xref: /openbmc/linux/kernel/rcu/tree.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64 
65 #include "tree.h"
66 #include "rcu.h"
67 
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72 
73 #ifndef data_race
74 #define data_race(expr)							\
75 	({								\
76 		expr;							\
77 	})
78 #endif
79 #ifndef ASSERT_EXCLUSIVE_WRITER
80 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
81 #endif
82 #ifndef ASSERT_EXCLUSIVE_ACCESS
83 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
84 #endif
85 
86 /* Data structures. */
87 
88 /*
89  * Steal a bit from the bottom of ->dynticks for idle entry/exit
90  * control.  Initially this is for TLB flushing.
91  */
92 #define RCU_DYNTICK_CTRL_MASK 0x1
93 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
94 
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
96 	.dynticks_nesting = 1,
97 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
98 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
99 };
100 static struct rcu_state rcu_state = {
101 	.level = { &rcu_state.node[0] },
102 	.gp_state = RCU_GP_IDLE,
103 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
104 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
105 	.name = RCU_NAME,
106 	.abbr = RCU_ABBR,
107 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
108 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
109 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
110 };
111 
112 /* Dump rcu_node combining tree at boot to verify correct setup. */
113 static bool dump_tree;
114 module_param(dump_tree, bool, 0444);
115 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
116 static bool use_softirq = true;
117 module_param(use_softirq, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
159 			      unsigned long gps, unsigned long flags);
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 static void invoke_rcu_core(void);
164 static void rcu_report_exp_rdp(struct rcu_data *rdp);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
167 
168 /* rcuc/rcub kthread realtime priority */
169 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
170 module_param(kthread_prio, int, 0444);
171 
172 /* Delay in jiffies for grace-period initialization delays, debug only. */
173 
174 static int gp_preinit_delay;
175 module_param(gp_preinit_delay, int, 0444);
176 static int gp_init_delay;
177 module_param(gp_init_delay, int, 0444);
178 static int gp_cleanup_delay;
179 module_param(gp_cleanup_delay, int, 0444);
180 
181 /*
182  * This rcu parameter is runtime-read-only. It reflects
183  * a minimum allowed number of objects which can be cached
184  * per-CPU. Object size is equal to one page. This value
185  * can be changed at boot time.
186  */
187 static int rcu_min_cached_objs = 2;
188 module_param(rcu_min_cached_objs, int, 0444);
189 
190 /* Retrieve RCU kthreads priority for rcutorture */
191 int rcu_get_gp_kthreads_prio(void)
192 {
193 	return kthread_prio;
194 }
195 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
196 
197 /*
198  * Number of grace periods between delays, normalized by the duration of
199  * the delay.  The longer the delay, the more the grace periods between
200  * each delay.  The reason for this normalization is that it means that,
201  * for non-zero delays, the overall slowdown of grace periods is constant
202  * regardless of the duration of the delay.  This arrangement balances
203  * the need for long delays to increase some race probabilities with the
204  * need for fast grace periods to increase other race probabilities.
205  */
206 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
207 
208 /*
209  * Compute the mask of online CPUs for the specified rcu_node structure.
210  * This will not be stable unless the rcu_node structure's ->lock is
211  * held, but the bit corresponding to the current CPU will be stable
212  * in most contexts.
213  */
214 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
215 {
216 	return READ_ONCE(rnp->qsmaskinitnext);
217 }
218 
219 /*
220  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
221  * permit this function to be invoked without holding the root rcu_node
222  * structure's ->lock, but of course results can be subject to change.
223  */
224 static int rcu_gp_in_progress(void)
225 {
226 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
227 }
228 
229 /*
230  * Return the number of callbacks queued on the specified CPU.
231  * Handles both the nocbs and normal cases.
232  */
233 static long rcu_get_n_cbs_cpu(int cpu)
234 {
235 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
236 
237 	if (rcu_segcblist_is_enabled(&rdp->cblist))
238 		return rcu_segcblist_n_cbs(&rdp->cblist);
239 	return 0;
240 }
241 
242 void rcu_softirq_qs(void)
243 {
244 	rcu_qs();
245 	rcu_preempt_deferred_qs(current);
246 }
247 
248 /*
249  * Record entry into an extended quiescent state.  This is only to be
250  * called when not already in an extended quiescent state, that is,
251  * RCU is watching prior to the call to this function and is no longer
252  * watching upon return.
253  */
254 static noinstr void rcu_dynticks_eqs_enter(void)
255 {
256 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
257 	int seq;
258 
259 	/*
260 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
261 	 * critical sections, and we also must force ordering with the
262 	 * next idle sojourn.
263 	 */
264 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
265 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
266 	// RCU is no longer watching.  Better be in extended quiescent state!
267 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
268 		     (seq & RCU_DYNTICK_CTRL_CTR));
269 	/* Better not have special action (TLB flush) pending! */
270 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
271 		     (seq & RCU_DYNTICK_CTRL_MASK));
272 }
273 
274 /*
275  * Record exit from an extended quiescent state.  This is only to be
276  * called from an extended quiescent state, that is, RCU is not watching
277  * prior to the call to this function and is watching upon return.
278  */
279 static noinstr void rcu_dynticks_eqs_exit(void)
280 {
281 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
282 	int seq;
283 
284 	/*
285 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
286 	 * and we also must force ordering with the next RCU read-side
287 	 * critical section.
288 	 */
289 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 	// RCU is now watching.  Better not be in an extended quiescent state!
291 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
292 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 		     !(seq & RCU_DYNTICK_CTRL_CTR));
294 	if (seq & RCU_DYNTICK_CTRL_MASK) {
295 		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
296 		smp_mb__after_atomic(); /* _exit after clearing mask. */
297 	}
298 }
299 
300 /*
301  * Reset the current CPU's ->dynticks counter to indicate that the
302  * newly onlined CPU is no longer in an extended quiescent state.
303  * This will either leave the counter unchanged, or increment it
304  * to the next non-quiescent value.
305  *
306  * The non-atomic test/increment sequence works because the upper bits
307  * of the ->dynticks counter are manipulated only by the corresponding CPU,
308  * or when the corresponding CPU is offline.
309  */
310 static void rcu_dynticks_eqs_online(void)
311 {
312 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
313 
314 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
315 		return;
316 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
317 }
318 
319 /*
320  * Is the current CPU in an extended quiescent state?
321  *
322  * No ordering, as we are sampling CPU-local information.
323  */
324 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
325 {
326 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
327 
328 	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
329 }
330 
331 /*
332  * Snapshot the ->dynticks counter with full ordering so as to allow
333  * stable comparison of this counter with past and future snapshots.
334  */
335 static int rcu_dynticks_snap(struct rcu_data *rdp)
336 {
337 	int snap = atomic_add_return(0, &rdp->dynticks);
338 
339 	return snap & ~RCU_DYNTICK_CTRL_MASK;
340 }
341 
342 /*
343  * Return true if the snapshot returned from rcu_dynticks_snap()
344  * indicates that RCU is in an extended quiescent state.
345  */
346 static bool rcu_dynticks_in_eqs(int snap)
347 {
348 	return !(snap & RCU_DYNTICK_CTRL_CTR);
349 }
350 
351 /*
352  * Return true if the CPU corresponding to the specified rcu_data
353  * structure has spent some time in an extended quiescent state since
354  * rcu_dynticks_snap() returned the specified snapshot.
355  */
356 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
357 {
358 	return snap != rcu_dynticks_snap(rdp);
359 }
360 
361 /*
362  * Return true if the referenced integer is zero while the specified
363  * CPU remains within a single extended quiescent state.
364  */
365 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
366 {
367 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
368 	int snap;
369 
370 	// If not quiescent, force back to earlier extended quiescent state.
371 	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
372 					       RCU_DYNTICK_CTRL_CTR);
373 
374 	smp_rmb(); // Order ->dynticks and *vp reads.
375 	if (READ_ONCE(*vp))
376 		return false;  // Non-zero, so report failure;
377 	smp_rmb(); // Order *vp read and ->dynticks re-read.
378 
379 	// If still in the same extended quiescent state, we are good!
380 	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
381 }
382 
383 /*
384  * Set the special (bottom) bit of the specified CPU so that it
385  * will take special action (such as flushing its TLB) on the
386  * next exit from an extended quiescent state.  Returns true if
387  * the bit was successfully set, or false if the CPU was not in
388  * an extended quiescent state.
389  */
390 bool rcu_eqs_special_set(int cpu)
391 {
392 	int old;
393 	int new;
394 	int new_old;
395 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
396 
397 	new_old = atomic_read(&rdp->dynticks);
398 	do {
399 		old = new_old;
400 		if (old & RCU_DYNTICK_CTRL_CTR)
401 			return false;
402 		new = old | RCU_DYNTICK_CTRL_MASK;
403 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
404 	} while (new_old != old);
405 	return true;
406 }
407 
408 /*
409  * Let the RCU core know that this CPU has gone through the scheduler,
410  * which is a quiescent state.  This is called when the need for a
411  * quiescent state is urgent, so we burn an atomic operation and full
412  * memory barriers to let the RCU core know about it, regardless of what
413  * this CPU might (or might not) do in the near future.
414  *
415  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
416  *
417  * The caller must have disabled interrupts and must not be idle.
418  */
419 void rcu_momentary_dyntick_idle(void)
420 {
421 	int special;
422 
423 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
424 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
425 				    &this_cpu_ptr(&rcu_data)->dynticks);
426 	/* It is illegal to call this from idle state. */
427 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
428 	rcu_preempt_deferred_qs(current);
429 }
430 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
431 
432 /**
433  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
434  *
435  * If the current CPU is idle and running at a first-level (not nested)
436  * interrupt, or directly, from idle, return true.
437  *
438  * The caller must have at least disabled IRQs.
439  */
440 static int rcu_is_cpu_rrupt_from_idle(void)
441 {
442 	long nesting;
443 
444 	/*
445 	 * Usually called from the tick; but also used from smp_function_call()
446 	 * for expedited grace periods. This latter can result in running from
447 	 * the idle task, instead of an actual IPI.
448 	 */
449 	lockdep_assert_irqs_disabled();
450 
451 	/* Check for counter underflows */
452 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
453 			 "RCU dynticks_nesting counter underflow!");
454 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
455 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
456 
457 	/* Are we at first interrupt nesting level? */
458 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
459 	if (nesting > 1)
460 		return false;
461 
462 	/*
463 	 * If we're not in an interrupt, we must be in the idle task!
464 	 */
465 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
466 
467 	/* Does CPU appear to be idle from an RCU standpoint? */
468 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
469 }
470 
471 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
472 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
473 static long blimit = DEFAULT_RCU_BLIMIT;
474 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
475 static long qhimark = DEFAULT_RCU_QHIMARK;
476 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
477 static long qlowmark = DEFAULT_RCU_QLOMARK;
478 #define DEFAULT_RCU_QOVLD_MULT 2
479 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
480 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
481 static long qovld_calc = -1;	  /* No pre-initialization lock acquisitions! */
482 
483 module_param(blimit, long, 0444);
484 module_param(qhimark, long, 0444);
485 module_param(qlowmark, long, 0444);
486 module_param(qovld, long, 0444);
487 
488 static ulong jiffies_till_first_fqs = ULONG_MAX;
489 static ulong jiffies_till_next_fqs = ULONG_MAX;
490 static bool rcu_kick_kthreads;
491 static int rcu_divisor = 7;
492 module_param(rcu_divisor, int, 0644);
493 
494 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
495 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
496 module_param(rcu_resched_ns, long, 0644);
497 
498 /*
499  * How long the grace period must be before we start recruiting
500  * quiescent-state help from rcu_note_context_switch().
501  */
502 static ulong jiffies_till_sched_qs = ULONG_MAX;
503 module_param(jiffies_till_sched_qs, ulong, 0444);
504 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
505 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
506 
507 /*
508  * Make sure that we give the grace-period kthread time to detect any
509  * idle CPUs before taking active measures to force quiescent states.
510  * However, don't go below 100 milliseconds, adjusted upwards for really
511  * large systems.
512  */
513 static void adjust_jiffies_till_sched_qs(void)
514 {
515 	unsigned long j;
516 
517 	/* If jiffies_till_sched_qs was specified, respect the request. */
518 	if (jiffies_till_sched_qs != ULONG_MAX) {
519 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
520 		return;
521 	}
522 	/* Otherwise, set to third fqs scan, but bound below on large system. */
523 	j = READ_ONCE(jiffies_till_first_fqs) +
524 		      2 * READ_ONCE(jiffies_till_next_fqs);
525 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
526 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
527 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
528 	WRITE_ONCE(jiffies_to_sched_qs, j);
529 }
530 
531 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
532 {
533 	ulong j;
534 	int ret = kstrtoul(val, 0, &j);
535 
536 	if (!ret) {
537 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
538 		adjust_jiffies_till_sched_qs();
539 	}
540 	return ret;
541 }
542 
543 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
544 {
545 	ulong j;
546 	int ret = kstrtoul(val, 0, &j);
547 
548 	if (!ret) {
549 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
550 		adjust_jiffies_till_sched_qs();
551 	}
552 	return ret;
553 }
554 
555 static struct kernel_param_ops first_fqs_jiffies_ops = {
556 	.set = param_set_first_fqs_jiffies,
557 	.get = param_get_ulong,
558 };
559 
560 static struct kernel_param_ops next_fqs_jiffies_ops = {
561 	.set = param_set_next_fqs_jiffies,
562 	.get = param_get_ulong,
563 };
564 
565 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
566 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
567 module_param(rcu_kick_kthreads, bool, 0644);
568 
569 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
570 static int rcu_pending(int user);
571 
572 /*
573  * Return the number of RCU GPs completed thus far for debug & stats.
574  */
575 unsigned long rcu_get_gp_seq(void)
576 {
577 	return READ_ONCE(rcu_state.gp_seq);
578 }
579 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
580 
581 /*
582  * Return the number of RCU expedited batches completed thus far for
583  * debug & stats.  Odd numbers mean that a batch is in progress, even
584  * numbers mean idle.  The value returned will thus be roughly double
585  * the cumulative batches since boot.
586  */
587 unsigned long rcu_exp_batches_completed(void)
588 {
589 	return rcu_state.expedited_sequence;
590 }
591 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
592 
593 /*
594  * Return the root node of the rcu_state structure.
595  */
596 static struct rcu_node *rcu_get_root(void)
597 {
598 	return &rcu_state.node[0];
599 }
600 
601 /*
602  * Send along grace-period-related data for rcutorture diagnostics.
603  */
604 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
605 			    unsigned long *gp_seq)
606 {
607 	switch (test_type) {
608 	case RCU_FLAVOR:
609 		*flags = READ_ONCE(rcu_state.gp_flags);
610 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
611 		break;
612 	default:
613 		break;
614 	}
615 }
616 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
617 
618 /*
619  * Enter an RCU extended quiescent state, which can be either the
620  * idle loop or adaptive-tickless usermode execution.
621  *
622  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
623  * the possibility of usermode upcalls having messed up our count
624  * of interrupt nesting level during the prior busy period.
625  */
626 static noinstr void rcu_eqs_enter(bool user)
627 {
628 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
629 
630 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
631 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
632 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
633 		     rdp->dynticks_nesting == 0);
634 	if (rdp->dynticks_nesting != 1) {
635 		// RCU will still be watching, so just do accounting and leave.
636 		rdp->dynticks_nesting--;
637 		return;
638 	}
639 
640 	lockdep_assert_irqs_disabled();
641 	instrumentation_begin();
642 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
643 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
644 	rdp = this_cpu_ptr(&rcu_data);
645 	do_nocb_deferred_wakeup(rdp);
646 	rcu_prepare_for_idle();
647 	rcu_preempt_deferred_qs(current);
648 
649 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
650 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
651 
652 	instrumentation_end();
653 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
654 	// RCU is watching here ...
655 	rcu_dynticks_eqs_enter();
656 	// ... but is no longer watching here.
657 	rcu_dynticks_task_enter();
658 }
659 
660 /**
661  * rcu_idle_enter - inform RCU that current CPU is entering idle
662  *
663  * Enter idle mode, in other words, -leave- the mode in which RCU
664  * read-side critical sections can occur.  (Though RCU read-side
665  * critical sections can occur in irq handlers in idle, a possibility
666  * handled by irq_enter() and irq_exit().)
667  *
668  * If you add or remove a call to rcu_idle_enter(), be sure to test with
669  * CONFIG_RCU_EQS_DEBUG=y.
670  */
671 void rcu_idle_enter(void)
672 {
673 	lockdep_assert_irqs_disabled();
674 	rcu_eqs_enter(false);
675 }
676 EXPORT_SYMBOL_GPL(rcu_idle_enter);
677 
678 #ifdef CONFIG_NO_HZ_FULL
679 /**
680  * rcu_user_enter - inform RCU that we are resuming userspace.
681  *
682  * Enter RCU idle mode right before resuming userspace.  No use of RCU
683  * is permitted between this call and rcu_user_exit(). This way the
684  * CPU doesn't need to maintain the tick for RCU maintenance purposes
685  * when the CPU runs in userspace.
686  *
687  * If you add or remove a call to rcu_user_enter(), be sure to test with
688  * CONFIG_RCU_EQS_DEBUG=y.
