1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/sched/debug.h> 39 #include <linux/nmi.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/export.h> 43 #include <linux/completion.h> 44 #include <linux/moduleparam.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <uapi/linux/sched/types.h> 54 #include <linux/prefetch.h> 55 #include <linux/delay.h> 56 #include <linux/stop_machine.h> 57 #include <linux/random.h> 58 #include <linux/trace_events.h> 59 #include <linux/suspend.h> 60 #include <linux/ftrace.h> 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * In order to export the rcu_state name to the tracing tools, it 74 * needs to be added in the __tracepoint_string section. 75 * This requires defining a separate variable tp_<sname>_varname 76 * that points to the string being used, and this will allow 77 * the tracing userspace tools to be able to decipher the string 78 * address to the matching string. 79 */ 80 #ifdef CONFIG_TRACING 81 # define DEFINE_RCU_TPS(sname) \ 82 static char sname##_varname[] = #sname; \ 83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 84 # define RCU_STATE_NAME(sname) sname##_varname 85 #else 86 # define DEFINE_RCU_TPS(sname) 87 # define RCU_STATE_NAME(sname) __stringify(sname) 88 #endif 89 90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 91 DEFINE_RCU_TPS(sname) \ 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 93 struct rcu_state sname##_state = { \ 94 .level = { &sname##_state.node[0] }, \ 95 .rda = &sname##_data, \ 96 .call = cr, \ 97 .gp_state = RCU_GP_IDLE, \ 98 .gpnum = 0UL - 300UL, \ 99 .completed = 0UL - 300UL, \ 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \ 102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \ 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 104 .name = RCU_STATE_NAME(sname), \ 105 .abbr = sabbr, \ 106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 108 } 109 110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 112 113 static struct rcu_state *const rcu_state_p; 114 LIST_HEAD(rcu_struct_flavors); 115 116 /* Dump rcu_node combining tree at boot to verify correct setup. */ 117 static bool dump_tree; 118 module_param(dump_tree, bool, 0444); 119 /* Control rcu_node-tree auto-balancing at boot time. */ 120 static bool rcu_fanout_exact; 121 module_param(rcu_fanout_exact, bool, 0444); 122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 124 module_param(rcu_fanout_leaf, int, 0444); 125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 126 /* Number of rcu_nodes at specified level. */ 127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 129 /* panic() on RCU Stall sysctl. */ 130 int sysctl_panic_on_rcu_stall __read_mostly; 131 132 /* 133 * The rcu_scheduler_active variable is initialized to the value 134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 136 * RCU can assume that there is but one task, allowing RCU to (for example) 137 * optimize synchronize_rcu() to a simple barrier(). When this variable 138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 139 * to detect real grace periods. This variable is also used to suppress 140 * boot-time false positives from lockdep-RCU error checking. Finally, it 141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 142 * is fully initialized, including all of its kthreads having been spawned. 143 */ 144 int rcu_scheduler_active __read_mostly; 145 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 146 147 /* 148 * The rcu_scheduler_fully_active variable transitions from zero to one 149 * during the early_initcall() processing, which is after the scheduler 150 * is capable of creating new tasks. So RCU processing (for example, 151 * creating tasks for RCU priority boosting) must be delayed until after 152 * rcu_scheduler_fully_active transitions from zero to one. We also 153 * currently delay invocation of any RCU callbacks until after this point. 154 * 155 * It might later prove better for people registering RCU callbacks during 156 * early boot to take responsibility for these callbacks, but one step at 157 * a time. 158 */ 159 static int rcu_scheduler_fully_active __read_mostly; 160 161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 164 static void invoke_rcu_core(void); 165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 166 static void rcu_report_exp_rdp(struct rcu_state *rsp, 167 struct rcu_data *rdp, bool wake); 168 static void sync_sched_exp_online_cleanup(int cpu); 169 170 /* rcuc/rcub kthread realtime priority */ 171 #ifdef CONFIG_RCU_KTHREAD_PRIO 172 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 173 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 174 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 175 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 176 module_param(kthread_prio, int, 0644); 177 178 /* Delay in jiffies for grace-period initialization delays, debug only. */ 179 180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 181 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 182 module_param(gp_preinit_delay, int, 0644); 183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 184 static const int gp_preinit_delay; 185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 186 187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 188 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 189 module_param(gp_init_delay, int, 0644); 190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 191 static const int gp_init_delay; 192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 193 194 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 195 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 196 module_param(gp_cleanup_delay, int, 0644); 197 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 198 static const int gp_cleanup_delay; 199 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 200 201 /* 202 * Number of grace periods between delays, normalized by the duration of 203 * the delay. The longer the delay, the more the grace periods between 204 * each delay. The reason for this normalization is that it means that, 205 * for non-zero delays, the overall slowdown of grace periods is constant 206 * regardless of the duration of the delay. This arrangement balances 207 * the need for long delays to increase some race probabilities with the 208 * need for fast grace periods to increase other race probabilities. 209 */ 210 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 211 212 /* 213 * Track the rcutorture test sequence number and the update version 214 * number within a given test. The rcutorture_testseq is incremented 215 * on every rcutorture module load and unload, so has an odd value 216 * when a test is running. The rcutorture_vernum is set to zero 217 * when rcutorture starts and is incremented on each rcutorture update. 218 * These variables enable correlating rcutorture output with the 219 * RCU tracing information. 220 */ 221 unsigned long rcutorture_testseq; 222 unsigned long rcutorture_vernum; 223 224 /* 225 * Compute the mask of online CPUs for the specified rcu_node structure. 226 * This will not be stable unless the rcu_node structure's ->lock is 227 * held, but the bit corresponding to the current CPU will be stable 228 * in most contexts. 229 */ 230 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 231 { 232 return READ_ONCE(rnp->qsmaskinitnext); 233 } 234 235 /* 236 * Return true if an RCU grace period is in progress. The READ_ONCE()s 237 * permit this function to be invoked without holding the root rcu_node 238 * structure's ->lock, but of course results can be subject to change. 239 */ 240 static int rcu_gp_in_progress(struct rcu_state *rsp) 241 { 242 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 243 } 244 245 /* 246 * Note a quiescent state. Because we do not need to know 247 * how many quiescent states passed, just if there was at least 248 * one since the start of the grace period, this just sets a flag. 249 * The caller must have disabled preemption. 250 */ 251 void rcu_sched_qs(void) 252 { 253 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 254 return; 255 trace_rcu_grace_period(TPS("rcu_sched"), 256 __this_cpu_read(rcu_sched_data.gpnum), 257 TPS("cpuqs")); 258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 259 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 260 return; 261 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 262 rcu_report_exp_rdp(&rcu_sched_state, 263 this_cpu_ptr(&rcu_sched_data), true); 264 } 265 266 void rcu_bh_qs(void) 267 { 268 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 269 trace_rcu_grace_period(TPS("rcu_bh"), 270 __this_cpu_read(rcu_bh_data.gpnum), 271 TPS("cpuqs")); 272 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 273 } 274 } 275 276 /* 277 * Steal a bit from the bottom of ->dynticks for idle entry/exit 278 * control. Initially this is for TLB flushing. 279 */ 280 #define RCU_DYNTICK_CTRL_MASK 0x1 281 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 282 #ifndef rcu_eqs_special_exit 283 #define rcu_eqs_special_exit() do { } while (0) 284 #endif 285 286 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 287 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 288 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 289 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 290 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 291 .dynticks_idle = ATOMIC_INIT(1), 292 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 293 }; 294 295 /* 296 * There's a few places, currently just in the tracing infrastructure, 297 * that uses rcu_irq_enter() to make sure RCU is watching. But there's 298 * a small location where that will not even work. In those cases 299 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter() 300 * can be called. 301 */ 302 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter); 303 304 bool rcu_irq_enter_disabled(void) 305 { 306 return this_cpu_read(disable_rcu_irq_enter); 307 } 308 309 /* 310 * Record entry into an extended quiescent state. This is only to be 311 * called when not already in an extended quiescent state. 312 */ 313 static void rcu_dynticks_eqs_enter(void) 314 { 315 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 316 int seq; 317 318 /* 319 * CPUs seeing atomic_add_return() must see prior RCU read-side 320 * critical sections, and we also must force ordering with the 321 * next idle sojourn. 322 */ 323 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 324 /* Better be in an extended quiescent state! */ 325 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 326 (seq & RCU_DYNTICK_CTRL_CTR)); 327 /* Better not have special action (TLB flush) pending! */ 328 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 329 (seq & RCU_DYNTICK_CTRL_MASK)); 330 } 331 332 /* 333 * Record exit from an extended quiescent state. This is only to be 334 * called from an extended quiescent state. 335 */ 336 static void rcu_dynticks_eqs_exit(void) 337 { 338 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 339 int seq; 340 341 /* 342 * CPUs seeing atomic_add_return() must see prior idle sojourns, 343 * and we also must force ordering with the next RCU read-side 344 * critical section. 345 */ 346 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 347 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 348 !(seq & RCU_DYNTICK_CTRL_CTR)); 349 if (seq & RCU_DYNTICK_CTRL_MASK) { 350 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 351 smp_mb__after_atomic(); /* _exit after clearing mask. */ 352 /* Prefer duplicate flushes to losing a flush. */ 353 rcu_eqs_special_exit(); 354 } 355 } 356 357 /* 358 * Reset the current CPU's ->dynticks counter to indicate that the 359 * newly onlined CPU is no longer in an extended quiescent state. 360 * This will either leave the counter unchanged, or increment it 361 * to the next non-quiescent value. 362 * 363 * The non-atomic test/increment sequence works because the upper bits 364 * of the ->dynticks counter are manipulated only by the corresponding CPU, 365 * or when the corresponding CPU is offline. 366 */ 367 static void rcu_dynticks_eqs_online(void) 368 { 369 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 370 371 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 372 return; 373 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 374 } 375 376 /* 377 * Is the current CPU in an extended quiescent state? 378 * 379 * No ordering, as we are sampling CPU-local information. 380 */ 381 bool rcu_dynticks_curr_cpu_in_eqs(void) 382 { 383 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 384 385 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 386 } 387 388 /* 389 * Snapshot the ->dynticks counter with full ordering so as to allow 390 * stable comparison of this counter with past and future snapshots. 391 */ 392 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 393 { 394 int snap = atomic_add_return(0, &rdtp->dynticks); 395 396 return snap & ~RCU_DYNTICK_CTRL_MASK; 397 } 398 399 /* 400 * Return true if the snapshot returned from rcu_dynticks_snap() 401 * indicates that RCU is in an extended quiescent state. 402 */ 403 static bool rcu_dynticks_in_eqs(int snap) 404 { 405 return !(snap & RCU_DYNTICK_CTRL_CTR); 406 } 407 408 /* 409 * Return true if the CPU corresponding to the specified rcu_dynticks 410 * structure has spent some time in an extended quiescent state since 411 * rcu_dynticks_snap() returned the specified snapshot. 412 */ 413 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 414 { 415 return snap != rcu_dynticks_snap(rdtp); 416 } 417 418 /* 419 * Do a double-increment of the ->dynticks counter to emulate a 420 * momentary idle-CPU quiescent state. 421 */ 422 static void rcu_dynticks_momentary_idle(void) 423 { 424 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 425 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 426 &rdtp->dynticks); 427 428 /* It is illegal to call this from idle state. */ 429 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 430 } 431 432 /* 433 * Set the special (bottom) bit of the specified CPU so that it 434 * will take special action (such as flushing its TLB) on the 435 * next exit from an extended quiescent state. Returns true if 436 * the bit was successfully set, or false if the CPU was not in 437 * an extended quiescent state. 438 */ 439 bool rcu_eqs_special_set(int cpu) 440 { 441 int old; 442 int new; 443 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 444 445 do { 446 old = atomic_read(&rdtp->dynticks); 447 if (old & RCU_DYNTICK_CTRL_CTR) 448 return false; 449 new = old | RCU_DYNTICK_CTRL_MASK; 450 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 451 return true; 452 } 453 454 /* 455 * Let the RCU core know that this CPU has gone through the scheduler, 456 * which is a quiescent state. This is called when the need for a 457 * quiescent state is urgent, so we burn an atomic operation and full 458 * memory barriers to let the RCU core know about it, regardless of what 459 * this CPU might (or might not) do in the near future. 460 * 461 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 462 * 463 * The caller must have disabled interrupts. 464 */ 465 static void rcu_momentary_dyntick_idle(void) 466 { 467 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 468 rcu_dynticks_momentary_idle(); 469 } 470 471 /* 472 * Note a context switch. This is a quiescent state for RCU-sched, 473 * and requires special handling for preemptible RCU. 474 * The caller must have disabled interrupts. 475 */ 476 void rcu_note_context_switch(bool preempt) 477 { 478 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 479 trace_rcu_utilization(TPS("Start context switch")); 480 rcu_sched_qs(); 481 rcu_preempt_note_context_switch(); 482 /* Load rcu_urgent_qs before other flags. */ 483 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 484 goto out; 485 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 486 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 487 rcu_momentary_dyntick_idle(); 488 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 489 if (!preempt) 490 rcu_note_voluntary_context_switch_lite(current); 491 out: 492 trace_rcu_utilization(TPS("End context switch")); 493 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 494 } 495 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 496 497 /* 498 * Register a quiescent state for all RCU flavors. If there is an 499 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 500 * dyntick-idle quiescent state visible to other CPUs (but only for those 501 * RCU flavors in desperate need of a quiescent state, which will normally 502 * be none of them). Either way, do a lightweight quiescent state for 503 * all RCU flavors. 504 * 505 * The barrier() calls are redundant in the common case when this is 506 * called externally, but just in case this is called from within this 507 * file. 508 * 509 */ 510 void rcu_all_qs(void) 511 { 512 unsigned long flags; 513 514 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 515 return; 516 preempt_disable(); 517 /* Load rcu_urgent_qs before other flags. */ 518 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 519 preempt_enable(); 520 return; 521 } 522 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 523 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 524 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 525 local_irq_save(flags); 526 rcu_momentary_dyntick_idle(); 527 local_irq_restore(flags); 528 } 529 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 530 rcu_sched_qs(); 531 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 532 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 533 preempt_enable(); 534 } 535 EXPORT_SYMBOL_GPL(rcu_all_qs); 536 537 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 538 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 539 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 540 541 module_param(blimit, long, 0444); 542 module_param(qhimark, long, 0444); 543 module_param(qlowmark, long, 0444); 544 545 static ulong jiffies_till_first_fqs = ULONG_MAX; 546 static ulong jiffies_till_next_fqs = ULONG_MAX; 547 static bool rcu_kick_kthreads; 548 549 module_param(jiffies_till_first_fqs, ulong, 0644); 550 module_param(jiffies_till_next_fqs, ulong, 0644); 551 module_param(rcu_kick_kthreads, bool, 0644); 552 553 /* 554 * How long the grace period must be before we start recruiting 555 * quiescent-state help from rcu_note_context_switch(). 