1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 0; 81 } 82 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, increment ->nocb_lock_contended to 95 * flag the contention. 96 */ 97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 98 __acquires(&rdp->nocb_bypass_lock) 99 { 100 lockdep_assert_irqs_disabled(); 101 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 102 return; 103 atomic_inc(&rdp->nocb_lock_contended); 104 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 105 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 106 raw_spin_lock(&rdp->nocb_bypass_lock); 107 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 108 atomic_dec(&rdp->nocb_lock_contended); 109 } 110 111 /* 112 * Spinwait until the specified rcu_data structure's ->nocb_lock is 113 * not contended. Please note that this is extremely special-purpose, 114 * relying on the fact that at most two kthreads and one CPU contend for 115 * this lock, and also that the two kthreads are guaranteed to have frequent 116 * grace-period-duration time intervals between successive acquisitions 117 * of the lock. This allows us to use an extremely simple throttling 118 * mechanism, and further to apply it only to the CPU doing floods of 119 * call_rcu() invocations. Don't try this at home! 120 */ 121 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 122 { 123 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 124 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 125 cpu_relax(); 126 } 127 128 /* 129 * Conditionally acquire the specified rcu_data structure's 130 * ->nocb_bypass_lock. 131 */ 132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 133 { 134 lockdep_assert_irqs_disabled(); 135 return raw_spin_trylock(&rdp->nocb_bypass_lock); 136 } 137 138 /* 139 * Release the specified rcu_data structure's ->nocb_bypass_lock. 140 */ 141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 142 __releases(&rdp->nocb_bypass_lock) 143 { 144 lockdep_assert_irqs_disabled(); 145 raw_spin_unlock(&rdp->nocb_bypass_lock); 146 } 147 148 /* 149 * Acquire the specified rcu_data structure's ->nocb_lock, but only 150 * if it corresponds to a no-CBs CPU. 151 */ 152 static void rcu_nocb_lock(struct rcu_data *rdp) 153 { 154 lockdep_assert_irqs_disabled(); 155 if (!rcu_rdp_is_offloaded(rdp)) 156 return; 157 raw_spin_lock(&rdp->nocb_lock); 158 } 159 160 /* 161 * Release the specified rcu_data structure's ->nocb_lock, but only 162 * if it corresponds to a no-CBs CPU. 163 */ 164 static void rcu_nocb_unlock(struct rcu_data *rdp) 165 { 166 if (rcu_rdp_is_offloaded(rdp)) { 167 lockdep_assert_irqs_disabled(); 168 raw_spin_unlock(&rdp->nocb_lock); 169 } 170 } 171 172 /* 173 * Release the specified rcu_data structure's ->nocb_lock and restore 174 * interrupts, but only if it corresponds to a no-CBs CPU. 175 */ 176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 177 unsigned long flags) 178 { 179 if (rcu_rdp_is_offloaded(rdp)) { 180 lockdep_assert_irqs_disabled(); 181 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 182 } else { 183 local_irq_restore(flags); 184 } 185 } 186 187 /* Lockdep check that ->cblist may be safely accessed. */ 188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 189 { 190 lockdep_assert_irqs_disabled(); 191 if (rcu_rdp_is_offloaded(rdp)) 192 lockdep_assert_held(&rdp->nocb_lock); 193 } 194 195 /* 196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 197 * grace period. 198 */ 199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 200 { 201 swake_up_all(sq); 202 } 203 204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 205 { 206 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 207 } 208 209 static void rcu_init_one_nocb(struct rcu_node *rnp) 210 { 211 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 212 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 213 } 214 215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 216 struct rcu_data *rdp, 217 bool force, unsigned long flags) 218 __releases(rdp_gp->nocb_gp_lock) 219 { 220 bool needwake = false; 221 222 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 223 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 224 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 225 TPS("AlreadyAwake")); 226 return false; 227 } 228 229 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 230 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 231 del_timer(&rdp_gp->nocb_timer); 232 } 233 234 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 235 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 236 needwake = true; 237 } 238 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 239 if (needwake) { 240 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 241 wake_up_process(rdp_gp->nocb_gp_kthread); 242 } 243 244 return needwake; 245 } 246 247 /* 248 * Kick the GP kthread for this NOCB group. 249 */ 250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 251 { 252 unsigned long flags; 253 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 254 255 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 256 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 257 } 258 259 /* 260 * Arrange to wake the GP kthread for this NOCB group at some future 261 * time when it is safe to do so. 262 */ 263 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 264 const char *reason) 265 { 266 unsigned long flags; 267 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 268 269 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 270 271 /* 272 * Bypass wakeup overrides previous deferments. In case 273 * of callback storm, no need to wake up too early. 