {
1194 		if (cpu_online(cpu)) {
1195 			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1196 			if (!ret)
1197 				cpumask_set_cpu(cpu, rcu_nocb_mask);
1198 		} else {
1199 			pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1200 			ret = -EINVAL;
1201 		}
1202 	}
1203 	mutex_unlock(&rcu_state.barrier_mutex);
1204 	cpus_read_unlock();
1205 
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1209 
1210 void __init rcu_init_nohz(void)
1211 {
1212 	int cpu;
1213 	bool need_rcu_nocb_mask = false;
1214 	bool offload_all = false;
1215 	struct rcu_data *rdp;
1216 
1217 #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL)
1218 	if (!rcu_state.nocb_is_setup) {
1219 		need_rcu_nocb_mask = true;
1220 		offload_all = true;
1221 	}
1222 #endif /* #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) */
1223 
1224 #if defined(CONFIG_NO_HZ_FULL)
1225 	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) {
1226 		need_rcu_nocb_mask = true;
1227 		offload_all = false; /* NO_HZ_FULL has its own mask. */
1228 	}
1229 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1230 
1231 	if (need_rcu_nocb_mask) {
1232 		if (!cpumask_available(rcu_nocb_mask)) {
1233 			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1234 				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1235 				return;
1236 			}
1237 		}
1238 		rcu_state.nocb_is_setup = true;
1239 	}
1240 
1241 	if (!rcu_state.nocb_is_setup)
1242 		return;
1243 
1244 #if defined(CONFIG_NO_HZ_FULL)
1245 	if (tick_nohz_full_running)
1246 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
1247 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1248 
1249 	if (offload_all)
1250 		cpumask_setall(rcu_nocb_mask);
1251 
1252 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1253 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1254 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1255 			    rcu_nocb_mask);
1256 	}
1257 	if (cpumask_empty(rcu_nocb_mask))
1258 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1259 	else
1260 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1261 			cpumask_pr_args(rcu_nocb_mask));
1262 	if (rcu_nocb_poll)
1263 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1264 
1265 	for_each_cpu(cpu, rcu_nocb_mask) {
1266 		rdp = per_cpu_ptr(&rcu_data, cpu);
1267 		if (rcu_segcblist_empty(&rdp->cblist))
1268 			rcu_segcblist_init(&rdp->cblist);
1269 		rcu_segcblist_offload(&rdp->cblist, true);
1270 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1271 		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1272 	}
1273 	rcu_organize_nocb_kthreads();
1274 }
1275 
1276 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1277 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1278 {
1279 	init_swait_queue_head(&rdp->nocb_cb_wq);
1280 	init_swait_queue_head(&rdp->nocb_gp_wq);
1281 	init_swait_queue_head(&rdp->nocb_state_wq);
1282 	raw_spin_lock_init(&rdp->nocb_lock);
1283 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1284 	raw_spin_lock_init(&rdp->nocb_gp_lock);
1285 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1286 	rcu_cblist_init(&rdp->nocb_bypass);
1287 	mutex_init(&rdp->nocb_gp_kthread_mutex);
1288 }
1289 
1290 /*
1291  * If the specified CPU is a no-CBs CPU that does not already have its
1292  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1293  * for this CPU's group has not yet been created, spawn it as well.