556 */ 557 static ulong jiffies_till_sched_qs = HZ / 20; 558 module_param(jiffies_till_sched_qs, ulong, 0644); 559 560 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 561 struct rcu_data *rdp); 562 static void force_qs_rnp(struct rcu_state *rsp, 563 int (*f)(struct rcu_data *rsp, bool *isidle, 564 unsigned long *maxj), 565 bool *isidle, unsigned long *maxj); 566 static void force_quiescent_state(struct rcu_state *rsp); 567 static int rcu_pending(void); 568 569 /* 570 * Return the number of RCU batches started thus far for debug & stats. 571 */ 572 unsigned long rcu_batches_started(void) 573 { 574 return rcu_state_p->gpnum; 575 } 576 EXPORT_SYMBOL_GPL(rcu_batches_started); 577 578 /* 579 * Return the number of RCU-sched batches started thus far for debug & stats. 580 */ 581 unsigned long rcu_batches_started_sched(void) 582 { 583 return rcu_sched_state.gpnum; 584 } 585 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 586 587 /* 588 * Return the number of RCU BH batches started thus far for debug & stats. 589 */ 590 unsigned long rcu_batches_started_bh(void) 591 { 592 return rcu_bh_state.gpnum; 593 } 594 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 595 596 /* 597 * Return the number of RCU batches completed thus far for debug & stats. 598 */ 599 unsigned long rcu_batches_completed(void) 600 { 601 return rcu_state_p->completed; 602 } 603 EXPORT_SYMBOL_GPL(rcu_batches_completed); 604 605 /* 606 * Return the number of RCU-sched batches completed thus far for debug & stats. 607 */ 608 unsigned long rcu_batches_completed_sched(void) 609 { 610 return rcu_sched_state.completed; 611 } 612 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 613 614 /* 615 * Return the number of RCU BH batches completed thus far for debug & stats. 616 */ 617 unsigned long rcu_batches_completed_bh(void) 618 { 619 return rcu_bh_state.completed; 620 } 621 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 622 623 /* 624 * Return the number of RCU expedited batches completed thus far for 625 * debug & stats. Odd numbers mean that a batch is in progress, even 626 * numbers mean idle. The value returned will thus be roughly double 627 * the cumulative batches since boot. 628 */ 629 unsigned long rcu_exp_batches_completed(void) 630 { 631 return rcu_state_p->expedited_sequence; 632 } 633 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 634 635 /* 636 * Return the number of RCU-sched expedited batches completed thus far 637 * for debug & stats. Similar to rcu_exp_batches_completed(). 638 */ 639 unsigned long rcu_exp_batches_completed_sched(void) 640 { 641 return rcu_sched_state.expedited_sequence; 642 } 643 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 644 645 /* 646 * Force a quiescent state. 647 */ 648 void rcu_force_quiescent_state(void) 649 { 650 force_quiescent_state(rcu_state_p); 651 } 652 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 653 654 /* 655 * Force a quiescent state for RCU BH. 656 */ 657 void rcu_bh_force_quiescent_state(void) 658 { 659 force_quiescent_state(&rcu_bh_state); 660 } 661 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 662 663 /* 664 * Force a quiescent state for RCU-sched. 665 */ 666 void rcu_sched_force_quiescent_state(void) 667 { 668 force_quiescent_state(&rcu_sched_state); 669 } 670 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 671 672 /* 673 * Show the state of the grace-period kthreads. 674 */ 675 void show_rcu_gp_kthreads(void) 676 { 677 struct rcu_state *rsp; 678 679 for_each_rcu_flavor(rsp) { 680 pr_info("%s: wait state: %d ->state: %#lx\n", 681 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 682 /* sched_show_task(rsp->gp_kthread); */ 683 } 684 } 685 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 686 687 /* 688 * Record the number of times rcutorture tests have been initiated and 689 * terminated. This information allows the debugfs tracing stats to be 690 * correlated to the rcutorture messages, even when the rcutorture module 691 * is being repeatedly loaded and unloaded. In other words, we cannot 692 * store this state in rcutorture itself. 693 */ 694 void rcutorture_record_test_transition(void) 695 { 696 rcutorture_testseq++; 697 rcutorture_vernum = 0; 698 } 699 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 700 701 /* 702 * Send along grace-period-related data for rcutorture diagnostics. 703 */ 704 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 705 unsigned long *gpnum, unsigned long *completed) 706 { 707 struct rcu_state *rsp = NULL; 708 709 switch (test_type) { 710 case RCU_FLAVOR: 711 rsp = rcu_state_p; 712 break; 713 case RCU_BH_FLAVOR: 714 rsp = &rcu_bh_state; 715 break; 716 case RCU_SCHED_FLAVOR: 717 rsp = &rcu_sched_state; 718 break; 719 default: 720 break; 721 } 722 if (rsp == NULL) 723 return; 724 *flags = READ_ONCE(rsp->gp_flags); 725 *gpnum = READ_ONCE(rsp->gpnum); 726 *completed = READ_ONCE(rsp->completed); 727 } 728 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 729 730 /* 731 * Record the number of writer passes through the current rcutorture test. 732 * This is also used to correlate debugfs tracing stats with the rcutorture 733 * messages. 734 */ 735 void rcutorture_record_progress(unsigned long vernum) 736 { 737 rcutorture_vernum++; 738 } 739 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 740 741 /* 742 * Return the root node of the specified rcu_state structure. 743 */ 744 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 745 { 746 return &rsp->node[0]; 747 } 748 749 /* 750 * Is there any need for future grace periods? 751 * Interrupts must be disabled. If the caller does not hold the root 752 * rnp_node structure's ->lock, the results are advisory only. 753 */ 754 static int rcu_future_needs_gp(struct rcu_state *rsp) 755 { 756 struct rcu_node *rnp = rcu_get_root(rsp); 757 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 758 int *fp = &rnp->need_future_gp[idx]; 759 760 return READ_ONCE(*fp); 761 } 762 763 /* 764 * Does the current CPU require a not-yet-started grace period? 765 * The caller must have disabled interrupts to prevent races with 766 * normal callback registry. 767 */ 768 static bool 769 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 770 { 771 if (rcu_gp_in_progress(rsp)) 772 return false; /* No, a grace period is already in progress. */ 773 if (rcu_future_needs_gp(rsp)) 774 return true; /* Yes, a no-CBs CPU needs one. */ 775 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 776 return false; /* No, this is a no-CBs (or offline) CPU. */ 777 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 778 return true; /* Yes, CPU has newly registered callbacks. */ 779 if (rcu_segcblist_future_gp_needed(&rdp->cblist, 780 READ_ONCE(rsp->completed))) 781 return true; /* Yes, CBs for future grace period. */ 782 return false; /* No grace period needed. */ 783 } 784 785 /* 786 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state 787 * 788 * Enter idle, doing appropriate accounting. The caller must have 789 * disabled interrupts. 790 */ 791 static void rcu_eqs_enter_common(bool user) 792 { 793 struct rcu_state *rsp; 794 struct rcu_data *rdp; 795 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 796 797 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0); 798 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 799 !user && !is_idle_task(current)) { 800 struct task_struct *idle __maybe_unused = 801 idle_task(smp_processor_id()); 802 803 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0); 804 rcu_ftrace_dump(DUMP_ORIG); 805 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 806 current->pid, current->comm, 807 idle->pid, idle->comm); /* must be idle task! */ 808 } 809 for_each_rcu_flavor(rsp) { 810 rdp = this_cpu_ptr(rsp->rda); 811 do_nocb_deferred_wakeup(rdp); 812 } 813 rcu_prepare_for_idle(); 814 __this_cpu_inc(disable_rcu_irq_enter); 815 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */ 816 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */ 817 __this_cpu_dec(disable_rcu_irq_enter); 818 rcu_dynticks_task_enter(); 819 820 /* 821 * It is illegal to enter an extended quiescent state while 822 * in an RCU read-side critical section. 823 */ 824 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 825 "Illegal idle entry in RCU read-side critical section."); 826 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 827 "Illegal idle entry in RCU-bh read-side critical section."); 828 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 829 "Illegal idle entry in RCU-sched read-side critical section."); 830 } 831 832 /* 833 * Enter an RCU extended quiescent state, which can be either the 834 * idle loop or adaptive-tickless usermode execution. 835 */ 836 static void rcu_eqs_enter(bool user) 837 { 838 struct rcu_dynticks *rdtp; 839 840 rdtp = this_cpu_ptr(&rcu_dynticks); 841 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 842 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0); 843 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) 844 rcu_eqs_enter_common(user); 845 else 846 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 847 } 848 849 /** 850 * rcu_idle_enter - inform RCU that current CPU is entering idle 851 * 852 * Enter idle mode, in other words, -leave- the mode in which RCU 853 * read-side critical sections can occur. (Though RCU read-side 854 * critical sections can occur in irq handlers in idle, a possibility 855 * handled by irq_enter() and irq_exit().) 856 * 857 * We crowbar the ->dynticks_nesting field to zero to allow for 858 * the possibility of usermode upcalls having messed up our count 859 * of interrupt nesting level during the prior busy period. 860 */ 861 void rcu_idle_enter(void) 862 { 863 unsigned long flags; 864 865 local_irq_save(flags); 866 rcu_eqs_enter(false); 867 rcu_sysidle_enter(0); 868 local_irq_restore(flags); 869 } 870 EXPORT_SYMBOL_GPL(rcu_idle_enter); 871 872 #ifdef CONFIG_NO_HZ_FULL 873 /** 874 * rcu_user_enter - inform RCU that we are resuming userspace. 875 * 876 * Enter RCU idle mode right before resuming userspace. No use of RCU 877 * is permitted between this call and rcu_user_exit(). This way the 878 * CPU doesn't need to maintain the tick for RCU maintenance purposes 879 * when the CPU runs in userspace. 880 */ 881 void rcu_user_enter(void) 882 { 883 rcu_eqs_enter(1); 884 } 885 #endif /* CONFIG_NO_HZ_FULL */ 886 887 /** 888 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 889 * 890 * Exit from an interrupt handler, which might possibly result in entering 891 * idle mode, in other words, leaving the mode in which read-side critical 892 * sections can occur. The caller must have disabled interrupts. 893 * 894 * This code assumes that the idle loop never does anything that might 895 * result in unbalanced calls to irq_enter() and irq_exit(). If your 896 * architecture violates this assumption, RCU will give you what you 897 * deserve, good and hard. But very infrequently and irreproducibly. 898 * 899 * Use things like work queues to work around this limitation. 900 * 901 * You have been warned. 902 */ 903 void rcu_irq_exit(void) 904 { 905 struct rcu_dynticks *rdtp; 906 907 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 908 rdtp = this_cpu_ptr(&rcu_dynticks); 909 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 910 rdtp->dynticks_nesting < 1); 911 if (rdtp->dynticks_nesting <= 1) { 912 rcu_eqs_enter_common(true); 913 } else { 914 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1); 915 rdtp->dynticks_nesting--; 916 } 917 rcu_sysidle_enter(1); 918 } 919 920 /* 921 * Wrapper for rcu_irq_exit() where interrupts are enabled. 922 */ 923 void rcu_irq_exit_irqson(void) 924 { 925 unsigned long flags; 926 927 local_irq_save(flags); 928 rcu_irq_exit(); 929 local_irq_restore(flags); 930 } 931 932 /* 933 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 934 * 935 * If the new value of the ->dynticks_nesting counter was previously zero, 936 * we really have exited idle, and must do the appropriate accounting. 937 * The caller must have disabled interrupts. 938 */ 939 static void rcu_eqs_exit_common(long long oldval, int user) 940 { 941 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 942 943 rcu_dynticks_task_exit(); 944 rcu_dynticks_eqs_exit(); 945 rcu_cleanup_after_idle(); 946 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 947 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 948 !user && !is_idle_task(current)) { 949 struct task_struct *idle __maybe_unused = 950 idle_task(smp_processor_id()); 951 952 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 953 oldval, rdtp->dynticks_nesting); 954 rcu_ftrace_dump(DUMP_ORIG); 955 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 956 current->pid, current->comm, 957 idle->pid, idle->comm); /* must be idle task! */ 958 } 959 } 960 961 /* 962 * Exit an RCU extended quiescent state, which can be either the 963 * idle loop or adaptive-tickless usermode execution. 964 */ 965 static void rcu_eqs_exit(bool user) 966 { 967 struct rcu_dynticks *rdtp; 968 long long oldval; 969 970 rdtp = this_cpu_ptr(&rcu_dynticks); 971 oldval = rdtp->dynticks_nesting; 972 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 973 if (oldval & DYNTICK_TASK_NEST_MASK) { 974 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 975 } else { 976 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 977 rcu_eqs_exit_common(oldval, user); 978 } 979 } 980 981 /** 982 * rcu_idle_exit - inform RCU that current CPU is leaving idle 983 * 984 * Exit idle mode, in other words, -enter- the mode in which RCU 985 * read-side critical sections can occur. 986 * 987 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 988 * allow for the possibility of usermode upcalls messing up our count 989 * of interrupt nesting level during the busy period that is just 990 * now starting. 991 */ 992 void rcu_idle_exit(void) 993 { 994 unsigned long flags; 995 996 local_irq_save(flags); 997 rcu_eqs_exit(false); 998 rcu_sysidle_exit(0); 999 local_irq_restore(flags); 1000 } 1001 EXPORT_SYMBOL_GPL(rcu_idle_exit); 1002 1003 #ifdef CONFIG_NO_HZ_FULL 1004 /** 1005 * rcu_user_exit - inform RCU that we are exiting userspace. 1006 * 1007 * Exit RCU idle mode while entering the kernel because it can 1008 * run a RCU read side critical section anytime. 1009 */ 1010 void rcu_user_exit(void) 1011 { 1012 rcu_eqs_exit(1); 1013 } 1014 #endif /* CONFIG_NO_HZ_FULL */ 1015 1016 /** 1017 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1018 * 1019 * Enter an interrupt handler, which might possibly result in exiting 1020 * idle mode, in other words, entering the mode in which read-side critical 1021 * sections can occur. The caller must have disabled interrupts. 1022 * 1023 * Note that the Linux kernel is fully capable of entering an interrupt 1024 * handler that it never exits, for example when doing upcalls to 1025 * user mode! This code assumes that the idle loop never does upcalls to 1026 * user mode. If your architecture does do upcalls from the idle loop (or 1027 * does anything else that results in unbalanced calls to the irq_enter() 1028 * and irq_exit() functions), RCU will give you what you deserve, good 1029 * and hard. But very infrequently and irreproducibly. 1030 * 1031 * Use things like work queues to work around this limitation. 1032 * 1033 * You have been warned. 1034 */ 1035 void rcu_irq_enter(void) 1036 { 1037 struct rcu_dynticks *rdtp; 1038 long long oldval; 1039 1040 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 1041 rdtp = this_cpu_ptr(&rcu_dynticks); 1042 oldval = rdtp->dynticks_nesting; 1043 rdtp->dynticks_nesting++; 1044 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 1045 rdtp->dynticks_nesting == 0); 1046 if (oldval) 1047 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 1048 else 1049 rcu_eqs_exit_common(oldval, true); 1050 rcu_sysidle_exit(1); 1051 } 1052 1053 /* 1054 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1055 */ 1056 void rcu_irq_enter_irqson(void) 1057 { 1058 unsigned long flags; 1059 1060 local_irq_save(flags); 1061 rcu_irq_enter(); 1062 local_irq_restore(flags); 1063 } 1064 1065 /** 1066 * rcu_nmi_enter - inform RCU of entry to NMI context 1067 * 1068 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 1069 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 1070 * that the CPU is active. This implementation permits nested NMIs, as 1071 * long as the nesting level does not overflow an int. (You will probably 1072 * run out of stack space first.) 1073 */ 1074 void rcu_nmi_enter(void) 1075 { 1076 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1077 int incby = 2; 1078 1079 /* Complain about underflow. */ 1080 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 1081 1082 /* 1083 * If idle from RCU viewpoint, atomically increment ->dynticks 1084 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1085 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1086 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1087 * to be in the outermost NMI handler that interrupted an RCU-idle 1088 * period (observation due to Andy Lutomirski). 