xref: /openbmc/linux/kernel/rcu/tree.c (revision e7f127b2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include "../time/tick-internal.h"
66 
67 #include "tree.h"
68 #include "rcu.h"
69 
70 #ifdef MODULE_PARAM_PREFIX
71 #undef MODULE_PARAM_PREFIX
72 #endif
73 #define MODULE_PARAM_PREFIX "rcutree."
74 
75 /* Data structures. */
76 
77 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
78 	.dynticks_nesting = 1,
79 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
80 	.dynticks = ATOMIC_INIT(1),
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.name = RCU_NAME,
91 	.abbr = RCU_ABBR,
92 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
95 };
96 
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
104 #endif
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
155 
156 /* rcuc/rcub kthread realtime priority */
157 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
158 module_param(kthread_prio, int, 0444);
159 
160 /* Delay in jiffies for grace-period initialization delays, debug only. */
161 
162 static int gp_preinit_delay;
163 module_param(gp_preinit_delay, int, 0444);
164 static int gp_init_delay;
165 module_param(gp_init_delay, int, 0444);
166 static int gp_cleanup_delay;
167 module_param(gp_cleanup_delay, int, 0444);
168 
169 // Add delay to rcu_read_unlock() for strict grace periods.
170 static int rcu_unlock_delay;
171 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
172 module_param(rcu_unlock_delay, int, 0444);
173 #endif
174 
175 /*
176  * This rcu parameter is runtime-read-only. It reflects
177  * a minimum allowed number of objects which can be cached
178  * per-CPU. Object size is equal to one page. This value
179  * can be changed at boot time.
180  */
181 static int rcu_min_cached_objs = 5;
182 module_param(rcu_min_cached_objs, int, 0444);
183 
184 // A page shrinker can ask for pages to be freed to make them
185 // available for other parts of the system. This usually happens
186 // under low memory conditions, and in that case we should also
187 // defer page-cache filling for a short time period.
188 //
189 // The default value is 5 seconds, which is long enough to reduce
190 // interference with the shrinker while it asks other systems to
191 // drain their caches.
192 static int rcu_delay_page_cache_fill_msec = 5000;
193 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
194 
195 /* Retrieve RCU kthreads priority for rcutorture */
196 int rcu_get_gp_kthreads_prio(void)
197 {
198 	return kthread_prio;
199 }
200 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
201 
202 /*
203  * Number of grace periods between delays, normalized by the duration of
204  * the delay.  The longer the delay, the more the grace periods between
205  * each delay.  The reason for this normalization is that it means that,
206  * for non-zero delays, the overall slowdown of grace periods is constant
207  * regardless of the duration of the delay.  This arrangement balances
208  * the need for long delays to increase some race probabilities with the
209  * need for fast grace periods to increase other race probabilities.
210  */
211 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
212 
213 /*
214  * Compute the mask of online CPUs for the specified rcu_node structure.
215  * This will not be stable unless the rcu_node structure's ->lock is
216  * held, but the bit corresponding to the current CPU will be stable
217  * in most contexts.
218  */
219 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
220 {
221 	return READ_ONCE(rnp->qsmaskinitnext);
222 }
223 
224 /*
225  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
226  * permit this function to be invoked without holding the root rcu_node
227  * structure's ->lock, but of course results can be subject to change.
228  */
229 static int rcu_gp_in_progress(void)
230 {
231 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
232 }
233 
234 /*
235  * Return the number of callbacks queued on the specified CPU.
236  * Handles both the nocbs and normal cases.
237  */
238 static long rcu_get_n_cbs_cpu(int cpu)
239 {
240 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
241 
242 	if (rcu_segcblist_is_enabled(&rdp->cblist))
243 		return rcu_segcblist_n_cbs(&rdp->cblist);
244 	return 0;
245 }
246 
247 void rcu_softirq_qs(void)
248 {
249 	rcu_qs();
250 	rcu_preempt_deferred_qs(current);
251 	rcu_tasks_qs(current, false);
252 }
253 
254 /*
255  * Increment the current CPU's rcu_data structure's ->dynticks field
256  * with ordering.  Return the new value.
257  */
258 static noinline noinstr unsigned long rcu_dynticks_inc(int incby)
259 {
260 	return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks));
261 }
262 
263 /*
264  * Record entry into an extended quiescent state.  This is only to be
265  * called when not already in an extended quiescent state, that is,
266  * RCU is watching prior to the call to this function and is no longer
267  * watching upon return.
268  */
269 static noinstr void rcu_dynticks_eqs_enter(void)
270 {
271 	int seq;
272 
273 	/*
274 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
275 	 * critical sections, and we also must force ordering with the
276 	 * next idle sojourn.
277 	 */
278 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
279 	seq = rcu_dynticks_inc(1);
280 	// RCU is no longer watching.  Better be in extended quiescent state!
281 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1));
282 }
283 
284 /*
285  * Record exit from an extended quiescent state.  This is only to be
286  * called from an extended quiescent state, that is, RCU is not watching
287  * prior to the call to this function and is watching upon return.
288  */
289 static noinstr void rcu_dynticks_eqs_exit(void)
290 {
291 	int seq;
292 
293 	/*
294 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
295 	 * and we also must force ordering with the next RCU read-side
296 	 * critical section.
297 	 */
298 	seq = rcu_dynticks_inc(1);
299 	// RCU is now watching.  Better not be in an extended quiescent state!
300 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
301 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1));
302 }
303 
304 /*
305  * Reset the current CPU's ->dynticks counter to indicate that the
306  * newly onlined CPU is no longer in an extended quiescent state.
307  * This will either leave the counter unchanged, or increment it
308  * to the next non-quiescent value.
309  *
310  * The non-atomic test/increment sequence works because the upper bits
311  * of the ->dynticks counter are manipulated only by the corresponding CPU,
312  * or when the corresponding CPU is offline.
313  */
314 static void rcu_dynticks_eqs_online(void)
315 {
316 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
317 
318 	if (atomic_read(&rdp->dynticks) & 0x1)
319 		return;
320 	rcu_dynticks_inc(1);
321 }
322 
323 /*
324  * Is the current CPU in an extended quiescent state?
325  *
326  * No ordering, as we are sampling CPU-local information.
327  */
328 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
329 {
330 	return !(arch_atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1);
331 }
332 
333 /*
334  * Snapshot the ->dynticks counter with full ordering so as to allow
335  * stable comparison of this counter with past and future snapshots.
336  */
337 static int rcu_dynticks_snap(struct rcu_data *rdp)
338 {
339 	smp_mb();  // Fundamental RCU ordering guarantee.
340 	return atomic_read_acquire(&rdp->dynticks);
341 }
342 
343 /*
344  * Return true if the snapshot returned from rcu_dynticks_snap()
345  * indicates that RCU is in an extended quiescent state.
346  */
347 static bool rcu_dynticks_in_eqs(int snap)
348 {
349 	return !(snap & 0x1);
350 }
351 
352 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
353 bool rcu_is_idle_cpu(int cpu)
354 {
355 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
356 
357 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
358 }
359 
360 /*
361  * Return true if the CPU corresponding to the specified rcu_data
362  * structure has spent some time in an extended quiescent state since
363  * rcu_dynticks_snap() returned the specified snapshot.
364  */
365 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
366 {
367 	return snap != rcu_dynticks_snap(rdp);
368 }
369 
370 /*
371  * Return true if the referenced integer is zero while the specified
372  * CPU remains within a single extended quiescent state.
373  */
374 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
375 {
376 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
377 	int snap;
378 
379 	// If not quiescent, force back to earlier extended quiescent state.
380 	snap = atomic_read(&rdp->dynticks) & ~0x1;
381 
382 	smp_rmb(); // Order ->dynticks and *vp reads.
383 	if (READ_ONCE(*vp))
384 		return false;  // Non-zero, so report failure;
385 	smp_rmb(); // Order *vp read and ->dynticks re-read.
386 
387 	// If still in the same extended quiescent state, we are good!
388 	return snap == atomic_read(&rdp->dynticks);
389 }
390 
391 /*
392  * Let the RCU core know that this CPU has gone through the scheduler,
393  * which is a quiescent state.  This is called when the need for a
394  * quiescent state is urgent, so we burn an atomic operation and full
395  * memory barriers to let the RCU core know about it, regardless of what
396  * this CPU might (or might not) do in the near future.
397  *
398  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
399  *
400  * The caller must have disabled interrupts and must not be idle.
401  */
402 notrace void rcu_momentary_dyntick_idle(void)
403 {
404 	int seq;
405 
406 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
407 	seq = rcu_dynticks_inc(2);
408 	/* It is illegal to call this from idle state. */
409 	WARN_ON_ONCE(!(seq & 0x1));
410 	rcu_preempt_deferred_qs(current);
411 }
412 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
413 
414 /**
415  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
416  *
417  * If the current CPU is idle and running at a first-level (not nested)
418  * interrupt, or directly, from idle, return true.
419  *
420  * The caller must have at least disabled IRQs.
421  */
422 static int rcu_is_cpu_rrupt_from_idle(void)
423 {
424 	long nesting;
425 
426 	/*
427 	 * Usually called from the tick; but also used from smp_function_call()
428 	 * for expedited grace periods. This latter can result in running from
429 	 * the idle task, instead of an actual IPI.
430 	 */
431 	lockdep_assert_irqs_disabled();
432 
433 	/* Check for counter underflows */
434 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
435 			 "RCU dynticks_nesting counter underflow!");
436 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
437 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
438 
439 	/* Are we at first interrupt nesting level? */
440 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
441 	if (nesting > 1)
442 		return false;
443 
444 	/*
445 	 * If we're not in an interrupt, we must be in the idle task!
446 	 */
447 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
448 
449 	/* Does CPU appear to be idle from an RCU standpoint? */
450 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
451 }
452 
453 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
454 				// Maximum callbacks per rcu_do_batch ...
455 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
456 static long blimit = DEFAULT_RCU_BLIMIT;
457 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
458 static long qhimark = DEFAULT_RCU_QHIMARK;
459 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
460 static long qlowmark = DEFAULT_RCU_QLOMARK;
461 #define DEFAULT_RCU_QOVLD_MULT 2
462 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
463 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
464 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
465 
466 module_param(blimit, long, 0444);
467 module_param(qhimark, long, 0444);
468 module_param(qlowmark, long, 0444);
469 module_param(qovld, long, 0444);
470 
471 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
472 static ulong jiffies_till_next_fqs = ULONG_MAX;
473 static bool rcu_kick_kthreads;
474 static int rcu_divisor = 7;
475 module_param(rcu_divisor, int, 0644);
476 
477 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
478 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
479 module_param(rcu_resched_ns, long, 0644);
480 
481 /*
482  * How long the grace period must be before we start recruiting
483  * quiescent-state help from rcu_note_context_switch().
484  */
485 static ulong jiffies_till_sched_qs = ULONG_MAX;
486 module_param(jiffies_till_sched_qs, ulong, 0444);
487 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
488 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
489 
490 /*
491  * Make sure that we give the grace-period kthread time to detect any
492  * idle CPUs before taking active measures to force quiescent states.
493  * However, don't go below 100 milliseconds, adjusted upwards for really
494  * large systems.
495  */
496 static void adjust_jiffies_till_sched_qs(void)
497 {
498 	unsigned long j;
499 
500 	/* If jiffies_till_sched_qs was specified, respect the request. */
501 	if (jiffies_till_sched_qs != ULONG_MAX) {
502 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
503 		return;
504 	}
505 	/* Otherwise, set to third fqs scan, but bound below on large system. */
506 	j = READ_ONCE(jiffies_till_first_fqs) +
507 		      2 * READ_ONCE(jiffies_till_next_fqs);
508 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
509 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
510 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
511 	WRITE_ONCE(jiffies_to_sched_qs, j);
512 }
513 
514 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
515 {
516 	ulong j;
517 	int ret = kstrtoul(val, 0, &j);
518 
519 	if (!ret) {
520 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
521 		adjust_jiffies_till_sched_qs();
522 	}
523 	return ret;
524 }
525 
526 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
527 {
528 	ulong j;
529 	int ret = kstrtoul(val, 0, &j);
530 
531 	if (!ret) {
532 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
533 		adjust_jiffies_till_sched_qs();
534 	}
535 	return ret;
536 }
537 
538 static const struct kernel_param_ops first_fqs_jiffies_ops = {
539 	.set = param_set_first_fqs_jiffies,
540 	.get = param_get_ulong,
541 };
542 
543 static const struct kernel_param_ops next_fqs_jiffies_ops = {
544 	.set = param_set_next_fqs_jiffies,
545 	.get = param_get_ulong,
546 };
547 
548 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
549 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
550 module_param(rcu_kick_kthreads, bool, 0644);
551 
552 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
553 static int rcu_pending(int user);
554 
555 /*
556  * Return the number of RCU GPs completed thus far for debug & stats.
557  */
558 unsigned long rcu_get_gp_seq(void)
559 {
560 	return READ_ONCE(rcu_state.gp_seq);
561 }
562 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
563 
564 /*
565  * Return the number of RCU expedited batches completed thus far for
566  * debug & stats.  Odd numbers mean that a batch is in progress, even
567  * numbers mean idle.  The value returned will thus be roughly double
568  * the cumulative batches since boot.
569  */
570 unsigned long rcu_exp_batches_completed(void)
571 {
572 	return rcu_state.expedited_sequence;
573 }
574 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
575 
576 /*
577  * Return the root node of the rcu_state structure.
578  */
579 static struct rcu_node *rcu_get_root(void)
580 {
581 	return &rcu_state.node[0];
582 }
583 
584 /*
585  * Send along grace-period-related data for rcutorture diagnostics.
586  */
587 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
588 			    unsigned long *gp_seq)
589 {
590 	switch (test_type) {
591 	case RCU_FLAVOR:
592 		*flags = READ_ONCE(rcu_state.gp_flags);
593 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
594 		break;
595 	default:
596 		break;
597 	}
598 }
599 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
600 
601 /*
602  * Enter an RCU extended quiescent state, which can be either the
603  * idle loop or adaptive-tickless usermode execution.
604  *
605  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
606  * the possibility of usermode upcalls having messed up our count
607  * of interrupt nesting level during the prior busy period.
608  */
609 static noinstr void rcu_eqs_enter(bool user)
610 {
611 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
612 
613 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
614 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
615 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
616 		     rdp->dynticks_nesting == 0);
617 	if (rdp->dynticks_nesting != 1) {
618 		// RCU will still be watching, so just do accounting and leave.
619 		rdp->dynticks_nesting--;
620 		return;
621 	}
622 
623 	lockdep_assert_irqs_disabled();
624 	instrumentation_begin();
625 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
626 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
627 	rcu_preempt_deferred_qs(current);
628 
629 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
630 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
631 
632 	instrumentation_end();
633 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
634 	// RCU is watching here ...
635 	rcu_dynticks_eqs_enter();
636 	// ... but is no longer watching here.
637 	rcu_dynticks_task_enter();
638 }
639 
640 /**
641  * rcu_idle_enter - inform RCU that current CPU is entering idle
642  *
643  * Enter idle mode, in other words, -leave- the mode in which RCU
644  * read-side critical sections can occur.  (Though RCU read-side
645  * critical sections can occur in irq handlers in idle, a possibility
646  * handled by irq_enter() and irq_exit().)
647  *
648  * If you add or remove a call to rcu_idle_enter(), be sure to test with
649  * CONFIG_RCU_EQS_DEBUG=y.
650  */
651 void rcu_idle_enter(void)
652 {
653 	lockdep_assert_irqs_disabled();
654 	rcu_eqs_enter(false);
655 }
656 EXPORT_SYMBOL_GPL(rcu_idle_enter);
657 
658 #ifdef CONFIG_NO_HZ_FULL
659 
660 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
661 /*
662  * An empty function that will trigger a reschedule on
663  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
664  */
665 static void late_wakeup_func(struct irq_work *work)
666 {
667 }
668 
669 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
670 	IRQ_WORK_INIT(late_wakeup_func);
671 
672 /*
673  * If either:
674  *
675  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
676  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
677  *
678  * In these cases the late RCU wake ups aren't supported in the resched loops and our
679  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
680  * get re-enabled again.
681  */
682 noinstr static void rcu_irq_work_resched(void)
683 {
684 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
685 
686 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
687 		return;
688 
689 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
690 		return;
691 
692 	instrumentation_begin();
693 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
694 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
695 	}
696 	instrumentation_end();
697 }
698 
699 #else
700 static inline void rcu_irq_work_resched(void) { }
701 #endif
702 
703 /**
704  * rcu_user_enter - inform RCU that we are resuming userspace.
705  *
706  * Enter RCU idle mode right before resuming userspace.  No use of RCU
707  * is permitted between this call and rcu_user_exit(). This way the
708  * CPU doesn't need to maintain the tick for RCU maintenance purposes
709  * when the CPU runs in userspace.
710  *
711  * If you add or remove a call to rcu_user_enter(), be sure to test with
712  * CONFIG_RCU_EQS_DEBUG=y.
713  */
714 noinstr void rcu_user_enter(void)
715 {
716 	lockdep_assert_irqs_disabled();
717 
718 	/*
719 	 * Other than generic entry implementation, we may be past the last
720 	 * rescheduling opportunity in the entry code. Trigger a self IPI
721 	 * that will fire and reschedule once we resume in user/guest mode.
722 	 */
723 	rcu_irq_work_resched();
724 	rcu_eqs_enter(true);
725 }
726 
727 #endif /* CONFIG_NO_HZ_FULL */
728 
729 /**
730  * rcu_nmi_exit - inform RCU of exit from NMI context
731  *
732  * If we are returning from the outermost NMI handler that interrupted an
733  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
734  * to let the RCU grace-period handling know that the CPU is back to
735  * being RCU-idle.
736  *
737  * If you add or remove a call to rcu_nmi_exit(), be sure to test
738  * with CONFIG_RCU_EQS_DEBUG=y.
739  */
740 noinstr void rcu_nmi_exit(void)
741 {
742 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
743 
744 	instrumentation_begin();
745 	/*
746 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
747 	 * (We are exiting an NMI handler, so RCU better be paying attention
748 	 * to us!)
749 	 */
750 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
751 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
752 
753 	/*
754 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
755 	 * leave it in non-RCU-idle state.