689  */
690 noinstr void rcu_user_enter(void)
691 {
692 	lockdep_assert_irqs_disabled();
693 	rcu_eqs_enter(true);
694 }
695 #endif /* CONFIG_NO_HZ_FULL */
696 
697 /**
698  * rcu_nmi_exit - inform RCU of exit from NMI context
699  *
700  * If we are returning from the outermost NMI handler that interrupted an
701  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
702  * to let the RCU grace-period handling know that the CPU is back to
703  * being RCU-idle.
704  *
705  * If you add or remove a call to rcu_nmi_exit(), be sure to test
706  * with CONFIG_RCU_EQS_DEBUG=y.
707  */
708 noinstr void rcu_nmi_exit(void)
709 {
710 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
711 
712 	instrumentation_begin();
713 	/*
714 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
715 	 * (We are exiting an NMI handler, so RCU better be paying attention
716 	 * to us!)
717 	 */
718 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
719 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
720 
721 	/*
722 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
723 	 * leave it in non-RCU-idle state.
724 	 */
725 	if (rdp->dynticks_nmi_nesting != 1) {
726 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
727 				  atomic_read(&rdp->dynticks));
728 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
729 			   rdp->dynticks_nmi_nesting - 2);
730 		instrumentation_end();
731 		return;
732 	}
733 
734 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
735 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
736 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
737 
738 	if (!in_nmi())
739 		rcu_prepare_for_idle();
740 
741 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
742 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
743 	instrumentation_end();
744 
745 	// RCU is watching here ...
746 	rcu_dynticks_eqs_enter();
747 	// ... but is no longer watching here.
748 
749 	if (!in_nmi())
750 		rcu_dynticks_task_enter();
751 }
752 
753 /**
754  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
755  *
756  * Exit from an interrupt handler, which might possibly result in entering
757  * idle mode, in other words, leaving the mode in which read-side critical
758  * sections can occur.  The caller must have disabled interrupts.
759  *
760  * This code assumes that the idle loop never does anything that might
761  * result in unbalanced calls to irq_enter() and irq_exit().  If your
762  * architecture's idle loop violates this assumption, RCU will give you what
763  * you deserve, good and hard.  But very infrequently and irreproducibly.
764  *
765  * Use things like work queues to work around this limitation.
766  *
767  * You have been warned.
768  *
769  * If you add or remove a call to rcu_irq_exit(), be sure to test with
770  * CONFIG_RCU_EQS_DEBUG=y.
771  */
772 void noinstr rcu_irq_exit(void)
773 {
774 	lockdep_assert_irqs_disabled();
775 	rcu_nmi_exit();
776 }
777 
778 /**
779  * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
780  *			  towards in kernel preemption
781  *
782  * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
783  * from RCU point of view. Invoked from return from interrupt before kernel
784  * preemption.
785  */
786 void rcu_irq_exit_preempt(void)
787 {
788 	lockdep_assert_irqs_disabled();
789 	rcu_nmi_exit();
790 
791 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
792 			 "RCU dynticks_nesting counter underflow/zero!");
793 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
794 			 DYNTICK_IRQ_NONIDLE,
795 			 "Bad RCU  dynticks_nmi_nesting counter\n");
796 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
797 			 "RCU in extended quiescent state!");
798 }
799 
800 #ifdef CONFIG_PROVE_RCU
801 /**
802  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
803  */
804 void rcu_irq_exit_check_preempt(void)
805 {
806 	lockdep_assert_irqs_disabled();
807 
808 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
809 			 "RCU dynticks_nesting counter underflow/zero!");
810 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
811 			 DYNTICK_IRQ_NONIDLE,
812 			 "Bad RCU  dynticks_nmi_nesting counter\n");
813 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
814 			 "RCU in extended quiescent state!");
815 }
816 #endif /* #ifdef CONFIG_PROVE_RCU */
817 
818 /*
819  * Wrapper for rcu_irq_exit() where interrupts are enabled.
820  *
821  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
822  * with CONFIG_RCU_EQS_DEBUG=y.
823  */
824 void rcu_irq_exit_irqson(void)
825 {
826 	unsigned long flags;
827 
828 	local_irq_save(flags);
829 	rcu_irq_exit();
830 	local_irq_restore(flags);
831 }
832 
833 /*
834  * Exit an RCU extended quiescent state, which can be either the
835  * idle loop or adaptive-tickless usermode execution.
836  *
837  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
838  * allow for the possibility of usermode upcalls messing up our count of
839  * interrupt nesting level during the busy period that is just now starting.
840  */
841 static void noinstr rcu_eqs_exit(bool user)
842 {
843 	struct rcu_data *rdp;
844 	long oldval;
845 
846 	lockdep_assert_irqs_disabled();
847 	rdp = this_cpu_ptr(&rcu_data);
848 	oldval = rdp->dynticks_nesting;
849 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
850 	if (oldval) {
851 		// RCU was already watching, so just do accounting and leave.
852 		rdp->dynticks_nesting++;
853 		return;
854 	}
855 	rcu_dynticks_task_exit();
856 	// RCU is not watching here ...
857 	rcu_dynticks_eqs_exit();
858 	// ... but is watching here.
859 	instrumentation_begin();
860 
861 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
862 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
863 
864 	rcu_cleanup_after_idle();
865 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
866 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
867 	WRITE_ONCE(rdp->dynticks_nesting, 1);
868 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
869 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
870 	instrumentation_end();
871 }
872 
873 /**
874  * rcu_idle_exit - inform RCU that current CPU is leaving idle
875  *
876  * Exit idle mode, in other words, -enter- the mode in which RCU
877  * read-side critical sections can occur.
878  *
879  * If you add or remove a call to rcu_idle_exit(), be sure to test with
880  * CONFIG_RCU_EQS_DEBUG=y.
881  */
882 void rcu_idle_exit(void)
883 {
884 	unsigned long flags;
885 
886 	local_irq_save(flags);
887 	rcu_eqs_exit(false);
888 	local_irq_restore(flags);
889 }
890 EXPORT_SYMBOL_GPL(rcu_idle_exit);
891 
892 #ifdef CONFIG_NO_HZ_FULL
893 /**
894  * rcu_user_exit - inform RCU that we are exiting userspace.
895  *
896  * Exit RCU idle mode while entering the kernel because it can
897  * run a RCU read side critical section anytime.
898  *
899  * If you add or remove a call to rcu_user_exit(), be sure to test with
900  * CONFIG_RCU_EQS_DEBUG=y.
901  */
902 void noinstr rcu_user_exit(void)
903 {
904 	rcu_eqs_exit(1);
905 }
906 
907 /**
908  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
909  *
910  * The scheduler tick is not normally enabled when CPUs enter the kernel
911  * from nohz_full userspace execution.  After all, nohz_full userspace
912  * execution is an RCU quiescent state and the time executing in the kernel
913  * is quite short.  Except of course when it isn't.  And it is not hard to
914  * cause a large system to spend tens of seconds or even minutes looping
915  * in the kernel, which can cause a number of problems, include RCU CPU
916  * stall warnings.
917  *
918  * Therefore, if a nohz_full CPU fails to report a quiescent state
919  * in a timely manner, the RCU grace-period kthread sets that CPU's
920  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
921  * exception will invoke this function, which will turn on the scheduler
922  * tick, which will enable RCU to detect that CPU's quiescent states,
923  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
924  * The tick will be disabled once a quiescent state is reported for
925  * this CPU.
926  *
927  * Of course, in carefully tuned systems, there might never be an
928  * interrupt or exception.  In that case, the RCU grace-period kthread
929  * will eventually cause one to happen.  However, in less carefully
930  * controlled environments, this function allows RCU to get what it
931  * needs without creating otherwise useless interruptions.
932  */
933 void __rcu_irq_enter_check_tick(void)
934 {
935 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
936 
937 	 // Enabling the tick is unsafe in NMI handlers.
938 	if (WARN_ON_ONCE(in_nmi()))
939 		return;
940 
941 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
942 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
943 
944 	if (!tick_nohz_full_cpu(rdp->cpu) ||
945 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
946 	    READ_ONCE(rdp->rcu_forced_tick)) {
947 		// RCU doesn't need nohz_full help from this CPU, or it is
948 		// already getting that help.
949 		return;
950 	}
951 
952 	// We get here only when not in an extended quiescent state and
953 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
954 	// already watching and (2) The fact that we are in an interrupt
955 	// handler and that the rcu_node lock is an irq-disabled lock
956 	// prevents self-deadlock.  So we can safely recheck under the lock.
957 	// Note that the nohz_full state currently cannot change.
958 	raw_spin_lock_rcu_node(rdp->mynode);
959 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
960 		// A nohz_full CPU is in the kernel and RCU needs a
961 		// quiescent state.  Turn on the tick!
962 		WRITE_ONCE(rdp->rcu_forced_tick, true);
963 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
964 	}
965 	raw_spin_unlock_rcu_node(rdp->mynode);
966 }
967 #endif /* CONFIG_NO_HZ_FULL */
968 
969 /**
970  * rcu_nmi_enter - inform RCU of entry to NMI context
971  *
972  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
973  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
974  * that the CPU is active.  This implementation permits nested NMIs, as
975  * long as the nesting level does not overflow an int.  (You will probably
976  * run out of stack space first.)
977  *
978  * If you add or remove a call to rcu_nmi_enter(), be sure to test
979  * with CONFIG_RCU_EQS_DEBUG=y.
980  */
981 noinstr void rcu_nmi_enter(void)
982 {
983 	long incby = 2;
984 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
985 
986 	/* Complain about underflow. */
987 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
988 
989 	/*
990 	 * If idle from RCU viewpoint, atomically increment ->dynticks
991 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
992 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
993 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
994 	 * to be in the outermost NMI handler that interrupted an RCU-idle
995 	 * period (observation due to Andy Lutomirski).
996 	 */
997 	if (rcu_dynticks_curr_cpu_in_eqs()) {
998 
999 		if (!in_nmi())
1000 			rcu_dynticks_task_exit();
1001 
1002 		// RCU is not watching here ...
1003 		rcu_dynticks_eqs_exit();
1004 		// ... but is watching here.
1005 
1006 		if (!in_nmi()) {
1007 			instrumentation_begin();
1008 			rcu_cleanup_after_idle();
1009 			instrumentation_end();
1010 		}
1011 
1012 		instrumentation_begin();
1013 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1014 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1015 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1016 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1017 
1018 		incby = 1;
1019 	} else if (!in_nmi()) {
1020 		instrumentation_begin();
1021 		rcu_irq_enter_check_tick();
1022 		instrumentation_end();
1023 	} else  {
1024 		instrumentation_begin();
1025 	}
1026 
1027 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1028 			  rdp->dynticks_nmi_nesting,
1029 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1030 	instrumentation_end();
1031 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1032 		   rdp->dynticks_nmi_nesting + incby);
1033 	barrier();
1034 }
1035 
1036 /**
1037  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1038  *
1039  * Enter an interrupt handler, which might possibly result in exiting
1040  * idle mode, in other words, entering the mode in which read-side critical
1041  * sections can occur.  The caller must have disabled interrupts.
1042  *
1043  * Note that the Linux kernel is fully capable of entering an interrupt
1044  * handler that it never exits, for example when doing upcalls to user mode!
1045  * This code assumes that the idle loop never does upcalls to user mode.
1046  * If your architecture's idle loop does do upcalls to user mode (or does
1047  * anything else that results in unbalanced calls to the irq_enter() and
1048  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1049  * But very infrequently and irreproducibly.
1050  *
1051  * Use things like work queues to work around this limitation.
1052  *
1053  * You have been warned.
1054  *
1055  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1056  * CONFIG_RCU_EQS_DEBUG=y.
1057  */
1058 noinstr void rcu_irq_enter(void)
1059 {
1060 	lockdep_assert_irqs_disabled();
1061 	rcu_nmi_enter();
1062 }
1063 
1064 /*
1065  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1066  *
1067  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1068  * with CONFIG_RCU_EQS_DEBUG=y.
1069  */
1070 void rcu_irq_enter_irqson(void)
1071 {
1072 	unsigned long flags;
1073 
1074 	local_irq_save(flags);
1075 	rcu_irq_enter();
1076 	local_irq_restore(flags);
1077 }
1078 
1079 /*
1080  * If any sort of urgency was applied to the current CPU (for example,
1081  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1082  * to get to a quiescent state, disable it.
1083  */
1084 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1085 {
1086 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1087 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1088 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1089 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1090 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1091 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1092 	}
1093 }
1094 
1095 noinstr bool __rcu_is_watching(void)
1096 {
1097 	return !rcu_dynticks_curr_cpu_in_eqs();
1098 }
1099 
1100 /**
1101  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1102  *
1103  * Return true if RCU is watching the running CPU, which means that this
1104  * CPU can safely enter RCU read-side critical sections.  In other words,
1105  * if the current CPU is not in its idle loop or is in an interrupt or
1106  * NMI handler, return true.
1107  */
1108 bool rcu_is_watching(void)
1109 {
1110 	bool ret;
1111 
1112 	preempt_disable_notrace();
1113 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1114 	preempt_enable_notrace();
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(rcu_is_watching);
1118 
1119 /*
1120  * If a holdout task is actually running, request an urgent quiescent
1121  * state from its CPU.  This is unsynchronized, so migrations can cause
1122  * the request to go to the wrong CPU.  Which is OK, all that will happen
1123  * is that the CPU's next context switch will be a bit slower and next
1124  * time around this task will generate another request.
1125  */
1126 void rcu_request_urgent_qs_task(struct task_struct *t)
1127 {
1128 	int cpu;
1129 
1130 	barrier();
1131 	cpu = task_cpu(t);
1132 	if (!task_curr(t))
1133 		return; /* This task is not running on that CPU. */
1134 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1135 }
1136 
1137 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1138 
1139 /*
1140  * Is the current CPU online as far as RCU is concerned?
1141  *
1142  * Disable preemption to avoid false positives that could otherwise
1143  * happen due to the current CPU number being sampled, this task being
1144  * preempted, its old CPU being taken offline, resuming on some other CPU,
1145  * then determining that its old CPU is now offline.
1146  *
1147  * Disable checking if in an NMI handler because we cannot safely
1148  * report errors from NMI handlers anyway.  In addition, it is OK to use
1149  * RCU on an offline processor during initial boot, hence the check for
1150  * rcu_scheduler_fully_active.
1151  */
1152 bool rcu_lockdep_current_cpu_online(void)
1153 {
1154 	struct rcu_data *rdp;
1155 	struct rcu_node *rnp;
1156 	bool ret = false;
1157 
1158 	if (in_nmi() || !rcu_scheduler_fully_active)
1159 		return true;
1160 	preempt_disable_notrace();
1161 	rdp = this_cpu_ptr(&rcu_data);
1162 	rnp = rdp->mynode;
1163 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1164 		ret = true;
1165 	preempt_enable_notrace();
1166 	return ret;
1167 }
1168 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1169 
1170 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1171 
1172 /*
1173  * We are reporting a quiescent state on behalf of some other CPU, so
1174  * it is our responsibility to check for and handle potential overflow
1175  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1176  * After all, the CPU might be in deep idle state, and thus executing no
1177  * code whatsoever.
1178  */
1179 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1180 {
1181 	raw_lockdep_assert_held_rcu_node(rnp);
1182 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1183 			 rnp->gp_seq))
1184 		WRITE_ONCE(rdp->gpwrap, true);
1185 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1186 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1187 }
1188 
1189 /*
1190  * Snapshot the specified CPU's dynticks counter so that we can later
1191  * credit them with an implicit quiescent state.  Return 1 if this CPU
1192  * is in dynticks idle mode, which is an extended quiescent state.
1193  */
1194 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1195 {
1196 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1197 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1198 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1199 		rcu_gpnum_ovf(rdp->mynode, rdp);
1200 		return 1;
1201 	}
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Return true if the specified CPU has passed through a quiescent
1207  * state by virtue of being in or having passed through an dynticks
1208  * idle state since the last call to dyntick_save_progress_counter()
1209  * for this same CPU, or by virtue of having been offline.
1210  */
1211 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1212 {
1213 	unsigned long jtsq;
1214 	bool *rnhqp;
1215 	bool *ruqp;
1216 	struct rcu_node *rnp = rdp->mynode;
1217 
1218 	/*
1219 	 * If the CPU passed through or entered a dynticks idle phase with
1220 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1221 	 * already acknowledged the request to pass through a quiescent
1222 	 * state.  Either way, that CPU cannot possibly be in an RCU
1223 	 * read-side critical section that started before the beginning
1224 	 * of the current RCU grace period.
1225 	 */
1226 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1227 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1228 		rcu_gpnum_ovf(rnp, rdp);
1229 		return 1;
1230 	}
1231 
1232 	/* If waiting too long on an offline CPU, complain. */
1233 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1234 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1235 		bool onl;
1236 		struct rcu_node *rnp1;
1237 
1238 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1239 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1240 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1241 			(long)rnp->gp_seq, (long)rnp->completedqs);
1242 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1243 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1244 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1245 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1246 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1247 			__func__, rdp->cpu, ".o"[onl],
1248 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1249 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1250 		return 1; /* Break things loose after complaining. */
1251 	}
1252 
1253 	/*
1254 	 * A CPU running for an extended time within the kernel can
1255 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1256 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1257 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1258 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1259 	 * variable are safe because the assignments are repeated if this
1260 	 * CPU failed to pass through a quiescent state.  This code
1261 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1262 	 * is set way high.
