xref: /openbmc/linux/kernel/rcu/tree.c (revision e5c86679)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 
61 #include "tree.h"
62 #include "rcu.h"
63 
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 /*
72  * In order to export the rcu_state name to the tracing tools, it
73  * needs to be added in the __tracepoint_string section.
74  * This requires defining a separate variable tp_<sname>_varname
75  * that points to the string being used, and this will allow
76  * the tracing userspace tools to be able to decipher the string
77  * address to the matching string.
78  */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88 
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 	.level = { &sname##_state.node[0] }, \
94 	.rda = &sname##_data, \
95 	.call = cr, \
96 	.gp_state = RCU_GP_IDLE, \
97 	.gpnum = 0UL - 300UL, \
98 	.completed = 0UL - 300UL, \
99 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 	.orphan_donetail = &sname##_state.orphan_donelist, \
102 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 	.name = RCU_STATE_NAME(sname), \
104 	.abbr = sabbr, \
105 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 }
108 
109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111 
112 static struct rcu_state *const rcu_state_p;
113 LIST_HEAD(rcu_struct_flavors);
114 
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree;
117 module_param(dump_tree, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 /* panic() on RCU Stall sysctl. */
129 int sysctl_panic_on_rcu_stall __read_mostly;
130 
131 /*
132  * The rcu_scheduler_active variable is initialized to the value
133  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
134  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
135  * RCU can assume that there is but one task, allowing RCU to (for example)
136  * optimize synchronize_rcu() to a simple barrier().  When this variable
137  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
138  * to detect real grace periods.  This variable is also used to suppress
139  * boot-time false positives from lockdep-RCU error checking.  Finally, it
140  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
141  * is fully initialized, including all of its kthreads having been spawned.
142  */
143 int rcu_scheduler_active __read_mostly;
144 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145 
146 /*
147  * The rcu_scheduler_fully_active variable transitions from zero to one
148  * during the early_initcall() processing, which is after the scheduler
149  * is capable of creating new tasks.  So RCU processing (for example,
150  * creating tasks for RCU priority boosting) must be delayed until after
151  * rcu_scheduler_fully_active transitions from zero to one.  We also
152  * currently delay invocation of any RCU callbacks until after this point.
153  *
154  * It might later prove better for people registering RCU callbacks during
155  * early boot to take responsibility for these callbacks, but one step at
156  * a time.
157  */
158 static int rcu_scheduler_fully_active __read_mostly;
159 
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 static void invoke_rcu_core(void);
164 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 static void rcu_report_exp_rdp(struct rcu_state *rsp,
166 			       struct rcu_data *rdp, bool wake);
167 static void sync_sched_exp_online_cleanup(int cpu);
168 
169 /* rcuc/rcub kthread realtime priority */
170 #ifdef CONFIG_RCU_KTHREAD_PRIO
171 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
174 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 module_param(kthread_prio, int, 0644);
176 
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
178 
179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
180 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
181 module_param(gp_preinit_delay, int, 0644);
182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 static const int gp_preinit_delay;
184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
185 
186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
187 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188 module_param(gp_init_delay, int, 0644);
189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 static const int gp_init_delay;
191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
192 
193 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
194 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
195 module_param(gp_cleanup_delay, int, 0644);
196 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197 static const int gp_cleanup_delay;
198 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
199 
200 /*
201  * Number of grace periods between delays, normalized by the duration of
202  * the delay.  The longer the the delay, the more the grace periods between
203  * each delay.  The reason for this normalization is that it means that,
204  * for non-zero delays, the overall slowdown of grace periods is constant
205  * regardless of the duration of the delay.  This arrangement balances
206  * the need for long delays to increase some race probabilities with the
207  * need for fast grace periods to increase other race probabilities.
208  */
209 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
210 
211 /*
212  * Track the rcutorture test sequence number and the update version
213  * number within a given test.  The rcutorture_testseq is incremented
214  * on every rcutorture module load and unload, so has an odd value
215  * when a test is running.  The rcutorture_vernum is set to zero
216  * when rcutorture starts and is incremented on each rcutorture update.
217  * These variables enable correlating rcutorture output with the
218  * RCU tracing information.
219  */
220 unsigned long rcutorture_testseq;
221 unsigned long rcutorture_vernum;
222 
223 /*
224  * Compute the mask of online CPUs for the specified rcu_node structure.
225  * This will not be stable unless the rcu_node structure's ->lock is
226  * held, but the bit corresponding to the current CPU will be stable
227  * in most contexts.
228  */
229 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
230 {
231 	return READ_ONCE(rnp->qsmaskinitnext);
232 }
233 
234 /*
235  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
236  * permit this function to be invoked without holding the root rcu_node
237  * structure's ->lock, but of course results can be subject to change.
238  */
239 static int rcu_gp_in_progress(struct rcu_state *rsp)
240 {
241 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 }
243 
244 /*
245  * Note a quiescent state.  Because we do not need to know
246  * how many quiescent states passed, just if there was at least
247  * one since the start of the grace period, this just sets a flag.
248  * The caller must have disabled preemption.
249  */
250 void rcu_sched_qs(void)
251 {
252 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
253 		return;
254 	trace_rcu_grace_period(TPS("rcu_sched"),
255 			       __this_cpu_read(rcu_sched_data.gpnum),
256 			       TPS("cpuqs"));
257 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
258 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
259 		return;
260 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 	rcu_report_exp_rdp(&rcu_sched_state,
262 			   this_cpu_ptr(&rcu_sched_data), true);
263 }
264 
265 void rcu_bh_qs(void)
266 {
267 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 		trace_rcu_grace_period(TPS("rcu_bh"),
269 				       __this_cpu_read(rcu_bh_data.gpnum),
270 				       TPS("cpuqs"));
271 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
272 	}
273 }
274 
275 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
276 
277 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
278 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
279 	.dynticks = ATOMIC_INIT(1),
280 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
281 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
282 	.dynticks_idle = ATOMIC_INIT(1),
283 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
284 };
285 
286 /*
287  * Record entry into an extended quiescent state.  This is only to be
288  * called when not already in an extended quiescent state.
289  */
290 static void rcu_dynticks_eqs_enter(void)
291 {
292 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 	int special;
294 
295 	/*
296 	 * CPUs seeing atomic_inc_return() must see prior RCU read-side
297 	 * critical sections, and we also must force ordering with the
298 	 * next idle sojourn.
299 	 */
300 	special = atomic_inc_return(&rdtp->dynticks);
301 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1);
302 }
303 
304 /*
305  * Record exit from an extended quiescent state.  This is only to be
306  * called from an extended quiescent state.
307  */
308 static void rcu_dynticks_eqs_exit(void)
309 {
310 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
311 	int special;
312 
313 	/*
314 	 * CPUs seeing atomic_inc_return() must see prior idle sojourns,
315 	 * and we also must force ordering with the next RCU read-side
316 	 * critical section.
317 	 */
318 	special = atomic_inc_return(&rdtp->dynticks);
319 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1));
320 }
321 
322 /*
323  * Reset the current CPU's ->dynticks counter to indicate that the
324  * newly onlined CPU is no longer in an extended quiescent state.
325  * This will either leave the counter unchanged, or increment it
326  * to the next non-quiescent value.
327  *
328  * The non-atomic test/increment sequence works because the upper bits
329  * of the ->dynticks counter are manipulated only by the corresponding CPU,
330  * or when the corresponding CPU is offline.
331  */
332 static void rcu_dynticks_eqs_online(void)
333 {
334 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
335 
336 	if (atomic_read(&rdtp->dynticks) & 0x1)
337 		return;
338 	atomic_add(0x1, &rdtp->dynticks);
339 }
340 
341 /*
342  * Is the current CPU in an extended quiescent state?
343  *
344  * No ordering, as we are sampling CPU-local information.
345  */
346 bool rcu_dynticks_curr_cpu_in_eqs(void)
347 {
348 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
349 
350 	return !(atomic_read(&rdtp->dynticks) & 0x1);
351 }
352 
353 /*
354  * Snapshot the ->dynticks counter with full ordering so as to allow
355  * stable comparison of this counter with past and future snapshots.
356  */
357 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
358 {
359 	int snap = atomic_add_return(0, &rdtp->dynticks);
360 
361 	return snap;
362 }
363 
364 /*
365  * Return true if the snapshot returned from rcu_dynticks_snap()
366  * indicates that RCU is in an extended quiescent state.
367  */
368 static bool rcu_dynticks_in_eqs(int snap)
369 {
370 	return !(snap & 0x1);
371 }
372 
373 /*
374  * Return true if the CPU corresponding to the specified rcu_dynticks
375  * structure has spent some time in an extended quiescent state since
376  * rcu_dynticks_snap() returned the specified snapshot.
377  */
378 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
379 {
380 	return snap != rcu_dynticks_snap(rdtp);
381 }
382 
383 /*
384  * Do a double-increment of the ->dynticks counter to emulate a
385  * momentary idle-CPU quiescent state.
386  */
387 static void rcu_dynticks_momentary_idle(void)
388 {
389 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
390 	int special = atomic_add_return(2, &rdtp->dynticks);
391 
392 	/* It is illegal to call this from idle state. */
393 	WARN_ON_ONCE(!(special & 0x1));
394 }
395 
396 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
397 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
398 
399 /*
400  * Let the RCU core know that this CPU has gone through the scheduler,
401  * which is a quiescent state.  This is called when the need for a
402  * quiescent state is urgent, so we burn an atomic operation and full
403  * memory barriers to let the RCU core know about it, regardless of what
404  * this CPU might (or might not) do in the near future.
405  *
406  * We inform the RCU core by emulating a zero-duration dyntick-idle
407  * period, which we in turn do by incrementing the ->dynticks counter
408  * by two.
409  *
410  * The caller must have disabled interrupts.
411  */
412 static void rcu_momentary_dyntick_idle(void)
413 {
414 	struct rcu_data *rdp;
415 	int resched_mask;
416 	struct rcu_state *rsp;
417 
418 	/*
419 	 * Yes, we can lose flag-setting operations.  This is OK, because
420 	 * the flag will be set again after some delay.
421 	 */
422 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
423 	raw_cpu_write(rcu_sched_qs_mask, 0);
424 
425 	/* Find the flavor that needs a quiescent state. */
426 	for_each_rcu_flavor(rsp) {
427 		rdp = raw_cpu_ptr(rsp->rda);
428 		if (!(resched_mask & rsp->flavor_mask))
429 			continue;
430 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
431 		if (READ_ONCE(rdp->mynode->completed) !=
432 		    READ_ONCE(rdp->cond_resched_completed))
433 			continue;
434 
435 		/*
436 		 * Pretend to be momentarily idle for the quiescent state.
437 		 * This allows the grace-period kthread to record the
438 		 * quiescent state, with no need for this CPU to do anything
439 		 * further.
440 		 */
441 		rcu_dynticks_momentary_idle();
442 		break;
443 	}
444 }
445 
446 /*
447  * Note a context switch.  This is a quiescent state for RCU-sched,
448  * and requires special handling for preemptible RCU.
449  * The caller must have disabled interrupts.
450  */
451 void rcu_note_context_switch(void)
452 {
453 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
454 	trace_rcu_utilization(TPS("Start context switch"));
455 	rcu_sched_qs();
456 	rcu_preempt_note_context_switch();
457 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
458 		rcu_momentary_dyntick_idle();
459 	trace_rcu_utilization(TPS("End context switch"));
460 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
461 }
462 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
463 
464 /*
465  * Register a quiescent state for all RCU flavors.  If there is an
466  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
467  * dyntick-idle quiescent state visible to other CPUs (but only for those
468  * RCU flavors in desperate need of a quiescent state, which will normally
469  * be none of them).  Either way, do a lightweight quiescent state for
470  * all RCU flavors.
471  *
472  * The barrier() calls are redundant in the common case when this is
473  * called externally, but just in case this is called from within this
474  * file.
475  *
476  */
477 void rcu_all_qs(void)
478 {
479 	unsigned long flags;
480 
481 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
482 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
483 		local_irq_save(flags);
484 		rcu_momentary_dyntick_idle();
485 		local_irq_restore(flags);
486 	}
487 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
488 		/*
489 		 * Yes, we just checked a per-CPU variable with preemption
490 		 * enabled, so we might be migrated to some other CPU at
491 		 * this point.  That is OK because in that case, the
492 		 * migration will supply the needed quiescent state.
493 		 * We might end up needlessly disabling preemption and
494 		 * invoking rcu_sched_qs() on the destination CPU, but
495 		 * the probability and cost are both quite low, so this
496 		 * should not be a problem in practice.
497 		 */
498 		preempt_disable();
499 		rcu_sched_qs();
500 		preempt_enable();
501 	}
502 	this_cpu_inc(rcu_qs_ctr);
503 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
504 }
505 EXPORT_SYMBOL_GPL(rcu_all_qs);
506 
507 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
508 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
509 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
510 
511 module_param(blimit, long, 0444);
512 module_param(qhimark, long, 0444);
513 module_param(qlowmark, long, 0444);
514 
515 static ulong jiffies_till_first_fqs = ULONG_MAX;
516 static ulong jiffies_till_next_fqs = ULONG_MAX;
517 static bool rcu_kick_kthreads;
518 
519 module_param(jiffies_till_first_fqs, ulong, 0644);
520 module_param(jiffies_till_next_fqs, ulong, 0644);
521 module_param(rcu_kick_kthreads, bool, 0644);
522 
523 /*
524  * How long the grace period must be before we start recruiting
525  * quiescent-state help from rcu_note_context_switch().
526  */
527 static ulong jiffies_till_sched_qs = HZ / 20;
528 module_param(jiffies_till_sched_qs, ulong, 0644);
529 
530 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
531 				  struct rcu_data *rdp);
532 static void force_qs_rnp(struct rcu_state *rsp,
533 			 int (*f)(struct rcu_data *rsp, bool *isidle,
534 				  unsigned long *maxj),
535 			 bool *isidle, unsigned long *maxj);
536 static void force_quiescent_state(struct rcu_state *rsp);
537 static int rcu_pending(void);
538 
539 /*
540  * Return the number of RCU batches started thus far for debug & stats.
541  */
542 unsigned long rcu_batches_started(void)
543 {
544 	return rcu_state_p->gpnum;
545 }
546 EXPORT_SYMBOL_GPL(rcu_batches_started);
547 
548 /*
549  * Return the number of RCU-sched batches started thus far for debug & stats.
550  */
551 unsigned long rcu_batches_started_sched(void)
552 {
553 	return rcu_sched_state.gpnum;
554 }
555 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
556 
557 /*
558  * Return the number of RCU BH batches started thus far for debug & stats.
559  */
560 unsigned long rcu_batches_started_bh(void)
561 {
562 	return rcu_bh_state.gpnum;
563 }
564 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
565 
566 /*
567  * Return the number of RCU batches completed thus far for debug & stats.
568  */
569 unsigned long rcu_batches_completed(void)
570 {
571 	return rcu_state_p->completed;
572 }
573 EXPORT_SYMBOL_GPL(rcu_batches_completed);
574 
575 /*
576  * Return the number of RCU-sched batches completed thus far for debug & stats.
577  */
578 unsigned long rcu_batches_completed_sched(void)
579 {
580 	return rcu_sched_state.completed;
581 }
582 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
583 
584 /*
585  * Return the number of RCU BH batches completed thus far for debug & stats.
586  */
587 unsigned long rcu_batches_completed_bh(void)
588 {
589 	return rcu_bh_state.completed;
590 }
591 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
592 
593 /*
594  * Return the number of RCU expedited batches completed thus far for
595  * debug & stats.  Odd numbers mean that a batch is in progress, even
596  * numbers mean idle.  The value returned will thus be roughly double
597  * the cumulative batches since boot.
598  */
599 unsigned long rcu_exp_batches_completed(void)
600 {
601 	return rcu_state_p->expedited_sequence;
602 }
603 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
604 
605 /*
606  * Return the number of RCU-sched expedited batches completed thus far
607  * for debug & stats.  Similar to rcu_exp_batches_completed().
608  */
609 unsigned long rcu_exp_batches_completed_sched(void)
610 {
611 	return rcu_sched_state.expedited_sequence;
612 }
613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
614 
615 /*
616  * Force a quiescent state.
617  */
618 void rcu_force_quiescent_state(void)
619 {
620 	force_quiescent_state(rcu_state_p);
621 }
622 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
623 
624 /*
625  * Force a quiescent state for RCU BH.
626  */
627 void rcu_bh_force_quiescent_state(void)
628 {
629 	force_quiescent_state(&rcu_bh_state);
630 }
631 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
632 
633 /*
634  * Force a quiescent state for RCU-sched.
635  */
636 void rcu_sched_force_quiescent_state(void)
637 {
638 	force_quiescent_state(&rcu_sched_state);
639 }
640 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
641 
642 /*
643  * Show the state of the grace-period kthreads.