274 */ 275 if (waketype == RCU_NOCB_WAKE_BYPASS) { 276 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 277 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 278 } else { 279 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 280 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 281 if (rdp_gp->nocb_defer_wakeup < waketype) 282 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 283 } 284 285 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 286 287 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 288 } 289 290 /* 291 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 292 * However, if there is a callback to be enqueued and if ->nocb_bypass 293 * proves to be initially empty, just return false because the no-CB GP 294 * kthread may need to be awakened in this case. 295 * 296 * Note that this function always returns true if rhp is NULL. 297 */ 298 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 299 unsigned long j) 300 { 301 struct rcu_cblist rcl; 302 303 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 304 rcu_lockdep_assert_cblist_protected(rdp); 305 lockdep_assert_held(&rdp->nocb_bypass_lock); 306 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 307 raw_spin_unlock(&rdp->nocb_bypass_lock); 308 return false; 309 } 310 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 311 if (rhp) 312 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 313 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 314 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 315 WRITE_ONCE(rdp->nocb_bypass_first, j); 316 rcu_nocb_bypass_unlock(rdp); 317 return true; 318 } 319 320 /* 321 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 322 * However, if there is a callback to be enqueued and if ->nocb_bypass 323 * proves to be initially empty, just return false because the no-CB GP 324 * kthread may need to be awakened in this case. 325 * 326 * Note that this function always returns true if rhp is NULL. 327 */ 328 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 329 unsigned long j) 330 { 331 if (!rcu_rdp_is_offloaded(rdp)) 332 return true; 333 rcu_lockdep_assert_cblist_protected(rdp); 334 rcu_nocb_bypass_lock(rdp); 335 return rcu_nocb_do_flush_bypass(rdp, rhp, j); 336 } 337 338 /* 339 * If the ->nocb_bypass_lock is immediately available, flush the 340 * ->nocb_bypass queue into ->cblist. 341 */ 342 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 343 { 344 rcu_lockdep_assert_cblist_protected(rdp); 345 if (!rcu_rdp_is_offloaded(rdp) || 346 !rcu_nocb_bypass_trylock(rdp)) 347 return; 348 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); 349 } 350 351 /* 352 * See whether it is appropriate to use the ->nocb_bypass list in order 353 * to control contention on ->nocb_lock. A limited number of direct 354 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 355 * is non-empty, further callbacks must be placed into ->nocb_bypass, 356 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 357 * back to direct use of ->cblist. However, ->nocb_bypass should not be 358 * used if ->cblist is empty, because otherwise callbacks can be stranded 359 * on ->nocb_bypass because we cannot count on the current CPU ever again 360 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 361 * non-empty, the corresponding no-CBs grace-period kthread must not be 362 * in an indefinite sleep state. 363 * 364 * Finally, it is not permitted to use the bypass during early boot, 365 * as doing so would confuse the auto-initialization code. Besides 366 * which, there is no point in worrying about lock contention while 367 * there is only one CPU in operation. 368 */ 369 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 370 bool *was_alldone, unsigned long flags) 371 { 372 unsigned long c; 373 unsigned long cur_gp_seq; 374 unsigned long j = jiffies; 375 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 376 377 lockdep_assert_irqs_disabled(); 378 379 // Pure softirq/rcuc based processing: no bypassing, no 380 // locking. 381 if (!rcu_rdp_is_offloaded(rdp)) { 382 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 383 return false; 384 } 385 386 // In the process of (de-)offloading: no bypassing, but 387 // locking. 388 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 389 rcu_nocb_lock(rdp); 390 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 391 return false; /* Not offloaded, no bypassing. */ 392 } 393 394 // Don't use ->nocb_bypass during early boot. 395 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 396 rcu_nocb_lock(rdp); 397 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 398 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 399 return false; 400 } 401 402 // If we have advanced to a new jiffy, reset counts to allow 403 // moving back from ->nocb_bypass to ->cblist. 404 if (j == rdp->nocb_nobypass_last) { 405 c = rdp->nocb_nobypass_count + 1; 406 } else { 407 WRITE_ONCE(rdp->nocb_nobypass_last, j); 408 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 409 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 410 nocb_nobypass_lim_per_jiffy)) 411 c = 0; 412 else if (c > nocb_nobypass_lim_per_jiffy) 413 c = nocb_nobypass_lim_per_jiffy; 414 } 415 WRITE_ONCE(rdp->nocb_nobypass_count, c); 416 417 // If there hasn't yet been all that many ->cblist enqueues 418 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 419 // ->nocb_bypass first. 420 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { 421 rcu_nocb_lock(rdp); 422 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 423 if (*was_alldone) 424 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 425 TPS("FirstQ")); 426 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); 427 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 428 return false; // Caller must enqueue the callback. 429 } 430 431 // If ->nocb_bypass has been used too long or is too full, 432 // flush ->nocb_bypass to ->cblist. 433 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || 434 ncbs >= qhimark) { 435 rcu_nocb_lock(rdp); 436 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { 437 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 438 if (*was_alldone) 439 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 440 TPS("FirstQ")); 441 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 442 return false; // Caller must enqueue the callback. 443 } 444 if (j != rdp->nocb_gp_adv_time && 445 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 446 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 447 rcu_advance_cbs_nowake(rdp->mynode, rdp); 448 rdp->nocb_gp_adv_time = j; 449 } 450 rcu_nocb_unlock_irqrestore(rdp, flags); 451 return true; // Callback already enqueued. 452 } 453 454 // We need to use the bypass. 