756 	 */
757 	if (rdp->dynticks_nmi_nesting != 1) {
758 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
759 				  atomic_read(&rdp->dynticks));
760 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
761 			   rdp->dynticks_nmi_nesting - 2);
762 		instrumentation_end();
763 		return;
764 	}
765 
766 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
767 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
768 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
769 
770 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
771 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
772 	instrumentation_end();
773 
774 	// RCU is watching here ...
775 	rcu_dynticks_eqs_enter();
776 	// ... but is no longer watching here.
777 
778 	if (!in_nmi())
779 		rcu_dynticks_task_enter();
780 }
781 
782 /**
783  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
784  *
785  * Exit from an interrupt handler, which might possibly result in entering
786  * idle mode, in other words, leaving the mode in which read-side critical
787  * sections can occur.  The caller must have disabled interrupts.
788  *
789  * This code assumes that the idle loop never does anything that might
790  * result in unbalanced calls to irq_enter() and irq_exit().  If your
791  * architecture's idle loop violates this assumption, RCU will give you what
792  * you deserve, good and hard.  But very infrequently and irreproducibly.
793  *
794  * Use things like work queues to work around this limitation.
795  *
796  * You have been warned.
797  *
798  * If you add or remove a call to rcu_irq_exit(), be sure to test with
799  * CONFIG_RCU_EQS_DEBUG=y.
800  */
801 void noinstr rcu_irq_exit(void)
802 {
803 	lockdep_assert_irqs_disabled();
804 	rcu_nmi_exit();
805 }
806 
807 #ifdef CONFIG_PROVE_RCU
808 /**
809  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
810  */
811 void rcu_irq_exit_check_preempt(void)
812 {
813 	lockdep_assert_irqs_disabled();
814 
815 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
816 			 "RCU dynticks_nesting counter underflow/zero!");
817 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
818 			 DYNTICK_IRQ_NONIDLE,
819 			 "Bad RCU  dynticks_nmi_nesting counter\n");
820 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
821 			 "RCU in extended quiescent state!");
822 }
823 #endif /* #ifdef CONFIG_PROVE_RCU */
824 
825 /*
826  * Wrapper for rcu_irq_exit() where interrupts are enabled.
827  *
828  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
829  * with CONFIG_RCU_EQS_DEBUG=y.
830  */
831 void rcu_irq_exit_irqson(void)
832 {
833 	unsigned long flags;
834 
835 	local_irq_save(flags);
836 	rcu_irq_exit();
837 	local_irq_restore(flags);
838 }
839 
840 /*
841  * Exit an RCU extended quiescent state, which can be either the
842  * idle loop or adaptive-tickless usermode execution.
843  *
844  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
845  * allow for the possibility of usermode upcalls messing up our count of
846  * interrupt nesting level during the busy period that is just now starting.
847  */
848 static void noinstr rcu_eqs_exit(bool user)
849 {
850 	struct rcu_data *rdp;
851 	long oldval;
852 
853 	lockdep_assert_irqs_disabled();
854 	rdp = this_cpu_ptr(&rcu_data);
855 	oldval = rdp->dynticks_nesting;
856 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
857 	if (oldval) {
858 		// RCU was already watching, so just do accounting and leave.
859 		rdp->dynticks_nesting++;
860 		return;
861 	}
862 	rcu_dynticks_task_exit();
863 	// RCU is not watching here ...
864 	rcu_dynticks_eqs_exit();
865 	// ... but is watching here.
866 	instrumentation_begin();
867 
868 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
869 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
870 
871 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
872 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
873 	WRITE_ONCE(rdp->dynticks_nesting, 1);
874 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
875 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
876 	instrumentation_end();
877 }
878 
879 /**
880  * rcu_idle_exit - inform RCU that current CPU is leaving idle
881  *
882  * Exit idle mode, in other words, -enter- the mode in which RCU
883  * read-side critical sections can occur.
884  *
885  * If you add or remove a call to rcu_idle_exit(), be sure to test with
886  * CONFIG_RCU_EQS_DEBUG=y.
887  */
888 void rcu_idle_exit(void)
889 {
890 	unsigned long flags;
891 
892 	local_irq_save(flags);
893 	rcu_eqs_exit(false);
894 	local_irq_restore(flags);
895 }
896 EXPORT_SYMBOL_GPL(rcu_idle_exit);
897 
898 #ifdef CONFIG_NO_HZ_FULL
899 /**
900  * rcu_user_exit - inform RCU that we are exiting userspace.
901  *
902  * Exit RCU idle mode while entering the kernel because it can
903  * run a RCU read side critical section anytime.
904  *
905  * If you add or remove a call to rcu_user_exit(), be sure to test with
906  * CONFIG_RCU_EQS_DEBUG=y.
907  */
908 void noinstr rcu_user_exit(void)
909 {
910 	rcu_eqs_exit(true);
911 }
912 
913 /**
914  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
915  *
916  * The scheduler tick is not normally enabled when CPUs enter the kernel
917  * from nohz_full userspace execution.  After all, nohz_full userspace
918  * execution is an RCU quiescent state and the time executing in the kernel
919  * is quite short.  Except of course when it isn't.  And it is not hard to
920  * cause a large system to spend tens of seconds or even minutes looping
921  * in the kernel, which can cause a number of problems, include RCU CPU
922  * stall warnings.
923  *
924  * Therefore, if a nohz_full CPU fails to report a quiescent state
925  * in a timely manner, the RCU grace-period kthread sets that CPU's
926  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
927  * exception will invoke this function, which will turn on the scheduler
928  * tick, which will enable RCU to detect that CPU's quiescent states,
929  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
930  * The tick will be disabled once a quiescent state is reported for
931  * this CPU.
932  *
933  * Of course, in carefully tuned systems, there might never be an
934  * interrupt or exception.  In that case, the RCU grace-period kthread
935  * will eventually cause one to happen.  However, in less carefully
936  * controlled environments, this function allows RCU to get what it
937  * needs without creating otherwise useless interruptions.
938  */
939 void __rcu_irq_enter_check_tick(void)
940 {
941 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
942 
943 	// If we're here from NMI there's nothing to do.
944 	if (in_nmi())
945 		return;
946 
947 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
948 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
949 
950 	if (!tick_nohz_full_cpu(rdp->cpu) ||
951 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
952 	    READ_ONCE(rdp->rcu_forced_tick)) {
953 		// RCU doesn't need nohz_full help from this CPU, or it is
954 		// already getting that help.
955 		return;
956 	}
957 
958 	// We get here only when not in an extended quiescent state and
959 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
960 	// already watching and (2) The fact that we are in an interrupt
961 	// handler and that the rcu_node lock is an irq-disabled lock
962 	// prevents self-deadlock.  So we can safely recheck under the lock.
963 	// Note that the nohz_full state currently cannot change.
964 	raw_spin_lock_rcu_node(rdp->mynode);
965 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
966 		// A nohz_full CPU is in the kernel and RCU needs a
967 		// quiescent state.  Turn on the tick!
968 		WRITE_ONCE(rdp->rcu_forced_tick, true);
969 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
970 	}
971 	raw_spin_unlock_rcu_node(rdp->mynode);
972 }
973 #endif /* CONFIG_NO_HZ_FULL */
974 
975 /**
976  * rcu_nmi_enter - inform RCU of entry to NMI context
977  *
978  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
979  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
980  * that the CPU is active.  This implementation permits nested NMIs, as
981  * long as the nesting level does not overflow an int.  (You will probably
982  * run out of stack space first.)
983  *
984  * If you add or remove a call to rcu_nmi_enter(), be sure to test
985  * with CONFIG_RCU_EQS_DEBUG=y.
986  */
987 noinstr void rcu_nmi_enter(void)
988 {
989 	long incby = 2;
990 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
991 
992 	/* Complain about underflow. */
993 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
994 
995 	/*
996 	 * If idle from RCU viewpoint, atomically increment ->dynticks
997 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
998 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
999 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1000 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1001 	 * period (observation due to Andy Lutomirski).
1002 	 */
1003 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1004 
1005 		if (!in_nmi())
1006 			rcu_dynticks_task_exit();
1007 
1008 		// RCU is not watching here ...
1009 		rcu_dynticks_eqs_exit();
1010 		// ... but is watching here.
1011 
1012 		instrumentation_begin();
1013 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1014 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1015 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1016 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1017 
1018 		incby = 1;
1019 	} else if (!in_nmi()) {
1020 		instrumentation_begin();
1021 		rcu_irq_enter_check_tick();
1022 	} else  {
1023 		instrumentation_begin();
1024 	}
1025 
1026 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1027 			  rdp->dynticks_nmi_nesting,
1028 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1029 	instrumentation_end();
1030 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1031 		   rdp->dynticks_nmi_nesting + incby);
1032 	barrier();
1033 }
1034 
1035 /**
1036  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1037  *
1038  * Enter an interrupt handler, which might possibly result in exiting
1039  * idle mode, in other words, entering the mode in which read-side critical
1040  * sections can occur.  The caller must have disabled interrupts.
1041  *
1042  * Note that the Linux kernel is fully capable of entering an interrupt
1043  * handler that it never exits, for example when doing upcalls to user mode!
1044  * This code assumes that the idle loop never does upcalls to user mode.
1045  * If your architecture's idle loop does do upcalls to user mode (or does
1046  * anything else that results in unbalanced calls to the irq_enter() and
1047  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1048  * But very infrequently and irreproducibly.
1049  *
1050  * Use things like work queues to work around this limitation.
1051  *
1052  * You have been warned.
1053  *
1054  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1055  * CONFIG_RCU_EQS_DEBUG=y.
1056  */
1057 noinstr void rcu_irq_enter(void)
1058 {
1059 	lockdep_assert_irqs_disabled();
1060 	rcu_nmi_enter();
1061 }
1062 
1063 /*
1064  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1065  *
1066  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1067  * with CONFIG_RCU_EQS_DEBUG=y.
1068  */
1069 void rcu_irq_enter_irqson(void)
1070 {
1071 	unsigned long flags;
1072 
1073 	local_irq_save(flags);
1074 	rcu_irq_enter();
1075 	local_irq_restore(flags);
1076 }
1077 
1078 /*
1079  * Check to see if any future non-offloaded RCU-related work will need
1080  * to be done by the current CPU, even if none need be done immediately,
1081  * returning 1 if so.  This function is part of the RCU implementation;
1082  * it is -not- an exported member of the RCU API.  This is used by
1083  * the idle-entry code to figure out whether it is safe to disable the
1084  * scheduler-clock interrupt.
1085  *
1086  * Just check whether or not this CPU has non-offloaded RCU callbacks
1087  * queued.
1088  */
1089 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1090 {
1091 	*nextevt = KTIME_MAX;
1092 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1093 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
1094 }
1095 
1096 /*
1097  * If any sort of urgency was applied to the current CPU (for example,
1098  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1099  * to get to a quiescent state, disable it.
1100  */
1101 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1102 {
1103 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1104 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1105 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1106 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1107 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1108 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1109 	}
1110 }
1111 
1112 /**
1113  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1114  *
1115  * Return true if RCU is watching the running CPU, which means that this
1116  * CPU can safely enter RCU read-side critical sections.  In other words,
1117  * if the current CPU is not in its idle loop or is in an interrupt or
1118  * NMI handler, return true.
1119  *
1120  * Make notrace because it can be called by the internal functions of
1121  * ftrace, and making this notrace removes unnecessary recursion calls.
1122  */
1123 notrace bool rcu_is_watching(void)
1124 {
1125 	bool ret;
1126 
1127 	preempt_disable_notrace();
1128 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1129 	preempt_enable_notrace();
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL_GPL(rcu_is_watching);
1133 
1134 /*
1135  * If a holdout task is actually running, request an urgent quiescent
1136  * state from its CPU.  This is unsynchronized, so migrations can cause
1137  * the request to go to the wrong CPU.  Which is OK, all that will happen
1138  * is that the CPU's next context switch will be a bit slower and next
1139  * time around this task will generate another request.
1140  */
1141 void rcu_request_urgent_qs_task(struct task_struct *t)
1142 {
1143 	int cpu;
1144 
1145 	barrier();
1146 	cpu = task_cpu(t);
1147 	if (!task_curr(t))
1148 		return; /* This task is not running on that CPU. */
1149 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1150 }
1151 
1152 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1153 
1154 /*
1155  * Is the current CPU online as far as RCU is concerned?
1156  *
1157  * Disable preemption to avoid false positives that could otherwise
1158  * happen due to the current CPU number being sampled, this task being
1159  * preempted, its old CPU being taken offline, resuming on some other CPU,
1160  * then determining that its old CPU is now offline.
1161  *
1162  * Disable checking if in an NMI handler because we cannot safely
1163  * report errors from NMI handlers anyway.  In addition, it is OK to use
1164  * RCU on an offline processor during initial boot, hence the check for
1165  * rcu_scheduler_fully_active.
1166  */
1167 bool rcu_lockdep_current_cpu_online(void)
1168 {
1169 	struct rcu_data *rdp;
1170 	struct rcu_node *rnp;
1171 	bool ret = false;
1172 
1173 	if (in_nmi() || !rcu_scheduler_fully_active)
1174 		return true;
1175 	preempt_disable_notrace();
1176 	rdp = this_cpu_ptr(&rcu_data);
1177 	rnp = rdp->mynode;
1178 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1179 		ret = true;
1180 	preempt_enable_notrace();
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1184 
1185 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1186 
1187 /*
1188  * When trying to report a quiescent state on behalf of some other CPU,
1189  * it is our responsibility to check for and handle potential overflow
1190  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1191  * After all, the CPU might be in deep idle state, and thus executing no
1192  * code whatsoever.
1193  */
1194 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1195 {
1196 	raw_lockdep_assert_held_rcu_node(rnp);
1197 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1198 			 rnp->gp_seq))
1199 		WRITE_ONCE(rdp->gpwrap, true);
1200 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1201 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1202 }
1203 
1204 /*
1205  * Snapshot the specified CPU's dynticks counter so that we can later
1206  * credit them with an implicit quiescent state.  Return 1 if this CPU
1207  * is in dynticks idle mode, which is an extended quiescent state.
1208  */
1209 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1210 {
1211 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1212 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1213 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1214 		rcu_gpnum_ovf(rdp->mynode, rdp);
1215 		return 1;
1216 	}
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Return true if the specified CPU has passed through a quiescent
1222  * state by virtue of being in or having passed through an dynticks
1223  * idle state since the last call to dyntick_save_progress_counter()
1224  * for this same CPU, or by virtue of having been offline.
1225  */
1226 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1227 {
1228 	unsigned long jtsq;
1229 	struct rcu_node *rnp = rdp->mynode;
1230 
1231 	/*
1232 	 * If the CPU passed through or entered a dynticks idle phase with
1233 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1234 	 * already acknowledged the request to pass through a quiescent
1235 	 * state.  Either way, that CPU cannot possibly be in an RCU
1236 	 * read-side critical section that started before the beginning
1237 	 * of the current RCU grace period.
1238 	 */
1239 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1240 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1241 		rcu_gpnum_ovf(rnp, rdp);
1242 		return 1;
1243 	}
1244 
1245 	/*
1246 	 * Complain if a CPU that is considered to be offline from RCU's
1247 	 * perspective has not yet reported a quiescent state.  After all,
1248 	 * the offline CPU should have reported a quiescent state during
1249 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1250 	 * if it ran concurrently with either the CPU going offline or the
1251 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1252 	 * critical section while all CPUs corresponding to that structure
1253 	 * are offline.  This added warning detects bugs in any of these
1254 	 * code paths.
1255 	 *
1256 	 * The rcu_node structure's ->lock is held here, which excludes
1257 	 * the relevant portions the CPU-hotplug code, the grace-period
1258 	 * initialization code, and the rcu_read_unlock() code paths.
1259 	 *
1260 	 * For more detail, please refer to the "Hotplug CPU" section
1261 	 * of RCU's Requirements documentation.
1262 	 */
1263 	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1264 		bool onl;
1265 		struct rcu_node *rnp1;
1266 
1267 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1268 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1269 			(long)rnp->gp_seq, (long)rnp->completedqs);
1270 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1271 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1272 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1273 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1274 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1275 			__func__, rdp->cpu, ".o"[onl],
1276 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1277 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1278 		return 1; /* Break things loose after complaining. */
1279 	}
1280 
1281 	/*
1282 	 * A CPU running for an extended time within the kernel can
1283 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1284 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1285 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1286 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1287 	 * variable are safe because the assignments are repeated if this
1288 	 * CPU failed to pass through a quiescent state.  This code
1289 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1290 	 * is set way high.
1291 	 */
1292 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1293 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
1294 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1295 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1296 	     rcu_state.cbovld)) {
1297 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
1298 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1299 		smp_store_release(&rdp->rcu_urgent_qs, true);
1300 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1301 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
1302 	}
1303 
1304 	/*
1305 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1306 	 * The above code handles this, but only for straight cond_resched().
1307 	 * And some in-kernel loops check need_resched() before calling
1308 	 * cond_resched(), which defeats the above code for CPUs that are
1309 	 * running in-kernel with scheduling-clock interrupts disabled.
1310 	 * So hit them over the head with the resched_cpu() hammer!
1311 	 */
1312 	if (tick_nohz_full_cpu(rdp->cpu) &&
1313 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1314 	     rcu_state.cbovld)) {
1315 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
1316 		resched_cpu(rdp->cpu);
1317 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1318 	}
1319 
1320 	/*
1321 	 * If more than halfway to RCU CPU stall-warning time, invoke
1322 	 * resched_cpu() more frequently to try to loosen things up a bit.
1323 	 * Also check to see if the CPU is getting hammered with interrupts,
1324 	 * but only once per grace period, just to keep the IPIs down to
1325 	 * a dull roar.
1326 	 */
1327 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1328 		if (time_after(jiffies,
1329 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1330 			resched_cpu(rdp->cpu);
1331 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1332 		}
1333 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1334 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1335 		    (rnp->ffmask & rdp->grpmask)) {
1336 			rdp->rcu_iw_pending = true;
1337 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1338 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1339 		}
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1346 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1347 			      unsigned long gp_seq_req, const char *s)
1348 {
1349 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1350 				      gp_seq_req, rnp->level,
1351 				      rnp->grplo, rnp->grphi, s);
1352 }
1353 
1354 /*
1355  * rcu_start_this_gp - Request the start of a particular grace period
1356  * @rnp_start: The leaf node of the CPU from which to start.