1263 	 */
1264 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1265 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1266 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1267 	if (!READ_ONCE(*rnhqp) &&
1268 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1269 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1270 	     rcu_state.cbovld)) {
1271 		WRITE_ONCE(*rnhqp, true);
1272 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1273 		smp_store_release(ruqp, true);
1274 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1275 		WRITE_ONCE(*ruqp, true);
1276 	}
1277 
1278 	/*
1279 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1280 	 * The above code handles this, but only for straight cond_resched().
1281 	 * And some in-kernel loops check need_resched() before calling
1282 	 * cond_resched(), which defeats the above code for CPUs that are
1283 	 * running in-kernel with scheduling-clock interrupts disabled.
1284 	 * So hit them over the head with the resched_cpu() hammer!
1285 	 */
1286 	if (tick_nohz_full_cpu(rdp->cpu) &&
1287 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1288 	     rcu_state.cbovld)) {
1289 		WRITE_ONCE(*ruqp, true);
1290 		resched_cpu(rdp->cpu);
1291 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1292 	}
1293 
1294 	/*
1295 	 * If more than halfway to RCU CPU stall-warning time, invoke
1296 	 * resched_cpu() more frequently to try to loosen things up a bit.
1297 	 * Also check to see if the CPU is getting hammered with interrupts,
1298 	 * but only once per grace period, just to keep the IPIs down to
1299 	 * a dull roar.
1300 	 */
1301 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1302 		if (time_after(jiffies,
1303 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1304 			resched_cpu(rdp->cpu);
1305 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1306 		}
1307 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1308 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1309 		    (rnp->ffmask & rdp->grpmask)) {
1310 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1311 			atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1312 			rdp->rcu_iw_pending = true;
1313 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1314 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1315 		}
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1322 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1323 			      unsigned long gp_seq_req, const char *s)
1324 {
1325 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1326 				      gp_seq_req, rnp->level,
1327 				      rnp->grplo, rnp->grphi, s);
1328 }
1329 
1330 /*
1331  * rcu_start_this_gp - Request the start of a particular grace period
1332  * @rnp_start: The leaf node of the CPU from which to start.
1333  * @rdp: The rcu_data corresponding to the CPU from which to start.
1334  * @gp_seq_req: The gp_seq of the grace period to start.
1335  *
1336  * Start the specified grace period, as needed to handle newly arrived
1337  * callbacks.  The required future grace periods are recorded in each
1338  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1339  * is reason to awaken the grace-period kthread.
1340  *
1341  * The caller must hold the specified rcu_node structure's ->lock, which
1342  * is why the caller is responsible for waking the grace-period kthread.
1343  *
1344  * Returns true if the GP thread needs to be awakened else false.
1345  */
1346 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1347 			      unsigned long gp_seq_req)
1348 {
1349 	bool ret = false;
1350 	struct rcu_node *rnp;
1351 
1352 	/*
1353 	 * Use funnel locking to either acquire the root rcu_node
1354 	 * structure's lock or bail out if the need for this grace period
1355 	 * has already been recorded -- or if that grace period has in
1356 	 * fact already started.  If there is already a grace period in
1357 	 * progress in a non-leaf node, no recording is needed because the
1358 	 * end of the grace period will scan the leaf rcu_node structures.
1359 	 * Note that rnp_start->lock must not be released.
1360 	 */
1361 	raw_lockdep_assert_held_rcu_node(rnp_start);
1362 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1363 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1364 		if (rnp != rnp_start)
1365 			raw_spin_lock_rcu_node(rnp);
1366 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1367 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1368 		    (rnp != rnp_start &&
1369 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1370 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1371 					  TPS("Prestarted"));
1372 			goto unlock_out;
1373 		}
1374 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1375 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1376 			/*
1377 			 * We just marked the leaf or internal node, and a
1378 			 * grace period is in progress, which means that
1379 			 * rcu_gp_cleanup() will see the marking.  Bail to
1380 			 * reduce contention.
1381 			 */
1382 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1383 					  TPS("Startedleaf"));
1384 			goto unlock_out;
1385 		}
1386 		if (rnp != rnp_start && rnp->parent != NULL)
1387 			raw_spin_unlock_rcu_node(rnp);
1388 		if (!rnp->parent)
1389 			break;  /* At root, and perhaps also leaf. */
1390 	}
1391 
1392 	/* If GP already in progress, just leave, otherwise start one. */
1393 	if (rcu_gp_in_progress()) {
1394 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1395 		goto unlock_out;
1396 	}
1397 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1398 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1399 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1400 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1401 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1402 		goto unlock_out;
1403 	}
1404 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1405 	ret = true;  /* Caller must wake GP kthread. */
1406 unlock_out:
1407 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1408 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1409 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1410 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1411 	}
1412 	if (rnp != rnp_start)
1413 		raw_spin_unlock_rcu_node(rnp);
1414 	return ret;
1415 }
1416 
1417 /*
1418  * Clean up any old requests for the just-ended grace period.  Also return
1419  * whether any additional grace periods have been requested.
1420  */
1421 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1422 {
1423 	bool needmore;
1424 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1425 
1426 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1427 	if (!needmore)
1428 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1429 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1430 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1431 	return needmore;
1432 }
1433 
1434 /*
1435  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1436  * interrupt or softirq handler, in which case we just might immediately
1437  * sleep upon return, resulting in a grace-period hang), and don't bother
1438  * awakening when there is nothing for the grace-period kthread to do
1439  * (as in several CPUs raced to awaken, we lost), and finally don't try
1440  * to awaken a kthread that has not yet been created.  If all those checks
1441  * are passed, track some debug information and awaken.
1442  *
1443  * So why do the self-wakeup when in an interrupt or softirq handler
1444  * in the grace-period kthread's context?  Because the kthread might have
1445  * been interrupted just as it was going to sleep, and just after the final
1446  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1447  * is required, and is therefore supplied.
1448  */
1449 static void rcu_gp_kthread_wake(void)
1450 {
1451 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1452 
1453 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1454 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1455 		return;
1456 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1457 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1458 	swake_up_one(&rcu_state.gp_wq);
1459 }
1460 
1461 /*
1462  * If there is room, assign a ->gp_seq number to any callbacks on this
1463  * CPU that have not already been assigned.  Also accelerate any callbacks
1464  * that were previously assigned a ->gp_seq number that has since proven
1465  * to be too conservative, which can happen if callbacks get assigned a
1466  * ->gp_seq number while RCU is idle, but with reference to a non-root
1467  * rcu_node structure.  This function is idempotent, so it does not hurt
1468  * to call it repeatedly.  Returns an flag saying that we should awaken
1469  * the RCU grace-period kthread.
1470  *
1471  * The caller must hold rnp->lock with interrupts disabled.
1472  */
1473 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1474 {
1475 	unsigned long gp_seq_req;
1476 	bool ret = false;
1477 
1478 	rcu_lockdep_assert_cblist_protected(rdp);
1479 	raw_lockdep_assert_held_rcu_node(rnp);
1480 
1481 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1482 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1483 		return false;
1484 
1485 	/*
1486 	 * Callbacks are often registered with incomplete grace-period
1487 	 * information.  Something about the fact that getting exact
1488 	 * information requires acquiring a global lock...  RCU therefore
1489 	 * makes a conservative estimate of the grace period number at which
1490 	 * a given callback will become ready to invoke.	The following
1491 	 * code checks this estimate and improves it when possible, thus
1492 	 * accelerating callback invocation to an earlier grace-period
1493 	 * number.
1494 	 */
1495 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1496 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1497 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1498 
1499 	/* Trace depending on how much we were able to accelerate. */
1500 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1501 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1502 	else
1503 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1504 	return ret;
1505 }
1506 
1507 /*
1508  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1509  * rcu_node structure's ->lock be held.  It consults the cached value
1510  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1511  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1512  * while holding the leaf rcu_node structure's ->lock.
1513  */
1514 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1515 					struct rcu_data *rdp)
1516 {
1517 	unsigned long c;
1518 	bool needwake;
1519 
1520 	rcu_lockdep_assert_cblist_protected(rdp);
1521 	c = rcu_seq_snap(&rcu_state.gp_seq);
1522 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1523 		/* Old request still live, so mark recent callbacks. */
1524 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1525 		return;
1526 	}
1527 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1528 	needwake = rcu_accelerate_cbs(rnp, rdp);
1529 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1530 	if (needwake)
1531 		rcu_gp_kthread_wake();
1532 }
1533 
1534 /*
1535  * Move any callbacks whose grace period has completed to the
1536  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1537  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1538  * sublist.  This function is idempotent, so it does not hurt to
1539  * invoke it repeatedly.  As long as it is not invoked -too- often...
1540  * Returns true if the RCU grace-period kthread needs to be awakened.
1541  *
1542  * The caller must hold rnp->lock with interrupts disabled.
1543  */
1544 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1545 {
1546 	rcu_lockdep_assert_cblist_protected(rdp);
1547 	raw_lockdep_assert_held_rcu_node(rnp);
1548 
1549 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1550 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1551 		return false;
1552 
1553 	/*
1554 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1555 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1556 	 */
1557 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1558 
1559 	/* Classify any remaining callbacks. */
1560 	return rcu_accelerate_cbs(rnp, rdp);
1561 }
1562 
1563 /*
1564  * Move and classify callbacks, but only if doing so won't require
1565  * that the RCU grace-period kthread be awakened.
1566  */
1567 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1568 						  struct rcu_data *rdp)
1569 {
1570 	rcu_lockdep_assert_cblist_protected(rdp);
1571 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1572 	    !raw_spin_trylock_rcu_node(rnp))
1573 		return;
1574 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1575 	raw_spin_unlock_rcu_node(rnp);
1576 }
1577 
1578 /*
1579  * Update CPU-local rcu_data state to record the beginnings and ends of
1580  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1581  * structure corresponding to the current CPU, and must have irqs disabled.
1582  * Returns true if the grace-period kthread needs to be awakened.
1583  */
1584 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1585 {
1586 	bool ret = false;
1587 	bool need_qs;
1588 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1589 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1590 
1591 	raw_lockdep_assert_held_rcu_node(rnp);
1592 
1593 	if (rdp->gp_seq == rnp->gp_seq)
1594 		return false; /* Nothing to do. */
1595 
1596 	/* Handle the ends of any preceding grace periods first. */
1597 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1598 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1599 		if (!offloaded)
1600 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1601 		rdp->core_needs_qs = false;
1602 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1603 	} else {
1604 		if (!offloaded)
1605 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1606 		if (rdp->core_needs_qs)
1607 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1608 	}
1609 
1610 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1611 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1612 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1613 		/*
1614 		 * If the current grace period is waiting for this CPU,
1615 		 * set up to detect a quiescent state, otherwise don't
1616 		 * go looking for one.
1617 		 */
1618 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1619 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1620 		rdp->cpu_no_qs.b.norm = need_qs;
1621 		rdp->core_needs_qs = need_qs;
1622 		zero_cpu_stall_ticks(rdp);
1623 	}
1624 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1625 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1626 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1627 	WRITE_ONCE(rdp->gpwrap, false);
1628 	rcu_gpnum_ovf(rnp, rdp);
1629 	return ret;
1630 }
1631 
1632 static void note_gp_changes(struct rcu_data *rdp)
1633 {
1634 	unsigned long flags;
1635 	bool needwake;
1636 	struct rcu_node *rnp;
1637 
1638 	local_irq_save(flags);
1639 	rnp = rdp->mynode;
1640 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1641 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1642 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1643 		local_irq_restore(flags);
1644 		return;
1645 	}
1646 	needwake = __note_gp_changes(rnp, rdp);
1647 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1648 	if (needwake)
1649 		rcu_gp_kthread_wake();
1650 }
1651 
1652 static void rcu_gp_slow(int delay)
1653 {
1654 	if (delay > 0 &&
1655 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1656 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1657 		schedule_timeout_idle(delay);
1658 }
1659 
1660 static unsigned long sleep_duration;
1661 
1662 /* Allow rcutorture to stall the grace-period kthread. */
1663 void rcu_gp_set_torture_wait(int duration)
1664 {
1665 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1666 		WRITE_ONCE(sleep_duration, duration);
1667 }
1668 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1669 
1670 /* Actually implement the aforementioned wait. */
1671 static void rcu_gp_torture_wait(void)
1672 {
1673 	unsigned long duration;
1674 
1675 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1676 		return;
1677 	duration = xchg(&sleep_duration, 0UL);
1678 	if (duration > 0) {
1679 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1680 		schedule_timeout_idle(duration);
1681 		pr_alert("%s: Wait complete\n", __func__);
1682 	}
1683 }
1684 
1685 /*
1686  * Initialize a new grace period.  Return false if no grace period required.
1687  */
1688 static bool rcu_gp_init(void)
1689 {
1690 	unsigned long flags;
1691 	unsigned long oldmask;
1692 	unsigned long mask;
1693 	struct rcu_data *rdp;
1694 	struct rcu_node *rnp = rcu_get_root();
1695 
1696 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1697 	raw_spin_lock_irq_rcu_node(rnp);
1698 	if (!READ_ONCE(rcu_state.gp_flags)) {
1699 		/* Spurious wakeup, tell caller to go back to sleep.  */
1700 		raw_spin_unlock_irq_rcu_node(rnp);
1701 		return false;
1702 	}
1703 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1704 
1705 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1706 		/*
1707 		 * Grace period already in progress, don't start another.
1708 		 * Not supposed to be able to happen.
1709 		 */
1710 		raw_spin_unlock_irq_rcu_node(rnp);
1711 		return false;
1712 	}
1713 
1714 	/* Advance to a new grace period and initialize state. */
1715 	record_gp_stall_check_time();
1716 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1717 	rcu_seq_start(&rcu_state.gp_seq);
1718 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1719 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1720 	raw_spin_unlock_irq_rcu_node(rnp);
1721 
1722 	/*
1723 	 * Apply per-leaf buffered online and offline operations to the
1724 	 * rcu_node tree.  Note that this new grace period need not wait
1725 	 * for subsequent online CPUs, and that quiescent-state forcing
1726 	 * will handle subsequent offline CPUs.
1727 	 */
1728 	rcu_state.gp_state = RCU_GP_ONOFF;
1729 	rcu_for_each_leaf_node(rnp) {
1730 		raw_spin_lock(&rcu_state.ofl_lock);
1731 		raw_spin_lock_irq_rcu_node(rnp);
1732 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1733 		    !rnp->wait_blkd_tasks) {
1734 			/* Nothing to do on this leaf rcu_node structure. */
1735 			raw_spin_unlock_irq_rcu_node(rnp);
1736 			raw_spin_unlock(&rcu_state.ofl_lock);
1737 			continue;
1738 		}
1739 
1740 		/* Record old state, apply changes to ->qsmaskinit field. */
1741 		oldmask = rnp->qsmaskinit;
1742 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1743 
1744 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1745 		if (!oldmask != !rnp->qsmaskinit) {
1746 			if (!oldmask) { /* First online CPU for rcu_node. */
1747 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1748 					rcu_init_new_rnp(rnp);
1749 			} else if (rcu_preempt_has_tasks(rnp)) {
1750 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1751 			} else { /* Last offline CPU and can propagate. */
1752 				rcu_cleanup_dead_rnp(rnp);
1753 			}
1754 		}
1755 
1756 		/*
1757 		 * If all waited-on tasks from prior grace period are
1758 		 * done, and if all this rcu_node structure's CPUs are
1759 		 * still offline, propagate up the rcu_node tree and
1760 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1761 		 * rcu_node structure's CPUs has since come back online,
1762 		 * simply clear ->wait_blkd_tasks.
1763 		 */
1764 		if (rnp->wait_blkd_tasks &&
1765 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1766 			rnp->wait_blkd_tasks = false;
1767 			if (!rnp->qsmaskinit)
1768 				rcu_cleanup_dead_rnp(rnp);
1769 		}
1770 
1771 		raw_spin_unlock_irq_rcu_node(rnp);
1772 		raw_spin_unlock(&rcu_state.ofl_lock);
1773 	}
1774 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1775 
1776 	/*
1777 	 * Set the quiescent-state-needed bits in all the rcu_node
1778 	 * structures for all currently online CPUs in breadth-first
1779 	 * order, starting from the root rcu_node structure, relying on the
1780 	 * layout of the tree within the rcu_state.node[] array.  Note that
1781 	 * other CPUs will access only the leaves of the hierarchy, thus
1782 	 * seeing that no grace period is in progress, at least until the
1783 	 * corresponding leaf node has been initialized.
1784 	 *
1785 	 * The grace period cannot complete until the initialization
1786 	 * process finishes, because this kthread handles both.
