xref: /openbmc/linux/kernel/rcu/tree.c (revision efe4a1ac)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * In order to export the rcu_state name to the tracing tools, it
74  * needs to be added in the __tracepoint_string section.
75  * This requires defining a separate variable tp_<sname>_varname
76  * that points to the string being used, and this will allow
77  * the tracing userspace tools to be able to decipher the string
78  * address to the matching string.
79  */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89 
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 	.level = { &sname##_state.node[0] }, \
95 	.rda = &sname##_data, \
96 	.call = cr, \
97 	.gp_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
103 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 	.name = RCU_STATE_NAME(sname), \
105 	.abbr = sabbr, \
106 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
107 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
108 }
109 
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115 
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
131 
132 /*
133  * The rcu_scheduler_active variable is initialized to the value
134  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
136  * RCU can assume that there is but one task, allowing RCU to (for example)
137  * optimize synchronize_rcu() to a simple barrier().  When this variable
138  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139  * to detect real grace periods.  This variable is also used to suppress
140  * boot-time false positives from lockdep-RCU error checking.  Finally, it
141  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142  * is fully initialized, including all of its kthreads having been spawned.
143  */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146 
147 /*
148  * The rcu_scheduler_fully_active variable transitions from zero to one
149  * during the early_initcall() processing, which is after the scheduler
150  * is capable of creating new tasks.  So RCU processing (for example,
151  * creating tasks for RCU priority boosting) must be delayed until after
152  * rcu_scheduler_fully_active transitions from zero to one.  We also
153  * currently delay invocation of any RCU callbacks until after this point.
154  *
155  * It might later prove better for people registering RCU callbacks during
156  * early boot to take responsibility for these callbacks, but one step at
157  * a time.
158  */
159 static int rcu_scheduler_fully_active __read_mostly;
160 
161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 static void invoke_rcu_core(void);
165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166 static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 			       struct rcu_data *rdp, bool wake);
168 static void sync_sched_exp_online_cleanup(int cpu);
169 
170 /* rcuc/rcub kthread realtime priority */
171 #ifdef CONFIG_RCU_KTHREAD_PRIO
172 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
173 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
174 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
176 module_param(kthread_prio, int, 0644);
177 
178 /* Delay in jiffies for grace-period initialization delays, debug only. */
179 
180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
181 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
182 module_param(gp_preinit_delay, int, 0644);
183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184 static const int gp_preinit_delay;
185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186 
187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
188 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
189 module_param(gp_init_delay, int, 0644);
190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191 static const int gp_init_delay;
192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
193 
194 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
195 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
196 module_param(gp_cleanup_delay, int, 0644);
197 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198 static const int gp_cleanup_delay;
199 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
200 
201 /*
202  * Number of grace periods between delays, normalized by the duration of
203  * the delay.  The longer the delay, the more the grace periods between
204  * each delay.  The reason for this normalization is that it means that,
205  * for non-zero delays, the overall slowdown of grace periods is constant
206  * regardless of the duration of the delay.  This arrangement balances
207  * the need for long delays to increase some race probabilities with the
208  * need for fast grace periods to increase other race probabilities.
209  */
210 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
211 
212 /*
213  * Track the rcutorture test sequence number and the update version
214  * number within a given test.  The rcutorture_testseq is incremented
215  * on every rcutorture module load and unload, so has an odd value
216  * when a test is running.  The rcutorture_vernum is set to zero
217  * when rcutorture starts and is incremented on each rcutorture update.
218  * These variables enable correlating rcutorture output with the
219  * RCU tracing information.
220  */
221 unsigned long rcutorture_testseq;
222 unsigned long rcutorture_vernum;
223 
224 /*
225  * Compute the mask of online CPUs for the specified rcu_node structure.
226  * This will not be stable unless the rcu_node structure's ->lock is
227  * held, but the bit corresponding to the current CPU will be stable
228  * in most contexts.
229  */
230 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231 {
232 	return READ_ONCE(rnp->qsmaskinitnext);
233 }
234 
235 /*
236  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
237  * permit this function to be invoked without holding the root rcu_node
238  * structure's ->lock, but of course results can be subject to change.
239  */
240 static int rcu_gp_in_progress(struct rcu_state *rsp)
241 {
242 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
243 }
244 
245 /*
246  * Note a quiescent state.  Because we do not need to know
247  * how many quiescent states passed, just if there was at least
248  * one since the start of the grace period, this just sets a flag.
249  * The caller must have disabled preemption.
250  */
251 void rcu_sched_qs(void)
252 {
253 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
254 		return;
255 	trace_rcu_grace_period(TPS("rcu_sched"),
256 			       __this_cpu_read(rcu_sched_data.gpnum),
257 			       TPS("cpuqs"));
258 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
259 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
260 		return;
261 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
262 	rcu_report_exp_rdp(&rcu_sched_state,
263 			   this_cpu_ptr(&rcu_sched_data), true);
264 }
265 
266 void rcu_bh_qs(void)
267 {
268 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
269 		trace_rcu_grace_period(TPS("rcu_bh"),
270 				       __this_cpu_read(rcu_bh_data.gpnum),
271 				       TPS("cpuqs"));
272 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
273 	}
274 }
275 
276 /*
277  * Steal a bit from the bottom of ->dynticks for idle entry/exit
278  * control.  Initially this is for TLB flushing.
279  */
280 #define RCU_DYNTICK_CTRL_MASK 0x1
281 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
282 #ifndef rcu_eqs_special_exit
283 #define rcu_eqs_special_exit() do { } while (0)
284 #endif
285 
286 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
287 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
288 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
289 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
290 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
291 	.dynticks_idle = ATOMIC_INIT(1),
292 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
293 };
294 
295 /*
296  * There's a few places, currently just in the tracing infrastructure,
297  * that uses rcu_irq_enter() to make sure RCU is watching. But there's
298  * a small location where that will not even work. In those cases
299  * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
300  * can be called.
301  */
302 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
303 
304 bool rcu_irq_enter_disabled(void)
305 {
306 	return this_cpu_read(disable_rcu_irq_enter);
307 }
308 
309 /*
310  * Record entry into an extended quiescent state.  This is only to be
311  * called when not already in an extended quiescent state.
312  */
313 static void rcu_dynticks_eqs_enter(void)
314 {
315 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
316 	int seq;
317 
318 	/*
319 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
320 	 * critical sections, and we also must force ordering with the
321 	 * next idle sojourn.
322 	 */
323 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 	/* Better be in an extended quiescent state! */
325 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
326 		     (seq & RCU_DYNTICK_CTRL_CTR));
327 	/* Better not have special action (TLB flush) pending! */
328 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
329 		     (seq & RCU_DYNTICK_CTRL_MASK));
330 }
331 
332 /*
333  * Record exit from an extended quiescent state.  This is only to be
334  * called from an extended quiescent state.
335  */
336 static void rcu_dynticks_eqs_exit(void)
337 {
338 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
339 	int seq;
340 
341 	/*
342 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
343 	 * and we also must force ordering with the next RCU read-side
344 	 * critical section.
345 	 */
346 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
347 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
348 		     !(seq & RCU_DYNTICK_CTRL_CTR));
349 	if (seq & RCU_DYNTICK_CTRL_MASK) {
350 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
351 		smp_mb__after_atomic(); /* _exit after clearing mask. */
352 		/* Prefer duplicate flushes to losing a flush. */
353 		rcu_eqs_special_exit();
354 	}
355 }
356 
357 /*
358  * Reset the current CPU's ->dynticks counter to indicate that the
359  * newly onlined CPU is no longer in an extended quiescent state.
360  * This will either leave the counter unchanged, or increment it
361  * to the next non-quiescent value.
362  *
363  * The non-atomic test/increment sequence works because the upper bits
364  * of the ->dynticks counter are manipulated only by the corresponding CPU,
365  * or when the corresponding CPU is offline.
366  */
367 static void rcu_dynticks_eqs_online(void)
368 {
369 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
370 
371 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
372 		return;
373 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
374 }
375 
376 /*
377  * Is the current CPU in an extended quiescent state?
378  *
379  * No ordering, as we are sampling CPU-local information.
380  */
381 bool rcu_dynticks_curr_cpu_in_eqs(void)
382 {
383 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
384 
385 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
386 }
387 
388 /*
389  * Snapshot the ->dynticks counter with full ordering so as to allow
390  * stable comparison of this counter with past and future snapshots.
391  */
392 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
393 {
394 	int snap = atomic_add_return(0, &rdtp->dynticks);
395 
396 	return snap & ~RCU_DYNTICK_CTRL_MASK;
397 }
398 
399 /*
400  * Return true if the snapshot returned from rcu_dynticks_snap()
401  * indicates that RCU is in an extended quiescent state.
402  */
403 static bool rcu_dynticks_in_eqs(int snap)
404 {
405 	return !(snap & RCU_DYNTICK_CTRL_CTR);
406 }
407 
408 /*
409  * Return true if the CPU corresponding to the specified rcu_dynticks
410  * structure has spent some time in an extended quiescent state since
411  * rcu_dynticks_snap() returned the specified snapshot.
412  */
413 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
414 {
415 	return snap != rcu_dynticks_snap(rdtp);
416 }
417 
418 /*
419  * Do a double-increment of the ->dynticks counter to emulate a
420  * momentary idle-CPU quiescent state.
421  */
422 static void rcu_dynticks_momentary_idle(void)
423 {
424 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
425 	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
426 					&rdtp->dynticks);
427 
428 	/* It is illegal to call this from idle state. */
429 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
430 }
431 
432 /*
433  * Set the special (bottom) bit of the specified CPU so that it
434  * will take special action (such as flushing its TLB) on the
435  * next exit from an extended quiescent state.  Returns true if
436  * the bit was successfully set, or false if the CPU was not in
437  * an extended quiescent state.
438  */
439 bool rcu_eqs_special_set(int cpu)
440 {
441 	int old;
442 	int new;
443 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
444 
445 	do {
446 		old = atomic_read(&rdtp->dynticks);
447 		if (old & RCU_DYNTICK_CTRL_CTR)
448 			return false;
449 		new = old | RCU_DYNTICK_CTRL_MASK;
450 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
451 	return true;
452 }
453 
454 /*
455  * Let the RCU core know that this CPU has gone through the scheduler,
456  * which is a quiescent state.  This is called when the need for a
457  * quiescent state is urgent, so we burn an atomic operation and full
458  * memory barriers to let the RCU core know about it, regardless of what
459  * this CPU might (or might not) do in the near future.
460  *
461  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
462  *
463  * The caller must have disabled interrupts.
464  */
465 static void rcu_momentary_dyntick_idle(void)
466 {
467 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
468 	rcu_dynticks_momentary_idle();
469 }
470 
471 /*
472  * Note a context switch.  This is a quiescent state for RCU-sched,
473  * and requires special handling for preemptible RCU.
474  * The caller must have disabled interrupts.
475  */
476 void rcu_note_context_switch(bool preempt)
477 {
478 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
479 	trace_rcu_utilization(TPS("Start context switch"));
480 	rcu_sched_qs();
481 	rcu_preempt_note_context_switch();
482 	/* Load rcu_urgent_qs before other flags. */
483 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
484 		goto out;
485 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
486 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
487 		rcu_momentary_dyntick_idle();
488 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
489 	if (!preempt)
490 		rcu_note_voluntary_context_switch_lite(current);
491 out:
492 	trace_rcu_utilization(TPS("End context switch"));
493 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
494 }
495 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
496 
497 /*
498  * Register a quiescent state for all RCU flavors.  If there is an
499  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
500  * dyntick-idle quiescent state visible to other CPUs (but only for those
501  * RCU flavors in desperate need of a quiescent state, which will normally
502  * be none of them).  Either way, do a lightweight quiescent state for
503  * all RCU flavors.
504  *
505  * The barrier() calls are redundant in the common case when this is
506  * called externally, but just in case this is called from within this
507  * file.
508  *
509  */
510 void rcu_all_qs(void)
511 {
512 	unsigned long flags;
513 
514 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
515 		return;
516 	preempt_disable();
517 	/* Load rcu_urgent_qs before other flags. */
518 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
519 		preempt_enable();
520 		return;
521 	}
522 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
523 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
524 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
525 		local_irq_save(flags);
526 		rcu_momentary_dyntick_idle();
527 		local_irq_restore(flags);
528 	}
529 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
530 		rcu_sched_qs();
531 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
532 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
533 	preempt_enable();
534 }
535 EXPORT_SYMBOL_GPL(rcu_all_qs);
536 
537 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
538 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
539 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
540 
541 module_param(blimit, long, 0444);
542 module_param(qhimark, long, 0444);
543 module_param(qlowmark, long, 0444);
544 
545 static ulong jiffies_till_first_fqs = ULONG_MAX;
546 static ulong jiffies_till_next_fqs = ULONG_MAX;
547 static bool rcu_kick_kthreads;
548 
549 module_param(jiffies_till_first_fqs, ulong, 0644);
550 module_param(jiffies_till_next_fqs, ulong, 0644);
551 module_param(rcu_kick_kthreads, bool, 0644);
552 
553 /*
554  * How long the grace period must be before we start recruiting
555  * quiescent-state help from rcu_note_context_switch().
556  */
557 static ulong jiffies_till_sched_qs = HZ / 20;
558 module_param(jiffies_till_sched_qs, ulong, 0644);
559 
560 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
561 				  struct rcu_data *rdp);
562 static void force_qs_rnp(struct rcu_state *rsp,
563 			 int (*f)(struct rcu_data *rsp, bool *isidle,
564 				  unsigned long *maxj),
565 			 bool *isidle, unsigned long *maxj);
566 static void force_quiescent_state(struct rcu_state *rsp);
567 static int rcu_pending(void);
568 
569 /*
570  * Return the number of RCU batches started thus far for debug & stats.
571  */
572 unsigned long rcu_batches_started(void)
573 {
574 	return rcu_state_p->gpnum;
575 }
576 EXPORT_SYMBOL_GPL(rcu_batches_started);
577 
578 /*
579  * Return the number of RCU-sched batches started thus far for debug & stats.
580  */
581 unsigned long rcu_batches_started_sched(void)
582 {
583 	return rcu_sched_state.gpnum;
584 }
585 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
586 
587 /*
588  * Return the number of RCU BH batches started thus far for debug & stats.
589  */
590 unsigned long rcu_batches_started_bh(void)
591 {
592 	return rcu_bh_state.gpnum;
593 }
594 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
595 
596 /*
597  * Return the number of RCU batches completed thus far for debug & stats.
598  */
599 unsigned long rcu_batches_completed(void)
600 {
601 	return rcu_state_p->completed;
602 }
603 EXPORT_SYMBOL_GPL(rcu_batches_completed);
604 
605 /*
606  * Return the number of RCU-sched batches completed thus far for debug & stats.
607  */
608 unsigned long rcu_batches_completed_sched(void)
609 {
610 	return rcu_sched_state.completed;
611 }
612 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
613 
614 /*
615  * Return the number of RCU BH batches completed thus far for debug & stats.
616  */
617 unsigned long rcu_batches_completed_bh(void)
618 {
619 	return rcu_bh_state.completed;
620 }
621 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
622 
623 /*
624  * Return the number of RCU expedited batches completed thus far for
625  * debug & stats.  Odd numbers mean that a batch is in progress, even
626  * numbers mean idle.  The value returned will thus be roughly double
627  * the cumulative batches since boot.
628  */
629 unsigned long rcu_exp_batches_completed(void)
630 {
631 	return rcu_state_p->expedited_sequence;
632 }
633 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
634 
635 /*
636  * Return the number of RCU-sched expedited batches completed thus far
637  * for debug & stats.  Similar to rcu_exp_batches_completed().
638  */
639 unsigned long rcu_exp_batches_completed_sched(void)
640 {
641 	return rcu_sched_state.expedited_sequence;
642 }
643 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
644 
645 /*
646  * Force a quiescent state.
647  */
648 void rcu_force_quiescent_state(void)
649 {
650 	force_quiescent_state(rcu_state_p);
651 }
652 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
653 
654 /*
655  * Force a quiescent state for RCU BH.
656  */
657 void rcu_bh_force_quiescent_state(void)
658 {
659 	force_quiescent_state(&rcu_bh_state);
660 }
661 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
662 
663 /*
664  * Force a quiescent state for RCU-sched.
665  */
666 void rcu_sched_force_quiescent_state(void)
667 {
668 	force_quiescent_state(&rcu_sched_state);
669 }
670 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
671 
672 /*
673  * Show the state of the grace-period kthreads.