1357  * @rdp: The rcu_data corresponding to the CPU from which to start.
1358  * @gp_seq_req: The gp_seq of the grace period to start.
1359  *
1360  * Start the specified grace period, as needed to handle newly arrived
1361  * callbacks.  The required future grace periods are recorded in each
1362  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1363  * is reason to awaken the grace-period kthread.
1364  *
1365  * The caller must hold the specified rcu_node structure's ->lock, which
1366  * is why the caller is responsible for waking the grace-period kthread.
1367  *
1368  * Returns true if the GP thread needs to be awakened else false.
1369  */
1370 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1371 			      unsigned long gp_seq_req)
1372 {
1373 	bool ret = false;
1374 	struct rcu_node *rnp;
1375 
1376 	/*
1377 	 * Use funnel locking to either acquire the root rcu_node
1378 	 * structure's lock or bail out if the need for this grace period
1379 	 * has already been recorded -- or if that grace period has in
1380 	 * fact already started.  If there is already a grace period in
1381 	 * progress in a non-leaf node, no recording is needed because the
1382 	 * end of the grace period will scan the leaf rcu_node structures.
1383 	 * Note that rnp_start->lock must not be released.
1384 	 */
1385 	raw_lockdep_assert_held_rcu_node(rnp_start);
1386 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1387 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1388 		if (rnp != rnp_start)
1389 			raw_spin_lock_rcu_node(rnp);
1390 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1391 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1392 		    (rnp != rnp_start &&
1393 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1394 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1395 					  TPS("Prestarted"));
1396 			goto unlock_out;
1397 		}
1398 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1399 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1400 			/*
1401 			 * We just marked the leaf or internal node, and a
1402 			 * grace period is in progress, which means that
1403 			 * rcu_gp_cleanup() will see the marking.  Bail to
1404 			 * reduce contention.
1405 			 */
1406 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1407 					  TPS("Startedleaf"));
1408 			goto unlock_out;
1409 		}
1410 		if (rnp != rnp_start && rnp->parent != NULL)
1411 			raw_spin_unlock_rcu_node(rnp);
1412 		if (!rnp->parent)
1413 			break;  /* At root, and perhaps also leaf. */
1414 	}
1415 
1416 	/* If GP already in progress, just leave, otherwise start one. */
1417 	if (rcu_gp_in_progress()) {
1418 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1419 		goto unlock_out;
1420 	}
1421 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1422 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1423 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1424 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1425 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1426 		goto unlock_out;
1427 	}
1428 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1429 	ret = true;  /* Caller must wake GP kthread. */
1430 unlock_out:
1431 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1432 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1433 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1434 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1435 	}
1436 	if (rnp != rnp_start)
1437 		raw_spin_unlock_rcu_node(rnp);
1438 	return ret;
1439 }
1440 
1441 /*
1442  * Clean up any old requests for the just-ended grace period.  Also return
1443  * whether any additional grace periods have been requested.
1444  */
1445 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1446 {
1447 	bool needmore;
1448 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1449 
1450 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1451 	if (!needmore)
1452 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1453 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1454 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1455 	return needmore;
1456 }
1457 
1458 /*
1459  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1460  * interrupt or softirq handler, in which case we just might immediately
1461  * sleep upon return, resulting in a grace-period hang), and don't bother
1462  * awakening when there is nothing for the grace-period kthread to do
1463  * (as in several CPUs raced to awaken, we lost), and finally don't try
1464  * to awaken a kthread that has not yet been created.  If all those checks
1465  * are passed, track some debug information and awaken.
1466  *
1467  * So why do the self-wakeup when in an interrupt or softirq handler
1468  * in the grace-period kthread's context?  Because the kthread might have
1469  * been interrupted just as it was going to sleep, and just after the final
1470  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1471  * is required, and is therefore supplied.
1472  */
1473 static void rcu_gp_kthread_wake(void)
1474 {
1475 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1476 
1477 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1478 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1479 		return;
1480 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1481 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1482 	swake_up_one(&rcu_state.gp_wq);
1483 }
1484 
1485 /*
1486  * If there is room, assign a ->gp_seq number to any callbacks on this
1487  * CPU that have not already been assigned.  Also accelerate any callbacks
1488  * that were previously assigned a ->gp_seq number that has since proven
1489  * to be too conservative, which can happen if callbacks get assigned a
1490  * ->gp_seq number while RCU is idle, but with reference to a non-root
1491  * rcu_node structure.  This function is idempotent, so it does not hurt
1492  * to call it repeatedly.  Returns an flag saying that we should awaken
1493  * the RCU grace-period kthread.
1494  *
1495  * The caller must hold rnp->lock with interrupts disabled.
1496  */
1497 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1498 {
1499 	unsigned long gp_seq_req;
1500 	bool ret = false;
1501 
1502 	rcu_lockdep_assert_cblist_protected(rdp);
1503 	raw_lockdep_assert_held_rcu_node(rnp);
1504 
1505 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1506 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1507 		return false;
1508 
1509 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1510 
1511 	/*
1512 	 * Callbacks are often registered with incomplete grace-period
1513 	 * information.  Something about the fact that getting exact
1514 	 * information requires acquiring a global lock...  RCU therefore
1515 	 * makes a conservative estimate of the grace period number at which
1516 	 * a given callback will become ready to invoke.	The following
1517 	 * code checks this estimate and improves it when possible, thus
1518 	 * accelerating callback invocation to an earlier grace-period
1519 	 * number.
1520 	 */
1521 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1522 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1523 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1524 
1525 	/* Trace depending on how much we were able to accelerate. */
1526 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1527 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1528 	else
1529 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1530 
1531 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1532 
1533 	return ret;
1534 }
1535 
1536 /*
1537  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1538  * rcu_node structure's ->lock be held.  It consults the cached value
1539  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1540  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1541  * while holding the leaf rcu_node structure's ->lock.
1542  */
1543 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1544 					struct rcu_data *rdp)
1545 {
1546 	unsigned long c;
1547 	bool needwake;
1548 
1549 	rcu_lockdep_assert_cblist_protected(rdp);
1550 	c = rcu_seq_snap(&rcu_state.gp_seq);
1551 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1552 		/* Old request still live, so mark recent callbacks. */
1553 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1554 		return;
1555 	}
1556 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1557 	needwake = rcu_accelerate_cbs(rnp, rdp);
1558 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1559 	if (needwake)
1560 		rcu_gp_kthread_wake();
1561 }
1562 
1563 /*
1564  * Move any callbacks whose grace period has completed to the
1565  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1566  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1567  * sublist.  This function is idempotent, so it does not hurt to
1568  * invoke it repeatedly.  As long as it is not invoked -too- often...
1569  * Returns true if the RCU grace-period kthread needs to be awakened.
1570  *
1571  * The caller must hold rnp->lock with interrupts disabled.
1572  */
1573 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1574 {
1575 	rcu_lockdep_assert_cblist_protected(rdp);
1576 	raw_lockdep_assert_held_rcu_node(rnp);
1577 
1578 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1579 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1580 		return false;
1581 
1582 	/*
1583 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1584 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1585 	 */
1586 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1587 
1588 	/* Classify any remaining callbacks. */
1589 	return rcu_accelerate_cbs(rnp, rdp);
1590 }
1591 
1592 /*
1593  * Move and classify callbacks, but only if doing so won't require
1594  * that the RCU grace-period kthread be awakened.
1595  */
1596 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1597 						  struct rcu_data *rdp)
1598 {
1599 	rcu_lockdep_assert_cblist_protected(rdp);
1600 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1601 		return;
1602 	// The grace period cannot end while we hold the rcu_node lock.
1603 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1604 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1605 	raw_spin_unlock_rcu_node(rnp);
1606 }
1607 
1608 /*
1609  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1610  * quiescent state.  This is intended to be invoked when the CPU notices
1611  * a new grace period.
1612  */
1613 static void rcu_strict_gp_check_qs(void)
1614 {
1615 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1616 		rcu_read_lock();
1617 		rcu_read_unlock();
1618 	}
1619 }
1620 
1621 /*
1622  * Update CPU-local rcu_data state to record the beginnings and ends of
1623  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1624  * structure corresponding to the current CPU, and must have irqs disabled.
1625  * Returns true if the grace-period kthread needs to be awakened.
1626  */
1627 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1628 {
1629 	bool ret = false;
1630 	bool need_qs;
1631 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1632 
1633 	raw_lockdep_assert_held_rcu_node(rnp);
1634 
1635 	if (rdp->gp_seq == rnp->gp_seq)
1636 		return false; /* Nothing to do. */
1637 
1638 	/* Handle the ends of any preceding grace periods first. */
1639 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1640 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1641 		if (!offloaded)
1642 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1643 		rdp->core_needs_qs = false;
1644 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1645 	} else {
1646 		if (!offloaded)
1647 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1648 		if (rdp->core_needs_qs)
1649 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1650 	}
1651 
1652 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1653 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1654 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1655 		/*
1656 		 * If the current grace period is waiting for this CPU,
1657 		 * set up to detect a quiescent state, otherwise don't
1658 		 * go looking for one.
1659 		 */
1660 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1661 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1662 		rdp->cpu_no_qs.b.norm = need_qs;
1663 		rdp->core_needs_qs = need_qs;
1664 		zero_cpu_stall_ticks(rdp);
1665 	}
1666 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1667 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1668 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1669 	WRITE_ONCE(rdp->gpwrap, false);
1670 	rcu_gpnum_ovf(rnp, rdp);
1671 	return ret;
1672 }
1673 
1674 static void note_gp_changes(struct rcu_data *rdp)
1675 {
1676 	unsigned long flags;
1677 	bool needwake;
1678 	struct rcu_node *rnp;
1679 
1680 	local_irq_save(flags);
1681 	rnp = rdp->mynode;
1682 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1683 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1684 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1685 		local_irq_restore(flags);
1686 		return;
1687 	}
1688 	needwake = __note_gp_changes(rnp, rdp);
1689 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1690 	rcu_strict_gp_check_qs();
1691 	if (needwake)
1692 		rcu_gp_kthread_wake();
1693 }
1694 
1695 static void rcu_gp_slow(int delay)
1696 {
1697 	if (delay > 0 &&
1698 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1699 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1700 		schedule_timeout_idle(delay);
1701 }
1702 
1703 static unsigned long sleep_duration;
1704 
1705 /* Allow rcutorture to stall the grace-period kthread. */
1706 void rcu_gp_set_torture_wait(int duration)
1707 {
1708 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1709 		WRITE_ONCE(sleep_duration, duration);
1710 }
1711 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1712 
1713 /* Actually implement the aforementioned wait. */
1714 static void rcu_gp_torture_wait(void)
1715 {
1716 	unsigned long duration;
1717 
1718 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1719 		return;
1720 	duration = xchg(&sleep_duration, 0UL);
1721 	if (duration > 0) {
1722 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1723 		schedule_timeout_idle(duration);
1724 		pr_alert("%s: Wait complete\n", __func__);
1725 	}
1726 }
1727 
1728 /*
1729  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1730  * processing.
1731  */
1732 static void rcu_strict_gp_boundary(void *unused)
1733 {
1734 	invoke_rcu_core();
1735 }
1736 
1737 /*
1738  * Initialize a new grace period.  Return false if no grace period required.
1739  */
1740 static noinline_for_stack bool rcu_gp_init(void)
1741 {
1742 	unsigned long firstseq;
1743 	unsigned long flags;
1744 	unsigned long oldmask;
1745 	unsigned long mask;
1746 	struct rcu_data *rdp;
1747 	struct rcu_node *rnp = rcu_get_root();
1748 
1749 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1750 	raw_spin_lock_irq_rcu_node(rnp);
1751 	if (!READ_ONCE(rcu_state.gp_flags)) {
1752 		/* Spurious wakeup, tell caller to go back to sleep.  */
1753 		raw_spin_unlock_irq_rcu_node(rnp);
1754 		return false;
1755 	}
1756 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1757 
1758 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1759 		/*
1760 		 * Grace period already in progress, don't start another.
1761 		 * Not supposed to be able to happen.
1762 		 */
1763 		raw_spin_unlock_irq_rcu_node(rnp);
1764 		return false;
1765 	}
1766 
1767 	/* Advance to a new grace period and initialize state. */
1768 	record_gp_stall_check_time();
1769 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1770 	rcu_seq_start(&rcu_state.gp_seq);
1771 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1772 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1773 	raw_spin_unlock_irq_rcu_node(rnp);
1774 
1775 	/*
1776 	 * Apply per-leaf buffered online and offline operations to
1777 	 * the rcu_node tree. Note that this new grace period need not
1778 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1779 	 * offlining path, when combined with checks in this function,
1780 	 * will handle CPUs that are currently going offline or that will
1781 	 * go offline later.  Please also refer to "Hotplug CPU" section
1782 	 * of RCU's Requirements documentation.
1783 	 */
1784 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1785 	rcu_for_each_leaf_node(rnp) {
1786 		// Wait for CPU-hotplug operations that might have
1787 		// started before this grace period did.
1788 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1789 		firstseq = READ_ONCE(rnp->ofl_seq);
1790 		if (firstseq & 0x1)
1791 			while (firstseq == READ_ONCE(rnp->ofl_seq))
1792 				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1793 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1794 		raw_spin_lock(&rcu_state.ofl_lock);
1795 		raw_spin_lock_irq_rcu_node(rnp);
1796 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1797 		    !rnp->wait_blkd_tasks) {
1798 			/* Nothing to do on this leaf rcu_node structure. */
1799 			raw_spin_unlock_irq_rcu_node(rnp);
1800 			raw_spin_unlock(&rcu_state.ofl_lock);
1801 			continue;
1802 		}
1803 
1804 		/* Record old state, apply changes to ->qsmaskinit field. */
1805 		oldmask = rnp->qsmaskinit;
1806 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1807 
1808 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1809 		if (!oldmask != !rnp->qsmaskinit) {
1810 			if (!oldmask) { /* First online CPU for rcu_node. */
1811 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1812 					rcu_init_new_rnp(rnp);
1813 			} else if (rcu_preempt_has_tasks(rnp)) {
1814 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1815 			} else { /* Last offline CPU and can propagate. */
1816 				rcu_cleanup_dead_rnp(rnp);
1817 			}
1818 		}
1819 
1820 		/*
1821 		 * If all waited-on tasks from prior grace period are
1822 		 * done, and if all this rcu_node structure's CPUs are
1823 		 * still offline, propagate up the rcu_node tree and
1824 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1825 		 * rcu_node structure's CPUs has since come back online,
1826 		 * simply clear ->wait_blkd_tasks.
1827 		 */
1828 		if (rnp->wait_blkd_tasks &&
1829 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1830 			rnp->wait_blkd_tasks = false;
1831 			if (!rnp->qsmaskinit)
1832 				rcu_cleanup_dead_rnp(rnp);
1833 		}
1834 
1835 		raw_spin_unlock_irq_rcu_node(rnp);
1836 		raw_spin_unlock(&rcu_state.ofl_lock);
1837 	}
1838 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1839 
1840 	/*
1841 	 * Set the quiescent-state-needed bits in all the rcu_node
1842 	 * structures for all currently online CPUs in breadth-first
1843 	 * order, starting from the root rcu_node structure, relying on the
1844 	 * layout of the tree within the rcu_state.node[] array.  Note that
1845 	 * other CPUs will access only the leaves of the hierarchy, thus
1846 	 * seeing that no grace period is in progress, at least until the
1847 	 * corresponding leaf node has been initialized.
1848 	 *
1849 	 * The grace period cannot complete until the initialization
1850 	 * process finishes, because this kthread handles both.
1851 	 */
1852 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1853 	rcu_for_each_node_breadth_first(rnp) {
1854 		rcu_gp_slow(gp_init_delay);
1855 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1856 		rdp = this_cpu_ptr(&rcu_data);
1857 		rcu_preempt_check_blocked_tasks(rnp);
1858 		rnp->qsmask = rnp->qsmaskinit;
1859 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1860 		if (rnp == rdp->mynode)
1861 			(void)__note_gp_changes(rnp, rdp);
1862 		rcu_preempt_boost_start_gp(rnp);
1863 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1864 					    rnp->level, rnp->grplo,
1865 					    rnp->grphi, rnp->qsmask);
1866 		/* Quiescent states for tasks on any now-offline CPUs. */
1867 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1868 		rnp->rcu_gp_init_mask = mask;
1869 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1870 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1871 		else
1872 			raw_spin_unlock_irq_rcu_node(rnp);
1873 		cond_resched_tasks_rcu_qs();
1874 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1875 	}
1876 
1877 	// If strict, make all CPUs aware of new grace period.
1878 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1879 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1880 
1881 	return true;
1882 }
1883 
1884 /*
1885  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1886  * time.
1887  */
1888 static bool rcu_gp_fqs_check_wake(int *gfp)
1889 {
1890 	struct rcu_node *rnp = rcu_get_root();
1891 
1892 	// If under overload conditions, force an immediate FQS scan.
1893 	if (*gfp & RCU_GP_FLAG_OVLD)
1894 		return true;
1895 
1896 	// Someone like call_rcu() requested a force-quiescent-state scan.
1897 	*gfp = READ_ONCE(rcu_state.gp_flags);
1898 	if (*gfp & RCU_GP_FLAG_FQS)
1899 		return true;
1900 
1901 	// The current grace period has completed.
1902 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1903 		return true;
1904 
1905 	return false;
1906 }
1907 
1908 /*
1909  * Do one round of quiescent-state forcing.
1910  */
1911 static void rcu_gp_fqs(bool first_time)
1912 {
1913 	struct rcu_node *rnp = rcu_get_root();
1914 
1915 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1916 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1917 	if (first_time) {
1918 		/* Collect dyntick-idle snapshots. */
1919 		force_qs_rnp(dyntick_save_progress_counter);
1920 	} else {
1921 		/* Handle dyntick-idle and offline CPUs. */
1922 		force_qs_rnp(rcu_implicit_dynticks_qs);
1923 	}
1924 	/* Clear flag to prevent immediate re-entry. */
1925 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1926 		raw_spin_lock_irq_rcu_node(rnp);
1927 		WRITE_ONCE(rcu_state.gp_flags,
1928 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1929 		raw_spin_unlock_irq_rcu_node(rnp);
1930 	}
1931 }
1932 
1933 /*
1934  * Loop doing repeated quiescent-state forcing until the grace period ends.