1089 */ 1090 if (rcu_dynticks_curr_cpu_in_eqs()) { 1091 rcu_dynticks_eqs_exit(); 1092 incby = 1; 1093 } 1094 rdtp->dynticks_nmi_nesting += incby; 1095 barrier(); 1096 } 1097 1098 /** 1099 * rcu_nmi_exit - inform RCU of exit from NMI context 1100 * 1101 * If we are returning from the outermost NMI handler that interrupted an 1102 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 1103 * to let the RCU grace-period handling know that the CPU is back to 1104 * being RCU-idle. 1105 */ 1106 void rcu_nmi_exit(void) 1107 { 1108 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1109 1110 /* 1111 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1112 * (We are exiting an NMI handler, so RCU better be paying attention 1113 * to us!) 1114 */ 1115 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1116 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 1117 1118 /* 1119 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1120 * leave it in non-RCU-idle state. 1121 */ 1122 if (rdtp->dynticks_nmi_nesting != 1) { 1123 rdtp->dynticks_nmi_nesting -= 2; 1124 return; 1125 } 1126 1127 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1128 rdtp->dynticks_nmi_nesting = 0; 1129 rcu_dynticks_eqs_enter(); 1130 } 1131 1132 /** 1133 * __rcu_is_watching - are RCU read-side critical sections safe? 1134 * 1135 * Return true if RCU is watching the running CPU, which means that 1136 * this CPU can safely enter RCU read-side critical sections. Unlike 1137 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 1138 * least disabled preemption. 1139 */ 1140 bool notrace __rcu_is_watching(void) 1141 { 1142 return !rcu_dynticks_curr_cpu_in_eqs(); 1143 } 1144 1145 /** 1146 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1147 * 1148 * If the current CPU is in its idle loop and is neither in an interrupt 1149 * or NMI handler, return true. 1150 */ 1151 bool notrace rcu_is_watching(void) 1152 { 1153 bool ret; 1154 1155 preempt_disable_notrace(); 1156 ret = __rcu_is_watching(); 1157 preempt_enable_notrace(); 1158 return ret; 1159 } 1160 EXPORT_SYMBOL_GPL(rcu_is_watching); 1161 1162 /* 1163 * If a holdout task is actually running, request an urgent quiescent 1164 * state from its CPU. This is unsynchronized, so migrations can cause 1165 * the request to go to the wrong CPU. Which is OK, all that will happen 1166 * is that the CPU's next context switch will be a bit slower and next 1167 * time around this task will generate another request. 1168 */ 1169 void rcu_request_urgent_qs_task(struct task_struct *t) 1170 { 1171 int cpu; 1172 1173 barrier(); 1174 cpu = task_cpu(t); 1175 if (!task_curr(t)) 1176 return; /* This task is not running on that CPU. */ 1177 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1178 } 1179 1180 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1181 1182 /* 1183 * Is the current CPU online? Disable preemption to avoid false positives 1184 * that could otherwise happen due to the current CPU number being sampled, 1185 * this task being preempted, its old CPU being taken offline, resuming 1186 * on some other CPU, then determining that its old CPU is now offline. 1187 * It is OK to use RCU on an offline processor during initial boot, hence 1188 * the check for rcu_scheduler_fully_active. Note also that it is OK 1189 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1190 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1191 * offline to continue to use RCU for one jiffy after marking itself 1192 * offline in the cpu_online_mask. This leniency is necessary given the 1193 * non-atomic nature of the online and offline processing, for example, 1194 * the fact that a CPU enters the scheduler after completing the teardown 1195 * of the CPU. 1196 * 1197 * This is also why RCU internally marks CPUs online during in the 1198 * preparation phase and offline after the CPU has been taken down. 1199 * 1200 * Disable checking if in an NMI handler because we cannot safely report 1201 * errors from NMI handlers anyway. 1202 */ 1203 bool rcu_lockdep_current_cpu_online(void) 1204 { 1205 struct rcu_data *rdp; 1206 struct rcu_node *rnp; 1207 bool ret; 1208 1209 if (in_nmi()) 1210 return true; 1211 preempt_disable(); 1212 rdp = this_cpu_ptr(&rcu_sched_data); 1213 rnp = rdp->mynode; 1214 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1215 !rcu_scheduler_fully_active; 1216 preempt_enable(); 1217 return ret; 1218 } 1219 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1220 1221 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1222 1223 /** 1224 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1225 * 1226 * If the current CPU is idle or running at a first-level (not nested) 1227 * interrupt from idle, return true. The caller must have at least 1228 * disabled preemption. 1229 */ 1230 static int rcu_is_cpu_rrupt_from_idle(void) 1231 { 1232 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1233 } 1234 1235 /* 1236 * Snapshot the specified CPU's dynticks counter so that we can later 1237 * credit them with an implicit quiescent state. Return 1 if this CPU 1238 * is in dynticks idle mode, which is an extended quiescent state. 1239 */ 1240 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1241 bool *isidle, unsigned long *maxj) 1242 { 1243 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1244 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1245 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1246 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1247 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1248 rdp->mynode->gpnum)) 1249 WRITE_ONCE(rdp->gpwrap, true); 1250 return 1; 1251 } 1252 return 0; 1253 } 1254 1255 /* 1256 * Return true if the specified CPU has passed through a quiescent 1257 * state by virtue of being in or having passed through an dynticks 1258 * idle state since the last call to dyntick_save_progress_counter() 1259 * for this same CPU, or by virtue of having been offline. 1260 */ 1261 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1262 bool *isidle, unsigned long *maxj) 1263 { 1264 unsigned long jtsq; 1265 bool *rnhqp; 1266 bool *ruqp; 1267 unsigned long rjtsc; 1268 struct rcu_node *rnp; 1269 1270 /* 1271 * If the CPU passed through or entered a dynticks idle phase with 1272 * no active irq/NMI handlers, then we can safely pretend that the CPU 1273 * already acknowledged the request to pass through a quiescent 1274 * state. Either way, that CPU cannot possibly be in an RCU 1275 * read-side critical section that started before the beginning 1276 * of the current RCU grace period. 1277 */ 1278 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1279 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1280 rdp->dynticks_fqs++; 1281 return 1; 1282 } 1283 1284 /* Compute and saturate jiffies_till_sched_qs. */ 1285 jtsq = jiffies_till_sched_qs; 1286 rjtsc = rcu_jiffies_till_stall_check(); 1287 if (jtsq > rjtsc / 2) { 1288 WRITE_ONCE(jiffies_till_sched_qs, rjtsc); 1289 jtsq = rjtsc / 2; 1290 } else if (jtsq < 1) { 1291 WRITE_ONCE(jiffies_till_sched_qs, 1); 1292 jtsq = 1; 1293 } 1294 1295 /* 1296 * Has this CPU encountered a cond_resched_rcu_qs() since the 1297 * beginning of the grace period? For this to be the case, 1298 * the CPU has to have noticed the current grace period. This 1299 * might not be the case for nohz_full CPUs looping in the kernel. 1300 */ 1301 rnp = rdp->mynode; 1302 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1303 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1304 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1305 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1306 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1307 return 1; 1308 } else { 1309 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1310 smp_store_release(ruqp, true); 1311 } 1312 1313 /* Check for the CPU being offline. */ 1314 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1315 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1316 rdp->offline_fqs++; 1317 return 1; 1318 } 1319 1320 /* 1321 * A CPU running for an extended time within the kernel can 1322 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1323 * even context-switching back and forth between a pair of 1324 * in-kernel CPU-bound tasks cannot advance grace periods. 1325 * So if the grace period is old enough, make the CPU pay attention. 1326 * Note that the unsynchronized assignments to the per-CPU 1327 * rcu_need_heavy_qs variable are safe. Yes, setting of 1328 * bits can be lost, but they will be set again on the next 1329 * force-quiescent-state pass. So lost bit sets do not result 1330 * in incorrect behavior, merely in a grace period lasting 1331 * a few jiffies longer than it might otherwise. Because 1332 * there are at most four threads involved, and because the 1333 * updates are only once every few jiffies, the probability of 1334 * lossage (and thus of slight grace-period extension) is 1335 * quite low. 1336 * 1337 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1338 * is set too high, we override with half of the RCU CPU stall 1339 * warning delay. 1340 */ 1341 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1342 if (!READ_ONCE(*rnhqp) && 1343 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1344 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1345 WRITE_ONCE(*rnhqp, true); 1346 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1347 smp_store_release(ruqp, true); 1348 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1349 } 1350 1351 /* 1352 * If more than halfway to RCU CPU stall-warning time, do 1353 * a resched_cpu() to try to loosen things up a bit. 1354 */ 1355 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) 1356 resched_cpu(rdp->cpu); 1357 1358 return 0; 1359 } 1360 1361 static void record_gp_stall_check_time(struct rcu_state *rsp) 1362 { 1363 unsigned long j = jiffies; 1364 unsigned long j1; 1365 1366 rsp->gp_start = j; 1367 smp_wmb(); /* Record start time before stall time. */ 1368 j1 = rcu_jiffies_till_stall_check(); 1369 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1370 rsp->jiffies_resched = j + j1 / 2; 1371 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1372 } 1373 1374 /* 1375 * Convert a ->gp_state value to a character string. 1376 */ 1377 static const char *gp_state_getname(short gs) 1378 { 1379 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1380 return "???"; 1381 return gp_state_names[gs]; 1382 } 1383 1384 /* 1385 * Complain about starvation of grace-period kthread. 1386 */ 1387 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1388 { 1389 unsigned long gpa; 1390 unsigned long j; 1391 1392 j = jiffies; 1393 gpa = READ_ONCE(rsp->gp_activity); 1394 if (j - gpa > 2 * HZ) { 1395 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1396 rsp->name, j - gpa, 1397 rsp->gpnum, rsp->completed, 1398 rsp->gp_flags, 1399 gp_state_getname(rsp->gp_state), rsp->gp_state, 1400 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1401 if (rsp->gp_kthread) { 1402 sched_show_task(rsp->gp_kthread); 1403 wake_up_process(rsp->gp_kthread); 1404 } 1405 } 1406 } 1407 1408 /* 1409 * Dump stacks of all tasks running on stalled CPUs. First try using 1410 * NMIs, but fall back to manual remote stack tracing on architectures 1411 * that don't support NMI-based stack dumps. The NMI-triggered stack 1412 * traces are more accurate because they are printed by the target CPU. 1413 */ 1414 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1415 { 1416 int cpu; 1417 unsigned long flags; 1418 struct rcu_node *rnp; 1419 1420 rcu_for_each_leaf_node(rsp, rnp) { 1421 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1422 for_each_leaf_node_possible_cpu(rnp, cpu) 1423 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1424 if (!trigger_single_cpu_backtrace(cpu)) 1425 dump_cpu_task(cpu); 1426 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1427 } 1428 } 1429 1430 /* 1431 * If too much time has passed in the current grace period, and if 1432 * so configured, go kick the relevant kthreads. 1433 */ 1434 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1435 { 1436 unsigned long j; 1437 1438 if (!rcu_kick_kthreads) 1439 return; 1440 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1441 if (time_after(jiffies, j) && rsp->gp_kthread && 1442 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1443 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1444 rcu_ftrace_dump(DUMP_ALL); 1445 wake_up_process(rsp->gp_kthread); 1446 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1447 } 1448 } 1449 1450 static inline void panic_on_rcu_stall(void) 1451 { 1452 if (sysctl_panic_on_rcu_stall) 1453 panic("RCU Stall\n"); 1454 } 1455 1456 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1457 { 1458 int cpu; 1459 long delta; 1460 unsigned long flags; 1461 unsigned long gpa; 1462 unsigned long j; 1463 int ndetected = 0; 1464 struct rcu_node *rnp = rcu_get_root(rsp); 1465 long totqlen = 0; 1466 1467 /* Kick and suppress, if so configured. */ 1468 rcu_stall_kick_kthreads(rsp); 1469 if (rcu_cpu_stall_suppress) 1470 return; 1471 1472 /* Only let one CPU complain about others per time interval. */ 1473 1474 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1475 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1476 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1477 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1478 return; 1479 } 1480 WRITE_ONCE(rsp->jiffies_stall, 1481 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1483 1484 /* 1485 * OK, time to rat on our buddy... 1486 * See Documentation/RCU/stallwarn.txt for info on how to debug 1487 * RCU CPU stall warnings. 1488 */ 1489 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1490 rsp->name); 1491 print_cpu_stall_info_begin(); 1492 rcu_for_each_leaf_node(rsp, rnp) { 1493 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1494 ndetected += rcu_print_task_stall(rnp); 1495 if (rnp->qsmask != 0) { 1496 for_each_leaf_node_possible_cpu(rnp, cpu) 1497 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1498 print_cpu_stall_info(rsp, cpu); 1499 ndetected++; 1500 } 1501 } 1502 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1503 } 1504 1505 print_cpu_stall_info_end(); 1506 for_each_possible_cpu(cpu) 1507 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1508 cpu)->cblist); 1509 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1510 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1511 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1512 if (ndetected) { 1513 rcu_dump_cpu_stacks(rsp); 1514 1515 /* Complain about tasks blocking the grace period. */ 1516 rcu_print_detail_task_stall(rsp); 1517 } else { 1518 if (READ_ONCE(rsp->gpnum) != gpnum || 1519 READ_ONCE(rsp->completed) == gpnum) { 1520 pr_err("INFO: Stall ended before state dump start\n"); 1521 } else { 1522 j = jiffies; 1523 gpa = READ_ONCE(rsp->gp_activity); 1524 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1525 rsp->name, j - gpa, j, gpa, 1526 jiffies_till_next_fqs, 1527 rcu_get_root(rsp)->qsmask); 1528 /* In this case, the current CPU might be at fault. */ 1529 sched_show_task(current); 1530 } 1531 } 1532 1533 rcu_check_gp_kthread_starvation(rsp); 1534 1535 panic_on_rcu_stall(); 1536 1537 force_quiescent_state(rsp); /* Kick them all. */ 1538 } 1539 1540 static void print_cpu_stall(struct rcu_state *rsp) 1541 { 1542 int cpu; 1543 unsigned long flags; 1544 struct rcu_node *rnp = rcu_get_root(rsp); 1545 long totqlen = 0; 1546 1547 /* Kick and suppress, if so configured. */ 1548 rcu_stall_kick_kthreads(rsp); 1549 if (rcu_cpu_stall_suppress) 1550 return; 1551 1552 /* 1553 * OK, time to rat on ourselves... 1554 * See Documentation/RCU/stallwarn.txt for info on how to debug 1555 * RCU CPU stall warnings. 1556 */ 1557 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1558 print_cpu_stall_info_begin(); 1559 print_cpu_stall_info(rsp, smp_processor_id()); 1560 print_cpu_stall_info_end(); 1561 for_each_possible_cpu(cpu) 1562 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1563 cpu)->cblist); 1564 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1565 jiffies - rsp->gp_start, 1566 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1567 1568 rcu_check_gp_kthread_starvation(rsp); 1569 1570 rcu_dump_cpu_stacks(rsp); 1571 1572 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1573 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1574 WRITE_ONCE(rsp->jiffies_stall, 1575 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1576 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1577 1578 panic_on_rcu_stall(); 1579 1580 /* 1581 * Attempt to revive the RCU machinery by forcing a context switch. 1582 * 1583 * A context switch would normally allow the RCU state machine to make 1584 * progress and it could be we're stuck in kernel space without context 1585 * switches for an entirely unreasonable amount of time. 1586 */ 1587 resched_cpu(smp_processor_id()); 1588 } 1589 1590 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1591 { 1592 unsigned long completed; 1593 unsigned long gpnum; 1594 unsigned long gps; 1595 unsigned long j; 1596 unsigned long js; 1597 struct rcu_node *rnp; 1598 1599 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1600 !rcu_gp_in_progress(rsp)) 1601 return; 1602 rcu_stall_kick_kthreads(rsp); 1603 j = jiffies; 1604 1605 /* 1606 * Lots of memory barriers to reject false positives. 1607 * 1608 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1609 * then rsp->gp_start, and finally rsp->completed. These values 1610 * are updated in the opposite order with memory barriers (or 1611 * equivalent) during grace-period initialization and cleanup. 1612 * Now, a false positive can occur if we get an new value of 1613 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1614 * the memory barriers, the only way that this can happen is if one 1615 * grace period ends and another starts between these two fetches. 1616 * Detect this by comparing rsp->completed with the previous fetch 1617 * from rsp->gpnum. 