674  */
675 void show_rcu_gp_kthreads(void)
676 {
677 	struct rcu_state *rsp;
678 
679 	for_each_rcu_flavor(rsp) {
680 		pr_info("%s: wait state: %d ->state: %#lx\n",
681 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
682 		/* sched_show_task(rsp->gp_kthread); */
683 	}
684 }
685 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
686 
687 /*
688  * Record the number of times rcutorture tests have been initiated and
689  * terminated.  This information allows the debugfs tracing stats to be
690  * correlated to the rcutorture messages, even when the rcutorture module
691  * is being repeatedly loaded and unloaded.  In other words, we cannot
692  * store this state in rcutorture itself.
693  */
694 void rcutorture_record_test_transition(void)
695 {
696 	rcutorture_testseq++;
697 	rcutorture_vernum = 0;
698 }
699 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
700 
701 /*
702  * Send along grace-period-related data for rcutorture diagnostics.
703  */
704 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
705 			    unsigned long *gpnum, unsigned long *completed)
706 {
707 	struct rcu_state *rsp = NULL;
708 
709 	switch (test_type) {
710 	case RCU_FLAVOR:
711 		rsp = rcu_state_p;
712 		break;
713 	case RCU_BH_FLAVOR:
714 		rsp = &rcu_bh_state;
715 		break;
716 	case RCU_SCHED_FLAVOR:
717 		rsp = &rcu_sched_state;
718 		break;
719 	default:
720 		break;
721 	}
722 	if (rsp == NULL)
723 		return;
724 	*flags = READ_ONCE(rsp->gp_flags);
725 	*gpnum = READ_ONCE(rsp->gpnum);
726 	*completed = READ_ONCE(rsp->completed);
727 }
728 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
729 
730 /*
731  * Record the number of writer passes through the current rcutorture test.
732  * This is also used to correlate debugfs tracing stats with the rcutorture
733  * messages.
734  */
735 void rcutorture_record_progress(unsigned long vernum)
736 {
737 	rcutorture_vernum++;
738 }
739 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
740 
741 /*
742  * Return the root node of the specified rcu_state structure.
743  */
744 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
745 {
746 	return &rsp->node[0];
747 }
748 
749 /*
750  * Is there any need for future grace periods?
751  * Interrupts must be disabled.  If the caller does not hold the root
752  * rnp_node structure's ->lock, the results are advisory only.
753  */
754 static int rcu_future_needs_gp(struct rcu_state *rsp)
755 {
756 	struct rcu_node *rnp = rcu_get_root(rsp);
757 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
758 	int *fp = &rnp->need_future_gp[idx];
759 
760 	return READ_ONCE(*fp);
761 }
762 
763 /*
764  * Does the current CPU require a not-yet-started grace period?
765  * The caller must have disabled interrupts to prevent races with
766  * normal callback registry.
767  */
768 static bool
769 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
770 {
771 	if (rcu_gp_in_progress(rsp))
772 		return false;  /* No, a grace period is already in progress. */
773 	if (rcu_future_needs_gp(rsp))
774 		return true;  /* Yes, a no-CBs CPU needs one. */
775 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
776 		return false;  /* No, this is a no-CBs (or offline) CPU. */
777 	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
778 		return true;  /* Yes, CPU has newly registered callbacks. */
779 	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
780 					   READ_ONCE(rsp->completed)))
781 		return true;  /* Yes, CBs for future grace period. */
782 	return false; /* No grace period needed. */
783 }
784 
785 /*
786  * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
787  *
788  * Enter idle, doing appropriate accounting.  The caller must have
789  * disabled interrupts.
790  */
791 static void rcu_eqs_enter_common(bool user)
792 {
793 	struct rcu_state *rsp;
794 	struct rcu_data *rdp;
795 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
796 
797 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
798 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
799 	    !user && !is_idle_task(current)) {
800 		struct task_struct *idle __maybe_unused =
801 			idle_task(smp_processor_id());
802 
803 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
804 		rcu_ftrace_dump(DUMP_ORIG);
805 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
806 			  current->pid, current->comm,
807 			  idle->pid, idle->comm); /* must be idle task! */
808 	}
809 	for_each_rcu_flavor(rsp) {
810 		rdp = this_cpu_ptr(rsp->rda);
811 		do_nocb_deferred_wakeup(rdp);
812 	}
813 	rcu_prepare_for_idle();
814 	__this_cpu_inc(disable_rcu_irq_enter);
815 	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
816 	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
817 	__this_cpu_dec(disable_rcu_irq_enter);
818 	rcu_dynticks_task_enter();
819 
820 	/*
821 	 * It is illegal to enter an extended quiescent state while
822 	 * in an RCU read-side critical section.
823 	 */
824 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
825 			 "Illegal idle entry in RCU read-side critical section.");
826 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
827 			 "Illegal idle entry in RCU-bh read-side critical section.");
828 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
829 			 "Illegal idle entry in RCU-sched read-side critical section.");
830 }
831 
832 /*
833  * Enter an RCU extended quiescent state, which can be either the
834  * idle loop or adaptive-tickless usermode execution.
835  */
836 static void rcu_eqs_enter(bool user)
837 {
838 	struct rcu_dynticks *rdtp;
839 
840 	rdtp = this_cpu_ptr(&rcu_dynticks);
841 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
842 		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
843 	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
844 		rcu_eqs_enter_common(user);
845 	else
846 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
847 }
848 
849 /**
850  * rcu_idle_enter - inform RCU that current CPU is entering idle
851  *
852  * Enter idle mode, in other words, -leave- the mode in which RCU
853  * read-side critical sections can occur.  (Though RCU read-side
854  * critical sections can occur in irq handlers in idle, a possibility
855  * handled by irq_enter() and irq_exit().)
856  *
857  * We crowbar the ->dynticks_nesting field to zero to allow for
858  * the possibility of usermode upcalls having messed up our count
859  * of interrupt nesting level during the prior busy period.
860  */
861 void rcu_idle_enter(void)
862 {
863 	unsigned long flags;
864 
865 	local_irq_save(flags);
866 	rcu_eqs_enter(false);
867 	rcu_sysidle_enter(0);
868 	local_irq_restore(flags);
869 }
870 EXPORT_SYMBOL_GPL(rcu_idle_enter);
871 
872 #ifdef CONFIG_NO_HZ_FULL
873 /**
874  * rcu_user_enter - inform RCU that we are resuming userspace.
875  *
876  * Enter RCU idle mode right before resuming userspace.  No use of RCU
877  * is permitted between this call and rcu_user_exit(). This way the
878  * CPU doesn't need to maintain the tick for RCU maintenance purposes
879  * when the CPU runs in userspace.
880  */
881 void rcu_user_enter(void)
882 {
883 	rcu_eqs_enter(1);
884 }
885 #endif /* CONFIG_NO_HZ_FULL */
886 
887 /**
888  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
889  *
890  * Exit from an interrupt handler, which might possibly result in entering
891  * idle mode, in other words, leaving the mode in which read-side critical
892  * sections can occur.  The caller must have disabled interrupts.
893  *
894  * This code assumes that the idle loop never does anything that might
895  * result in unbalanced calls to irq_enter() and irq_exit().  If your
896  * architecture violates this assumption, RCU will give you what you
897  * deserve, good and hard.  But very infrequently and irreproducibly.
898  *
899  * Use things like work queues to work around this limitation.
900  *
901  * You have been warned.
902  */
903 void rcu_irq_exit(void)
904 {
905 	struct rcu_dynticks *rdtp;
906 
907 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
908 	rdtp = this_cpu_ptr(&rcu_dynticks);
909 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
910 		     rdtp->dynticks_nesting < 1);
911 	if (rdtp->dynticks_nesting <= 1) {
912 		rcu_eqs_enter_common(true);
913 	} else {
914 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
915 		rdtp->dynticks_nesting--;
916 	}
917 	rcu_sysidle_enter(1);
918 }
919 
920 /*
921  * Wrapper for rcu_irq_exit() where interrupts are enabled.
922  */
923 void rcu_irq_exit_irqson(void)
924 {
925 	unsigned long flags;
926 
927 	local_irq_save(flags);
928 	rcu_irq_exit();
929 	local_irq_restore(flags);
930 }
931 
932 /*
933  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
934  *
935  * If the new value of the ->dynticks_nesting counter was previously zero,
936  * we really have exited idle, and must do the appropriate accounting.
937  * The caller must have disabled interrupts.
938  */
939 static void rcu_eqs_exit_common(long long oldval, int user)
940 {
941 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
942 
943 	rcu_dynticks_task_exit();
944 	rcu_dynticks_eqs_exit();
945 	rcu_cleanup_after_idle();
946 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
947 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
948 	    !user && !is_idle_task(current)) {
949 		struct task_struct *idle __maybe_unused =
950 			idle_task(smp_processor_id());
951 
952 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
953 				  oldval, rdtp->dynticks_nesting);
954 		rcu_ftrace_dump(DUMP_ORIG);
955 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
956 			  current->pid, current->comm,
957 			  idle->pid, idle->comm); /* must be idle task! */
958 	}
959 }
960 
961 /*
962  * Exit an RCU extended quiescent state, which can be either the
963  * idle loop or adaptive-tickless usermode execution.
964  */
965 static void rcu_eqs_exit(bool user)
966 {
967 	struct rcu_dynticks *rdtp;
968 	long long oldval;
969 
970 	rdtp = this_cpu_ptr(&rcu_dynticks);
971 	oldval = rdtp->dynticks_nesting;
972 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
973 	if (oldval & DYNTICK_TASK_NEST_MASK) {
974 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
975 	} else {
976 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
977 		rcu_eqs_exit_common(oldval, user);
978 	}
979 }
980 
981 /**
982  * rcu_idle_exit - inform RCU that current CPU is leaving idle
983  *
984  * Exit idle mode, in other words, -enter- the mode in which RCU
985  * read-side critical sections can occur.
986  *
987  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
988  * allow for the possibility of usermode upcalls messing up our count
989  * of interrupt nesting level during the busy period that is just
990  * now starting.
991  */
992 void rcu_idle_exit(void)
993 {
994 	unsigned long flags;
995 
996 	local_irq_save(flags);
997 	rcu_eqs_exit(false);
998 	rcu_sysidle_exit(0);
999 	local_irq_restore(flags);
1000 }
1001 EXPORT_SYMBOL_GPL(rcu_idle_exit);
1002 
1003 #ifdef CONFIG_NO_HZ_FULL
1004 /**
1005  * rcu_user_exit - inform RCU that we are exiting userspace.
1006  *
1007  * Exit RCU idle mode while entering the kernel because it can
1008  * run a RCU read side critical section anytime.
1009  */
1010 void rcu_user_exit(void)
1011 {
1012 	rcu_eqs_exit(1);
1013 }
1014 #endif /* CONFIG_NO_HZ_FULL */
1015 
1016 /**
1017  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1018  *
1019  * Enter an interrupt handler, which might possibly result in exiting
1020  * idle mode, in other words, entering the mode in which read-side critical
1021  * sections can occur.  The caller must have disabled interrupts.
1022  *
1023  * Note that the Linux kernel is fully capable of entering an interrupt
1024  * handler that it never exits, for example when doing upcalls to
1025  * user mode!  This code assumes that the idle loop never does upcalls to
1026  * user mode.  If your architecture does do upcalls from the idle loop (or
1027  * does anything else that results in unbalanced calls to the irq_enter()
1028  * and irq_exit() functions), RCU will give you what you deserve, good
1029  * and hard.  But very infrequently and irreproducibly.
1030  *
1031  * Use things like work queues to work around this limitation.
1032  *
1033  * You have been warned.
1034  */
1035 void rcu_irq_enter(void)
1036 {
1037 	struct rcu_dynticks *rdtp;
1038 	long long oldval;
1039 
1040 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1041 	rdtp = this_cpu_ptr(&rcu_dynticks);
1042 	oldval = rdtp->dynticks_nesting;
1043 	rdtp->dynticks_nesting++;
1044 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1045 		     rdtp->dynticks_nesting == 0);
1046 	if (oldval)
1047 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1048 	else
1049 		rcu_eqs_exit_common(oldval, true);
1050 	rcu_sysidle_exit(1);
1051 }
1052 
1053 /*
1054  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1055  */
1056 void rcu_irq_enter_irqson(void)
1057 {
1058 	unsigned long flags;
1059 
1060 	local_irq_save(flags);
1061 	rcu_irq_enter();
1062 	local_irq_restore(flags);
1063 }
1064 
1065 /**
1066  * rcu_nmi_enter - inform RCU of entry to NMI context
1067  *
1068  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1069  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1070  * that the CPU is active.  This implementation permits nested NMIs, as
1071  * long as the nesting level does not overflow an int.  (You will probably
1072  * run out of stack space first.)
1073  */
1074 void rcu_nmi_enter(void)
1075 {
1076 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1077 	int incby = 2;
1078 
1079 	/* Complain about underflow. */
1080 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1081 
1082 	/*
1083 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1084 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1085 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1086 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1087 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1088 	 * period (observation due to Andy Lutomirski).
1089 	 */
1090 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1091 		rcu_dynticks_eqs_exit();
1092 		incby = 1;
1093 	}
1094 	rdtp->dynticks_nmi_nesting += incby;
1095 	barrier();
1096 }
1097 
1098 /**
1099  * rcu_nmi_exit - inform RCU of exit from NMI context
1100  *
1101  * If we are returning from the outermost NMI handler that interrupted an
1102  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1103  * to let the RCU grace-period handling know that the CPU is back to
1104  * being RCU-idle.
1105  */
1106 void rcu_nmi_exit(void)
1107 {
1108 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1109 
1110 	/*
1111 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1112 	 * (We are exiting an NMI handler, so RCU better be paying attention
1113 	 * to us!)
1114 	 */
1115 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1116 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1117 
1118 	/*
1119 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1120 	 * leave it in non-RCU-idle state.
1121 	 */
1122 	if (rdtp->dynticks_nmi_nesting != 1) {
1123 		rdtp->dynticks_nmi_nesting -= 2;
1124 		return;
1125 	}
1126 
1127 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1128 	rdtp->dynticks_nmi_nesting = 0;
1129 	rcu_dynticks_eqs_enter();
1130 }
1131 
1132 /**
1133  * __rcu_is_watching - are RCU read-side critical sections safe?
1134  *
1135  * Return true if RCU is watching the running CPU, which means that
1136  * this CPU can safely enter RCU read-side critical sections.  Unlike
1137  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1138  * least disabled preemption.
1139  */
1140 bool notrace __rcu_is_watching(void)
1141 {
1142 	return !rcu_dynticks_curr_cpu_in_eqs();
1143 }
1144 
1145 /**
1146  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1147  *
1148  * If the current CPU is in its idle loop and is neither in an interrupt
1149  * or NMI handler, return true.
1150  */
1151 bool notrace rcu_is_watching(void)
1152 {
1153 	bool ret;
1154 
1155 	preempt_disable_notrace();
1156 	ret = __rcu_is_watching();
1157 	preempt_enable_notrace();
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL_GPL(rcu_is_watching);
1161 
1162 /*
1163  * If a holdout task is actually running, request an urgent quiescent
1164  * state from its CPU.  This is unsynchronized, so migrations can cause
1165  * the request to go to the wrong CPU.  Which is OK, all that will happen
1166  * is that the CPU's next context switch will be a bit slower and next
1167  * time around this task will generate another request.
1168  */
1169 void rcu_request_urgent_qs_task(struct task_struct *t)
1170 {
1171 	int cpu;
1172 
1173 	barrier();
1174 	cpu = task_cpu(t);
1175 	if (!task_curr(t))
1176 		return; /* This task is not running on that CPU. */
1177 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1178 }
1179 
1180 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1181 
1182 /*
1183  * Is the current CPU online?  Disable preemption to avoid false positives
1184  * that could otherwise happen due to the current CPU number being sampled,
1185  * this task being preempted, its old CPU being taken offline, resuming
1186  * on some other CPU, then determining that its old CPU is now offline.
1187  * It is OK to use RCU on an offline processor during initial boot, hence
1188  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1189  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1190  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1191  * offline to continue to use RCU for one jiffy after marking itself
1192  * offline in the cpu_online_mask.  This leniency is necessary given the
1193  * non-atomic nature of the online and offline processing, for example,
1194  * the fact that a CPU enters the scheduler after completing the teardown
1195  * of the CPU.