1787 	 */
1788 	rcu_state.gp_state = RCU_GP_INIT;
1789 	rcu_for_each_node_breadth_first(rnp) {
1790 		rcu_gp_slow(gp_init_delay);
1791 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1792 		rdp = this_cpu_ptr(&rcu_data);
1793 		rcu_preempt_check_blocked_tasks(rnp);
1794 		rnp->qsmask = rnp->qsmaskinit;
1795 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1796 		if (rnp == rdp->mynode)
1797 			(void)__note_gp_changes(rnp, rdp);
1798 		rcu_preempt_boost_start_gp(rnp);
1799 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1800 					    rnp->level, rnp->grplo,
1801 					    rnp->grphi, rnp->qsmask);
1802 		/* Quiescent states for tasks on any now-offline CPUs. */
1803 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1804 		rnp->rcu_gp_init_mask = mask;
1805 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1806 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1807 		else
1808 			raw_spin_unlock_irq_rcu_node(rnp);
1809 		cond_resched_tasks_rcu_qs();
1810 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1811 	}
1812 
1813 	return true;
1814 }
1815 
1816 /*
1817  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1818  * time.
1819  */
1820 static bool rcu_gp_fqs_check_wake(int *gfp)
1821 {
1822 	struct rcu_node *rnp = rcu_get_root();
1823 
1824 	// If under overload conditions, force an immediate FQS scan.
1825 	if (*gfp & RCU_GP_FLAG_OVLD)
1826 		return true;
1827 
1828 	// Someone like call_rcu() requested a force-quiescent-state scan.
1829 	*gfp = READ_ONCE(rcu_state.gp_flags);
1830 	if (*gfp & RCU_GP_FLAG_FQS)
1831 		return true;
1832 
1833 	// The current grace period has completed.
1834 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1835 		return true;
1836 
1837 	return false;
1838 }
1839 
1840 /*
1841  * Do one round of quiescent-state forcing.
1842  */
1843 static void rcu_gp_fqs(bool first_time)
1844 {
1845 	struct rcu_node *rnp = rcu_get_root();
1846 
1847 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1848 	rcu_state.n_force_qs++;
1849 	if (first_time) {
1850 		/* Collect dyntick-idle snapshots. */
1851 		force_qs_rnp(dyntick_save_progress_counter);
1852 	} else {
1853 		/* Handle dyntick-idle and offline CPUs. */
1854 		force_qs_rnp(rcu_implicit_dynticks_qs);
1855 	}
1856 	/* Clear flag to prevent immediate re-entry. */
1857 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1858 		raw_spin_lock_irq_rcu_node(rnp);
1859 		WRITE_ONCE(rcu_state.gp_flags,
1860 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1861 		raw_spin_unlock_irq_rcu_node(rnp);
1862 	}
1863 }
1864 
1865 /*
1866  * Loop doing repeated quiescent-state forcing until the grace period ends.
1867  */
1868 static void rcu_gp_fqs_loop(void)
1869 {
1870 	bool first_gp_fqs;
1871 	int gf = 0;
1872 	unsigned long j;
1873 	int ret;
1874 	struct rcu_node *rnp = rcu_get_root();
1875 
1876 	first_gp_fqs = true;
1877 	j = READ_ONCE(jiffies_till_first_fqs);
1878 	if (rcu_state.cbovld)
1879 		gf = RCU_GP_FLAG_OVLD;
1880 	ret = 0;
1881 	for (;;) {
1882 		if (!ret) {
1883 			rcu_state.jiffies_force_qs = jiffies + j;
1884 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1885 				   jiffies + (j ? 3 * j : 2));
1886 		}
1887 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1888 				       TPS("fqswait"));
1889 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1890 		ret = swait_event_idle_timeout_exclusive(
1891 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1892 		rcu_gp_torture_wait();
1893 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1894 		/* Locking provides needed memory barriers. */
1895 		/* If grace period done, leave loop. */
1896 		if (!READ_ONCE(rnp->qsmask) &&
1897 		    !rcu_preempt_blocked_readers_cgp(rnp))
1898 			break;
1899 		/* If time for quiescent-state forcing, do it. */
1900 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1901 		    (gf & RCU_GP_FLAG_FQS)) {
1902 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1903 					       TPS("fqsstart"));
1904 			rcu_gp_fqs(first_gp_fqs);
1905 			gf = 0;
1906 			if (first_gp_fqs) {
1907 				first_gp_fqs = false;
1908 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1909 			}
1910 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1911 					       TPS("fqsend"));
1912 			cond_resched_tasks_rcu_qs();
1913 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1914 			ret = 0; /* Force full wait till next FQS. */
1915 			j = READ_ONCE(jiffies_till_next_fqs);
1916 		} else {
1917 			/* Deal with stray signal. */
1918 			cond_resched_tasks_rcu_qs();
1919 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1920 			WARN_ON(signal_pending(current));
1921 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1922 					       TPS("fqswaitsig"));
1923 			ret = 1; /* Keep old FQS timing. */
1924 			j = jiffies;
1925 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1926 				j = 1;
1927 			else
1928 				j = rcu_state.jiffies_force_qs - j;
1929 			gf = 0;
1930 		}
1931 	}
1932 }
1933 
1934 /*
1935  * Clean up after the old grace period.
1936  */
1937 static void rcu_gp_cleanup(void)
1938 {
1939 	int cpu;
1940 	bool needgp = false;
1941 	unsigned long gp_duration;
1942 	unsigned long new_gp_seq;
1943 	bool offloaded;
1944 	struct rcu_data *rdp;
1945 	struct rcu_node *rnp = rcu_get_root();
1946 	struct swait_queue_head *sq;
1947 
1948 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1949 	raw_spin_lock_irq_rcu_node(rnp);
1950 	rcu_state.gp_end = jiffies;
1951 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1952 	if (gp_duration > rcu_state.gp_max)
1953 		rcu_state.gp_max = gp_duration;
1954 
1955 	/*
1956 	 * We know the grace period is complete, but to everyone else
1957 	 * it appears to still be ongoing.  But it is also the case
1958 	 * that to everyone else it looks like there is nothing that
1959 	 * they can do to advance the grace period.  It is therefore
1960 	 * safe for us to drop the lock in order to mark the grace
1961 	 * period as completed in all of the rcu_node structures.
1962 	 */
1963 	raw_spin_unlock_irq_rcu_node(rnp);
1964 
1965 	/*
1966 	 * Propagate new ->gp_seq value to rcu_node structures so that
1967 	 * other CPUs don't have to wait until the start of the next grace
1968 	 * period to process their callbacks.  This also avoids some nasty
1969 	 * RCU grace-period initialization races by forcing the end of
1970 	 * the current grace period to be completely recorded in all of
1971 	 * the rcu_node structures before the beginning of the next grace
1972 	 * period is recorded in any of the rcu_node structures.
1973 	 */
1974 	new_gp_seq = rcu_state.gp_seq;
1975 	rcu_seq_end(&new_gp_seq);
1976 	rcu_for_each_node_breadth_first(rnp) {
1977 		raw_spin_lock_irq_rcu_node(rnp);
1978 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1979 			dump_blkd_tasks(rnp, 10);
1980 		WARN_ON_ONCE(rnp->qsmask);
1981 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1982 		rdp = this_cpu_ptr(&rcu_data);
1983 		if (rnp == rdp->mynode)
1984 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1985 		/* smp_mb() provided by prior unlock-lock pair. */
1986 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1987 		// Reset overload indication for CPUs no longer overloaded
1988 		if (rcu_is_leaf_node(rnp))
1989 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1990 				rdp = per_cpu_ptr(&rcu_data, cpu);
1991 				check_cb_ovld_locked(rdp, rnp);
1992 			}
1993 		sq = rcu_nocb_gp_get(rnp);
1994 		raw_spin_unlock_irq_rcu_node(rnp);
1995 		rcu_nocb_gp_cleanup(sq);
1996 		cond_resched_tasks_rcu_qs();
1997 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1998 		rcu_gp_slow(gp_cleanup_delay);
1999 	}
2000 	rnp = rcu_get_root();
2001 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2002 
2003 	/* Declare grace period done, trace first to use old GP number. */
2004 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2005 	rcu_seq_end(&rcu_state.gp_seq);
2006 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2007 	rcu_state.gp_state = RCU_GP_IDLE;
2008 	/* Check for GP requests since above loop. */
2009 	rdp = this_cpu_ptr(&rcu_data);
2010 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2011 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2012 				  TPS("CleanupMore"));
2013 		needgp = true;
2014 	}
2015 	/* Advance CBs to reduce false positives below. */
2016 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2017 		    rcu_segcblist_is_offloaded(&rdp->cblist);
2018 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2019 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2020 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2021 		trace_rcu_grace_period(rcu_state.name,
2022 				       rcu_state.gp_seq,
2023 				       TPS("newreq"));
2024 	} else {
2025 		WRITE_ONCE(rcu_state.gp_flags,
2026 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2027 	}
2028 	raw_spin_unlock_irq_rcu_node(rnp);
2029 }
2030 
2031 /*
2032  * Body of kthread that handles grace periods.
2033  */
2034 static int __noreturn rcu_gp_kthread(void *unused)
2035 {
2036 	rcu_bind_gp_kthread();
2037 	for (;;) {
2038 
2039 		/* Handle grace-period start. */
2040 		for (;;) {
2041 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2042 					       TPS("reqwait"));
2043 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2044 			swait_event_idle_exclusive(rcu_state.gp_wq,
2045 					 READ_ONCE(rcu_state.gp_flags) &
2046 					 RCU_GP_FLAG_INIT);
2047 			rcu_gp_torture_wait();
2048 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2049 			/* Locking provides needed memory barrier. */
2050 			if (rcu_gp_init())
2051 				break;
2052 			cond_resched_tasks_rcu_qs();
2053 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2054 			WARN_ON(signal_pending(current));
2055 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2056 					       TPS("reqwaitsig"));
2057 		}
2058 
2059 		/* Handle quiescent-state forcing. */
2060 		rcu_gp_fqs_loop();
2061 
2062 		/* Handle grace-period end. */
2063 		rcu_state.gp_state = RCU_GP_CLEANUP;
2064 		rcu_gp_cleanup();
2065 		rcu_state.gp_state = RCU_GP_CLEANED;
2066 	}
2067 }
2068 
2069 /*
2070  * Report a full set of quiescent states to the rcu_state data structure.
2071  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2072  * another grace period is required.  Whether we wake the grace-period
2073  * kthread or it awakens itself for the next round of quiescent-state
2074  * forcing, that kthread will clean up after the just-completed grace
2075  * period.  Note that the caller must hold rnp->lock, which is released
2076  * before return.
2077  */
2078 static void rcu_report_qs_rsp(unsigned long flags)
2079 	__releases(rcu_get_root()->lock)
2080 {
2081 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2082 	WARN_ON_ONCE(!rcu_gp_in_progress());
2083 	WRITE_ONCE(rcu_state.gp_flags,
2084 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2085 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2086 	rcu_gp_kthread_wake();
2087 }
2088 
2089 /*
2090  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2091  * Allows quiescent states for a group of CPUs to be reported at one go
2092  * to the specified rcu_node structure, though all the CPUs in the group
2093  * must be represented by the same rcu_node structure (which need not be a
2094  * leaf rcu_node structure, though it often will be).  The gps parameter
2095  * is the grace-period snapshot, which means that the quiescent states
2096  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2097  * must be held upon entry, and it is released before return.
2098  *
2099  * As a special case, if mask is zero, the bit-already-cleared check is
2100  * disabled.  This allows propagating quiescent state due to resumed tasks
2101  * during grace-period initialization.
2102  */
2103 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2104 			      unsigned long gps, unsigned long flags)
2105 	__releases(rnp->lock)
2106 {
2107 	unsigned long oldmask = 0;
2108 	struct rcu_node *rnp_c;
2109 
2110 	raw_lockdep_assert_held_rcu_node(rnp);
2111 
2112 	/* Walk up the rcu_node hierarchy. */
2113 	for (;;) {
2114 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2115 
2116 			/*
2117 			 * Our bit has already been cleared, or the
2118 			 * relevant grace period is already over, so done.
2119 			 */
2120 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2121 			return;
2122 		}
2123 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2124 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2125 			     rcu_preempt_blocked_readers_cgp(rnp));
2126 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2127 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2128 						 mask, rnp->qsmask, rnp->level,
2129 						 rnp->grplo, rnp->grphi,
2130 						 !!rnp->gp_tasks);
2131 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2132 
2133 			/* Other bits still set at this level, so done. */
2134 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2135 			return;
2136 		}
2137 		rnp->completedqs = rnp->gp_seq;
2138 		mask = rnp->grpmask;
2139 		if (rnp->parent == NULL) {
2140 
2141 			/* No more levels.  Exit loop holding root lock. */
2142 
2143 			break;
2144 		}
2145 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2146 		rnp_c = rnp;
2147 		rnp = rnp->parent;
2148 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2149 		oldmask = READ_ONCE(rnp_c->qsmask);
2150 	}
2151 
2152 	/*
2153 	 * Get here if we are the last CPU to pass through a quiescent
2154 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2155 	 * to clean up and start the next grace period if one is needed.
2156 	 */
2157 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2158 }
2159 
2160 /*
2161  * Record a quiescent state for all tasks that were previously queued
2162  * on the specified rcu_node structure and that were blocking the current
2163  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2164  * irqs disabled, and this lock is released upon return, but irqs remain
2165  * disabled.
2166  */
2167 static void __maybe_unused
2168 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2169 	__releases(rnp->lock)
2170 {
2171 	unsigned long gps;
2172 	unsigned long mask;
2173 	struct rcu_node *rnp_p;
2174 
2175 	raw_lockdep_assert_held_rcu_node(rnp);
2176 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2177 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2178 	    rnp->qsmask != 0) {
2179 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2180 		return;  /* Still need more quiescent states! */
2181 	}
2182 
2183 	rnp->completedqs = rnp->gp_seq;
2184 	rnp_p = rnp->parent;
2185 	if (rnp_p == NULL) {
2186 		/*
2187 		 * Only one rcu_node structure in the tree, so don't
2188 		 * try to report up to its nonexistent parent!
2189 		 */
2190 		rcu_report_qs_rsp(flags);
2191 		return;
2192 	}
2193 
2194 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2195 	gps = rnp->gp_seq;
2196 	mask = rnp->grpmask;
2197 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2198 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2199 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2200 }
2201 
2202 /*
2203  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2204  * structure.  This must be called from the specified CPU.
2205  */
2206 static void
2207 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2208 {
2209 	unsigned long flags;
2210 	unsigned long mask;
2211 	bool needwake = false;
2212 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2214 	struct rcu_node *rnp;
2215 
2216 	rnp = rdp->mynode;
2217 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2218 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2219 	    rdp->gpwrap) {
2220 
2221 		/*
2222 		 * The grace period in which this quiescent state was
2223 		 * recorded has ended, so don't report it upwards.
2224 		 * We will instead need a new quiescent state that lies
2225 		 * within the current grace period.
2226 		 */
2227 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2228 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2229 		return;
2230 	}
2231 	mask = rdp->grpmask;
2232 	if (rdp->cpu == smp_processor_id())
2233 		rdp->core_needs_qs = false;
2234 	if ((rnp->qsmask & mask) == 0) {
2235 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2236 	} else {
2237 		/*
2238 		 * This GP can't end until cpu checks in, so all of our
2239 		 * callbacks can be processed during the next GP.
2240 		 */
2241 		if (!offloaded)
2242 			needwake = rcu_accelerate_cbs(rnp, rdp);
2243 
2244 		rcu_disable_urgency_upon_qs(rdp);
2245 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2246 		/* ^^^ Released rnp->lock */
2247 		if (needwake)
2248 			rcu_gp_kthread_wake();
2249 	}
2250 }
2251 
2252 /*
2253  * Check to see if there is a new grace period of which this CPU
2254  * is not yet aware, and if so, set up local rcu_data state for it.
2255  * Otherwise, see if this CPU has just passed through its first
2256  * quiescent state for this grace period, and record that fact if so.
2257  */
2258 static void
2259 rcu_check_quiescent_state(struct rcu_data *rdp)
2260 {
2261 	/* Check for grace-period ends and beginnings. */
2262 	note_gp_changes(rdp);
2263 
2264 	/*
2265 	 * Does this CPU still need to do its part for current grace period?
2266 	 * If no, return and let the other CPUs do their part as well.
2267 	 */
2268 	if (!rdp->core_needs_qs)
2269 		return;
2270 
2271 	/*
2272 	 * Was there a quiescent state since the beginning of the grace
2273 	 * period? If no, then exit and wait for the next call.
2274 	 */
2275 	if (rdp->cpu_no_qs.b.norm)
2276 		return;
2277 
2278 	/*
2279 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2280 	 * judge of that).
2281 	 */
2282 	rcu_report_qs_rdp(rdp->cpu, rdp);
2283 }
2284 
2285 /*
2286  * Near the end of the offline process.  Trace the fact that this CPU
2287  * is going offline.
2288  */
2289 int rcutree_dying_cpu(unsigned int cpu)
2290 {
2291 	bool blkd;
2292 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2293 	struct rcu_node *rnp = rdp->mynode;
2294 
2295 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2296 		return 0;
2297 
2298 	blkd = !!(rnp->qsmask & rdp->grpmask);
2299 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2300 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2301 	return 0;
2302 }
2303 
2304 /*
2305  * All CPUs for the specified rcu_node structure have gone offline,
2306  * and all tasks that were preempted within an RCU read-side critical
2307  * section while running on one of those CPUs have since exited their RCU
2308  * read-side critical section.  Some other CPU is reporting this fact with
2309  * the specified rcu_node structure's ->lock held and interrupts disabled.