1618 * 1619 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1620 * and rsp->gp_start suffice to forestall false positives. 1621 */ 1622 gpnum = READ_ONCE(rsp->gpnum); 1623 smp_rmb(); /* Pick up ->gpnum first... */ 1624 js = READ_ONCE(rsp->jiffies_stall); 1625 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1626 gps = READ_ONCE(rsp->gp_start); 1627 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1628 completed = READ_ONCE(rsp->completed); 1629 if (ULONG_CMP_GE(completed, gpnum) || 1630 ULONG_CMP_LT(j, js) || 1631 ULONG_CMP_GE(gps, js)) 1632 return; /* No stall or GP completed since entering function. */ 1633 rnp = rdp->mynode; 1634 if (rcu_gp_in_progress(rsp) && 1635 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1636 1637 /* We haven't checked in, so go dump stack. */ 1638 print_cpu_stall(rsp); 1639 1640 } else if (rcu_gp_in_progress(rsp) && 1641 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1642 1643 /* They had a few time units to dump stack, so complain. */ 1644 print_other_cpu_stall(rsp, gpnum); 1645 } 1646 } 1647 1648 /** 1649 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1650 * 1651 * Set the stall-warning timeout way off into the future, thus preventing 1652 * any RCU CPU stall-warning messages from appearing in the current set of 1653 * RCU grace periods. 1654 * 1655 * The caller must disable hard irqs. 1656 */ 1657 void rcu_cpu_stall_reset(void) 1658 { 1659 struct rcu_state *rsp; 1660 1661 for_each_rcu_flavor(rsp) 1662 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1663 } 1664 1665 /* 1666 * Determine the value that ->completed will have at the end of the 1667 * next subsequent grace period. This is used to tag callbacks so that 1668 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1669 * been dyntick-idle for an extended period with callbacks under the 1670 * influence of RCU_FAST_NO_HZ. 1671 * 1672 * The caller must hold rnp->lock with interrupts disabled. 1673 */ 1674 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1675 struct rcu_node *rnp) 1676 { 1677 /* 1678 * If RCU is idle, we just wait for the next grace period. 1679 * But we can only be sure that RCU is idle if we are looking 1680 * at the root rcu_node structure -- otherwise, a new grace 1681 * period might have started, but just not yet gotten around 1682 * to initializing the current non-root rcu_node structure. 1683 */ 1684 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1685 return rnp->completed + 1; 1686 1687 /* 1688 * Otherwise, wait for a possible partial grace period and 1689 * then the subsequent full grace period. 1690 */ 1691 return rnp->completed + 2; 1692 } 1693 1694 /* 1695 * Trace-event helper function for rcu_start_future_gp() and 1696 * rcu_nocb_wait_gp(). 1697 */ 1698 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1699 unsigned long c, const char *s) 1700 { 1701 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1702 rnp->completed, c, rnp->level, 1703 rnp->grplo, rnp->grphi, s); 1704 } 1705 1706 /* 1707 * Start some future grace period, as needed to handle newly arrived 1708 * callbacks. The required future grace periods are recorded in each 1709 * rcu_node structure's ->need_future_gp field. Returns true if there 1710 * is reason to awaken the grace-period kthread. 1711 * 1712 * The caller must hold the specified rcu_node structure's ->lock. 1713 */ 1714 static bool __maybe_unused 1715 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1716 unsigned long *c_out) 1717 { 1718 unsigned long c; 1719 bool ret = false; 1720 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1721 1722 /* 1723 * Pick up grace-period number for new callbacks. If this 1724 * grace period is already marked as needed, return to the caller. 1725 */ 1726 c = rcu_cbs_completed(rdp->rsp, rnp); 1727 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1728 if (rnp->need_future_gp[c & 0x1]) { 1729 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1730 goto out; 1731 } 1732 1733 /* 1734 * If either this rcu_node structure or the root rcu_node structure 1735 * believe that a grace period is in progress, then we must wait 1736 * for the one following, which is in "c". Because our request 1737 * will be noticed at the end of the current grace period, we don't 1738 * need to explicitly start one. We only do the lockless check 1739 * of rnp_root's fields if the current rcu_node structure thinks 1740 * there is no grace period in flight, and because we hold rnp->lock, 1741 * the only possible change is when rnp_root's two fields are 1742 * equal, in which case rnp_root->gpnum might be concurrently 1743 * incremented. But that is OK, as it will just result in our 1744 * doing some extra useless work. 1745 */ 1746 if (rnp->gpnum != rnp->completed || 1747 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1748 rnp->need_future_gp[c & 0x1]++; 1749 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1750 goto out; 1751 } 1752 1753 /* 1754 * There might be no grace period in progress. If we don't already 1755 * hold it, acquire the root rcu_node structure's lock in order to 1756 * start one (if needed). 1757 */ 1758 if (rnp != rnp_root) 1759 raw_spin_lock_rcu_node(rnp_root); 1760 1761 /* 1762 * Get a new grace-period number. If there really is no grace 1763 * period in progress, it will be smaller than the one we obtained 1764 * earlier. Adjust callbacks as needed. 1765 */ 1766 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1767 if (!rcu_is_nocb_cpu(rdp->cpu)) 1768 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1769 1770 /* 1771 * If the needed for the required grace period is already 1772 * recorded, trace and leave. 1773 */ 1774 if (rnp_root->need_future_gp[c & 0x1]) { 1775 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1776 goto unlock_out; 1777 } 1778 1779 /* Record the need for the future grace period. */ 1780 rnp_root->need_future_gp[c & 0x1]++; 1781 1782 /* If a grace period is not already in progress, start one. */ 1783 if (rnp_root->gpnum != rnp_root->completed) { 1784 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1785 } else { 1786 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1787 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1788 } 1789 unlock_out: 1790 if (rnp != rnp_root) 1791 raw_spin_unlock_rcu_node(rnp_root); 1792 out: 1793 if (c_out != NULL) 1794 *c_out = c; 1795 return ret; 1796 } 1797 1798 /* 1799 * Clean up any old requests for the just-ended grace period. Also return 1800 * whether any additional grace periods have been requested. 1801 */ 1802 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1803 { 1804 int c = rnp->completed; 1805 int needmore; 1806 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1807 1808 rnp->need_future_gp[c & 0x1] = 0; 1809 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1810 trace_rcu_future_gp(rnp, rdp, c, 1811 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1812 return needmore; 1813 } 1814 1815 /* 1816 * Awaken the grace-period kthread for the specified flavor of RCU. 1817 * Don't do a self-awaken, and don't bother awakening when there is 1818 * nothing for the grace-period kthread to do (as in several CPUs 1819 * raced to awaken, and we lost), and finally don't try to awaken 1820 * a kthread that has not yet been created. 1821 */ 1822 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1823 { 1824 if (current == rsp->gp_kthread || 1825 !READ_ONCE(rsp->gp_flags) || 1826 !rsp->gp_kthread) 1827 return; 1828 swake_up(&rsp->gp_wq); 1829 } 1830 1831 /* 1832 * If there is room, assign a ->completed number to any callbacks on 1833 * this CPU that have not already been assigned. Also accelerate any 1834 * callbacks that were previously assigned a ->completed number that has 1835 * since proven to be too conservative, which can happen if callbacks get 1836 * assigned a ->completed number while RCU is idle, but with reference to 1837 * a non-root rcu_node structure. This function is idempotent, so it does 1838 * not hurt to call it repeatedly. Returns an flag saying that we should 1839 * awaken the RCU grace-period kthread. 1840 * 1841 * The caller must hold rnp->lock with interrupts disabled. 1842 */ 1843 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1844 struct rcu_data *rdp) 1845 { 1846 bool ret = false; 1847 1848 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1849 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1850 return false; 1851 1852 /* 1853 * Callbacks are often registered with incomplete grace-period 1854 * information. Something about the fact that getting exact 1855 * information requires acquiring a global lock... RCU therefore 1856 * makes a conservative estimate of the grace period number at which 1857 * a given callback will become ready to invoke. The following 1858 * code checks this estimate and improves it when possible, thus 1859 * accelerating callback invocation to an earlier grace-period 1860 * number. 1861 */ 1862 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp))) 1863 ret = rcu_start_future_gp(rnp, rdp, NULL); 1864 1865 /* Trace depending on how much we were able to accelerate. */ 1866 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1867 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1868 else 1869 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1870 return ret; 1871 } 1872 1873 /* 1874 * Move any callbacks whose grace period has completed to the 1875 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1876 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1877 * sublist. This function is idempotent, so it does not hurt to 1878 * invoke it repeatedly. As long as it is not invoked -too- often... 1879 * Returns true if the RCU grace-period kthread needs to be awakened. 1880 * 1881 * The caller must hold rnp->lock with interrupts disabled. 1882 */ 1883 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1884 struct rcu_data *rdp) 1885 { 1886 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1887 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1888 return false; 1889 1890 /* 1891 * Find all callbacks whose ->completed numbers indicate that they 1892 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1893 */ 1894 rcu_segcblist_advance(&rdp->cblist, rnp->completed); 1895 1896 /* Classify any remaining callbacks. */ 1897 return rcu_accelerate_cbs(rsp, rnp, rdp); 1898 } 1899 1900 /* 1901 * Update CPU-local rcu_data state to record the beginnings and ends of 1902 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1903 * structure corresponding to the current CPU, and must have irqs disabled. 1904 * Returns true if the grace-period kthread needs to be awakened. 1905 */ 1906 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1907 struct rcu_data *rdp) 1908 { 1909 bool ret; 1910 bool need_gp; 1911 1912 /* Handle the ends of any preceding grace periods first. */ 1913 if (rdp->completed == rnp->completed && 1914 !unlikely(READ_ONCE(rdp->gpwrap))) { 1915 1916 /* No grace period end, so just accelerate recent callbacks. */ 1917 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1918 1919 } else { 1920 1921 /* Advance callbacks. */ 1922 ret = rcu_advance_cbs(rsp, rnp, rdp); 1923 1924 /* Remember that we saw this grace-period completion. */ 1925 rdp->completed = rnp->completed; 1926 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1927 } 1928 1929 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1930 /* 1931 * If the current grace period is waiting for this CPU, 1932 * set up to detect a quiescent state, otherwise don't 1933 * go looking for one. 1934 */ 1935 rdp->gpnum = rnp->gpnum; 1936 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1937 need_gp = !!(rnp->qsmask & rdp->grpmask); 1938 rdp->cpu_no_qs.b.norm = need_gp; 1939 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1940 rdp->core_needs_qs = need_gp; 1941 zero_cpu_stall_ticks(rdp); 1942 WRITE_ONCE(rdp->gpwrap, false); 1943 } 1944 return ret; 1945 } 1946 1947 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1948 { 1949 unsigned long flags; 1950 bool needwake; 1951 struct rcu_node *rnp; 1952 1953 local_irq_save(flags); 1954 rnp = rdp->mynode; 1955 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1956 rdp->completed == READ_ONCE(rnp->completed) && 1957 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1958 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1959 local_irq_restore(flags); 1960 return; 1961 } 1962 needwake = __note_gp_changes(rsp, rnp, rdp); 1963 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1964 if (needwake) 1965 rcu_gp_kthread_wake(rsp); 1966 } 1967 1968 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1969 { 1970 if (delay > 0 && 1971 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1972 schedule_timeout_uninterruptible(delay); 1973 } 1974 1975 /* 1976 * Initialize a new grace period. Return false if no grace period required. 1977 */ 1978 static bool rcu_gp_init(struct rcu_state *rsp) 1979 { 1980 unsigned long oldmask; 1981 struct rcu_data *rdp; 1982 struct rcu_node *rnp = rcu_get_root(rsp); 1983 1984 WRITE_ONCE(rsp->gp_activity, jiffies); 1985 raw_spin_lock_irq_rcu_node(rnp); 1986 if (!READ_ONCE(rsp->gp_flags)) { 1987 /* Spurious wakeup, tell caller to go back to sleep. */ 1988 raw_spin_unlock_irq_rcu_node(rnp); 1989 return false; 1990 } 1991 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1992 1993 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1994 /* 1995 * Grace period already in progress, don't start another. 1996 * Not supposed to be able to happen. 1997 */ 1998 raw_spin_unlock_irq_rcu_node(rnp); 1999 return false; 2000 } 2001 2002 /* Advance to a new grace period and initialize state. */ 2003 record_gp_stall_check_time(rsp); 2004 /* Record GP times before starting GP, hence smp_store_release(). */ 2005 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 2006 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 2007 raw_spin_unlock_irq_rcu_node(rnp); 2008 2009 /* 2010 * Apply per-leaf buffered online and offline operations to the 2011 * rcu_node tree. Note that this new grace period need not wait 2012 * for subsequent online CPUs, and that quiescent-state forcing 2013 * will handle subsequent offline CPUs. 2014 */ 2015 rcu_for_each_leaf_node(rsp, rnp) { 2016 rcu_gp_slow(rsp, gp_preinit_delay); 2017 raw_spin_lock_irq_rcu_node(rnp); 2018 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 2019 !rnp->wait_blkd_tasks) { 2020 /* Nothing to do on this leaf rcu_node structure. */ 2021 raw_spin_unlock_irq_rcu_node(rnp); 2022 continue; 2023 } 2024 2025 /* Record old state, apply changes to ->qsmaskinit field. */ 2026 oldmask = rnp->qsmaskinit; 2027 rnp->qsmaskinit = rnp->qsmaskinitnext; 2028 2029 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 2030 if (!oldmask != !rnp->qsmaskinit) { 2031 if (!oldmask) /* First online CPU for this rcu_node. */ 2032 rcu_init_new_rnp(rnp); 2033 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 2034 rnp->wait_blkd_tasks = true; 2035 else /* Last offline CPU and can propagate. */ 2036 rcu_cleanup_dead_rnp(rnp); 2037 } 2038 2039 /* 2040 * If all waited-on tasks from prior grace period are 2041 * done, and if all this rcu_node structure's CPUs are 2042 * still offline, propagate up the rcu_node tree and 2043 * clear ->wait_blkd_tasks. Otherwise, if one of this 2044 * rcu_node structure's CPUs has since come back online, 2045 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 2046 * checks for this, so just call it unconditionally). 2047 */ 2048 if (rnp->wait_blkd_tasks && 2049 (!rcu_preempt_has_tasks(rnp) || 2050 rnp->qsmaskinit)) { 2051 rnp->wait_blkd_tasks = false; 2052 rcu_cleanup_dead_rnp(rnp); 2053 } 2054 2055 raw_spin_unlock_irq_rcu_node(rnp); 2056 } 2057 2058 /* 2059 * Set the quiescent-state-needed bits in all the rcu_node 2060 * structures for all currently online CPUs in breadth-first order, 2061 * starting from the root rcu_node structure, relying on the layout 2062 * of the tree within the rsp->node[] array. Note that other CPUs 2063 * will access only the leaves of the hierarchy, thus seeing that no 2064 * grace period is in progress, at least until the corresponding 2065 * leaf node has been initialized. 2066 * 2067 * The grace period cannot complete until the initialization 2068 * process finishes, because this kthread handles both. 2069 */ 2070 rcu_for_each_node_breadth_first(rsp, rnp) { 2071 rcu_gp_slow(rsp, gp_init_delay); 2072 raw_spin_lock_irq_rcu_node(rnp); 2073 rdp = this_cpu_ptr(rsp->rda); 2074 rcu_preempt_check_blocked_tasks(rnp); 2075 rnp->qsmask = rnp->qsmaskinit; 2076 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2077 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2078 WRITE_ONCE(rnp->completed, rsp->completed); 2079 if (rnp == rdp->mynode) 2080 (void)__note_gp_changes(rsp, rnp, rdp); 2081 rcu_preempt_boost_start_gp(rnp); 2082 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2083 rnp->level, rnp->grplo, 2084 rnp->grphi, rnp->qsmask); 2085 raw_spin_unlock_irq_rcu_node(rnp); 2086 cond_resched_rcu_qs(); 2087 WRITE_ONCE(rsp->gp_activity, jiffies); 2088 } 2089 2090 return true; 2091 } 2092 2093 /* 2094 * Helper function for wait_event_interruptible_timeout() wakeup 2095 * at force-quiescent-state time. 2096 */ 2097 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2098 { 2099 struct rcu_node *rnp = rcu_get_root(rsp); 2100 2101 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2102 *gfp = READ_ONCE(rsp->gp_flags); 2103 if (*gfp & RCU_GP_FLAG_FQS) 2104 return true; 2105 2106 /* The current grace period has completed. */ 2107 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2108 return true; 2109 2110 return false; 2111 } 2112 2113 /* 2114 * Do one round of quiescent-state forcing. 