455 rcu_nocb_wait_contended(rdp); 456 rcu_nocb_bypass_lock(rdp); 457 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 458 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 459 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 460 if (!ncbs) { 461 WRITE_ONCE(rdp->nocb_bypass_first, j); 462 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 463 } 464 rcu_nocb_bypass_unlock(rdp); 465 smp_mb(); /* Order enqueue before wake. */ 466 if (ncbs) { 467 local_irq_restore(flags); 468 } else { 469 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 470 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 471 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 472 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 473 TPS("FirstBQwake")); 474 __call_rcu_nocb_wake(rdp, true, flags); 475 } else { 476 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 477 TPS("FirstBQnoWake")); 478 rcu_nocb_unlock_irqrestore(rdp, flags); 479 } 480 } 481 return true; // Callback already enqueued. 482 } 483 484 /* 485 * Awaken the no-CBs grace-period kthread if needed, either due to it 486 * legitimately being asleep or due to overload conditions. 487 * 488 * If warranted, also wake up the kthread servicing this CPUs queues. 489 */ 490 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 491 unsigned long flags) 492 __releases(rdp->nocb_lock) 493 { 494 unsigned long cur_gp_seq; 495 unsigned long j; 496 long len; 497 struct task_struct *t; 498 499 // If we are being polled or there is no kthread, just leave. 500 t = READ_ONCE(rdp->nocb_gp_kthread); 501 if (rcu_nocb_poll || !t) { 502 rcu_nocb_unlock_irqrestore(rdp, flags); 503 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 504 TPS("WakeNotPoll")); 505 return; 506 } 507 // Need to actually to a wakeup. 508 len = rcu_segcblist_n_cbs(&rdp->cblist); 509 if (was_alldone) { 510 rdp->qlen_last_fqs_check = len; 511 if (!irqs_disabled_flags(flags)) { 512 /* ... if queue was empty ... */ 513 rcu_nocb_unlock_irqrestore(rdp, flags); 514 wake_nocb_gp(rdp, false); 515 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 516 TPS("WakeEmpty")); 517 } else { 518 rcu_nocb_unlock_irqrestore(rdp, flags); 519 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 520 TPS("WakeEmptyIsDeferred")); 521 } 522 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 523 /* ... or if many callbacks queued. */ 524 rdp->qlen_last_fqs_check = len; 525 j = jiffies; 526 if (j != rdp->nocb_gp_adv_time && 527 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 528 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 529 rcu_advance_cbs_nowake(rdp->mynode, rdp); 530 rdp->nocb_gp_adv_time = j; 531 } 532 smp_mb(); /* Enqueue before timer_pending(). */ 533 if ((rdp->nocb_cb_sleep || 534 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 535 !timer_pending(&rdp->nocb_timer)) { 536 rcu_nocb_unlock_irqrestore(rdp, flags); 537 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 538 TPS("WakeOvfIsDeferred")); 539 } else { 540 rcu_nocb_unlock_irqrestore(rdp, flags); 541 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 542 } 543 } else { 544 rcu_nocb_unlock_irqrestore(rdp, flags); 545 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 546 } 547 } 548 549 static int nocb_gp_toggle_rdp(struct rcu_data *rdp, 550 bool *wake_state) 551 { 552 struct rcu_segcblist *cblist = &rdp->cblist; 553 unsigned long flags; 554 int ret; 555 556 rcu_nocb_lock_irqsave(rdp, flags); 557 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 558 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 559 /* 560 * Offloading. Set our flag and notify the offload worker. 561 * We will handle this rdp until it ever gets de-offloaded. 562 */ 563 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 564 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 565 *wake_state = true; 566 ret = 1; 567 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 568 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 569 /* 570 * De-offloading. Clear our flag and notify the de-offload worker. 571 * We will ignore this rdp until it ever gets re-offloaded. 572 */ 573 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 574 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 575 *wake_state = true; 576 ret = 0; 577 } else { 578 WARN_ON_ONCE(1); 579 ret = -1; 580 } 581 582 rcu_nocb_unlock_irqrestore(rdp, flags); 583 584 return ret; 585 } 586 587 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 588 { 589 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 590 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 591 !READ_ONCE(my_rdp->nocb_gp_sleep)); 592 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 593 } 594 595 /* 596 * No-CBs GP kthreads come here to wait for additional callbacks to show up 597 * or for grace periods to end. 598 */ 599 static void nocb_gp_wait(struct rcu_data *my_rdp) 600 { 601 bool bypass = false; 602 long bypass_ncbs; 603 int __maybe_unused cpu = my_rdp->cpu; 604 unsigned long cur_gp_seq; 605 unsigned long flags; 606 bool gotcbs = false; 607 unsigned long j = jiffies; 608 bool needwait_gp = false; // This prevents actual uninitialized use. 609 bool needwake; 610 bool needwake_gp; 611 struct rcu_data *rdp, *rdp_toggling = NULL; 612 struct rcu_node *rnp; 613 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 614 bool wasempty = false; 615 616 /* 617 * Each pass through the following loop checks for CBs and for the 618 * nearest grace period (if any) to wait for next. The CB kthreads 619 * and the global grace-period kthread are awakened if needed. 620 */ 621 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 622 /* 623 * An rcu_data structure is removed from the list after its 624 * CPU is de-offloaded and added to the list before that CPU is 625 * (re-)offloaded. If the following loop happens to be referencing 626 * that rcu_data structure during the time that the corresponding 627 * CPU is de-offloaded and then immediately re-offloaded, this 628 * loop's rdp pointer will be carried to the end of the list by 629 * the resulting pair of list operations. This can cause the loop 630 * to skip over some of the rcu_data structures that were supposed 631 * to have been scanned. Fortunately a new iteration through the 632 * entire loop is forced after a given CPU's rcu_data structure 633 * is added to the list, so the skipped-over rcu_data structures 634 * won't be ignored for long. 635 */ 636 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 637 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 638 rcu_nocb_lock_irqsave(rdp, flags); 639 lockdep_assert_held(&rdp->nocb_lock); 640 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 641 if (bypass_ncbs && 642 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 643 bypass_ncbs > 2 * qhimark)) { 644 // Bypass full or old, so flush it. 645 (void)rcu_nocb_try_flush_bypass(rdp, j); 646 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 647 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 648 rcu_nocb_unlock_irqrestore(rdp, flags); 649 continue; /* No callbacks here, try next. */ 650 } 651 if (bypass_ncbs) { 652 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 653 TPS("Bypass")); 654 bypass = true; 655 } 656 rnp = rdp->mynode; 657 658 // Advance callbacks if helpful and low contention. 