2310  * This function therefore goes up the tree of rcu_node structures,
2311  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2312  * the leaf rcu_node structure's ->qsmaskinit field has already been
2313  * updated.
2314  *
2315  * This function does check that the specified rcu_node structure has
2316  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2317  * prematurely.  That said, invoking it after the fact will cost you
2318  * a needless lock acquisition.  So once it has done its work, don't
2319  * invoke it again.
2320  */
2321 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2322 {
2323 	long mask;
2324 	struct rcu_node *rnp = rnp_leaf;
2325 
2326 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2327 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2328 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2329 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2330 		return;
2331 	for (;;) {
2332 		mask = rnp->grpmask;
2333 		rnp = rnp->parent;
2334 		if (!rnp)
2335 			break;
2336 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2337 		rnp->qsmaskinit &= ~mask;
2338 		/* Between grace periods, so better already be zero! */
2339 		WARN_ON_ONCE(rnp->qsmask);
2340 		if (rnp->qsmaskinit) {
2341 			raw_spin_unlock_rcu_node(rnp);
2342 			/* irqs remain disabled. */
2343 			return;
2344 		}
2345 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2346 	}
2347 }
2348 
2349 /*
2350  * The CPU has been completely removed, and some other CPU is reporting
2351  * this fact from process context.  Do the remainder of the cleanup.
2352  * There can only be one CPU hotplug operation at a time, so no need for
2353  * explicit locking.
2354  */
2355 int rcutree_dead_cpu(unsigned int cpu)
2356 {
2357 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2358 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2359 
2360 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2361 		return 0;
2362 
2363 	/* Adjust any no-longer-needed kthreads. */
2364 	rcu_boost_kthread_setaffinity(rnp, -1);
2365 	/* Do any needed no-CB deferred wakeups from this CPU. */
2366 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2367 
2368 	// Stop-machine done, so allow nohz_full to disable tick.
2369 	tick_dep_clear(TICK_DEP_BIT_RCU);
2370 	return 0;
2371 }
2372 
2373 /*
2374  * Invoke any RCU callbacks that have made it to the end of their grace
2375  * period.  Thottle as specified by rdp->blimit.
2376  */
2377 static void rcu_do_batch(struct rcu_data *rdp)
2378 {
2379 	unsigned long flags;
2380 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2381 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2382 	struct rcu_head *rhp;
2383 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2384 	long bl, count;
2385 	long pending, tlimit = 0;
2386 
2387 	/* If no callbacks are ready, just return. */
2388 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2389 		trace_rcu_batch_start(rcu_state.name,
2390 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2391 		trace_rcu_batch_end(rcu_state.name, 0,
2392 				    !rcu_segcblist_empty(&rdp->cblist),
2393 				    need_resched(), is_idle_task(current),
2394 				    rcu_is_callbacks_kthread());
2395 		return;
2396 	}
2397 
2398 	/*
2399 	 * Extract the list of ready callbacks, disabling to prevent
2400 	 * races with call_rcu() from interrupt handlers.  Leave the
2401 	 * callback counts, as rcu_barrier() needs to be conservative.
2402 	 */
2403 	local_irq_save(flags);
2404 	rcu_nocb_lock(rdp);
2405 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2406 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2407 	bl = max(rdp->blimit, pending >> rcu_divisor);
2408 	if (unlikely(bl > 100))
2409 		tlimit = local_clock() + rcu_resched_ns;
2410 	trace_rcu_batch_start(rcu_state.name,
2411 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2412 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2413 	if (offloaded)
2414 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2415 	rcu_nocb_unlock_irqrestore(rdp, flags);
2416 
2417 	/* Invoke callbacks. */
2418 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2419 	rhp = rcu_cblist_dequeue(&rcl);
2420 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2421 		rcu_callback_t f;
2422 
2423 		debug_rcu_head_unqueue(rhp);
2424 
2425 		rcu_lock_acquire(&rcu_callback_map);
2426 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2427 
2428 		f = rhp->func;
2429 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2430 		f(rhp);
2431 
2432 		rcu_lock_release(&rcu_callback_map);
2433 
2434 		/*
2435 		 * Stop only if limit reached and CPU has something to do.
2436 		 * Note: The rcl structure counts down from zero.
2437 		 */
2438 		if (-rcl.len >= bl && !offloaded &&
2439 		    (need_resched() ||
2440 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2441 			break;
2442 		if (unlikely(tlimit)) {
2443 			/* only call local_clock() every 32 callbacks */
2444 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2445 				continue;
2446 			/* Exceeded the time limit, so leave. */
2447 			break;
2448 		}
2449 		if (offloaded) {
2450 			WARN_ON_ONCE(in_serving_softirq());
2451 			local_bh_enable();
2452 			lockdep_assert_irqs_enabled();
2453 			cond_resched_tasks_rcu_qs();
2454 			lockdep_assert_irqs_enabled();
2455 			local_bh_disable();
2456 		}
2457 	}
2458 
2459 	local_irq_save(flags);
2460 	rcu_nocb_lock(rdp);
2461 	count = -rcl.len;
2462 	rdp->n_cbs_invoked += count;
2463 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2464 			    is_idle_task(current), rcu_is_callbacks_kthread());
2465 
2466 	/* Update counts and requeue any remaining callbacks. */
2467 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2468 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2469 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2470 
2471 	/* Reinstate batch limit if we have worked down the excess. */
2472 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2473 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2474 		rdp->blimit = blimit;
2475 
2476 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2477 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2478 		rdp->qlen_last_fqs_check = 0;
2479 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2480 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2481 		rdp->qlen_last_fqs_check = count;
2482 
2483 	/*
2484 	 * The following usually indicates a double call_rcu().  To track
2485 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2486 	 */
2487 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2488 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2489 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2490 
2491 	rcu_nocb_unlock_irqrestore(rdp, flags);
2492 
2493 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2494 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2495 		invoke_rcu_core();
2496 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2497 }
2498 
2499 /*
2500  * This function is invoked from each scheduling-clock interrupt,
2501  * and checks to see if this CPU is in a non-context-switch quiescent
2502  * state, for example, user mode or idle loop.  It also schedules RCU
2503  * core processing.  If the current grace period has gone on too long,
2504  * it will ask the scheduler to manufacture a context switch for the sole
2505  * purpose of providing a providing the needed quiescent state.
2506  */
2507 void rcu_sched_clock_irq(int user)
2508 {
2509 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2510 	raw_cpu_inc(rcu_data.ticks_this_gp);
2511 	/* The load-acquire pairs with the store-release setting to true. */
2512 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2513 		/* Idle and userspace execution already are quiescent states. */
2514 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2515 			set_tsk_need_resched(current);
2516 			set_preempt_need_resched();
2517 		}
2518 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2519 	}
2520 	rcu_flavor_sched_clock_irq(user);
2521 	if (rcu_pending(user))
2522 		invoke_rcu_core();
2523 
2524 	trace_rcu_utilization(TPS("End scheduler-tick"));
2525 }
2526 
2527 /*
2528  * Scan the leaf rcu_node structures.  For each structure on which all
2529  * CPUs have reported a quiescent state and on which there are tasks
2530  * blocking the current grace period, initiate RCU priority boosting.
2531  * Otherwise, invoke the specified function to check dyntick state for
2532  * each CPU that has not yet reported a quiescent state.
2533  */
2534 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2535 {
2536 	int cpu;
2537 	unsigned long flags;
2538 	unsigned long mask;
2539 	struct rcu_data *rdp;
2540 	struct rcu_node *rnp;
2541 
2542 	rcu_state.cbovld = rcu_state.cbovldnext;
2543 	rcu_state.cbovldnext = false;
2544 	rcu_for_each_leaf_node(rnp) {
2545 		cond_resched_tasks_rcu_qs();
2546 		mask = 0;
2547 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2548 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2549 		if (rnp->qsmask == 0) {
2550 			if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2551 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2552 				/*
2553 				 * No point in scanning bits because they
2554 				 * are all zero.  But we might need to
2555 				 * priority-boost blocked readers.
2556 				 */
2557 				rcu_initiate_boost(rnp, flags);
2558 				/* rcu_initiate_boost() releases rnp->lock */
2559 				continue;
2560 			}
2561 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2562 			continue;
2563 		}
2564 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2565 			rdp = per_cpu_ptr(&rcu_data, cpu);
2566 			if (f(rdp)) {
2567 				mask |= rdp->grpmask;
2568 				rcu_disable_urgency_upon_qs(rdp);
2569 			}
2570 		}
2571 		if (mask != 0) {
2572 			/* Idle/offline CPUs, report (releases rnp->lock). */
2573 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2574 		} else {
2575 			/* Nothing to do here, so just drop the lock. */
2576 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2577 		}
2578 	}
2579 }
2580 
2581 /*
2582  * Force quiescent states on reluctant CPUs, and also detect which
2583  * CPUs are in dyntick-idle mode.
2584  */
2585 void rcu_force_quiescent_state(void)
2586 {
2587 	unsigned long flags;
2588 	bool ret;
2589 	struct rcu_node *rnp;
2590 	struct rcu_node *rnp_old = NULL;
2591 
2592 	/* Funnel through hierarchy to reduce memory contention. */
2593 	rnp = __this_cpu_read(rcu_data.mynode);
2594 	for (; rnp != NULL; rnp = rnp->parent) {
2595 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2596 		       !raw_spin_trylock(&rnp->fqslock);
2597 		if (rnp_old != NULL)
2598 			raw_spin_unlock(&rnp_old->fqslock);
2599 		if (ret)
2600 			return;
2601 		rnp_old = rnp;
2602 	}
2603 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2604 
2605 	/* Reached the root of the rcu_node tree, acquire lock. */
2606 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2607 	raw_spin_unlock(&rnp_old->fqslock);
2608 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2609 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2610 		return;  /* Someone beat us to it. */
2611 	}
2612 	WRITE_ONCE(rcu_state.gp_flags,
2613 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2614 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2615 	rcu_gp_kthread_wake();
2616 }
2617 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2618 
2619 /* Perform RCU core processing work for the current CPU.  */
2620 static __latent_entropy void rcu_core(void)
2621 {
2622 	unsigned long flags;
2623 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2624 	struct rcu_node *rnp = rdp->mynode;
2625 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2626 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2627 
2628 	if (cpu_is_offline(smp_processor_id()))
2629 		return;
2630 	trace_rcu_utilization(TPS("Start RCU core"));
2631 	WARN_ON_ONCE(!rdp->beenonline);
2632 
2633 	/* Report any deferred quiescent states if preemption enabled. */
2634 	if (!(preempt_count() & PREEMPT_MASK)) {
2635 		rcu_preempt_deferred_qs(current);
2636 	} else if (rcu_preempt_need_deferred_qs(current)) {
2637 		set_tsk_need_resched(current);
2638 		set_preempt_need_resched();
2639 	}
2640 
2641 	/* Update RCU state based on any recent quiescent states. */
2642 	rcu_check_quiescent_state(rdp);
2643 
2644 	/* No grace period and unregistered callbacks? */
2645 	if (!rcu_gp_in_progress() &&
2646 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2647 		local_irq_save(flags);
2648 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2649 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2650 		local_irq_restore(flags);
2651 	}
2652 
2653 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2654 
2655 	/* If there are callbacks ready, invoke them. */
2656 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2657 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2658 		rcu_do_batch(rdp);
2659 
2660 	/* Do any needed deferred wakeups of rcuo kthreads. */
2661 	do_nocb_deferred_wakeup(rdp);
2662 	trace_rcu_utilization(TPS("End RCU core"));
2663 }
2664 
2665 static void rcu_core_si(struct softirq_action *h)
2666 {
2667 	rcu_core();
2668 }
2669 
2670 static void rcu_wake_cond(struct task_struct *t, int status)
2671 {
2672 	/*
2673 	 * If the thread is yielding, only wake it when this
2674 	 * is invoked from idle
2675 	 */
2676 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2677 		wake_up_process(t);
2678 }
2679 
2680 static void invoke_rcu_core_kthread(void)
2681 {
2682 	struct task_struct *t;
2683 	unsigned long flags;
2684 
2685 	local_irq_save(flags);
2686 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2687 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2688 	if (t != NULL && t != current)
2689 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2690 	local_irq_restore(flags);
2691 }
2692 
2693 /*
2694  * Wake up this CPU's rcuc kthread to do RCU core processing.
2695  */
2696 static void invoke_rcu_core(void)
2697 {
2698 	if (!cpu_online(smp_processor_id()))
2699 		return;
2700 	if (use_softirq)
2701 		raise_softirq(RCU_SOFTIRQ);
2702 	else
2703 		invoke_rcu_core_kthread();
2704 }
2705 
2706 static void rcu_cpu_kthread_park(unsigned int cpu)
2707 {
2708 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2709 }
2710 
2711 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2712 {
2713 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2714 }
2715 
2716 /*
2717  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2718  * the RCU softirq used in configurations of RCU that do not support RCU
2719  * priority boosting.
2720  */
2721 static void rcu_cpu_kthread(unsigned int cpu)
2722 {
2723 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2724 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2725 	int spincnt;
2726 
2727 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2728 	for (spincnt = 0; spincnt < 10; spincnt++) {
2729 		local_bh_disable();
2730 		*statusp = RCU_KTHREAD_RUNNING;
2731 		local_irq_disable();
2732 		work = *workp;
2733 		*workp = 0;
2734 		local_irq_enable();
2735 		if (work)
2736 			rcu_core();
2737 		local_bh_enable();
2738 		if (*workp == 0) {
2739 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2740 			*statusp = RCU_KTHREAD_WAITING;
2741 			return;
2742 		}
2743 	}
2744 	*statusp = RCU_KTHREAD_YIELDING;
2745 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2746 	schedule_timeout_idle(2);
2747 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2748 	*statusp = RCU_KTHREAD_WAITING;
2749 }
2750 
2751 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2752 	.store			= &rcu_data.rcu_cpu_kthread_task,
2753 	.thread_should_run	= rcu_cpu_kthread_should_run,
2754 	.thread_fn		= rcu_cpu_kthread,
2755 	.thread_comm		= "rcuc/%u",
2756 	.setup			= rcu_cpu_kthread_setup,
2757 	.park			= rcu_cpu_kthread_park,
2758 };
2759 
2760 /*
2761  * Spawn per-CPU RCU core processing kthreads.
2762  */
2763 static int __init rcu_spawn_core_kthreads(void)
2764 {
2765 	int cpu;
2766 
2767 	for_each_possible_cpu(cpu)
2768 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2769 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2770 		return 0;
2771 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2772 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2773 	return 0;
2774 }
2775 early_initcall(rcu_spawn_core_kthreads);
2776 
2777 /*
2778  * Handle any core-RCU processing required by a call_rcu() invocation.
2779  */
2780 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2781 			    unsigned long flags)
2782 {
2783 	/*
2784 	 * If called from an extended quiescent state, invoke the RCU
2785 	 * core in order to force a re-evaluation of RCU's idleness.
2786 	 */
2787 	if (!rcu_is_watching())
2788 		invoke_rcu_core();
2789 
2790 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2791 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2792 		return;
2793 
2794 	/*
2795 	 * Force the grace period if too many callbacks or too long waiting.
2796 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2797 	 * if some other CPU has recently done so.  Also, don't bother
2798 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2799 	 * is the only one waiting for a grace period to complete.
2800 	 */
2801 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2802 		     rdp->qlen_last_fqs_check + qhimark)) {
2803 
2804 		/* Are we ignoring a completed grace period? */
2805 		note_gp_changes(rdp);
2806 
2807 		/* Start a new grace period if one not already started. */
2808 		if (!rcu_gp_in_progress()) {
2809 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2810 		} else {
2811 			/* Give the grace period a kick. */
2812 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2813 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2814 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2815 				rcu_force_quiescent_state();
2816 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2817 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2818 		}
2819 	}
2820 }
2821 
2822 /*
2823  * RCU callback function to leak a callback.
2824  */
2825 static void rcu_leak_callback(struct rcu_head *rhp)
2826 {
2827 }
2828 
2829 /*
2830  * Check and if necessary update the leaf rcu_node structure's
2831  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2832  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2833  * structure's ->lock.
2834  */
2835 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2836 {
2837 	raw_lockdep_assert_held_rcu_node(rnp);
2838 	if (qovld_calc <= 0)
2839 		return; // Early boot and wildcard value set.
2840 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2841 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2842 	else
2843 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2844 }
2845 
2846 /*
2847  * Check and if necessary update the leaf rcu_node structure's
2848  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2849  * number of queued RCU callbacks.  No locks need be held, but the
2850  * caller must have disabled interrupts.
2851  *
2852  * Note that this function ignores the possibility that there are a lot
2853  * of callbacks all of which have already seen the end of their respective
2854  * grace periods.  This omission is due to the need for no-CBs CPUs to
2855  * be holding ->nocb_lock to do this check, which is too heavy for a
2856  * common-case operation.