2115 */ 2116 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2117 { 2118 bool isidle = false; 2119 unsigned long maxj; 2120 struct rcu_node *rnp = rcu_get_root(rsp); 2121 2122 WRITE_ONCE(rsp->gp_activity, jiffies); 2123 rsp->n_force_qs++; 2124 if (first_time) { 2125 /* Collect dyntick-idle snapshots. */ 2126 if (is_sysidle_rcu_state(rsp)) { 2127 isidle = true; 2128 maxj = jiffies - ULONG_MAX / 4; 2129 } 2130 force_qs_rnp(rsp, dyntick_save_progress_counter, 2131 &isidle, &maxj); 2132 rcu_sysidle_report_gp(rsp, isidle, maxj); 2133 } else { 2134 /* Handle dyntick-idle and offline CPUs. */ 2135 isidle = true; 2136 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 2137 } 2138 /* Clear flag to prevent immediate re-entry. */ 2139 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2140 raw_spin_lock_irq_rcu_node(rnp); 2141 WRITE_ONCE(rsp->gp_flags, 2142 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2143 raw_spin_unlock_irq_rcu_node(rnp); 2144 } 2145 } 2146 2147 /* 2148 * Clean up after the old grace period. 2149 */ 2150 static void rcu_gp_cleanup(struct rcu_state *rsp) 2151 { 2152 unsigned long gp_duration; 2153 bool needgp = false; 2154 int nocb = 0; 2155 struct rcu_data *rdp; 2156 struct rcu_node *rnp = rcu_get_root(rsp); 2157 struct swait_queue_head *sq; 2158 2159 WRITE_ONCE(rsp->gp_activity, jiffies); 2160 raw_spin_lock_irq_rcu_node(rnp); 2161 gp_duration = jiffies - rsp->gp_start; 2162 if (gp_duration > rsp->gp_max) 2163 rsp->gp_max = gp_duration; 2164 2165 /* 2166 * We know the grace period is complete, but to everyone else 2167 * it appears to still be ongoing. But it is also the case 2168 * that to everyone else it looks like there is nothing that 2169 * they can do to advance the grace period. It is therefore 2170 * safe for us to drop the lock in order to mark the grace 2171 * period as completed in all of the rcu_node structures. 2172 */ 2173 raw_spin_unlock_irq_rcu_node(rnp); 2174 2175 /* 2176 * Propagate new ->completed value to rcu_node structures so 2177 * that other CPUs don't have to wait until the start of the next 2178 * grace period to process their callbacks. This also avoids 2179 * some nasty RCU grace-period initialization races by forcing 2180 * the end of the current grace period to be completely recorded in 2181 * all of the rcu_node structures before the beginning of the next 2182 * grace period is recorded in any of the rcu_node structures. 2183 */ 2184 rcu_for_each_node_breadth_first(rsp, rnp) { 2185 raw_spin_lock_irq_rcu_node(rnp); 2186 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2187 WARN_ON_ONCE(rnp->qsmask); 2188 WRITE_ONCE(rnp->completed, rsp->gpnum); 2189 rdp = this_cpu_ptr(rsp->rda); 2190 if (rnp == rdp->mynode) 2191 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2192 /* smp_mb() provided by prior unlock-lock pair. */ 2193 nocb += rcu_future_gp_cleanup(rsp, rnp); 2194 sq = rcu_nocb_gp_get(rnp); 2195 raw_spin_unlock_irq_rcu_node(rnp); 2196 rcu_nocb_gp_cleanup(sq); 2197 cond_resched_rcu_qs(); 2198 WRITE_ONCE(rsp->gp_activity, jiffies); 2199 rcu_gp_slow(rsp, gp_cleanup_delay); 2200 } 2201 rnp = rcu_get_root(rsp); 2202 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2203 rcu_nocb_gp_set(rnp, nocb); 2204 2205 /* Declare grace period done. */ 2206 WRITE_ONCE(rsp->completed, rsp->gpnum); 2207 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2208 rsp->gp_state = RCU_GP_IDLE; 2209 rdp = this_cpu_ptr(rsp->rda); 2210 /* Advance CBs to reduce false positives below. */ 2211 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2212 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2213 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2214 trace_rcu_grace_period(rsp->name, 2215 READ_ONCE(rsp->gpnum), 2216 TPS("newreq")); 2217 } 2218 raw_spin_unlock_irq_rcu_node(rnp); 2219 } 2220 2221 /* 2222 * Body of kthread that handles grace periods. 2223 */ 2224 static int __noreturn rcu_gp_kthread(void *arg) 2225 { 2226 bool first_gp_fqs; 2227 int gf; 2228 unsigned long j; 2229 int ret; 2230 struct rcu_state *rsp = arg; 2231 struct rcu_node *rnp = rcu_get_root(rsp); 2232 2233 rcu_bind_gp_kthread(); 2234 for (;;) { 2235 2236 /* Handle grace-period start. */ 2237 for (;;) { 2238 trace_rcu_grace_period(rsp->name, 2239 READ_ONCE(rsp->gpnum), 2240 TPS("reqwait")); 2241 rsp->gp_state = RCU_GP_WAIT_GPS; 2242 swait_event_interruptible(rsp->gp_wq, 2243 READ_ONCE(rsp->gp_flags) & 2244 RCU_GP_FLAG_INIT); 2245 rsp->gp_state = RCU_GP_DONE_GPS; 2246 /* Locking provides needed memory barrier. */ 2247 if (rcu_gp_init(rsp)) 2248 break; 2249 cond_resched_rcu_qs(); 2250 WRITE_ONCE(rsp->gp_activity, jiffies); 2251 WARN_ON(signal_pending(current)); 2252 trace_rcu_grace_period(rsp->name, 2253 READ_ONCE(rsp->gpnum), 2254 TPS("reqwaitsig")); 2255 } 2256 2257 /* Handle quiescent-state forcing. */ 2258 first_gp_fqs = true; 2259 j = jiffies_till_first_fqs; 2260 if (j > HZ) { 2261 j = HZ; 2262 jiffies_till_first_fqs = HZ; 2263 } 2264 ret = 0; 2265 for (;;) { 2266 if (!ret) { 2267 rsp->jiffies_force_qs = jiffies + j; 2268 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2269 jiffies + 3 * j); 2270 } 2271 trace_rcu_grace_period(rsp->name, 2272 READ_ONCE(rsp->gpnum), 2273 TPS("fqswait")); 2274 rsp->gp_state = RCU_GP_WAIT_FQS; 2275 ret = swait_event_interruptible_timeout(rsp->gp_wq, 2276 rcu_gp_fqs_check_wake(rsp, &gf), j); 2277 rsp->gp_state = RCU_GP_DOING_FQS; 2278 /* Locking provides needed memory barriers. */ 2279 /* If grace period done, leave loop. */ 2280 if (!READ_ONCE(rnp->qsmask) && 2281 !rcu_preempt_blocked_readers_cgp(rnp)) 2282 break; 2283 /* If time for quiescent-state forcing, do it. */ 2284 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2285 (gf & RCU_GP_FLAG_FQS)) { 2286 trace_rcu_grace_period(rsp->name, 2287 READ_ONCE(rsp->gpnum), 2288 TPS("fqsstart")); 2289 rcu_gp_fqs(rsp, first_gp_fqs); 2290 first_gp_fqs = false; 2291 trace_rcu_grace_period(rsp->name, 2292 READ_ONCE(rsp->gpnum), 2293 TPS("fqsend")); 2294 cond_resched_rcu_qs(); 2295 WRITE_ONCE(rsp->gp_activity, jiffies); 2296 ret = 0; /* Force full wait till next FQS. */ 2297 j = jiffies_till_next_fqs; 2298 if (j > HZ) { 2299 j = HZ; 2300 jiffies_till_next_fqs = HZ; 2301 } else if (j < 1) { 2302 j = 1; 2303 jiffies_till_next_fqs = 1; 2304 } 2305 } else { 2306 /* Deal with stray signal. */ 2307 cond_resched_rcu_qs(); 2308 WRITE_ONCE(rsp->gp_activity, jiffies); 2309 WARN_ON(signal_pending(current)); 2310 trace_rcu_grace_period(rsp->name, 2311 READ_ONCE(rsp->gpnum), 2312 TPS("fqswaitsig")); 2313 ret = 1; /* Keep old FQS timing. */ 2314 j = jiffies; 2315 if (time_after(jiffies, rsp->jiffies_force_qs)) 2316 j = 1; 2317 else 2318 j = rsp->jiffies_force_qs - j; 2319 } 2320 } 2321 2322 /* Handle grace-period end. */ 2323 rsp->gp_state = RCU_GP_CLEANUP; 2324 rcu_gp_cleanup(rsp); 2325 rsp->gp_state = RCU_GP_CLEANED; 2326 } 2327 } 2328 2329 /* 2330 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2331 * in preparation for detecting the next grace period. The caller must hold 2332 * the root node's ->lock and hard irqs must be disabled. 2333 * 2334 * Note that it is legal for a dying CPU (which is marked as offline) to 2335 * invoke this function. This can happen when the dying CPU reports its 2336 * quiescent state. 2337 * 2338 * Returns true if the grace-period kthread must be awakened. 2339 */ 2340 static bool 2341 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2342 struct rcu_data *rdp) 2343 { 2344 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2345 /* 2346 * Either we have not yet spawned the grace-period 2347 * task, this CPU does not need another grace period, 2348 * or a grace period is already in progress. 2349 * Either way, don't start a new grace period. 2350 */ 2351 return false; 2352 } 2353 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2354 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2355 TPS("newreq")); 2356 2357 /* 2358 * We can't do wakeups while holding the rnp->lock, as that 2359 * could cause possible deadlocks with the rq->lock. Defer 2360 * the wakeup to our caller. 2361 */ 2362 return true; 2363 } 2364 2365 /* 2366 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2367 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2368 * is invoked indirectly from rcu_advance_cbs(), which would result in 2369 * endless recursion -- or would do so if it wasn't for the self-deadlock 2370 * that is encountered beforehand. 2371 * 2372 * Returns true if the grace-period kthread needs to be awakened. 2373 */ 2374 static bool rcu_start_gp(struct rcu_state *rsp) 2375 { 2376 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2377 struct rcu_node *rnp = rcu_get_root(rsp); 2378 bool ret = false; 2379 2380 /* 2381 * If there is no grace period in progress right now, any 2382 * callbacks we have up to this point will be satisfied by the 2383 * next grace period. Also, advancing the callbacks reduces the 2384 * probability of false positives from cpu_needs_another_gp() 2385 * resulting in pointless grace periods. So, advance callbacks 2386 * then start the grace period! 2387 */ 2388 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2389 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2390 return ret; 2391 } 2392 2393 /* 2394 * Report a full set of quiescent states to the specified rcu_state data 2395 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2396 * kthread if another grace period is required. Whether we wake 2397 * the grace-period kthread or it awakens itself for the next round 2398 * of quiescent-state forcing, that kthread will clean up after the 2399 * just-completed grace period. Note that the caller must hold rnp->lock, 2400 * which is released before return. 2401 */ 2402 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2403 __releases(rcu_get_root(rsp)->lock) 2404 { 2405 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2406 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2407 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2408 rcu_gp_kthread_wake(rsp); 2409 } 2410 2411 /* 2412 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2413 * Allows quiescent states for a group of CPUs to be reported at one go 2414 * to the specified rcu_node structure, though all the CPUs in the group 2415 * must be represented by the same rcu_node structure (which need not be a 2416 * leaf rcu_node structure, though it often will be). The gps parameter 2417 * is the grace-period snapshot, which means that the quiescent states 2418 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2419 * must be held upon entry, and it is released before return. 2420 */ 2421 static void 2422 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2423 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2424 __releases(rnp->lock) 2425 { 2426 unsigned long oldmask = 0; 2427 struct rcu_node *rnp_c; 2428 2429 /* Walk up the rcu_node hierarchy. */ 2430 for (;;) { 2431 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2432 2433 /* 2434 * Our bit has already been cleared, or the 2435 * relevant grace period is already over, so done. 2436 */ 2437 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2438 return; 2439 } 2440 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2441 rnp->qsmask &= ~mask; 2442 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2443 mask, rnp->qsmask, rnp->level, 2444 rnp->grplo, rnp->grphi, 2445 !!rnp->gp_tasks); 2446 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2447 2448 /* Other bits still set at this level, so done. */ 2449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2450 return; 2451 } 2452 mask = rnp->grpmask; 2453 if (rnp->parent == NULL) { 2454 2455 /* No more levels. Exit loop holding root lock. */ 2456 2457 break; 2458 } 2459 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2460 rnp_c = rnp; 2461 rnp = rnp->parent; 2462 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2463 oldmask = rnp_c->qsmask; 2464 } 2465 2466 /* 2467 * Get here if we are the last CPU to pass through a quiescent 2468 * state for this grace period. Invoke rcu_report_qs_rsp() 2469 * to clean up and start the next grace period if one is needed. 2470 */ 2471 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2472 } 2473 2474 /* 2475 * Record a quiescent state for all tasks that were previously queued 2476 * on the specified rcu_node structure and that were blocking the current 2477 * RCU grace period. The caller must hold the specified rnp->lock with 2478 * irqs disabled, and this lock is released upon return, but irqs remain 2479 * disabled. 2480 */ 2481 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2482 struct rcu_node *rnp, unsigned long flags) 2483 __releases(rnp->lock) 2484 { 2485 unsigned long gps; 2486 unsigned long mask; 2487 struct rcu_node *rnp_p; 2488 2489 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2490 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2492 return; /* Still need more quiescent states! */ 2493 } 2494 2495 rnp_p = rnp->parent; 2496 if (rnp_p == NULL) { 2497 /* 2498 * Only one rcu_node structure in the tree, so don't 2499 * try to report up to its nonexistent parent! 2500 */ 2501 rcu_report_qs_rsp(rsp, flags); 2502 return; 2503 } 2504 2505 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2506 gps = rnp->gpnum; 2507 mask = rnp->grpmask; 2508 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2509 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2510 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2511 } 2512 2513 /* 2514 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2515 * structure. This must be called from the specified CPU. 2516 */ 2517 static void 2518 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2519 { 2520 unsigned long flags; 2521 unsigned long mask; 2522 bool needwake; 2523 struct rcu_node *rnp; 2524 2525 rnp = rdp->mynode; 2526 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2527 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2528 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2529 2530 /* 2531 * The grace period in which this quiescent state was 2532 * recorded has ended, so don't report it upwards. 2533 * We will instead need a new quiescent state that lies 2534 * within the current grace period. 2535 */ 2536 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2537 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2538 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2539 return; 2540 } 2541 mask = rdp->grpmask; 2542 if ((rnp->qsmask & mask) == 0) { 2543 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2544 } else { 2545 rdp->core_needs_qs = false; 2546 2547 /* 2548 * This GP can't end until cpu checks in, so all of our 2549 * callbacks can be processed during the next GP. 2550 */ 2551 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2552 2553 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2554 /* ^^^ Released rnp->lock */ 2555 if (needwake) 2556 rcu_gp_kthread_wake(rsp); 2557 } 2558 } 2559 2560 /* 2561 * Check to see if there is a new grace period of which this CPU 2562 * is not yet aware, and if so, set up local rcu_data state for it. 2563 * Otherwise, see if this CPU has just passed through its first 2564 * quiescent state for this grace period, and record that fact if so. 2565 */ 2566 static void 2567 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2568 { 2569 /* Check for grace-period ends and beginnings. */ 2570 note_gp_changes(rsp, rdp); 2571 2572 /* 2573 * Does this CPU still need to do its part for current grace period? 2574 * If no, return and let the other CPUs do their part as well. 2575 */ 2576 if (!rdp->core_needs_qs) 2577 return; 2578 2579 /* 2580 * Was there a quiescent state since the beginning of the grace 2581 * period? If no, then exit and wait for the next call. 2582 */ 2583 if (rdp->cpu_no_qs.b.norm) 2584 return; 2585 2586 /* 2587 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2588 * judge of that). 2589 */ 2590 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2591 } 2592 2593 /* 2594 * Send the specified CPU's RCU callbacks to the orphanage. The 2595 * specified CPU must be offline, and the caller must hold the 2596 * ->orphan_lock. 2597 */ 2598 static void 2599 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2600 struct rcu_node *rnp, struct rcu_data *rdp) 2601 { 2602 /* No-CBs CPUs do not have orphanable callbacks. */ 2603 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2604 return; 2605 2606 /* 2607 * Orphan the callbacks. First adjust the counts. This is safe 2608 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2609 * cannot be running now. Thus no memory barrier is required. 2610 */ 2611 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist); 2612 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done); 2613 2614 /* 2615 * Next, move those callbacks still needing a grace period to 2616 * the orphanage, where some other CPU will pick them up. 2617 * Some of the callbacks might have gone partway through a grace 2618 * period, but that is too bad. They get to start over because we 2619 * cannot assume that grace periods are synchronized across CPUs. 2620 */ 2621 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend); 2622 2623 /* 2624 * Then move the ready-to-invoke callbacks to the orphanage, 2625 * where some other CPU will pick them up. These will not be 2626 * required to pass though another grace period: They are done. 2627 */ 2628 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done); 2629 2630 /* Finally, disallow further callbacks on this CPU. */ 2631 rcu_segcblist_disable(&rdp->cblist); 2632 } 2633 2634 /* 2635 * Adopt the RCU callbacks from the specified rcu_state structure's 2636 * orphanage. The caller must hold the ->orphan_lock. 2637 */ 2638 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2639 { 2640 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2641 2642 /* No-CBs CPUs are handled specially. */ 2643 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2644 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2645 return; 2646 2647 /* Do the accounting first. */ 2648 rdp->n_cbs_adopted += rsp->orphan_done.len; 2649 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len) 2650 rcu_idle_count_callbacks_posted(); 2651 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done); 2652 2653 /* 2654 * We do not need a memory barrier here because the only way we 2655 * can get here if there is an rcu_barrier() in flight is if 2656 * we are the task doing the rcu_barrier(). 