1935  */
1936 static noinline_for_stack void rcu_gp_fqs_loop(void)
1937 {
1938 	bool first_gp_fqs;
1939 	int gf = 0;
1940 	unsigned long j;
1941 	int ret;
1942 	struct rcu_node *rnp = rcu_get_root();
1943 
1944 	first_gp_fqs = true;
1945 	j = READ_ONCE(jiffies_till_first_fqs);
1946 	if (rcu_state.cbovld)
1947 		gf = RCU_GP_FLAG_OVLD;
1948 	ret = 0;
1949 	for (;;) {
1950 		if (!ret) {
1951 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1952 			/*
1953 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1954 			 * update; required for stall checks.
1955 			 */
1956 			smp_wmb();
1957 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1958 				   jiffies + (j ? 3 * j : 2));
1959 		}
1960 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1961 				       TPS("fqswait"));
1962 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1963 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1964 				 rcu_gp_fqs_check_wake(&gf), j);
1965 		rcu_gp_torture_wait();
1966 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1967 		/* Locking provides needed memory barriers. */
1968 		/* If grace period done, leave loop. */
1969 		if (!READ_ONCE(rnp->qsmask) &&
1970 		    !rcu_preempt_blocked_readers_cgp(rnp))
1971 			break;
1972 		/* If time for quiescent-state forcing, do it. */
1973 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1974 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1975 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1976 					       TPS("fqsstart"));
1977 			rcu_gp_fqs(first_gp_fqs);
1978 			gf = 0;
1979 			if (first_gp_fqs) {
1980 				first_gp_fqs = false;
1981 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1982 			}
1983 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1984 					       TPS("fqsend"));
1985 			cond_resched_tasks_rcu_qs();
1986 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1987 			ret = 0; /* Force full wait till next FQS. */
1988 			j = READ_ONCE(jiffies_till_next_fqs);
1989 		} else {
1990 			/* Deal with stray signal. */
1991 			cond_resched_tasks_rcu_qs();
1992 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1993 			WARN_ON(signal_pending(current));
1994 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1995 					       TPS("fqswaitsig"));
1996 			ret = 1; /* Keep old FQS timing. */
1997 			j = jiffies;
1998 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1999 				j = 1;
2000 			else
2001 				j = rcu_state.jiffies_force_qs - j;
2002 			gf = 0;
2003 		}
2004 	}
2005 }
2006 
2007 /*
2008  * Clean up after the old grace period.
2009  */
2010 static noinline void rcu_gp_cleanup(void)
2011 {
2012 	int cpu;
2013 	bool needgp = false;
2014 	unsigned long gp_duration;
2015 	unsigned long new_gp_seq;
2016 	bool offloaded;
2017 	struct rcu_data *rdp;
2018 	struct rcu_node *rnp = rcu_get_root();
2019 	struct swait_queue_head *sq;
2020 
2021 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2022 	raw_spin_lock_irq_rcu_node(rnp);
2023 	rcu_state.gp_end = jiffies;
2024 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2025 	if (gp_duration > rcu_state.gp_max)
2026 		rcu_state.gp_max = gp_duration;
2027 
2028 	/*
2029 	 * We know the grace period is complete, but to everyone else
2030 	 * it appears to still be ongoing.  But it is also the case
2031 	 * that to everyone else it looks like there is nothing that
2032 	 * they can do to advance the grace period.  It is therefore
2033 	 * safe for us to drop the lock in order to mark the grace
2034 	 * period as completed in all of the rcu_node structures.
2035 	 */
2036 	raw_spin_unlock_irq_rcu_node(rnp);
2037 
2038 	/*
2039 	 * Propagate new ->gp_seq value to rcu_node structures so that
2040 	 * other CPUs don't have to wait until the start of the next grace
2041 	 * period to process their callbacks.  This also avoids some nasty
2042 	 * RCU grace-period initialization races by forcing the end of
2043 	 * the current grace period to be completely recorded in all of
2044 	 * the rcu_node structures before the beginning of the next grace
2045 	 * period is recorded in any of the rcu_node structures.
2046 	 */
2047 	new_gp_seq = rcu_state.gp_seq;
2048 	rcu_seq_end(&new_gp_seq);
2049 	rcu_for_each_node_breadth_first(rnp) {
2050 		raw_spin_lock_irq_rcu_node(rnp);
2051 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2052 			dump_blkd_tasks(rnp, 10);
2053 		WARN_ON_ONCE(rnp->qsmask);
2054 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2055 		rdp = this_cpu_ptr(&rcu_data);
2056 		if (rnp == rdp->mynode)
2057 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2058 		/* smp_mb() provided by prior unlock-lock pair. */
2059 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2060 		// Reset overload indication for CPUs no longer overloaded
2061 		if (rcu_is_leaf_node(rnp))
2062 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2063 				rdp = per_cpu_ptr(&rcu_data, cpu);
2064 				check_cb_ovld_locked(rdp, rnp);
2065 			}
2066 		sq = rcu_nocb_gp_get(rnp);
2067 		raw_spin_unlock_irq_rcu_node(rnp);
2068 		rcu_nocb_gp_cleanup(sq);
2069 		cond_resched_tasks_rcu_qs();
2070 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2071 		rcu_gp_slow(gp_cleanup_delay);
2072 	}
2073 	rnp = rcu_get_root();
2074 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2075 
2076 	/* Declare grace period done, trace first to use old GP number. */
2077 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2078 	rcu_seq_end(&rcu_state.gp_seq);
2079 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2080 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2081 	/* Check for GP requests since above loop. */
2082 	rdp = this_cpu_ptr(&rcu_data);
2083 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2084 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2085 				  TPS("CleanupMore"));
2086 		needgp = true;
2087 	}
2088 	/* Advance CBs to reduce false positives below. */
2089 	offloaded = rcu_rdp_is_offloaded(rdp);
2090 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2091 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2092 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2093 		trace_rcu_grace_period(rcu_state.name,
2094 				       rcu_state.gp_seq,
2095 				       TPS("newreq"));
2096 	} else {
2097 		WRITE_ONCE(rcu_state.gp_flags,
2098 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2099 	}
2100 	raw_spin_unlock_irq_rcu_node(rnp);
2101 
2102 	// If strict, make all CPUs aware of the end of the old grace period.
2103 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2104 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2105 }
2106 
2107 /*
2108  * Body of kthread that handles grace periods.
2109  */
2110 static int __noreturn rcu_gp_kthread(void *unused)
2111 {
2112 	rcu_bind_gp_kthread();
2113 	for (;;) {
2114 
2115 		/* Handle grace-period start. */
2116 		for (;;) {
2117 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2118 					       TPS("reqwait"));
2119 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2120 			swait_event_idle_exclusive(rcu_state.gp_wq,
2121 					 READ_ONCE(rcu_state.gp_flags) &
2122 					 RCU_GP_FLAG_INIT);
2123 			rcu_gp_torture_wait();
2124 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2125 			/* Locking provides needed memory barrier. */
2126 			if (rcu_gp_init())
2127 				break;
2128 			cond_resched_tasks_rcu_qs();
2129 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2130 			WARN_ON(signal_pending(current));
2131 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2132 					       TPS("reqwaitsig"));
2133 		}
2134 
2135 		/* Handle quiescent-state forcing. */
2136 		rcu_gp_fqs_loop();
2137 
2138 		/* Handle grace-period end. */
2139 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2140 		rcu_gp_cleanup();
2141 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2142 	}
2143 }
2144 
2145 /*
2146  * Report a full set of quiescent states to the rcu_state data structure.
2147  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2148  * another grace period is required.  Whether we wake the grace-period
2149  * kthread or it awakens itself for the next round of quiescent-state
2150  * forcing, that kthread will clean up after the just-completed grace
2151  * period.  Note that the caller must hold rnp->lock, which is released
2152  * before return.
2153  */
2154 static void rcu_report_qs_rsp(unsigned long flags)
2155 	__releases(rcu_get_root()->lock)
2156 {
2157 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2158 	WARN_ON_ONCE(!rcu_gp_in_progress());
2159 	WRITE_ONCE(rcu_state.gp_flags,
2160 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2161 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2162 	rcu_gp_kthread_wake();
2163 }
2164 
2165 /*
2166  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2167  * Allows quiescent states for a group of CPUs to be reported at one go
2168  * to the specified rcu_node structure, though all the CPUs in the group
2169  * must be represented by the same rcu_node structure (which need not be a
2170  * leaf rcu_node structure, though it often will be).  The gps parameter
2171  * is the grace-period snapshot, which means that the quiescent states
2172  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2173  * must be held upon entry, and it is released before return.
2174  *
2175  * As a special case, if mask is zero, the bit-already-cleared check is
2176  * disabled.  This allows propagating quiescent state due to resumed tasks
2177  * during grace-period initialization.
2178  */
2179 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2180 			      unsigned long gps, unsigned long flags)
2181 	__releases(rnp->lock)
2182 {
2183 	unsigned long oldmask = 0;
2184 	struct rcu_node *rnp_c;
2185 
2186 	raw_lockdep_assert_held_rcu_node(rnp);
2187 
2188 	/* Walk up the rcu_node hierarchy. */
2189 	for (;;) {
2190 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2191 
2192 			/*
2193 			 * Our bit has already been cleared, or the
2194 			 * relevant grace period is already over, so done.
2195 			 */
2196 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2197 			return;
2198 		}
2199 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2200 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2201 			     rcu_preempt_blocked_readers_cgp(rnp));
2202 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2203 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2204 						 mask, rnp->qsmask, rnp->level,
2205 						 rnp->grplo, rnp->grphi,
2206 						 !!rnp->gp_tasks);
2207 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2208 
2209 			/* Other bits still set at this level, so done. */
2210 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2211 			return;
2212 		}
2213 		rnp->completedqs = rnp->gp_seq;
2214 		mask = rnp->grpmask;
2215 		if (rnp->parent == NULL) {
2216 
2217 			/* No more levels.  Exit loop holding root lock. */
2218 
2219 			break;
2220 		}
2221 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2222 		rnp_c = rnp;
2223 		rnp = rnp->parent;
2224 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2225 		oldmask = READ_ONCE(rnp_c->qsmask);
2226 	}
2227 
2228 	/*
2229 	 * Get here if we are the last CPU to pass through a quiescent
2230 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2231 	 * to clean up and start the next grace period if one is needed.
2232 	 */
2233 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2234 }
2235 
2236 /*
2237  * Record a quiescent state for all tasks that were previously queued
2238  * on the specified rcu_node structure and that were blocking the current
2239  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2240  * irqs disabled, and this lock is released upon return, but irqs remain
2241  * disabled.
2242  */
2243 static void __maybe_unused
2244 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2245 	__releases(rnp->lock)
2246 {
2247 	unsigned long gps;
2248 	unsigned long mask;
2249 	struct rcu_node *rnp_p;
2250 
2251 	raw_lockdep_assert_held_rcu_node(rnp);
2252 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2253 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2254 	    rnp->qsmask != 0) {
2255 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2256 		return;  /* Still need more quiescent states! */
2257 	}
2258 
2259 	rnp->completedqs = rnp->gp_seq;
2260 	rnp_p = rnp->parent;
2261 	if (rnp_p == NULL) {
2262 		/*
2263 		 * Only one rcu_node structure in the tree, so don't
2264 		 * try to report up to its nonexistent parent!
2265 		 */
2266 		rcu_report_qs_rsp(flags);
2267 		return;
2268 	}
2269 
2270 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2271 	gps = rnp->gp_seq;
2272 	mask = rnp->grpmask;
2273 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2274 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2275 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2276 }
2277 
2278 /*
2279  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2280  * structure.  This must be called from the specified CPU.
2281  */
2282 static void
2283 rcu_report_qs_rdp(struct rcu_data *rdp)
2284 {
2285 	unsigned long flags;
2286 	unsigned long mask;
2287 	bool needwake = false;
2288 	bool needacc = false;
2289 	struct rcu_node *rnp;
2290 
2291 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2292 	rnp = rdp->mynode;
2293 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2294 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2295 	    rdp->gpwrap) {
2296 
2297 		/*
2298 		 * The grace period in which this quiescent state was
2299 		 * recorded has ended, so don't report it upwards.
2300 		 * We will instead need a new quiescent state that lies
2301 		 * within the current grace period.
2302 		 */
2303 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2304 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2305 		return;
2306 	}
2307 	mask = rdp->grpmask;
2308 	rdp->core_needs_qs = false;
2309 	if ((rnp->qsmask & mask) == 0) {
2310 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2311 	} else {
2312 		/*
2313 		 * This GP can't end until cpu checks in, so all of our
2314 		 * callbacks can be processed during the next GP.
2315 		 *
2316 		 * NOCB kthreads have their own way to deal with that...
2317 		 */
2318 		if (!rcu_rdp_is_offloaded(rdp)) {
2319 			needwake = rcu_accelerate_cbs(rnp, rdp);
2320 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2321 			/*
2322 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2323 			 * if in the middle of a (de-)offloading process.
2324 			 */
2325 			needacc = true;
2326 		}
2327 
2328 		rcu_disable_urgency_upon_qs(rdp);
2329 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2330 		/* ^^^ Released rnp->lock */
2331 		if (needwake)
2332 			rcu_gp_kthread_wake();
2333 
2334 		if (needacc) {
2335 			rcu_nocb_lock_irqsave(rdp, flags);
2336 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2337 			rcu_nocb_unlock_irqrestore(rdp, flags);
2338 		}
2339 	}
2340 }
2341 
2342 /*
2343  * Check to see if there is a new grace period of which this CPU
2344  * is not yet aware, and if so, set up local rcu_data state for it.
2345  * Otherwise, see if this CPU has just passed through its first
2346  * quiescent state for this grace period, and record that fact if so.
2347  */
2348 static void
2349 rcu_check_quiescent_state(struct rcu_data *rdp)
2350 {
2351 	/* Check for grace-period ends and beginnings. */
2352 	note_gp_changes(rdp);
2353 
2354 	/*
2355 	 * Does this CPU still need to do its part for current grace period?
2356 	 * If no, return and let the other CPUs do their part as well.
2357 	 */
2358 	if (!rdp->core_needs_qs)
2359 		return;
2360 
2361 	/*
2362 	 * Was there a quiescent state since the beginning of the grace
2363 	 * period? If no, then exit and wait for the next call.
2364 	 */
2365 	if (rdp->cpu_no_qs.b.norm)
2366 		return;
2367 
2368 	/*
2369 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2370 	 * judge of that).
2371 	 */
2372 	rcu_report_qs_rdp(rdp);
2373 }
2374 
2375 /*
2376  * Near the end of the offline process.  Trace the fact that this CPU
2377  * is going offline.
2378  */
2379 int rcutree_dying_cpu(unsigned int cpu)
2380 {
2381 	bool blkd;
2382 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2383 	struct rcu_node *rnp = rdp->mynode;
2384 
2385 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2386 		return 0;
2387 
2388 	blkd = !!(rnp->qsmask & rdp->grpmask);
2389 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2390 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2391 	return 0;
2392 }
2393 
2394 /*
2395  * All CPUs for the specified rcu_node structure have gone offline,
2396  * and all tasks that were preempted within an RCU read-side critical
2397  * section while running on one of those CPUs have since exited their RCU
2398  * read-side critical section.  Some other CPU is reporting this fact with
2399  * the specified rcu_node structure's ->lock held and interrupts disabled.
2400  * This function therefore goes up the tree of rcu_node structures,
2401  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2402  * the leaf rcu_node structure's ->qsmaskinit field has already been
2403  * updated.
2404  *
2405  * This function does check that the specified rcu_node structure has
2406  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2407  * prematurely.  That said, invoking it after the fact will cost you
2408  * a needless lock acquisition.  So once it has done its work, don't
2409  * invoke it again.
2410  */
2411 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2412 {
2413 	long mask;
2414 	struct rcu_node *rnp = rnp_leaf;
2415 
2416 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2417 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2418 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2419 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2420 		return;
2421 	for (;;) {
2422 		mask = rnp->grpmask;
2423 		rnp = rnp->parent;
2424 		if (!rnp)
2425 			break;
2426 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2427 		rnp->qsmaskinit &= ~mask;
2428 		/* Between grace periods, so better already be zero! */
2429 		WARN_ON_ONCE(rnp->qsmask);
2430 		if (rnp->qsmaskinit) {
2431 			raw_spin_unlock_rcu_node(rnp);
2432 			/* irqs remain disabled. */
2433 			return;
2434 		}
2435 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2436 	}
2437 }
2438 
2439 /*
2440  * The CPU has been completely removed, and some other CPU is reporting
2441  * this fact from process context.  Do the remainder of the cleanup.
2442  * There can only be one CPU hotplug operation at a time, so no need for
2443  * explicit locking.
2444  */
2445 int rcutree_dead_cpu(unsigned int cpu)
2446 {
2447 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2448 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2449 
2450 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2451 		return 0;
2452 
2453 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2454 	/* Adjust any no-longer-needed kthreads. */
2455 	rcu_boost_kthread_setaffinity(rnp, -1);
2456 	// Stop-machine done, so allow nohz_full to disable tick.
2457 	tick_dep_clear(TICK_DEP_BIT_RCU);
2458 	return 0;
2459 }
2460 
2461 /*
2462  * Invoke any RCU callbacks that have made it to the end of their grace
2463  * period.  Throttle as specified by rdp->blimit.
2464  */
2465 static void rcu_do_batch(struct rcu_data *rdp)
2466 {
2467 	int div;
2468 	bool __maybe_unused empty;
2469 	unsigned long flags;
2470 	struct rcu_head *rhp;
2471 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2472 	long bl, count = 0;
2473 	long pending, tlimit = 0;
2474 
2475 	/* If no callbacks are ready, just return. */
2476 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2477 		trace_rcu_batch_start(rcu_state.name,
2478 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2479 		trace_rcu_batch_end(rcu_state.name, 0,
2480 				    !rcu_segcblist_empty(&rdp->cblist),
2481 				    need_resched(), is_idle_task(current),
2482 				    rcu_is_callbacks_kthread());
2483 		return;
2484 	}
2485 
2486 	/*
2487 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2488 	 * races with call_rcu() from interrupt handlers.  Leave the
2489 	 * callback counts, as rcu_barrier() needs to be conservative.