659 needwake_gp = false; 660 if (!rcu_segcblist_restempty(&rdp->cblist, 661 RCU_NEXT_READY_TAIL) || 662 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 663 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 664 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 665 needwake_gp = rcu_advance_cbs(rnp, rdp); 666 wasempty = rcu_segcblist_restempty(&rdp->cblist, 667 RCU_NEXT_READY_TAIL); 668 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 669 } 670 // Need to wait on some grace period? 671 WARN_ON_ONCE(wasempty && 672 !rcu_segcblist_restempty(&rdp->cblist, 673 RCU_NEXT_READY_TAIL)); 674 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 675 if (!needwait_gp || 676 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 677 wait_gp_seq = cur_gp_seq; 678 needwait_gp = true; 679 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 680 TPS("NeedWaitGP")); 681 } 682 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 683 needwake = rdp->nocb_cb_sleep; 684 WRITE_ONCE(rdp->nocb_cb_sleep, false); 685 smp_mb(); /* CB invocation -after- GP end. */ 686 } else { 687 needwake = false; 688 } 689 rcu_nocb_unlock_irqrestore(rdp, flags); 690 if (needwake) { 691 swake_up_one(&rdp->nocb_cb_wq); 692 gotcbs = true; 693 } 694 if (needwake_gp) 695 rcu_gp_kthread_wake(); 696 } 697 698 my_rdp->nocb_gp_bypass = bypass; 699 my_rdp->nocb_gp_gp = needwait_gp; 700 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 701 702 if (bypass && !rcu_nocb_poll) { 703 // At least one child with non-empty ->nocb_bypass, so set 704 // timer in order to avoid stranding its callbacks. 705 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 706 TPS("WakeBypassIsDeferred")); 707 } 708 if (rcu_nocb_poll) { 709 /* Polling, so trace if first poll in the series. */ 710 if (gotcbs) 711 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 712 if (list_empty(&my_rdp->nocb_head_rdp)) { 713 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 714 if (!my_rdp->nocb_toggling_rdp) 715 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 716 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 717 /* Wait for any offloading rdp */ 718 nocb_gp_sleep(my_rdp, cpu); 719 } else { 720 schedule_timeout_idle(1); 721 } 722 } else if (!needwait_gp) { 723 /* Wait for callbacks to appear. */ 724 nocb_gp_sleep(my_rdp, cpu); 725 } else { 726 rnp = my_rdp->mynode; 727 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 728 swait_event_interruptible_exclusive( 729 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 730 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 731 !READ_ONCE(my_rdp->nocb_gp_sleep)); 732 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 733 } 734 735 if (!rcu_nocb_poll) { 736 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 737 // (De-)queue an rdp to/from the group if its nocb state is changing 738 rdp_toggling = my_rdp->nocb_toggling_rdp; 739 if (rdp_toggling) 740 my_rdp->nocb_toggling_rdp = NULL; 741 742 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 743 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 744 del_timer(&my_rdp->nocb_timer); 745 } 746 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 747 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 748 } else { 749 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 750 if (rdp_toggling) { 751 /* 752 * Paranoid locking to make sure nocb_toggling_rdp is well 753 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 754 * race with another round of nocb toggling for this rdp. 755 * Nocb locking should prevent from that already but we stick 756 * to paranoia, especially in rare path. 757 */ 758 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 759 my_rdp->nocb_toggling_rdp = NULL; 760 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 761 } 762 } 763 764 if (rdp_toggling) { 765 bool wake_state = false; 766 int ret; 767 768 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state); 769 if (ret == 1) 770 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 771 else if (ret == 0) 772 list_del(&rdp_toggling->nocb_entry_rdp); 773 if (wake_state) 774 swake_up_one(&rdp_toggling->nocb_state_wq); 775 } 776 777 my_rdp->nocb_gp_seq = -1; 778 WARN_ON(signal_pending(current)); 779 } 780 781 /* 782 * No-CBs grace-period-wait kthread. There is one of these per group 783 * of CPUs, but only once at least one CPU in that group has come online 784 * at least once since boot. This kthread checks for newly posted 785 * callbacks from any of the CPUs it is responsible for, waits for a 786 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 787 * that then have callback-invocation work to do. 788 */ 789 static int rcu_nocb_gp_kthread(void *arg) 790 { 791 struct rcu_data *rdp = arg; 792 793 for (;;) { 794 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 795 nocb_gp_wait(rdp); 796 cond_resched_tasks_rcu_qs(); 797 } 798 return 0; 799 } 800 801 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 802 { 803 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 804 805 return rcu_segcblist_test_flags(&rdp->cblist, flags); 806 } 807 808 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 809 { 810 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 811 } 812 813 /* 814 * Invoke any ready callbacks from the corresponding no-CBs CPU, 815 * then, if there are no more, wait for more to appear. 