644  */
645 void show_rcu_gp_kthreads(void)
646 {
647 	struct rcu_state *rsp;
648 
649 	for_each_rcu_flavor(rsp) {
650 		pr_info("%s: wait state: %d ->state: %#lx\n",
651 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
652 		/* sched_show_task(rsp->gp_kthread); */
653 	}
654 }
655 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
656 
657 /*
658  * Record the number of times rcutorture tests have been initiated and
659  * terminated.  This information allows the debugfs tracing stats to be
660  * correlated to the rcutorture messages, even when the rcutorture module
661  * is being repeatedly loaded and unloaded.  In other words, we cannot
662  * store this state in rcutorture itself.
663  */
664 void rcutorture_record_test_transition(void)
665 {
666 	rcutorture_testseq++;
667 	rcutorture_vernum = 0;
668 }
669 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
670 
671 /*
672  * Send along grace-period-related data for rcutorture diagnostics.
673  */
674 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
675 			    unsigned long *gpnum, unsigned long *completed)
676 {
677 	struct rcu_state *rsp = NULL;
678 
679 	switch (test_type) {
680 	case RCU_FLAVOR:
681 		rsp = rcu_state_p;
682 		break;
683 	case RCU_BH_FLAVOR:
684 		rsp = &rcu_bh_state;
685 		break;
686 	case RCU_SCHED_FLAVOR:
687 		rsp = &rcu_sched_state;
688 		break;
689 	default:
690 		break;
691 	}
692 	if (rsp != NULL) {
693 		*flags = READ_ONCE(rsp->gp_flags);
694 		*gpnum = READ_ONCE(rsp->gpnum);
695 		*completed = READ_ONCE(rsp->completed);
696 		return;
697 	}
698 	*flags = 0;
699 	*gpnum = 0;
700 	*completed = 0;
701 }
702 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
703 
704 /*
705  * Record the number of writer passes through the current rcutorture test.
706  * This is also used to correlate debugfs tracing stats with the rcutorture
707  * messages.
708  */
709 void rcutorture_record_progress(unsigned long vernum)
710 {
711 	rcutorture_vernum++;
712 }
713 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
714 
715 /*
716  * Does the CPU have callbacks ready to be invoked?
717  */
718 static int
719 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
720 {
721 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
722 	       rdp->nxttail[RCU_NEXT_TAIL] != NULL;
723 }
724 
725 /*
726  * Return the root node of the specified rcu_state structure.
727  */
728 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
729 {
730 	return &rsp->node[0];
731 }
732 
733 /*
734  * Is there any need for future grace periods?
735  * Interrupts must be disabled.  If the caller does not hold the root
736  * rnp_node structure's ->lock, the results are advisory only.
737  */
738 static int rcu_future_needs_gp(struct rcu_state *rsp)
739 {
740 	struct rcu_node *rnp = rcu_get_root(rsp);
741 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
742 	int *fp = &rnp->need_future_gp[idx];
743 
744 	return READ_ONCE(*fp);
745 }
746 
747 /*
748  * Does the current CPU require a not-yet-started grace period?
749  * The caller must have disabled interrupts to prevent races with
750  * normal callback registry.
751  */
752 static bool
753 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
754 {
755 	int i;
756 
757 	if (rcu_gp_in_progress(rsp))
758 		return false;  /* No, a grace period is already in progress. */
759 	if (rcu_future_needs_gp(rsp))
760 		return true;  /* Yes, a no-CBs CPU needs one. */
761 	if (!rdp->nxttail[RCU_NEXT_TAIL])
762 		return false;  /* No, this is a no-CBs (or offline) CPU. */
763 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
764 		return true;  /* Yes, CPU has newly registered callbacks. */
765 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
766 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
767 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
768 				 rdp->nxtcompleted[i]))
769 			return true;  /* Yes, CBs for future grace period. */
770 	return false; /* No grace period needed. */
771 }
772 
773 /*
774  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
775  *
776  * If the new value of the ->dynticks_nesting counter now is zero,
777  * we really have entered idle, and must do the appropriate accounting.
778  * The caller must have disabled interrupts.
779  */
780 static void rcu_eqs_enter_common(long long oldval, bool user)
781 {
782 	struct rcu_state *rsp;
783 	struct rcu_data *rdp;
784 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
785 
786 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
787 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
788 	    !user && !is_idle_task(current)) {
789 		struct task_struct *idle __maybe_unused =
790 			idle_task(smp_processor_id());
791 
792 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
793 		rcu_ftrace_dump(DUMP_ORIG);
794 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
795 			  current->pid, current->comm,
796 			  idle->pid, idle->comm); /* must be idle task! */
797 	}
798 	for_each_rcu_flavor(rsp) {
799 		rdp = this_cpu_ptr(rsp->rda);
800 		do_nocb_deferred_wakeup(rdp);
801 	}
802 	rcu_prepare_for_idle();
803 	rcu_dynticks_eqs_enter();
804 	rcu_dynticks_task_enter();
805 
806 	/*
807 	 * It is illegal to enter an extended quiescent state while
808 	 * in an RCU read-side critical section.
809 	 */
810 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
811 			 "Illegal idle entry in RCU read-side critical section.");
812 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
813 			 "Illegal idle entry in RCU-bh read-side critical section.");
814 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
815 			 "Illegal idle entry in RCU-sched read-side critical section.");
816 }
817 
818 /*
819  * Enter an RCU extended quiescent state, which can be either the
820  * idle loop or adaptive-tickless usermode execution.
821  */
822 static void rcu_eqs_enter(bool user)
823 {
824 	long long oldval;
825 	struct rcu_dynticks *rdtp;
826 
827 	rdtp = this_cpu_ptr(&rcu_dynticks);
828 	oldval = rdtp->dynticks_nesting;
829 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
830 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
831 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
832 		rdtp->dynticks_nesting = 0;
833 		rcu_eqs_enter_common(oldval, user);
834 	} else {
835 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
836 	}
837 }
838 
839 /**
840  * rcu_idle_enter - inform RCU that current CPU is entering idle
841  *
842  * Enter idle mode, in other words, -leave- the mode in which RCU
843  * read-side critical sections can occur.  (Though RCU read-side
844  * critical sections can occur in irq handlers in idle, a possibility
845  * handled by irq_enter() and irq_exit().)
846  *
847  * We crowbar the ->dynticks_nesting field to zero to allow for
848  * the possibility of usermode upcalls having messed up our count
849  * of interrupt nesting level during the prior busy period.
850  */
851 void rcu_idle_enter(void)
852 {
853 	unsigned long flags;
854 
855 	local_irq_save(flags);
856 	rcu_eqs_enter(false);
857 	rcu_sysidle_enter(0);
858 	local_irq_restore(flags);
859 }
860 EXPORT_SYMBOL_GPL(rcu_idle_enter);
861 
862 #ifdef CONFIG_NO_HZ_FULL
863 /**
864  * rcu_user_enter - inform RCU that we are resuming userspace.
865  *
866  * Enter RCU idle mode right before resuming userspace.  No use of RCU
867  * is permitted between this call and rcu_user_exit(). This way the
868  * CPU doesn't need to maintain the tick for RCU maintenance purposes
869  * when the CPU runs in userspace.
870  */
871 void rcu_user_enter(void)
872 {
873 	rcu_eqs_enter(1);
874 }
875 #endif /* CONFIG_NO_HZ_FULL */
876 
877 /**
878  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
879  *
880  * Exit from an interrupt handler, which might possibly result in entering
881  * idle mode, in other words, leaving the mode in which read-side critical
882  * sections can occur.  The caller must have disabled interrupts.
883  *
884  * This code assumes that the idle loop never does anything that might
885  * result in unbalanced calls to irq_enter() and irq_exit().  If your
886  * architecture violates this assumption, RCU will give you what you
887  * deserve, good and hard.  But very infrequently and irreproducibly.
888  *
889  * Use things like work queues to work around this limitation.
890  *
891  * You have been warned.
892  */
893 void rcu_irq_exit(void)
894 {
895 	long long oldval;
896 	struct rcu_dynticks *rdtp;
897 
898 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
899 	rdtp = this_cpu_ptr(&rcu_dynticks);
900 	oldval = rdtp->dynticks_nesting;
901 	rdtp->dynticks_nesting--;
902 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
903 		     rdtp->dynticks_nesting < 0);
904 	if (rdtp->dynticks_nesting)
905 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
906 	else
907 		rcu_eqs_enter_common(oldval, true);
908 	rcu_sysidle_enter(1);
909 }
910 
911 /*
912  * Wrapper for rcu_irq_exit() where interrupts are enabled.
913  */
914 void rcu_irq_exit_irqson(void)
915 {
916 	unsigned long flags;
917 
918 	local_irq_save(flags);
919 	rcu_irq_exit();
920 	local_irq_restore(flags);
921 }
922 
923 /*
924  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
925  *
926  * If the new value of the ->dynticks_nesting counter was previously zero,
927  * we really have exited idle, and must do the appropriate accounting.
928  * The caller must have disabled interrupts.
929  */
930 static void rcu_eqs_exit_common(long long oldval, int user)
931 {
932 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
933 
934 	rcu_dynticks_task_exit();
935 	rcu_dynticks_eqs_exit();
936 	rcu_cleanup_after_idle();
937 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
938 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
939 	    !user && !is_idle_task(current)) {
940 		struct task_struct *idle __maybe_unused =
941 			idle_task(smp_processor_id());
942 
943 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
944 				  oldval, rdtp->dynticks_nesting);
945 		rcu_ftrace_dump(DUMP_ORIG);
946 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
947 			  current->pid, current->comm,
948 			  idle->pid, idle->comm); /* must be idle task! */
949 	}
950 }
951 
952 /*
953  * Exit an RCU extended quiescent state, which can be either the
954  * idle loop or adaptive-tickless usermode execution.
955  */
956 static void rcu_eqs_exit(bool user)
957 {
958 	struct rcu_dynticks *rdtp;
959 	long long oldval;
960 
961 	rdtp = this_cpu_ptr(&rcu_dynticks);
962 	oldval = rdtp->dynticks_nesting;
963 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
964 	if (oldval & DYNTICK_TASK_NEST_MASK) {
965 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
966 	} else {
967 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
968 		rcu_eqs_exit_common(oldval, user);
969 	}
970 }
971 
972 /**
973  * rcu_idle_exit - inform RCU that current CPU is leaving idle
974  *
975  * Exit idle mode, in other words, -enter- the mode in which RCU
976  * read-side critical sections can occur.
977  *
978  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
979  * allow for the possibility of usermode upcalls messing up our count
980  * of interrupt nesting level during the busy period that is just
981  * now starting.
982  */
983 void rcu_idle_exit(void)
984 {
985 	unsigned long flags;
986 
987 	local_irq_save(flags);
988 	rcu_eqs_exit(false);
989 	rcu_sysidle_exit(0);
990 	local_irq_restore(flags);
991 }
992 EXPORT_SYMBOL_GPL(rcu_idle_exit);
993 
994 #ifdef CONFIG_NO_HZ_FULL
995 /**
996  * rcu_user_exit - inform RCU that we are exiting userspace.
997  *
998  * Exit RCU idle mode while entering the kernel because it can
999  * run a RCU read side critical section anytime.
1000  */
1001 void rcu_user_exit(void)
1002 {
1003 	rcu_eqs_exit(1);
1004 }
1005 #endif /* CONFIG_NO_HZ_FULL */
1006 
1007 /**
1008  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1009  *
1010  * Enter an interrupt handler, which might possibly result in exiting
1011  * idle mode, in other words, entering the mode in which read-side critical
1012  * sections can occur.  The caller must have disabled interrupts.
1013  *
1014  * Note that the Linux kernel is fully capable of entering an interrupt
1015  * handler that it never exits, for example when doing upcalls to
1016  * user mode!  This code assumes that the idle loop never does upcalls to
1017  * user mode.  If your architecture does do upcalls from the idle loop (or
1018  * does anything else that results in unbalanced calls to the irq_enter()
1019  * and irq_exit() functions), RCU will give you what you deserve, good
1020  * and hard.  But very infrequently and irreproducibly.
1021  *
1022  * Use things like work queues to work around this limitation.
1023  *
1024  * You have been warned.
1025  */
1026 void rcu_irq_enter(void)
1027 {
1028 	struct rcu_dynticks *rdtp;
1029 	long long oldval;
1030 
1031 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1032 	rdtp = this_cpu_ptr(&rcu_dynticks);
1033 	oldval = rdtp->dynticks_nesting;
1034 	rdtp->dynticks_nesting++;
1035 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1036 		     rdtp->dynticks_nesting == 0);
1037 	if (oldval)
1038 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1039 	else
1040 		rcu_eqs_exit_common(oldval, true);
1041 	rcu_sysidle_exit(1);
1042 }
1043 
1044 /*
1045  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1046  */
1047 void rcu_irq_enter_irqson(void)
1048 {
1049 	unsigned long flags;
1050 
1051 	local_irq_save(flags);
1052 	rcu_irq_enter();
1053 	local_irq_restore(flags);
1054 }
1055 
1056 /**
1057  * rcu_nmi_enter - inform RCU of entry to NMI context
1058  *
1059  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1060  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1061  * that the CPU is active.  This implementation permits nested NMIs, as
1062  * long as the nesting level does not overflow an int.  (You will probably
1063  * run out of stack space first.)
1064  */
1065 void rcu_nmi_enter(void)
1066 {
1067 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1068 	int incby = 2;
1069 
1070 	/* Complain about underflow. */
1071 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1072 
1073 	/*
1074 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1075 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1076 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1077 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1078 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1079 	 * period (observation due to Andy Lutomirski).
1080 	 */
1081 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1082 		rcu_dynticks_eqs_exit();
1083 		incby = 1;
1084 	}
1085 	rdtp->dynticks_nmi_nesting += incby;
1086 	barrier();
1087 }
1088 
1089 /**
1090  * rcu_nmi_exit - inform RCU of exit from NMI context
1091  *
1092  * If we are returning from the outermost NMI handler that interrupted an
1093  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1094  * to let the RCU grace-period handling know that the CPU is back to
1095  * being RCU-idle.
1096  */
1097 void rcu_nmi_exit(void)
1098 {
1099 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1100 
1101 	/*
1102 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1103 	 * (We are exiting an NMI handler, so RCU better be paying attention
1104 	 * to us!)
1105 	 */
1106 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1107 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1108 
1109 	/*
1110 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1111 	 * leave it in non-RCU-idle state.
1112 	 */
1113 	if (rdtp->dynticks_nmi_nesting != 1) {
1114 		rdtp->dynticks_nmi_nesting -= 2;
1115 		return;
1116 	}
1117 
1118 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1119 	rdtp->dynticks_nmi_nesting = 0;
1120 	rcu_dynticks_eqs_enter();
1121 }
1122 
1123 /**
1124  * __rcu_is_watching - are RCU read-side critical sections safe?
1125  *
1126  * Return true if RCU is watching the running CPU, which means that
1127  * this CPU can safely enter RCU read-side critical sections.  Unlike
1128  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1129  * least disabled preemption.
1130  */
1131 bool notrace __rcu_is_watching(void)
1132 {
1133 	return !rcu_dynticks_curr_cpu_in_eqs();
1134 }
1135 
1136 /**
1137  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1138  *
1139  * If the current CPU is in its idle loop and is neither in an interrupt
1140  * or NMI handler, return true.
1141  */
1142 bool notrace rcu_is_watching(void)
1143 {
1144 	bool ret;
1145 
1146 	preempt_disable_notrace();
1147 	ret = __rcu_is_watching();
1148 	preempt_enable_notrace();
1149 	return ret;
1150 }
1151 EXPORT_SYMBOL_GPL(rcu_is_watching);
1152 
1153 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1154 
1155 /*
1156  * Is the current CPU online?  Disable preemption to avoid false positives
1157  * that could otherwise happen due to the current CPU number being sampled,
1158  * this task being preempted, its old CPU being taken offline, resuming
1159  * on some other CPU, then determining that its old CPU is now offline.
1160  * It is OK to use RCU on an offline processor during initial boot, hence
1161  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1162  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1163  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1164  * offline to continue to use RCU for one jiffy after marking itself
1165  * offline in the cpu_online_mask.  This leniency is necessary given the
1166  * non-atomic nature of the online and offline processing, for example,
1167  * the fact that a CPU enters the scheduler after completing the teardown
1168  * of the CPU.
1169  *
1170  * This is also why RCU internally marks CPUs online during in the
1171  * preparation phase and offline after the CPU has been taken down.
1172  *
1173  * Disable checking if in an NMI handler because we cannot safely report
1174  * errors from NMI handlers anyway.
1175  */
1176 bool rcu_lockdep_current_cpu_online(void)
1177 {
1178 	struct rcu_data *rdp;
1179 	struct rcu_node *rnp;
1180 	bool ret;
1181 
1182 	if (in_nmi())
1183 		return true;
1184 	preempt_disable();
1185 	rdp = this_cpu_ptr(&rcu_sched_data);
1186 	rnp = rdp->mynode;
1187 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1188 	      !rcu_scheduler_fully_active;
1189 	preempt_enable();
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1193 
1194 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1195 
1196 /**
1197  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1198  *
1199  * If the current CPU is idle or running at a first-level (not nested)
1200  * interrupt from idle, return true.  The caller must have at least
1201  * disabled preemption.