2490 	 */
2491 	rcu_nocb_lock_irqsave(rdp, flags);
2492 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2493 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2494 	div = READ_ONCE(rcu_divisor);
2495 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2496 	bl = max(rdp->blimit, pending >> div);
2497 	if (in_serving_softirq() && unlikely(bl > 100)) {
2498 		long rrn = READ_ONCE(rcu_resched_ns);
2499 
2500 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2501 		tlimit = local_clock() + rrn;
2502 	}
2503 	trace_rcu_batch_start(rcu_state.name,
2504 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2505 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2506 	if (rcu_rdp_is_offloaded(rdp))
2507 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2508 
2509 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2510 	rcu_nocb_unlock_irqrestore(rdp, flags);
2511 
2512 	/* Invoke callbacks. */
2513 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2514 	rhp = rcu_cblist_dequeue(&rcl);
2515 
2516 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2517 		rcu_callback_t f;
2518 
2519 		count++;
2520 		debug_rcu_head_unqueue(rhp);
2521 
2522 		rcu_lock_acquire(&rcu_callback_map);
2523 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2524 
2525 		f = rhp->func;
2526 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2527 		f(rhp);
2528 
2529 		rcu_lock_release(&rcu_callback_map);
2530 
2531 		/*
2532 		 * Stop only if limit reached and CPU has something to do.
2533 		 */
2534 		if (in_serving_softirq()) {
2535 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2536 				break;
2537 			/*
2538 			 * Make sure we don't spend too much time here and deprive other
2539 			 * softirq vectors of CPU cycles.
2540 			 */
2541 			if (unlikely(tlimit)) {
2542 				/* only call local_clock() every 32 callbacks */
2543 				if (likely((count & 31) || local_clock() < tlimit))
2544 					continue;
2545 				/* Exceeded the time limit, so leave. */
2546 				break;
2547 			}
2548 		} else {
2549 			local_bh_enable();
2550 			lockdep_assert_irqs_enabled();
2551 			cond_resched_tasks_rcu_qs();
2552 			lockdep_assert_irqs_enabled();
2553 			local_bh_disable();
2554 		}
2555 	}
2556 
2557 	rcu_nocb_lock_irqsave(rdp, flags);
2558 	rdp->n_cbs_invoked += count;
2559 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2560 			    is_idle_task(current), rcu_is_callbacks_kthread());
2561 
2562 	/* Update counts and requeue any remaining callbacks. */
2563 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2564 	rcu_segcblist_add_len(&rdp->cblist, -count);
2565 
2566 	/* Reinstate batch limit if we have worked down the excess. */
2567 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2568 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2569 		rdp->blimit = blimit;
2570 
2571 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2572 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2573 		rdp->qlen_last_fqs_check = 0;
2574 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2575 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2576 		rdp->qlen_last_fqs_check = count;
2577 
2578 	/*
2579 	 * The following usually indicates a double call_rcu().  To track
2580 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2581 	 */
2582 	empty = rcu_segcblist_empty(&rdp->cblist);
2583 	WARN_ON_ONCE(count == 0 && !empty);
2584 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2585 		     count != 0 && empty);
2586 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2587 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2588 
2589 	rcu_nocb_unlock_irqrestore(rdp, flags);
2590 
2591 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2592 }
2593 
2594 /*
2595  * This function is invoked from each scheduling-clock interrupt,
2596  * and checks to see if this CPU is in a non-context-switch quiescent
2597  * state, for example, user mode or idle loop.  It also schedules RCU
2598  * core processing.  If the current grace period has gone on too long,
2599  * it will ask the scheduler to manufacture a context switch for the sole
2600  * purpose of providing the needed quiescent state.
2601  */
2602 void rcu_sched_clock_irq(int user)
2603 {
2604 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2605 	lockdep_assert_irqs_disabled();
2606 	raw_cpu_inc(rcu_data.ticks_this_gp);
2607 	/* The load-acquire pairs with the store-release setting to true. */
2608 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2609 		/* Idle and userspace execution already are quiescent states. */
2610 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2611 			set_tsk_need_resched(current);
2612 			set_preempt_need_resched();
2613 		}
2614 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2615 	}
2616 	rcu_flavor_sched_clock_irq(user);
2617 	if (rcu_pending(user))
2618 		invoke_rcu_core();
2619 	lockdep_assert_irqs_disabled();
2620 
2621 	trace_rcu_utilization(TPS("End scheduler-tick"));
2622 }
2623 
2624 /*
2625  * Scan the leaf rcu_node structures.  For each structure on which all
2626  * CPUs have reported a quiescent state and on which there are tasks
2627  * blocking the current grace period, initiate RCU priority boosting.
2628  * Otherwise, invoke the specified function to check dyntick state for
2629  * each CPU that has not yet reported a quiescent state.
2630  */
2631 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2632 {
2633 	int cpu;
2634 	unsigned long flags;
2635 	unsigned long mask;
2636 	struct rcu_data *rdp;
2637 	struct rcu_node *rnp;
2638 
2639 	rcu_state.cbovld = rcu_state.cbovldnext;
2640 	rcu_state.cbovldnext = false;
2641 	rcu_for_each_leaf_node(rnp) {
2642 		cond_resched_tasks_rcu_qs();
2643 		mask = 0;
2644 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2645 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2646 		if (rnp->qsmask == 0) {
2647 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2648 				/*
2649 				 * No point in scanning bits because they
2650 				 * are all zero.  But we might need to
2651 				 * priority-boost blocked readers.
2652 				 */
2653 				rcu_initiate_boost(rnp, flags);
2654 				/* rcu_initiate_boost() releases rnp->lock */
2655 				continue;
2656 			}
2657 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2658 			continue;
2659 		}
2660 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2661 			rdp = per_cpu_ptr(&rcu_data, cpu);
2662 			if (f(rdp)) {
2663 				mask |= rdp->grpmask;
2664 				rcu_disable_urgency_upon_qs(rdp);
2665 			}
2666 		}
2667 		if (mask != 0) {
2668 			/* Idle/offline CPUs, report (releases rnp->lock). */
2669 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2670 		} else {
2671 			/* Nothing to do here, so just drop the lock. */
2672 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2673 		}
2674 	}
2675 }
2676 
2677 /*
2678  * Force quiescent states on reluctant CPUs, and also detect which
2679  * CPUs are in dyntick-idle mode.
2680  */
2681 void rcu_force_quiescent_state(void)
2682 {
2683 	unsigned long flags;
2684 	bool ret;
2685 	struct rcu_node *rnp;
2686 	struct rcu_node *rnp_old = NULL;
2687 
2688 	/* Funnel through hierarchy to reduce memory contention. */
2689 	rnp = __this_cpu_read(rcu_data.mynode);
2690 	for (; rnp != NULL; rnp = rnp->parent) {
2691 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2692 		       !raw_spin_trylock(&rnp->fqslock);
2693 		if (rnp_old != NULL)
2694 			raw_spin_unlock(&rnp_old->fqslock);
2695 		if (ret)
2696 			return;
2697 		rnp_old = rnp;
2698 	}
2699 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2700 
2701 	/* Reached the root of the rcu_node tree, acquire lock. */
2702 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2703 	raw_spin_unlock(&rnp_old->fqslock);
2704 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2705 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2706 		return;  /* Someone beat us to it. */
2707 	}
2708 	WRITE_ONCE(rcu_state.gp_flags,
2709 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2710 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2711 	rcu_gp_kthread_wake();
2712 }
2713 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2714 
2715 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2716 // grace periods.
2717 static void strict_work_handler(struct work_struct *work)
2718 {
2719 	rcu_read_lock();
2720 	rcu_read_unlock();
2721 }
2722 
2723 /* Perform RCU core processing work for the current CPU.  */
2724 static __latent_entropy void rcu_core(void)
2725 {
2726 	unsigned long flags;
2727 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2728 	struct rcu_node *rnp = rdp->mynode;
2729 	/*
2730 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2731 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2732 	 * on this CPU and the below condition must be considered volatile.
2733 	 * However if we race with:
2734 	 *
2735 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2736 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2737 	 *                 call rcu_nocb_lock() if that happens.
2738 	 *
2739 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2740 	 *                 processing. This is fine because the early stage
2741 	 *                 of deoffloading invokes rcu_core() after setting
2742 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2743 	 *                 what could have been dismissed without the need to wait
2744 	 *                 for the next rcu_pending() check in the next jiffy.
2745 	 */
2746 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2747 
2748 	if (cpu_is_offline(smp_processor_id()))
2749 		return;
2750 	trace_rcu_utilization(TPS("Start RCU core"));
2751 	WARN_ON_ONCE(!rdp->beenonline);
2752 
2753 	/* Report any deferred quiescent states if preemption enabled. */
2754 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2755 		rcu_preempt_deferred_qs(current);
2756 	} else if (rcu_preempt_need_deferred_qs(current)) {
2757 		set_tsk_need_resched(current);
2758 		set_preempt_need_resched();
2759 	}
2760 
2761 	/* Update RCU state based on any recent quiescent states. */
2762 	rcu_check_quiescent_state(rdp);
2763 
2764 	/* No grace period and unregistered callbacks? */
2765 	if (!rcu_gp_in_progress() &&
2766 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2767 		rcu_nocb_lock_irqsave(rdp, flags);
2768 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2769 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2770 		rcu_nocb_unlock_irqrestore(rdp, flags);
2771 	}
2772 
2773 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2774 
2775 	/* If there are callbacks ready, invoke them. */
2776 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2777 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2778 		rcu_do_batch(rdp);
2779 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2780 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2781 			invoke_rcu_core();
2782 	}
2783 
2784 	/* Do any needed deferred wakeups of rcuo kthreads. */
2785 	do_nocb_deferred_wakeup(rdp);
2786 	trace_rcu_utilization(TPS("End RCU core"));
2787 
2788 	// If strict GPs, schedule an RCU reader in a clean environment.
2789 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2790 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2791 }
2792 
2793 static void rcu_core_si(struct softirq_action *h)
2794 {
2795 	rcu_core();
2796 }
2797 
2798 static void rcu_wake_cond(struct task_struct *t, int status)
2799 {
2800 	/*
2801 	 * If the thread is yielding, only wake it when this
2802 	 * is invoked from idle
2803 	 */
2804 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2805 		wake_up_process(t);
2806 }
2807 
2808 static void invoke_rcu_core_kthread(void)
2809 {
2810 	struct task_struct *t;
2811 	unsigned long flags;
2812 
2813 	local_irq_save(flags);
2814 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2815 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2816 	if (t != NULL && t != current)
2817 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2818 	local_irq_restore(flags);
2819 }
2820 
2821 /*
2822  * Wake up this CPU's rcuc kthread to do RCU core processing.
2823  */
2824 static void invoke_rcu_core(void)
2825 {
2826 	if (!cpu_online(smp_processor_id()))
2827 		return;
2828 	if (use_softirq)
2829 		raise_softirq(RCU_SOFTIRQ);
2830 	else
2831 		invoke_rcu_core_kthread();
2832 }
2833 
2834 static void rcu_cpu_kthread_park(unsigned int cpu)
2835 {
2836 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2837 }
2838 
2839 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2840 {
2841 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2842 }
2843 
2844 /*
2845  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2846  * the RCU softirq used in configurations of RCU that do not support RCU
2847  * priority boosting.
2848  */
2849 static void rcu_cpu_kthread(unsigned int cpu)
2850 {
2851 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2852 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2853 	int spincnt;
2854 
2855 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2856 	for (spincnt = 0; spincnt < 10; spincnt++) {
2857 		local_bh_disable();
2858 		*statusp = RCU_KTHREAD_RUNNING;
2859 		local_irq_disable();
2860 		work = *workp;
2861 		*workp = 0;
2862 		local_irq_enable();
2863 		if (work)
2864 			rcu_core();
2865 		local_bh_enable();
2866 		if (*workp == 0) {
2867 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2868 			*statusp = RCU_KTHREAD_WAITING;
2869 			return;
2870 		}
2871 	}
2872 	*statusp = RCU_KTHREAD_YIELDING;
2873 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2874 	schedule_timeout_idle(2);
2875 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2876 	*statusp = RCU_KTHREAD_WAITING;
2877 }
2878 
2879 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2880 	.store			= &rcu_data.rcu_cpu_kthread_task,
2881 	.thread_should_run	= rcu_cpu_kthread_should_run,
2882 	.thread_fn		= rcu_cpu_kthread,
2883 	.thread_comm		= "rcuc/%u",
2884 	.setup			= rcu_cpu_kthread_setup,
2885 	.park			= rcu_cpu_kthread_park,
2886 };
2887 
2888 /*
2889  * Spawn per-CPU RCU core processing kthreads.
2890  */
2891 static int __init rcu_spawn_core_kthreads(void)
2892 {
2893 	int cpu;
2894 
2895 	for_each_possible_cpu(cpu)
2896 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2897 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2898 		return 0;
2899 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2900 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2901 	return 0;
2902 }
2903 
2904 /*
2905  * Handle any core-RCU processing required by a call_rcu() invocation.
2906  */
2907 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2908 			    unsigned long flags)
2909 {
2910 	/*
2911 	 * If called from an extended quiescent state, invoke the RCU
2912 	 * core in order to force a re-evaluation of RCU's idleness.
2913 	 */
2914 	if (!rcu_is_watching())
2915 		invoke_rcu_core();
2916 
2917 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2918 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2919 		return;
2920 
2921 	/*
2922 	 * Force the grace period if too many callbacks or too long waiting.
2923 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2924 	 * if some other CPU has recently done so.  Also, don't bother
2925 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2926 	 * is the only one waiting for a grace period to complete.
2927 	 */
2928 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2929 		     rdp->qlen_last_fqs_check + qhimark)) {
2930 
2931 		/* Are we ignoring a completed grace period? */
2932 		note_gp_changes(rdp);
2933 
2934 		/* Start a new grace period if one not already started. */
2935 		if (!rcu_gp_in_progress()) {
2936 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2937 		} else {
2938 			/* Give the grace period a kick. */
2939 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2940 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2941 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2942 				rcu_force_quiescent_state();
2943 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2944 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2945 		}
2946 	}
2947 }
2948 
2949 /*
2950  * RCU callback function to leak a callback.
2951  */
2952 static void rcu_leak_callback(struct rcu_head *rhp)
2953 {
2954 }
2955 
2956 /*
2957  * Check and if necessary update the leaf rcu_node structure's
2958  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2959  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2960  * structure's ->lock.
2961  */
2962 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2963 {
2964 	raw_lockdep_assert_held_rcu_node(rnp);
2965 	if (qovld_calc <= 0)
2966 		return; // Early boot and wildcard value set.
2967 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2968 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2969 	else
2970 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2971 }
2972 
2973 /*
2974  * Check and if necessary update the leaf rcu_node structure's
2975  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2976  * number of queued RCU callbacks.  No locks need be held, but the
2977  * caller must have disabled interrupts.
2978  *
2979  * Note that this function ignores the possibility that there are a lot
2980  * of callbacks all of which have already seen the end of their respective
2981  * grace periods.  This omission is due to the need for no-CBs CPUs to
2982  * be holding ->nocb_lock to do this check, which is too heavy for a
2983  * common-case operation.
2984  */
2985 static void check_cb_ovld(struct rcu_data *rdp)
2986 {
2987 	struct rcu_node *const rnp = rdp->mynode;
2988 
2989 	if (qovld_calc <= 0 ||
2990 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2991 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2992 		return; // Early boot wildcard value or already set correctly.
2993 	raw_spin_lock_rcu_node(rnp);
2994 	check_cb_ovld_locked(rdp, rnp);
2995 	raw_spin_unlock_rcu_node(rnp);
2996 }
2997 
2998 /* Helper function for call_rcu() and friends.  */
2999 static void
3000 __call_rcu(struct rcu_head *head, rcu_callback_t func)
3001 {
3002 	static atomic_t doublefrees;
3003 	unsigned long flags;
3004 	struct rcu_data *rdp;
3005 	bool was_alldone;
3006 
3007 	/* Misaligned rcu_head! */
3008 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3009 
3010 	if (debug_rcu_head_queue(head)) {
3011 		/*
3012 		 * Probable double call_rcu(), so leak the callback.
3013 		 * Use rcu:rcu_callback trace event to find the previous
3014 		 * time callback was passed to __call_rcu().
3015 		 */
3016 		if (atomic_inc_return(&doublefrees) < 4) {
3017 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3018 			mem_dump_obj(head);
3019 		}
3020 		WRITE_ONCE(head->func, rcu_leak_callback);
3021 		return;
3022 	}
3023 	head->func = func;
3024 	head->next = NULL;
3025 	local_irq_save(flags);
3026 	kasan_record_aux_stack_noalloc(head);
3027 	rdp = this_cpu_ptr(&rcu_data);
3028 
3029 	/* Add the callback to our list. */
3030 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3031 		// This can trigger due to call_rcu() from offline CPU:
3032 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3033 		WARN_ON_ONCE(!rcu_is_watching());
3034 		// Very early boot, before rcu_init().  Initialize if needed
3035 		// and then drop through to queue the callback.
3036 		if (rcu_segcblist_empty(&rdp->cblist))
3037 			rcu_segcblist_init(&rdp->cblist);
3038 	}
3039 
3040 	check_cb_ovld(rdp);
3041 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3042 		return; // Enqueued onto ->nocb_bypass, so just leave.
3043 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3044 	rcu_segcblist_enqueue(&rdp->cblist, head);
3045 	if (__is_kvfree_rcu_offset((unsigned long)func))
3046 		trace_rcu_kvfree_callback(rcu_state.name, head,
3047 					 (unsigned long)func,
3048 					 rcu_segcblist_n_cbs(&rdp->cblist));
3049 	else
3050 		trace_rcu_callback(rcu_state.name, head,
3051 				   rcu_segcblist_n_cbs(&rdp->cblist));
3052 
3053 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3054 
3055 	/* Go handle any RCU core processing required. */
3056 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3057 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3058 	} else {
3059 		__call_rcu_core(rdp, head, flags);
3060 		local_irq_restore(flags);
3061 	}
3062 }
3063 
3064 /**
3065  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3066  * @head: structure to be used for queueing the RCU updates.