816 */ 817 static void nocb_cb_wait(struct rcu_data *rdp) 818 { 819 struct rcu_segcblist *cblist = &rdp->cblist; 820 unsigned long cur_gp_seq; 821 unsigned long flags; 822 bool needwake_state = false; 823 bool needwake_gp = false; 824 bool can_sleep = true; 825 struct rcu_node *rnp = rdp->mynode; 826 827 do { 828 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 829 nocb_cb_wait_cond(rdp)); 830 831 // VVV Ensure CB invocation follows _sleep test. 832 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 833 WARN_ON(signal_pending(current)); 834 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 835 } 836 } while (!nocb_cb_can_run(rdp)); 837 838 839 local_irq_save(flags); 840 rcu_momentary_dyntick_idle(); 841 local_irq_restore(flags); 842 /* 843 * Disable BH to provide the expected environment. Also, when 844 * transitioning to/from NOCB mode, a self-requeuing callback might 845 * be invoked from softirq. A short grace period could cause both 846 * instances of this callback would execute concurrently. 847 */ 848 local_bh_disable(); 849 rcu_do_batch(rdp); 850 local_bh_enable(); 851 lockdep_assert_irqs_enabled(); 852 rcu_nocb_lock_irqsave(rdp, flags); 853 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 854 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 855 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 856 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 857 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 858 } 859 860 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 861 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 862 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 863 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 864 needwake_state = true; 865 } 866 if (rcu_segcblist_ready_cbs(cblist)) 867 can_sleep = false; 868 } else { 869 /* 870 * De-offloading. Clear our flag and notify the de-offload worker. 871 * We won't touch the callbacks and keep sleeping until we ever 872 * get re-offloaded. 873 */ 874 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 875 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 876 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 877 needwake_state = true; 878 } 879 880 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 881 882 if (rdp->nocb_cb_sleep) 883 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 884 885 rcu_nocb_unlock_irqrestore(rdp, flags); 886 if (needwake_gp) 887 rcu_gp_kthread_wake(); 888 889 if (needwake_state) 890 swake_up_one(&rdp->nocb_state_wq); 891 } 892 893 /* 894 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 895 * nocb_cb_wait() to do the dirty work. 896 */ 897 static int rcu_nocb_cb_kthread(void *arg) 898 { 899 struct rcu_data *rdp = arg; 900 901 // Each pass through this loop does one callback batch, and, 902 // if there are no more ready callbacks, waits for them. 903 for (;;) { 904 nocb_cb_wait(rdp); 905 cond_resched_tasks_rcu_qs(); 906 } 907 return 0; 908 } 909 910 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 911 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 912 { 913 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 914 } 915 916 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 917 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 918 struct rcu_data *rdp, int level, 919 unsigned long flags) 920 __releases(rdp_gp->nocb_gp_lock) 921 { 922 int ndw; 923 int ret; 924 925 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 926 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 927 return false; 928 } 929 930 ndw = rdp_gp->nocb_defer_wakeup; 931 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 932 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 933 934 return ret; 935 } 936 937 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 938 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 939 { 940 unsigned long flags; 941 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 942 943 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 944 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 945 946 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 947 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 948 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 949 } 950 951 /* 952 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 953 * This means we do an inexact common-case check. Note that if 954 * we miss, ->nocb_timer will eventually clean things up. 955 */ 956 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 957 { 958 unsigned long flags; 959 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 960 961 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 962 return false; 963 964 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 965 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 966 } 967 968 void rcu_nocb_flush_deferred_wakeup(void) 969 { 970 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 971 } 972 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 973 974 static int rdp_offload_toggle(struct rcu_data *rdp, 975 bool offload, unsigned long flags) 976 __releases(rdp->nocb_lock) 977 { 978 struct rcu_segcblist *cblist = &rdp->cblist; 979 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 980 bool wake_gp = false; 981 982 rcu_segcblist_offload(cblist, offload); 983 984 if (rdp->nocb_cb_sleep) 985 rdp->nocb_cb_sleep = false; 986 rcu_nocb_unlock_irqrestore(rdp, flags); 987 988 /* 989 * Ignore former value of nocb_cb_sleep and force wake up as it could 990 * have been spuriously set to false already. 991 */ 992 swake_up_one(&rdp->nocb_cb_wq); 993 994 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 995 // Queue this rdp for add/del to/from the list to iterate on rcuog 996 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 997 if (rdp_gp->nocb_gp_sleep) { 998 rdp_gp->nocb_gp_sleep = false; 999 wake_gp = true; 1000 } 1001 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1002 1003 return wake_gp; 1004 } 1005 1006 static long rcu_nocb_rdp_deoffload(void *arg) 1007 { 1008 struct rcu_data *rdp = arg; 1009 struct rcu_segcblist *cblist = &rdp->cblist; 1010 unsigned long flags; 1011 int wake_gp; 1012 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1013 1014 /* 1015 * rcu_nocb_rdp_deoffload() may be called directly if 1016 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1017 * is not online yet. 1018 */ 1019 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1020 1021 pr_info("De-offloading %d\n", rdp->cpu); 1022 1023 rcu_nocb_lock_irqsave(rdp, flags); 1024 /* 1025 * Flush once and for all now. This suffices because we are 1026 * running on the target CPU holding ->nocb_lock (thus having 1027 * interrupts disabled), and because rdp_offload_toggle() 1028 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1029 * Thus future calls to rcu_segcblist_completely_offloaded() will 1030 * return false, which means that future calls to rcu_nocb_try_bypass() 1031 * will refuse to put anything into the bypass. 