1202  */
1203 static int rcu_is_cpu_rrupt_from_idle(void)
1204 {
1205 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1206 }
1207 
1208 /*
1209  * Snapshot the specified CPU's dynticks counter so that we can later
1210  * credit them with an implicit quiescent state.  Return 1 if this CPU
1211  * is in dynticks idle mode, which is an extended quiescent state.
1212  */
1213 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1214 					 bool *isidle, unsigned long *maxj)
1215 {
1216 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1217 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1218 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1219 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1220 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1221 				 rdp->mynode->gpnum))
1222 			WRITE_ONCE(rdp->gpwrap, true);
1223 		return 1;
1224 	}
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Return true if the specified CPU has passed through a quiescent
1230  * state by virtue of being in or having passed through an dynticks
1231  * idle state since the last call to dyntick_save_progress_counter()
1232  * for this same CPU, or by virtue of having been offline.
1233  */
1234 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1235 				    bool *isidle, unsigned long *maxj)
1236 {
1237 	unsigned long jtsq;
1238 	int *rcrmp;
1239 	unsigned long rjtsc;
1240 	struct rcu_node *rnp;
1241 
1242 	/*
1243 	 * If the CPU passed through or entered a dynticks idle phase with
1244 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1245 	 * already acknowledged the request to pass through a quiescent
1246 	 * state.  Either way, that CPU cannot possibly be in an RCU
1247 	 * read-side critical section that started before the beginning
1248 	 * of the current RCU grace period.
1249 	 */
1250 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1251 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1252 		rdp->dynticks_fqs++;
1253 		return 1;
1254 	}
1255 
1256 	/* Compute and saturate jiffies_till_sched_qs. */
1257 	jtsq = jiffies_till_sched_qs;
1258 	rjtsc = rcu_jiffies_till_stall_check();
1259 	if (jtsq > rjtsc / 2) {
1260 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1261 		jtsq = rjtsc / 2;
1262 	} else if (jtsq < 1) {
1263 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1264 		jtsq = 1;
1265 	}
1266 
1267 	/*
1268 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1269 	 * beginning of the grace period?  For this to be the case,
1270 	 * the CPU has to have noticed the current grace period.  This
1271 	 * might not be the case for nohz_full CPUs looping in the kernel.
1272 	 */
1273 	rnp = rdp->mynode;
1274 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1275 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
1276 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1277 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1278 		return 1;
1279 	}
1280 
1281 	/* Check for the CPU being offline. */
1282 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1283 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1284 		rdp->offline_fqs++;
1285 		return 1;
1286 	}
1287 
1288 	/*
1289 	 * A CPU running for an extended time within the kernel can
1290 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1291 	 * even context-switching back and forth between a pair of
1292 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1293 	 * So if the grace period is old enough, make the CPU pay attention.
1294 	 * Note that the unsynchronized assignments to the per-CPU
1295 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1296 	 * bits can be lost, but they will be set again on the next
1297 	 * force-quiescent-state pass.  So lost bit sets do not result
1298 	 * in incorrect behavior, merely in a grace period lasting
1299 	 * a few jiffies longer than it might otherwise.  Because
1300 	 * there are at most four threads involved, and because the
1301 	 * updates are only once every few jiffies, the probability of
1302 	 * lossage (and thus of slight grace-period extension) is
1303 	 * quite low.
1304 	 *
1305 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1306 	 * is set too high, we override with half of the RCU CPU stall
1307 	 * warning delay.
1308 	 */
1309 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1310 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1311 	    time_after(jiffies, rdp->rsp->jiffies_resched)) {
1312 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1313 			WRITE_ONCE(rdp->cond_resched_completed,
1314 				   READ_ONCE(rdp->mynode->completed));
1315 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1316 			WRITE_ONCE(*rcrmp,
1317 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1318 		}
1319 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1320 	}
1321 
1322 	/*
1323 	 * If more than halfway to RCU CPU stall-warning time, do
1324 	 * a resched_cpu() to try to loosen things up a bit.
1325 	 */
1326 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1327 		resched_cpu(rdp->cpu);
1328 
1329 	return 0;
1330 }
1331 
1332 static void record_gp_stall_check_time(struct rcu_state *rsp)
1333 {
1334 	unsigned long j = jiffies;
1335 	unsigned long j1;
1336 
1337 	rsp->gp_start = j;
1338 	smp_wmb(); /* Record start time before stall time. */
1339 	j1 = rcu_jiffies_till_stall_check();
1340 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1341 	rsp->jiffies_resched = j + j1 / 2;
1342 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1343 }
1344 
1345 /*
1346  * Convert a ->gp_state value to a character string.
1347  */
1348 static const char *gp_state_getname(short gs)
1349 {
1350 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1351 		return "???";
1352 	return gp_state_names[gs];
1353 }
1354 
1355 /*
1356  * Complain about starvation of grace-period kthread.
1357  */
1358 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1359 {
1360 	unsigned long gpa;
1361 	unsigned long j;
1362 
1363 	j = jiffies;
1364 	gpa = READ_ONCE(rsp->gp_activity);
1365 	if (j - gpa > 2 * HZ) {
1366 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1367 		       rsp->name, j - gpa,
1368 		       rsp->gpnum, rsp->completed,
1369 		       rsp->gp_flags,
1370 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1371 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1372 		if (rsp->gp_kthread) {
1373 			sched_show_task(rsp->gp_kthread);
1374 			wake_up_process(rsp->gp_kthread);
1375 		}
1376 	}
1377 }
1378 
1379 /*
1380  * Dump stacks of all tasks running on stalled CPUs.  First try using
1381  * NMIs, but fall back to manual remote stack tracing on architectures
1382  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1383  * traces are more accurate because they are printed by the target CPU.
1384  */
1385 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1386 {
1387 	int cpu;
1388 	unsigned long flags;
1389 	struct rcu_node *rnp;
1390 
1391 	rcu_for_each_leaf_node(rsp, rnp) {
1392 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1393 		for_each_leaf_node_possible_cpu(rnp, cpu)
1394 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1395 				if (!trigger_single_cpu_backtrace(cpu))
1396 					dump_cpu_task(cpu);
1397 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1398 	}
1399 }
1400 
1401 /*
1402  * If too much time has passed in the current grace period, and if
1403  * so configured, go kick the relevant kthreads.
1404  */
1405 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1406 {
1407 	unsigned long j;
1408 
1409 	if (!rcu_kick_kthreads)
1410 		return;
1411 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1412 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1413 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1414 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1415 		rcu_ftrace_dump(DUMP_ALL);
1416 		wake_up_process(rsp->gp_kthread);
1417 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1418 	}
1419 }
1420 
1421 static inline void panic_on_rcu_stall(void)
1422 {
1423 	if (sysctl_panic_on_rcu_stall)
1424 		panic("RCU Stall\n");
1425 }
1426 
1427 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1428 {
1429 	int cpu;
1430 	long delta;
1431 	unsigned long flags;
1432 	unsigned long gpa;
1433 	unsigned long j;
1434 	int ndetected = 0;
1435 	struct rcu_node *rnp = rcu_get_root(rsp);
1436 	long totqlen = 0;
1437 
1438 	/* Kick and suppress, if so configured. */
1439 	rcu_stall_kick_kthreads(rsp);
1440 	if (rcu_cpu_stall_suppress)
1441 		return;
1442 
1443 	/* Only let one CPU complain about others per time interval. */
1444 
1445 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1446 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1447 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1448 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1449 		return;
1450 	}
1451 	WRITE_ONCE(rsp->jiffies_stall,
1452 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1453 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454 
1455 	/*
1456 	 * OK, time to rat on our buddy...
1457 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1458 	 * RCU CPU stall warnings.
1459 	 */
1460 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1461 	       rsp->name);
1462 	print_cpu_stall_info_begin();
1463 	rcu_for_each_leaf_node(rsp, rnp) {
1464 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1465 		ndetected += rcu_print_task_stall(rnp);
1466 		if (rnp->qsmask != 0) {
1467 			for_each_leaf_node_possible_cpu(rnp, cpu)
1468 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1469 					print_cpu_stall_info(rsp, cpu);
1470 					ndetected++;
1471 				}
1472 		}
1473 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1474 	}
1475 
1476 	print_cpu_stall_info_end();
1477 	for_each_possible_cpu(cpu)
1478 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1479 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1480 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1481 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1482 	if (ndetected) {
1483 		rcu_dump_cpu_stacks(rsp);
1484 
1485 		/* Complain about tasks blocking the grace period. */
1486 		rcu_print_detail_task_stall(rsp);
1487 	} else {
1488 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1489 		    READ_ONCE(rsp->completed) == gpnum) {
1490 			pr_err("INFO: Stall ended before state dump start\n");
1491 		} else {
1492 			j = jiffies;
1493 			gpa = READ_ONCE(rsp->gp_activity);
1494 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1495 			       rsp->name, j - gpa, j, gpa,
1496 			       jiffies_till_next_fqs,
1497 			       rcu_get_root(rsp)->qsmask);
1498 			/* In this case, the current CPU might be at fault. */
1499 			sched_show_task(current);
1500 		}
1501 	}
1502 
1503 	rcu_check_gp_kthread_starvation(rsp);
1504 
1505 	panic_on_rcu_stall();
1506 
1507 	force_quiescent_state(rsp);  /* Kick them all. */
1508 }
1509 
1510 static void print_cpu_stall(struct rcu_state *rsp)
1511 {
1512 	int cpu;
1513 	unsigned long flags;
1514 	struct rcu_node *rnp = rcu_get_root(rsp);
1515 	long totqlen = 0;
1516 
1517 	/* Kick and suppress, if so configured. */
1518 	rcu_stall_kick_kthreads(rsp);
1519 	if (rcu_cpu_stall_suppress)
1520 		return;
1521 
1522 	/*
1523 	 * OK, time to rat on ourselves...
1524 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1525 	 * RCU CPU stall warnings.
1526 	 */
1527 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1528 	print_cpu_stall_info_begin();
1529 	print_cpu_stall_info(rsp, smp_processor_id());
1530 	print_cpu_stall_info_end();
1531 	for_each_possible_cpu(cpu)
1532 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1533 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1534 		jiffies - rsp->gp_start,
1535 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1536 
1537 	rcu_check_gp_kthread_starvation(rsp);
1538 
1539 	rcu_dump_cpu_stacks(rsp);
1540 
1541 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1542 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1543 		WRITE_ONCE(rsp->jiffies_stall,
1544 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1545 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1546 
1547 	panic_on_rcu_stall();
1548 
1549 	/*
1550 	 * Attempt to revive the RCU machinery by forcing a context switch.
1551 	 *
1552 	 * A context switch would normally allow the RCU state machine to make
1553 	 * progress and it could be we're stuck in kernel space without context
1554 	 * switches for an entirely unreasonable amount of time.
1555 	 */
1556 	resched_cpu(smp_processor_id());
1557 }
1558 
1559 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1560 {
1561 	unsigned long completed;
1562 	unsigned long gpnum;
1563 	unsigned long gps;
1564 	unsigned long j;
1565 	unsigned long js;
1566 	struct rcu_node *rnp;
1567 
1568 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1569 	    !rcu_gp_in_progress(rsp))
1570 		return;
1571 	rcu_stall_kick_kthreads(rsp);
1572 	j = jiffies;
1573 
1574 	/*
1575 	 * Lots of memory barriers to reject false positives.
1576 	 *
1577 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1578 	 * then rsp->gp_start, and finally rsp->completed.  These values
1579 	 * are updated in the opposite order with memory barriers (or
1580 	 * equivalent) during grace-period initialization and cleanup.
1581 	 * Now, a false positive can occur if we get an new value of
1582 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1583 	 * the memory barriers, the only way that this can happen is if one
1584 	 * grace period ends and another starts between these two fetches.
1585 	 * Detect this by comparing rsp->completed with the previous fetch
1586 	 * from rsp->gpnum.
1587 	 *
1588 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1589 	 * and rsp->gp_start suffice to forestall false positives.
1590 	 */
1591 	gpnum = READ_ONCE(rsp->gpnum);
1592 	smp_rmb(); /* Pick up ->gpnum first... */
1593 	js = READ_ONCE(rsp->jiffies_stall);
1594 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1595 	gps = READ_ONCE(rsp->gp_start);
1596 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1597 	completed = READ_ONCE(rsp->completed);
1598 	if (ULONG_CMP_GE(completed, gpnum) ||
1599 	    ULONG_CMP_LT(j, js) ||
1600 	    ULONG_CMP_GE(gps, js))
1601 		return; /* No stall or GP completed since entering function. */
1602 	rnp = rdp->mynode;
1603 	if (rcu_gp_in_progress(rsp) &&
1604 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1605 
1606 		/* We haven't checked in, so go dump stack. */
1607 		print_cpu_stall(rsp);
1608 
1609 	} else if (rcu_gp_in_progress(rsp) &&
1610 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1611 
1612 		/* They had a few time units to dump stack, so complain. */
1613 		print_other_cpu_stall(rsp, gpnum);
1614 	}
1615 }
1616 
1617 /**
1618  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1619  *
1620  * Set the stall-warning timeout way off into the future, thus preventing
1621  * any RCU CPU stall-warning messages from appearing in the current set of
1622  * RCU grace periods.
1623  *
1624  * The caller must disable hard irqs.
1625  */
1626 void rcu_cpu_stall_reset(void)
1627 {
1628 	struct rcu_state *rsp;
1629 
1630 	for_each_rcu_flavor(rsp)
1631 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1632 }
1633 
1634 /*
1635  * Initialize the specified rcu_data structure's default callback list
1636  * to empty.  The default callback list is the one that is not used by
1637  * no-callbacks CPUs.
1638  */
1639 static void init_default_callback_list(struct rcu_data *rdp)
1640 {
1641 	int i;
1642 
1643 	rdp->nxtlist = NULL;
1644 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1645 		rdp->nxttail[i] = &rdp->nxtlist;
1646 }
1647 
1648 /*
1649  * Initialize the specified rcu_data structure's callback list to empty.
1650  */
1651 static void init_callback_list(struct rcu_data *rdp)
1652 {
1653 	if (init_nocb_callback_list(rdp))
1654 		return;
1655 	init_default_callback_list(rdp);
1656 }
1657 
1658 /*
1659  * Determine the value that ->completed will have at the end of the
1660  * next subsequent grace period.  This is used to tag callbacks so that
1661  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1662  * been dyntick-idle for an extended period with callbacks under the
1663  * influence of RCU_FAST_NO_HZ.
1664  *
1665  * The caller must hold rnp->lock with interrupts disabled.
1666  */
1667 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1668 				       struct rcu_node *rnp)
1669 {
1670 	/*
1671 	 * If RCU is idle, we just wait for the next grace period.
1672 	 * But we can only be sure that RCU is idle if we are looking
1673 	 * at the root rcu_node structure -- otherwise, a new grace
1674 	 * period might have started, but just not yet gotten around
1675 	 * to initializing the current non-root rcu_node structure.
1676 	 */
1677 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1678 		return rnp->completed + 1;
1679 
1680 	/*
1681 	 * Otherwise, wait for a possible partial grace period and
1682 	 * then the subsequent full grace period.
1683 	 */
1684 	return rnp->completed + 2;
1685 }
1686 
1687 /*
1688  * Trace-event helper function for rcu_start_future_gp() and
1689  * rcu_nocb_wait_gp().
1690  */
1691 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1692 				unsigned long c, const char *s)
1693 {
1694 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1695 				      rnp->completed, c, rnp->level,
1696 				      rnp->grplo, rnp->grphi, s);
1697 }
1698 
1699 /*
1700  * Start some future grace period, as needed to handle newly arrived
1701  * callbacks.  The required future grace periods are recorded in each
1702  * rcu_node structure's ->need_future_gp field.  Returns true if there
1703  * is reason to awaken the grace-period kthread.
1704  *
1705  * The caller must hold the specified rcu_node structure's ->lock.
1706  */
1707 static bool __maybe_unused
1708 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1709 		    unsigned long *c_out)
1710 {
1711 	unsigned long c;
1712 	int i;
1713 	bool ret = false;
1714 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1715 
1716 	/*
1717 	 * Pick up grace-period number for new callbacks.  If this
1718 	 * grace period is already marked as needed, return to the caller.
1719 	 */
1720 	c = rcu_cbs_completed(rdp->rsp, rnp);
1721 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1722 	if (rnp->need_future_gp[c & 0x1]) {
1723 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1724 		goto out;
1725 	}
1726 
1727 	/*
1728 	 * If either this rcu_node structure or the root rcu_node structure
1729 	 * believe that a grace period is in progress, then we must wait
1730 	 * for the one following, which is in "c".  Because our request
1731 	 * will be noticed at the end of the current grace period, we don't
1732 	 * need to explicitly start one.  We only do the lockless check
1733 	 * of rnp_root's fields if the current rcu_node structure thinks
1734 	 * there is no grace period in flight, and because we hold rnp->lock,
1735 	 * the only possible change is when rnp_root's two fields are
1736 	 * equal, in which case rnp_root->gpnum might be concurrently
1737 	 * incremented.  But that is OK, as it will just result in our
1738 	 * doing some extra useless work.