1294  */
1295 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1296 {
1297 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1298 	struct rcu_data *rdp_gp;
1299 	struct task_struct *t;
1300 	struct sched_param sp;
1301 
1302 	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1303 		return;
1304 
1305 	/* If there already is an rcuo kthread, then nothing to do. */
1306 	if (rdp->nocb_cb_kthread)
1307 		return;
1308 
1309 	/* If we didn't spawn the GP kthread first, reorganize! */
1310 	sp.sched_priority = kthread_prio;
1311 	rdp_gp = rdp->nocb_gp_rdp;
1312 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1313 	if (!rdp_gp->nocb_gp_kthread) {
1314 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1315 				"rcuog/%d", rdp_gp->cpu);
1316 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1317 			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1318 			goto end;
1319 		}
1320 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1321 		if (kthread_prio)
1322 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1323 	}
1324 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1325 
1326 	/* Spawn the kthread for this CPU. */
1327 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
1328 			"rcuo%c/%d", rcu_state.abbr, cpu);
1329 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1330 		goto end;
1331 
1332 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1333 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1334 
1335 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1336 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1337 	return;
1338 end:
1339 	mutex_lock(&rcu_state.barrier_mutex);
1340 	if (rcu_rdp_is_offloaded(rdp)) {
1341 		rcu_nocb_rdp_deoffload(rdp);
1342 		cpumask_clear_cpu(cpu, rcu_nocb_mask);
1343 	}
1344 	mutex_unlock(&rcu_state.barrier_mutex);
1345 }
1346 
1347 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1348 static int rcu_nocb_gp_stride = -1;
1349 module_param(rcu_nocb_gp_stride, int, 0444);
1350 
1351 /*
1352  * Initialize GP-CB relationships for all no-CBs CPU.
1353  */
1354 static void __init rcu_organize_nocb_kthreads(void)
1355 {
1356 	int cpu;
1357 	bool firsttime = true;
1358 	bool gotnocbs = false;
1359 	bool gotnocbscbs = true;
1360 	int ls = rcu_nocb_gp_stride;
1361 	int nl = 0;  /* Next GP kthread. */
1362 	struct rcu_data *rdp;
1363 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1364 
1365 	if (!cpumask_available(rcu_nocb_mask))
1366 		return;
1367 	if (ls == -1) {
1368 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1369 		rcu_nocb_gp_stride = ls;
1370 	}
1371 
1372 	/*
1373 	 * Each pass through this loop sets up one rcu_data structure.
1374 	 * Should the corresponding CPU come online in the future, then
1375 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1376 	 */
1377 	for_each_possible_cpu(cpu) {
1378 		rdp = per_cpu_ptr(&rcu_data, cpu);
1379 		if (rdp->cpu >= nl) {
1380 			/* New GP kthread, set up for CBs & next GP. */
1381 			gotnocbs = true;
1382 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1383 			rdp_gp = rdp;
1384 			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1385 			if (dump_tree) {
1386 				if (!firsttime)
1387 					pr_cont("%s\n", gotnocbscbs
1388 							? "" : " (self only)");
1389 				gotnocbscbs = false;
1390 				firsttime = false;
1391 				pr_alert("%s: No-CB GP kthread CPU %d:",
1392 					 __func__, cpu);
1393 			}
1394 		} else {
1395 			/* Another CB kthread, link to previous GP kthread. */
1396 			gotnocbscbs = true;
1397 			if (dump_tree)
1398 				pr_cont(" %d", cpu);
1399 		}
1400 		rdp->nocb_gp_rdp = rdp_gp;
1401 		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1402 			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1403 	}
1404 	if (gotnocbs && dump_tree)
1405 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1406 }
1407 
1408 /*
1409  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1410  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1411  */
1412 void rcu_bind_current_to_nocb(void)
1413 {
1414 	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1415 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1416 }
1417 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1418 
1419 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1420 #ifdef CONFIG_SMP
1421 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1422 {
1423 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1424 }
1425 #else // #ifdef CONFIG_SMP
1426 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1427 {
1428 	return "";
1429 }
1430 #endif // #else #ifdef CONFIG_SMP
1431 
1432 /*
1433  * Dump out nocb grace-period kthread state for the specified rcu_data
1434  * structure.
