xref: /openbmc/linux/kernel/rcu/tree.c (revision e5242c5f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68 
69 #include "tree.h"
70 #include "rcu.h"
71 
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76 
77 /* Data structures. */
78 
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 	.gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 
159 /*
160  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161  * real-time priority(enabling/disabling) is controlled by
162  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163  */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166 
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168 
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175 
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181 
182 /*
183  * This rcu parameter is runtime-read-only. It reflects
184  * a minimum allowed number of objects which can be cached
185  * per-CPU. Object size is equal to one page. This value
186  * can be changed at boot time.
187  */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190 
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201 
202 /* Retrieve RCU kthreads priority for rcutorture */
203 int rcu_get_gp_kthreads_prio(void)
204 {
205 	return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208 
209 /*
210  * Number of grace periods between delays, normalized by the duration of
211  * the delay.  The longer the delay, the more the grace periods between
212  * each delay.  The reason for this normalization is that it means that,
213  * for non-zero delays, the overall slowdown of grace periods is constant
214  * regardless of the duration of the delay.  This arrangement balances
215  * the need for long delays to increase some race probabilities with the
216  * need for fast grace periods to increase other race probabilities.
217  */
218 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
219 
220 /*
221  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
222  * permit this function to be invoked without holding the root rcu_node
223  * structure's ->lock, but of course results can be subject to change.
224  */
225 static int rcu_gp_in_progress(void)
226 {
227 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229 
230 /*
231  * Return the number of callbacks queued on the specified CPU.
232  * Handles both the nocbs and normal cases.
233  */
234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237 
238 	if (rcu_segcblist_is_enabled(&rdp->cblist))
239 		return rcu_segcblist_n_cbs(&rdp->cblist);
240 	return 0;
241 }
242 
243 void rcu_softirq_qs(void)
244 {
245 	rcu_qs();
246 	rcu_preempt_deferred_qs(current);
247 	rcu_tasks_qs(current, false);
248 }
249 
250 /*
251  * Reset the current CPU's ->dynticks counter to indicate that the
252  * newly onlined CPU is no longer in an extended quiescent state.
253  * This will either leave the counter unchanged, or increment it
254  * to the next non-quiescent value.
255  *
256  * The non-atomic test/increment sequence works because the upper bits
257  * of the ->dynticks counter are manipulated only by the corresponding CPU,
258  * or when the corresponding CPU is offline.
259  */
260 static void rcu_dynticks_eqs_online(void)
261 {
262 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 		return;
264 	ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266 
267 /*
268  * Snapshot the ->dynticks counter with full ordering so as to allow
269  * stable comparison of this counter with past and future snapshots.
270  */
271 static int rcu_dynticks_snap(int cpu)
272 {
273 	smp_mb();  // Fundamental RCU ordering guarantee.
274 	return ct_dynticks_cpu_acquire(cpu);
275 }
276 
277 /*
278  * Return true if the snapshot returned from rcu_dynticks_snap()
279  * indicates that RCU is in an extended quiescent state.
280  */
281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 	return !(snap & RCU_DYNTICKS_IDX);
284 }
285 
286 /*
287  * Return true if the CPU corresponding to the specified rcu_data
288  * structure has spent some time in an extended quiescent state since
289  * rcu_dynticks_snap() returned the specified snapshot.
290  */
291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 	return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295 
296 /*
297  * Return true if the referenced integer is zero while the specified
298  * CPU remains within a single extended quiescent state.
299  */
300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 	int snap;
303 
304 	// If not quiescent, force back to earlier extended quiescent state.
305 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 	smp_rmb(); // Order ->dynticks and *vp reads.
307 	if (READ_ONCE(*vp))
308 		return false;  // Non-zero, so report failure;
309 	smp_rmb(); // Order *vp read and ->dynticks re-read.
310 
311 	// If still in the same extended quiescent state, we are good!
312 	return snap == ct_dynticks_cpu(cpu);
313 }
314 
315 /*
316  * Let the RCU core know that this CPU has gone through the scheduler,
317  * which is a quiescent state.  This is called when the need for a
318  * quiescent state is urgent, so we burn an atomic operation and full
319  * memory barriers to let the RCU core know about it, regardless of what
320  * this CPU might (or might not) do in the near future.
321  *
322  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323  *
324  * The caller must have disabled interrupts and must not be idle.