1739 	 */
1740 	if (rnp->gpnum != rnp->completed ||
1741 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1742 		rnp->need_future_gp[c & 0x1]++;
1743 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1744 		goto out;
1745 	}
1746 
1747 	/*
1748 	 * There might be no grace period in progress.  If we don't already
1749 	 * hold it, acquire the root rcu_node structure's lock in order to
1750 	 * start one (if needed).
1751 	 */
1752 	if (rnp != rnp_root)
1753 		raw_spin_lock_rcu_node(rnp_root);
1754 
1755 	/*
1756 	 * Get a new grace-period number.  If there really is no grace
1757 	 * period in progress, it will be smaller than the one we obtained
1758 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1759 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1760 	 */
1761 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1762 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1763 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1764 			rdp->nxtcompleted[i] = c;
1765 
1766 	/*
1767 	 * If the needed for the required grace period is already
1768 	 * recorded, trace and leave.
1769 	 */
1770 	if (rnp_root->need_future_gp[c & 0x1]) {
1771 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1772 		goto unlock_out;
1773 	}
1774 
1775 	/* Record the need for the future grace period. */
1776 	rnp_root->need_future_gp[c & 0x1]++;
1777 
1778 	/* If a grace period is not already in progress, start one. */
1779 	if (rnp_root->gpnum != rnp_root->completed) {
1780 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1781 	} else {
1782 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1783 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1784 	}
1785 unlock_out:
1786 	if (rnp != rnp_root)
1787 		raw_spin_unlock_rcu_node(rnp_root);
1788 out:
1789 	if (c_out != NULL)
1790 		*c_out = c;
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Clean up any old requests for the just-ended grace period.  Also return
1796  * whether any additional grace periods have been requested.  Also invoke
1797  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1798  * waiting for this grace period to complete.
1799  */
1800 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1801 {
1802 	int c = rnp->completed;
1803 	int needmore;
1804 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1805 
1806 	rnp->need_future_gp[c & 0x1] = 0;
1807 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1808 	trace_rcu_future_gp(rnp, rdp, c,
1809 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1810 	return needmore;
1811 }
1812 
1813 /*
1814  * Awaken the grace-period kthread for the specified flavor of RCU.
1815  * Don't do a self-awaken, and don't bother awakening when there is
1816  * nothing for the grace-period kthread to do (as in several CPUs
1817  * raced to awaken, and we lost), and finally don't try to awaken
1818  * a kthread that has not yet been created.
1819  */
1820 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1821 {
1822 	if (current == rsp->gp_kthread ||
1823 	    !READ_ONCE(rsp->gp_flags) ||
1824 	    !rsp->gp_kthread)
1825 		return;
1826 	swake_up(&rsp->gp_wq);
1827 }
1828 
1829 /*
1830  * If there is room, assign a ->completed number to any callbacks on
1831  * this CPU that have not already been assigned.  Also accelerate any
1832  * callbacks that were previously assigned a ->completed number that has
1833  * since proven to be too conservative, which can happen if callbacks get
1834  * assigned a ->completed number while RCU is idle, but with reference to
1835  * a non-root rcu_node structure.  This function is idempotent, so it does
1836  * not hurt to call it repeatedly.  Returns an flag saying that we should
1837  * awaken the RCU grace-period kthread.
1838  *
1839  * The caller must hold rnp->lock with interrupts disabled.
1840  */
1841 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1842 			       struct rcu_data *rdp)
1843 {
1844 	unsigned long c;
1845 	int i;
1846 	bool ret;
1847 
1848 	/* If the CPU has no callbacks, nothing to do. */
1849 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1850 		return false;
1851 
1852 	/*
1853 	 * Starting from the sublist containing the callbacks most
1854 	 * recently assigned a ->completed number and working down, find the
1855 	 * first sublist that is not assignable to an upcoming grace period.
1856 	 * Such a sublist has something in it (first two tests) and has
1857 	 * a ->completed number assigned that will complete sooner than
1858 	 * the ->completed number for newly arrived callbacks (last test).
1859 	 *
1860 	 * The key point is that any later sublist can be assigned the
1861 	 * same ->completed number as the newly arrived callbacks, which
1862 	 * means that the callbacks in any of these later sublist can be
1863 	 * grouped into a single sublist, whether or not they have already
1864 	 * been assigned a ->completed number.
1865 	 */
1866 	c = rcu_cbs_completed(rsp, rnp);
1867 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1868 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1869 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1870 			break;
1871 
1872 	/*
1873 	 * If there are no sublist for unassigned callbacks, leave.
1874 	 * At the same time, advance "i" one sublist, so that "i" will
1875 	 * index into the sublist where all the remaining callbacks should
1876 	 * be grouped into.
1877 	 */
1878 	if (++i >= RCU_NEXT_TAIL)
1879 		return false;
1880 
1881 	/*
1882 	 * Assign all subsequent callbacks' ->completed number to the next
1883 	 * full grace period and group them all in the sublist initially
1884 	 * indexed by "i".
1885 	 */
1886 	for (; i <= RCU_NEXT_TAIL; i++) {
1887 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1888 		rdp->nxtcompleted[i] = c;
1889 	}
1890 	/* Record any needed additional grace periods. */
1891 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1892 
1893 	/* Trace depending on how much we were able to accelerate. */
1894 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1895 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1896 	else
1897 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1898 	return ret;
1899 }
1900 
1901 /*
1902  * Move any callbacks whose grace period has completed to the
1903  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1904  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1905  * sublist.  This function is idempotent, so it does not hurt to
1906  * invoke it repeatedly.  As long as it is not invoked -too- often...
1907  * Returns true if the RCU grace-period kthread needs to be awakened.
1908  *
1909  * The caller must hold rnp->lock with interrupts disabled.
1910  */
1911 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1912 			    struct rcu_data *rdp)
1913 {
1914 	int i, j;
1915 
1916 	/* If the CPU has no callbacks, nothing to do. */
1917 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1918 		return false;
1919 
1920 	/*
1921 	 * Find all callbacks whose ->completed numbers indicate that they
1922 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1923 	 */
1924 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1925 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1926 			break;
1927 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1928 	}
1929 	/* Clean up any sublist tail pointers that were misordered above. */
1930 	for (j = RCU_WAIT_TAIL; j < i; j++)
1931 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1932 
1933 	/* Copy down callbacks to fill in empty sublists. */
1934 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1935 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1936 			break;
1937 		rdp->nxttail[j] = rdp->nxttail[i];
1938 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1939 	}
1940 
1941 	/* Classify any remaining callbacks. */
1942 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1943 }
1944 
1945 /*
1946  * Update CPU-local rcu_data state to record the beginnings and ends of
1947  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1948  * structure corresponding to the current CPU, and must have irqs disabled.
1949  * Returns true if the grace-period kthread needs to be awakened.
1950  */
1951 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1952 			      struct rcu_data *rdp)
1953 {
1954 	bool ret;
1955 	bool need_gp;
1956 
1957 	/* Handle the ends of any preceding grace periods first. */
1958 	if (rdp->completed == rnp->completed &&
1959 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1960 
1961 		/* No grace period end, so just accelerate recent callbacks. */
1962 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1963 
1964 	} else {
1965 
1966 		/* Advance callbacks. */
1967 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1968 
1969 		/* Remember that we saw this grace-period completion. */
1970 		rdp->completed = rnp->completed;
1971 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1972 	}
1973 
1974 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1975 		/*
1976 		 * If the current grace period is waiting for this CPU,
1977 		 * set up to detect a quiescent state, otherwise don't
1978 		 * go looking for one.
1979 		 */
1980 		rdp->gpnum = rnp->gpnum;
1981 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1982 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1983 		rdp->cpu_no_qs.b.norm = need_gp;
1984 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1985 		rdp->core_needs_qs = need_gp;
1986 		zero_cpu_stall_ticks(rdp);
1987 		WRITE_ONCE(rdp->gpwrap, false);
1988 	}
1989 	return ret;
1990 }
1991 
1992 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1993 {
1994 	unsigned long flags;
1995 	bool needwake;
1996 	struct rcu_node *rnp;
1997 
1998 	local_irq_save(flags);
1999 	rnp = rdp->mynode;
2000 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
2001 	     rdp->completed == READ_ONCE(rnp->completed) &&
2002 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2003 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2004 		local_irq_restore(flags);
2005 		return;
2006 	}
2007 	needwake = __note_gp_changes(rsp, rnp, rdp);
2008 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2009 	if (needwake)
2010 		rcu_gp_kthread_wake(rsp);
2011 }
2012 
2013 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2014 {
2015 	if (delay > 0 &&
2016 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2017 		schedule_timeout_uninterruptible(delay);
2018 }
2019 
2020 /*
2021  * Initialize a new grace period.  Return false if no grace period required.
2022  */
2023 static bool rcu_gp_init(struct rcu_state *rsp)
2024 {
2025 	unsigned long oldmask;
2026 	struct rcu_data *rdp;
2027 	struct rcu_node *rnp = rcu_get_root(rsp);
2028 
2029 	WRITE_ONCE(rsp->gp_activity, jiffies);
2030 	raw_spin_lock_irq_rcu_node(rnp);
2031 	if (!READ_ONCE(rsp->gp_flags)) {
2032 		/* Spurious wakeup, tell caller to go back to sleep.  */
2033 		raw_spin_unlock_irq_rcu_node(rnp);
2034 		return false;
2035 	}
2036 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2037 
2038 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2039 		/*
2040 		 * Grace period already in progress, don't start another.
2041 		 * Not supposed to be able to happen.
2042 		 */
2043 		raw_spin_unlock_irq_rcu_node(rnp);
2044 		return false;
2045 	}
2046 
2047 	/* Advance to a new grace period and initialize state. */
2048 	record_gp_stall_check_time(rsp);
2049 	/* Record GP times before starting GP, hence smp_store_release(). */
2050 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2051 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2052 	raw_spin_unlock_irq_rcu_node(rnp);
2053 
2054 	/*
2055 	 * Apply per-leaf buffered online and offline operations to the
2056 	 * rcu_node tree.  Note that this new grace period need not wait
2057 	 * for subsequent online CPUs, and that quiescent-state forcing
2058 	 * will handle subsequent offline CPUs.
2059 	 */
2060 	rcu_for_each_leaf_node(rsp, rnp) {
2061 		rcu_gp_slow(rsp, gp_preinit_delay);
2062 		raw_spin_lock_irq_rcu_node(rnp);
2063 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2064 		    !rnp->wait_blkd_tasks) {
2065 			/* Nothing to do on this leaf rcu_node structure. */
2066 			raw_spin_unlock_irq_rcu_node(rnp);
2067 			continue;
2068 		}
2069 
2070 		/* Record old state, apply changes to ->qsmaskinit field. */
2071 		oldmask = rnp->qsmaskinit;
2072 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2073 
2074 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2075 		if (!oldmask != !rnp->qsmaskinit) {
2076 			if (!oldmask) /* First online CPU for this rcu_node. */
2077 				rcu_init_new_rnp(rnp);
2078 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2079 				rnp->wait_blkd_tasks = true;
2080 			else /* Last offline CPU and can propagate. */
2081 				rcu_cleanup_dead_rnp(rnp);
2082 		}
2083 
2084 		/*
2085 		 * If all waited-on tasks from prior grace period are
2086 		 * done, and if all this rcu_node structure's CPUs are
2087 		 * still offline, propagate up the rcu_node tree and
2088 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2089 		 * rcu_node structure's CPUs has since come back online,
2090 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2091 		 * checks for this, so just call it unconditionally).
2092 		 */
2093 		if (rnp->wait_blkd_tasks &&
2094 		    (!rcu_preempt_has_tasks(rnp) ||
2095 		     rnp->qsmaskinit)) {
2096 			rnp->wait_blkd_tasks = false;
2097 			rcu_cleanup_dead_rnp(rnp);
2098 		}
2099 
2100 		raw_spin_unlock_irq_rcu_node(rnp);
2101 	}
2102 
2103 	/*
2104 	 * Set the quiescent-state-needed bits in all the rcu_node
2105 	 * structures for all currently online CPUs in breadth-first order,
2106 	 * starting from the root rcu_node structure, relying on the layout
2107 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2108 	 * will access only the leaves of the hierarchy, thus seeing that no
2109 	 * grace period is in progress, at least until the corresponding
2110 	 * leaf node has been initialized.
2111 	 *
2112 	 * The grace period cannot complete until the initialization
2113 	 * process finishes, because this kthread handles both.
2114 	 */
2115 	rcu_for_each_node_breadth_first(rsp, rnp) {
2116 		rcu_gp_slow(rsp, gp_init_delay);
2117 		raw_spin_lock_irq_rcu_node(rnp);
2118 		rdp = this_cpu_ptr(rsp->rda);
2119 		rcu_preempt_check_blocked_tasks(rnp);
2120 		rnp->qsmask = rnp->qsmaskinit;
2121 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2122 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2123 			WRITE_ONCE(rnp->completed, rsp->completed);
2124 		if (rnp == rdp->mynode)
2125 			(void)__note_gp_changes(rsp, rnp, rdp);
2126 		rcu_preempt_boost_start_gp(rnp);
2127 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2128 					    rnp->level, rnp->grplo,
2129 					    rnp->grphi, rnp->qsmask);
2130 		raw_spin_unlock_irq_rcu_node(rnp);
2131 		cond_resched_rcu_qs();
2132 		WRITE_ONCE(rsp->gp_activity, jiffies);
2133 	}
2134 
2135 	return true;
2136 }
2137 
2138 /*
2139  * Helper function for wait_event_interruptible_timeout() wakeup
2140  * at force-quiescent-state time.
2141  */
2142 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2143 {
2144 	struct rcu_node *rnp = rcu_get_root(rsp);
2145 
2146 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2147 	*gfp = READ_ONCE(rsp->gp_flags);
2148 	if (*gfp & RCU_GP_FLAG_FQS)
2149 		return true;
2150 
2151 	/* The current grace period has completed. */
2152 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2153 		return true;
2154 
2155 	return false;
2156 }
2157 
2158 /*
2159  * Do one round of quiescent-state forcing.
2160  */
2161 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2162 {
2163 	bool isidle = false;
2164 	unsigned long maxj;
2165 	struct rcu_node *rnp = rcu_get_root(rsp);
2166 
2167 	WRITE_ONCE(rsp->gp_activity, jiffies);
2168 	rsp->n_force_qs++;
2169 	if (first_time) {
2170 		/* Collect dyntick-idle snapshots. */
2171 		if (is_sysidle_rcu_state(rsp)) {
2172 			isidle = true;
2173 			maxj = jiffies - ULONG_MAX / 4;
2174 		}
2175 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2176 			     &isidle, &maxj);
2177 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2178 	} else {
2179 		/* Handle dyntick-idle and offline CPUs. */
2180 		isidle = true;
2181 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2182 	}
2183 	/* Clear flag to prevent immediate re-entry. */
2184 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2185 		raw_spin_lock_irq_rcu_node(rnp);
2186 		WRITE_ONCE(rsp->gp_flags,
2187 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2188 		raw_spin_unlock_irq_rcu_node(rnp);
2189 	}
2190 }
2191 
2192 /*
2193  * Clean up after the old grace period.
2194  */
2195 static void rcu_gp_cleanup(struct rcu_state *rsp)
2196 {
2197 	unsigned long gp_duration;
2198 	bool needgp = false;
2199 	int nocb = 0;
2200 	struct rcu_data *rdp;
2201 	struct rcu_node *rnp = rcu_get_root(rsp);
2202 	struct swait_queue_head *sq;
2203 
2204 	WRITE_ONCE(rsp->gp_activity, jiffies);
2205 	raw_spin_lock_irq_rcu_node(rnp);
2206 	gp_duration = jiffies - rsp->gp_start;
2207 	if (gp_duration > rsp->gp_max)
2208 		rsp->gp_max = gp_duration;
2209 
2210 	/*
2211 	 * We know the grace period is complete, but to everyone else
2212 	 * it appears to still be ongoing.  But it is also the case
2213 	 * that to everyone else it looks like there is nothing that
2214 	 * they can do to advance the grace period.  It is therefore
2215 	 * safe for us to drop the lock in order to mark the grace
2216 	 * period as completed in all of the rcu_node structures.
2217 	 */
2218 	raw_spin_unlock_irq_rcu_node(rnp);
2219 
2220 	/*
2221 	 * Propagate new ->completed value to rcu_node structures so
2222 	 * that other CPUs don't have to wait until the start of the next
2223 	 * grace period to process their callbacks.  This also avoids
2224 	 * some nasty RCU grace-period initialization races by forcing
2225 	 * the end of the current grace period to be completely recorded in
2226 	 * all of the rcu_node structures before the beginning of the next
2227 	 * grace period is recorded in any of the rcu_node structures.