2657 */ 2658 2659 /* First adopt the ready-to-invoke callbacks, then the done ones. */ 2660 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done); 2661 WARN_ON_ONCE(rsp->orphan_done.head); 2662 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend); 2663 WARN_ON_ONCE(rsp->orphan_pend.head); 2664 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != 2665 !rcu_segcblist_n_cbs(&rdp->cblist)); 2666 } 2667 2668 /* 2669 * Trace the fact that this CPU is going offline. 2670 */ 2671 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2672 { 2673 RCU_TRACE(unsigned long mask;) 2674 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2675 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2676 2677 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2678 return; 2679 2680 RCU_TRACE(mask = rdp->grpmask;) 2681 trace_rcu_grace_period(rsp->name, 2682 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2683 TPS("cpuofl")); 2684 } 2685 2686 /* 2687 * All CPUs for the specified rcu_node structure have gone offline, 2688 * and all tasks that were preempted within an RCU read-side critical 2689 * section while running on one of those CPUs have since exited their RCU 2690 * read-side critical section. Some other CPU is reporting this fact with 2691 * the specified rcu_node structure's ->lock held and interrupts disabled. 2692 * This function therefore goes up the tree of rcu_node structures, 2693 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2694 * the leaf rcu_node structure's ->qsmaskinit field has already been 2695 * updated 2696 * 2697 * This function does check that the specified rcu_node structure has 2698 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2699 * prematurely. That said, invoking it after the fact will cost you 2700 * a needless lock acquisition. So once it has done its work, don't 2701 * invoke it again. 2702 */ 2703 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2704 { 2705 long mask; 2706 struct rcu_node *rnp = rnp_leaf; 2707 2708 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2709 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2710 return; 2711 for (;;) { 2712 mask = rnp->grpmask; 2713 rnp = rnp->parent; 2714 if (!rnp) 2715 break; 2716 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2717 rnp->qsmaskinit &= ~mask; 2718 rnp->qsmask &= ~mask; 2719 if (rnp->qsmaskinit) { 2720 raw_spin_unlock_rcu_node(rnp); 2721 /* irqs remain disabled. */ 2722 return; 2723 } 2724 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2725 } 2726 } 2727 2728 /* 2729 * The CPU has been completely removed, and some other CPU is reporting 2730 * this fact from process context. Do the remainder of the cleanup, 2731 * including orphaning the outgoing CPU's RCU callbacks, and also 2732 * adopting them. There can only be one CPU hotplug operation at a time, 2733 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2734 */ 2735 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2736 { 2737 unsigned long flags; 2738 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2739 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2740 2741 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2742 return; 2743 2744 /* Adjust any no-longer-needed kthreads. */ 2745 rcu_boost_kthread_setaffinity(rnp, -1); 2746 2747 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2748 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2749 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2750 rcu_adopt_orphan_cbs(rsp, flags); 2751 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2752 2753 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 2754 !rcu_segcblist_empty(&rdp->cblist), 2755 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 2756 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 2757 rcu_segcblist_first_cb(&rdp->cblist)); 2758 } 2759 2760 /* 2761 * Invoke any RCU callbacks that have made it to the end of their grace 2762 * period. Thottle as specified by rdp->blimit. 2763 */ 2764 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2765 { 2766 unsigned long flags; 2767 struct rcu_head *rhp; 2768 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2769 long bl, count; 2770 2771 /* If no callbacks are ready, just return. */ 2772 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2773 trace_rcu_batch_start(rsp->name, 2774 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2775 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2776 trace_rcu_batch_end(rsp->name, 0, 2777 !rcu_segcblist_empty(&rdp->cblist), 2778 need_resched(), is_idle_task(current), 2779 rcu_is_callbacks_kthread()); 2780 return; 2781 } 2782 2783 /* 2784 * Extract the list of ready callbacks, disabling to prevent 2785 * races with call_rcu() from interrupt handlers. Leave the 2786 * callback counts, as rcu_barrier() needs to be conservative. 2787 */ 2788 local_irq_save(flags); 2789 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2790 bl = rdp->blimit; 2791 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2792 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2793 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2794 local_irq_restore(flags); 2795 2796 /* Invoke callbacks. */ 2797 rhp = rcu_cblist_dequeue(&rcl); 2798 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2799 debug_rcu_head_unqueue(rhp); 2800 if (__rcu_reclaim(rsp->name, rhp)) 2801 rcu_cblist_dequeued_lazy(&rcl); 2802 /* 2803 * Stop only if limit reached and CPU has something to do. 2804 * Note: The rcl structure counts down from zero. 2805 */ 2806 if (-rcl.len >= bl && 2807 (need_resched() || 2808 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2809 break; 2810 } 2811 2812 local_irq_save(flags); 2813 count = -rcl.len; 2814 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2815 is_idle_task(current), rcu_is_callbacks_kthread()); 2816 2817 /* Update counts and requeue any remaining callbacks. */ 2818 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2819 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2820 rdp->n_cbs_invoked += count; 2821 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2822 2823 /* Reinstate batch limit if we have worked down the excess. */ 2824 count = rcu_segcblist_n_cbs(&rdp->cblist); 2825 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2826 rdp->blimit = blimit; 2827 2828 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2829 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2830 rdp->qlen_last_fqs_check = 0; 2831 rdp->n_force_qs_snap = rsp->n_force_qs; 2832 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2833 rdp->qlen_last_fqs_check = count; 2834 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2835 2836 local_irq_restore(flags); 2837 2838 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2839 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2840 invoke_rcu_core(); 2841 } 2842 2843 /* 2844 * Check to see if this CPU is in a non-context-switch quiescent state 2845 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2846 * Also schedule RCU core processing. 2847 * 2848 * This function must be called from hardirq context. It is normally 2849 * invoked from the scheduling-clock interrupt. 2850 */ 2851 void rcu_check_callbacks(int user) 2852 { 2853 trace_rcu_utilization(TPS("Start scheduler-tick")); 2854 increment_cpu_stall_ticks(); 2855 if (user || rcu_is_cpu_rrupt_from_idle()) { 2856 2857 /* 2858 * Get here if this CPU took its interrupt from user 2859 * mode or from the idle loop, and if this is not a 2860 * nested interrupt. In this case, the CPU is in 2861 * a quiescent state, so note it. 2862 * 2863 * No memory barrier is required here because both 2864 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2865 * variables that other CPUs neither access nor modify, 2866 * at least not while the corresponding CPU is online. 2867 */ 2868 2869 rcu_sched_qs(); 2870 rcu_bh_qs(); 2871 2872 } else if (!in_softirq()) { 2873 2874 /* 2875 * Get here if this CPU did not take its interrupt from 2876 * softirq, in other words, if it is not interrupting 2877 * a rcu_bh read-side critical section. This is an _bh 2878 * critical section, so note it. 2879 */ 2880 2881 rcu_bh_qs(); 2882 } 2883 rcu_preempt_check_callbacks(); 2884 if (rcu_pending()) 2885 invoke_rcu_core(); 2886 if (user) 2887 rcu_note_voluntary_context_switch(current); 2888 trace_rcu_utilization(TPS("End scheduler-tick")); 2889 } 2890 2891 /* 2892 * Scan the leaf rcu_node structures, processing dyntick state for any that 2893 * have not yet encountered a quiescent state, using the function specified. 2894 * Also initiate boosting for any threads blocked on the root rcu_node. 2895 * 2896 * The caller must have suppressed start of new grace periods. 2897 */ 2898 static void force_qs_rnp(struct rcu_state *rsp, 2899 int (*f)(struct rcu_data *rsp, bool *isidle, 2900 unsigned long *maxj), 2901 bool *isidle, unsigned long *maxj) 2902 { 2903 int cpu; 2904 unsigned long flags; 2905 unsigned long mask; 2906 struct rcu_node *rnp; 2907 2908 rcu_for_each_leaf_node(rsp, rnp) { 2909 cond_resched_rcu_qs(); 2910 mask = 0; 2911 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2912 if (rnp->qsmask == 0) { 2913 if (rcu_state_p == &rcu_sched_state || 2914 rsp != rcu_state_p || 2915 rcu_preempt_blocked_readers_cgp(rnp)) { 2916 /* 2917 * No point in scanning bits because they 2918 * are all zero. But we might need to 2919 * priority-boost blocked readers. 2920 */ 2921 rcu_initiate_boost(rnp, flags); 2922 /* rcu_initiate_boost() releases rnp->lock */ 2923 continue; 2924 } 2925 if (rnp->parent && 2926 (rnp->parent->qsmask & rnp->grpmask)) { 2927 /* 2928 * Race between grace-period 2929 * initialization and task exiting RCU 2930 * read-side critical section: Report. 2931 */ 2932 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2933 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2934 continue; 2935 } 2936 } 2937 for_each_leaf_node_possible_cpu(rnp, cpu) { 2938 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2939 if ((rnp->qsmask & bit) != 0) { 2940 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2941 mask |= bit; 2942 } 2943 } 2944 if (mask != 0) { 2945 /* Idle/offline CPUs, report (releases rnp->lock. */ 2946 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2947 } else { 2948 /* Nothing to do here, so just drop the lock. */ 2949 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2950 } 2951 } 2952 } 2953 2954 /* 2955 * Force quiescent states on reluctant CPUs, and also detect which 2956 * CPUs are in dyntick-idle mode. 2957 */ 2958 static void force_quiescent_state(struct rcu_state *rsp) 2959 { 2960 unsigned long flags; 2961 bool ret; 2962 struct rcu_node *rnp; 2963 struct rcu_node *rnp_old = NULL; 2964 2965 /* Funnel through hierarchy to reduce memory contention. */ 2966 rnp = __this_cpu_read(rsp->rda->mynode); 2967 for (; rnp != NULL; rnp = rnp->parent) { 2968 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2969 !raw_spin_trylock(&rnp->fqslock); 2970 if (rnp_old != NULL) 2971 raw_spin_unlock(&rnp_old->fqslock); 2972 if (ret) { 2973 rsp->n_force_qs_lh++; 2974 return; 2975 } 2976 rnp_old = rnp; 2977 } 2978 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2979 2980 /* Reached the root of the rcu_node tree, acquire lock. */ 2981 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2982 raw_spin_unlock(&rnp_old->fqslock); 2983 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2984 rsp->n_force_qs_lh++; 2985 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2986 return; /* Someone beat us to it. */ 2987 } 2988 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2989 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2990 rcu_gp_kthread_wake(rsp); 2991 } 2992 2993 /* 2994 * This does the RCU core processing work for the specified rcu_state 2995 * and rcu_data structures. This may be called only from the CPU to 2996 * whom the rdp belongs. 2997 */ 2998 static void 2999 __rcu_process_callbacks(struct rcu_state *rsp) 3000 { 3001 unsigned long flags; 3002 bool needwake; 3003 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3004 3005 WARN_ON_ONCE(!rdp->beenonline); 3006 3007 /* Update RCU state based on any recent quiescent states. */ 3008 rcu_check_quiescent_state(rsp, rdp); 3009 3010 /* Does this CPU require a not-yet-started grace period? */ 3011 local_irq_save(flags); 3012 if (cpu_needs_another_gp(rsp, rdp)) { 3013 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 3014 needwake = rcu_start_gp(rsp); 3015 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 3016 if (needwake) 3017 rcu_gp_kthread_wake(rsp); 3018 } else { 3019 local_irq_restore(flags); 3020 } 3021 3022 /* If there are callbacks ready, invoke them. */ 3023 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3024 invoke_rcu_callbacks(rsp, rdp); 3025 3026 /* Do any needed deferred wakeups of rcuo kthreads. */ 3027 do_nocb_deferred_wakeup(rdp); 3028 } 3029 3030 /* 3031 * Do RCU core processing for the current CPU. 3032 */ 3033 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 3034 { 3035 struct rcu_state *rsp; 3036 3037 if (cpu_is_offline(smp_processor_id())) 3038 return; 3039 trace_rcu_utilization(TPS("Start RCU core")); 3040 for_each_rcu_flavor(rsp) 3041 __rcu_process_callbacks(rsp); 3042 trace_rcu_utilization(TPS("End RCU core")); 3043 } 3044 3045 /* 3046 * Schedule RCU callback invocation. If the specified type of RCU 3047 * does not support RCU priority boosting, just do a direct call, 3048 * otherwise wake up the per-CPU kernel kthread. Note that because we 3049 * are running on the current CPU with softirqs disabled, the 3050 * rcu_cpu_kthread_task cannot disappear out from under us. 3051 */ 3052 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3053 { 3054 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3055 return; 3056 if (likely(!rsp->boost)) { 3057 rcu_do_batch(rsp, rdp); 3058 return; 3059 } 3060 invoke_rcu_callbacks_kthread(); 3061 } 3062 3063 static void invoke_rcu_core(void) 3064 { 3065 if (cpu_online(smp_processor_id())) 3066 raise_softirq(RCU_SOFTIRQ); 3067 } 3068 3069 /* 3070 * Handle any core-RCU processing required by a call_rcu() invocation. 3071 */ 3072 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3073 struct rcu_head *head, unsigned long flags) 3074 { 3075 bool needwake; 3076 3077 /* 3078 * If called from an extended quiescent state, invoke the RCU 3079 * core in order to force a re-evaluation of RCU's idleness. 3080 */ 3081 if (!rcu_is_watching()) 3082 invoke_rcu_core(); 3083 3084 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3085 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3086 return; 3087 3088 /* 3089 * Force the grace period if too many callbacks or too long waiting. 3090 * Enforce hysteresis, and don't invoke force_quiescent_state() 3091 * if some other CPU has recently done so. Also, don't bother 3092 * invoking force_quiescent_state() if the newly enqueued callback 3093 * is the only one waiting for a grace period to complete. 3094 */ 3095 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 3096 rdp->qlen_last_fqs_check + qhimark)) { 3097 3098 /* Are we ignoring a completed grace period? */ 3099 note_gp_changes(rsp, rdp); 3100 3101 /* Start a new grace period if one not already started. */ 3102 if (!rcu_gp_in_progress(rsp)) { 3103 struct rcu_node *rnp_root = rcu_get_root(rsp); 3104 3105 raw_spin_lock_rcu_node(rnp_root); 3106 needwake = rcu_start_gp(rsp); 3107 raw_spin_unlock_rcu_node(rnp_root); 3108 if (needwake) 3109 rcu_gp_kthread_wake(rsp); 3110 } else { 3111 /* Give the grace period a kick. */ 3112 rdp->blimit = LONG_MAX; 3113 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3114 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 3115 force_quiescent_state(rsp); 3116 rdp->n_force_qs_snap = rsp->n_force_qs; 3117 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 3118 } 3119 } 3120 } 3121 3122 /* 3123 * RCU callback function to leak a callback. 3124 */ 3125 static void rcu_leak_callback(struct rcu_head *rhp) 3126 { 3127 } 3128 3129 /* 3130 * Helper function for call_rcu() and friends. The cpu argument will 3131 * normally be -1, indicating "currently running CPU". It may specify 3132 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3133 * is expected to specify a CPU. 3134 */ 3135 static void 3136 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3137 struct rcu_state *rsp, int cpu, bool lazy) 3138 { 3139 unsigned long flags; 3140 struct rcu_data *rdp; 3141 3142 /* Misaligned rcu_head! */ 3143 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3144 3145 if (debug_rcu_head_queue(head)) { 3146 /* Probable double call_rcu(), so leak the callback. */ 3147 WRITE_ONCE(head->func, rcu_leak_callback); 3148 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3149 return; 3150 } 3151 head->func = func; 3152 head->next = NULL; 3153 local_irq_save(flags); 3154 rdp = this_cpu_ptr(rsp->rda); 3155 3156 /* Add the callback to our list. */ 3157 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 3158 int offline; 3159 3160 if (cpu != -1) 3161 rdp = per_cpu_ptr(rsp->rda, cpu); 3162 if (likely(rdp->mynode)) { 3163 /* Post-boot, so this should be for a no-CBs CPU. */ 3164 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3165 WARN_ON_ONCE(offline); 3166 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3167 local_irq_restore(flags); 3168 return; 3169 } 3170 /* 3171 * Very early boot, before rcu_init(). Initialize if needed 3172 * and then drop through to queue the callback. 