1196  *
1197  * This is also why RCU internally marks CPUs online during in the
1198  * preparation phase and offline after the CPU has been taken down.
1199  *
1200  * Disable checking if in an NMI handler because we cannot safely report
1201  * errors from NMI handlers anyway.
1202  */
1203 bool rcu_lockdep_current_cpu_online(void)
1204 {
1205 	struct rcu_data *rdp;
1206 	struct rcu_node *rnp;
1207 	bool ret;
1208 
1209 	if (in_nmi())
1210 		return true;
1211 	preempt_disable();
1212 	rdp = this_cpu_ptr(&rcu_sched_data);
1213 	rnp = rdp->mynode;
1214 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1215 	      !rcu_scheduler_fully_active;
1216 	preempt_enable();
1217 	return ret;
1218 }
1219 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1220 
1221 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1222 
1223 /**
1224  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1225  *
1226  * If the current CPU is idle or running at a first-level (not nested)
1227  * interrupt from idle, return true.  The caller must have at least
1228  * disabled preemption.
1229  */
1230 static int rcu_is_cpu_rrupt_from_idle(void)
1231 {
1232 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1233 }
1234 
1235 /*
1236  * Snapshot the specified CPU's dynticks counter so that we can later
1237  * credit them with an implicit quiescent state.  Return 1 if this CPU
1238  * is in dynticks idle mode, which is an extended quiescent state.
1239  */
1240 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1241 					 bool *isidle, unsigned long *maxj)
1242 {
1243 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1244 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1245 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1246 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1247 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1248 				 rdp->mynode->gpnum))
1249 			WRITE_ONCE(rdp->gpwrap, true);
1250 		return 1;
1251 	}
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Return true if the specified CPU has passed through a quiescent
1257  * state by virtue of being in or having passed through an dynticks
1258  * idle state since the last call to dyntick_save_progress_counter()
1259  * for this same CPU, or by virtue of having been offline.
1260  */
1261 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1262 				    bool *isidle, unsigned long *maxj)
1263 {
1264 	unsigned long jtsq;
1265 	bool *rnhqp;
1266 	bool *ruqp;
1267 	unsigned long rjtsc;
1268 	struct rcu_node *rnp;
1269 
1270 	/*
1271 	 * If the CPU passed through or entered a dynticks idle phase with
1272 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1273 	 * already acknowledged the request to pass through a quiescent
1274 	 * state.  Either way, that CPU cannot possibly be in an RCU
1275 	 * read-side critical section that started before the beginning
1276 	 * of the current RCU grace period.
1277 	 */
1278 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1279 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1280 		rdp->dynticks_fqs++;
1281 		return 1;
1282 	}
1283 
1284 	/* Compute and saturate jiffies_till_sched_qs. */
1285 	jtsq = jiffies_till_sched_qs;
1286 	rjtsc = rcu_jiffies_till_stall_check();
1287 	if (jtsq > rjtsc / 2) {
1288 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1289 		jtsq = rjtsc / 2;
1290 	} else if (jtsq < 1) {
1291 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1292 		jtsq = 1;
1293 	}
1294 
1295 	/*
1296 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1297 	 * beginning of the grace period?  For this to be the case,
1298 	 * the CPU has to have noticed the current grace period.  This
1299 	 * might not be the case for nohz_full CPUs looping in the kernel.
1300 	 */
1301 	rnp = rdp->mynode;
1302 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1303 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1304 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1305 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1306 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1307 		return 1;
1308 	} else {
1309 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1310 		smp_store_release(ruqp, true);
1311 	}
1312 
1313 	/* Check for the CPU being offline. */
1314 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1315 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1316 		rdp->offline_fqs++;
1317 		return 1;
1318 	}
1319 
1320 	/*
1321 	 * A CPU running for an extended time within the kernel can
1322 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1323 	 * even context-switching back and forth between a pair of
1324 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1325 	 * So if the grace period is old enough, make the CPU pay attention.
1326 	 * Note that the unsynchronized assignments to the per-CPU
1327 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1328 	 * bits can be lost, but they will be set again on the next
1329 	 * force-quiescent-state pass.  So lost bit sets do not result
1330 	 * in incorrect behavior, merely in a grace period lasting
1331 	 * a few jiffies longer than it might otherwise.  Because
1332 	 * there are at most four threads involved, and because the
1333 	 * updates are only once every few jiffies, the probability of
1334 	 * lossage (and thus of slight grace-period extension) is
1335 	 * quite low.
1336 	 *
1337 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1338 	 * is set too high, we override with half of the RCU CPU stall
1339 	 * warning delay.
1340 	 */
1341 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1342 	if (!READ_ONCE(*rnhqp) &&
1343 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1344 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1345 		WRITE_ONCE(*rnhqp, true);
1346 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1347 		smp_store_release(ruqp, true);
1348 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1349 	}
1350 
1351 	/*
1352 	 * If more than halfway to RCU CPU stall-warning time, do
1353 	 * a resched_cpu() to try to loosen things up a bit.
1354 	 */
1355 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1356 		resched_cpu(rdp->cpu);
1357 
1358 	return 0;
1359 }
1360 
1361 static void record_gp_stall_check_time(struct rcu_state *rsp)
1362 {
1363 	unsigned long j = jiffies;
1364 	unsigned long j1;
1365 
1366 	rsp->gp_start = j;
1367 	smp_wmb(); /* Record start time before stall time. */
1368 	j1 = rcu_jiffies_till_stall_check();
1369 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1370 	rsp->jiffies_resched = j + j1 / 2;
1371 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1372 }
1373 
1374 /*
1375  * Convert a ->gp_state value to a character string.
1376  */
1377 static const char *gp_state_getname(short gs)
1378 {
1379 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1380 		return "???";
1381 	return gp_state_names[gs];
1382 }
1383 
1384 /*
1385  * Complain about starvation of grace-period kthread.
1386  */
1387 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1388 {
1389 	unsigned long gpa;
1390 	unsigned long j;
1391 
1392 	j = jiffies;
1393 	gpa = READ_ONCE(rsp->gp_activity);
1394 	if (j - gpa > 2 * HZ) {
1395 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1396 		       rsp->name, j - gpa,
1397 		       rsp->gpnum, rsp->completed,
1398 		       rsp->gp_flags,
1399 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1400 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1401 		if (rsp->gp_kthread) {
1402 			sched_show_task(rsp->gp_kthread);
1403 			wake_up_process(rsp->gp_kthread);
1404 		}
1405 	}
1406 }
1407 
1408 /*
1409  * Dump stacks of all tasks running on stalled CPUs.  First try using
1410  * NMIs, but fall back to manual remote stack tracing on architectures
1411  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1412  * traces are more accurate because they are printed by the target CPU.
1413  */
1414 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1415 {
1416 	int cpu;
1417 	unsigned long flags;
1418 	struct rcu_node *rnp;
1419 
1420 	rcu_for_each_leaf_node(rsp, rnp) {
1421 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1422 		for_each_leaf_node_possible_cpu(rnp, cpu)
1423 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1424 				if (!trigger_single_cpu_backtrace(cpu))
1425 					dump_cpu_task(cpu);
1426 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1427 	}
1428 }
1429 
1430 /*
1431  * If too much time has passed in the current grace period, and if
1432  * so configured, go kick the relevant kthreads.
1433  */
1434 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1435 {
1436 	unsigned long j;
1437 
1438 	if (!rcu_kick_kthreads)
1439 		return;
1440 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1441 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1442 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1443 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1444 		rcu_ftrace_dump(DUMP_ALL);
1445 		wake_up_process(rsp->gp_kthread);
1446 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1447 	}
1448 }
1449 
1450 static inline void panic_on_rcu_stall(void)
1451 {
1452 	if (sysctl_panic_on_rcu_stall)
1453 		panic("RCU Stall\n");
1454 }
1455 
1456 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1457 {
1458 	int cpu;
1459 	long delta;
1460 	unsigned long flags;
1461 	unsigned long gpa;
1462 	unsigned long j;
1463 	int ndetected = 0;
1464 	struct rcu_node *rnp = rcu_get_root(rsp);
1465 	long totqlen = 0;
1466 
1467 	/* Kick and suppress, if so configured. */
1468 	rcu_stall_kick_kthreads(rsp);
1469 	if (rcu_cpu_stall_suppress)
1470 		return;
1471 
1472 	/* Only let one CPU complain about others per time interval. */
1473 
1474 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1475 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1476 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1477 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1478 		return;
1479 	}
1480 	WRITE_ONCE(rsp->jiffies_stall,
1481 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1482 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1483 
1484 	/*
1485 	 * OK, time to rat on our buddy...
1486 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1487 	 * RCU CPU stall warnings.
1488 	 */
1489 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1490 	       rsp->name);
1491 	print_cpu_stall_info_begin();
1492 	rcu_for_each_leaf_node(rsp, rnp) {
1493 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1494 		ndetected += rcu_print_task_stall(rnp);
1495 		if (rnp->qsmask != 0) {
1496 			for_each_leaf_node_possible_cpu(rnp, cpu)
1497 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1498 					print_cpu_stall_info(rsp, cpu);
1499 					ndetected++;
1500 				}
1501 		}
1502 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1503 	}
1504 
1505 	print_cpu_stall_info_end();
1506 	for_each_possible_cpu(cpu)
1507 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1508 							    cpu)->cblist);
1509 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1510 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1511 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1512 	if (ndetected) {
1513 		rcu_dump_cpu_stacks(rsp);
1514 
1515 		/* Complain about tasks blocking the grace period. */
1516 		rcu_print_detail_task_stall(rsp);
1517 	} else {
1518 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1519 		    READ_ONCE(rsp->completed) == gpnum) {
1520 			pr_err("INFO: Stall ended before state dump start\n");
1521 		} else {
1522 			j = jiffies;
1523 			gpa = READ_ONCE(rsp->gp_activity);
1524 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1525 			       rsp->name, j - gpa, j, gpa,
1526 			       jiffies_till_next_fqs,
1527 			       rcu_get_root(rsp)->qsmask);
1528 			/* In this case, the current CPU might be at fault. */
1529 			sched_show_task(current);
1530 		}
1531 	}
1532 
1533 	rcu_check_gp_kthread_starvation(rsp);
1534 
1535 	panic_on_rcu_stall();
1536 
1537 	force_quiescent_state(rsp);  /* Kick them all. */
1538 }
1539 
1540 static void print_cpu_stall(struct rcu_state *rsp)
1541 {
1542 	int cpu;
1543 	unsigned long flags;
1544 	struct rcu_node *rnp = rcu_get_root(rsp);
1545 	long totqlen = 0;
1546 
1547 	/* Kick and suppress, if so configured. */
1548 	rcu_stall_kick_kthreads(rsp);
1549 	if (rcu_cpu_stall_suppress)
1550 		return;
1551 
1552 	/*
1553 	 * OK, time to rat on ourselves...
1554 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1555 	 * RCU CPU stall warnings.
1556 	 */
1557 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1558 	print_cpu_stall_info_begin();
1559 	print_cpu_stall_info(rsp, smp_processor_id());
1560 	print_cpu_stall_info_end();
1561 	for_each_possible_cpu(cpu)
1562 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1563 							    cpu)->cblist);
1564 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1565 		jiffies - rsp->gp_start,
1566 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1567 
1568 	rcu_check_gp_kthread_starvation(rsp);
1569 
1570 	rcu_dump_cpu_stacks(rsp);
1571 
1572 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1573 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1574 		WRITE_ONCE(rsp->jiffies_stall,
1575 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1576 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1577 
1578 	panic_on_rcu_stall();
1579 
1580 	/*
1581 	 * Attempt to revive the RCU machinery by forcing a context switch.
1582 	 *
1583 	 * A context switch would normally allow the RCU state machine to make
1584 	 * progress and it could be we're stuck in kernel space without context
1585 	 * switches for an entirely unreasonable amount of time.
1586 	 */
1587 	resched_cpu(smp_processor_id());
1588 }
1589 
1590 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1591 {
1592 	unsigned long completed;
1593 	unsigned long gpnum;
1594 	unsigned long gps;
1595 	unsigned long j;
1596 	unsigned long js;
1597 	struct rcu_node *rnp;
1598 
1599 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1600 	    !rcu_gp_in_progress(rsp))
1601 		return;
1602 	rcu_stall_kick_kthreads(rsp);
1603 	j = jiffies;
1604 
1605 	/*
1606 	 * Lots of memory barriers to reject false positives.
1607 	 *
1608 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1609 	 * then rsp->gp_start, and finally rsp->completed.  These values
1610 	 * are updated in the opposite order with memory barriers (or
1611 	 * equivalent) during grace-period initialization and cleanup.
1612 	 * Now, a false positive can occur if we get an new value of
1613 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1614 	 * the memory barriers, the only way that this can happen is if one
1615 	 * grace period ends and another starts between these two fetches.
1616 	 * Detect this by comparing rsp->completed with the previous fetch
1617 	 * from rsp->gpnum.
1618 	 *
1619 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1620 	 * and rsp->gp_start suffice to forestall false positives.
1621 	 */
1622 	gpnum = READ_ONCE(rsp->gpnum);
1623 	smp_rmb(); /* Pick up ->gpnum first... */
1624 	js = READ_ONCE(rsp->jiffies_stall);
1625 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1626 	gps = READ_ONCE(rsp->gp_start);
1627 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1628 	completed = READ_ONCE(rsp->completed);
1629 	if (ULONG_CMP_GE(completed, gpnum) ||
1630 	    ULONG_CMP_LT(j, js) ||
1631 	    ULONG_CMP_GE(gps, js))
1632 		return; /* No stall or GP completed since entering function. */
1633 	rnp = rdp->mynode;
1634 	if (rcu_gp_in_progress(rsp) &&
1635 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1636 
1637 		/* We haven't checked in, so go dump stack. */
1638 		print_cpu_stall(rsp);
1639 
1640 	} else if (rcu_gp_in_progress(rsp) &&
1641 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1642 
1643 		/* They had a few time units to dump stack, so complain. */
1644 		print_other_cpu_stall(rsp, gpnum);
1645 	}
1646 }
1647 
1648 /**
1649  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1650  *
1651  * Set the stall-warning timeout way off into the future, thus preventing
1652  * any RCU CPU stall-warning messages from appearing in the current set of
1653  * RCU grace periods.
1654  *
1655  * The caller must disable hard irqs.
1656  */
1657 void rcu_cpu_stall_reset(void)
1658 {
1659 	struct rcu_state *rsp;
1660 
1661 	for_each_rcu_flavor(rsp)
1662 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1663 }
1664 
1665 /*
1666  * Determine the value that ->completed will have at the end of the
1667  * next subsequent grace period.  This is used to tag callbacks so that
1668  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1669  * been dyntick-idle for an extended period with callbacks under the
1670  * influence of RCU_FAST_NO_HZ.
1671  *
1672  * The caller must hold rnp->lock with interrupts disabled.
1673  */
1674 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1675 				       struct rcu_node *rnp)
1676 {
1677 	/*
1678 	 * If RCU is idle, we just wait for the next grace period.
1679 	 * But we can only be sure that RCU is idle if we are looking
1680 	 * at the root rcu_node structure -- otherwise, a new grace
1681 	 * period might have started, but just not yet gotten around
1682 	 * to initializing the current non-root rcu_node structure.
1683 	 */
1684 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1685 		return rnp->completed + 1;
1686 
1687 	/*
1688 	 * Otherwise, wait for a possible partial grace period and
1689 	 * then the subsequent full grace period.
1690 	 */
1691 	return rnp->completed + 2;
1692 }
1693 
1694 /*
1695  * Trace-event helper function for rcu_start_future_gp() and
1696  * rcu_nocb_wait_gp().
1697  */
1698 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1699 				unsigned long c, const char *s)
1700 {
1701 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1702 				      rnp->completed, c, rnp->level,
1703 				      rnp->grplo, rnp->grphi, s);
1704 }
1705 
1706 /*
1707  * Start some future grace period, as needed to handle newly arrived
1708  * callbacks.  The required future grace periods are recorded in each
1709  * rcu_node structure's ->need_future_gp field.  Returns true if there
1710  * is reason to awaken the grace-period kthread.
1711  *
1712  * The caller must hold the specified rcu_node structure's ->lock.
1713  */
1714 static bool __maybe_unused
1715 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1716 		    unsigned long *c_out)
1717 {
1718 	unsigned long c;
1719 	bool ret = false;
1720 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1721 
1722 	/*
1723 	 * Pick up grace-period number for new callbacks.  If this
1724 	 * grace period is already marked as needed, return to the caller.