2228 	 */
2229 	rcu_for_each_node_breadth_first(rsp, rnp) {
2230 		raw_spin_lock_irq_rcu_node(rnp);
2231 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2232 		WARN_ON_ONCE(rnp->qsmask);
2233 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2234 		rdp = this_cpu_ptr(rsp->rda);
2235 		if (rnp == rdp->mynode)
2236 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2237 		/* smp_mb() provided by prior unlock-lock pair. */
2238 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2239 		sq = rcu_nocb_gp_get(rnp);
2240 		raw_spin_unlock_irq_rcu_node(rnp);
2241 		rcu_nocb_gp_cleanup(sq);
2242 		cond_resched_rcu_qs();
2243 		WRITE_ONCE(rsp->gp_activity, jiffies);
2244 		rcu_gp_slow(rsp, gp_cleanup_delay);
2245 	}
2246 	rnp = rcu_get_root(rsp);
2247 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2248 	rcu_nocb_gp_set(rnp, nocb);
2249 
2250 	/* Declare grace period done. */
2251 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2252 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2253 	rsp->gp_state = RCU_GP_IDLE;
2254 	rdp = this_cpu_ptr(rsp->rda);
2255 	/* Advance CBs to reduce false positives below. */
2256 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2257 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2258 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2259 		trace_rcu_grace_period(rsp->name,
2260 				       READ_ONCE(rsp->gpnum),
2261 				       TPS("newreq"));
2262 	}
2263 	raw_spin_unlock_irq_rcu_node(rnp);
2264 }
2265 
2266 /*
2267  * Body of kthread that handles grace periods.
2268  */
2269 static int __noreturn rcu_gp_kthread(void *arg)
2270 {
2271 	bool first_gp_fqs;
2272 	int gf;
2273 	unsigned long j;
2274 	int ret;
2275 	struct rcu_state *rsp = arg;
2276 	struct rcu_node *rnp = rcu_get_root(rsp);
2277 
2278 	rcu_bind_gp_kthread();
2279 	for (;;) {
2280 
2281 		/* Handle grace-period start. */
2282 		for (;;) {
2283 			trace_rcu_grace_period(rsp->name,
2284 					       READ_ONCE(rsp->gpnum),
2285 					       TPS("reqwait"));
2286 			rsp->gp_state = RCU_GP_WAIT_GPS;
2287 			swait_event_interruptible(rsp->gp_wq,
2288 						 READ_ONCE(rsp->gp_flags) &
2289 						 RCU_GP_FLAG_INIT);
2290 			rsp->gp_state = RCU_GP_DONE_GPS;
2291 			/* Locking provides needed memory barrier. */
2292 			if (rcu_gp_init(rsp))
2293 				break;
2294 			cond_resched_rcu_qs();
2295 			WRITE_ONCE(rsp->gp_activity, jiffies);
2296 			WARN_ON(signal_pending(current));
2297 			trace_rcu_grace_period(rsp->name,
2298 					       READ_ONCE(rsp->gpnum),
2299 					       TPS("reqwaitsig"));
2300 		}
2301 
2302 		/* Handle quiescent-state forcing. */
2303 		first_gp_fqs = true;
2304 		j = jiffies_till_first_fqs;
2305 		if (j > HZ) {
2306 			j = HZ;
2307 			jiffies_till_first_fqs = HZ;
2308 		}
2309 		ret = 0;
2310 		for (;;) {
2311 			if (!ret) {
2312 				rsp->jiffies_force_qs = jiffies + j;
2313 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2314 					   jiffies + 3 * j);
2315 			}
2316 			trace_rcu_grace_period(rsp->name,
2317 					       READ_ONCE(rsp->gpnum),
2318 					       TPS("fqswait"));
2319 			rsp->gp_state = RCU_GP_WAIT_FQS;
2320 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2321 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2322 			rsp->gp_state = RCU_GP_DOING_FQS;
2323 			/* Locking provides needed memory barriers. */
2324 			/* If grace period done, leave loop. */
2325 			if (!READ_ONCE(rnp->qsmask) &&
2326 			    !rcu_preempt_blocked_readers_cgp(rnp))
2327 				break;
2328 			/* If time for quiescent-state forcing, do it. */
2329 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2330 			    (gf & RCU_GP_FLAG_FQS)) {
2331 				trace_rcu_grace_period(rsp->name,
2332 						       READ_ONCE(rsp->gpnum),
2333 						       TPS("fqsstart"));
2334 				rcu_gp_fqs(rsp, first_gp_fqs);
2335 				first_gp_fqs = false;
2336 				trace_rcu_grace_period(rsp->name,
2337 						       READ_ONCE(rsp->gpnum),
2338 						       TPS("fqsend"));
2339 				cond_resched_rcu_qs();
2340 				WRITE_ONCE(rsp->gp_activity, jiffies);
2341 				ret = 0; /* Force full wait till next FQS. */
2342 				j = jiffies_till_next_fqs;
2343 				if (j > HZ) {
2344 					j = HZ;
2345 					jiffies_till_next_fqs = HZ;
2346 				} else if (j < 1) {
2347 					j = 1;
2348 					jiffies_till_next_fqs = 1;
2349 				}
2350 			} else {
2351 				/* Deal with stray signal. */
2352 				cond_resched_rcu_qs();
2353 				WRITE_ONCE(rsp->gp_activity, jiffies);
2354 				WARN_ON(signal_pending(current));
2355 				trace_rcu_grace_period(rsp->name,
2356 						       READ_ONCE(rsp->gpnum),
2357 						       TPS("fqswaitsig"));
2358 				ret = 1; /* Keep old FQS timing. */
2359 				j = jiffies;
2360 				if (time_after(jiffies, rsp->jiffies_force_qs))
2361 					j = 1;
2362 				else
2363 					j = rsp->jiffies_force_qs - j;
2364 			}
2365 		}
2366 
2367 		/* Handle grace-period end. */
2368 		rsp->gp_state = RCU_GP_CLEANUP;
2369 		rcu_gp_cleanup(rsp);
2370 		rsp->gp_state = RCU_GP_CLEANED;
2371 	}
2372 }
2373 
2374 /*
2375  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2376  * in preparation for detecting the next grace period.  The caller must hold
2377  * the root node's ->lock and hard irqs must be disabled.
2378  *
2379  * Note that it is legal for a dying CPU (which is marked as offline) to
2380  * invoke this function.  This can happen when the dying CPU reports its
2381  * quiescent state.
2382  *
2383  * Returns true if the grace-period kthread must be awakened.
2384  */
2385 static bool
2386 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2387 		      struct rcu_data *rdp)
2388 {
2389 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2390 		/*
2391 		 * Either we have not yet spawned the grace-period
2392 		 * task, this CPU does not need another grace period,
2393 		 * or a grace period is already in progress.
2394 		 * Either way, don't start a new grace period.
2395 		 */
2396 		return false;
2397 	}
2398 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2399 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2400 			       TPS("newreq"));
2401 
2402 	/*
2403 	 * We can't do wakeups while holding the rnp->lock, as that
2404 	 * could cause possible deadlocks with the rq->lock. Defer
2405 	 * the wakeup to our caller.
2406 	 */
2407 	return true;
2408 }
2409 
2410 /*
2411  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2412  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2413  * is invoked indirectly from rcu_advance_cbs(), which would result in
2414  * endless recursion -- or would do so if it wasn't for the self-deadlock
2415  * that is encountered beforehand.
2416  *
2417  * Returns true if the grace-period kthread needs to be awakened.
2418  */
2419 static bool rcu_start_gp(struct rcu_state *rsp)
2420 {
2421 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2422 	struct rcu_node *rnp = rcu_get_root(rsp);
2423 	bool ret = false;
2424 
2425 	/*
2426 	 * If there is no grace period in progress right now, any
2427 	 * callbacks we have up to this point will be satisfied by the
2428 	 * next grace period.  Also, advancing the callbacks reduces the
2429 	 * probability of false positives from cpu_needs_another_gp()
2430 	 * resulting in pointless grace periods.  So, advance callbacks
2431 	 * then start the grace period!
2432 	 */
2433 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2434 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2435 	return ret;
2436 }
2437 
2438 /*
2439  * Report a full set of quiescent states to the specified rcu_state data
2440  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2441  * kthread if another grace period is required.  Whether we wake
2442  * the grace-period kthread or it awakens itself for the next round
2443  * of quiescent-state forcing, that kthread will clean up after the
2444  * just-completed grace period.  Note that the caller must hold rnp->lock,
2445  * which is released before return.
2446  */
2447 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2448 	__releases(rcu_get_root(rsp)->lock)
2449 {
2450 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2451 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2452 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2453 	rcu_gp_kthread_wake(rsp);
2454 }
2455 
2456 /*
2457  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2458  * Allows quiescent states for a group of CPUs to be reported at one go
2459  * to the specified rcu_node structure, though all the CPUs in the group
2460  * must be represented by the same rcu_node structure (which need not be a
2461  * leaf rcu_node structure, though it often will be).  The gps parameter
2462  * is the grace-period snapshot, which means that the quiescent states
2463  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2464  * must be held upon entry, and it is released before return.
2465  */
2466 static void
2467 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2468 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2469 	__releases(rnp->lock)
2470 {
2471 	unsigned long oldmask = 0;
2472 	struct rcu_node *rnp_c;
2473 
2474 	/* Walk up the rcu_node hierarchy. */
2475 	for (;;) {
2476 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2477 
2478 			/*
2479 			 * Our bit has already been cleared, or the
2480 			 * relevant grace period is already over, so done.
2481 			 */
2482 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2483 			return;
2484 		}
2485 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2486 		rnp->qsmask &= ~mask;
2487 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2488 						 mask, rnp->qsmask, rnp->level,
2489 						 rnp->grplo, rnp->grphi,
2490 						 !!rnp->gp_tasks);
2491 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2492 
2493 			/* Other bits still set at this level, so done. */
2494 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2495 			return;
2496 		}
2497 		mask = rnp->grpmask;
2498 		if (rnp->parent == NULL) {
2499 
2500 			/* No more levels.  Exit loop holding root lock. */
2501 
2502 			break;
2503 		}
2504 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2505 		rnp_c = rnp;
2506 		rnp = rnp->parent;
2507 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2508 		oldmask = rnp_c->qsmask;
2509 	}
2510 
2511 	/*
2512 	 * Get here if we are the last CPU to pass through a quiescent
2513 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2514 	 * to clean up and start the next grace period if one is needed.
2515 	 */
2516 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2517 }
2518 
2519 /*
2520  * Record a quiescent state for all tasks that were previously queued
2521  * on the specified rcu_node structure and that were blocking the current
2522  * RCU grace period.  The caller must hold the specified rnp->lock with
2523  * irqs disabled, and this lock is released upon return, but irqs remain
2524  * disabled.
2525  */
2526 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2527 				      struct rcu_node *rnp, unsigned long flags)
2528 	__releases(rnp->lock)
2529 {
2530 	unsigned long gps;
2531 	unsigned long mask;
2532 	struct rcu_node *rnp_p;
2533 
2534 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2535 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2536 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2537 		return;  /* Still need more quiescent states! */
2538 	}
2539 
2540 	rnp_p = rnp->parent;
2541 	if (rnp_p == NULL) {
2542 		/*
2543 		 * Only one rcu_node structure in the tree, so don't
2544 		 * try to report up to its nonexistent parent!
2545 		 */
2546 		rcu_report_qs_rsp(rsp, flags);
2547 		return;
2548 	}
2549 
2550 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2551 	gps = rnp->gpnum;
2552 	mask = rnp->grpmask;
2553 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2554 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2555 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2556 }
2557 
2558 /*
2559  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2560  * structure.  This must be called from the specified CPU.
2561  */
2562 static void
2563 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2564 {
2565 	unsigned long flags;
2566 	unsigned long mask;
2567 	bool needwake;
2568 	struct rcu_node *rnp;
2569 
2570 	rnp = rdp->mynode;
2571 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2572 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2573 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2574 
2575 		/*
2576 		 * The grace period in which this quiescent state was
2577 		 * recorded has ended, so don't report it upwards.
2578 		 * We will instead need a new quiescent state that lies
2579 		 * within the current grace period.
2580 		 */
2581 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2582 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2583 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2584 		return;
2585 	}
2586 	mask = rdp->grpmask;
2587 	if ((rnp->qsmask & mask) == 0) {
2588 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2589 	} else {
2590 		rdp->core_needs_qs = false;
2591 
2592 		/*
2593 		 * This GP can't end until cpu checks in, so all of our
2594 		 * callbacks can be processed during the next GP.
2595 		 */
2596 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2597 
2598 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2599 		/* ^^^ Released rnp->lock */
2600 		if (needwake)
2601 			rcu_gp_kthread_wake(rsp);
2602 	}
2603 }
2604 
2605 /*
2606  * Check to see if there is a new grace period of which this CPU
2607  * is not yet aware, and if so, set up local rcu_data state for it.
2608  * Otherwise, see if this CPU has just passed through its first
2609  * quiescent state for this grace period, and record that fact if so.
2610  */
2611 static void
2612 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2613 {
2614 	/* Check for grace-period ends and beginnings. */
2615 	note_gp_changes(rsp, rdp);
2616 
2617 	/*
2618 	 * Does this CPU still need to do its part for current grace period?
2619 	 * If no, return and let the other CPUs do their part as well.
2620 	 */
2621 	if (!rdp->core_needs_qs)
2622 		return;
2623 
2624 	/*
2625 	 * Was there a quiescent state since the beginning of the grace
2626 	 * period? If no, then exit and wait for the next call.
2627 	 */
2628 	if (rdp->cpu_no_qs.b.norm)
2629 		return;
2630 
2631 	/*
2632 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2633 	 * judge of that).
2634 	 */
2635 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2636 }
2637 
2638 /*
2639  * Send the specified CPU's RCU callbacks to the orphanage.  The
2640  * specified CPU must be offline, and the caller must hold the
2641  * ->orphan_lock.
2642  */
2643 static void
2644 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2645 			  struct rcu_node *rnp, struct rcu_data *rdp)
2646 {
2647 	/* No-CBs CPUs do not have orphanable callbacks. */
2648 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2649 		return;
2650 
2651 	/*
2652 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2653 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2654 	 * cannot be running now.  Thus no memory barrier is required.
2655 	 */
2656 	if (rdp->nxtlist != NULL) {
2657 		rsp->qlen_lazy += rdp->qlen_lazy;
2658 		rsp->qlen += rdp->qlen;
2659 		rdp->n_cbs_orphaned += rdp->qlen;
2660 		rdp->qlen_lazy = 0;
2661 		WRITE_ONCE(rdp->qlen, 0);
2662 	}
2663 
2664 	/*
2665 	 * Next, move those callbacks still needing a grace period to
2666 	 * the orphanage, where some other CPU will pick them up.
2667 	 * Some of the callbacks might have gone partway through a grace
2668 	 * period, but that is too bad.  They get to start over because we
2669 	 * cannot assume that grace periods are synchronized across CPUs.
2670 	 * We don't bother updating the ->nxttail[] array yet, instead
2671 	 * we just reset the whole thing later on.
2672 	 */
2673 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2674 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2675 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2676 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2677 	}
2678 
2679 	/*
2680 	 * Then move the ready-to-invoke callbacks to the orphanage,
2681 	 * where some other CPU will pick them up.  These will not be
2682 	 * required to pass though another grace period: They are done.
2683 	 */
2684 	if (rdp->nxtlist != NULL) {
2685 		*rsp->orphan_donetail = rdp->nxtlist;
2686 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2687 	}
2688 
2689 	/*
2690 	 * Finally, initialize the rcu_data structure's list to empty and
2691 	 * disallow further callbacks on this CPU.
2692 	 */
2693 	init_callback_list(rdp);
2694 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2695 }
2696 
2697 /*
2698  * Adopt the RCU callbacks from the specified rcu_state structure's
2699  * orphanage.  The caller must hold the ->orphan_lock.
2700  */
2701 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2702 {
2703 	int i;
2704 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2705 
2706 	/* No-CBs CPUs are handled specially. */
2707 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2708 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2709 		return;
2710 
2711 	/* Do the accounting first. */
2712 	rdp->qlen_lazy += rsp->qlen_lazy;
2713 	rdp->qlen += rsp->qlen;
2714 	rdp->n_cbs_adopted += rsp->qlen;
2715 	if (rsp->qlen_lazy != rsp->qlen)
2716 		rcu_idle_count_callbacks_posted();
2717 	rsp->qlen_lazy = 0;
2718 	rsp->qlen = 0;
2719 
2720 	/*
2721 	 * We do not need a memory barrier here because the only way we
2722 	 * can get here if there is an rcu_barrier() in flight is if
2723 	 * we are the task doing the rcu_barrier().