3067  * @func: actual callback function to be invoked after the grace period
3068  *
3069  * The callback function will be invoked some time after a full grace
3070  * period elapses, in other words after all pre-existing RCU read-side
3071  * critical sections have completed.  However, the callback function
3072  * might well execute concurrently with RCU read-side critical sections
3073  * that started after call_rcu() was invoked.
3074  *
3075  * RCU read-side critical sections are delimited by rcu_read_lock()
3076  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3077  * v5.0 and later, regions of code across which interrupts, preemption,
3078  * or softirqs have been disabled also serve as RCU read-side critical
3079  * sections.  This includes hardware interrupt handlers, softirq handlers,
3080  * and NMI handlers.
3081  *
3082  * Note that all CPUs must agree that the grace period extended beyond
3083  * all pre-existing RCU read-side critical section.  On systems with more
3084  * than one CPU, this means that when "func()" is invoked, each CPU is
3085  * guaranteed to have executed a full memory barrier since the end of its
3086  * last RCU read-side critical section whose beginning preceded the call
3087  * to call_rcu().  It also means that each CPU executing an RCU read-side
3088  * critical section that continues beyond the start of "func()" must have
3089  * executed a memory barrier after the call_rcu() but before the beginning
3090  * of that RCU read-side critical section.  Note that these guarantees
3091  * include CPUs that are offline, idle, or executing in user mode, as
3092  * well as CPUs that are executing in the kernel.
3093  *
3094  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3095  * resulting RCU callback function "func()", then both CPU A and CPU B are
3096  * guaranteed to execute a full memory barrier during the time interval
3097  * between the call to call_rcu() and the invocation of "func()" -- even
3098  * if CPU A and CPU B are the same CPU (but again only if the system has
3099  * more than one CPU).
3100  *
3101  * Implementation of these memory-ordering guarantees is described here:
3102  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3103  */
3104 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3105 {
3106 	__call_rcu(head, func);
3107 }
3108 EXPORT_SYMBOL_GPL(call_rcu);
3109 
3110 
3111 /* Maximum number of jiffies to wait before draining a batch. */
3112 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3113 #define KFREE_N_BATCHES 2
3114 #define FREE_N_CHANNELS 2
3115 
3116 /**
3117  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3118  * @nr_records: Number of active pointers in the array
3119  * @next: Next bulk object in the block chain
3120  * @records: Array of the kvfree_rcu() pointers
3121  */
3122 struct kvfree_rcu_bulk_data {
3123 	unsigned long nr_records;
3124 	struct kvfree_rcu_bulk_data *next;
3125 	void *records[];
3126 };
3127 
3128 /*
3129  * This macro defines how many entries the "records" array
3130  * will contain. It is based on the fact that the size of
3131  * kvfree_rcu_bulk_data structure becomes exactly one page.
3132  */
3133 #define KVFREE_BULK_MAX_ENTR \
3134 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3135 
3136 /**
3137  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3138  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3139  * @head_free: List of kfree_rcu() objects waiting for a grace period
3140  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3141  * @krcp: Pointer to @kfree_rcu_cpu structure
3142  */
3143 
3144 struct kfree_rcu_cpu_work {
3145 	struct rcu_work rcu_work;
3146 	struct rcu_head *head_free;
3147 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3148 	struct kfree_rcu_cpu *krcp;
3149 };
3150 
3151 /**
3152  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3153  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3154  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3155  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3156  * @lock: Synchronize access to this structure
3157  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3158  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3159  * @initialized: The @rcu_work fields have been initialized
3160  * @count: Number of objects for which GP not started
3161  * @bkvcache:
3162  *	A simple cache list that contains objects for reuse purpose.
3163  *	In order to save some per-cpu space the list is singular.
3164  *	Even though it is lockless an access has to be protected by the
3165  *	per-cpu lock.
3166  * @page_cache_work: A work to refill the cache when it is empty
3167  * @backoff_page_cache_fill: Delay cache refills
3168  * @work_in_progress: Indicates that page_cache_work is running
3169  * @hrtimer: A hrtimer for scheduling a page_cache_work
3170  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3171  *
3172  * This is a per-CPU structure.  The reason that it is not included in
3173  * the rcu_data structure is to permit this code to be extracted from
3174  * the RCU files.  Such extraction could allow further optimization of
3175  * the interactions with the slab allocators.
3176  */
3177 struct kfree_rcu_cpu {
3178 	struct rcu_head *head;
3179 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3180 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3181 	raw_spinlock_t lock;
3182 	struct delayed_work monitor_work;
3183 	bool monitor_todo;
3184 	bool initialized;
3185 	int count;
3186 
3187 	struct delayed_work page_cache_work;
3188 	atomic_t backoff_page_cache_fill;
3189 	atomic_t work_in_progress;
3190 	struct hrtimer hrtimer;
3191 
3192 	struct llist_head bkvcache;
3193 	int nr_bkv_objs;
3194 };
3195 
3196 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3197 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3198 };
3199 
3200 static __always_inline void
3201 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3202 {
3203 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3204 	int i;
3205 
3206 	for (i = 0; i < bhead->nr_records; i++)
3207 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3208 #endif
3209 }
3210 
3211 static inline struct kfree_rcu_cpu *
3212 krc_this_cpu_lock(unsigned long *flags)
3213 {
3214 	struct kfree_rcu_cpu *krcp;
3215 
3216 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3217 	krcp = this_cpu_ptr(&krc);
3218 	raw_spin_lock(&krcp->lock);
3219 
3220 	return krcp;
3221 }
3222 
3223 static inline void
3224 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3225 {
3226 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3227 }
3228 
3229 static inline struct kvfree_rcu_bulk_data *
3230 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3231 {
3232 	if (!krcp->nr_bkv_objs)
3233 		return NULL;
3234 
3235 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3236 	return (struct kvfree_rcu_bulk_data *)
3237 		llist_del_first(&krcp->bkvcache);
3238 }
3239 
3240 static inline bool
3241 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3242 	struct kvfree_rcu_bulk_data *bnode)
3243 {
3244 	// Check the limit.
3245 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3246 		return false;
3247 
3248 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3249 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3250 	return true;
3251 }
3252 
3253 static int
3254 drain_page_cache(struct kfree_rcu_cpu *krcp)
3255 {
3256 	unsigned long flags;
3257 	struct llist_node *page_list, *pos, *n;
3258 	int freed = 0;
3259 
3260 	raw_spin_lock_irqsave(&krcp->lock, flags);
3261 	page_list = llist_del_all(&krcp->bkvcache);
3262 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3263 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3264 
3265 	llist_for_each_safe(pos, n, page_list) {
3266 		free_page((unsigned long)pos);
3267 		freed++;
3268 	}
3269 
3270 	return freed;
3271 }
3272 
3273 /*
3274  * This function is invoked in workqueue context after a grace period.
3275  * It frees all the objects queued on ->bkvhead_free or ->head_free.
3276  */
3277 static void kfree_rcu_work(struct work_struct *work)
3278 {
3279 	unsigned long flags;
3280 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3281 	struct rcu_head *head, *next;
3282 	struct kfree_rcu_cpu *krcp;
3283 	struct kfree_rcu_cpu_work *krwp;
3284 	int i, j;
3285 
3286 	krwp = container_of(to_rcu_work(work),
3287 			    struct kfree_rcu_cpu_work, rcu_work);
3288 	krcp = krwp->krcp;
3289 
3290 	raw_spin_lock_irqsave(&krcp->lock, flags);
3291 	// Channels 1 and 2.
3292 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3293 		bkvhead[i] = krwp->bkvhead_free[i];
3294 		krwp->bkvhead_free[i] = NULL;
3295 	}
3296 
3297 	// Channel 3.
3298 	head = krwp->head_free;
3299 	krwp->head_free = NULL;
3300 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3301 
3302 	// Handle the first two channels.
3303 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3304 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3305 			bnext = bkvhead[i]->next;
3306 			debug_rcu_bhead_unqueue(bkvhead[i]);
3307 
3308 			rcu_lock_acquire(&rcu_callback_map);
3309 			if (i == 0) { // kmalloc() / kfree().
3310 				trace_rcu_invoke_kfree_bulk_callback(
3311 					rcu_state.name, bkvhead[i]->nr_records,
3312 					bkvhead[i]->records);
3313 
3314 				kfree_bulk(bkvhead[i]->nr_records,
3315 					bkvhead[i]->records);
3316 			} else { // vmalloc() / vfree().
3317 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3318 					trace_rcu_invoke_kvfree_callback(
3319 						rcu_state.name,
3320 						bkvhead[i]->records[j], 0);
3321 
3322 					vfree(bkvhead[i]->records[j]);
3323 				}
3324 			}
3325 			rcu_lock_release(&rcu_callback_map);
3326 
3327 			raw_spin_lock_irqsave(&krcp->lock, flags);
3328 			if (put_cached_bnode(krcp, bkvhead[i]))
3329 				bkvhead[i] = NULL;
3330 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3331 
3332 			if (bkvhead[i])
3333 				free_page((unsigned long) bkvhead[i]);
3334 
3335 			cond_resched_tasks_rcu_qs();
3336 		}
3337 	}
3338 
3339 	/*
3340 	 * This is used when the "bulk" path can not be used for the
3341 	 * double-argument of kvfree_rcu().  This happens when the
3342 	 * page-cache is empty, which means that objects are instead
3343 	 * queued on a linked list through their rcu_head structures.
3344 	 * This list is named "Channel 3".
3345 	 */
3346 	for (; head; head = next) {
3347 		unsigned long offset = (unsigned long)head->func;
3348 		void *ptr = (void *)head - offset;
3349 
3350 		next = head->next;
3351 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3352 		rcu_lock_acquire(&rcu_callback_map);
3353 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3354 
3355 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3356 			kvfree(ptr);
3357 
3358 		rcu_lock_release(&rcu_callback_map);
3359 		cond_resched_tasks_rcu_qs();
3360 	}
3361 }
3362 
3363 /*
3364  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3365  */
3366 static void kfree_rcu_monitor(struct work_struct *work)
3367 {
3368 	struct kfree_rcu_cpu *krcp = container_of(work,
3369 		struct kfree_rcu_cpu, monitor_work.work);
3370 	unsigned long flags;
3371 	int i, j;
3372 
3373 	raw_spin_lock_irqsave(&krcp->lock, flags);
3374 
3375 	// Attempt to start a new batch.
3376 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3377 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3378 
3379 		// Try to detach bkvhead or head and attach it over any
3380 		// available corresponding free channel. It can be that
3381 		// a previous RCU batch is in progress, it means that
3382 		// immediately to queue another one is not possible so
3383 		// in that case the monitor work is rearmed.
3384 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3385 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3386 				(krcp->head && !krwp->head_free)) {
3387 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3388 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3389 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3390 				if (!krwp->bkvhead_free[j]) {
3391 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3392 					krcp->bkvhead[j] = NULL;
3393 				}
3394 			}
3395 
3396 			// Channel 3 corresponds to both SLAB and vmalloc
3397 			// objects queued on the linked list.
3398 			if (!krwp->head_free) {
3399 				krwp->head_free = krcp->head;
3400 				krcp->head = NULL;
3401 			}
3402 
3403 			WRITE_ONCE(krcp->count, 0);
3404 
3405 			// One work is per one batch, so there are three
3406 			// "free channels", the batch can handle. It can
3407 			// be that the work is in the pending state when
3408 			// channels have been detached following by each
3409 			// other.
3410 			queue_rcu_work(system_wq, &krwp->rcu_work);
3411 		}
3412 	}
3413 
3414 	// If there is nothing to detach, it means that our job is
3415 	// successfully done here. In case of having at least one
3416 	// of the channels that is still busy we should rearm the
3417 	// work to repeat an attempt. Because previous batches are
3418 	// still in progress.
3419 	if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3420 		krcp->monitor_todo = false;
3421 	else
3422 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3423 
3424 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3425 }
3426 
3427 static enum hrtimer_restart
3428 schedule_page_work_fn(struct hrtimer *t)
3429 {
3430 	struct kfree_rcu_cpu *krcp =
3431 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3432 
3433 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3434 	return HRTIMER_NORESTART;
3435 }
3436 
3437 static void fill_page_cache_func(struct work_struct *work)
3438 {
3439 	struct kvfree_rcu_bulk_data *bnode;
3440 	struct kfree_rcu_cpu *krcp =
3441 		container_of(work, struct kfree_rcu_cpu,
3442 			page_cache_work.work);
3443 	unsigned long flags;
3444 	int nr_pages;
3445 	bool pushed;
3446 	int i;
3447 
3448 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3449 		1 : rcu_min_cached_objs;
3450 
3451 	for (i = 0; i < nr_pages; i++) {
3452 		bnode = (struct kvfree_rcu_bulk_data *)
3453 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3454 
3455 		if (bnode) {
3456 			raw_spin_lock_irqsave(&krcp->lock, flags);
3457 			pushed = put_cached_bnode(krcp, bnode);
3458 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3459 
3460 			if (!pushed) {
3461 				free_page((unsigned long) bnode);
3462 				break;
3463 			}
3464 		}
3465 	}
3466 
3467 	atomic_set(&krcp->work_in_progress, 0);
3468 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3469 }
3470 
3471 static void
3472 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3473 {
3474 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3475 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3476 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3477 			queue_delayed_work(system_wq,
3478 				&krcp->page_cache_work,
3479 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3480 		} else {
3481 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3482 			krcp->hrtimer.function = schedule_page_work_fn;
3483 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3484 		}
3485 	}
3486 }
3487 
3488 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3489 // state specified by flags.  If can_alloc is true, the caller must
3490 // be schedulable and not be holding any locks or mutexes that might be
3491 // acquired by the memory allocator or anything that it might invoke.
3492 // Returns true if ptr was successfully recorded, else the caller must
3493 // use a fallback.
3494 static inline bool
3495 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3496 	unsigned long *flags, void *ptr, bool can_alloc)
3497 {
3498 	struct kvfree_rcu_bulk_data *bnode;
3499 	int idx;
3500 
3501 	*krcp = krc_this_cpu_lock(flags);
3502 	if (unlikely(!(*krcp)->initialized))
3503 		return false;
3504 
3505 	idx = !!is_vmalloc_addr(ptr);
3506 
3507 	/* Check if a new block is required. */
3508 	if (!(*krcp)->bkvhead[idx] ||
3509 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3510 		bnode = get_cached_bnode(*krcp);
3511 		if (!bnode && can_alloc) {
3512 			krc_this_cpu_unlock(*krcp, *flags);
3513 
3514 			// __GFP_NORETRY - allows a light-weight direct reclaim
3515 			// what is OK from minimizing of fallback hitting point of
3516 			// view. Apart of that it forbids any OOM invoking what is
3517 			// also beneficial since we are about to release memory soon.
3518 			//
3519 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3520 			// memory reserves. Please note we have a fallback path.
3521 			//
3522 			// __GFP_NOWARN - it is supposed that an allocation can
3523 			// be failed under low memory or high memory pressure
3524 			// scenarios.
3525 			bnode = (struct kvfree_rcu_bulk_data *)
3526 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3527 			*krcp = krc_this_cpu_lock(flags);
3528 		}
3529 
3530 		if (!bnode)
3531 			return false;
3532 
3533 		/* Initialize the new block. */
3534 		bnode->nr_records = 0;
3535 		bnode->next = (*krcp)->bkvhead[idx];
3536 
3537 		/* Attach it to the head. */
3538 		(*krcp)->bkvhead[idx] = bnode;
3539 	}
3540 
3541 	/* Finally insert. */
3542 	(*krcp)->bkvhead[idx]->records
3543 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3544 
3545 	return true;
3546 }
3547 
3548 /*
3549  * Queue a request for lazy invocation of the appropriate free routine
3550  * after a grace period.  Please note that three paths are maintained,
3551  * two for the common case using arrays of pointers and a third one that
3552  * is used only when the main paths cannot be used, for example, due to
3553  * memory pressure.
3554  *
3555  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3556  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3557  * be free'd in workqueue context. This allows us to: batch requests together to
3558  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3559  */
3560 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3561 {
3562 	unsigned long flags;
3563 	struct kfree_rcu_cpu *krcp;
3564 	bool success;
3565 	void *ptr;
3566 
3567 	if (head) {
3568 		ptr = (void *) head - (unsigned long) func;
3569 	} else {
3570 		/*
3571 		 * Please note there is a limitation for the head-less
3572 		 * variant, that is why there is a clear rule for such
3573 		 * objects: it can be used from might_sleep() context
3574 		 * only. For other places please embed an rcu_head to
3575 		 * your data.
3576 		 */
3577 		might_sleep();
3578 		ptr = (unsigned long *) func;
3579 	}
3580 
3581 	// Queue the object but don't yet schedule the batch.
3582 	if (debug_rcu_head_queue(ptr)) {
3583 		// Probable double kfree_rcu(), just leak.
3584 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3585 			  __func__, head);
3586 
3587 		// Mark as success and leave.
3588 		return;
3589 	}
3590 
3591 	kasan_record_aux_stack_noalloc(ptr);
3592 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3593 	if (!success) {
3594 		run_page_cache_worker(krcp);
3595 
3596 		if (head == NULL)
3597 			// Inline if kvfree_rcu(one_arg) call.
3598 			goto unlock_return;
3599 
3600 		head->func = func;
3601 		head->next = krcp->head;
3602 		krcp->head = head;
3603 		success = true;
3604 	}
3605 
3606 	WRITE_ONCE(krcp->count, krcp->count + 1);
3607 
3608 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3609 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3610 	    !krcp->monitor_todo) {
3611 		krcp->monitor_todo = true;
3612 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3613 	}
3614 
3615 unlock_return:
3616 	krc_this_cpu_unlock(krcp, flags);
3617 
3618 	/*
3619 	 * Inline kvfree() after synchronize_rcu(). We can do
3620 	 * it from might_sleep() context only, so the current
3621 	 * CPU can pass the QS state.