1725 	 */
1726 	c = rcu_cbs_completed(rdp->rsp, rnp);
1727 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1728 	if (rnp->need_future_gp[c & 0x1]) {
1729 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1730 		goto out;
1731 	}
1732 
1733 	/*
1734 	 * If either this rcu_node structure or the root rcu_node structure
1735 	 * believe that a grace period is in progress, then we must wait
1736 	 * for the one following, which is in "c".  Because our request
1737 	 * will be noticed at the end of the current grace period, we don't
1738 	 * need to explicitly start one.  We only do the lockless check
1739 	 * of rnp_root's fields if the current rcu_node structure thinks
1740 	 * there is no grace period in flight, and because we hold rnp->lock,
1741 	 * the only possible change is when rnp_root's two fields are
1742 	 * equal, in which case rnp_root->gpnum might be concurrently
1743 	 * incremented.  But that is OK, as it will just result in our
1744 	 * doing some extra useless work.
1745 	 */
1746 	if (rnp->gpnum != rnp->completed ||
1747 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1748 		rnp->need_future_gp[c & 0x1]++;
1749 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1750 		goto out;
1751 	}
1752 
1753 	/*
1754 	 * There might be no grace period in progress.  If we don't already
1755 	 * hold it, acquire the root rcu_node structure's lock in order to
1756 	 * start one (if needed).
1757 	 */
1758 	if (rnp != rnp_root)
1759 		raw_spin_lock_rcu_node(rnp_root);
1760 
1761 	/*
1762 	 * Get a new grace-period number.  If there really is no grace
1763 	 * period in progress, it will be smaller than the one we obtained
1764 	 * earlier.  Adjust callbacks as needed.
1765 	 */
1766 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1767 	if (!rcu_is_nocb_cpu(rdp->cpu))
1768 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1769 
1770 	/*
1771 	 * If the needed for the required grace period is already
1772 	 * recorded, trace and leave.
1773 	 */
1774 	if (rnp_root->need_future_gp[c & 0x1]) {
1775 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1776 		goto unlock_out;
1777 	}
1778 
1779 	/* Record the need for the future grace period. */
1780 	rnp_root->need_future_gp[c & 0x1]++;
1781 
1782 	/* If a grace period is not already in progress, start one. */
1783 	if (rnp_root->gpnum != rnp_root->completed) {
1784 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1785 	} else {
1786 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1787 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1788 	}
1789 unlock_out:
1790 	if (rnp != rnp_root)
1791 		raw_spin_unlock_rcu_node(rnp_root);
1792 out:
1793 	if (c_out != NULL)
1794 		*c_out = c;
1795 	return ret;
1796 }
1797 
1798 /*
1799  * Clean up any old requests for the just-ended grace period.  Also return
1800  * whether any additional grace periods have been requested.
1801  */
1802 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1803 {
1804 	int c = rnp->completed;
1805 	int needmore;
1806 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1807 
1808 	rnp->need_future_gp[c & 0x1] = 0;
1809 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1810 	trace_rcu_future_gp(rnp, rdp, c,
1811 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1812 	return needmore;
1813 }
1814 
1815 /*
1816  * Awaken the grace-period kthread for the specified flavor of RCU.
1817  * Don't do a self-awaken, and don't bother awakening when there is
1818  * nothing for the grace-period kthread to do (as in several CPUs
1819  * raced to awaken, and we lost), and finally don't try to awaken
1820  * a kthread that has not yet been created.
1821  */
1822 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1823 {
1824 	if (current == rsp->gp_kthread ||
1825 	    !READ_ONCE(rsp->gp_flags) ||
1826 	    !rsp->gp_kthread)
1827 		return;
1828 	swake_up(&rsp->gp_wq);
1829 }
1830 
1831 /*
1832  * If there is room, assign a ->completed number to any callbacks on
1833  * this CPU that have not already been assigned.  Also accelerate any
1834  * callbacks that were previously assigned a ->completed number that has
1835  * since proven to be too conservative, which can happen if callbacks get
1836  * assigned a ->completed number while RCU is idle, but with reference to
1837  * a non-root rcu_node structure.  This function is idempotent, so it does
1838  * not hurt to call it repeatedly.  Returns an flag saying that we should
1839  * awaken the RCU grace-period kthread.
1840  *
1841  * The caller must hold rnp->lock with interrupts disabled.
1842  */
1843 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1844 			       struct rcu_data *rdp)
1845 {
1846 	bool ret = false;
1847 
1848 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1849 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1850 		return false;
1851 
1852 	/*
1853 	 * Callbacks are often registered with incomplete grace-period
1854 	 * information.  Something about the fact that getting exact
1855 	 * information requires acquiring a global lock...  RCU therefore
1856 	 * makes a conservative estimate of the grace period number at which
1857 	 * a given callback will become ready to invoke.	The following
1858 	 * code checks this estimate and improves it when possible, thus
1859 	 * accelerating callback invocation to an earlier grace-period
1860 	 * number.
1861 	 */
1862 	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1863 		ret = rcu_start_future_gp(rnp, rdp, NULL);
1864 
1865 	/* Trace depending on how much we were able to accelerate. */
1866 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1867 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1868 	else
1869 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1870 	return ret;
1871 }
1872 
1873 /*
1874  * Move any callbacks whose grace period has completed to the
1875  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1876  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1877  * sublist.  This function is idempotent, so it does not hurt to
1878  * invoke it repeatedly.  As long as it is not invoked -too- often...
1879  * Returns true if the RCU grace-period kthread needs to be awakened.
1880  *
1881  * The caller must hold rnp->lock with interrupts disabled.
1882  */
1883 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1884 			    struct rcu_data *rdp)
1885 {
1886 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1887 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1888 		return false;
1889 
1890 	/*
1891 	 * Find all callbacks whose ->completed numbers indicate that they
1892 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1893 	 */
1894 	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1895 
1896 	/* Classify any remaining callbacks. */
1897 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1898 }
1899 
1900 /*
1901  * Update CPU-local rcu_data state to record the beginnings and ends of
1902  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1903  * structure corresponding to the current CPU, and must have irqs disabled.
1904  * Returns true if the grace-period kthread needs to be awakened.
1905  */
1906 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1907 			      struct rcu_data *rdp)
1908 {
1909 	bool ret;
1910 	bool need_gp;
1911 
1912 	/* Handle the ends of any preceding grace periods first. */
1913 	if (rdp->completed == rnp->completed &&
1914 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1915 
1916 		/* No grace period end, so just accelerate recent callbacks. */
1917 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1918 
1919 	} else {
1920 
1921 		/* Advance callbacks. */
1922 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1923 
1924 		/* Remember that we saw this grace-period completion. */
1925 		rdp->completed = rnp->completed;
1926 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1927 	}
1928 
1929 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1930 		/*
1931 		 * If the current grace period is waiting for this CPU,
1932 		 * set up to detect a quiescent state, otherwise don't
1933 		 * go looking for one.
1934 		 */
1935 		rdp->gpnum = rnp->gpnum;
1936 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1937 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1938 		rdp->cpu_no_qs.b.norm = need_gp;
1939 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1940 		rdp->core_needs_qs = need_gp;
1941 		zero_cpu_stall_ticks(rdp);
1942 		WRITE_ONCE(rdp->gpwrap, false);
1943 	}
1944 	return ret;
1945 }
1946 
1947 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1948 {
1949 	unsigned long flags;
1950 	bool needwake;
1951 	struct rcu_node *rnp;
1952 
1953 	local_irq_save(flags);
1954 	rnp = rdp->mynode;
1955 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1956 	     rdp->completed == READ_ONCE(rnp->completed) &&
1957 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1958 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1959 		local_irq_restore(flags);
1960 		return;
1961 	}
1962 	needwake = __note_gp_changes(rsp, rnp, rdp);
1963 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1964 	if (needwake)
1965 		rcu_gp_kthread_wake(rsp);
1966 }
1967 
1968 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1969 {
1970 	if (delay > 0 &&
1971 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1972 		schedule_timeout_uninterruptible(delay);
1973 }
1974 
1975 /*
1976  * Initialize a new grace period.  Return false if no grace period required.
1977  */
1978 static bool rcu_gp_init(struct rcu_state *rsp)
1979 {
1980 	unsigned long oldmask;
1981 	struct rcu_data *rdp;
1982 	struct rcu_node *rnp = rcu_get_root(rsp);
1983 
1984 	WRITE_ONCE(rsp->gp_activity, jiffies);
1985 	raw_spin_lock_irq_rcu_node(rnp);
1986 	if (!READ_ONCE(rsp->gp_flags)) {
1987 		/* Spurious wakeup, tell caller to go back to sleep.  */
1988 		raw_spin_unlock_irq_rcu_node(rnp);
1989 		return false;
1990 	}
1991 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1992 
1993 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1994 		/*
1995 		 * Grace period already in progress, don't start another.
1996 		 * Not supposed to be able to happen.
1997 		 */
1998 		raw_spin_unlock_irq_rcu_node(rnp);
1999 		return false;
2000 	}
2001 
2002 	/* Advance to a new grace period and initialize state. */
2003 	record_gp_stall_check_time(rsp);
2004 	/* Record GP times before starting GP, hence smp_store_release(). */
2005 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2006 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2007 	raw_spin_unlock_irq_rcu_node(rnp);
2008 
2009 	/*
2010 	 * Apply per-leaf buffered online and offline operations to the
2011 	 * rcu_node tree.  Note that this new grace period need not wait
2012 	 * for subsequent online CPUs, and that quiescent-state forcing
2013 	 * will handle subsequent offline CPUs.
2014 	 */
2015 	rcu_for_each_leaf_node(rsp, rnp) {
2016 		rcu_gp_slow(rsp, gp_preinit_delay);
2017 		raw_spin_lock_irq_rcu_node(rnp);
2018 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2019 		    !rnp->wait_blkd_tasks) {
2020 			/* Nothing to do on this leaf rcu_node structure. */
2021 			raw_spin_unlock_irq_rcu_node(rnp);
2022 			continue;
2023 		}
2024 
2025 		/* Record old state, apply changes to ->qsmaskinit field. */
2026 		oldmask = rnp->qsmaskinit;
2027 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2028 
2029 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2030 		if (!oldmask != !rnp->qsmaskinit) {
2031 			if (!oldmask) /* First online CPU for this rcu_node. */
2032 				rcu_init_new_rnp(rnp);
2033 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2034 				rnp->wait_blkd_tasks = true;
2035 			else /* Last offline CPU and can propagate. */
2036 				rcu_cleanup_dead_rnp(rnp);
2037 		}
2038 
2039 		/*
2040 		 * If all waited-on tasks from prior grace period are
2041 		 * done, and if all this rcu_node structure's CPUs are
2042 		 * still offline, propagate up the rcu_node tree and
2043 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2044 		 * rcu_node structure's CPUs has since come back online,
2045 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2046 		 * checks for this, so just call it unconditionally).
2047 		 */
2048 		if (rnp->wait_blkd_tasks &&
2049 		    (!rcu_preempt_has_tasks(rnp) ||
2050 		     rnp->qsmaskinit)) {
2051 			rnp->wait_blkd_tasks = false;
2052 			rcu_cleanup_dead_rnp(rnp);
2053 		}
2054 
2055 		raw_spin_unlock_irq_rcu_node(rnp);
2056 	}
2057 
2058 	/*
2059 	 * Set the quiescent-state-needed bits in all the rcu_node
2060 	 * structures for all currently online CPUs in breadth-first order,
2061 	 * starting from the root rcu_node structure, relying on the layout
2062 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2063 	 * will access only the leaves of the hierarchy, thus seeing that no
2064 	 * grace period is in progress, at least until the corresponding
2065 	 * leaf node has been initialized.
2066 	 *
2067 	 * The grace period cannot complete until the initialization
2068 	 * process finishes, because this kthread handles both.
2069 	 */
2070 	rcu_for_each_node_breadth_first(rsp, rnp) {
2071 		rcu_gp_slow(rsp, gp_init_delay);
2072 		raw_spin_lock_irq_rcu_node(rnp);
2073 		rdp = this_cpu_ptr(rsp->rda);
2074 		rcu_preempt_check_blocked_tasks(rnp);
2075 		rnp->qsmask = rnp->qsmaskinit;
2076 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2077 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2078 			WRITE_ONCE(rnp->completed, rsp->completed);
2079 		if (rnp == rdp->mynode)
2080 			(void)__note_gp_changes(rsp, rnp, rdp);
2081 		rcu_preempt_boost_start_gp(rnp);
2082 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2083 					    rnp->level, rnp->grplo,
2084 					    rnp->grphi, rnp->qsmask);
2085 		raw_spin_unlock_irq_rcu_node(rnp);
2086 		cond_resched_rcu_qs();
2087 		WRITE_ONCE(rsp->gp_activity, jiffies);
2088 	}
2089 
2090 	return true;
2091 }
2092 
2093 /*
2094  * Helper function for wait_event_interruptible_timeout() wakeup
2095  * at force-quiescent-state time.
2096  */
2097 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2098 {
2099 	struct rcu_node *rnp = rcu_get_root(rsp);
2100 
2101 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2102 	*gfp = READ_ONCE(rsp->gp_flags);
2103 	if (*gfp & RCU_GP_FLAG_FQS)
2104 		return true;
2105 
2106 	/* The current grace period has completed. */
2107 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2108 		return true;
2109 
2110 	return false;
2111 }
2112 
2113 /*
2114  * Do one round of quiescent-state forcing.
2115  */
2116 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2117 {
2118 	bool isidle = false;
2119 	unsigned long maxj;
2120 	struct rcu_node *rnp = rcu_get_root(rsp);
2121 
2122 	WRITE_ONCE(rsp->gp_activity, jiffies);
2123 	rsp->n_force_qs++;
2124 	if (first_time) {
2125 		/* Collect dyntick-idle snapshots. */
2126 		if (is_sysidle_rcu_state(rsp)) {
2127 			isidle = true;
2128 			maxj = jiffies - ULONG_MAX / 4;
2129 		}
2130 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2131 			     &isidle, &maxj);
2132 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2133 	} else {
2134 		/* Handle dyntick-idle and offline CPUs. */
2135 		isidle = true;
2136 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2137 	}
2138 	/* Clear flag to prevent immediate re-entry. */
2139 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2140 		raw_spin_lock_irq_rcu_node(rnp);
2141 		WRITE_ONCE(rsp->gp_flags,
2142 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2143 		raw_spin_unlock_irq_rcu_node(rnp);
2144 	}
2145 }
2146 
2147 /*
2148  * Clean up after the old grace period.
2149  */
2150 static void rcu_gp_cleanup(struct rcu_state *rsp)
2151 {
2152 	unsigned long gp_duration;
2153 	bool needgp = false;
2154 	int nocb = 0;
2155 	struct rcu_data *rdp;
2156 	struct rcu_node *rnp = rcu_get_root(rsp);
2157 	struct swait_queue_head *sq;
2158 
2159 	WRITE_ONCE(rsp->gp_activity, jiffies);
2160 	raw_spin_lock_irq_rcu_node(rnp);
2161 	gp_duration = jiffies - rsp->gp_start;
2162 	if (gp_duration > rsp->gp_max)
2163 		rsp->gp_max = gp_duration;
2164 
2165 	/*
2166 	 * We know the grace period is complete, but to everyone else
2167 	 * it appears to still be ongoing.  But it is also the case
2168 	 * that to everyone else it looks like there is nothing that
2169 	 * they can do to advance the grace period.  It is therefore
2170 	 * safe for us to drop the lock in order to mark the grace
2171 	 * period as completed in all of the rcu_node structures.
2172 	 */
2173 	raw_spin_unlock_irq_rcu_node(rnp);
2174 
2175 	/*
2176 	 * Propagate new ->completed value to rcu_node structures so
2177 	 * that other CPUs don't have to wait until the start of the next
2178 	 * grace period to process their callbacks.  This also avoids
2179 	 * some nasty RCU grace-period initialization races by forcing
2180 	 * the end of the current grace period to be completely recorded in
2181 	 * all of the rcu_node structures before the beginning of the next
2182 	 * grace period is recorded in any of the rcu_node structures.