2857  */
2858 static void check_cb_ovld(struct rcu_data *rdp)
2859 {
2860 	struct rcu_node *const rnp = rdp->mynode;
2861 
2862 	if (qovld_calc <= 0 ||
2863 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2864 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2865 		return; // Early boot wildcard value or already set correctly.
2866 	raw_spin_lock_rcu_node(rnp);
2867 	check_cb_ovld_locked(rdp, rnp);
2868 	raw_spin_unlock_rcu_node(rnp);
2869 }
2870 
2871 /* Helper function for call_rcu() and friends.  */
2872 static void
2873 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2874 {
2875 	unsigned long flags;
2876 	struct rcu_data *rdp;
2877 	bool was_alldone;
2878 
2879 	/* Misaligned rcu_head! */
2880 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2881 
2882 	if (debug_rcu_head_queue(head)) {
2883 		/*
2884 		 * Probable double call_rcu(), so leak the callback.
2885 		 * Use rcu:rcu_callback trace event to find the previous
2886 		 * time callback was passed to __call_rcu().
2887 		 */
2888 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2889 			  head, head->func);
2890 		WRITE_ONCE(head->func, rcu_leak_callback);
2891 		return;
2892 	}
2893 	head->func = func;
2894 	head->next = NULL;
2895 	local_irq_save(flags);
2896 	kasan_record_aux_stack(head);
2897 	rdp = this_cpu_ptr(&rcu_data);
2898 
2899 	/* Add the callback to our list. */
2900 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2901 		// This can trigger due to call_rcu() from offline CPU:
2902 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2903 		WARN_ON_ONCE(!rcu_is_watching());
2904 		// Very early boot, before rcu_init().  Initialize if needed
2905 		// and then drop through to queue the callback.
2906 		if (rcu_segcblist_empty(&rdp->cblist))
2907 			rcu_segcblist_init(&rdp->cblist);
2908 	}
2909 
2910 	check_cb_ovld(rdp);
2911 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2912 		return; // Enqueued onto ->nocb_bypass, so just leave.
2913 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2914 	rcu_segcblist_enqueue(&rdp->cblist, head);
2915 	if (__is_kvfree_rcu_offset((unsigned long)func))
2916 		trace_rcu_kvfree_callback(rcu_state.name, head,
2917 					 (unsigned long)func,
2918 					 rcu_segcblist_n_cbs(&rdp->cblist));
2919 	else
2920 		trace_rcu_callback(rcu_state.name, head,
2921 				   rcu_segcblist_n_cbs(&rdp->cblist));
2922 
2923 	/* Go handle any RCU core processing required. */
2924 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2925 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2926 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2927 	} else {
2928 		__call_rcu_core(rdp, head, flags);
2929 		local_irq_restore(flags);
2930 	}
2931 }
2932 
2933 /**
2934  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2935  * @head: structure to be used for queueing the RCU updates.
2936  * @func: actual callback function to be invoked after the grace period
2937  *
2938  * The callback function will be invoked some time after a full grace
2939  * period elapses, in other words after all pre-existing RCU read-side
2940  * critical sections have completed.  However, the callback function
2941  * might well execute concurrently with RCU read-side critical sections
2942  * that started after call_rcu() was invoked.  RCU read-side critical
2943  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2944  * may be nested.  In addition, regions of code across which interrupts,
2945  * preemption, or softirqs have been disabled also serve as RCU read-side
2946  * critical sections.  This includes hardware interrupt handlers, softirq
2947  * handlers, and NMI handlers.
2948  *
2949  * Note that all CPUs must agree that the grace period extended beyond
2950  * all pre-existing RCU read-side critical section.  On systems with more
2951  * than one CPU, this means that when "func()" is invoked, each CPU is
2952  * guaranteed to have executed a full memory barrier since the end of its
2953  * last RCU read-side critical section whose beginning preceded the call
2954  * to call_rcu().  It also means that each CPU executing an RCU read-side
2955  * critical section that continues beyond the start of "func()" must have
2956  * executed a memory barrier after the call_rcu() but before the beginning
2957  * of that RCU read-side critical section.  Note that these guarantees
2958  * include CPUs that are offline, idle, or executing in user mode, as
2959  * well as CPUs that are executing in the kernel.
2960  *
2961  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2962  * resulting RCU callback function "func()", then both CPU A and CPU B are
2963  * guaranteed to execute a full memory barrier during the time interval
2964  * between the call to call_rcu() and the invocation of "func()" -- even
2965  * if CPU A and CPU B are the same CPU (but again only if the system has
2966  * more than one CPU).
2967  */
2968 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2969 {
2970 	__call_rcu(head, func);
2971 }
2972 EXPORT_SYMBOL_GPL(call_rcu);
2973 
2974 
2975 /* Maximum number of jiffies to wait before draining a batch. */
2976 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2977 #define KFREE_N_BATCHES 2
2978 #define FREE_N_CHANNELS 2
2979 
2980 /**
2981  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2982  * @nr_records: Number of active pointers in the array
2983  * @next: Next bulk object in the block chain
2984  * @records: Array of the kvfree_rcu() pointers
2985  */
2986 struct kvfree_rcu_bulk_data {
2987 	unsigned long nr_records;
2988 	struct kvfree_rcu_bulk_data *next;
2989 	void *records[];
2990 };
2991 
2992 /*
2993  * This macro defines how many entries the "records" array
2994  * will contain. It is based on the fact that the size of
2995  * kvfree_rcu_bulk_data structure becomes exactly one page.
2996  */
2997 #define KVFREE_BULK_MAX_ENTR \
2998 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2999 
3000 /**
3001  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3002  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3003  * @head_free: List of kfree_rcu() objects waiting for a grace period
3004  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3005  * @krcp: Pointer to @kfree_rcu_cpu structure
3006  */
3007 
3008 struct kfree_rcu_cpu_work {
3009 	struct rcu_work rcu_work;
3010 	struct rcu_head *head_free;
3011 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3012 	struct kfree_rcu_cpu *krcp;
3013 };
3014 
3015 /**
3016  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3017  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3018  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3019  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3020  * @lock: Synchronize access to this structure
3021  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3022  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3023  * @initialized: The @rcu_work fields have been initialized
3024  * @count: Number of objects for which GP not started
3025  *
3026  * This is a per-CPU structure.  The reason that it is not included in
3027  * the rcu_data structure is to permit this code to be extracted from
3028  * the RCU files.  Such extraction could allow further optimization of
3029  * the interactions with the slab allocators.
3030  */
3031 struct kfree_rcu_cpu {
3032 	struct rcu_head *head;
3033 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3034 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3035 	raw_spinlock_t lock;
3036 	struct delayed_work monitor_work;
3037 	bool monitor_todo;
3038 	bool initialized;
3039 	int count;
3040 
3041 	/*
3042 	 * A simple cache list that contains objects for
3043 	 * reuse purpose. In order to save some per-cpu
3044 	 * space the list is singular. Even though it is
3045 	 * lockless an access has to be protected by the
3046 	 * per-cpu lock.
3047 	 */
3048 	struct llist_head bkvcache;
3049 	int nr_bkv_objs;
3050 };
3051 
3052 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3053 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3054 };
3055 
3056 static __always_inline void
3057 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3058 {
3059 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3060 	int i;
3061 
3062 	for (i = 0; i < bhead->nr_records; i++)
3063 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3064 #endif
3065 }
3066 
3067 static inline struct kfree_rcu_cpu *
3068 krc_this_cpu_lock(unsigned long *flags)
3069 {
3070 	struct kfree_rcu_cpu *krcp;
3071 
3072 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3073 	krcp = this_cpu_ptr(&krc);
3074 	raw_spin_lock(&krcp->lock);
3075 
3076 	return krcp;
3077 }
3078 
3079 static inline void
3080 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3081 {
3082 	raw_spin_unlock(&krcp->lock);
3083 	local_irq_restore(flags);
3084 }
3085 
3086 static inline struct kvfree_rcu_bulk_data *
3087 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3088 {
3089 	if (!krcp->nr_bkv_objs)
3090 		return NULL;
3091 
3092 	krcp->nr_bkv_objs--;
3093 	return (struct kvfree_rcu_bulk_data *)
3094 		llist_del_first(&krcp->bkvcache);
3095 }
3096 
3097 static inline bool
3098 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3099 	struct kvfree_rcu_bulk_data *bnode)
3100 {
3101 	// Check the limit.
3102 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3103 		return false;
3104 
3105 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3106 	krcp->nr_bkv_objs++;
3107 	return true;
3108 
3109 }
3110 
3111 /*
3112  * This function is invoked in workqueue context after a grace period.
3113  * It frees all the objects queued on ->bhead_free or ->head_free.
3114  */
3115 static void kfree_rcu_work(struct work_struct *work)
3116 {
3117 	unsigned long flags;
3118 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3119 	struct rcu_head *head, *next;
3120 	struct kfree_rcu_cpu *krcp;
3121 	struct kfree_rcu_cpu_work *krwp;
3122 	int i, j;
3123 
3124 	krwp = container_of(to_rcu_work(work),
3125 			    struct kfree_rcu_cpu_work, rcu_work);
3126 	krcp = krwp->krcp;
3127 
3128 	raw_spin_lock_irqsave(&krcp->lock, flags);
3129 	// Channels 1 and 2.
3130 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3131 		bkvhead[i] = krwp->bkvhead_free[i];
3132 		krwp->bkvhead_free[i] = NULL;
3133 	}
3134 
3135 	// Channel 3.
3136 	head = krwp->head_free;
3137 	krwp->head_free = NULL;
3138 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3139 
3140 	// Handle two first channels.
3141 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3142 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3143 			bnext = bkvhead[i]->next;
3144 			debug_rcu_bhead_unqueue(bkvhead[i]);
3145 
3146 			rcu_lock_acquire(&rcu_callback_map);
3147 			if (i == 0) { // kmalloc() / kfree().
3148 				trace_rcu_invoke_kfree_bulk_callback(
3149 					rcu_state.name, bkvhead[i]->nr_records,
3150 					bkvhead[i]->records);
3151 
3152 				kfree_bulk(bkvhead[i]->nr_records,
3153 					bkvhead[i]->records);
3154 			} else { // vmalloc() / vfree().
3155 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3156 					trace_rcu_invoke_kvfree_callback(
3157 						rcu_state.name,
3158 						bkvhead[i]->records[j], 0);
3159 
3160 					vfree(bkvhead[i]->records[j]);
3161 				}
3162 			}
3163 			rcu_lock_release(&rcu_callback_map);
3164 
3165 			krcp = krc_this_cpu_lock(&flags);
3166 			if (put_cached_bnode(krcp, bkvhead[i]))
3167 				bkvhead[i] = NULL;
3168 			krc_this_cpu_unlock(krcp, flags);
3169 
3170 			if (bkvhead[i])
3171 				free_page((unsigned long) bkvhead[i]);
3172 
3173 			cond_resched_tasks_rcu_qs();
3174 		}
3175 	}
3176 
3177 	/*
3178 	 * Emergency case only. It can happen under low memory
3179 	 * condition when an allocation gets failed, so the "bulk"
3180 	 * path can not be temporary maintained.
3181 	 */
3182 	for (; head; head = next) {
3183 		unsigned long offset = (unsigned long)head->func;
3184 		void *ptr = (void *)head - offset;
3185 
3186 		next = head->next;
3187 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3188 		rcu_lock_acquire(&rcu_callback_map);
3189 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3190 
3191 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3192 			kvfree(ptr);
3193 
3194 		rcu_lock_release(&rcu_callback_map);
3195 		cond_resched_tasks_rcu_qs();
3196 	}
3197 }
3198 
3199 /*
3200  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3201  *
3202  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3203  * timeout has been reached.
3204  */
3205 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3206 {
3207 	struct kfree_rcu_cpu_work *krwp;
3208 	bool repeat = false;
3209 	int i, j;
3210 
3211 	lockdep_assert_held(&krcp->lock);
3212 
3213 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3214 		krwp = &(krcp->krw_arr[i]);
3215 
3216 		/*
3217 		 * Try to detach bkvhead or head and attach it over any
3218 		 * available corresponding free channel. It can be that
3219 		 * a previous RCU batch is in progress, it means that
3220 		 * immediately to queue another one is not possible so
3221 		 * return false to tell caller to retry.
3222 		 */
3223 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3224 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3225 				(krcp->head && !krwp->head_free)) {
3226 			// Channel 1 corresponds to SLAB ptrs.
3227 			// Channel 2 corresponds to vmalloc ptrs.
3228 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3229 				if (!krwp->bkvhead_free[j]) {
3230 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3231 					krcp->bkvhead[j] = NULL;
3232 				}
3233 			}
3234 
3235 			// Channel 3 corresponds to emergency path.
3236 			if (!krwp->head_free) {
3237 				krwp->head_free = krcp->head;
3238 				krcp->head = NULL;
3239 			}
3240 
3241 			WRITE_ONCE(krcp->count, 0);
3242 
3243 			/*
3244 			 * One work is per one batch, so there are three
3245 			 * "free channels", the batch can handle. It can
3246 			 * be that the work is in the pending state when
3247 			 * channels have been detached following by each
3248 			 * other.
3249 			 */
3250 			queue_rcu_work(system_wq, &krwp->rcu_work);
3251 		}
3252 
3253 		// Repeat if any "free" corresponding channel is still busy.
3254 		if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3255 			repeat = true;
3256 	}
3257 
3258 	return !repeat;
3259 }
3260 
3261 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3262 					  unsigned long flags)
3263 {
3264 	// Attempt to start a new batch.
3265 	krcp->monitor_todo = false;
3266 	if (queue_kfree_rcu_work(krcp)) {
3267 		// Success! Our job is done here.
3268 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3269 		return;
3270 	}
3271 
3272 	// Previous RCU batch still in progress, try again later.
3273 	krcp->monitor_todo = true;
3274 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3275 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3276 }
3277 
3278 /*
3279  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3280  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3281  */
3282 static void kfree_rcu_monitor(struct work_struct *work)
3283 {
3284 	unsigned long flags;
3285 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3286 						 monitor_work.work);
3287 
3288 	raw_spin_lock_irqsave(&krcp->lock, flags);
3289 	if (krcp->monitor_todo)
3290 		kfree_rcu_drain_unlock(krcp, flags);
3291 	else
3292 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3293 }
3294 
3295 static inline bool
3296 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3297 {
3298 	struct kvfree_rcu_bulk_data *bnode;
3299 	int idx;
3300 
3301 	if (unlikely(!krcp->initialized))
3302 		return false;
3303 
3304 	lockdep_assert_held(&krcp->lock);
3305 	idx = !!is_vmalloc_addr(ptr);
3306 
3307 	/* Check if a new block is required. */
3308 	if (!krcp->bkvhead[idx] ||
3309 			krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3310 		bnode = get_cached_bnode(krcp);
3311 		if (!bnode) {
3312 			/*
3313 			 * To keep this path working on raw non-preemptible
3314 			 * sections, prevent the optional entry into the
3315 			 * allocator as it uses sleeping locks. In fact, even
3316 			 * if the caller of kfree_rcu() is preemptible, this
3317 			 * path still is not, as krcp->lock is a raw spinlock.
3318 			 * With additional page pre-allocation in the works,
3319 			 * hitting this return is going to be much less likely.
3320 			 */
3321 			if (IS_ENABLED(CONFIG_PREEMPT_RT))
3322 				return false;
3323 
3324 			/*
3325 			 * NOTE: For one argument of kvfree_rcu() we can
3326 			 * drop the lock and get the page in sleepable
3327 			 * context. That would allow to maintain an array
3328 			 * for the CONFIG_PREEMPT_RT as well if no cached
3329 			 * pages are available.
3330 			 */
3331 			bnode = (struct kvfree_rcu_bulk_data *)
3332 				__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
3333 		}
3334 
3335 		/* Switch to emergency path. */
3336 		if (unlikely(!bnode))
3337 			return false;
3338 
3339 		/* Initialize the new block. */
3340 		bnode->nr_records = 0;
3341 		bnode->next = krcp->bkvhead[idx];
3342 
3343 		/* Attach it to the head. */
3344 		krcp->bkvhead[idx] = bnode;
3345 	}
3346 
3347 	/* Finally insert. */
3348 	krcp->bkvhead[idx]->records
3349 		[krcp->bkvhead[idx]->nr_records++] = ptr;
3350 
3351 	return true;
3352 }
3353 
3354 /*
3355  * Queue a request for lazy invocation of appropriate free routine after a
3356  * grace period. Please note there are three paths are maintained, two are the
3357  * main ones that use array of pointers interface and third one is emergency
3358  * one, that is used only when the main path can not be maintained temporary,
3359  * due to memory pressure.
3360  *
3361  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3362  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3363  * be free'd in workqueue context. This allows us to: batch requests together to
3364  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3365  */
3366 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3367 {
3368 	unsigned long flags;
3369 	struct kfree_rcu_cpu *krcp;
3370 	bool success;
3371 	void *ptr;
3372 
3373 	if (head) {
3374 		ptr = (void *) head - (unsigned long) func;
3375 	} else {
3376 		/*
3377 		 * Please note there is a limitation for the head-less
3378 		 * variant, that is why there is a clear rule for such
3379 		 * objects: it can be used from might_sleep() context
3380 		 * only. For other places please embed an rcu_head to
3381 		 * your data.