3622 	 */
3623 	if (!success) {
3624 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3625 		synchronize_rcu();
3626 		kvfree(ptr);
3627 	}
3628 }
3629 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3630 
3631 static unsigned long
3632 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3633 {
3634 	int cpu;
3635 	unsigned long count = 0;
3636 
3637 	/* Snapshot count of all CPUs */
3638 	for_each_possible_cpu(cpu) {
3639 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3640 
3641 		count += READ_ONCE(krcp->count);
3642 		count += READ_ONCE(krcp->nr_bkv_objs);
3643 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3644 	}
3645 
3646 	return count;
3647 }
3648 
3649 static unsigned long
3650 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3651 {
3652 	int cpu, freed = 0;
3653 
3654 	for_each_possible_cpu(cpu) {
3655 		int count;
3656 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3657 
3658 		count = krcp->count;
3659 		count += drain_page_cache(krcp);
3660 		kfree_rcu_monitor(&krcp->monitor_work.work);
3661 
3662 		sc->nr_to_scan -= count;
3663 		freed += count;
3664 
3665 		if (sc->nr_to_scan <= 0)
3666 			break;
3667 	}
3668 
3669 	return freed == 0 ? SHRINK_STOP : freed;
3670 }
3671 
3672 static struct shrinker kfree_rcu_shrinker = {
3673 	.count_objects = kfree_rcu_shrink_count,
3674 	.scan_objects = kfree_rcu_shrink_scan,
3675 	.batch = 0,
3676 	.seeks = DEFAULT_SEEKS,
3677 };
3678 
3679 void __init kfree_rcu_scheduler_running(void)
3680 {
3681 	int cpu;
3682 	unsigned long flags;
3683 
3684 	for_each_possible_cpu(cpu) {
3685 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3686 
3687 		raw_spin_lock_irqsave(&krcp->lock, flags);
3688 		if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3689 				krcp->monitor_todo) {
3690 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3691 			continue;
3692 		}
3693 		krcp->monitor_todo = true;
3694 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3695 					 KFREE_DRAIN_JIFFIES);
3696 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3697 	}
3698 }
3699 
3700 /*
3701  * During early boot, any blocking grace-period wait automatically
3702  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3703  *
3704  * However, because a context switch is a grace period for !PREEMPTION, any
3705  * blocking grace-period wait automatically implies a grace period if
3706  * there is only one CPU online at any point time during execution of
3707  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3708  * occasionally incorrectly indicate that there are multiple CPUs online
3709  * when there was in fact only one the whole time, as this just adds some
3710  * overhead: RCU still operates correctly.
3711  */
3712 static int rcu_blocking_is_gp(void)
3713 {
3714 	int ret;
3715 
3716 	if (IS_ENABLED(CONFIG_PREEMPTION))
3717 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3718 	might_sleep();  /* Check for RCU read-side critical section. */
3719 	preempt_disable();
3720 	/*
3721 	 * If the rcu_state.n_online_cpus counter is equal to one,
3722 	 * there is only one CPU, and that CPU sees all prior accesses
3723 	 * made by any CPU that was online at the time of its access.
3724 	 * Furthermore, if this counter is equal to one, its value cannot
3725 	 * change until after the preempt_enable() below.
3726 	 *
3727 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3728 	 * all later CPUs (both this one and any that come online later
3729 	 * on) are guaranteed to see all accesses prior to this point
3730 	 * in the code, without the need for additional memory barriers.
3731 	 * Those memory barriers are provided by CPU-hotplug code.
3732 	 */
3733 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3734 	preempt_enable();
3735 	return ret;
3736 }
3737 
3738 /**
3739  * synchronize_rcu - wait until a grace period has elapsed.
3740  *
3741  * Control will return to the caller some time after a full grace
3742  * period has elapsed, in other words after all currently executing RCU
3743  * read-side critical sections have completed.  Note, however, that
3744  * upon return from synchronize_rcu(), the caller might well be executing
3745  * concurrently with new RCU read-side critical sections that began while
3746  * synchronize_rcu() was waiting.
3747  *
3748  * RCU read-side critical sections are delimited by rcu_read_lock()
3749  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3750  * v5.0 and later, regions of code across which interrupts, preemption,
3751  * or softirqs have been disabled also serve as RCU read-side critical
3752  * sections.  This includes hardware interrupt handlers, softirq handlers,
3753  * and NMI handlers.
3754  *
3755  * Note that this guarantee implies further memory-ordering guarantees.
3756  * On systems with more than one CPU, when synchronize_rcu() returns,
3757  * each CPU is guaranteed to have executed a full memory barrier since
3758  * the end of its last RCU read-side critical section whose beginning
3759  * preceded the call to synchronize_rcu().  In addition, each CPU having
3760  * an RCU read-side critical section that extends beyond the return from
3761  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3762  * after the beginning of synchronize_rcu() and before the beginning of
3763  * that RCU read-side critical section.  Note that these guarantees include
3764  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3765  * that are executing in the kernel.
3766  *
3767  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3768  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3769  * to have executed a full memory barrier during the execution of
3770  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3771  * again only if the system has more than one CPU).
3772  *
3773  * Implementation of these memory-ordering guarantees is described here:
3774  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3775  */
3776 void synchronize_rcu(void)
3777 {
3778 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3779 			 lock_is_held(&rcu_lock_map) ||
3780 			 lock_is_held(&rcu_sched_lock_map),
3781 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3782 	if (rcu_blocking_is_gp())
3783 		return;  // Context allows vacuous grace periods.
3784 	if (rcu_gp_is_expedited())
3785 		synchronize_rcu_expedited();
3786 	else
3787 		wait_rcu_gp(call_rcu);
3788 }
3789 EXPORT_SYMBOL_GPL(synchronize_rcu);
3790 
3791 /**
3792  * get_state_synchronize_rcu - Snapshot current RCU state
3793  *
3794  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3795  * or poll_state_synchronize_rcu() to determine whether or not a full
3796  * grace period has elapsed in the meantime.
3797  */
3798 unsigned long get_state_synchronize_rcu(void)
3799 {
3800 	/*
3801 	 * Any prior manipulation of RCU-protected data must happen
3802 	 * before the load from ->gp_seq.
3803 	 */
3804 	smp_mb();  /* ^^^ */
3805 	return rcu_seq_snap(&rcu_state.gp_seq);
3806 }
3807 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3808 
3809 /**
3810  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3811  *
3812  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3813  * or poll_state_synchronize_rcu() to determine whether or not a full
3814  * grace period has elapsed in the meantime.  If the needed grace period
3815  * is not already slated to start, notifies RCU core of the need for that
3816  * grace period.
3817  *
3818  * Interrupts must be enabled for the case where it is necessary to awaken
3819  * the grace-period kthread.
3820  */
3821 unsigned long start_poll_synchronize_rcu(void)
3822 {
3823 	unsigned long flags;
3824 	unsigned long gp_seq = get_state_synchronize_rcu();
3825 	bool needwake;
3826 	struct rcu_data *rdp;
3827 	struct rcu_node *rnp;
3828 
3829 	lockdep_assert_irqs_enabled();
3830 	local_irq_save(flags);
3831 	rdp = this_cpu_ptr(&rcu_data);
3832 	rnp = rdp->mynode;
3833 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3834 	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3835 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3836 	if (needwake)
3837 		rcu_gp_kthread_wake();
3838 	return gp_seq;
3839 }
3840 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3841 
3842 /**
3843  * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3844  *
3845  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3846  *
3847  * If a full RCU grace period has elapsed since the earlier call from
3848  * which oldstate was obtained, return @true, otherwise return @false.
3849  * If @false is returned, it is the caller's responsibility to invoke this
3850  * function later on until it does return @true.  Alternatively, the caller
3851  * can explicitly wait for a grace period, for example, by passing @oldstate
3852  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3853  *
3854  * Yes, this function does not take counter wrap into account.
3855  * But counter wrap is harmless.  If the counter wraps, we have waited for
3856  * more than 2 billion grace periods (and way more on a 64-bit system!).
3857  * Those needing to keep oldstate values for very long time periods
3858  * (many hours even on 32-bit systems) should check them occasionally
3859  * and either refresh them or set a flag indicating that the grace period
3860  * has completed.
3861  *
3862  * This function provides the same memory-ordering guarantees that
3863  * would be provided by a synchronize_rcu() that was invoked at the call
3864  * to the function that provided @oldstate, and that returned at the end
3865  * of this function.
3866  */
3867 bool poll_state_synchronize_rcu(unsigned long oldstate)
3868 {
3869 	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3870 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3871 		return true;
3872 	}
3873 	return false;
3874 }
3875 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3876 
3877 /**
3878  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3879  *
3880  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3881  *
3882  * If a full RCU grace period has elapsed since the earlier call to
3883  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3884  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3885  *
3886  * Yes, this function does not take counter wrap into account.  But
3887  * counter wrap is harmless.  If the counter wraps, we have waited for
3888  * more than 2 billion grace periods (and way more on a 64-bit system!),
3889  * so waiting for one additional grace period should be just fine.
3890  *
3891  * This function provides the same memory-ordering guarantees that
3892  * would be provided by a synchronize_rcu() that was invoked at the call
3893  * to the function that provided @oldstate, and that returned at the end
3894  * of this function.
3895  */
3896 void cond_synchronize_rcu(unsigned long oldstate)
3897 {
3898 	if (!poll_state_synchronize_rcu(oldstate))
3899 		synchronize_rcu();
3900 }
3901 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3902 
3903 /*
3904  * Check to see if there is any immediate RCU-related work to be done by
3905  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3906  * in order of increasing expense: checks that can be carried out against
3907  * CPU-local state are performed first.  However, we must check for CPU
3908  * stalls first, else we might not get a chance.
3909  */
3910 static int rcu_pending(int user)
3911 {
3912 	bool gp_in_progress;
3913 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3914 	struct rcu_node *rnp = rdp->mynode;
3915 
3916 	lockdep_assert_irqs_disabled();
3917 
3918 	/* Check for CPU stalls, if enabled. */
3919 	check_cpu_stall(rdp);
3920 
3921 	/* Does this CPU need a deferred NOCB wakeup? */
3922 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3923 		return 1;
3924 
3925 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3926 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3927 		return 0;
3928 
3929 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3930 	gp_in_progress = rcu_gp_in_progress();
3931 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3932 		return 1;
3933 
3934 	/* Does this CPU have callbacks ready to invoke? */
3935 	if (!rcu_rdp_is_offloaded(rdp) &&
3936 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3937 		return 1;
3938 
3939 	/* Has RCU gone idle with this CPU needing another grace period? */
3940 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3941 	    !rcu_rdp_is_offloaded(rdp) &&
3942 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3943 		return 1;
3944 
3945 	/* Have RCU grace period completed or started?  */
3946 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3947 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3948 		return 1;
3949 
3950 	/* nothing to do */
3951 	return 0;
3952 }
3953 
3954 /*
3955  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3956  * the compiler is expected to optimize this away.
3957  */
3958 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3959 {
3960 	trace_rcu_barrier(rcu_state.name, s, cpu,
3961 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3962 }
3963 
3964 /*
3965  * RCU callback function for rcu_barrier().  If we are last, wake
3966  * up the task executing rcu_barrier().
3967  *
3968  * Note that the value of rcu_state.barrier_sequence must be captured
3969  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3970  * other CPUs might count the value down to zero before this CPU gets
3971  * around to invoking rcu_barrier_trace(), which might result in bogus
3972  * data from the next instance of rcu_barrier().
3973  */
3974 static void rcu_barrier_callback(struct rcu_head *rhp)
3975 {
3976 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3977 
3978 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3979 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3980 		complete(&rcu_state.barrier_completion);
3981 	} else {
3982 		rcu_barrier_trace(TPS("CB"), -1, s);
3983 	}
3984 }
3985 
3986 /*
3987  * Called with preemption disabled, and from cross-cpu IRQ context.
3988  */
3989 static void rcu_barrier_func(void *cpu_in)
3990 {
3991 	uintptr_t cpu = (uintptr_t)cpu_in;
3992 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3993 
3994 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3995 	rdp->barrier_head.func = rcu_barrier_callback;
3996 	debug_rcu_head_queue(&rdp->barrier_head);
3997 	rcu_nocb_lock(rdp);
3998 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3999 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4000 		atomic_inc(&rcu_state.barrier_cpu_count);
4001 	} else {
4002 		debug_rcu_head_unqueue(&rdp->barrier_head);
4003 		rcu_barrier_trace(TPS("IRQNQ"), -1,
4004 				  rcu_state.barrier_sequence);
4005 	}
4006 	rcu_nocb_unlock(rdp);
4007 }
4008 
4009 /**
4010  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4011  *
4012  * Note that this primitive does not necessarily wait for an RCU grace period
4013  * to complete.  For example, if there are no RCU callbacks queued anywhere
4014  * in the system, then rcu_barrier() is within its rights to return
4015  * immediately, without waiting for anything, much less an RCU grace period.
4016  */
4017 void rcu_barrier(void)
4018 {
4019 	uintptr_t cpu;
4020 	struct rcu_data *rdp;
4021 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4022 
4023 	rcu_barrier_trace(TPS("Begin"), -1, s);
4024 
4025 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4026 	mutex_lock(&rcu_state.barrier_mutex);
4027 
4028 	/* Did someone else do our work for us? */
4029 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4030 		rcu_barrier_trace(TPS("EarlyExit"), -1,
4031 				  rcu_state.barrier_sequence);
4032 		smp_mb(); /* caller's subsequent code after above check. */
4033 		mutex_unlock(&rcu_state.barrier_mutex);
4034 		return;
4035 	}
4036 
4037 	/* Mark the start of the barrier operation. */
4038 	rcu_seq_start(&rcu_state.barrier_sequence);
4039 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4040 
4041 	/*
4042 	 * Initialize the count to two rather than to zero in order
4043 	 * to avoid a too-soon return to zero in case of an immediate
4044 	 * invocation of the just-enqueued callback (or preemption of
4045 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4046 	 * offline non-offloaded CPU has callbacks queued.
4047 	 */
4048 	init_completion(&rcu_state.barrier_completion);
4049 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4050 	cpus_read_lock();
4051 
4052 	/*
4053 	 * Force each CPU with callbacks to register a new callback.
4054 	 * When that callback is invoked, we will know that all of the
4055 	 * corresponding CPU's preceding callbacks have been invoked.
4056 	 */
4057 	for_each_possible_cpu(cpu) {
4058 		rdp = per_cpu_ptr(&rcu_data, cpu);
4059 		if (cpu_is_offline(cpu) &&
4060 		    !rcu_rdp_is_offloaded(rdp))
4061 			continue;
4062 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4063 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
4064 					  rcu_state.barrier_sequence);
4065 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4066 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4067 			   cpu_is_offline(cpu)) {
4068 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4069 					  rcu_state.barrier_sequence);
4070 			local_irq_disable();
4071 			rcu_barrier_func((void *)cpu);
4072 			local_irq_enable();
4073 		} else if (cpu_is_offline(cpu)) {
4074 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4075 					  rcu_state.barrier_sequence);
4076 		} else {
4077 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4078 					  rcu_state.barrier_sequence);
4079 		}
4080 	}
4081 	cpus_read_unlock();
4082 
4083 	/*
4084 	 * Now that we have an rcu_barrier_callback() callback on each
4085 	 * CPU, and thus each counted, remove the initial count.
4086 	 */
4087 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4088 		complete(&rcu_state.barrier_completion);
4089 
4090 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4091 	wait_for_completion(&rcu_state.barrier_completion);
4092 
4093 	/* Mark the end of the barrier operation. */
4094 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4095 	rcu_seq_end(&rcu_state.barrier_sequence);
4096 
4097 	/* Other rcu_barrier() invocations can now safely proceed. */
4098 	mutex_unlock(&rcu_state.barrier_mutex);
4099 }
4100 EXPORT_SYMBOL_GPL(rcu_barrier);
4101 
4102 /*
4103  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4104  * first CPU in a given leaf rcu_node structure coming online.  The caller
4105  * must hold the corresponding leaf rcu_node ->lock with interrupts
4106  * disabled.
4107  */
4108 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4109 {
4110 	long mask;
4111 	long oldmask;
4112 	struct rcu_node *rnp = rnp_leaf;
4113 
4114 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4115 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4116 	for (;;) {
4117 		mask = rnp->grpmask;
4118 		rnp = rnp->parent;
4119 		if (rnp == NULL)
4120 			return;
4121 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4122 		oldmask = rnp->qsmaskinit;
4123 		rnp->qsmaskinit |= mask;
4124 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4125 		if (oldmask)
4126 			return;
4127 	}
4128 }
4129 
4130 /*
4131  * Do boot-time initialization of a CPU's per-CPU RCU data.
4132  */
4133 static void __init
4134 rcu_boot_init_percpu_data(int cpu)
4135 {
4136 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4137 
4138 	/* Set up local state, ensuring consistent view of global state. */
4139 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4140 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4141 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4142 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4143 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4144 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4145 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4146 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4147 	rdp->cpu = cpu;
4148 	rcu_boot_init_nocb_percpu_data(rdp);
4149 }
4150 
4151 /*
4152  * Invoked early in the CPU-online process, when pretty much all services
4153  * are available.  The incoming CPU is not present.
4154  *
4155  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4156  * offline event can be happening at a given time.  Note also that we can
4157  * accept some slop in the rsp->gp_seq access due to the fact that this
4158  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4159  * And any offloaded callbacks are being numbered elsewhere.
4160  */
4161 int rcutree_prepare_cpu(unsigned int cpu)
4162 {
4163 	unsigned long flags;
4164 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4165 	struct rcu_node *rnp = rcu_get_root();
4166 
4167 	/* Set up local state, ensuring consistent view of global state. */
4168 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4169 	rdp->qlen_last_fqs_check = 0;
4170 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4171 	rdp->blimit = blimit;
4172 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4173 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4174 
4175 	/*
4176 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4177 	 * (re-)initialized.
4178 	 */
4179 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4180 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4181 
4182 	/*
4183 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4184 	 * propagation up the rcu_node tree will happen at the beginning
4185 	 * of the next grace period.
4186 	 */
4187 	rnp = rdp->mynode;
4188 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4189 	rdp->beenonline = true;	 /* We have now been online. */
4190 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4191 	rdp->gp_seq_needed = rdp->gp_seq;
4192 	rdp->cpu_no_qs.b.norm = true;
4193 	rdp->core_needs_qs = false;
4194 	rdp->rcu_iw_pending = false;
4195 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4196 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4197 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4198 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4199 	rcu_spawn_one_boost_kthread(rnp);
4200 	rcu_spawn_cpu_nocb_kthread(cpu);
4201 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4202 
4203 	return 0;
4204 }
4205 
4206 /*
4207  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4208  */
4209 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4210 {
4211 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4212 
4213 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4214 }
4215 
4216 /*
4217  * Near the end of the CPU-online process.  Pretty much all services
4218  * enabled, and the CPU is now very much alive.