2183 	 */
2184 	rcu_for_each_node_breadth_first(rsp, rnp) {
2185 		raw_spin_lock_irq_rcu_node(rnp);
2186 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2187 		WARN_ON_ONCE(rnp->qsmask);
2188 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2189 		rdp = this_cpu_ptr(rsp->rda);
2190 		if (rnp == rdp->mynode)
2191 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2192 		/* smp_mb() provided by prior unlock-lock pair. */
2193 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2194 		sq = rcu_nocb_gp_get(rnp);
2195 		raw_spin_unlock_irq_rcu_node(rnp);
2196 		rcu_nocb_gp_cleanup(sq);
2197 		cond_resched_rcu_qs();
2198 		WRITE_ONCE(rsp->gp_activity, jiffies);
2199 		rcu_gp_slow(rsp, gp_cleanup_delay);
2200 	}
2201 	rnp = rcu_get_root(rsp);
2202 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2203 	rcu_nocb_gp_set(rnp, nocb);
2204 
2205 	/* Declare grace period done. */
2206 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2207 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2208 	rsp->gp_state = RCU_GP_IDLE;
2209 	rdp = this_cpu_ptr(rsp->rda);
2210 	/* Advance CBs to reduce false positives below. */
2211 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2212 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2213 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2214 		trace_rcu_grace_period(rsp->name,
2215 				       READ_ONCE(rsp->gpnum),
2216 				       TPS("newreq"));
2217 	}
2218 	raw_spin_unlock_irq_rcu_node(rnp);
2219 }
2220 
2221 /*
2222  * Body of kthread that handles grace periods.
2223  */
2224 static int __noreturn rcu_gp_kthread(void *arg)
2225 {
2226 	bool first_gp_fqs;
2227 	int gf;
2228 	unsigned long j;
2229 	int ret;
2230 	struct rcu_state *rsp = arg;
2231 	struct rcu_node *rnp = rcu_get_root(rsp);
2232 
2233 	rcu_bind_gp_kthread();
2234 	for (;;) {
2235 
2236 		/* Handle grace-period start. */
2237 		for (;;) {
2238 			trace_rcu_grace_period(rsp->name,
2239 					       READ_ONCE(rsp->gpnum),
2240 					       TPS("reqwait"));
2241 			rsp->gp_state = RCU_GP_WAIT_GPS;
2242 			swait_event_interruptible(rsp->gp_wq,
2243 						 READ_ONCE(rsp->gp_flags) &
2244 						 RCU_GP_FLAG_INIT);
2245 			rsp->gp_state = RCU_GP_DONE_GPS;
2246 			/* Locking provides needed memory barrier. */
2247 			if (rcu_gp_init(rsp))
2248 				break;
2249 			cond_resched_rcu_qs();
2250 			WRITE_ONCE(rsp->gp_activity, jiffies);
2251 			WARN_ON(signal_pending(current));
2252 			trace_rcu_grace_period(rsp->name,
2253 					       READ_ONCE(rsp->gpnum),
2254 					       TPS("reqwaitsig"));
2255 		}
2256 
2257 		/* Handle quiescent-state forcing. */
2258 		first_gp_fqs = true;
2259 		j = jiffies_till_first_fqs;
2260 		if (j > HZ) {
2261 			j = HZ;
2262 			jiffies_till_first_fqs = HZ;
2263 		}
2264 		ret = 0;
2265 		for (;;) {
2266 			if (!ret) {
2267 				rsp->jiffies_force_qs = jiffies + j;
2268 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2269 					   jiffies + 3 * j);
2270 			}
2271 			trace_rcu_grace_period(rsp->name,
2272 					       READ_ONCE(rsp->gpnum),
2273 					       TPS("fqswait"));
2274 			rsp->gp_state = RCU_GP_WAIT_FQS;
2275 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2276 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2277 			rsp->gp_state = RCU_GP_DOING_FQS;
2278 			/* Locking provides needed memory barriers. */
2279 			/* If grace period done, leave loop. */
2280 			if (!READ_ONCE(rnp->qsmask) &&
2281 			    !rcu_preempt_blocked_readers_cgp(rnp))
2282 				break;
2283 			/* If time for quiescent-state forcing, do it. */
2284 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2285 			    (gf & RCU_GP_FLAG_FQS)) {
2286 				trace_rcu_grace_period(rsp->name,
2287 						       READ_ONCE(rsp->gpnum),
2288 						       TPS("fqsstart"));
2289 				rcu_gp_fqs(rsp, first_gp_fqs);
2290 				first_gp_fqs = false;
2291 				trace_rcu_grace_period(rsp->name,
2292 						       READ_ONCE(rsp->gpnum),
2293 						       TPS("fqsend"));
2294 				cond_resched_rcu_qs();
2295 				WRITE_ONCE(rsp->gp_activity, jiffies);
2296 				ret = 0; /* Force full wait till next FQS. */
2297 				j = jiffies_till_next_fqs;
2298 				if (j > HZ) {
2299 					j = HZ;
2300 					jiffies_till_next_fqs = HZ;
2301 				} else if (j < 1) {
2302 					j = 1;
2303 					jiffies_till_next_fqs = 1;
2304 				}
2305 			} else {
2306 				/* Deal with stray signal. */
2307 				cond_resched_rcu_qs();
2308 				WRITE_ONCE(rsp->gp_activity, jiffies);
2309 				WARN_ON(signal_pending(current));
2310 				trace_rcu_grace_period(rsp->name,
2311 						       READ_ONCE(rsp->gpnum),
2312 						       TPS("fqswaitsig"));
2313 				ret = 1; /* Keep old FQS timing. */
2314 				j = jiffies;
2315 				if (time_after(jiffies, rsp->jiffies_force_qs))
2316 					j = 1;
2317 				else
2318 					j = rsp->jiffies_force_qs - j;
2319 			}
2320 		}
2321 
2322 		/* Handle grace-period end. */
2323 		rsp->gp_state = RCU_GP_CLEANUP;
2324 		rcu_gp_cleanup(rsp);
2325 		rsp->gp_state = RCU_GP_CLEANED;
2326 	}
2327 }
2328 
2329 /*
2330  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2331  * in preparation for detecting the next grace period.  The caller must hold
2332  * the root node's ->lock and hard irqs must be disabled.
2333  *
2334  * Note that it is legal for a dying CPU (which is marked as offline) to
2335  * invoke this function.  This can happen when the dying CPU reports its
2336  * quiescent state.
2337  *
2338  * Returns true if the grace-period kthread must be awakened.
2339  */
2340 static bool
2341 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2342 		      struct rcu_data *rdp)
2343 {
2344 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2345 		/*
2346 		 * Either we have not yet spawned the grace-period
2347 		 * task, this CPU does not need another grace period,
2348 		 * or a grace period is already in progress.
2349 		 * Either way, don't start a new grace period.
2350 		 */
2351 		return false;
2352 	}
2353 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2354 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2355 			       TPS("newreq"));
2356 
2357 	/*
2358 	 * We can't do wakeups while holding the rnp->lock, as that
2359 	 * could cause possible deadlocks with the rq->lock. Defer
2360 	 * the wakeup to our caller.
2361 	 */
2362 	return true;
2363 }
2364 
2365 /*
2366  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2367  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2368  * is invoked indirectly from rcu_advance_cbs(), which would result in
2369  * endless recursion -- or would do so if it wasn't for the self-deadlock
2370  * that is encountered beforehand.
2371  *
2372  * Returns true if the grace-period kthread needs to be awakened.
2373  */
2374 static bool rcu_start_gp(struct rcu_state *rsp)
2375 {
2376 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2377 	struct rcu_node *rnp = rcu_get_root(rsp);
2378 	bool ret = false;
2379 
2380 	/*
2381 	 * If there is no grace period in progress right now, any
2382 	 * callbacks we have up to this point will be satisfied by the
2383 	 * next grace period.  Also, advancing the callbacks reduces the
2384 	 * probability of false positives from cpu_needs_another_gp()
2385 	 * resulting in pointless grace periods.  So, advance callbacks
2386 	 * then start the grace period!
2387 	 */
2388 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2389 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2390 	return ret;
2391 }
2392 
2393 /*
2394  * Report a full set of quiescent states to the specified rcu_state data
2395  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2396  * kthread if another grace period is required.  Whether we wake
2397  * the grace-period kthread or it awakens itself for the next round
2398  * of quiescent-state forcing, that kthread will clean up after the
2399  * just-completed grace period.  Note that the caller must hold rnp->lock,
2400  * which is released before return.
2401  */
2402 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2403 	__releases(rcu_get_root(rsp)->lock)
2404 {
2405 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2406 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2407 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2408 	rcu_gp_kthread_wake(rsp);
2409 }
2410 
2411 /*
2412  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2413  * Allows quiescent states for a group of CPUs to be reported at one go
2414  * to the specified rcu_node structure, though all the CPUs in the group
2415  * must be represented by the same rcu_node structure (which need not be a
2416  * leaf rcu_node structure, though it often will be).  The gps parameter
2417  * is the grace-period snapshot, which means that the quiescent states
2418  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2419  * must be held upon entry, and it is released before return.
2420  */
2421 static void
2422 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2423 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2424 	__releases(rnp->lock)
2425 {
2426 	unsigned long oldmask = 0;
2427 	struct rcu_node *rnp_c;
2428 
2429 	/* Walk up the rcu_node hierarchy. */
2430 	for (;;) {
2431 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2432 
2433 			/*
2434 			 * Our bit has already been cleared, or the
2435 			 * relevant grace period is already over, so done.
2436 			 */
2437 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2438 			return;
2439 		}
2440 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2441 		rnp->qsmask &= ~mask;
2442 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2443 						 mask, rnp->qsmask, rnp->level,
2444 						 rnp->grplo, rnp->grphi,
2445 						 !!rnp->gp_tasks);
2446 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2447 
2448 			/* Other bits still set at this level, so done. */
2449 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2450 			return;
2451 		}
2452 		mask = rnp->grpmask;
2453 		if (rnp->parent == NULL) {
2454 
2455 			/* No more levels.  Exit loop holding root lock. */
2456 
2457 			break;
2458 		}
2459 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2460 		rnp_c = rnp;
2461 		rnp = rnp->parent;
2462 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2463 		oldmask = rnp_c->qsmask;
2464 	}
2465 
2466 	/*
2467 	 * Get here if we are the last CPU to pass through a quiescent
2468 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2469 	 * to clean up and start the next grace period if one is needed.
2470 	 */
2471 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2472 }
2473 
2474 /*
2475  * Record a quiescent state for all tasks that were previously queued
2476  * on the specified rcu_node structure and that were blocking the current
2477  * RCU grace period.  The caller must hold the specified rnp->lock with
2478  * irqs disabled, and this lock is released upon return, but irqs remain
2479  * disabled.
2480  */
2481 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2482 				      struct rcu_node *rnp, unsigned long flags)
2483 	__releases(rnp->lock)
2484 {
2485 	unsigned long gps;
2486 	unsigned long mask;
2487 	struct rcu_node *rnp_p;
2488 
2489 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2490 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2491 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2492 		return;  /* Still need more quiescent states! */
2493 	}
2494 
2495 	rnp_p = rnp->parent;
2496 	if (rnp_p == NULL) {
2497 		/*
2498 		 * Only one rcu_node structure in the tree, so don't
2499 		 * try to report up to its nonexistent parent!
2500 		 */
2501 		rcu_report_qs_rsp(rsp, flags);
2502 		return;
2503 	}
2504 
2505 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2506 	gps = rnp->gpnum;
2507 	mask = rnp->grpmask;
2508 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2509 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2510 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2511 }
2512 
2513 /*
2514  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2515  * structure.  This must be called from the specified CPU.
2516  */
2517 static void
2518 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2519 {
2520 	unsigned long flags;
2521 	unsigned long mask;
2522 	bool needwake;
2523 	struct rcu_node *rnp;
2524 
2525 	rnp = rdp->mynode;
2526 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2527 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2528 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2529 
2530 		/*
2531 		 * The grace period in which this quiescent state was
2532 		 * recorded has ended, so don't report it upwards.
2533 		 * We will instead need a new quiescent state that lies
2534 		 * within the current grace period.
2535 		 */
2536 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2537 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2538 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2539 		return;
2540 	}
2541 	mask = rdp->grpmask;
2542 	if ((rnp->qsmask & mask) == 0) {
2543 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2544 	} else {
2545 		rdp->core_needs_qs = false;
2546 
2547 		/*
2548 		 * This GP can't end until cpu checks in, so all of our
2549 		 * callbacks can be processed during the next GP.
2550 		 */
2551 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2552 
2553 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2554 		/* ^^^ Released rnp->lock */
2555 		if (needwake)
2556 			rcu_gp_kthread_wake(rsp);
2557 	}
2558 }
2559 
2560 /*
2561  * Check to see if there is a new grace period of which this CPU
2562  * is not yet aware, and if so, set up local rcu_data state for it.
2563  * Otherwise, see if this CPU has just passed through its first
2564  * quiescent state for this grace period, and record that fact if so.
2565  */
2566 static void
2567 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2568 {
2569 	/* Check for grace-period ends and beginnings. */
2570 	note_gp_changes(rsp, rdp);
2571 
2572 	/*
2573 	 * Does this CPU still need to do its part for current grace period?
2574 	 * If no, return and let the other CPUs do their part as well.
2575 	 */
2576 	if (!rdp->core_needs_qs)
2577 		return;
2578 
2579 	/*
2580 	 * Was there a quiescent state since the beginning of the grace
2581 	 * period? If no, then exit and wait for the next call.
2582 	 */
2583 	if (rdp->cpu_no_qs.b.norm)
2584 		return;
2585 
2586 	/*
2587 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2588 	 * judge of that).
2589 	 */
2590 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2591 }
2592 
2593 /*
2594  * Send the specified CPU's RCU callbacks to the orphanage.  The
2595  * specified CPU must be offline, and the caller must hold the
2596  * ->orphan_lock.
2597  */
2598 static void
2599 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2600 			  struct rcu_node *rnp, struct rcu_data *rdp)
2601 {
2602 	/* No-CBs CPUs do not have orphanable callbacks. */
2603 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2604 		return;
2605 
2606 	/*
2607 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2608 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2609 	 * cannot be running now.  Thus no memory barrier is required.
2610 	 */
2611 	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2612 	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2613 
2614 	/*
2615 	 * Next, move those callbacks still needing a grace period to
2616 	 * the orphanage, where some other CPU will pick them up.
2617 	 * Some of the callbacks might have gone partway through a grace
2618 	 * period, but that is too bad.  They get to start over because we
2619 	 * cannot assume that grace periods are synchronized across CPUs.
2620 	 */
2621 	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2622 
2623 	/*
2624 	 * Then move the ready-to-invoke callbacks to the orphanage,
2625 	 * where some other CPU will pick them up.  These will not be
2626 	 * required to pass though another grace period: They are done.
2627 	 */
2628 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2629 
2630 	/* Finally, disallow further callbacks on this CPU.  */
2631 	rcu_segcblist_disable(&rdp->cblist);
2632 }
2633 
2634 /*
2635  * Adopt the RCU callbacks from the specified rcu_state structure's
2636  * orphanage.  The caller must hold the ->orphan_lock.
2637  */
2638 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2639 {
2640 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2641 
2642 	/* No-CBs CPUs are handled specially. */
2643 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2644 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2645 		return;
2646 
2647 	/* Do the accounting first. */
2648 	rdp->n_cbs_adopted += rsp->orphan_done.len;
2649 	if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2650 		rcu_idle_count_callbacks_posted();
2651 	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2652 
2653 	/*
2654 	 * We do not need a memory barrier here because the only way we
2655 	 * can get here if there is an rcu_barrier() in flight is if
2656 	 * we are the task doing the rcu_barrier().
2657 	 */
2658 
2659 	/* First adopt the ready-to-invoke callbacks, then the done ones. */
2660 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2661 	WARN_ON_ONCE(rsp->orphan_done.head);
2662 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2663 	WARN_ON_ONCE(rsp->orphan_pend.head);
2664 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2665 		     !rcu_segcblist_n_cbs(&rdp->cblist));
2666 }
2667 
2668 /*
2669  * Trace the fact that this CPU is going offline.
2670  */
2671 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2672 {
2673 	RCU_TRACE(unsigned long mask;)
2674 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2675 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2676 
2677 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2678 		return;
2679 
2680 	RCU_TRACE(mask = rdp->grpmask;)
2681 	trace_rcu_grace_period(rsp->name,
2682 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2683 			       TPS("cpuofl"));
2684 }
2685 
2686 /*
2687  * All CPUs for the specified rcu_node structure have gone offline,
2688  * and all tasks that were preempted within an RCU read-side critical
2689  * section while running on one of those CPUs have since exited their RCU
2690  * read-side critical section.  Some other CPU is reporting this fact with
2691  * the specified rcu_node structure's ->lock held and interrupts disabled.