3173 */ 3174 BUG_ON(cpu != -1); 3175 WARN_ON_ONCE(!rcu_is_watching()); 3176 if (rcu_segcblist_empty(&rdp->cblist)) 3177 rcu_segcblist_init(&rdp->cblist); 3178 } 3179 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 3180 if (!lazy) 3181 rcu_idle_count_callbacks_posted(); 3182 3183 if (__is_kfree_rcu_offset((unsigned long)func)) 3184 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3185 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3186 rcu_segcblist_n_cbs(&rdp->cblist)); 3187 else 3188 trace_rcu_callback(rsp->name, head, 3189 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3190 rcu_segcblist_n_cbs(&rdp->cblist)); 3191 3192 /* Go handle any RCU core processing required. */ 3193 __call_rcu_core(rsp, rdp, head, flags); 3194 local_irq_restore(flags); 3195 } 3196 3197 /* 3198 * Queue an RCU-sched callback for invocation after a grace period. 3199 */ 3200 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3201 { 3202 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3203 } 3204 EXPORT_SYMBOL_GPL(call_rcu_sched); 3205 3206 /* 3207 * Queue an RCU callback for invocation after a quicker grace period. 3208 */ 3209 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3210 { 3211 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3212 } 3213 EXPORT_SYMBOL_GPL(call_rcu_bh); 3214 3215 /* 3216 * Queue an RCU callback for lazy invocation after a grace period. 3217 * This will likely be later named something like "call_rcu_lazy()", 3218 * but this change will require some way of tagging the lazy RCU 3219 * callbacks in the list of pending callbacks. Until then, this 3220 * function may only be called from __kfree_rcu(). 3221 */ 3222 void kfree_call_rcu(struct rcu_head *head, 3223 rcu_callback_t func) 3224 { 3225 __call_rcu(head, func, rcu_state_p, -1, 1); 3226 } 3227 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3228 3229 /* 3230 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3231 * any blocking grace-period wait automatically implies a grace period 3232 * if there is only one CPU online at any point time during execution 3233 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3234 * occasionally incorrectly indicate that there are multiple CPUs online 3235 * when there was in fact only one the whole time, as this just adds 3236 * some overhead: RCU still operates correctly. 3237 */ 3238 static inline int rcu_blocking_is_gp(void) 3239 { 3240 int ret; 3241 3242 might_sleep(); /* Check for RCU read-side critical section. */ 3243 preempt_disable(); 3244 ret = num_online_cpus() <= 1; 3245 preempt_enable(); 3246 return ret; 3247 } 3248 3249 /** 3250 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3251 * 3252 * Control will return to the caller some time after a full rcu-sched 3253 * grace period has elapsed, in other words after all currently executing 3254 * rcu-sched read-side critical sections have completed. These read-side 3255 * critical sections are delimited by rcu_read_lock_sched() and 3256 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3257 * local_irq_disable(), and so on may be used in place of 3258 * rcu_read_lock_sched(). 3259 * 3260 * This means that all preempt_disable code sequences, including NMI and 3261 * non-threaded hardware-interrupt handlers, in progress on entry will 3262 * have completed before this primitive returns. However, this does not 3263 * guarantee that softirq handlers will have completed, since in some 3264 * kernels, these handlers can run in process context, and can block. 3265 * 3266 * Note that this guarantee implies further memory-ordering guarantees. 3267 * On systems with more than one CPU, when synchronize_sched() returns, 3268 * each CPU is guaranteed to have executed a full memory barrier since the 3269 * end of its last RCU-sched read-side critical section whose beginning 3270 * preceded the call to synchronize_sched(). In addition, each CPU having 3271 * an RCU read-side critical section that extends beyond the return from 3272 * synchronize_sched() is guaranteed to have executed a full memory barrier 3273 * after the beginning of synchronize_sched() and before the beginning of 3274 * that RCU read-side critical section. Note that these guarantees include 3275 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3276 * that are executing in the kernel. 3277 * 3278 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3279 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3280 * to have executed a full memory barrier during the execution of 3281 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3282 * again only if the system has more than one CPU). 3283 * 3284 * This primitive provides the guarantees made by the (now removed) 3285 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3286 * guarantees that rcu_read_lock() sections will have completed. 3287 * In "classic RCU", these two guarantees happen to be one and 3288 * the same, but can differ in realtime RCU implementations. 3289 */ 3290 void synchronize_sched(void) 3291 { 3292 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3293 lock_is_held(&rcu_lock_map) || 3294 lock_is_held(&rcu_sched_lock_map), 3295 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3296 if (rcu_blocking_is_gp()) 3297 return; 3298 if (rcu_gp_is_expedited()) 3299 synchronize_sched_expedited(); 3300 else 3301 wait_rcu_gp(call_rcu_sched); 3302 } 3303 EXPORT_SYMBOL_GPL(synchronize_sched); 3304 3305 /** 3306 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3307 * 3308 * Control will return to the caller some time after a full rcu_bh grace 3309 * period has elapsed, in other words after all currently executing rcu_bh 3310 * read-side critical sections have completed. RCU read-side critical 3311 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3312 * and may be nested. 3313 * 3314 * See the description of synchronize_sched() for more detailed information 3315 * on memory ordering guarantees. 3316 */ 3317 void synchronize_rcu_bh(void) 3318 { 3319 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3320 lock_is_held(&rcu_lock_map) || 3321 lock_is_held(&rcu_sched_lock_map), 3322 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3323 if (rcu_blocking_is_gp()) 3324 return; 3325 if (rcu_gp_is_expedited()) 3326 synchronize_rcu_bh_expedited(); 3327 else 3328 wait_rcu_gp(call_rcu_bh); 3329 } 3330 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3331 3332 /** 3333 * get_state_synchronize_rcu - Snapshot current RCU state 3334 * 3335 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3336 * to determine whether or not a full grace period has elapsed in the 3337 * meantime. 3338 */ 3339 unsigned long get_state_synchronize_rcu(void) 3340 { 3341 /* 3342 * Any prior manipulation of RCU-protected data must happen 3343 * before the load from ->gpnum. 3344 */ 3345 smp_mb(); /* ^^^ */ 3346 3347 /* 3348 * Make sure this load happens before the purportedly 3349 * time-consuming work between get_state_synchronize_rcu() 3350 * and cond_synchronize_rcu(). 3351 */ 3352 return smp_load_acquire(&rcu_state_p->gpnum); 3353 } 3354 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3355 3356 /** 3357 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3358 * 3359 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3360 * 3361 * If a full RCU grace period has elapsed since the earlier call to 3362 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3363 * synchronize_rcu() to wait for a full grace period. 3364 * 3365 * Yes, this function does not take counter wrap into account. But 3366 * counter wrap is harmless. If the counter wraps, we have waited for 3367 * more than 2 billion grace periods (and way more on a 64-bit system!), 3368 * so waiting for one additional grace period should be just fine. 3369 */ 3370 void cond_synchronize_rcu(unsigned long oldstate) 3371 { 3372 unsigned long newstate; 3373 3374 /* 3375 * Ensure that this load happens before any RCU-destructive 3376 * actions the caller might carry out after we return. 3377 */ 3378 newstate = smp_load_acquire(&rcu_state_p->completed); 3379 if (ULONG_CMP_GE(oldstate, newstate)) 3380 synchronize_rcu(); 3381 } 3382 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3383 3384 /** 3385 * get_state_synchronize_sched - Snapshot current RCU-sched state 3386 * 3387 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3388 * to determine whether or not a full grace period has elapsed in the 3389 * meantime. 3390 */ 3391 unsigned long get_state_synchronize_sched(void) 3392 { 3393 /* 3394 * Any prior manipulation of RCU-protected data must happen 3395 * before the load from ->gpnum. 3396 */ 3397 smp_mb(); /* ^^^ */ 3398 3399 /* 3400 * Make sure this load happens before the purportedly 3401 * time-consuming work between get_state_synchronize_sched() 3402 * and cond_synchronize_sched(). 3403 */ 3404 return smp_load_acquire(&rcu_sched_state.gpnum); 3405 } 3406 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3407 3408 /** 3409 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3410 * 3411 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3412 * 3413 * If a full RCU-sched grace period has elapsed since the earlier call to 3414 * get_state_synchronize_sched(), just return. Otherwise, invoke 3415 * synchronize_sched() to wait for a full grace period. 3416 * 3417 * Yes, this function does not take counter wrap into account. But 3418 * counter wrap is harmless. If the counter wraps, we have waited for 3419 * more than 2 billion grace periods (and way more on a 64-bit system!), 3420 * so waiting for one additional grace period should be just fine. 3421 */ 3422 void cond_synchronize_sched(unsigned long oldstate) 3423 { 3424 unsigned long newstate; 3425 3426 /* 3427 * Ensure that this load happens before any RCU-destructive 3428 * actions the caller might carry out after we return. 3429 */ 3430 newstate = smp_load_acquire(&rcu_sched_state.completed); 3431 if (ULONG_CMP_GE(oldstate, newstate)) 3432 synchronize_sched(); 3433 } 3434 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3435 3436 /* 3437 * Check to see if there is any immediate RCU-related work to be done 3438 * by the current CPU, for the specified type of RCU, returning 1 if so. 3439 * The checks are in order of increasing expense: checks that can be 3440 * carried out against CPU-local state are performed first. However, 3441 * we must check for CPU stalls first, else we might not get a chance. 3442 */ 3443 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3444 { 3445 struct rcu_node *rnp = rdp->mynode; 3446 3447 rdp->n_rcu_pending++; 3448 3449 /* Check for CPU stalls, if enabled. */ 3450 check_cpu_stall(rsp, rdp); 3451 3452 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3453 if (rcu_nohz_full_cpu(rsp)) 3454 return 0; 3455 3456 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3457 if (rcu_scheduler_fully_active && 3458 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3459 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) { 3460 rdp->n_rp_core_needs_qs++; 3461 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) { 3462 rdp->n_rp_report_qs++; 3463 return 1; 3464 } 3465 3466 /* Does this CPU have callbacks ready to invoke? */ 3467 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 3468 rdp->n_rp_cb_ready++; 3469 return 1; 3470 } 3471 3472 /* Has RCU gone idle with this CPU needing another grace period? */ 3473 if (cpu_needs_another_gp(rsp, rdp)) { 3474 rdp->n_rp_cpu_needs_gp++; 3475 return 1; 3476 } 3477 3478 /* Has another RCU grace period completed? */ 3479 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3480 rdp->n_rp_gp_completed++; 3481 return 1; 3482 } 3483 3484 /* Has a new RCU grace period started? */ 3485 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3486 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3487 rdp->n_rp_gp_started++; 3488 return 1; 3489 } 3490 3491 /* Does this CPU need a deferred NOCB wakeup? */ 3492 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3493 rdp->n_rp_nocb_defer_wakeup++; 3494 return 1; 3495 } 3496 3497 /* nothing to do */ 3498 rdp->n_rp_need_nothing++; 3499 return 0; 3500 } 3501 3502 /* 3503 * Check to see if there is any immediate RCU-related work to be done 3504 * by the current CPU, returning 1 if so. This function is part of the 3505 * RCU implementation; it is -not- an exported member of the RCU API. 3506 */ 3507 static int rcu_pending(void) 3508 { 3509 struct rcu_state *rsp; 3510 3511 for_each_rcu_flavor(rsp) 3512 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3513 return 1; 3514 return 0; 3515 } 3516 3517 /* 3518 * Return true if the specified CPU has any callback. If all_lazy is 3519 * non-NULL, store an indication of whether all callbacks are lazy. 3520 * (If there are no callbacks, all of them are deemed to be lazy.) 3521 */ 3522 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3523 { 3524 bool al = true; 3525 bool hc = false; 3526 struct rcu_data *rdp; 3527 struct rcu_state *rsp; 3528 3529 for_each_rcu_flavor(rsp) { 3530 rdp = this_cpu_ptr(rsp->rda); 3531 if (rcu_segcblist_empty(&rdp->cblist)) 3532 continue; 3533 hc = true; 3534 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3535 al = false; 3536 break; 3537 } 3538 } 3539 if (all_lazy) 3540 *all_lazy = al; 3541 return hc; 3542 } 3543 3544 /* 3545 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3546 * the compiler is expected to optimize this away. 3547 */ 3548 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3549 int cpu, unsigned long done) 3550 { 3551 trace_rcu_barrier(rsp->name, s, cpu, 3552 atomic_read(&rsp->barrier_cpu_count), done); 3553 } 3554 3555 /* 3556 * RCU callback function for _rcu_barrier(). If we are last, wake 3557 * up the task executing _rcu_barrier(). 3558 */ 3559 static void rcu_barrier_callback(struct rcu_head *rhp) 3560 { 3561 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3562 struct rcu_state *rsp = rdp->rsp; 3563 3564 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3565 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 3566 complete(&rsp->barrier_completion); 3567 } else { 3568 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 3569 } 3570 } 3571 3572 /* 3573 * Called with preemption disabled, and from cross-cpu IRQ context. 3574 */ 3575 static void rcu_barrier_func(void *type) 3576 { 3577 struct rcu_state *rsp = type; 3578 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3579 3580 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 3581 atomic_inc(&rsp->barrier_cpu_count); 3582 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3583 } 3584 3585 /* 3586 * Orchestrate the specified type of RCU barrier, waiting for all 3587 * RCU callbacks of the specified type to complete. 3588 */ 3589 static void _rcu_barrier(struct rcu_state *rsp) 3590 { 3591 int cpu; 3592 struct rcu_data *rdp; 3593 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3594 3595 _rcu_barrier_trace(rsp, "Begin", -1, s); 3596 3597 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3598 mutex_lock(&rsp->barrier_mutex); 3599 3600 /* Did someone else do our work for us? */ 3601 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3602 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 3603 smp_mb(); /* caller's subsequent code after above check. */ 3604 mutex_unlock(&rsp->barrier_mutex); 3605 return; 3606 } 3607 3608 /* Mark the start of the barrier operation. */ 3609 rcu_seq_start(&rsp->barrier_sequence); 3610 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 3611 3612 /* 3613 * Initialize the count to one rather than to zero in order to 3614 * avoid a too-soon return to zero in case of a short grace period 3615 * (or preemption of this task). Exclude CPU-hotplug operations 3616 * to ensure that no offline CPU has callbacks queued. 3617 */ 3618 init_completion(&rsp->barrier_completion); 3619 atomic_set(&rsp->barrier_cpu_count, 1); 3620 get_online_cpus(); 3621 3622 /* 3623 * Force each CPU with callbacks to register a new callback. 3624 * When that callback is invoked, we will know that all of the 3625 * corresponding CPU's preceding callbacks have been invoked. 3626 */ 3627 for_each_possible_cpu(cpu) { 3628 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3629 continue; 3630 rdp = per_cpu_ptr(rsp->rda, cpu); 3631 if (rcu_is_nocb_cpu(cpu)) { 3632 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3633 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3634 rsp->barrier_sequence); 3635 } else { 3636 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3637 rsp->barrier_sequence); 3638 smp_mb__before_atomic(); 3639 atomic_inc(&rsp->barrier_cpu_count); 3640 __call_rcu(&rdp->barrier_head, 3641 rcu_barrier_callback, rsp, cpu, 0); 3642 } 3643 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3644 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3645 rsp->barrier_sequence); 3646 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3647 } else { 3648 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3649 rsp->barrier_sequence); 3650 } 3651 } 3652 put_online_cpus(); 3653 3654 /* 3655 * Now that we have an rcu_barrier_callback() callback on each 3656 * CPU, and thus each counted, remove the initial count. 