2724 	 */
2725 
2726 	/* First adopt the ready-to-invoke callbacks. */
2727 	if (rsp->orphan_donelist != NULL) {
2728 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2729 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2730 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2731 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2732 				rdp->nxttail[i] = rsp->orphan_donetail;
2733 		rsp->orphan_donelist = NULL;
2734 		rsp->orphan_donetail = &rsp->orphan_donelist;
2735 	}
2736 
2737 	/* And then adopt the callbacks that still need a grace period. */
2738 	if (rsp->orphan_nxtlist != NULL) {
2739 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2740 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2741 		rsp->orphan_nxtlist = NULL;
2742 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2743 	}
2744 }
2745 
2746 /*
2747  * Trace the fact that this CPU is going offline.
2748  */
2749 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2750 {
2751 	RCU_TRACE(unsigned long mask);
2752 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2753 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2754 
2755 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2756 		return;
2757 
2758 	RCU_TRACE(mask = rdp->grpmask);
2759 	trace_rcu_grace_period(rsp->name,
2760 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2761 			       TPS("cpuofl"));
2762 }
2763 
2764 /*
2765  * All CPUs for the specified rcu_node structure have gone offline,
2766  * and all tasks that were preempted within an RCU read-side critical
2767  * section while running on one of those CPUs have since exited their RCU
2768  * read-side critical section.  Some other CPU is reporting this fact with
2769  * the specified rcu_node structure's ->lock held and interrupts disabled.
2770  * This function therefore goes up the tree of rcu_node structures,
2771  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2772  * the leaf rcu_node structure's ->qsmaskinit field has already been
2773  * updated
2774  *
2775  * This function does check that the specified rcu_node structure has
2776  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2777  * prematurely.  That said, invoking it after the fact will cost you
2778  * a needless lock acquisition.  So once it has done its work, don't
2779  * invoke it again.
2780  */
2781 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2782 {
2783 	long mask;
2784 	struct rcu_node *rnp = rnp_leaf;
2785 
2786 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2787 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2788 		return;
2789 	for (;;) {
2790 		mask = rnp->grpmask;
2791 		rnp = rnp->parent;
2792 		if (!rnp)
2793 			break;
2794 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2795 		rnp->qsmaskinit &= ~mask;
2796 		rnp->qsmask &= ~mask;
2797 		if (rnp->qsmaskinit) {
2798 			raw_spin_unlock_rcu_node(rnp);
2799 			/* irqs remain disabled. */
2800 			return;
2801 		}
2802 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2803 	}
2804 }
2805 
2806 /*
2807  * The CPU has been completely removed, and some other CPU is reporting
2808  * this fact from process context.  Do the remainder of the cleanup,
2809  * including orphaning the outgoing CPU's RCU callbacks, and also
2810  * adopting them.  There can only be one CPU hotplug operation at a time,
2811  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2812  */
2813 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2814 {
2815 	unsigned long flags;
2816 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2817 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2818 
2819 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2820 		return;
2821 
2822 	/* Adjust any no-longer-needed kthreads. */
2823 	rcu_boost_kthread_setaffinity(rnp, -1);
2824 
2825 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2826 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2827 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2828 	rcu_adopt_orphan_cbs(rsp, flags);
2829 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2830 
2831 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2832 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2833 		  cpu, rdp->qlen, rdp->nxtlist);
2834 }
2835 
2836 /*
2837  * Invoke any RCU callbacks that have made it to the end of their grace
2838  * period.  Thottle as specified by rdp->blimit.
2839  */
2840 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2841 {
2842 	unsigned long flags;
2843 	struct rcu_head *next, *list, **tail;
2844 	long bl, count, count_lazy;
2845 	int i;
2846 
2847 	/* If no callbacks are ready, just return. */
2848 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2849 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2850 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2851 				    need_resched(), is_idle_task(current),
2852 				    rcu_is_callbacks_kthread());
2853 		return;
2854 	}
2855 
2856 	/*
2857 	 * Extract the list of ready callbacks, disabling to prevent
2858 	 * races with call_rcu() from interrupt handlers.
2859 	 */
2860 	local_irq_save(flags);
2861 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2862 	bl = rdp->blimit;
2863 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2864 	list = rdp->nxtlist;
2865 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2866 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2867 	tail = rdp->nxttail[RCU_DONE_TAIL];
2868 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2869 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2870 			rdp->nxttail[i] = &rdp->nxtlist;
2871 	local_irq_restore(flags);
2872 
2873 	/* Invoke callbacks. */
2874 	count = count_lazy = 0;
2875 	while (list) {
2876 		next = list->next;
2877 		prefetch(next);
2878 		debug_rcu_head_unqueue(list);
2879 		if (__rcu_reclaim(rsp->name, list))
2880 			count_lazy++;
2881 		list = next;
2882 		/* Stop only if limit reached and CPU has something to do. */
2883 		if (++count >= bl &&
2884 		    (need_resched() ||
2885 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2886 			break;
2887 	}
2888 
2889 	local_irq_save(flags);
2890 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2891 			    is_idle_task(current),
2892 			    rcu_is_callbacks_kthread());
2893 
2894 	/* Update count, and requeue any remaining callbacks. */
2895 	if (list != NULL) {
2896 		*tail = rdp->nxtlist;
2897 		rdp->nxtlist = list;
2898 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2899 			if (&rdp->nxtlist == rdp->nxttail[i])
2900 				rdp->nxttail[i] = tail;
2901 			else
2902 				break;
2903 	}
2904 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2905 	rdp->qlen_lazy -= count_lazy;
2906 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2907 	rdp->n_cbs_invoked += count;
2908 
2909 	/* Reinstate batch limit if we have worked down the excess. */
2910 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2911 		rdp->blimit = blimit;
2912 
2913 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2914 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2915 		rdp->qlen_last_fqs_check = 0;
2916 		rdp->n_force_qs_snap = rsp->n_force_qs;
2917 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2918 		rdp->qlen_last_fqs_check = rdp->qlen;
2919 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2920 
2921 	local_irq_restore(flags);
2922 
2923 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2924 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2925 		invoke_rcu_core();
2926 }
2927 
2928 /*
2929  * Check to see if this CPU is in a non-context-switch quiescent state
2930  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2931  * Also schedule RCU core processing.
2932  *
2933  * This function must be called from hardirq context.  It is normally
2934  * invoked from the scheduling-clock interrupt.
2935  */
2936 void rcu_check_callbacks(int user)
2937 {
2938 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2939 	increment_cpu_stall_ticks();
2940 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2941 
2942 		/*
2943 		 * Get here if this CPU took its interrupt from user
2944 		 * mode or from the idle loop, and if this is not a
2945 		 * nested interrupt.  In this case, the CPU is in
2946 		 * a quiescent state, so note it.
2947 		 *
2948 		 * No memory barrier is required here because both
2949 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2950 		 * variables that other CPUs neither access nor modify,
2951 		 * at least not while the corresponding CPU is online.
2952 		 */
2953 
2954 		rcu_sched_qs();
2955 		rcu_bh_qs();
2956 
2957 	} else if (!in_softirq()) {
2958 
2959 		/*
2960 		 * Get here if this CPU did not take its interrupt from
2961 		 * softirq, in other words, if it is not interrupting
2962 		 * a rcu_bh read-side critical section.  This is an _bh
2963 		 * critical section, so note it.
2964 		 */
2965 
2966 		rcu_bh_qs();
2967 	}
2968 	rcu_preempt_check_callbacks();
2969 	if (rcu_pending())
2970 		invoke_rcu_core();
2971 	if (user)
2972 		rcu_note_voluntary_context_switch(current);
2973 	trace_rcu_utilization(TPS("End scheduler-tick"));
2974 }
2975 
2976 /*
2977  * Scan the leaf rcu_node structures, processing dyntick state for any that
2978  * have not yet encountered a quiescent state, using the function specified.
2979  * Also initiate boosting for any threads blocked on the root rcu_node.
2980  *
2981  * The caller must have suppressed start of new grace periods.
2982  */
2983 static void force_qs_rnp(struct rcu_state *rsp,
2984 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2985 				  unsigned long *maxj),
2986 			 bool *isidle, unsigned long *maxj)
2987 {
2988 	int cpu;
2989 	unsigned long flags;
2990 	unsigned long mask;
2991 	struct rcu_node *rnp;
2992 
2993 	rcu_for_each_leaf_node(rsp, rnp) {
2994 		cond_resched_rcu_qs();
2995 		mask = 0;
2996 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2997 		if (rnp->qsmask == 0) {
2998 			if (rcu_state_p == &rcu_sched_state ||
2999 			    rsp != rcu_state_p ||
3000 			    rcu_preempt_blocked_readers_cgp(rnp)) {
3001 				/*
3002 				 * No point in scanning bits because they
3003 				 * are all zero.  But we might need to
3004 				 * priority-boost blocked readers.
3005 				 */
3006 				rcu_initiate_boost(rnp, flags);
3007 				/* rcu_initiate_boost() releases rnp->lock */
3008 				continue;
3009 			}
3010 			if (rnp->parent &&
3011 			    (rnp->parent->qsmask & rnp->grpmask)) {
3012 				/*
3013 				 * Race between grace-period
3014 				 * initialization and task exiting RCU
3015 				 * read-side critical section: Report.
3016 				 */
3017 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
3018 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
3019 				continue;
3020 			}
3021 		}
3022 		for_each_leaf_node_possible_cpu(rnp, cpu) {
3023 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3024 			if ((rnp->qsmask & bit) != 0) {
3025 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
3026 					mask |= bit;
3027 			}
3028 		}
3029 		if (mask != 0) {
3030 			/* Idle/offline CPUs, report (releases rnp->lock. */
3031 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3032 		} else {
3033 			/* Nothing to do here, so just drop the lock. */
3034 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3035 		}
3036 	}
3037 }
3038 
3039 /*
3040  * Force quiescent states on reluctant CPUs, and also detect which
3041  * CPUs are in dyntick-idle mode.
3042  */
3043 static void force_quiescent_state(struct rcu_state *rsp)
3044 {
3045 	unsigned long flags;
3046 	bool ret;
3047 	struct rcu_node *rnp;
3048 	struct rcu_node *rnp_old = NULL;
3049 
3050 	/* Funnel through hierarchy to reduce memory contention. */
3051 	rnp = __this_cpu_read(rsp->rda->mynode);
3052 	for (; rnp != NULL; rnp = rnp->parent) {
3053 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3054 		      !raw_spin_trylock(&rnp->fqslock);
3055 		if (rnp_old != NULL)
3056 			raw_spin_unlock(&rnp_old->fqslock);
3057 		if (ret) {
3058 			rsp->n_force_qs_lh++;
3059 			return;
3060 		}
3061 		rnp_old = rnp;
3062 	}
3063 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3064 
3065 	/* Reached the root of the rcu_node tree, acquire lock. */
3066 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3067 	raw_spin_unlock(&rnp_old->fqslock);
3068 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3069 		rsp->n_force_qs_lh++;
3070 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3071 		return;  /* Someone beat us to it. */
3072 	}
3073 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
3074 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3075 	rcu_gp_kthread_wake(rsp);
3076 }
3077 
3078 /*
3079  * This does the RCU core processing work for the specified rcu_state
3080  * and rcu_data structures.  This may be called only from the CPU to
3081  * whom the rdp belongs.
3082  */
3083 static void
3084 __rcu_process_callbacks(struct rcu_state *rsp)
3085 {
3086 	unsigned long flags;
3087 	bool needwake;
3088 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3089 
3090 	WARN_ON_ONCE(rdp->beenonline == 0);
3091 
3092 	/* Update RCU state based on any recent quiescent states. */
3093 	rcu_check_quiescent_state(rsp, rdp);
3094 
3095 	/* Does this CPU require a not-yet-started grace period? */
3096 	local_irq_save(flags);
3097 	if (cpu_needs_another_gp(rsp, rdp)) {
3098 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3099 		needwake = rcu_start_gp(rsp);
3100 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3101 		if (needwake)
3102 			rcu_gp_kthread_wake(rsp);
3103 	} else {
3104 		local_irq_restore(flags);
3105 	}
3106 
3107 	/* If there are callbacks ready, invoke them. */
3108 	if (cpu_has_callbacks_ready_to_invoke(rdp))
3109 		invoke_rcu_callbacks(rsp, rdp);
3110 
3111 	/* Do any needed deferred wakeups of rcuo kthreads. */
3112 	do_nocb_deferred_wakeup(rdp);
3113 }
3114 
3115 /*
3116  * Do RCU core processing for the current CPU.
3117  */
3118 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3119 {
3120 	struct rcu_state *rsp;
3121 
3122 	if (cpu_is_offline(smp_processor_id()))
3123 		return;
3124 	trace_rcu_utilization(TPS("Start RCU core"));
3125 	for_each_rcu_flavor(rsp)
3126 		__rcu_process_callbacks(rsp);
3127 	trace_rcu_utilization(TPS("End RCU core"));
3128 }
3129 
3130 /*
3131  * Schedule RCU callback invocation.  If the specified type of RCU
3132  * does not support RCU priority boosting, just do a direct call,
3133  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3134  * are running on the current CPU with softirqs disabled, the
3135  * rcu_cpu_kthread_task cannot disappear out from under us.
3136  */
3137 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3138 {
3139 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3140 		return;
3141 	if (likely(!rsp->boost)) {
3142 		rcu_do_batch(rsp, rdp);
3143 		return;
3144 	}
3145 	invoke_rcu_callbacks_kthread();
3146 }
3147 
3148 static void invoke_rcu_core(void)
3149 {
3150 	if (cpu_online(smp_processor_id()))
3151 		raise_softirq(RCU_SOFTIRQ);
3152 }
3153 
3154 /*
3155  * Handle any core-RCU processing required by a call_rcu() invocation.
3156  */
3157 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3158 			    struct rcu_head *head, unsigned long flags)
3159 {
3160 	bool needwake;
3161 
3162 	/*
3163 	 * If called from an extended quiescent state, invoke the RCU
3164 	 * core in order to force a re-evaluation of RCU's idleness.
3165 	 */
3166 	if (!rcu_is_watching())
3167 		invoke_rcu_core();
3168 
3169 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3170 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3171 		return;
3172 
3173 	/*
3174 	 * Force the grace period if too many callbacks or too long waiting.
3175 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3176 	 * if some other CPU has recently done so.  Also, don't bother
3177 	 * invoking force_quiescent_state() if the newly enqueued callback
3178 	 * is the only one waiting for a grace period to complete.
3179 	 */
3180 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3181 
3182 		/* Are we ignoring a completed grace period? */
3183 		note_gp_changes(rsp, rdp);
3184 
3185 		/* Start a new grace period if one not already started. */
3186 		if (!rcu_gp_in_progress(rsp)) {
3187 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3188 
3189 			raw_spin_lock_rcu_node(rnp_root);
3190 			needwake = rcu_start_gp(rsp);
3191 			raw_spin_unlock_rcu_node(rnp_root);
3192 			if (needwake)
3193 				rcu_gp_kthread_wake(rsp);
3194 		} else {
3195 			/* Give the grace period a kick. */
3196 			rdp->blimit = LONG_MAX;
3197 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3198 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3199 				force_quiescent_state(rsp);
3200 			rdp->n_force_qs_snap = rsp->n_force_qs;
3201 			rdp->qlen_last_fqs_check = rdp->qlen;
3202 		}
3203 	}
3204 }
3205 
3206 /*
3207  * RCU callback function to leak a callback.
3208  */
3209 static void rcu_leak_callback(struct rcu_head *rhp)
3210 {
3211 }
3212 
3213 /*
3214  * Helper function for call_rcu() and friends.  The cpu argument will
3215  * normally be -1, indicating "currently running CPU".  It may specify
3216  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3217  * is expected to specify a CPU.
3218  */
3219 static void
3220 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3221 	   struct rcu_state *rsp, int cpu, bool lazy)
3222 {
3223 	unsigned long flags;
3224 	struct rcu_data *rdp;
3225 
3226 	/* Misaligned rcu_head! */
3227 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3228 
3229 	if (debug_rcu_head_queue(head)) {
3230 		/* Probable double call_rcu(), so leak the callback. */
3231 		WRITE_ONCE(head->func, rcu_leak_callback);
3232 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3233 		return;
3234 	}
3235 	head->func = func;
3236 	head->next = NULL;
3237 	local_irq_save(flags);
3238 	rdp = this_cpu_ptr(rsp->rda);
3239 
3240 	/* Add the callback to our list. */
3241 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3242 		int offline;
3243 
3244 		if (cpu != -1)
3245 			rdp = per_cpu_ptr(rsp->rda, cpu);
3246 		if (likely(rdp->mynode)) {
3247 			/* Post-boot, so this should be for a no-CBs CPU. */
3248 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3249 			WARN_ON_ONCE(offline);
3250 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3251 			local_irq_restore(flags);
3252 			return;
3253 		}
3254 		/*
3255 		 * Very early boot, before rcu_init().  Initialize if needed
3256 		 * and then drop through to queue the callback.