2692  * This function therefore goes up the tree of rcu_node structures,
2693  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2694  * the leaf rcu_node structure's ->qsmaskinit field has already been
2695  * updated
2696  *
2697  * This function does check that the specified rcu_node structure has
2698  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2699  * prematurely.  That said, invoking it after the fact will cost you
2700  * a needless lock acquisition.  So once it has done its work, don't
2701  * invoke it again.
2702  */
2703 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2704 {
2705 	long mask;
2706 	struct rcu_node *rnp = rnp_leaf;
2707 
2708 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2709 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2710 		return;
2711 	for (;;) {
2712 		mask = rnp->grpmask;
2713 		rnp = rnp->parent;
2714 		if (!rnp)
2715 			break;
2716 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2717 		rnp->qsmaskinit &= ~mask;
2718 		rnp->qsmask &= ~mask;
2719 		if (rnp->qsmaskinit) {
2720 			raw_spin_unlock_rcu_node(rnp);
2721 			/* irqs remain disabled. */
2722 			return;
2723 		}
2724 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2725 	}
2726 }
2727 
2728 /*
2729  * The CPU has been completely removed, and some other CPU is reporting
2730  * this fact from process context.  Do the remainder of the cleanup,
2731  * including orphaning the outgoing CPU's RCU callbacks, and also
2732  * adopting them.  There can only be one CPU hotplug operation at a time,
2733  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2734  */
2735 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2736 {
2737 	unsigned long flags;
2738 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2739 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2740 
2741 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2742 		return;
2743 
2744 	/* Adjust any no-longer-needed kthreads. */
2745 	rcu_boost_kthread_setaffinity(rnp, -1);
2746 
2747 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2748 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2749 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2750 	rcu_adopt_orphan_cbs(rsp, flags);
2751 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2752 
2753 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2754 		  !rcu_segcblist_empty(&rdp->cblist),
2755 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2756 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2757 		  rcu_segcblist_first_cb(&rdp->cblist));
2758 }
2759 
2760 /*
2761  * Invoke any RCU callbacks that have made it to the end of their grace
2762  * period.  Thottle as specified by rdp->blimit.
2763  */
2764 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2765 {
2766 	unsigned long flags;
2767 	struct rcu_head *rhp;
2768 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2769 	long bl, count;
2770 
2771 	/* If no callbacks are ready, just return. */
2772 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2773 		trace_rcu_batch_start(rsp->name,
2774 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2775 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2776 		trace_rcu_batch_end(rsp->name, 0,
2777 				    !rcu_segcblist_empty(&rdp->cblist),
2778 				    need_resched(), is_idle_task(current),
2779 				    rcu_is_callbacks_kthread());
2780 		return;
2781 	}
2782 
2783 	/*
2784 	 * Extract the list of ready callbacks, disabling to prevent
2785 	 * races with call_rcu() from interrupt handlers.  Leave the
2786 	 * callback counts, as rcu_barrier() needs to be conservative.
2787 	 */
2788 	local_irq_save(flags);
2789 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2790 	bl = rdp->blimit;
2791 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2792 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2793 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2794 	local_irq_restore(flags);
2795 
2796 	/* Invoke callbacks. */
2797 	rhp = rcu_cblist_dequeue(&rcl);
2798 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2799 		debug_rcu_head_unqueue(rhp);
2800 		if (__rcu_reclaim(rsp->name, rhp))
2801 			rcu_cblist_dequeued_lazy(&rcl);
2802 		/*
2803 		 * Stop only if limit reached and CPU has something to do.
2804 		 * Note: The rcl structure counts down from zero.
2805 		 */
2806 		if (-rcl.len >= bl &&
2807 		    (need_resched() ||
2808 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2809 			break;
2810 	}
2811 
2812 	local_irq_save(flags);
2813 	count = -rcl.len;
2814 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2815 			    is_idle_task(current), rcu_is_callbacks_kthread());
2816 
2817 	/* Update counts and requeue any remaining callbacks. */
2818 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2819 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2820 	rdp->n_cbs_invoked += count;
2821 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2822 
2823 	/* Reinstate batch limit if we have worked down the excess. */
2824 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2825 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2826 		rdp->blimit = blimit;
2827 
2828 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2829 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2830 		rdp->qlen_last_fqs_check = 0;
2831 		rdp->n_force_qs_snap = rsp->n_force_qs;
2832 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2833 		rdp->qlen_last_fqs_check = count;
2834 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2835 
2836 	local_irq_restore(flags);
2837 
2838 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2839 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2840 		invoke_rcu_core();
2841 }
2842 
2843 /*
2844  * Check to see if this CPU is in a non-context-switch quiescent state
2845  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2846  * Also schedule RCU core processing.
2847  *
2848  * This function must be called from hardirq context.  It is normally
2849  * invoked from the scheduling-clock interrupt.
2850  */
2851 void rcu_check_callbacks(int user)
2852 {
2853 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2854 	increment_cpu_stall_ticks();
2855 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2856 
2857 		/*
2858 		 * Get here if this CPU took its interrupt from user
2859 		 * mode or from the idle loop, and if this is not a
2860 		 * nested interrupt.  In this case, the CPU is in
2861 		 * a quiescent state, so note it.
2862 		 *
2863 		 * No memory barrier is required here because both
2864 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2865 		 * variables that other CPUs neither access nor modify,
2866 		 * at least not while the corresponding CPU is online.
2867 		 */
2868 
2869 		rcu_sched_qs();
2870 		rcu_bh_qs();
2871 
2872 	} else if (!in_softirq()) {
2873 
2874 		/*
2875 		 * Get here if this CPU did not take its interrupt from
2876 		 * softirq, in other words, if it is not interrupting
2877 		 * a rcu_bh read-side critical section.  This is an _bh
2878 		 * critical section, so note it.
2879 		 */
2880 
2881 		rcu_bh_qs();
2882 	}
2883 	rcu_preempt_check_callbacks();
2884 	if (rcu_pending())
2885 		invoke_rcu_core();
2886 	if (user)
2887 		rcu_note_voluntary_context_switch(current);
2888 	trace_rcu_utilization(TPS("End scheduler-tick"));
2889 }
2890 
2891 /*
2892  * Scan the leaf rcu_node structures, processing dyntick state for any that
2893  * have not yet encountered a quiescent state, using the function specified.
2894  * Also initiate boosting for any threads blocked on the root rcu_node.
2895  *
2896  * The caller must have suppressed start of new grace periods.
2897  */
2898 static void force_qs_rnp(struct rcu_state *rsp,
2899 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2900 				  unsigned long *maxj),
2901 			 bool *isidle, unsigned long *maxj)
2902 {
2903 	int cpu;
2904 	unsigned long flags;
2905 	unsigned long mask;
2906 	struct rcu_node *rnp;
2907 
2908 	rcu_for_each_leaf_node(rsp, rnp) {
2909 		cond_resched_rcu_qs();
2910 		mask = 0;
2911 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2912 		if (rnp->qsmask == 0) {
2913 			if (rcu_state_p == &rcu_sched_state ||
2914 			    rsp != rcu_state_p ||
2915 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2916 				/*
2917 				 * No point in scanning bits because they
2918 				 * are all zero.  But we might need to
2919 				 * priority-boost blocked readers.
2920 				 */
2921 				rcu_initiate_boost(rnp, flags);
2922 				/* rcu_initiate_boost() releases rnp->lock */
2923 				continue;
2924 			}
2925 			if (rnp->parent &&
2926 			    (rnp->parent->qsmask & rnp->grpmask)) {
2927 				/*
2928 				 * Race between grace-period
2929 				 * initialization and task exiting RCU
2930 				 * read-side critical section: Report.
2931 				 */
2932 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2933 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2934 				continue;
2935 			}
2936 		}
2937 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2938 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2939 			if ((rnp->qsmask & bit) != 0) {
2940 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2941 					mask |= bit;
2942 			}
2943 		}
2944 		if (mask != 0) {
2945 			/* Idle/offline CPUs, report (releases rnp->lock. */
2946 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2947 		} else {
2948 			/* Nothing to do here, so just drop the lock. */
2949 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2950 		}
2951 	}
2952 }
2953 
2954 /*
2955  * Force quiescent states on reluctant CPUs, and also detect which
2956  * CPUs are in dyntick-idle mode.
2957  */
2958 static void force_quiescent_state(struct rcu_state *rsp)
2959 {
2960 	unsigned long flags;
2961 	bool ret;
2962 	struct rcu_node *rnp;
2963 	struct rcu_node *rnp_old = NULL;
2964 
2965 	/* Funnel through hierarchy to reduce memory contention. */
2966 	rnp = __this_cpu_read(rsp->rda->mynode);
2967 	for (; rnp != NULL; rnp = rnp->parent) {
2968 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2969 		      !raw_spin_trylock(&rnp->fqslock);
2970 		if (rnp_old != NULL)
2971 			raw_spin_unlock(&rnp_old->fqslock);
2972 		if (ret) {
2973 			rsp->n_force_qs_lh++;
2974 			return;
2975 		}
2976 		rnp_old = rnp;
2977 	}
2978 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2979 
2980 	/* Reached the root of the rcu_node tree, acquire lock. */
2981 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2982 	raw_spin_unlock(&rnp_old->fqslock);
2983 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2984 		rsp->n_force_qs_lh++;
2985 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2986 		return;  /* Someone beat us to it. */
2987 	}
2988 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2989 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2990 	rcu_gp_kthread_wake(rsp);
2991 }
2992 
2993 /*
2994  * This does the RCU core processing work for the specified rcu_state
2995  * and rcu_data structures.  This may be called only from the CPU to
2996  * whom the rdp belongs.
2997  */
2998 static void
2999 __rcu_process_callbacks(struct rcu_state *rsp)
3000 {
3001 	unsigned long flags;
3002 	bool needwake;
3003 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3004 
3005 	WARN_ON_ONCE(!rdp->beenonline);
3006 
3007 	/* Update RCU state based on any recent quiescent states. */
3008 	rcu_check_quiescent_state(rsp, rdp);
3009 
3010 	/* Does this CPU require a not-yet-started grace period? */
3011 	local_irq_save(flags);
3012 	if (cpu_needs_another_gp(rsp, rdp)) {
3013 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3014 		needwake = rcu_start_gp(rsp);
3015 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3016 		if (needwake)
3017 			rcu_gp_kthread_wake(rsp);
3018 	} else {
3019 		local_irq_restore(flags);
3020 	}
3021 
3022 	/* If there are callbacks ready, invoke them. */
3023 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3024 		invoke_rcu_callbacks(rsp, rdp);
3025 
3026 	/* Do any needed deferred wakeups of rcuo kthreads. */
3027 	do_nocb_deferred_wakeup(rdp);
3028 }
3029 
3030 /*
3031  * Do RCU core processing for the current CPU.
3032  */
3033 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3034 {
3035 	struct rcu_state *rsp;
3036 
3037 	if (cpu_is_offline(smp_processor_id()))
3038 		return;
3039 	trace_rcu_utilization(TPS("Start RCU core"));
3040 	for_each_rcu_flavor(rsp)
3041 		__rcu_process_callbacks(rsp);
3042 	trace_rcu_utilization(TPS("End RCU core"));
3043 }
3044 
3045 /*
3046  * Schedule RCU callback invocation.  If the specified type of RCU
3047  * does not support RCU priority boosting, just do a direct call,
3048  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3049  * are running on the current CPU with softirqs disabled, the
3050  * rcu_cpu_kthread_task cannot disappear out from under us.
3051  */
3052 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3053 {
3054 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3055 		return;
3056 	if (likely(!rsp->boost)) {
3057 		rcu_do_batch(rsp, rdp);
3058 		return;
3059 	}
3060 	invoke_rcu_callbacks_kthread();
3061 }
3062 
3063 static void invoke_rcu_core(void)
3064 {
3065 	if (cpu_online(smp_processor_id()))
3066 		raise_softirq(RCU_SOFTIRQ);
3067 }
3068 
3069 /*
3070  * Handle any core-RCU processing required by a call_rcu() invocation.
3071  */
3072 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3073 			    struct rcu_head *head, unsigned long flags)
3074 {
3075 	bool needwake;
3076 
3077 	/*
3078 	 * If called from an extended quiescent state, invoke the RCU
3079 	 * core in order to force a re-evaluation of RCU's idleness.
3080 	 */
3081 	if (!rcu_is_watching())
3082 		invoke_rcu_core();
3083 
3084 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3085 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3086 		return;
3087 
3088 	/*
3089 	 * Force the grace period if too many callbacks or too long waiting.
3090 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3091 	 * if some other CPU has recently done so.  Also, don't bother
3092 	 * invoking force_quiescent_state() if the newly enqueued callback
3093 	 * is the only one waiting for a grace period to complete.
3094 	 */
3095 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3096 		     rdp->qlen_last_fqs_check + qhimark)) {
3097 
3098 		/* Are we ignoring a completed grace period? */
3099 		note_gp_changes(rsp, rdp);
3100 
3101 		/* Start a new grace period if one not already started. */
3102 		if (!rcu_gp_in_progress(rsp)) {
3103 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3104 
3105 			raw_spin_lock_rcu_node(rnp_root);
3106 			needwake = rcu_start_gp(rsp);
3107 			raw_spin_unlock_rcu_node(rnp_root);
3108 			if (needwake)
3109 				rcu_gp_kthread_wake(rsp);
3110 		} else {
3111 			/* Give the grace period a kick. */
3112 			rdp->blimit = LONG_MAX;
3113 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3114 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3115 				force_quiescent_state(rsp);
3116 			rdp->n_force_qs_snap = rsp->n_force_qs;
3117 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3118 		}
3119 	}
3120 }
3121 
3122 /*
3123  * RCU callback function to leak a callback.
3124  */
3125 static void rcu_leak_callback(struct rcu_head *rhp)
3126 {
3127 }
3128 
3129 /*
3130  * Helper function for call_rcu() and friends.  The cpu argument will
3131  * normally be -1, indicating "currently running CPU".  It may specify
3132  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3133  * is expected to specify a CPU.
3134  */
3135 static void
3136 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3137 	   struct rcu_state *rsp, int cpu, bool lazy)
3138 {
3139 	unsigned long flags;
3140 	struct rcu_data *rdp;
3141 
3142 	/* Misaligned rcu_head! */
3143 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3144 
3145 	if (debug_rcu_head_queue(head)) {
3146 		/* Probable double call_rcu(), so leak the callback. */
3147 		WRITE_ONCE(head->func, rcu_leak_callback);
3148 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3149 		return;
3150 	}
3151 	head->func = func;
3152 	head->next = NULL;
3153 	local_irq_save(flags);
3154 	rdp = this_cpu_ptr(rsp->rda);
3155 
3156 	/* Add the callback to our list. */
3157 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3158 		int offline;
3159 
3160 		if (cpu != -1)
3161 			rdp = per_cpu_ptr(rsp->rda, cpu);
3162 		if (likely(rdp->mynode)) {
3163 			/* Post-boot, so this should be for a no-CBs CPU. */
3164 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3165 			WARN_ON_ONCE(offline);
3166 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3167 			local_irq_restore(flags);
3168 			return;
3169 		}
3170 		/*
3171 		 * Very early boot, before rcu_init().  Initialize if needed
3172 		 * and then drop through to queue the callback.
3173 		 */
3174 		BUG_ON(cpu != -1);
3175 		WARN_ON_ONCE(!rcu_is_watching());
3176 		if (rcu_segcblist_empty(&rdp->cblist))
3177 			rcu_segcblist_init(&rdp->cblist);
3178 	}
3179 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3180 	if (!lazy)
3181 		rcu_idle_count_callbacks_posted();
3182 
3183 	if (__is_kfree_rcu_offset((unsigned long)func))
3184 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3185 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3186 					 rcu_segcblist_n_cbs(&rdp->cblist));
3187 	else
3188 		trace_rcu_callback(rsp->name, head,
3189 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3190 				   rcu_segcblist_n_cbs(&rdp->cblist));
3191 
3192 	/* Go handle any RCU core processing required. */
3193 	__call_rcu_core(rsp, rdp, head, flags);
3194 	local_irq_restore(flags);
3195 }
3196 
3197 /*
3198  * Queue an RCU-sched callback for invocation after a grace period.