1435  */
1436 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1437 {
1438 	struct rcu_node *rnp = rdp->mynode;
1439 
1440 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1441 		rdp->cpu,
1442 		"kK"[!!rdp->nocb_gp_kthread],
1443 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1444 		"dD"[!!rdp->nocb_defer_wakeup],
1445 		"tT"[timer_pending(&rdp->nocb_timer)],
1446 		"sS"[!!rdp->nocb_gp_sleep],
1447 		".W"[swait_active(&rdp->nocb_gp_wq)],
1448 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1449 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1450 		".B"[!!rdp->nocb_gp_bypass],
1451 		".G"[!!rdp->nocb_gp_gp],
1452 		(long)rdp->nocb_gp_seq,
1453 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1454 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1455 		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1456 		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1457 }
1458 
1459 /* Dump out nocb kthread state for the specified rcu_data structure. */
1460 static void show_rcu_nocb_state(struct rcu_data *rdp)
1461 {
1462 	char bufw[20];
1463 	char bufr[20];
1464 	struct rcu_data *nocb_next_rdp;
1465 	struct rcu_segcblist *rsclp = &rdp->cblist;
1466 	bool waslocked;
1467 	bool wassleep;
1468 
1469 	if (rdp->nocb_gp_rdp == rdp)
1470 		show_rcu_nocb_gp_state(rdp);
1471 
1472 	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1473 					      &rdp->nocb_entry_rdp,
1474 					      typeof(*rdp),
1475 					      nocb_entry_rdp);
1476 
1477 	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1478 	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1479 	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1480 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1481 		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1482 		"kK"[!!rdp->nocb_cb_kthread],
1483 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1484 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1485 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1486 		"sS"[!!rdp->nocb_cb_sleep],
1487 		".W"[swait_active(&rdp->nocb_cb_wq)],
1488 		jiffies - rdp->nocb_bypass_first,
1489 		jiffies - rdp->nocb_nobypass_last,
1490 		rdp->nocb_nobypass_count,
1491 		".D"[rcu_segcblist_ready_cbs(rsclp)],
1492 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1493 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1494 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1495 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1496 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1497 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1498 		rcu_segcblist_n_cbs(&rdp->cblist),
1499 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1500 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1501 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1502 
1503 	/* It is OK for GP kthreads to have GP state. */
1504 	if (rdp->nocb_gp_rdp == rdp)
1505 		return;
1506 
1507 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1508 	wassleep = swait_active(&rdp->nocb_gp_wq);
1509 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1510 		return;  /* Nothing untoward. */
1511 
1512 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1513 		"lL"[waslocked],
1514 		"dD"[!!rdp->nocb_defer_wakeup],
1515 		"sS"[!!rdp->nocb_gp_sleep],
1516 		".W"[wassleep]);
1517 }
1518 
1519 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1520 
1521 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1522 {
1523 	return 0;
1524 }
1525 
1526 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1527 {
1528 	return false;
1529 }
1530 
1531 /* No ->nocb_lock to acquire.  */
1532 static void rcu_nocb_lock(struct rcu_data *rdp)
1533 {
1534 }
1535 
1536 /* No ->nocb_lock to release.  */
1537 static void rcu_nocb_unlock(struct rcu_data *rdp)
1538 {
1539 }
1540 
1541 /* No ->nocb_lock to release.  */
1542 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1543 				       unsigned long flags)
1544 {
1545 	local_irq_restore(flags);
1546 }
1547 
1548 /* Lockdep check that ->cblist may be safely accessed. */
1549 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1550 {
1551 	lockdep_assert_irqs_disabled();
1552 }
1553 
1554 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1555 {
1556 }
1557 
1558 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1559 {
1560 	return NULL;
1561 }
1562 
1563 static void rcu_init_one_nocb(struct rcu_node *rnp)
1564 {
1565 }
1566 
1567 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1568 				  unsigned long j)
1569 {
1570 	return true;
1571 }
1572 
1573 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1574 				bool *was_alldone, unsigned long flags)
1575 {
1576 	return false;
1577 }
1578 
1579 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1580 				 unsigned long flags)
1581 {
1582 	WARN_ON_ONCE(1);  /* Should be dead code! */
1583 }
1584 
1585 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1586 {
1587 }
1588 
1589 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1590 {
1591 	return false;
1592 }
1593 
1594 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1595 {
1596 	return false;
1597 }
1598 
1599 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1600 {
1601 }
1602 
1603 static void show_rcu_nocb_state(struct rcu_data *rdp)
1604 {
1605 }
1606 
1607 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1608