3257 		 */
3258 		BUG_ON(cpu != -1);
3259 		WARN_ON_ONCE(!rcu_is_watching());
3260 		if (!likely(rdp->nxtlist))
3261 			init_default_callback_list(rdp);
3262 	}
3263 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3264 	if (lazy)
3265 		rdp->qlen_lazy++;
3266 	else
3267 		rcu_idle_count_callbacks_posted();
3268 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3269 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3270 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3271 
3272 	if (__is_kfree_rcu_offset((unsigned long)func))
3273 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3274 					 rdp->qlen_lazy, rdp->qlen);
3275 	else
3276 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3277 
3278 	/* Go handle any RCU core processing required. */
3279 	__call_rcu_core(rsp, rdp, head, flags);
3280 	local_irq_restore(flags);
3281 }
3282 
3283 /*
3284  * Queue an RCU-sched callback for invocation after a grace period.
3285  */
3286 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3287 {
3288 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3289 }
3290 EXPORT_SYMBOL_GPL(call_rcu_sched);
3291 
3292 /*
3293  * Queue an RCU callback for invocation after a quicker grace period.
3294  */
3295 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3296 {
3297 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3298 }
3299 EXPORT_SYMBOL_GPL(call_rcu_bh);
3300 
3301 /*
3302  * Queue an RCU callback for lazy invocation after a grace period.
3303  * This will likely be later named something like "call_rcu_lazy()",
3304  * but this change will require some way of tagging the lazy RCU
3305  * callbacks in the list of pending callbacks. Until then, this
3306  * function may only be called from __kfree_rcu().
3307  */
3308 void kfree_call_rcu(struct rcu_head *head,
3309 		    rcu_callback_t func)
3310 {
3311 	__call_rcu(head, func, rcu_state_p, -1, 1);
3312 }
3313 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3314 
3315 /*
3316  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3317  * any blocking grace-period wait automatically implies a grace period
3318  * if there is only one CPU online at any point time during execution
3319  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3320  * occasionally incorrectly indicate that there are multiple CPUs online
3321  * when there was in fact only one the whole time, as this just adds
3322  * some overhead: RCU still operates correctly.
3323  */
3324 static inline int rcu_blocking_is_gp(void)
3325 {
3326 	int ret;
3327 
3328 	might_sleep();  /* Check for RCU read-side critical section. */
3329 	preempt_disable();
3330 	ret = num_online_cpus() <= 1;
3331 	preempt_enable();
3332 	return ret;
3333 }
3334 
3335 /**
3336  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3337  *
3338  * Control will return to the caller some time after a full rcu-sched
3339  * grace period has elapsed, in other words after all currently executing
3340  * rcu-sched read-side critical sections have completed.   These read-side
3341  * critical sections are delimited by rcu_read_lock_sched() and
3342  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3343  * local_irq_disable(), and so on may be used in place of
3344  * rcu_read_lock_sched().
3345  *
3346  * This means that all preempt_disable code sequences, including NMI and
3347  * non-threaded hardware-interrupt handlers, in progress on entry will
3348  * have completed before this primitive returns.  However, this does not
3349  * guarantee that softirq handlers will have completed, since in some
3350  * kernels, these handlers can run in process context, and can block.
3351  *
3352  * Note that this guarantee implies further memory-ordering guarantees.
3353  * On systems with more than one CPU, when synchronize_sched() returns,
3354  * each CPU is guaranteed to have executed a full memory barrier since the
3355  * end of its last RCU-sched read-side critical section whose beginning
3356  * preceded the call to synchronize_sched().  In addition, each CPU having
3357  * an RCU read-side critical section that extends beyond the return from
3358  * synchronize_sched() is guaranteed to have executed a full memory barrier
3359  * after the beginning of synchronize_sched() and before the beginning of
3360  * that RCU read-side critical section.  Note that these guarantees include
3361  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3362  * that are executing in the kernel.
3363  *
3364  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3365  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3366  * to have executed a full memory barrier during the execution of
3367  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3368  * again only if the system has more than one CPU).
3369  *
3370  * This primitive provides the guarantees made by the (now removed)
3371  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3372  * guarantees that rcu_read_lock() sections will have completed.
3373  * In "classic RCU", these two guarantees happen to be one and
3374  * the same, but can differ in realtime RCU implementations.
3375  */
3376 void synchronize_sched(void)
3377 {
3378 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3379 			 lock_is_held(&rcu_lock_map) ||
3380 			 lock_is_held(&rcu_sched_lock_map),
3381 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3382 	if (rcu_blocking_is_gp())
3383 		return;
3384 	if (rcu_gp_is_expedited())
3385 		synchronize_sched_expedited();
3386 	else
3387 		wait_rcu_gp(call_rcu_sched);
3388 }
3389 EXPORT_SYMBOL_GPL(synchronize_sched);
3390 
3391 /**
3392  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3393  *
3394  * Control will return to the caller some time after a full rcu_bh grace
3395  * period has elapsed, in other words after all currently executing rcu_bh
3396  * read-side critical sections have completed.  RCU read-side critical
3397  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3398  * and may be nested.
3399  *
3400  * See the description of synchronize_sched() for more detailed information
3401  * on memory ordering guarantees.
3402  */
3403 void synchronize_rcu_bh(void)
3404 {
3405 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3406 			 lock_is_held(&rcu_lock_map) ||
3407 			 lock_is_held(&rcu_sched_lock_map),
3408 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3409 	if (rcu_blocking_is_gp())
3410 		return;
3411 	if (rcu_gp_is_expedited())
3412 		synchronize_rcu_bh_expedited();
3413 	else
3414 		wait_rcu_gp(call_rcu_bh);
3415 }
3416 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3417 
3418 /**
3419  * get_state_synchronize_rcu - Snapshot current RCU state
3420  *
3421  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3422  * to determine whether or not a full grace period has elapsed in the
3423  * meantime.
3424  */
3425 unsigned long get_state_synchronize_rcu(void)
3426 {
3427 	/*
3428 	 * Any prior manipulation of RCU-protected data must happen
3429 	 * before the load from ->gpnum.
3430 	 */
3431 	smp_mb();  /* ^^^ */
3432 
3433 	/*
3434 	 * Make sure this load happens before the purportedly
3435 	 * time-consuming work between get_state_synchronize_rcu()
3436 	 * and cond_synchronize_rcu().
3437 	 */
3438 	return smp_load_acquire(&rcu_state_p->gpnum);
3439 }
3440 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3441 
3442 /**
3443  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3444  *
3445  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3446  *
3447  * If a full RCU grace period has elapsed since the earlier call to
3448  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3449  * synchronize_rcu() to wait for a full grace period.
3450  *
3451  * Yes, this function does not take counter wrap into account.  But
3452  * counter wrap is harmless.  If the counter wraps, we have waited for
3453  * more than 2 billion grace periods (and way more on a 64-bit system!),
3454  * so waiting for one additional grace period should be just fine.
3455  */
3456 void cond_synchronize_rcu(unsigned long oldstate)
3457 {
3458 	unsigned long newstate;
3459 
3460 	/*
3461 	 * Ensure that this load happens before any RCU-destructive
3462 	 * actions the caller might carry out after we return.
3463 	 */
3464 	newstate = smp_load_acquire(&rcu_state_p->completed);
3465 	if (ULONG_CMP_GE(oldstate, newstate))
3466 		synchronize_rcu();
3467 }
3468 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3469 
3470 /**
3471  * get_state_synchronize_sched - Snapshot current RCU-sched state
3472  *
3473  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3474  * to determine whether or not a full grace period has elapsed in the
3475  * meantime.
3476  */
3477 unsigned long get_state_synchronize_sched(void)
3478 {
3479 	/*
3480 	 * Any prior manipulation of RCU-protected data must happen
3481 	 * before the load from ->gpnum.
3482 	 */
3483 	smp_mb();  /* ^^^ */
3484 
3485 	/*
3486 	 * Make sure this load happens before the purportedly
3487 	 * time-consuming work between get_state_synchronize_sched()
3488 	 * and cond_synchronize_sched().
3489 	 */
3490 	return smp_load_acquire(&rcu_sched_state.gpnum);
3491 }
3492 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3493 
3494 /**
3495  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3496  *
3497  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3498  *
3499  * If a full RCU-sched grace period has elapsed since the earlier call to
3500  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3501  * synchronize_sched() to wait for a full grace period.
3502  *
3503  * Yes, this function does not take counter wrap into account.  But
3504  * counter wrap is harmless.  If the counter wraps, we have waited for
3505  * more than 2 billion grace periods (and way more on a 64-bit system!),
3506  * so waiting for one additional grace period should be just fine.
3507  */
3508 void cond_synchronize_sched(unsigned long oldstate)
3509 {
3510 	unsigned long newstate;
3511 
3512 	/*
3513 	 * Ensure that this load happens before any RCU-destructive
3514 	 * actions the caller might carry out after we return.
3515 	 */
3516 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3517 	if (ULONG_CMP_GE(oldstate, newstate))
3518 		synchronize_sched();
3519 }
3520 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3521 
3522 /* Adjust sequence number for start of update-side operation. */
3523 static void rcu_seq_start(unsigned long *sp)
3524 {
3525 	WRITE_ONCE(*sp, *sp + 1);
3526 	smp_mb(); /* Ensure update-side operation after counter increment. */
3527 	WARN_ON_ONCE(!(*sp & 0x1));
3528 }
3529 
3530 /* Adjust sequence number for end of update-side operation. */
3531 static void rcu_seq_end(unsigned long *sp)
3532 {
3533 	smp_mb(); /* Ensure update-side operation before counter increment. */
3534 	WRITE_ONCE(*sp, *sp + 1);
3535 	WARN_ON_ONCE(*sp & 0x1);
3536 }
3537 
3538 /* Take a snapshot of the update side's sequence number. */
3539 static unsigned long rcu_seq_snap(unsigned long *sp)
3540 {
3541 	unsigned long s;
3542 
3543 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3544 	smp_mb(); /* Above access must not bleed into critical section. */
3545 	return s;
3546 }
3547 
3548 /*
3549  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3550  * full update-side operation has occurred.
3551  */
3552 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3553 {
3554 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3555 }
3556 
3557 /*
3558  * Check to see if there is any immediate RCU-related work to be done
3559  * by the current CPU, for the specified type of RCU, returning 1 if so.
3560  * The checks are in order of increasing expense: checks that can be
3561  * carried out against CPU-local state are performed first.  However,
3562  * we must check for CPU stalls first, else we might not get a chance.
3563  */
3564 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3565 {
3566 	struct rcu_node *rnp = rdp->mynode;
3567 
3568 	rdp->n_rcu_pending++;
3569 
3570 	/* Check for CPU stalls, if enabled. */
3571 	check_cpu_stall(rsp, rdp);
3572 
3573 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3574 	if (rcu_nohz_full_cpu(rsp))
3575 		return 0;
3576 
3577 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3578 	if (rcu_scheduler_fully_active &&
3579 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3580 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3581 		rdp->n_rp_core_needs_qs++;
3582 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3583 		rdp->n_rp_report_qs++;
3584 		return 1;
3585 	}
3586 
3587 	/* Does this CPU have callbacks ready to invoke? */
3588 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3589 		rdp->n_rp_cb_ready++;
3590 		return 1;
3591 	}
3592 
3593 	/* Has RCU gone idle with this CPU needing another grace period? */
3594 	if (cpu_needs_another_gp(rsp, rdp)) {
3595 		rdp->n_rp_cpu_needs_gp++;
3596 		return 1;
3597 	}
3598 
3599 	/* Has another RCU grace period completed?  */
3600 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3601 		rdp->n_rp_gp_completed++;
3602 		return 1;
3603 	}
3604 
3605 	/* Has a new RCU grace period started? */
3606 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3607 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3608 		rdp->n_rp_gp_started++;
3609 		return 1;
3610 	}
3611 
3612 	/* Does this CPU need a deferred NOCB wakeup? */
3613 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3614 		rdp->n_rp_nocb_defer_wakeup++;
3615 		return 1;
3616 	}
3617 
3618 	/* nothing to do */
3619 	rdp->n_rp_need_nothing++;
3620 	return 0;
3621 }
3622 
3623 /*
3624  * Check to see if there is any immediate RCU-related work to be done
3625  * by the current CPU, returning 1 if so.  This function is part of the
3626  * RCU implementation; it is -not- an exported member of the RCU API.
3627  */
3628 static int rcu_pending(void)
3629 {
3630 	struct rcu_state *rsp;
3631 
3632 	for_each_rcu_flavor(rsp)
3633 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3634 			return 1;
3635 	return 0;
3636 }
3637 
3638 /*
3639  * Return true if the specified CPU has any callback.  If all_lazy is
3640  * non-NULL, store an indication of whether all callbacks are lazy.
3641  * (If there are no callbacks, all of them are deemed to be lazy.)
3642  */
3643 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3644 {
3645 	bool al = true;
3646 	bool hc = false;
3647 	struct rcu_data *rdp;
3648 	struct rcu_state *rsp;
3649 
3650 	for_each_rcu_flavor(rsp) {
3651 		rdp = this_cpu_ptr(rsp->rda);
3652 		if (!rdp->nxtlist)
3653 			continue;
3654 		hc = true;
3655 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3656 			al = false;
3657 			break;
3658 		}
3659 	}
3660 	if (all_lazy)
3661 		*all_lazy = al;
3662 	return hc;
3663 }
3664 
3665 /*
3666  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3667  * the compiler is expected to optimize this away.
3668  */
3669 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3670 			       int cpu, unsigned long done)
3671 {
3672 	trace_rcu_barrier(rsp->name, s, cpu,
3673 			  atomic_read(&rsp->barrier_cpu_count), done);
3674 }
3675 
3676 /*
3677  * RCU callback function for _rcu_barrier().  If we are last, wake
3678  * up the task executing _rcu_barrier().
3679  */
3680 static void rcu_barrier_callback(struct rcu_head *rhp)
3681 {
3682 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3683 	struct rcu_state *rsp = rdp->rsp;
3684 
3685 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3686 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3687 		complete(&rsp->barrier_completion);
3688 	} else {
3689 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3690 	}
3691 }
3692 
3693 /*
3694  * Called with preemption disabled, and from cross-cpu IRQ context.
3695  */
3696 static void rcu_barrier_func(void *type)
3697 {
3698 	struct rcu_state *rsp = type;
3699 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3700 
3701 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3702 	atomic_inc(&rsp->barrier_cpu_count);
3703 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3704 }
3705 
3706 /*
3707  * Orchestrate the specified type of RCU barrier, waiting for all
3708  * RCU callbacks of the specified type to complete.
3709  */
3710 static void _rcu_barrier(struct rcu_state *rsp)
3711 {
3712 	int cpu;
3713 	struct rcu_data *rdp;
3714 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3715 
3716 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3717 
3718 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3719 	mutex_lock(&rsp->barrier_mutex);
3720 
3721 	/* Did someone else do our work for us? */
3722 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3723 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3724 		smp_mb(); /* caller's subsequent code after above check. */
3725 		mutex_unlock(&rsp->barrier_mutex);
3726 		return;
3727 	}
3728 
3729 	/* Mark the start of the barrier operation. */
3730 	rcu_seq_start(&rsp->barrier_sequence);
3731 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3732 
3733 	/*
3734 	 * Initialize the count to one rather than to zero in order to
3735 	 * avoid a too-soon return to zero in case of a short grace period
3736 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3737 	 * to ensure that no offline CPU has callbacks queued.
3738 	 */
3739 	init_completion(&rsp->barrier_completion);
3740 	atomic_set(&rsp->barrier_cpu_count, 1);
3741 	get_online_cpus();
3742 
3743 	/*
3744 	 * Force each CPU with callbacks to register a new callback.
3745 	 * When that callback is invoked, we will know that all of the
3746 	 * corresponding CPU's preceding callbacks have been invoked.
3747 	 */
3748 	for_each_possible_cpu(cpu) {
3749 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3750 			continue;
3751 		rdp = per_cpu_ptr(rsp->rda, cpu);
3752 		if (rcu_is_nocb_cpu(cpu)) {
3753 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3754 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3755 						   rsp->barrier_sequence);
3756 			} else {
3757 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3758 						   rsp->barrier_sequence);
3759 				smp_mb__before_atomic();
3760 				atomic_inc(&rsp->barrier_cpu_count);
3761 				__call_rcu(&rdp->barrier_head,
3762 					   rcu_barrier_callback, rsp, cpu, 0);
3763 			}
3764 		} else if (READ_ONCE(rdp->qlen)) {
3765 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3766 					   rsp->barrier_sequence);
3767 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3768 		} else {
3769 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3770 					   rsp->barrier_sequence);
3771 		}
3772 	}
3773 	put_online_cpus();
3774 
3775 	/*
3776 	 * Now that we have an rcu_barrier_callback() callback on each
3777 	 * CPU, and thus each counted, remove the initial count.