3199  */
3200 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3201 {
3202 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3203 }
3204 EXPORT_SYMBOL_GPL(call_rcu_sched);
3205 
3206 /*
3207  * Queue an RCU callback for invocation after a quicker grace period.
3208  */
3209 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3210 {
3211 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3212 }
3213 EXPORT_SYMBOL_GPL(call_rcu_bh);
3214 
3215 /*
3216  * Queue an RCU callback for lazy invocation after a grace period.
3217  * This will likely be later named something like "call_rcu_lazy()",
3218  * but this change will require some way of tagging the lazy RCU
3219  * callbacks in the list of pending callbacks. Until then, this
3220  * function may only be called from __kfree_rcu().
3221  */
3222 void kfree_call_rcu(struct rcu_head *head,
3223 		    rcu_callback_t func)
3224 {
3225 	__call_rcu(head, func, rcu_state_p, -1, 1);
3226 }
3227 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3228 
3229 /*
3230  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3231  * any blocking grace-period wait automatically implies a grace period
3232  * if there is only one CPU online at any point time during execution
3233  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3234  * occasionally incorrectly indicate that there are multiple CPUs online
3235  * when there was in fact only one the whole time, as this just adds
3236  * some overhead: RCU still operates correctly.
3237  */
3238 static inline int rcu_blocking_is_gp(void)
3239 {
3240 	int ret;
3241 
3242 	might_sleep();  /* Check for RCU read-side critical section. */
3243 	preempt_disable();
3244 	ret = num_online_cpus() <= 1;
3245 	preempt_enable();
3246 	return ret;
3247 }
3248 
3249 /**
3250  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3251  *
3252  * Control will return to the caller some time after a full rcu-sched
3253  * grace period has elapsed, in other words after all currently executing
3254  * rcu-sched read-side critical sections have completed.   These read-side
3255  * critical sections are delimited by rcu_read_lock_sched() and
3256  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3257  * local_irq_disable(), and so on may be used in place of
3258  * rcu_read_lock_sched().
3259  *
3260  * This means that all preempt_disable code sequences, including NMI and
3261  * non-threaded hardware-interrupt handlers, in progress on entry will
3262  * have completed before this primitive returns.  However, this does not
3263  * guarantee that softirq handlers will have completed, since in some
3264  * kernels, these handlers can run in process context, and can block.
3265  *
3266  * Note that this guarantee implies further memory-ordering guarantees.
3267  * On systems with more than one CPU, when synchronize_sched() returns,
3268  * each CPU is guaranteed to have executed a full memory barrier since the
3269  * end of its last RCU-sched read-side critical section whose beginning
3270  * preceded the call to synchronize_sched().  In addition, each CPU having
3271  * an RCU read-side critical section that extends beyond the return from
3272  * synchronize_sched() is guaranteed to have executed a full memory barrier
3273  * after the beginning of synchronize_sched() and before the beginning of
3274  * that RCU read-side critical section.  Note that these guarantees include
3275  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3276  * that are executing in the kernel.
3277  *
3278  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3279  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3280  * to have executed a full memory barrier during the execution of
3281  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3282  * again only if the system has more than one CPU).
3283  *
3284  * This primitive provides the guarantees made by the (now removed)
3285  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3286  * guarantees that rcu_read_lock() sections will have completed.
3287  * In "classic RCU", these two guarantees happen to be one and
3288  * the same, but can differ in realtime RCU implementations.
3289  */
3290 void synchronize_sched(void)
3291 {
3292 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3293 			 lock_is_held(&rcu_lock_map) ||
3294 			 lock_is_held(&rcu_sched_lock_map),
3295 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3296 	if (rcu_blocking_is_gp())
3297 		return;
3298 	if (rcu_gp_is_expedited())
3299 		synchronize_sched_expedited();
3300 	else
3301 		wait_rcu_gp(call_rcu_sched);
3302 }
3303 EXPORT_SYMBOL_GPL(synchronize_sched);
3304 
3305 /**
3306  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3307  *
3308  * Control will return to the caller some time after a full rcu_bh grace
3309  * period has elapsed, in other words after all currently executing rcu_bh
3310  * read-side critical sections have completed.  RCU read-side critical
3311  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3312  * and may be nested.
3313  *
3314  * See the description of synchronize_sched() for more detailed information
3315  * on memory ordering guarantees.
3316  */
3317 void synchronize_rcu_bh(void)
3318 {
3319 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3320 			 lock_is_held(&rcu_lock_map) ||
3321 			 lock_is_held(&rcu_sched_lock_map),
3322 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3323 	if (rcu_blocking_is_gp())
3324 		return;
3325 	if (rcu_gp_is_expedited())
3326 		synchronize_rcu_bh_expedited();
3327 	else
3328 		wait_rcu_gp(call_rcu_bh);
3329 }
3330 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3331 
3332 /**
3333  * get_state_synchronize_rcu - Snapshot current RCU state
3334  *
3335  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3336  * to determine whether or not a full grace period has elapsed in the
3337  * meantime.
3338  */
3339 unsigned long get_state_synchronize_rcu(void)
3340 {
3341 	/*
3342 	 * Any prior manipulation of RCU-protected data must happen
3343 	 * before the load from ->gpnum.
3344 	 */
3345 	smp_mb();  /* ^^^ */
3346 
3347 	/*
3348 	 * Make sure this load happens before the purportedly
3349 	 * time-consuming work between get_state_synchronize_rcu()
3350 	 * and cond_synchronize_rcu().
3351 	 */
3352 	return smp_load_acquire(&rcu_state_p->gpnum);
3353 }
3354 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3355 
3356 /**
3357  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3358  *
3359  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3360  *
3361  * If a full RCU grace period has elapsed since the earlier call to
3362  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3363  * synchronize_rcu() to wait for a full grace period.
3364  *
3365  * Yes, this function does not take counter wrap into account.  But
3366  * counter wrap is harmless.  If the counter wraps, we have waited for
3367  * more than 2 billion grace periods (and way more on a 64-bit system!),
3368  * so waiting for one additional grace period should be just fine.
3369  */
3370 void cond_synchronize_rcu(unsigned long oldstate)
3371 {
3372 	unsigned long newstate;
3373 
3374 	/*
3375 	 * Ensure that this load happens before any RCU-destructive
3376 	 * actions the caller might carry out after we return.
3377 	 */
3378 	newstate = smp_load_acquire(&rcu_state_p->completed);
3379 	if (ULONG_CMP_GE(oldstate, newstate))
3380 		synchronize_rcu();
3381 }
3382 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3383 
3384 /**
3385  * get_state_synchronize_sched - Snapshot current RCU-sched state
3386  *
3387  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3388  * to determine whether or not a full grace period has elapsed in the
3389  * meantime.
3390  */
3391 unsigned long get_state_synchronize_sched(void)
3392 {
3393 	/*
3394 	 * Any prior manipulation of RCU-protected data must happen
3395 	 * before the load from ->gpnum.
3396 	 */
3397 	smp_mb();  /* ^^^ */
3398 
3399 	/*
3400 	 * Make sure this load happens before the purportedly
3401 	 * time-consuming work between get_state_synchronize_sched()
3402 	 * and cond_synchronize_sched().
3403 	 */
3404 	return smp_load_acquire(&rcu_sched_state.gpnum);
3405 }
3406 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3407 
3408 /**
3409  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3410  *
3411  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3412  *
3413  * If a full RCU-sched grace period has elapsed since the earlier call to
3414  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3415  * synchronize_sched() to wait for a full grace period.
3416  *
3417  * Yes, this function does not take counter wrap into account.  But
3418  * counter wrap is harmless.  If the counter wraps, we have waited for
3419  * more than 2 billion grace periods (and way more on a 64-bit system!),
3420  * so waiting for one additional grace period should be just fine.
3421  */
3422 void cond_synchronize_sched(unsigned long oldstate)
3423 {
3424 	unsigned long newstate;
3425 
3426 	/*
3427 	 * Ensure that this load happens before any RCU-destructive
3428 	 * actions the caller might carry out after we return.
3429 	 */
3430 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3431 	if (ULONG_CMP_GE(oldstate, newstate))
3432 		synchronize_sched();
3433 }
3434 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3435 
3436 /*
3437  * Check to see if there is any immediate RCU-related work to be done
3438  * by the current CPU, for the specified type of RCU, returning 1 if so.
3439  * The checks are in order of increasing expense: checks that can be
3440  * carried out against CPU-local state are performed first.  However,
3441  * we must check for CPU stalls first, else we might not get a chance.
3442  */
3443 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3444 {
3445 	struct rcu_node *rnp = rdp->mynode;
3446 
3447 	rdp->n_rcu_pending++;
3448 
3449 	/* Check for CPU stalls, if enabled. */
3450 	check_cpu_stall(rsp, rdp);
3451 
3452 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3453 	if (rcu_nohz_full_cpu(rsp))
3454 		return 0;
3455 
3456 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3457 	if (rcu_scheduler_fully_active &&
3458 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3459 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3460 		rdp->n_rp_core_needs_qs++;
3461 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3462 		rdp->n_rp_report_qs++;
3463 		return 1;
3464 	}
3465 
3466 	/* Does this CPU have callbacks ready to invoke? */
3467 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3468 		rdp->n_rp_cb_ready++;
3469 		return 1;
3470 	}
3471 
3472 	/* Has RCU gone idle with this CPU needing another grace period? */
3473 	if (cpu_needs_another_gp(rsp, rdp)) {
3474 		rdp->n_rp_cpu_needs_gp++;
3475 		return 1;
3476 	}
3477 
3478 	/* Has another RCU grace period completed?  */
3479 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3480 		rdp->n_rp_gp_completed++;
3481 		return 1;
3482 	}
3483 
3484 	/* Has a new RCU grace period started? */
3485 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3486 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3487 		rdp->n_rp_gp_started++;
3488 		return 1;
3489 	}
3490 
3491 	/* Does this CPU need a deferred NOCB wakeup? */
3492 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3493 		rdp->n_rp_nocb_defer_wakeup++;
3494 		return 1;
3495 	}
3496 
3497 	/* nothing to do */
3498 	rdp->n_rp_need_nothing++;
3499 	return 0;
3500 }
3501 
3502 /*
3503  * Check to see if there is any immediate RCU-related work to be done
3504  * by the current CPU, returning 1 if so.  This function is part of the
3505  * RCU implementation; it is -not- an exported member of the RCU API.
3506  */
3507 static int rcu_pending(void)
3508 {
3509 	struct rcu_state *rsp;
3510 
3511 	for_each_rcu_flavor(rsp)
3512 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3513 			return 1;
3514 	return 0;
3515 }
3516 
3517 /*
3518  * Return true if the specified CPU has any callback.  If all_lazy is
3519  * non-NULL, store an indication of whether all callbacks are lazy.
3520  * (If there are no callbacks, all of them are deemed to be lazy.)
3521  */
3522 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3523 {
3524 	bool al = true;
3525 	bool hc = false;
3526 	struct rcu_data *rdp;
3527 	struct rcu_state *rsp;
3528 
3529 	for_each_rcu_flavor(rsp) {
3530 		rdp = this_cpu_ptr(rsp->rda);
3531 		if (rcu_segcblist_empty(&rdp->cblist))
3532 			continue;
3533 		hc = true;
3534 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3535 			al = false;
3536 			break;
3537 		}
3538 	}
3539 	if (all_lazy)
3540 		*all_lazy = al;
3541 	return hc;
3542 }
3543 
3544 /*
3545  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3546  * the compiler is expected to optimize this away.
3547  */
3548 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3549 			       int cpu, unsigned long done)
3550 {
3551 	trace_rcu_barrier(rsp->name, s, cpu,
3552 			  atomic_read(&rsp->barrier_cpu_count), done);
3553 }
3554 
3555 /*
3556  * RCU callback function for _rcu_barrier().  If we are last, wake
3557  * up the task executing _rcu_barrier().
3558  */
3559 static void rcu_barrier_callback(struct rcu_head *rhp)
3560 {
3561 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3562 	struct rcu_state *rsp = rdp->rsp;
3563 
3564 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3565 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3566 		complete(&rsp->barrier_completion);
3567 	} else {
3568 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3569 	}
3570 }
3571 
3572 /*
3573  * Called with preemption disabled, and from cross-cpu IRQ context.
3574  */
3575 static void rcu_barrier_func(void *type)
3576 {
3577 	struct rcu_state *rsp = type;
3578 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3579 
3580 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3581 	atomic_inc(&rsp->barrier_cpu_count);
3582 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3583 }
3584 
3585 /*
3586  * Orchestrate the specified type of RCU barrier, waiting for all
3587  * RCU callbacks of the specified type to complete.
3588  */
3589 static void _rcu_barrier(struct rcu_state *rsp)
3590 {
3591 	int cpu;
3592 	struct rcu_data *rdp;
3593 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3594 
3595 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3596 
3597 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3598 	mutex_lock(&rsp->barrier_mutex);
3599 
3600 	/* Did someone else do our work for us? */
3601 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3602 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3603 		smp_mb(); /* caller's subsequent code after above check. */
3604 		mutex_unlock(&rsp->barrier_mutex);
3605 		return;
3606 	}
3607 
3608 	/* Mark the start of the barrier operation. */
3609 	rcu_seq_start(&rsp->barrier_sequence);
3610 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3611 
3612 	/*
3613 	 * Initialize the count to one rather than to zero in order to
3614 	 * avoid a too-soon return to zero in case of a short grace period
3615 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3616 	 * to ensure that no offline CPU has callbacks queued.
3617 	 */
3618 	init_completion(&rsp->barrier_completion);
3619 	atomic_set(&rsp->barrier_cpu_count, 1);
3620 	get_online_cpus();
3621 
3622 	/*
3623 	 * Force each CPU with callbacks to register a new callback.
3624 	 * When that callback is invoked, we will know that all of the
3625 	 * corresponding CPU's preceding callbacks have been invoked.
3626 	 */
3627 	for_each_possible_cpu(cpu) {
3628 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3629 			continue;
3630 		rdp = per_cpu_ptr(rsp->rda, cpu);
3631 		if (rcu_is_nocb_cpu(cpu)) {
3632 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3633 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3634 						   rsp->barrier_sequence);
3635 			} else {
3636 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3637 						   rsp->barrier_sequence);
3638 				smp_mb__before_atomic();
3639 				atomic_inc(&rsp->barrier_cpu_count);
3640 				__call_rcu(&rdp->barrier_head,
3641 					   rcu_barrier_callback, rsp, cpu, 0);
3642 			}
3643 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3644 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3645 					   rsp->barrier_sequence);
3646 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3647 		} else {
3648 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3649 					   rsp->barrier_sequence);
3650 		}
3651 	}
3652 	put_online_cpus();
3653 
3654 	/*
3655 	 * Now that we have an rcu_barrier_callback() callback on each
3656 	 * CPU, and thus each counted, remove the initial count.
3657 	 */
3658 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3659 		complete(&rsp->barrier_completion);
3660 
3661 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3662 	wait_for_completion(&rsp->barrier_completion);
3663 
3664 	/* Mark the end of the barrier operation. */
3665 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3666 	rcu_seq_end(&rsp->barrier_sequence);
3667 
3668 	/* Other rcu_barrier() invocations can now safely proceed. */
3669 	mutex_unlock(&rsp->barrier_mutex);
3670 }
3671 
3672 /**
3673  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3674  */
3675 void rcu_barrier_bh(void)
3676 {
3677 	_rcu_barrier(&rcu_bh_state);
3678 }
3679 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3680 
3681 /**
3682  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3683  */
3684 void rcu_barrier_sched(void)
3685 {
3686 	_rcu_barrier(&rcu_sched_state);
3687 }
3688 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3689 
3690 /*
3691  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3692  * first CPU in a given leaf rcu_node structure coming online.  The caller
3693  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3694  * disabled.
3695  */
3696 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3697 {
3698 	long mask;
3699 	struct rcu_node *rnp = rnp_leaf;
3700 
3701 	for (;;) {
3702 		mask = rnp->grpmask;
3703 		rnp = rnp->parent;
3704 		if (rnp == NULL)
3705 			return;
3706 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3707 		rnp->qsmaskinit |= mask;
3708 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3709 	}
3710 }
3711 
3712 /*
3713  * Do boot-time initialization of a CPU's per-CPU RCU data.