1032 */ 1033 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 1034 /* 1035 * Start with invoking rcu_core() early. This way if the current thread 1036 * happens to preempt an ongoing call to rcu_core() in the middle, 1037 * leaving some work dismissed because rcu_core() still thinks the rdp is 1038 * completely offloaded, we are guaranteed a nearby future instance of 1039 * rcu_core() to catch up. 1040 */ 1041 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1042 invoke_rcu_core(); 1043 wake_gp = rdp_offload_toggle(rdp, false, flags); 1044 1045 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1046 if (rdp_gp->nocb_gp_kthread) { 1047 if (wake_gp) 1048 wake_up_process(rdp_gp->nocb_gp_kthread); 1049 1050 /* 1051 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB. 1052 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog. 1053 */ 1054 if (!rdp->nocb_cb_kthread) { 1055 rcu_nocb_lock_irqsave(rdp, flags); 1056 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 1057 rcu_nocb_unlock_irqrestore(rdp, flags); 1058 } 1059 1060 swait_event_exclusive(rdp->nocb_state_wq, 1061 !rcu_segcblist_test_flags(cblist, 1062 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP)); 1063 } else { 1064 /* 1065 * No kthread to clear the flags for us or remove the rdp from the nocb list 1066 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1067 * but we stick to paranoia in this rare path. 1068 */ 1069 rcu_nocb_lock_irqsave(rdp, flags); 1070 rcu_segcblist_clear_flags(&rdp->cblist, 1071 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1072 rcu_nocb_unlock_irqrestore(rdp, flags); 1073 1074 list_del(&rdp->nocb_entry_rdp); 1075 } 1076 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1077 1078 /* 1079 * Lock one last time to acquire latest callback updates from kthreads 1080 * so we can later handle callbacks locally without locking. 1081 */ 1082 rcu_nocb_lock_irqsave(rdp, flags); 1083 /* 1084 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1085 * lock is released but how about being paranoid for once? 1086 */ 1087 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1088 /* 1089 * Without SEGCBLIST_LOCKING, we can't use 1090 * rcu_nocb_unlock_irqrestore() anymore. 1091 */ 1092 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1093 1094 /* Sanity check */ 1095 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1096 1097 1098 return 0; 1099 } 1100 1101 int rcu_nocb_cpu_deoffload(int cpu) 1102 { 1103 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1104 int ret = 0; 1105 1106 cpus_read_lock(); 1107 mutex_lock(&rcu_state.barrier_mutex); 1108 if (rcu_rdp_is_offloaded(rdp)) { 1109 if (cpu_online(cpu)) { 1110 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1111 if (!ret) 1112 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1113 } else { 1114 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1115 ret = -EINVAL; 1116 } 1117 } 1118 mutex_unlock(&rcu_state.barrier_mutex); 1119 cpus_read_unlock(); 1120 1121 return ret; 1122 } 1123 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1124 1125 static long rcu_nocb_rdp_offload(void *arg) 1126 { 1127 struct rcu_data *rdp = arg; 1128 struct rcu_segcblist *cblist = &rdp->cblist; 1129 unsigned long flags; 1130 int wake_gp; 1131 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1132 1133 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1134 /* 1135 * For now we only support re-offload, ie: the rdp must have been 1136 * offloaded on boot first. 1137 */ 1138 if (!rdp->nocb_gp_rdp) 1139 return -EINVAL; 1140 1141 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1142 return -EINVAL; 1143 1144 pr_info("Offloading %d\n", rdp->cpu); 1145 1146 /* 1147 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1148 * is set. 1149 */ 1150 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1151 1152 /* 1153 * We didn't take the nocb lock while working on the 1154 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1155 * Every modifications that have been done previously on 1156 * rdp->cblist must be visible remotely by the nocb kthreads 1157 * upon wake up after reading the cblist flags. 1158 * 1159 * The layout against nocb_lock enforces that ordering: 1160 * 1161 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1162 * ------------------------- ---------------------------- 1163 * WRITE callbacks rcu_nocb_lock() 1164 * rcu_nocb_lock() READ flags 1165 * WRITE flags READ callbacks 1166 * rcu_nocb_unlock() rcu_nocb_unlock() 1167 */ 1168 wake_gp = rdp_offload_toggle(rdp, true, flags); 1169 if (wake_gp) 1170 wake_up_process(rdp_gp->nocb_gp_kthread); 1171 swait_event_exclusive(rdp->nocb_state_wq, 1172 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1173 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1174 1175 /* 1176 * All kthreads are ready to work, we can finally relieve rcu_core() and 1177 * enable nocb bypass. 