3778 	 */
3779 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3780 		complete(&rsp->barrier_completion);
3781 
3782 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3783 	wait_for_completion(&rsp->barrier_completion);
3784 
3785 	/* Mark the end of the barrier operation. */
3786 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3787 	rcu_seq_end(&rsp->barrier_sequence);
3788 
3789 	/* Other rcu_barrier() invocations can now safely proceed. */
3790 	mutex_unlock(&rsp->barrier_mutex);
3791 }
3792 
3793 /**
3794  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3795  */
3796 void rcu_barrier_bh(void)
3797 {
3798 	_rcu_barrier(&rcu_bh_state);
3799 }
3800 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3801 
3802 /**
3803  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3804  */
3805 void rcu_barrier_sched(void)
3806 {
3807 	_rcu_barrier(&rcu_sched_state);
3808 }
3809 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3810 
3811 /*
3812  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3813  * first CPU in a given leaf rcu_node structure coming online.  The caller
3814  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3815  * disabled.
3816  */
3817 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3818 {
3819 	long mask;
3820 	struct rcu_node *rnp = rnp_leaf;
3821 
3822 	for (;;) {
3823 		mask = rnp->grpmask;
3824 		rnp = rnp->parent;
3825 		if (rnp == NULL)
3826 			return;
3827 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3828 		rnp->qsmaskinit |= mask;
3829 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3830 	}
3831 }
3832 
3833 /*
3834  * Do boot-time initialization of a CPU's per-CPU RCU data.
3835  */
3836 static void __init
3837 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3838 {
3839 	unsigned long flags;
3840 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3841 	struct rcu_node *rnp = rcu_get_root(rsp);
3842 
3843 	/* Set up local state, ensuring consistent view of global state. */
3844 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3845 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3846 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3847 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3848 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3849 	rdp->cpu = cpu;
3850 	rdp->rsp = rsp;
3851 	rcu_boot_init_nocb_percpu_data(rdp);
3852 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3853 }
3854 
3855 /*
3856  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3857  * offline event can be happening at a given time.  Note also that we
3858  * can accept some slop in the rsp->completed access due to the fact
3859  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3860  */
3861 static void
3862 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3863 {
3864 	unsigned long flags;
3865 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3866 	struct rcu_node *rnp = rcu_get_root(rsp);
3867 
3868 	/* Set up local state, ensuring consistent view of global state. */
3869 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3870 	rdp->qlen_last_fqs_check = 0;
3871 	rdp->n_force_qs_snap = rsp->n_force_qs;
3872 	rdp->blimit = blimit;
3873 	if (!rdp->nxtlist)
3874 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3875 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3876 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3877 	rcu_dynticks_eqs_online();
3878 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3879 
3880 	/*
3881 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3882 	 * propagation up the rcu_node tree will happen at the beginning
3883 	 * of the next grace period.
3884 	 */
3885 	rnp = rdp->mynode;
3886 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3887 	if (!rdp->beenonline)
3888 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3889 	rdp->beenonline = true;	 /* We have now been online. */
3890 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3891 	rdp->completed = rnp->completed;
3892 	rdp->cpu_no_qs.b.norm = true;
3893 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3894 	rdp->core_needs_qs = false;
3895 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3896 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3897 }
3898 
3899 int rcutree_prepare_cpu(unsigned int cpu)
3900 {
3901 	struct rcu_state *rsp;
3902 
3903 	for_each_rcu_flavor(rsp)
3904 		rcu_init_percpu_data(cpu, rsp);
3905 
3906 	rcu_prepare_kthreads(cpu);
3907 	rcu_spawn_all_nocb_kthreads(cpu);
3908 
3909 	return 0;
3910 }
3911 
3912 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3913 {
3914 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3915 
3916 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3917 }
3918 
3919 int rcutree_online_cpu(unsigned int cpu)
3920 {
3921 	sync_sched_exp_online_cleanup(cpu);
3922 	rcutree_affinity_setting(cpu, -1);
3923 	return 0;
3924 }
3925 
3926 int rcutree_offline_cpu(unsigned int cpu)
3927 {
3928 	rcutree_affinity_setting(cpu, cpu);
3929 	return 0;
3930 }
3931 
3932 
3933 int rcutree_dying_cpu(unsigned int cpu)
3934 {
3935 	struct rcu_state *rsp;
3936 
3937 	for_each_rcu_flavor(rsp)
3938 		rcu_cleanup_dying_cpu(rsp);
3939 	return 0;
3940 }
3941 
3942 int rcutree_dead_cpu(unsigned int cpu)
3943 {
3944 	struct rcu_state *rsp;
3945 
3946 	for_each_rcu_flavor(rsp) {
3947 		rcu_cleanup_dead_cpu(cpu, rsp);
3948 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3949 	}
3950 	return 0;
3951 }
3952 
3953 /*
3954  * Mark the specified CPU as being online so that subsequent grace periods
3955  * (both expedited and normal) will wait on it.  Note that this means that
3956  * incoming CPUs are not allowed to use RCU read-side critical sections
3957  * until this function is called.  Failing to observe this restriction
3958  * will result in lockdep splats.
3959  */
3960 void rcu_cpu_starting(unsigned int cpu)
3961 {
3962 	unsigned long flags;
3963 	unsigned long mask;
3964 	struct rcu_data *rdp;
3965 	struct rcu_node *rnp;
3966 	struct rcu_state *rsp;
3967 
3968 	for_each_rcu_flavor(rsp) {
3969 		rdp = per_cpu_ptr(rsp->rda, cpu);
3970 		rnp = rdp->mynode;
3971 		mask = rdp->grpmask;
3972 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3973 		rnp->qsmaskinitnext |= mask;
3974 		rnp->expmaskinitnext |= mask;
3975 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3976 	}
3977 }
3978 
3979 #ifdef CONFIG_HOTPLUG_CPU
3980 /*
3981  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3982  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3983  * bit masks.
3984  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3985  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3986  * bit masks.
3987  */
3988 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3989 {
3990 	unsigned long flags;
3991 	unsigned long mask;
3992 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3993 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3994 
3995 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3996 	mask = rdp->grpmask;
3997 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3998 	rnp->qsmaskinitnext &= ~mask;
3999 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4000 }
4001 
4002 void rcu_report_dead(unsigned int cpu)
4003 {
4004 	struct rcu_state *rsp;
4005 
4006 	/* QS for any half-done expedited RCU-sched GP. */
4007 	preempt_disable();
4008 	rcu_report_exp_rdp(&rcu_sched_state,
4009 			   this_cpu_ptr(rcu_sched_state.rda), true);
4010 	preempt_enable();
4011 	for_each_rcu_flavor(rsp)
4012 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
4013 }
4014 #endif
4015 
4016 static int rcu_pm_notify(struct notifier_block *self,
4017 			 unsigned long action, void *hcpu)
4018 {
4019 	switch (action) {
4020 	case PM_HIBERNATION_PREPARE:
4021 	case PM_SUSPEND_PREPARE:
4022 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4023 			rcu_expedite_gp();
4024 		break;
4025 	case PM_POST_HIBERNATION:
4026 	case PM_POST_SUSPEND:
4027 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4028 			rcu_unexpedite_gp();
4029 		break;
4030 	default:
4031 		break;
4032 	}
4033 	return NOTIFY_OK;
4034 }
4035 
4036 /*
4037  * Spawn the kthreads that handle each RCU flavor's grace periods.
4038  */
4039 static int __init rcu_spawn_gp_kthread(void)
4040 {
4041 	unsigned long flags;
4042 	int kthread_prio_in = kthread_prio;
4043 	struct rcu_node *rnp;
4044 	struct rcu_state *rsp;
4045 	struct sched_param sp;
4046 	struct task_struct *t;
4047 
4048 	/* Force priority into range. */
4049 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4050 		kthread_prio = 1;
4051 	else if (kthread_prio < 0)
4052 		kthread_prio = 0;
4053 	else if (kthread_prio > 99)
4054 		kthread_prio = 99;
4055 	if (kthread_prio != kthread_prio_in)
4056 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4057 			 kthread_prio, kthread_prio_in);
4058 
4059 	rcu_scheduler_fully_active = 1;
4060 	for_each_rcu_flavor(rsp) {
4061 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4062 		BUG_ON(IS_ERR(t));
4063 		rnp = rcu_get_root(rsp);
4064 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4065 		rsp->gp_kthread = t;
4066 		if (kthread_prio) {
4067 			sp.sched_priority = kthread_prio;
4068 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4069 		}
4070 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4071 		wake_up_process(t);
4072 	}
4073 	rcu_spawn_nocb_kthreads();
4074 	rcu_spawn_boost_kthreads();
4075 	return 0;
4076 }
4077 early_initcall(rcu_spawn_gp_kthread);
4078 
4079 /*
4080  * This function is invoked towards the end of the scheduler's
4081  * initialization process.  Before this is called, the idle task might
4082  * contain synchronous grace-period primitives (during which time, this idle
4083  * task is booting the system, and such primitives are no-ops).  After this
4084  * function is called, any synchronous grace-period primitives are run as
4085  * expedited, with the requesting task driving the grace period forward.
4086  * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4087  * runtime RCU functionality.
4088  */
4089 void rcu_scheduler_starting(void)
4090 {
4091 	WARN_ON(num_online_cpus() != 1);
4092 	WARN_ON(nr_context_switches() > 0);
4093 	rcu_test_sync_prims();
4094 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4095 	rcu_test_sync_prims();
4096 }
4097 
4098 /*
4099  * Compute the per-level fanout, either using the exact fanout specified
4100  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4101  */
4102 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4103 {
4104 	int i;
4105 
4106 	if (rcu_fanout_exact) {
4107 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4108 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4109 			levelspread[i] = RCU_FANOUT;
4110 	} else {
4111 		int ccur;
4112 		int cprv;
4113 
4114 		cprv = nr_cpu_ids;
4115 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4116 			ccur = levelcnt[i];
4117 			levelspread[i] = (cprv + ccur - 1) / ccur;
4118 			cprv = ccur;
4119 		}
4120 	}
4121 }
4122 
4123 /*
4124  * Helper function for rcu_init() that initializes one rcu_state structure.
4125  */
4126 static void __init rcu_init_one(struct rcu_state *rsp)
4127 {
4128 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4129 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4130 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4131 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4132 	static u8 fl_mask = 0x1;
4133 
4134 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4135 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4136 	int cpustride = 1;
4137 	int i;
4138 	int j;
4139 	struct rcu_node *rnp;
4140 
4141 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4142 
4143 	/* Silence gcc 4.8 false positive about array index out of range. */
4144 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4145 		panic("rcu_init_one: rcu_num_lvls out of range");
4146 
4147 	/* Initialize the level-tracking arrays. */
4148 
4149 	for (i = 0; i < rcu_num_lvls; i++)
4150 		levelcnt[i] = num_rcu_lvl[i];
4151 	for (i = 1; i < rcu_num_lvls; i++)
4152 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4153 	rcu_init_levelspread(levelspread, levelcnt);
4154 	rsp->flavor_mask = fl_mask;
4155 	fl_mask <<= 1;
4156 
4157 	/* Initialize the elements themselves, starting from the leaves. */
4158 
4159 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4160 		cpustride *= levelspread[i];
4161 		rnp = rsp->level[i];
4162 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4163 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4164 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4165 						   &rcu_node_class[i], buf[i]);
4166 			raw_spin_lock_init(&rnp->fqslock);
4167 			lockdep_set_class_and_name(&rnp->fqslock,
4168 						   &rcu_fqs_class[i], fqs[i]);
4169 			rnp->gpnum = rsp->gpnum;
4170 			rnp->completed = rsp->completed;
4171 			rnp->qsmask = 0;
4172 			rnp->qsmaskinit = 0;
4173 			rnp->grplo = j * cpustride;
4174 			rnp->grphi = (j + 1) * cpustride - 1;
4175 			if (rnp->grphi >= nr_cpu_ids)
4176 				rnp->grphi = nr_cpu_ids - 1;
4177 			if (i == 0) {
4178 				rnp->grpnum = 0;
4179 				rnp->grpmask = 0;
4180 				rnp->parent = NULL;
4181 			} else {
4182 				rnp->grpnum = j % levelspread[i - 1];
4183 				rnp->grpmask = 1UL << rnp->grpnum;
4184 				rnp->parent = rsp->level[i - 1] +
4185 					      j / levelspread[i - 1];
4186 			}
4187 			rnp->level = i;
4188 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4189 			rcu_init_one_nocb(rnp);
4190 			init_waitqueue_head(&rnp->exp_wq[0]);
4191 			init_waitqueue_head(&rnp->exp_wq[1]);
4192 			init_waitqueue_head(&rnp->exp_wq[2]);
4193 			init_waitqueue_head(&rnp->exp_wq[3]);
4194 			spin_lock_init(&rnp->exp_lock);
4195 		}
4196 	}
4197 
4198 	init_swait_queue_head(&rsp->gp_wq);
4199 	init_swait_queue_head(&rsp->expedited_wq);
4200 	rnp = rsp->level[rcu_num_lvls - 1];
4201 	for_each_possible_cpu(i) {
4202 		while (i > rnp->grphi)
4203 			rnp++;
4204 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4205 		rcu_boot_init_percpu_data(i, rsp);
4206 	}
4207 	list_add(&rsp->flavors, &rcu_struct_flavors);
4208 }
4209 
4210 /*
4211  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4212  * replace the definitions in tree.h because those are needed to size
4213  * the ->node array in the rcu_state structure.
4214  */
4215 static void __init rcu_init_geometry(void)
4216 {
4217 	ulong d;
4218 	int i;
4219 	int rcu_capacity[RCU_NUM_LVLS];
4220 
4221 	/*
4222 	 * Initialize any unspecified boot parameters.
4223 	 * The default values of jiffies_till_first_fqs and
4224 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4225 	 * value, which is a function of HZ, then adding one for each
4226 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4227 	 */
4228 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4229 	if (jiffies_till_first_fqs == ULONG_MAX)
4230 		jiffies_till_first_fqs = d;
4231 	if (jiffies_till_next_fqs == ULONG_MAX)
4232 		jiffies_till_next_fqs = d;
4233 
4234 	/* If the compile-time values are accurate, just leave. */
4235 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4236 	    nr_cpu_ids == NR_CPUS)
4237 		return;
4238 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4239 		rcu_fanout_leaf, nr_cpu_ids);
4240 
4241 	/*
4242 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4243 	 * and cannot exceed the number of bits in the rcu_node masks.
4244 	 * Complain and fall back to the compile-time values if this
4245 	 * limit is exceeded.
4246 	 */
4247 	if (rcu_fanout_leaf < 2 ||
4248 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4249 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4250 		WARN_ON(1);
4251 		return;
4252 	}
4253 
4254 	/*
4255 	 * Compute number of nodes that can be handled an rcu_node tree
4256 	 * with the given number of levels.
4257 	 */
4258 	rcu_capacity[0] = rcu_fanout_leaf;
4259 	for (i = 1; i < RCU_NUM_LVLS; i++)
4260 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4261 
4262 	/*
4263 	 * The tree must be able to accommodate the configured number of CPUs.
4264 	 * If this limit is exceeded, fall back to the compile-time values.
4265 	 */
4266 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4267 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4268 		WARN_ON(1);
4269 		return;
4270 	}
4271 
4272 	/* Calculate the number of levels in the tree. */
4273 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4274 	}
4275 	rcu_num_lvls = i + 1;
4276 
4277 	/* Calculate the number of rcu_nodes at each level of the tree. */
4278 	for (i = 0; i < rcu_num_lvls; i++) {
4279 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4280 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4281 	}
4282 
4283 	/* Calculate the total number of rcu_node structures. */
4284 	rcu_num_nodes = 0;
4285 	for (i = 0; i < rcu_num_lvls; i++)
4286 		rcu_num_nodes += num_rcu_lvl[i];
4287 }
4288 
4289 /*
4290  * Dump out the structure of the rcu_node combining tree associated
4291  * with the rcu_state structure referenced by rsp.
4292  */
4293 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4294 {
4295 	int level = 0;
4296 	struct rcu_node *rnp;
4297 
4298 	pr_info("rcu_node tree layout dump\n");
4299 	pr_info(" ");
4300 	rcu_for_each_node_breadth_first(rsp, rnp) {
4301 		if (rnp->level != level) {
4302 			pr_cont("\n");
4303 			pr_info(" ");
4304 			level = rnp->level;
4305 		}
4306 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4307 	}
4308 	pr_cont("\n");
4309 }
4310 
4311 void __init rcu_init(void)
4312 {
4313 	int cpu;
4314 
4315 	rcu_early_boot_tests();
4316 
4317 	rcu_bootup_announce();
4318 	rcu_init_geometry();
4319 	rcu_init_one(&rcu_bh_state);
4320 	rcu_init_one(&rcu_sched_state);
4321 	if (dump_tree)
4322 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4323 	__rcu_init_preempt();
4324 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4325 
4326 	/*
4327 	 * We don't need protection against CPU-hotplug here because
4328 	 * this is called early in boot, before either interrupts
4329 	 * or the scheduler are operational.
4330 	 */
4331 	pm_notifier(rcu_pm_notify, 0);
4332 	for_each_online_cpu(cpu) {
4333 		rcutree_prepare_cpu(cpu);
4334 		rcu_cpu_starting(cpu);
4335 	}
4336 }
4337 
4338 #include "tree_exp.h"
4339 #include "tree_plugin.h"
4340