3382 		 */
3383 		might_sleep();
3384 		ptr = (unsigned long *) func;
3385 	}
3386 
3387 	krcp = krc_this_cpu_lock(&flags);
3388 
3389 	// Queue the object but don't yet schedule the batch.
3390 	if (debug_rcu_head_queue(ptr)) {
3391 		// Probable double kfree_rcu(), just leak.
3392 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3393 			  __func__, head);
3394 
3395 		// Mark as success and leave.
3396 		success = true;
3397 		goto unlock_return;
3398 	}
3399 
3400 	/*
3401 	 * Under high memory pressure GFP_NOWAIT can fail,
3402 	 * in that case the emergency path is maintained.
3403 	 */
3404 	success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3405 	if (!success) {
3406 		if (head == NULL)
3407 			// Inline if kvfree_rcu(one_arg) call.
3408 			goto unlock_return;
3409 
3410 		head->func = func;
3411 		head->next = krcp->head;
3412 		krcp->head = head;
3413 		success = true;
3414 	}
3415 
3416 	WRITE_ONCE(krcp->count, krcp->count + 1);
3417 
3418 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3419 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3420 	    !krcp->monitor_todo) {
3421 		krcp->monitor_todo = true;
3422 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3423 	}
3424 
3425 unlock_return:
3426 	krc_this_cpu_unlock(krcp, flags);
3427 
3428 	/*
3429 	 * Inline kvfree() after synchronize_rcu(). We can do
3430 	 * it from might_sleep() context only, so the current
3431 	 * CPU can pass the QS state.
3432 	 */
3433 	if (!success) {
3434 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3435 		synchronize_rcu();
3436 		kvfree(ptr);
3437 	}
3438 }
3439 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3440 
3441 static unsigned long
3442 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3443 {
3444 	int cpu;
3445 	unsigned long count = 0;
3446 
3447 	/* Snapshot count of all CPUs */
3448 	for_each_online_cpu(cpu) {
3449 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3450 
3451 		count += READ_ONCE(krcp->count);
3452 	}
3453 
3454 	return count;
3455 }
3456 
3457 static unsigned long
3458 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3459 {
3460 	int cpu, freed = 0;
3461 	unsigned long flags;
3462 
3463 	for_each_online_cpu(cpu) {
3464 		int count;
3465 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3466 
3467 		count = krcp->count;
3468 		raw_spin_lock_irqsave(&krcp->lock, flags);
3469 		if (krcp->monitor_todo)
3470 			kfree_rcu_drain_unlock(krcp, flags);
3471 		else
3472 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473 
3474 		sc->nr_to_scan -= count;
3475 		freed += count;
3476 
3477 		if (sc->nr_to_scan <= 0)
3478 			break;
3479 	}
3480 
3481 	return freed == 0 ? SHRINK_STOP : freed;
3482 }
3483 
3484 static struct shrinker kfree_rcu_shrinker = {
3485 	.count_objects = kfree_rcu_shrink_count,
3486 	.scan_objects = kfree_rcu_shrink_scan,
3487 	.batch = 0,
3488 	.seeks = DEFAULT_SEEKS,
3489 };
3490 
3491 void __init kfree_rcu_scheduler_running(void)
3492 {
3493 	int cpu;
3494 	unsigned long flags;
3495 
3496 	for_each_online_cpu(cpu) {
3497 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3498 
3499 		raw_spin_lock_irqsave(&krcp->lock, flags);
3500 		if (!krcp->head || krcp->monitor_todo) {
3501 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3502 			continue;
3503 		}
3504 		krcp->monitor_todo = true;
3505 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3506 					 KFREE_DRAIN_JIFFIES);
3507 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3508 	}
3509 }
3510 
3511 /*
3512  * During early boot, any blocking grace-period wait automatically
3513  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3514  *
3515  * Howevr, because a context switch is a grace period for !PREEMPTION, any
3516  * blocking grace-period wait automatically implies a grace period if
3517  * there is only one CPU online at any point time during execution of
3518  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3519  * occasionally incorrectly indicate that there are multiple CPUs online
3520  * when there was in fact only one the whole time, as this just adds some
3521  * overhead: RCU still operates correctly.
3522  */
3523 static int rcu_blocking_is_gp(void)
3524 {
3525 	int ret;
3526 
3527 	if (IS_ENABLED(CONFIG_PREEMPTION))
3528 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3529 	might_sleep();  /* Check for RCU read-side critical section. */
3530 	preempt_disable();
3531 	ret = num_online_cpus() <= 1;
3532 	preempt_enable();
3533 	return ret;
3534 }
3535 
3536 /**
3537  * synchronize_rcu - wait until a grace period has elapsed.
3538  *
3539  * Control will return to the caller some time after a full grace
3540  * period has elapsed, in other words after all currently executing RCU
3541  * read-side critical sections have completed.  Note, however, that
3542  * upon return from synchronize_rcu(), the caller might well be executing
3543  * concurrently with new RCU read-side critical sections that began while
3544  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3545  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3546  * In addition, regions of code across which interrupts, preemption, or
3547  * softirqs have been disabled also serve as RCU read-side critical
3548  * sections.  This includes hardware interrupt handlers, softirq handlers,
3549  * and NMI handlers.
3550  *
3551  * Note that this guarantee implies further memory-ordering guarantees.
3552  * On systems with more than one CPU, when synchronize_rcu() returns,
3553  * each CPU is guaranteed to have executed a full memory barrier since
3554  * the end of its last RCU read-side critical section whose beginning
3555  * preceded the call to synchronize_rcu().  In addition, each CPU having
3556  * an RCU read-side critical section that extends beyond the return from
3557  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3558  * after the beginning of synchronize_rcu() and before the beginning of
3559  * that RCU read-side critical section.  Note that these guarantees include
3560  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3561  * that are executing in the kernel.
3562  *
3563  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3564  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3565  * to have executed a full memory barrier during the execution of
3566  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3567  * again only if the system has more than one CPU).
3568  */
3569 void synchronize_rcu(void)
3570 {
3571 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3572 			 lock_is_held(&rcu_lock_map) ||
3573 			 lock_is_held(&rcu_sched_lock_map),
3574 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3575 	if (rcu_blocking_is_gp())
3576 		return;
3577 	if (rcu_gp_is_expedited())
3578 		synchronize_rcu_expedited();
3579 	else
3580 		wait_rcu_gp(call_rcu);
3581 }
3582 EXPORT_SYMBOL_GPL(synchronize_rcu);
3583 
3584 /**
3585  * get_state_synchronize_rcu - Snapshot current RCU state
3586  *
3587  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3588  * to determine whether or not a full grace period has elapsed in the
3589  * meantime.
3590  */
3591 unsigned long get_state_synchronize_rcu(void)
3592 {
3593 	/*
3594 	 * Any prior manipulation of RCU-protected data must happen
3595 	 * before the load from ->gp_seq.
3596 	 */
3597 	smp_mb();  /* ^^^ */
3598 	return rcu_seq_snap(&rcu_state.gp_seq);
3599 }
3600 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3601 
3602 /**
3603  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3604  *
3605  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3606  *
3607  * If a full RCU grace period has elapsed since the earlier call to
3608  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3609  * synchronize_rcu() to wait for a full grace period.
3610  *
3611  * Yes, this function does not take counter wrap into account.  But
3612  * counter wrap is harmless.  If the counter wraps, we have waited for
3613  * more than 2 billion grace periods (and way more on a 64-bit system!),
3614  * so waiting for one additional grace period should be just fine.
3615  */
3616 void cond_synchronize_rcu(unsigned long oldstate)
3617 {
3618 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3619 		synchronize_rcu();
3620 	else
3621 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3622 }
3623 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3624 
3625 /*
3626  * Check to see if there is any immediate RCU-related work to be done by
3627  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3628  * in order of increasing expense: checks that can be carried out against
3629  * CPU-local state are performed first.  However, we must check for CPU
3630  * stalls first, else we might not get a chance.
3631  */
3632 static int rcu_pending(int user)
3633 {
3634 	bool gp_in_progress;
3635 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3636 	struct rcu_node *rnp = rdp->mynode;
3637 
3638 	/* Check for CPU stalls, if enabled. */
3639 	check_cpu_stall(rdp);
3640 
3641 	/* Does this CPU need a deferred NOCB wakeup? */
3642 	if (rcu_nocb_need_deferred_wakeup(rdp))
3643 		return 1;
3644 
3645 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3646 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3647 		return 0;
3648 
3649 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3650 	gp_in_progress = rcu_gp_in_progress();
3651 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3652 		return 1;
3653 
3654 	/* Does this CPU have callbacks ready to invoke? */
3655 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3656 		return 1;
3657 
3658 	/* Has RCU gone idle with this CPU needing another grace period? */
3659 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3660 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3661 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3662 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3663 		return 1;
3664 
3665 	/* Have RCU grace period completed or started?  */
3666 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3667 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3668 		return 1;
3669 
3670 	/* nothing to do */
3671 	return 0;
3672 }
3673 
3674 /*
3675  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3676  * the compiler is expected to optimize this away.
3677  */
3678 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3679 {
3680 	trace_rcu_barrier(rcu_state.name, s, cpu,
3681 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3682 }
3683 
3684 /*
3685  * RCU callback function for rcu_barrier().  If we are last, wake
3686  * up the task executing rcu_barrier().
3687  *
3688  * Note that the value of rcu_state.barrier_sequence must be captured
3689  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3690  * other CPUs might count the value down to zero before this CPU gets
3691  * around to invoking rcu_barrier_trace(), which might result in bogus
3692  * data from the next instance of rcu_barrier().
3693  */
3694 static void rcu_barrier_callback(struct rcu_head *rhp)
3695 {
3696 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3697 
3698 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3699 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3700 		complete(&rcu_state.barrier_completion);
3701 	} else {
3702 		rcu_barrier_trace(TPS("CB"), -1, s);
3703 	}
3704 }
3705 
3706 /*
3707  * Called with preemption disabled, and from cross-cpu IRQ context.
3708  */
3709 static void rcu_barrier_func(void *cpu_in)
3710 {
3711 	uintptr_t cpu = (uintptr_t)cpu_in;
3712 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3713 
3714 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3715 	rdp->barrier_head.func = rcu_barrier_callback;
3716 	debug_rcu_head_queue(&rdp->barrier_head);
3717 	rcu_nocb_lock(rdp);
3718 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3719 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3720 		atomic_inc(&rcu_state.barrier_cpu_count);
3721 	} else {
3722 		debug_rcu_head_unqueue(&rdp->barrier_head);
3723 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3724 				  rcu_state.barrier_sequence);
3725 	}
3726 	rcu_nocb_unlock(rdp);
3727 }
3728 
3729 /**
3730  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3731  *
3732  * Note that this primitive does not necessarily wait for an RCU grace period
3733  * to complete.  For example, if there are no RCU callbacks queued anywhere
3734  * in the system, then rcu_barrier() is within its rights to return
3735  * immediately, without waiting for anything, much less an RCU grace period.
3736  */
3737 void rcu_barrier(void)
3738 {
3739 	uintptr_t cpu;
3740 	struct rcu_data *rdp;
3741 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3742 
3743 	rcu_barrier_trace(TPS("Begin"), -1, s);
3744 
3745 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3746 	mutex_lock(&rcu_state.barrier_mutex);
3747 
3748 	/* Did someone else do our work for us? */
3749 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3750 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3751 				  rcu_state.barrier_sequence);
3752 		smp_mb(); /* caller's subsequent code after above check. */
3753 		mutex_unlock(&rcu_state.barrier_mutex);
3754 		return;
3755 	}
3756 
3757 	/* Mark the start of the barrier operation. */
3758 	rcu_seq_start(&rcu_state.barrier_sequence);
3759 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3760 
3761 	/*
3762 	 * Initialize the count to two rather than to zero in order
3763 	 * to avoid a too-soon return to zero in case of an immediate
3764 	 * invocation of the just-enqueued callback (or preemption of
3765 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3766 	 * offline non-offloaded CPU has callbacks queued.
3767 	 */
3768 	init_completion(&rcu_state.barrier_completion);
3769 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3770 	get_online_cpus();
3771 
3772 	/*
3773 	 * Force each CPU with callbacks to register a new callback.
3774 	 * When that callback is invoked, we will know that all of the
3775 	 * corresponding CPU's preceding callbacks have been invoked.
3776 	 */
3777 	for_each_possible_cpu(cpu) {
3778 		rdp = per_cpu_ptr(&rcu_data, cpu);
3779 		if (cpu_is_offline(cpu) &&
3780 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
3781 			continue;
3782 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3783 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3784 					  rcu_state.barrier_sequence);
3785 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3786 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3787 			   cpu_is_offline(cpu)) {
3788 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3789 					  rcu_state.barrier_sequence);
3790 			local_irq_disable();
3791 			rcu_barrier_func((void *)cpu);
3792 			local_irq_enable();
3793 		} else if (cpu_is_offline(cpu)) {
3794 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3795 					  rcu_state.barrier_sequence);
3796 		} else {
3797 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3798 					  rcu_state.barrier_sequence);
3799 		}
3800 	}
3801 	put_online_cpus();
3802 
3803 	/*
3804 	 * Now that we have an rcu_barrier_callback() callback on each
3805 	 * CPU, and thus each counted, remove the initial count.
3806 	 */
3807 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3808 		complete(&rcu_state.barrier_completion);
3809 
3810 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3811 	wait_for_completion(&rcu_state.barrier_completion);
3812 
3813 	/* Mark the end of the barrier operation. */
3814 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3815 	rcu_seq_end(&rcu_state.barrier_sequence);
3816 
3817 	/* Other rcu_barrier() invocations can now safely proceed. */
3818 	mutex_unlock(&rcu_state.barrier_mutex);
3819 }
3820 EXPORT_SYMBOL_GPL(rcu_barrier);
3821 
3822 /*
3823  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3824  * first CPU in a given leaf rcu_node structure coming online.  The caller
3825  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3826  * disabled.
3827  */
3828 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3829 {
3830 	long mask;
3831 	long oldmask;
3832 	struct rcu_node *rnp = rnp_leaf;
3833 
3834 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3835 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3836 	for (;;) {
3837 		mask = rnp->grpmask;
3838 		rnp = rnp->parent;
3839 		if (rnp == NULL)
3840 			return;
3841 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3842 		oldmask = rnp->qsmaskinit;
3843 		rnp->qsmaskinit |= mask;
3844 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3845 		if (oldmask)
3846 			return;
3847 	}
3848 }
3849 
3850 /*
3851  * Do boot-time initialization of a CPU's per-CPU RCU data.
3852  */
3853 static void __init
3854 rcu_boot_init_percpu_data(int cpu)
3855 {
3856 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3857 
3858 	/* Set up local state, ensuring consistent view of global state. */
3859 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3860 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3861 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3862 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3863 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3864 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3865 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3866 	rdp->cpu = cpu;
3867 	rcu_boot_init_nocb_percpu_data(rdp);
3868 }
3869 
3870 /*
3871  * Invoked early in the CPU-online process, when pretty much all services
3872  * are available.  The incoming CPU is not present.
3873  *
3874  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3875  * offline event can be happening at a given time.  Note also that we can
3876  * accept some slop in the rsp->gp_seq access due to the fact that this
3877  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3878  * And any offloaded callbacks are being numbered elsewhere.
3879  */
3880 int rcutree_prepare_cpu(unsigned int cpu)
3881 {
3882 	unsigned long flags;
3883 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3884 	struct rcu_node *rnp = rcu_get_root();
3885 
3886 	/* Set up local state, ensuring consistent view of global state. */
3887 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3888 	rdp->qlen_last_fqs_check = 0;
3889 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3890 	rdp->blimit = blimit;
3891 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3892 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3893 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3894 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3895 	rcu_dynticks_eqs_online();
3896 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3897 
3898 	/*
3899 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3900 	 * propagation up the rcu_node tree will happen at the beginning
3901 	 * of the next grace period.
3902 	 */
3903 	rnp = rdp->mynode;
3904 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3905 	rdp->beenonline = true;	 /* We have now been online. */
3906 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3907 	rdp->gp_seq_needed = rdp->gp_seq;
3908 	rdp->cpu_no_qs.b.norm = true;
3909 	rdp->core_needs_qs = false;
3910 	rdp->rcu_iw_pending = false;
3911 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3912 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3913 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3914 	rcu_prepare_kthreads(cpu);
3915 	rcu_spawn_cpu_nocb_kthread(cpu);
3916 
3917 	return 0;
3918 }
3919 
3920 /*
3921  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3922  */
3923 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3924 {
3925 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3926 
3927 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3928 }
3929 
3930 /*
3931  * Near the end of the CPU-online process.  Pretty much all services
3932  * enabled, and the CPU is now very much alive.