1178 */ 1179 rcu_nocb_lock_irqsave(rdp, flags); 1180 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1181 rcu_nocb_unlock_irqrestore(rdp, flags); 1182 1183 return 0; 1184 } 1185 1186 int rcu_nocb_cpu_offload(int cpu) 1187 { 1188 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1189 int ret = 0; 1190 1191 cpus_read_lock(); 1192 mutex_lock(&rcu_state.barrier_mutex); 1193 if (!rcu_rdp_is_offloaded(rdp)) { 1194 if (cpu_online(cpu)) { 1195 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1196 if (!ret) 1197 cpumask_set_cpu(cpu, rcu_nocb_mask); 1198 } else { 1199 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1200 ret = -EINVAL; 1201 } 1202 } 1203 mutex_unlock(&rcu_state.barrier_mutex); 1204 cpus_read_unlock(); 1205 1206 return ret; 1207 } 1208 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1209 1210 void __init rcu_init_nohz(void) 1211 { 1212 int cpu; 1213 bool need_rcu_nocb_mask = false; 1214 bool offload_all = false; 1215 struct rcu_data *rdp; 1216 1217 #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) 1218 if (!rcu_state.nocb_is_setup) { 1219 need_rcu_nocb_mask = true; 1220 offload_all = true; 1221 } 1222 #endif /* #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) */ 1223 1224 #if defined(CONFIG_NO_HZ_FULL) 1225 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) { 1226 need_rcu_nocb_mask = true; 1227 offload_all = false; /* NO_HZ_FULL has its own mask. */ 1228 } 1229 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 1230 1231 if (need_rcu_nocb_mask) { 1232 if (!cpumask_available(rcu_nocb_mask)) { 1233 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1234 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1235 return; 1236 } 1237 } 1238 rcu_state.nocb_is_setup = true; 1239 } 1240 1241 if (!rcu_state.nocb_is_setup) 1242 return; 1243 1244 #if defined(CONFIG_NO_HZ_FULL) 1245 if (tick_nohz_full_running) 1246 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 1247 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 1248 1249 if (offload_all) 1250 cpumask_setall(rcu_nocb_mask); 1251 1252 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1253 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1254 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1255 rcu_nocb_mask); 1256 } 1257 if (cpumask_empty(rcu_nocb_mask)) 1258 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1259 else 1260 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1261 cpumask_pr_args(rcu_nocb_mask)); 1262 if (rcu_nocb_poll) 1263 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1264 1265 for_each_cpu(cpu, rcu_nocb_mask) { 1266 rdp = per_cpu_ptr(&rcu_data, cpu); 1267 if (rcu_segcblist_empty(&rdp->cblist)) 1268 rcu_segcblist_init(&rdp->cblist); 1269 rcu_segcblist_offload(&rdp->cblist, true); 1270 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1271 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1272 } 1273 rcu_organize_nocb_kthreads(); 1274 } 1275 1276 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1277 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1278 { 1279 init_swait_queue_head(&rdp->nocb_cb_wq); 1280 init_swait_queue_head(&rdp->nocb_gp_wq); 1281 init_swait_queue_head(&rdp->nocb_state_wq); 1282 raw_spin_lock_init(&rdp->nocb_lock); 1283 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1284 raw_spin_lock_init(&rdp->nocb_gp_lock); 1285 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1286 rcu_cblist_init(&rdp->nocb_bypass); 1287 mutex_init(&rdp->nocb_gp_kthread_mutex); 1288 } 1289 1290 /* 1291 * If the specified CPU is a no-CBs CPU that does not already have its 1292 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1293 * for this CPU's group has not yet been created, spawn it as well. 1294 */ 1295 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1296 { 1297 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1298 struct rcu_data *rdp_gp; 1299 struct task_struct *t; 1300 struct sched_param sp; 1301 1302 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1303 return; 1304 1305 /* If there already is an rcuo kthread, then nothing to do. */ 1306 if (rdp->nocb_cb_kthread) 1307 return; 1308 1309 /* If we didn't spawn the GP kthread first, reorganize! */ 1310 sp.sched_priority = kthread_prio; 1311 rdp_gp = rdp->nocb_gp_rdp; 1312 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1313 if (!rdp_gp->nocb_gp_kthread) { 1314 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1315 "rcuog/%d", rdp_gp->cpu); 1316 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1317 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1318 goto end; 1319 } 1320 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1321 if (kthread_prio) 1322 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1323 } 1324 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1325 1326 /* Spawn the kthread for this CPU. */ 1327 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1328 "rcuo%c/%d", rcu_state.abbr, cpu); 1329 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1330 goto end; 1331 1332 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1333 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1334 1335 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1336 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1337 return; 1338 end: 1339 mutex_lock(&rcu_state.barrier_mutex); 1340 if (rcu_rdp_is_offloaded(rdp)) { 1341 rcu_nocb_rdp_deoffload(rdp); 1342 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1343 } 1344 mutex_unlock(&rcu_state.barrier_mutex); 1345 } 1346 1347 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1348 static int rcu_nocb_gp_stride = -1; 1349 module_param(rcu_nocb_gp_stride, int, 0444); 1350 1351 /* 1352 * Initialize GP-CB relationships for all no-CBs CPU. 1353 */ 1354 static void __init rcu_organize_nocb_kthreads(void) 1355 { 1356 int cpu; 1357 bool firsttime = true; 1358 bool gotnocbs = false; 1359 bool gotnocbscbs = true; 1360 int ls = rcu_nocb_gp_stride; 1361 int nl = 0; /* Next GP kthread. */ 1362 struct rcu_data *rdp; 1363 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1364 1365 if (!cpumask_available(rcu_nocb_mask)) 1366 return; 1367 if (ls == -1) { 1368 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1369 rcu_nocb_gp_stride = ls; 1370 } 1371 1372 /* 1373 * Each pass through this loop sets up one rcu_data structure. 