3657 */ 3658 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3659 complete(&rsp->barrier_completion); 3660 3661 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3662 wait_for_completion(&rsp->barrier_completion); 3663 3664 /* Mark the end of the barrier operation. */ 3665 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 3666 rcu_seq_end(&rsp->barrier_sequence); 3667 3668 /* Other rcu_barrier() invocations can now safely proceed. */ 3669 mutex_unlock(&rsp->barrier_mutex); 3670 } 3671 3672 /** 3673 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3674 */ 3675 void rcu_barrier_bh(void) 3676 { 3677 _rcu_barrier(&rcu_bh_state); 3678 } 3679 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3680 3681 /** 3682 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3683 */ 3684 void rcu_barrier_sched(void) 3685 { 3686 _rcu_barrier(&rcu_sched_state); 3687 } 3688 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3689 3690 /* 3691 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3692 * first CPU in a given leaf rcu_node structure coming online. The caller 3693 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3694 * disabled. 3695 */ 3696 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3697 { 3698 long mask; 3699 struct rcu_node *rnp = rnp_leaf; 3700 3701 for (;;) { 3702 mask = rnp->grpmask; 3703 rnp = rnp->parent; 3704 if (rnp == NULL) 3705 return; 3706 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3707 rnp->qsmaskinit |= mask; 3708 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3709 } 3710 } 3711 3712 /* 3713 * Do boot-time initialization of a CPU's per-CPU RCU data. 3714 */ 3715 static void __init 3716 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3717 { 3718 unsigned long flags; 3719 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3720 struct rcu_node *rnp = rcu_get_root(rsp); 3721 3722 /* Set up local state, ensuring consistent view of global state. */ 3723 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3724 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3725 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3726 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3727 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3728 rdp->cpu = cpu; 3729 rdp->rsp = rsp; 3730 rcu_boot_init_nocb_percpu_data(rdp); 3731 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3732 } 3733 3734 /* 3735 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3736 * offline event can be happening at a given time. Note also that we 3737 * can accept some slop in the rsp->completed access due to the fact 3738 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3739 */ 3740 static void 3741 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3742 { 3743 unsigned long flags; 3744 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3745 struct rcu_node *rnp = rcu_get_root(rsp); 3746 3747 /* Set up local state, ensuring consistent view of global state. */ 3748 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3749 rdp->qlen_last_fqs_check = 0; 3750 rdp->n_force_qs_snap = rsp->n_force_qs; 3751 rdp->blimit = blimit; 3752 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3753 !init_nocb_callback_list(rdp)) 3754 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3755 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3756 rcu_sysidle_init_percpu_data(rdp->dynticks); 3757 rcu_dynticks_eqs_online(); 3758 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3759 3760 /* 3761 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3762 * propagation up the rcu_node tree will happen at the beginning 3763 * of the next grace period. 3764 */ 3765 rnp = rdp->mynode; 3766 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3767 if (!rdp->beenonline) 3768 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 3769 rdp->beenonline = true; /* We have now been online. */ 3770 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3771 rdp->completed = rnp->completed; 3772 rdp->cpu_no_qs.b.norm = true; 3773 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3774 rdp->core_needs_qs = false; 3775 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3776 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3777 } 3778 3779 /* 3780 * Invoked early in the CPU-online process, when pretty much all 3781 * services are available. The incoming CPU is not present. 3782 */ 3783 int rcutree_prepare_cpu(unsigned int cpu) 3784 { 3785 struct rcu_state *rsp; 3786 3787 for_each_rcu_flavor(rsp) 3788 rcu_init_percpu_data(cpu, rsp); 3789 3790 rcu_prepare_kthreads(cpu); 3791 rcu_spawn_all_nocb_kthreads(cpu); 3792 3793 return 0; 3794 } 3795 3796 /* 3797 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3798 */ 3799 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3800 { 3801 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3802 3803 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3804 } 3805 3806 /* 3807 * Near the end of the CPU-online process. Pretty much all services 3808 * enabled, and the CPU is now very much alive. 3809 */ 3810 int rcutree_online_cpu(unsigned int cpu) 3811 { 3812 sync_sched_exp_online_cleanup(cpu); 3813 rcutree_affinity_setting(cpu, -1); 3814 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3815 srcu_online_cpu(cpu); 3816 return 0; 3817 } 3818 3819 /* 3820 * Near the beginning of the process. The CPU is still very much alive 3821 * with pretty much all services enabled. 3822 */ 3823 int rcutree_offline_cpu(unsigned int cpu) 3824 { 3825 rcutree_affinity_setting(cpu, cpu); 3826 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3827 srcu_offline_cpu(cpu); 3828 return 0; 3829 } 3830 3831 /* 3832 * Near the end of the offline process. We do only tracing here. 3833 */ 3834 int rcutree_dying_cpu(unsigned int cpu) 3835 { 3836 struct rcu_state *rsp; 3837 3838 for_each_rcu_flavor(rsp) 3839 rcu_cleanup_dying_cpu(rsp); 3840 return 0; 3841 } 3842 3843 /* 3844 * The outgoing CPU is gone and we are running elsewhere. 3845 */ 3846 int rcutree_dead_cpu(unsigned int cpu) 3847 { 3848 struct rcu_state *rsp; 3849 3850 for_each_rcu_flavor(rsp) { 3851 rcu_cleanup_dead_cpu(cpu, rsp); 3852 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3853 } 3854 return 0; 3855 } 3856 3857 /* 3858 * Mark the specified CPU as being online so that subsequent grace periods 3859 * (both expedited and normal) will wait on it. Note that this means that 3860 * incoming CPUs are not allowed to use RCU read-side critical sections 3861 * until this function is called. Failing to observe this restriction 3862 * will result in lockdep splats. 3863 * 3864 * Note that this function is special in that it is invoked directly 3865 * from the incoming CPU rather than from the cpuhp_step mechanism. 3866 * This is because this function must be invoked at a precise location. 3867 */ 3868 void rcu_cpu_starting(unsigned int cpu) 3869 { 3870 unsigned long flags; 3871 unsigned long mask; 3872 struct rcu_data *rdp; 3873 struct rcu_node *rnp; 3874 struct rcu_state *rsp; 3875 3876 for_each_rcu_flavor(rsp) { 3877 rdp = per_cpu_ptr(rsp->rda, cpu); 3878 rnp = rdp->mynode; 3879 mask = rdp->grpmask; 3880 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3881 rnp->qsmaskinitnext |= mask; 3882 rnp->expmaskinitnext |= mask; 3883 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3884 } 3885 } 3886 3887 #ifdef CONFIG_HOTPLUG_CPU 3888 /* 3889 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3890 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3891 * bit masks. 3892 */ 3893 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3894 { 3895 unsigned long flags; 3896 unsigned long mask; 3897 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3898 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3899 3900 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3901 mask = rdp->grpmask; 3902 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3903 rnp->qsmaskinitnext &= ~mask; 3904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3905 } 3906 3907 /* 3908 * The outgoing function has no further need of RCU, so remove it from 3909 * the list of CPUs that RCU must track. 3910 * 3911 * Note that this function is special in that it is invoked directly 3912 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3913 * This is because this function must be invoked at a precise location. 3914 */ 3915 void rcu_report_dead(unsigned int cpu) 3916 { 3917 struct rcu_state *rsp; 3918 3919 /* QS for any half-done expedited RCU-sched GP. */ 3920 preempt_disable(); 3921 rcu_report_exp_rdp(&rcu_sched_state, 3922 this_cpu_ptr(rcu_sched_state.rda), true); 3923 preempt_enable(); 3924 for_each_rcu_flavor(rsp) 3925 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3926 } 3927 #endif 3928 3929 /* 3930 * On non-huge systems, use expedited RCU grace periods to make suspend 3931 * and hibernation run faster. 3932 */ 3933 static int rcu_pm_notify(struct notifier_block *self, 3934 unsigned long action, void *hcpu) 3935 { 3936 switch (action) { 3937 case PM_HIBERNATION_PREPARE: 3938 case PM_SUSPEND_PREPARE: 3939 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3940 rcu_expedite_gp(); 3941 break; 3942 case PM_POST_HIBERNATION: 3943 case PM_POST_SUSPEND: 3944 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3945 rcu_unexpedite_gp(); 3946 break; 3947 default: 3948 break; 3949 } 3950 return NOTIFY_OK; 3951 } 3952 3953 /* 3954 * Spawn the kthreads that handle each RCU flavor's grace periods. 3955 */ 3956 static int __init rcu_spawn_gp_kthread(void) 3957 { 3958 unsigned long flags; 3959 int kthread_prio_in = kthread_prio; 3960 struct rcu_node *rnp; 3961 struct rcu_state *rsp; 3962 struct sched_param sp; 3963 struct task_struct *t; 3964 3965 /* Force priority into range. */ 3966 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3967 kthread_prio = 1; 3968 else if (kthread_prio < 0) 3969 kthread_prio = 0; 3970 else if (kthread_prio > 99) 3971 kthread_prio = 99; 3972 if (kthread_prio != kthread_prio_in) 3973 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3974 kthread_prio, kthread_prio_in); 3975 3976 rcu_scheduler_fully_active = 1; 3977 for_each_rcu_flavor(rsp) { 3978 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3979 BUG_ON(IS_ERR(t)); 3980 rnp = rcu_get_root(rsp); 3981 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3982 rsp->gp_kthread = t; 3983 if (kthread_prio) { 3984 sp.sched_priority = kthread_prio; 3985 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3986 } 3987 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3988 wake_up_process(t); 3989 } 3990 rcu_spawn_nocb_kthreads(); 3991 rcu_spawn_boost_kthreads(); 3992 return 0; 3993 } 3994 early_initcall(rcu_spawn_gp_kthread); 3995 3996 /* 3997 * This function is invoked towards the end of the scheduler's 3998 * initialization process. Before this is called, the idle task might 3999 * contain synchronous grace-period primitives (during which time, this idle 4000 * task is booting the system, and such primitives are no-ops). After this 4001 * function is called, any synchronous grace-period primitives are run as 4002 * expedited, with the requesting task driving the grace period forward. 4003 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4004 * runtime RCU functionality. 4005 */ 4006 void rcu_scheduler_starting(void) 4007 { 4008 WARN_ON(num_online_cpus() != 1); 4009 WARN_ON(nr_context_switches() > 0); 4010 rcu_test_sync_prims(); 4011 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4012 rcu_test_sync_prims(); 4013 } 4014 4015 /* 4016 * Helper function for rcu_init() that initializes one rcu_state structure. 4017 */ 4018 static void __init rcu_init_one(struct rcu_state *rsp) 4019 { 4020 static const char * const buf[] = RCU_NODE_NAME_INIT; 4021 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4022 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4023 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4024 4025 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4026 int cpustride = 1; 4027 int i; 4028 int j; 4029 struct rcu_node *rnp; 4030 4031 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4032 4033 /* Silence gcc 4.8 false positive about array index out of range. */ 4034 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4035 panic("rcu_init_one: rcu_num_lvls out of range"); 4036 4037 /* Initialize the level-tracking arrays. */ 4038 4039 for (i = 1; i < rcu_num_lvls; i++) 4040 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 4041 rcu_init_levelspread(levelspread, num_rcu_lvl); 4042 4043 /* Initialize the elements themselves, starting from the leaves. */ 4044 4045 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4046 cpustride *= levelspread[i]; 4047 rnp = rsp->level[i]; 4048 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4049 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4050 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4051 &rcu_node_class[i], buf[i]); 4052 raw_spin_lock_init(&rnp->fqslock); 4053 lockdep_set_class_and_name(&rnp->fqslock, 4054 &rcu_fqs_class[i], fqs[i]); 4055 rnp->gpnum = rsp->gpnum; 4056 rnp->completed = rsp->completed; 4057 rnp->qsmask = 0; 4058 rnp->qsmaskinit = 0; 4059 rnp->grplo = j * cpustride; 4060 rnp->grphi = (j + 1) * cpustride - 1; 4061 if (rnp->grphi >= nr_cpu_ids) 4062 rnp->grphi = nr_cpu_ids - 1; 4063 if (i == 0) { 4064 rnp->grpnum = 0; 4065 rnp->grpmask = 0; 4066 rnp->parent = NULL; 4067 } else { 4068 rnp->grpnum = j % levelspread[i - 1]; 4069 rnp->grpmask = 1UL << rnp->grpnum; 4070 rnp->parent = rsp->level[i - 1] + 4071 j / levelspread[i - 1]; 4072 } 4073 rnp->level = i; 4074 INIT_LIST_HEAD(&rnp->blkd_tasks); 4075 rcu_init_one_nocb(rnp); 4076 init_waitqueue_head(&rnp->exp_wq[0]); 4077 init_waitqueue_head(&rnp->exp_wq[1]); 4078 init_waitqueue_head(&rnp->exp_wq[2]); 4079 init_waitqueue_head(&rnp->exp_wq[3]); 4080 spin_lock_init(&rnp->exp_lock); 4081 } 4082 } 4083 4084 init_swait_queue_head(&rsp->gp_wq); 4085 init_swait_queue_head(&rsp->expedited_wq); 4086 rnp = rsp->level[rcu_num_lvls - 1]; 4087 for_each_possible_cpu(i) { 4088 while (i > rnp->grphi) 4089 rnp++; 4090 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4091 rcu_boot_init_percpu_data(i, rsp); 4092 } 4093 list_add(&rsp->flavors, &rcu_struct_flavors); 4094 } 4095 4096 /* 4097 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4098 * replace the definitions in tree.h because those are needed to size 4099 * the ->node array in the rcu_state structure. 4100 */ 4101 static void __init rcu_init_geometry(void) 4102 { 4103 ulong d; 4104 int i; 4105 int rcu_capacity[RCU_NUM_LVLS]; 4106 4107 /* 4108 * Initialize any unspecified boot parameters. 4109 * The default values of jiffies_till_first_fqs and 4110 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4111 * value, which is a function of HZ, then adding one for each 4112 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4113 */ 4114 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4115 if (jiffies_till_first_fqs == ULONG_MAX) 4116 jiffies_till_first_fqs = d; 4117 if (jiffies_till_next_fqs == ULONG_MAX) 4118 jiffies_till_next_fqs = d; 4119 4120 /* If the compile-time values are accurate, just leave. */ 4121 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4122 nr_cpu_ids == NR_CPUS) 4123 return; 4124 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4125 rcu_fanout_leaf, nr_cpu_ids); 4126 4127 /* 4128 * The boot-time rcu_fanout_leaf parameter must be at least two 4129 * and cannot exceed the number of bits in the rcu_node masks. 4130 * Complain and fall back to the compile-time values if this 4131 * limit is exceeded. 4132 */ 4133 if (rcu_fanout_leaf < 2 || 4134 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4135 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4136 WARN_ON(1); 4137 return; 4138 } 4139 4140 /* 4141 * Compute number of nodes that can be handled an rcu_node tree 4142 * with the given number of levels. 4143 */ 4144 rcu_capacity[0] = rcu_fanout_leaf; 4145 for (i = 1; i < RCU_NUM_LVLS; i++) 4146 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4147 4148 /* 4149 * The tree must be able to accommodate the configured number of CPUs. 4150 * If this limit is exceeded, fall back to the compile-time values. 4151 */ 4152 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4153 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4154 WARN_ON(1); 4155 return; 4156 } 4157 4158 /* Calculate the number of levels in the tree. */ 4159 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4160 } 4161 rcu_num_lvls = i + 1; 4162 4163 /* Calculate the number of rcu_nodes at each level of the tree. */ 4164 for (i = 0; i < rcu_num_lvls; i++) { 4165 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4166 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4167 } 4168 4169 /* Calculate the total number of rcu_node structures. */ 4170 rcu_num_nodes = 0; 4171 for (i = 0; i < rcu_num_lvls; i++) 4172 rcu_num_nodes += num_rcu_lvl[i]; 4173 } 4174 4175 /* 4176 * Dump out the structure of the rcu_node combining tree associated 4177 * with the rcu_state structure referenced by rsp. 4178 */ 4179 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4180 { 4181 int level = 0; 4182 struct rcu_node *rnp; 4183 4184 pr_info("rcu_node tree layout dump\n"); 4185 pr_info(" "); 4186 rcu_for_each_node_breadth_first(rsp, rnp) { 4187 if (rnp->level != level) { 4188 pr_cont("\n"); 4189 pr_info(" "); 4190 level = rnp->level; 4191 } 4192 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4193 } 4194 pr_cont("\n"); 4195 } 4196 4197 void __init rcu_init(void) 4198 { 4199 int cpu; 4200 4201 rcu_early_boot_tests(); 4202 4203 rcu_bootup_announce(); 4204 rcu_init_geometry(); 4205 rcu_init_one(&rcu_bh_state); 4206 rcu_init_one(&rcu_sched_state); 4207 if (dump_tree) 4208 rcu_dump_rcu_node_tree(&rcu_sched_state); 4209 __rcu_init_preempt(); 4210 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4211 4212 /* 4213 * We don't need protection against CPU-hotplug here because 4214 * this is called early in boot, before either interrupts 4215 * or the scheduler are operational. 4216 */ 4217 pm_notifier(rcu_pm_notify, 0); 4218 for_each_online_cpu(cpu) { 4219 rcutree_prepare_cpu(cpu); 4220 rcu_cpu_starting(cpu); 4221 if (IS_ENABLED(CONFIG_TREE_SRCU)) 4222 srcu_online_cpu(cpu); 4223 } 4224 } 4225 4226 #include "tree_exp.h" 4227 #include "tree_plugin.h" 4228