3933  */
3934 int rcutree_online_cpu(unsigned int cpu)
3935 {
3936 	unsigned long flags;
3937 	struct rcu_data *rdp;
3938 	struct rcu_node *rnp;
3939 
3940 	rdp = per_cpu_ptr(&rcu_data, cpu);
3941 	rnp = rdp->mynode;
3942 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3943 	rnp->ffmask |= rdp->grpmask;
3944 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3945 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3946 		return 0; /* Too early in boot for scheduler work. */
3947 	sync_sched_exp_online_cleanup(cpu);
3948 	rcutree_affinity_setting(cpu, -1);
3949 
3950 	// Stop-machine done, so allow nohz_full to disable tick.
3951 	tick_dep_clear(TICK_DEP_BIT_RCU);
3952 	return 0;
3953 }
3954 
3955 /*
3956  * Near the beginning of the process.  The CPU is still very much alive
3957  * with pretty much all services enabled.
3958  */
3959 int rcutree_offline_cpu(unsigned int cpu)
3960 {
3961 	unsigned long flags;
3962 	struct rcu_data *rdp;
3963 	struct rcu_node *rnp;
3964 
3965 	rdp = per_cpu_ptr(&rcu_data, cpu);
3966 	rnp = rdp->mynode;
3967 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3968 	rnp->ffmask &= ~rdp->grpmask;
3969 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3970 
3971 	rcutree_affinity_setting(cpu, cpu);
3972 
3973 	// nohz_full CPUs need the tick for stop-machine to work quickly
3974 	tick_dep_set(TICK_DEP_BIT_RCU);
3975 	return 0;
3976 }
3977 
3978 static DEFINE_PER_CPU(int, rcu_cpu_started);
3979 
3980 /*
3981  * Mark the specified CPU as being online so that subsequent grace periods
3982  * (both expedited and normal) will wait on it.  Note that this means that
3983  * incoming CPUs are not allowed to use RCU read-side critical sections
3984  * until this function is called.  Failing to observe this restriction
3985  * will result in lockdep splats.
3986  *
3987  * Note that this function is special in that it is invoked directly
3988  * from the incoming CPU rather than from the cpuhp_step mechanism.
3989  * This is because this function must be invoked at a precise location.
3990  */
3991 void rcu_cpu_starting(unsigned int cpu)
3992 {
3993 	unsigned long flags;
3994 	unsigned long mask;
3995 	struct rcu_data *rdp;
3996 	struct rcu_node *rnp;
3997 	bool newcpu;
3998 
3999 	if (per_cpu(rcu_cpu_started, cpu))
4000 		return;
4001 
4002 	per_cpu(rcu_cpu_started, cpu) = 1;
4003 
4004 	rdp = per_cpu_ptr(&rcu_data, cpu);
4005 	rnp = rdp->mynode;
4006 	mask = rdp->grpmask;
4007 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4008 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4009 	newcpu = !(rnp->expmaskinitnext & mask);
4010 	rnp->expmaskinitnext |= mask;
4011 	/* Allow lockless access for expedited grace periods. */
4012 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4013 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4014 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4015 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4016 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4017 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4018 		rcu_disable_urgency_upon_qs(rdp);
4019 		/* Report QS -after- changing ->qsmaskinitnext! */
4020 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4021 	} else {
4022 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4023 	}
4024 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4025 }
4026 
4027 #ifdef CONFIG_HOTPLUG_CPU
4028 /*
4029  * The outgoing function has no further need of RCU, so remove it from
4030  * the rcu_node tree's ->qsmaskinitnext bit masks.
4031  *
4032  * Note that this function is special in that it is invoked directly
4033  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4034  * This is because this function must be invoked at a precise location.
4035  */
4036 void rcu_report_dead(unsigned int cpu)
4037 {
4038 	unsigned long flags;
4039 	unsigned long mask;
4040 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4041 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4042 
4043 	/* QS for any half-done expedited grace period. */
4044 	preempt_disable();
4045 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4046 	preempt_enable();
4047 	rcu_preempt_deferred_qs(current);
4048 
4049 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4050 	mask = rdp->grpmask;
4051 	raw_spin_lock(&rcu_state.ofl_lock);
4052 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4053 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4054 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4055 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4056 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4057 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4058 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4059 	}
4060 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4061 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4062 	raw_spin_unlock(&rcu_state.ofl_lock);
4063 
4064 	per_cpu(rcu_cpu_started, cpu) = 0;
4065 }
4066 
4067 /*
4068  * The outgoing CPU has just passed through the dying-idle state, and we
4069  * are being invoked from the CPU that was IPIed to continue the offline
4070  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4071  */
4072 void rcutree_migrate_callbacks(int cpu)
4073 {
4074 	unsigned long flags;
4075 	struct rcu_data *my_rdp;
4076 	struct rcu_node *my_rnp;
4077 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4078 	bool needwake;
4079 
4080 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4081 	    rcu_segcblist_empty(&rdp->cblist))
4082 		return;  /* No callbacks to migrate. */
4083 
4084 	local_irq_save(flags);
4085 	my_rdp = this_cpu_ptr(&rcu_data);
4086 	my_rnp = my_rdp->mynode;
4087 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4088 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4089 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4090 	/* Leverage recent GPs and set GP for new callbacks. */
4091 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4092 		   rcu_advance_cbs(my_rnp, my_rdp);
4093 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4094 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4095 	rcu_segcblist_disable(&rdp->cblist);
4096 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4097 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4098 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4099 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4100 		__call_rcu_nocb_wake(my_rdp, true, flags);
4101 	} else {
4102 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4103 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4104 	}
4105 	if (needwake)
4106 		rcu_gp_kthread_wake();
4107 	lockdep_assert_irqs_enabled();
4108 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4109 		  !rcu_segcblist_empty(&rdp->cblist),
4110 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4111 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4112 		  rcu_segcblist_first_cb(&rdp->cblist));
4113 }
4114 #endif
4115 
4116 /*
4117  * On non-huge systems, use expedited RCU grace periods to make suspend
4118  * and hibernation run faster.
4119  */
4120 static int rcu_pm_notify(struct notifier_block *self,
4121 			 unsigned long action, void *hcpu)
4122 {
4123 	switch (action) {
4124 	case PM_HIBERNATION_PREPARE:
4125 	case PM_SUSPEND_PREPARE:
4126 		rcu_expedite_gp();
4127 		break;
4128 	case PM_POST_HIBERNATION:
4129 	case PM_POST_SUSPEND:
4130 		rcu_unexpedite_gp();
4131 		break;
4132 	default:
4133 		break;
4134 	}
4135 	return NOTIFY_OK;
4136 }
4137 
4138 /*
4139  * Spawn the kthreads that handle RCU's grace periods.
4140  */
4141 static int __init rcu_spawn_gp_kthread(void)
4142 {
4143 	unsigned long flags;
4144 	int kthread_prio_in = kthread_prio;
4145 	struct rcu_node *rnp;
4146 	struct sched_param sp;
4147 	struct task_struct *t;
4148 
4149 	/* Force priority into range. */
4150 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4151 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4152 		kthread_prio = 2;
4153 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4154 		kthread_prio = 1;
4155 	else if (kthread_prio < 0)
4156 		kthread_prio = 0;
4157 	else if (kthread_prio > 99)
4158 		kthread_prio = 99;
4159 
4160 	if (kthread_prio != kthread_prio_in)
4161 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4162 			 kthread_prio, kthread_prio_in);
4163 
4164 	rcu_scheduler_fully_active = 1;
4165 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4166 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4167 		return 0;
4168 	if (kthread_prio) {
4169 		sp.sched_priority = kthread_prio;
4170 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4171 	}
4172 	rnp = rcu_get_root();
4173 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4174 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4175 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4176 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4177 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4178 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4179 	wake_up_process(t);
4180 	rcu_spawn_nocb_kthreads();
4181 	rcu_spawn_boost_kthreads();
4182 	return 0;
4183 }
4184 early_initcall(rcu_spawn_gp_kthread);
4185 
4186 /*
4187  * This function is invoked towards the end of the scheduler's
4188  * initialization process.  Before this is called, the idle task might
4189  * contain synchronous grace-period primitives (during which time, this idle
4190  * task is booting the system, and such primitives are no-ops).  After this
4191  * function is called, any synchronous grace-period primitives are run as
4192  * expedited, with the requesting task driving the grace period forward.
4193  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4194  * runtime RCU functionality.
4195  */
4196 void rcu_scheduler_starting(void)
4197 {
4198 	WARN_ON(num_online_cpus() != 1);
4199 	WARN_ON(nr_context_switches() > 0);
4200 	rcu_test_sync_prims();
4201 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4202 	rcu_test_sync_prims();
4203 }
4204 
4205 /*
4206  * Helper function for rcu_init() that initializes the rcu_state structure.
4207  */
4208 static void __init rcu_init_one(void)
4209 {
4210 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4211 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4212 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4213 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4214 
4215 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4216 	int cpustride = 1;
4217 	int i;
4218 	int j;
4219 	struct rcu_node *rnp;
4220 
4221 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4222 
4223 	/* Silence gcc 4.8 false positive about array index out of range. */
4224 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4225 		panic("rcu_init_one: rcu_num_lvls out of range");
4226 
4227 	/* Initialize the level-tracking arrays. */
4228 
4229 	for (i = 1; i < rcu_num_lvls; i++)
4230 		rcu_state.level[i] =
4231 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4232 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4233 
4234 	/* Initialize the elements themselves, starting from the leaves. */
4235 
4236 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4237 		cpustride *= levelspread[i];
4238 		rnp = rcu_state.level[i];
4239 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4240 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4241 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4242 						   &rcu_node_class[i], buf[i]);
4243 			raw_spin_lock_init(&rnp->fqslock);
4244 			lockdep_set_class_and_name(&rnp->fqslock,
4245 						   &rcu_fqs_class[i], fqs[i]);
4246 			rnp->gp_seq = rcu_state.gp_seq;
4247 			rnp->gp_seq_needed = rcu_state.gp_seq;
4248 			rnp->completedqs = rcu_state.gp_seq;
4249 			rnp->qsmask = 0;
4250 			rnp->qsmaskinit = 0;
4251 			rnp->grplo = j * cpustride;
4252 			rnp->grphi = (j + 1) * cpustride - 1;
4253 			if (rnp->grphi >= nr_cpu_ids)
4254 				rnp->grphi = nr_cpu_ids - 1;
4255 			if (i == 0) {
4256 				rnp->grpnum = 0;
4257 				rnp->grpmask = 0;
4258 				rnp->parent = NULL;
4259 			} else {
4260 				rnp->grpnum = j % levelspread[i - 1];
4261 				rnp->grpmask = BIT(rnp->grpnum);
4262 				rnp->parent = rcu_state.level[i - 1] +
4263 					      j / levelspread[i - 1];
4264 			}
4265 			rnp->level = i;
4266 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4267 			rcu_init_one_nocb(rnp);
4268 			init_waitqueue_head(&rnp->exp_wq[0]);
4269 			init_waitqueue_head(&rnp->exp_wq[1]);
4270 			init_waitqueue_head(&rnp->exp_wq[2]);
4271 			init_waitqueue_head(&rnp->exp_wq[3]);
4272 			spin_lock_init(&rnp->exp_lock);
4273 		}
4274 	}
4275 
4276 	init_swait_queue_head(&rcu_state.gp_wq);
4277 	init_swait_queue_head(&rcu_state.expedited_wq);
4278 	rnp = rcu_first_leaf_node();
4279 	for_each_possible_cpu(i) {
4280 		while (i > rnp->grphi)
4281 			rnp++;
4282 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4283 		rcu_boot_init_percpu_data(i);
4284 	}
4285 }
4286 
4287 /*
4288  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4289  * replace the definitions in tree.h because those are needed to size
4290  * the ->node array in the rcu_state structure.
4291  */
4292 static void __init rcu_init_geometry(void)
4293 {
4294 	ulong d;
4295 	int i;
4296 	int rcu_capacity[RCU_NUM_LVLS];
4297 
4298 	/*
4299 	 * Initialize any unspecified boot parameters.
4300 	 * The default values of jiffies_till_first_fqs and
4301 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4302 	 * value, which is a function of HZ, then adding one for each
4303 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4304 	 */
4305 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4306 	if (jiffies_till_first_fqs == ULONG_MAX)
4307 		jiffies_till_first_fqs = d;
4308 	if (jiffies_till_next_fqs == ULONG_MAX)
4309 		jiffies_till_next_fqs = d;
4310 	adjust_jiffies_till_sched_qs();
4311 
4312 	/* If the compile-time values are accurate, just leave. */
4313 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4314 	    nr_cpu_ids == NR_CPUS)
4315 		return;
4316 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4317 		rcu_fanout_leaf, nr_cpu_ids);
4318 
4319 	/*
4320 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4321 	 * and cannot exceed the number of bits in the rcu_node masks.
4322 	 * Complain and fall back to the compile-time values if this
4323 	 * limit is exceeded.
4324 	 */
4325 	if (rcu_fanout_leaf < 2 ||
4326 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4327 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4328 		WARN_ON(1);
4329 		return;
4330 	}
4331 
4332 	/*
4333 	 * Compute number of nodes that can be handled an rcu_node tree
4334 	 * with the given number of levels.
4335 	 */
4336 	rcu_capacity[0] = rcu_fanout_leaf;
4337 	for (i = 1; i < RCU_NUM_LVLS; i++)
4338 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4339 
4340 	/*
4341 	 * The tree must be able to accommodate the configured number of CPUs.
4342 	 * If this limit is exceeded, fall back to the compile-time values.
4343 	 */
4344 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4345 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4346 		WARN_ON(1);
4347 		return;
4348 	}
4349 
4350 	/* Calculate the number of levels in the tree. */
4351 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4352 	}
4353 	rcu_num_lvls = i + 1;
4354 
4355 	/* Calculate the number of rcu_nodes at each level of the tree. */
4356 	for (i = 0; i < rcu_num_lvls; i++) {
4357 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4358 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4359 	}
4360 
4361 	/* Calculate the total number of rcu_node structures. */
4362 	rcu_num_nodes = 0;
4363 	for (i = 0; i < rcu_num_lvls; i++)
4364 		rcu_num_nodes += num_rcu_lvl[i];
4365 }
4366 
4367 /*
4368  * Dump out the structure of the rcu_node combining tree associated
4369  * with the rcu_state structure.
4370  */
4371 static void __init rcu_dump_rcu_node_tree(void)
4372 {
4373 	int level = 0;
4374 	struct rcu_node *rnp;
4375 
4376 	pr_info("rcu_node tree layout dump\n");
4377 	pr_info(" ");
4378 	rcu_for_each_node_breadth_first(rnp) {
4379 		if (rnp->level != level) {
4380 			pr_cont("\n");
4381 			pr_info(" ");
4382 			level = rnp->level;
4383 		}
4384 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4385 	}
4386 	pr_cont("\n");
4387 }
4388 
4389 struct workqueue_struct *rcu_gp_wq;
4390 struct workqueue_struct *rcu_par_gp_wq;
4391 
4392 static void __init kfree_rcu_batch_init(void)
4393 {
4394 	int cpu;
4395 	int i;
4396 
4397 	for_each_possible_cpu(cpu) {
4398 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4399 		struct kvfree_rcu_bulk_data *bnode;
4400 
4401 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4402 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4403 			krcp->krw_arr[i].krcp = krcp;
4404 		}
4405 
4406 		for (i = 0; i < rcu_min_cached_objs; i++) {
4407 			bnode = (struct kvfree_rcu_bulk_data *)
4408 				__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
4409 
4410 			if (bnode)
4411 				put_cached_bnode(krcp, bnode);
4412 			else
4413 				pr_err("Failed to preallocate for %d CPU!\n", cpu);
4414 		}
4415 
4416 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4417 		krcp->initialized = true;
4418 	}
4419 	if (register_shrinker(&kfree_rcu_shrinker))
4420 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4421 }
4422 
4423 void __init rcu_init(void)
4424 {
4425 	int cpu;
4426 
4427 	rcu_early_boot_tests();
4428 
4429 	kfree_rcu_batch_init();
4430 	rcu_bootup_announce();
4431 	rcu_init_geometry();
4432 	rcu_init_one();
4433 	if (dump_tree)
4434 		rcu_dump_rcu_node_tree();
4435 	if (use_softirq)
4436 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4437 
4438 	/*
4439 	 * We don't need protection against CPU-hotplug here because
4440 	 * this is called early in boot, before either interrupts
4441 	 * or the scheduler are operational.
4442 	 */
4443 	pm_notifier(rcu_pm_notify, 0);
4444 	for_each_online_cpu(cpu) {
4445 		rcutree_prepare_cpu(cpu);
4446 		rcu_cpu_starting(cpu);
4447 		rcutree_online_cpu(cpu);
4448 	}
4449 
4450 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4451 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4452 	WARN_ON(!rcu_gp_wq);
4453 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4454 	WARN_ON(!rcu_par_gp_wq);
4455 	srcu_init();
4456 
4457 	/* Fill in default value for rcutree.qovld boot parameter. */
4458 	/* -After- the rcu_node ->lock fields are initialized! */
4459 	if (qovld < 0)
4460 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4461 	else
4462 		qovld_calc = qovld;
4463 }
4464 
4465 #include "tree_stall.h"
4466 #include "tree_exp.h"
4467 #include "tree_plugin.h"
4468