1374 * Should the corresponding CPU come online in the future, then 1375 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1376 */ 1377 for_each_possible_cpu(cpu) { 1378 rdp = per_cpu_ptr(&rcu_data, cpu); 1379 if (rdp->cpu >= nl) { 1380 /* New GP kthread, set up for CBs & next GP. */ 1381 gotnocbs = true; 1382 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1383 rdp_gp = rdp; 1384 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1385 if (dump_tree) { 1386 if (!firsttime) 1387 pr_cont("%s\n", gotnocbscbs 1388 ? "" : " (self only)"); 1389 gotnocbscbs = false; 1390 firsttime = false; 1391 pr_alert("%s: No-CB GP kthread CPU %d:", 1392 __func__, cpu); 1393 } 1394 } else { 1395 /* Another CB kthread, link to previous GP kthread. */ 1396 gotnocbscbs = true; 1397 if (dump_tree) 1398 pr_cont(" %d", cpu); 1399 } 1400 rdp->nocb_gp_rdp = rdp_gp; 1401 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1402 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1403 } 1404 if (gotnocbs && dump_tree) 1405 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1406 } 1407 1408 /* 1409 * Bind the current task to the offloaded CPUs. If there are no offloaded 1410 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1411 */ 1412 void rcu_bind_current_to_nocb(void) 1413 { 1414 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1415 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1416 } 1417 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1418 1419 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1420 #ifdef CONFIG_SMP 1421 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1422 { 1423 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1424 } 1425 #else // #ifdef CONFIG_SMP 1426 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1427 { 1428 return ""; 1429 } 1430 #endif // #else #ifdef CONFIG_SMP 1431 1432 /* 1433 * Dump out nocb grace-period kthread state for the specified rcu_data 1434 * structure. 1435 */ 1436 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1437 { 1438 struct rcu_node *rnp = rdp->mynode; 1439 1440 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1441 rdp->cpu, 1442 "kK"[!!rdp->nocb_gp_kthread], 1443 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1444 "dD"[!!rdp->nocb_defer_wakeup], 1445 "tT"[timer_pending(&rdp->nocb_timer)], 1446 "sS"[!!rdp->nocb_gp_sleep], 1447 ".W"[swait_active(&rdp->nocb_gp_wq)], 1448 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1449 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1450 ".B"[!!rdp->nocb_gp_bypass], 1451 ".G"[!!rdp->nocb_gp_gp], 1452 (long)rdp->nocb_gp_seq, 1453 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1454 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1455 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1456 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1457 } 1458 1459 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1460 static void show_rcu_nocb_state(struct rcu_data *rdp) 1461 { 1462 char bufw[20]; 1463 char bufr[20]; 1464 struct rcu_data *nocb_next_rdp; 1465 struct rcu_segcblist *rsclp = &rdp->cblist; 1466 bool waslocked; 1467 bool wassleep; 1468 1469 if (rdp->nocb_gp_rdp == rdp) 1470 show_rcu_nocb_gp_state(rdp); 1471 1472 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1473 &rdp->nocb_entry_rdp, 1474 typeof(*rdp), 1475 nocb_entry_rdp); 1476 1477 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1478 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1479 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1480 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1481 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1482 "kK"[!!rdp->nocb_cb_kthread], 1483 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1484 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 1485 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1486 "sS"[!!rdp->nocb_cb_sleep], 1487 ".W"[swait_active(&rdp->nocb_cb_wq)], 1488 jiffies - rdp->nocb_bypass_first, 1489 jiffies - rdp->nocb_nobypass_last, 1490 rdp->nocb_nobypass_count, 1491 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1492 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1493 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1494 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1495 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1496 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1497 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1498 rcu_segcblist_n_cbs(&rdp->cblist), 1499 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1500 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1501 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1502 1503 /* It is OK for GP kthreads to have GP state. */ 1504 if (rdp->nocb_gp_rdp == rdp) 1505 return; 1506 1507 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1508 wassleep = swait_active(&rdp->nocb_gp_wq); 1509 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1510 return; /* Nothing untoward. */ 1511 1512 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1513 "lL"[waslocked], 1514 "dD"[!!rdp->nocb_defer_wakeup], 1515 "sS"[!!rdp->nocb_gp_sleep], 1516 ".W"[wassleep]); 1517 } 1518 1519 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1520 1521 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1522 { 1523 return 0; 1524 } 1525 1526 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1527 { 1528 return false; 1529 } 1530 1531 /* No ->nocb_lock to acquire. */ 1532 static void rcu_nocb_lock(struct rcu_data *rdp) 1533 { 1534 } 1535 1536 /* No ->nocb_lock to release. */ 1537 static void rcu_nocb_unlock(struct rcu_data *rdp) 1538 { 1539 } 1540 1541 /* No ->nocb_lock to release. */ 1542 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1543 unsigned long flags) 1544 { 1545 local_irq_restore(flags); 1546 } 1547 1548 /* Lockdep check that ->cblist may be safely accessed. */ 1549 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1550 { 1551 lockdep_assert_irqs_disabled(); 1552 } 1553 1554 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1555 { 1556 } 1557 1558 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1559 { 1560 return NULL; 1561 } 1562 1563 static void rcu_init_one_nocb(struct rcu_node *rnp) 1564 { 1565 } 1566 1567 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1568 unsigned long j) 1569 { 1570 return true; 1571 } 1572 1573 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1574 bool *was_alldone, unsigned long flags) 1575 { 1576 return false; 1577 } 1578 1579 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1580 unsigned long flags) 1581 { 1582 WARN_ON_ONCE(1); /* Should be dead code! */ 1583 } 1584 1585 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1586 { 1587 } 1588 1589 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1590 { 1591 return false; 1592 } 1593 1594 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1595 { 1596 return false; 1597 } 1598 1599 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1600 { 1601 } 1602 1603 static void show_rcu_nocb_state(struct rcu_data *rdp) 1604 { 1605 } 1606 1607 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1608