3714  */
3715 static void __init
3716 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3717 {
3718 	unsigned long flags;
3719 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3720 	struct rcu_node *rnp = rcu_get_root(rsp);
3721 
3722 	/* Set up local state, ensuring consistent view of global state. */
3723 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3724 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3725 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3726 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3727 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3728 	rdp->cpu = cpu;
3729 	rdp->rsp = rsp;
3730 	rcu_boot_init_nocb_percpu_data(rdp);
3731 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3732 }
3733 
3734 /*
3735  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3736  * offline event can be happening at a given time.  Note also that we
3737  * can accept some slop in the rsp->completed access due to the fact
3738  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3739  */
3740 static void
3741 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3742 {
3743 	unsigned long flags;
3744 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3745 	struct rcu_node *rnp = rcu_get_root(rsp);
3746 
3747 	/* Set up local state, ensuring consistent view of global state. */
3748 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3749 	rdp->qlen_last_fqs_check = 0;
3750 	rdp->n_force_qs_snap = rsp->n_force_qs;
3751 	rdp->blimit = blimit;
3752 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3753 	    !init_nocb_callback_list(rdp))
3754 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3755 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3756 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3757 	rcu_dynticks_eqs_online();
3758 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3759 
3760 	/*
3761 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3762 	 * propagation up the rcu_node tree will happen at the beginning
3763 	 * of the next grace period.
3764 	 */
3765 	rnp = rdp->mynode;
3766 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3767 	if (!rdp->beenonline)
3768 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3769 	rdp->beenonline = true;	 /* We have now been online. */
3770 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3771 	rdp->completed = rnp->completed;
3772 	rdp->cpu_no_qs.b.norm = true;
3773 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3774 	rdp->core_needs_qs = false;
3775 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3776 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3777 }
3778 
3779 /*
3780  * Invoked early in the CPU-online process, when pretty much all
3781  * services are available.  The incoming CPU is not present.
3782  */
3783 int rcutree_prepare_cpu(unsigned int cpu)
3784 {
3785 	struct rcu_state *rsp;
3786 
3787 	for_each_rcu_flavor(rsp)
3788 		rcu_init_percpu_data(cpu, rsp);
3789 
3790 	rcu_prepare_kthreads(cpu);
3791 	rcu_spawn_all_nocb_kthreads(cpu);
3792 
3793 	return 0;
3794 }
3795 
3796 /*
3797  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3798  */
3799 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3800 {
3801 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3802 
3803 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3804 }
3805 
3806 /*
3807  * Near the end of the CPU-online process.  Pretty much all services
3808  * enabled, and the CPU is now very much alive.
3809  */
3810 int rcutree_online_cpu(unsigned int cpu)
3811 {
3812 	sync_sched_exp_online_cleanup(cpu);
3813 	rcutree_affinity_setting(cpu, -1);
3814 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3815 		srcu_online_cpu(cpu);
3816 	return 0;
3817 }
3818 
3819 /*
3820  * Near the beginning of the process.  The CPU is still very much alive
3821  * with pretty much all services enabled.
3822  */
3823 int rcutree_offline_cpu(unsigned int cpu)
3824 {
3825 	rcutree_affinity_setting(cpu, cpu);
3826 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3827 		srcu_offline_cpu(cpu);
3828 	return 0;
3829 }
3830 
3831 /*
3832  * Near the end of the offline process.  We do only tracing here.
3833  */
3834 int rcutree_dying_cpu(unsigned int cpu)
3835 {
3836 	struct rcu_state *rsp;
3837 
3838 	for_each_rcu_flavor(rsp)
3839 		rcu_cleanup_dying_cpu(rsp);
3840 	return 0;
3841 }
3842 
3843 /*
3844  * The outgoing CPU is gone and we are running elsewhere.
3845  */
3846 int rcutree_dead_cpu(unsigned int cpu)
3847 {
3848 	struct rcu_state *rsp;
3849 
3850 	for_each_rcu_flavor(rsp) {
3851 		rcu_cleanup_dead_cpu(cpu, rsp);
3852 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3853 	}
3854 	return 0;
3855 }
3856 
3857 /*
3858  * Mark the specified CPU as being online so that subsequent grace periods
3859  * (both expedited and normal) will wait on it.  Note that this means that
3860  * incoming CPUs are not allowed to use RCU read-side critical sections
3861  * until this function is called.  Failing to observe this restriction
3862  * will result in lockdep splats.
3863  *
3864  * Note that this function is special in that it is invoked directly
3865  * from the incoming CPU rather than from the cpuhp_step mechanism.
3866  * This is because this function must be invoked at a precise location.
3867  */
3868 void rcu_cpu_starting(unsigned int cpu)
3869 {
3870 	unsigned long flags;
3871 	unsigned long mask;
3872 	struct rcu_data *rdp;
3873 	struct rcu_node *rnp;
3874 	struct rcu_state *rsp;
3875 
3876 	for_each_rcu_flavor(rsp) {
3877 		rdp = per_cpu_ptr(rsp->rda, cpu);
3878 		rnp = rdp->mynode;
3879 		mask = rdp->grpmask;
3880 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3881 		rnp->qsmaskinitnext |= mask;
3882 		rnp->expmaskinitnext |= mask;
3883 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3884 	}
3885 }
3886 
3887 #ifdef CONFIG_HOTPLUG_CPU
3888 /*
3889  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3890  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3891  * bit masks.
3892  */
3893 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3894 {
3895 	unsigned long flags;
3896 	unsigned long mask;
3897 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3898 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3899 
3900 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3901 	mask = rdp->grpmask;
3902 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3903 	rnp->qsmaskinitnext &= ~mask;
3904 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3905 }
3906 
3907 /*
3908  * The outgoing function has no further need of RCU, so remove it from
3909  * the list of CPUs that RCU must track.
3910  *
3911  * Note that this function is special in that it is invoked directly
3912  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3913  * This is because this function must be invoked at a precise location.
3914  */
3915 void rcu_report_dead(unsigned int cpu)
3916 {
3917 	struct rcu_state *rsp;
3918 
3919 	/* QS for any half-done expedited RCU-sched GP. */
3920 	preempt_disable();
3921 	rcu_report_exp_rdp(&rcu_sched_state,
3922 			   this_cpu_ptr(rcu_sched_state.rda), true);
3923 	preempt_enable();
3924 	for_each_rcu_flavor(rsp)
3925 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3926 }
3927 #endif
3928 
3929 /*
3930  * On non-huge systems, use expedited RCU grace periods to make suspend
3931  * and hibernation run faster.
3932  */
3933 static int rcu_pm_notify(struct notifier_block *self,
3934 			 unsigned long action, void *hcpu)
3935 {
3936 	switch (action) {
3937 	case PM_HIBERNATION_PREPARE:
3938 	case PM_SUSPEND_PREPARE:
3939 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3940 			rcu_expedite_gp();
3941 		break;
3942 	case PM_POST_HIBERNATION:
3943 	case PM_POST_SUSPEND:
3944 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3945 			rcu_unexpedite_gp();
3946 		break;
3947 	default:
3948 		break;
3949 	}
3950 	return NOTIFY_OK;
3951 }
3952 
3953 /*
3954  * Spawn the kthreads that handle each RCU flavor's grace periods.
3955  */
3956 static int __init rcu_spawn_gp_kthread(void)
3957 {
3958 	unsigned long flags;
3959 	int kthread_prio_in = kthread_prio;
3960 	struct rcu_node *rnp;
3961 	struct rcu_state *rsp;
3962 	struct sched_param sp;
3963 	struct task_struct *t;
3964 
3965 	/* Force priority into range. */
3966 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3967 		kthread_prio = 1;
3968 	else if (kthread_prio < 0)
3969 		kthread_prio = 0;
3970 	else if (kthread_prio > 99)
3971 		kthread_prio = 99;
3972 	if (kthread_prio != kthread_prio_in)
3973 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3974 			 kthread_prio, kthread_prio_in);
3975 
3976 	rcu_scheduler_fully_active = 1;
3977 	for_each_rcu_flavor(rsp) {
3978 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3979 		BUG_ON(IS_ERR(t));
3980 		rnp = rcu_get_root(rsp);
3981 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3982 		rsp->gp_kthread = t;
3983 		if (kthread_prio) {
3984 			sp.sched_priority = kthread_prio;
3985 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3986 		}
3987 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3988 		wake_up_process(t);
3989 	}
3990 	rcu_spawn_nocb_kthreads();
3991 	rcu_spawn_boost_kthreads();
3992 	return 0;
3993 }
3994 early_initcall(rcu_spawn_gp_kthread);
3995 
3996 /*
3997  * This function is invoked towards the end of the scheduler's
3998  * initialization process.  Before this is called, the idle task might
3999  * contain synchronous grace-period primitives (during which time, this idle
4000  * task is booting the system, and such primitives are no-ops).  After this
4001  * function is called, any synchronous grace-period primitives are run as
4002  * expedited, with the requesting task driving the grace period forward.
4003  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4004  * runtime RCU functionality.
4005  */
4006 void rcu_scheduler_starting(void)
4007 {
4008 	WARN_ON(num_online_cpus() != 1);
4009 	WARN_ON(nr_context_switches() > 0);
4010 	rcu_test_sync_prims();
4011 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4012 	rcu_test_sync_prims();
4013 }
4014 
4015 /*
4016  * Helper function for rcu_init() that initializes one rcu_state structure.
4017  */
4018 static void __init rcu_init_one(struct rcu_state *rsp)
4019 {
4020 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4021 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4022 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4023 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4024 
4025 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4026 	int cpustride = 1;
4027 	int i;
4028 	int j;
4029 	struct rcu_node *rnp;
4030 
4031 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4032 
4033 	/* Silence gcc 4.8 false positive about array index out of range. */
4034 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4035 		panic("rcu_init_one: rcu_num_lvls out of range");
4036 
4037 	/* Initialize the level-tracking arrays. */
4038 
4039 	for (i = 1; i < rcu_num_lvls; i++)
4040 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4041 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4042 
4043 	/* Initialize the elements themselves, starting from the leaves. */
4044 
4045 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4046 		cpustride *= levelspread[i];
4047 		rnp = rsp->level[i];
4048 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4049 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4050 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4051 						   &rcu_node_class[i], buf[i]);
4052 			raw_spin_lock_init(&rnp->fqslock);
4053 			lockdep_set_class_and_name(&rnp->fqslock,
4054 						   &rcu_fqs_class[i], fqs[i]);
4055 			rnp->gpnum = rsp->gpnum;
4056 			rnp->completed = rsp->completed;
4057 			rnp->qsmask = 0;
4058 			rnp->qsmaskinit = 0;
4059 			rnp->grplo = j * cpustride;
4060 			rnp->grphi = (j + 1) * cpustride - 1;
4061 			if (rnp->grphi >= nr_cpu_ids)
4062 				rnp->grphi = nr_cpu_ids - 1;
4063 			if (i == 0) {
4064 				rnp->grpnum = 0;
4065 				rnp->grpmask = 0;
4066 				rnp->parent = NULL;
4067 			} else {
4068 				rnp->grpnum = j % levelspread[i - 1];
4069 				rnp->grpmask = 1UL << rnp->grpnum;
4070 				rnp->parent = rsp->level[i - 1] +
4071 					      j / levelspread[i - 1];
4072 			}
4073 			rnp->level = i;
4074 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4075 			rcu_init_one_nocb(rnp);
4076 			init_waitqueue_head(&rnp->exp_wq[0]);
4077 			init_waitqueue_head(&rnp->exp_wq[1]);
4078 			init_waitqueue_head(&rnp->exp_wq[2]);
4079 			init_waitqueue_head(&rnp->exp_wq[3]);
4080 			spin_lock_init(&rnp->exp_lock);
4081 		}
4082 	}
4083 
4084 	init_swait_queue_head(&rsp->gp_wq);
4085 	init_swait_queue_head(&rsp->expedited_wq);
4086 	rnp = rsp->level[rcu_num_lvls - 1];
4087 	for_each_possible_cpu(i) {
4088 		while (i > rnp->grphi)
4089 			rnp++;
4090 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4091 		rcu_boot_init_percpu_data(i, rsp);
4092 	}
4093 	list_add(&rsp->flavors, &rcu_struct_flavors);
4094 }
4095 
4096 /*
4097  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4098  * replace the definitions in tree.h because those are needed to size
4099  * the ->node array in the rcu_state structure.
4100  */
4101 static void __init rcu_init_geometry(void)
4102 {
4103 	ulong d;
4104 	int i;
4105 	int rcu_capacity[RCU_NUM_LVLS];
4106 
4107 	/*
4108 	 * Initialize any unspecified boot parameters.
4109 	 * The default values of jiffies_till_first_fqs and
4110 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4111 	 * value, which is a function of HZ, then adding one for each
4112 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4113 	 */
4114 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4115 	if (jiffies_till_first_fqs == ULONG_MAX)
4116 		jiffies_till_first_fqs = d;
4117 	if (jiffies_till_next_fqs == ULONG_MAX)
4118 		jiffies_till_next_fqs = d;
4119 
4120 	/* If the compile-time values are accurate, just leave. */
4121 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4122 	    nr_cpu_ids == NR_CPUS)
4123 		return;
4124 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4125 		rcu_fanout_leaf, nr_cpu_ids);
4126 
4127 	/*
4128 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4129 	 * and cannot exceed the number of bits in the rcu_node masks.
4130 	 * Complain and fall back to the compile-time values if this
4131 	 * limit is exceeded.
4132 	 */
4133 	if (rcu_fanout_leaf < 2 ||
4134 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4135 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4136 		WARN_ON(1);
4137 		return;
4138 	}
4139 
4140 	/*
4141 	 * Compute number of nodes that can be handled an rcu_node tree
4142 	 * with the given number of levels.
4143 	 */
4144 	rcu_capacity[0] = rcu_fanout_leaf;
4145 	for (i = 1; i < RCU_NUM_LVLS; i++)
4146 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4147 
4148 	/*
4149 	 * The tree must be able to accommodate the configured number of CPUs.
4150 	 * If this limit is exceeded, fall back to the compile-time values.
4151 	 */
4152 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4153 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4154 		WARN_ON(1);
4155 		return;
4156 	}
4157 
4158 	/* Calculate the number of levels in the tree. */
4159 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4160 	}
4161 	rcu_num_lvls = i + 1;
4162 
4163 	/* Calculate the number of rcu_nodes at each level of the tree. */
4164 	for (i = 0; i < rcu_num_lvls; i++) {
4165 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4166 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4167 	}
4168 
4169 	/* Calculate the total number of rcu_node structures. */
4170 	rcu_num_nodes = 0;
4171 	for (i = 0; i < rcu_num_lvls; i++)
4172 		rcu_num_nodes += num_rcu_lvl[i];
4173 }
4174 
4175 /*
4176  * Dump out the structure of the rcu_node combining tree associated
4177  * with the rcu_state structure referenced by rsp.
4178  */
4179 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4180 {
4181 	int level = 0;
4182 	struct rcu_node *rnp;
4183 
4184 	pr_info("rcu_node tree layout dump\n");
4185 	pr_info(" ");
4186 	rcu_for_each_node_breadth_first(rsp, rnp) {
4187 		if (rnp->level != level) {
4188 			pr_cont("\n");
4189 			pr_info(" ");
4190 			level = rnp->level;
4191 		}
4192 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4193 	}
4194 	pr_cont("\n");
4195 }
4196 
4197 void __init rcu_init(void)
4198 {
4199 	int cpu;
4200 
4201 	rcu_early_boot_tests();
4202 
4203 	rcu_bootup_announce();
4204 	rcu_init_geometry();
4205 	rcu_init_one(&rcu_bh_state);
4206 	rcu_init_one(&rcu_sched_state);
4207 	if (dump_tree)
4208 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4209 	__rcu_init_preempt();
4210 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4211 
4212 	/*
4213 	 * We don't need protection against CPU-hotplug here because
4214 	 * this is called early in boot, before either interrupts
4215 	 * or the scheduler are operational.
4216 	 */
4217 	pm_notifier(rcu_pm_notify, 0);
4218 	for_each_online_cpu(cpu) {
4219 		rcutree_prepare_cpu(cpu);
4220 		rcu_cpu_starting(cpu);
4221 		if (IS_ENABLED(CONFIG_TREE_SRCU))
4222 			srcu_online_cpu(cpu);
4223 	}
4224 }
4225 
4226 #include "tree_exp.h"
4227 #include "tree_plugin.h"
4228