4219  */
4220 int rcutree_online_cpu(unsigned int cpu)
4221 {
4222 	unsigned long flags;
4223 	struct rcu_data *rdp;
4224 	struct rcu_node *rnp;
4225 
4226 	rdp = per_cpu_ptr(&rcu_data, cpu);
4227 	rnp = rdp->mynode;
4228 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4229 	rnp->ffmask |= rdp->grpmask;
4230 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4231 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4232 		return 0; /* Too early in boot for scheduler work. */
4233 	sync_sched_exp_online_cleanup(cpu);
4234 	rcutree_affinity_setting(cpu, -1);
4235 
4236 	// Stop-machine done, so allow nohz_full to disable tick.
4237 	tick_dep_clear(TICK_DEP_BIT_RCU);
4238 	return 0;
4239 }
4240 
4241 /*
4242  * Near the beginning of the process.  The CPU is still very much alive
4243  * with pretty much all services enabled.
4244  */
4245 int rcutree_offline_cpu(unsigned int cpu)
4246 {
4247 	unsigned long flags;
4248 	struct rcu_data *rdp;
4249 	struct rcu_node *rnp;
4250 
4251 	rdp = per_cpu_ptr(&rcu_data, cpu);
4252 	rnp = rdp->mynode;
4253 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4254 	rnp->ffmask &= ~rdp->grpmask;
4255 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4256 
4257 	rcutree_affinity_setting(cpu, cpu);
4258 
4259 	// nohz_full CPUs need the tick for stop-machine to work quickly
4260 	tick_dep_set(TICK_DEP_BIT_RCU);
4261 	return 0;
4262 }
4263 
4264 /*
4265  * Mark the specified CPU as being online so that subsequent grace periods
4266  * (both expedited and normal) will wait on it.  Note that this means that
4267  * incoming CPUs are not allowed to use RCU read-side critical sections
4268  * until this function is called.  Failing to observe this restriction
4269  * will result in lockdep splats.
4270  *
4271  * Note that this function is special in that it is invoked directly
4272  * from the incoming CPU rather than from the cpuhp_step mechanism.
4273  * This is because this function must be invoked at a precise location.
4274  */
4275 void rcu_cpu_starting(unsigned int cpu)
4276 {
4277 	unsigned long flags;
4278 	unsigned long mask;
4279 	struct rcu_data *rdp;
4280 	struct rcu_node *rnp;
4281 	bool newcpu;
4282 
4283 	rdp = per_cpu_ptr(&rcu_data, cpu);
4284 	if (rdp->cpu_started)
4285 		return;
4286 	rdp->cpu_started = true;
4287 
4288 	rnp = rdp->mynode;
4289 	mask = rdp->grpmask;
4290 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4291 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4292 	rcu_dynticks_eqs_online();
4293 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4294 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4295 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4296 	newcpu = !(rnp->expmaskinitnext & mask);
4297 	rnp->expmaskinitnext |= mask;
4298 	/* Allow lockless access for expedited grace periods. */
4299 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4300 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4301 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4302 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4303 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4304 
4305 	/* An incoming CPU should never be blocking a grace period. */
4306 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4307 		rcu_disable_urgency_upon_qs(rdp);
4308 		/* Report QS -after- changing ->qsmaskinitnext! */
4309 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4310 	} else {
4311 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4312 	}
4313 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4314 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4315 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4316 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4317 }
4318 
4319 /*
4320  * The outgoing function has no further need of RCU, so remove it from
4321  * the rcu_node tree's ->qsmaskinitnext bit masks.
4322  *
4323  * Note that this function is special in that it is invoked directly
4324  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4325  * This is because this function must be invoked at a precise location.
4326  */
4327 void rcu_report_dead(unsigned int cpu)
4328 {
4329 	unsigned long flags;
4330 	unsigned long mask;
4331 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4332 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4333 
4334 	// Do any dangling deferred wakeups.
4335 	do_nocb_deferred_wakeup(rdp);
4336 
4337 	/* QS for any half-done expedited grace period. */
4338 	rcu_report_exp_rdp(rdp);
4339 	rcu_preempt_deferred_qs(current);
4340 
4341 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4342 	mask = rdp->grpmask;
4343 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4344 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4345 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4346 	raw_spin_lock(&rcu_state.ofl_lock);
4347 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4348 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4349 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4350 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4351 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4352 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4353 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4354 	}
4355 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4356 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4357 	raw_spin_unlock(&rcu_state.ofl_lock);
4358 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4359 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4360 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4361 
4362 	rdp->cpu_started = false;
4363 }
4364 
4365 #ifdef CONFIG_HOTPLUG_CPU
4366 /*
4367  * The outgoing CPU has just passed through the dying-idle state, and we
4368  * are being invoked from the CPU that was IPIed to continue the offline
4369  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4370  */
4371 void rcutree_migrate_callbacks(int cpu)
4372 {
4373 	unsigned long flags;
4374 	struct rcu_data *my_rdp;
4375 	struct rcu_node *my_rnp;
4376 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4377 	bool needwake;
4378 
4379 	if (rcu_rdp_is_offloaded(rdp) ||
4380 	    rcu_segcblist_empty(&rdp->cblist))
4381 		return;  /* No callbacks to migrate. */
4382 
4383 	local_irq_save(flags);
4384 	my_rdp = this_cpu_ptr(&rcu_data);
4385 	my_rnp = my_rdp->mynode;
4386 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4387 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4388 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4389 	/* Leverage recent GPs and set GP for new callbacks. */
4390 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4391 		   rcu_advance_cbs(my_rnp, my_rdp);
4392 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4393 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4394 	rcu_segcblist_disable(&rdp->cblist);
4395 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4396 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4397 	if (rcu_rdp_is_offloaded(my_rdp)) {
4398 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4399 		__call_rcu_nocb_wake(my_rdp, true, flags);
4400 	} else {
4401 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4402 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4403 	}
4404 	if (needwake)
4405 		rcu_gp_kthread_wake();
4406 	lockdep_assert_irqs_enabled();
4407 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4408 		  !rcu_segcblist_empty(&rdp->cblist),
4409 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4410 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4411 		  rcu_segcblist_first_cb(&rdp->cblist));
4412 }
4413 #endif
4414 
4415 /*
4416  * On non-huge systems, use expedited RCU grace periods to make suspend
4417  * and hibernation run faster.
4418  */
4419 static int rcu_pm_notify(struct notifier_block *self,
4420 			 unsigned long action, void *hcpu)
4421 {
4422 	switch (action) {
4423 	case PM_HIBERNATION_PREPARE:
4424 	case PM_SUSPEND_PREPARE:
4425 		rcu_expedite_gp();
4426 		break;
4427 	case PM_POST_HIBERNATION:
4428 	case PM_POST_SUSPEND:
4429 		rcu_unexpedite_gp();
4430 		break;
4431 	default:
4432 		break;
4433 	}
4434 	return NOTIFY_OK;
4435 }
4436 
4437 /*
4438  * Spawn the kthreads that handle RCU's grace periods.
4439  */
4440 static int __init rcu_spawn_gp_kthread(void)
4441 {
4442 	unsigned long flags;
4443 	int kthread_prio_in = kthread_prio;
4444 	struct rcu_node *rnp;
4445 	struct sched_param sp;
4446 	struct task_struct *t;
4447 
4448 	/* Force priority into range. */
4449 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4450 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4451 		kthread_prio = 2;
4452 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4453 		kthread_prio = 1;
4454 	else if (kthread_prio < 0)
4455 		kthread_prio = 0;
4456 	else if (kthread_prio > 99)
4457 		kthread_prio = 99;
4458 
4459 	if (kthread_prio != kthread_prio_in)
4460 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4461 			 kthread_prio, kthread_prio_in);
4462 
4463 	rcu_scheduler_fully_active = 1;
4464 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4465 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4466 		return 0;
4467 	if (kthread_prio) {
4468 		sp.sched_priority = kthread_prio;
4469 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4470 	}
4471 	rnp = rcu_get_root();
4472 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4473 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4474 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4475 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4476 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4477 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4478 	wake_up_process(t);
4479 	rcu_spawn_nocb_kthreads();
4480 	rcu_spawn_boost_kthreads();
4481 	rcu_spawn_core_kthreads();
4482 	return 0;
4483 }
4484 early_initcall(rcu_spawn_gp_kthread);
4485 
4486 /*
4487  * This function is invoked towards the end of the scheduler's
4488  * initialization process.  Before this is called, the idle task might
4489  * contain synchronous grace-period primitives (during which time, this idle
4490  * task is booting the system, and such primitives are no-ops).  After this
4491  * function is called, any synchronous grace-period primitives are run as
4492  * expedited, with the requesting task driving the grace period forward.
4493  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4494  * runtime RCU functionality.
4495  */
4496 void rcu_scheduler_starting(void)
4497 {
4498 	WARN_ON(num_online_cpus() != 1);
4499 	WARN_ON(nr_context_switches() > 0);
4500 	rcu_test_sync_prims();
4501 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4502 	rcu_test_sync_prims();
4503 }
4504 
4505 /*
4506  * Helper function for rcu_init() that initializes the rcu_state structure.
4507  */
4508 static void __init rcu_init_one(void)
4509 {
4510 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4511 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4512 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4513 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4514 
4515 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4516 	int cpustride = 1;
4517 	int i;
4518 	int j;
4519 	struct rcu_node *rnp;
4520 
4521 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4522 
4523 	/* Silence gcc 4.8 false positive about array index out of range. */
4524 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4525 		panic("rcu_init_one: rcu_num_lvls out of range");
4526 
4527 	/* Initialize the level-tracking arrays. */
4528 
4529 	for (i = 1; i < rcu_num_lvls; i++)
4530 		rcu_state.level[i] =
4531 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4532 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4533 
4534 	/* Initialize the elements themselves, starting from the leaves. */
4535 
4536 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4537 		cpustride *= levelspread[i];
4538 		rnp = rcu_state.level[i];
4539 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4540 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4541 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4542 						   &rcu_node_class[i], buf[i]);
4543 			raw_spin_lock_init(&rnp->fqslock);
4544 			lockdep_set_class_and_name(&rnp->fqslock,
4545 						   &rcu_fqs_class[i], fqs[i]);
4546 			rnp->gp_seq = rcu_state.gp_seq;
4547 			rnp->gp_seq_needed = rcu_state.gp_seq;
4548 			rnp->completedqs = rcu_state.gp_seq;
4549 			rnp->qsmask = 0;
4550 			rnp->qsmaskinit = 0;
4551 			rnp->grplo = j * cpustride;
4552 			rnp->grphi = (j + 1) * cpustride - 1;
4553 			if (rnp->grphi >= nr_cpu_ids)
4554 				rnp->grphi = nr_cpu_ids - 1;
4555 			if (i == 0) {
4556 				rnp->grpnum = 0;
4557 				rnp->grpmask = 0;
4558 				rnp->parent = NULL;
4559 			} else {
4560 				rnp->grpnum = j % levelspread[i - 1];
4561 				rnp->grpmask = BIT(rnp->grpnum);
4562 				rnp->parent = rcu_state.level[i - 1] +
4563 					      j / levelspread[i - 1];
4564 			}
4565 			rnp->level = i;
4566 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4567 			rcu_init_one_nocb(rnp);
4568 			init_waitqueue_head(&rnp->exp_wq[0]);
4569 			init_waitqueue_head(&rnp->exp_wq[1]);
4570 			init_waitqueue_head(&rnp->exp_wq[2]);
4571 			init_waitqueue_head(&rnp->exp_wq[3]);
4572 			spin_lock_init(&rnp->exp_lock);
4573 		}
4574 	}
4575 
4576 	init_swait_queue_head(&rcu_state.gp_wq);
4577 	init_swait_queue_head(&rcu_state.expedited_wq);
4578 	rnp = rcu_first_leaf_node();
4579 	for_each_possible_cpu(i) {
4580 		while (i > rnp->grphi)
4581 			rnp++;
4582 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4583 		rcu_boot_init_percpu_data(i);
4584 	}
4585 }
4586 
4587 /*
4588  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4589  * replace the definitions in tree.h because those are needed to size
4590  * the ->node array in the rcu_state structure.
4591  */
4592 void rcu_init_geometry(void)
4593 {
4594 	ulong d;
4595 	int i;
4596 	static unsigned long old_nr_cpu_ids;
4597 	int rcu_capacity[RCU_NUM_LVLS];
4598 	static bool initialized;
4599 
4600 	if (initialized) {
4601 		/*
4602 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4603 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4604 		 */
4605 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4606 		return;
4607 	}
4608 
4609 	old_nr_cpu_ids = nr_cpu_ids;
4610 	initialized = true;
4611 
4612 	/*
4613 	 * Initialize any unspecified boot parameters.
4614 	 * The default values of jiffies_till_first_fqs and
4615 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4616 	 * value, which is a function of HZ, then adding one for each
4617 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4618 	 */
4619 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4620 	if (jiffies_till_first_fqs == ULONG_MAX)
4621 		jiffies_till_first_fqs = d;
4622 	if (jiffies_till_next_fqs == ULONG_MAX)
4623 		jiffies_till_next_fqs = d;
4624 	adjust_jiffies_till_sched_qs();
4625 
4626 	/* If the compile-time values are accurate, just leave. */
4627 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4628 	    nr_cpu_ids == NR_CPUS)
4629 		return;
4630 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4631 		rcu_fanout_leaf, nr_cpu_ids);
4632 
4633 	/*
4634 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4635 	 * and cannot exceed the number of bits in the rcu_node masks.
4636 	 * Complain and fall back to the compile-time values if this
4637 	 * limit is exceeded.
4638 	 */
4639 	if (rcu_fanout_leaf < 2 ||
4640 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4641 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4642 		WARN_ON(1);
4643 		return;
4644 	}
4645 
4646 	/*
4647 	 * Compute number of nodes that can be handled an rcu_node tree
4648 	 * with the given number of levels.
4649 	 */
4650 	rcu_capacity[0] = rcu_fanout_leaf;
4651 	for (i = 1; i < RCU_NUM_LVLS; i++)
4652 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4653 
4654 	/*
4655 	 * The tree must be able to accommodate the configured number of CPUs.
4656 	 * If this limit is exceeded, fall back to the compile-time values.
4657 	 */
4658 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4659 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4660 		WARN_ON(1);
4661 		return;
4662 	}
4663 
4664 	/* Calculate the number of levels in the tree. */
4665 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4666 	}
4667 	rcu_num_lvls = i + 1;
4668 
4669 	/* Calculate the number of rcu_nodes at each level of the tree. */
4670 	for (i = 0; i < rcu_num_lvls; i++) {
4671 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4672 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4673 	}
4674 
4675 	/* Calculate the total number of rcu_node structures. */
4676 	rcu_num_nodes = 0;
4677 	for (i = 0; i < rcu_num_lvls; i++)
4678 		rcu_num_nodes += num_rcu_lvl[i];
4679 }
4680 
4681 /*
4682  * Dump out the structure of the rcu_node combining tree associated
4683  * with the rcu_state structure.
4684  */
4685 static void __init rcu_dump_rcu_node_tree(void)
4686 {
4687 	int level = 0;
4688 	struct rcu_node *rnp;
4689 
4690 	pr_info("rcu_node tree layout dump\n");
4691 	pr_info(" ");
4692 	rcu_for_each_node_breadth_first(rnp) {
4693 		if (rnp->level != level) {
4694 			pr_cont("\n");
4695 			pr_info(" ");
4696 			level = rnp->level;
4697 		}
4698 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4699 	}
4700 	pr_cont("\n");
4701 }
4702 
4703 struct workqueue_struct *rcu_gp_wq;
4704 struct workqueue_struct *rcu_par_gp_wq;
4705 
4706 static void __init kfree_rcu_batch_init(void)
4707 {
4708 	int cpu;
4709 	int i;
4710 
4711 	/* Clamp it to [0:100] seconds interval. */
4712 	if (rcu_delay_page_cache_fill_msec < 0 ||
4713 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4714 
4715 		rcu_delay_page_cache_fill_msec =
4716 			clamp(rcu_delay_page_cache_fill_msec, 0,
4717 				(int) (100 * MSEC_PER_SEC));
4718 
4719 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4720 			rcu_delay_page_cache_fill_msec);
4721 	}
4722 
4723 	for_each_possible_cpu(cpu) {
4724 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4725 
4726 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4727 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4728 			krcp->krw_arr[i].krcp = krcp;
4729 		}
4730 
4731 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4732 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4733 		krcp->initialized = true;
4734 	}
4735 	if (register_shrinker(&kfree_rcu_shrinker))
4736 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4737 }
4738 
4739 void __init rcu_init(void)
4740 {
4741 	int cpu;
4742 
4743 	rcu_early_boot_tests();
4744 
4745 	kfree_rcu_batch_init();
4746 	rcu_bootup_announce();
4747 	rcu_init_geometry();
4748 	rcu_init_one();
4749 	if (dump_tree)
4750 		rcu_dump_rcu_node_tree();
4751 	if (use_softirq)
4752 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4753 
4754 	/*
4755 	 * We don't need protection against CPU-hotplug here because
4756 	 * this is called early in boot, before either interrupts
4757 	 * or the scheduler are operational.
4758 	 */
4759 	pm_notifier(rcu_pm_notify, 0);
4760 	for_each_online_cpu(cpu) {
4761 		rcutree_prepare_cpu(cpu);
4762 		rcu_cpu_starting(cpu);
4763 		rcutree_online_cpu(cpu);
4764 	}
4765 
4766 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4767 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4768 	WARN_ON(!rcu_gp_wq);
4769 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4770 	WARN_ON(!rcu_par_gp_wq);
4771 
4772 	/* Fill in default value for rcutree.qovld boot parameter. */
4773 	/* -After- the rcu_node ->lock fields are initialized! */
4774 	if (qovld < 0)
4775 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4776 	else
4777 		qovld_calc = qovld;
4778 }
4779 
4780 #include "tree_stall.h"
4781 #include "tree_exp.h"
4782 #include "tree_nocb.h"
4783 #include "tree_plugin.h"
4784