325  */
326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 	int seq;
329 
330 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 	/* It is illegal to call this from idle state. */
333 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 	rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337 
338 /**
339  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340  *
341  * If the current CPU is idle and running at a first-level (not nested)
342  * interrupt, or directly, from idle, return true.
343  *
344  * The caller must have at least disabled IRQs.
345  */
346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 	long nesting;
349 
350 	/*
351 	 * Usually called from the tick; but also used from smp_function_call()
352 	 * for expedited grace periods. This latter can result in running from
353 	 * the idle task, instead of an actual IPI.
354 	 */
355 	lockdep_assert_irqs_disabled();
356 
357 	/* Check for counter underflows */
358 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 			 "RCU dynticks_nesting counter underflow!");
360 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
362 
363 	/* Are we at first interrupt nesting level? */
364 	nesting = ct_dynticks_nmi_nesting();
365 	if (nesting > 1)
366 		return false;
367 
368 	/*
369 	 * If we're not in an interrupt, we must be in the idle task!
370 	 */
371 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
372 
373 	/* Does CPU appear to be idle from an RCU standpoint? */
374 	return ct_dynticks_nesting() == 0;
375 }
376 
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 				// Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
389 
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394 
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400 
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404 
405 /*
406  * How long the grace period must be before we start recruiting
407  * quiescent-state help from rcu_note_context_switch().
408  */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413 
414 /*
415  * Make sure that we give the grace-period kthread time to detect any
416  * idle CPUs before taking active measures to force quiescent states.
417  * However, don't go below 100 milliseconds, adjusted upwards for really
418  * large systems.
419  */
420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 	unsigned long j;
423 
424 	/* If jiffies_till_sched_qs was specified, respect the request. */
425 	if (jiffies_till_sched_qs != ULONG_MAX) {
426 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 		return;
428 	}
429 	/* Otherwise, set to third fqs scan, but bound below on large system. */
430 	j = READ_ONCE(jiffies_till_first_fqs) +
431 		      2 * READ_ONCE(jiffies_till_next_fqs);
432 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 	WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437 
438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 	ulong j;
441 	int ret = kstrtoul(val, 0, &j);
442 
443 	if (!ret) {
444 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 		adjust_jiffies_till_sched_qs();
446 	}
447 	return ret;
448 }
449 
450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 	ulong j;
453 	int ret = kstrtoul(val, 0, &j);
454 
455 	if (!ret) {
456 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 		adjust_jiffies_till_sched_qs();
458 	}
459 	return ret;
460 }
461 
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 	.set = param_set_first_fqs_jiffies,
464 	.get = param_get_ulong,
465 };
466 
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 	.set = param_set_next_fqs_jiffies,
469 	.get = param_get_ulong,
470 };
471 
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475 
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478 
479 /*
480  * Return the number of RCU GPs completed thus far for debug & stats.
481  */
482 unsigned long rcu_get_gp_seq(void)
483 {
484 	return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487 
488 /*
489  * Return the number of RCU expedited batches completed thus far for
490  * debug & stats.  Odd numbers mean that a batch is in progress, even
491  * numbers mean idle.  The value returned will thus be roughly double
492  * the cumulative batches since boot.
493  */
494 unsigned long rcu_exp_batches_completed(void)
495 {
496 	return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499 
500 /*
501  * Return the root node of the rcu_state structure.
502  */
503 static struct rcu_node *rcu_get_root(void)
504 {
505 	return &rcu_state.node[0];
506 }
507 
508 /*
509  * Send along grace-period-related data for rcutorture diagnostics.
510  */
511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 			    unsigned long *gp_seq)
513 {
514 	switch (test_type) {
515 	case RCU_FLAVOR:
516 		*flags = READ_ONCE(rcu_state.gp_flags);
517 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 		break;
519 	default:
520 		break;
521 	}
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524 
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527  * An empty function that will trigger a reschedule on
528  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529  */
530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533 
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 	IRQ_WORK_INIT(late_wakeup_func);
536 
537 /*
538  * If either:
539  *
540  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542  *
543  * In these cases the late RCU wake ups aren't supported in the resched loops and our
544  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545  * get re-enabled again.
546  */
547 noinstr void rcu_irq_work_resched(void)
548 {
549 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550 
551 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 		return;
553 
554 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 		return;
556 
557 	instrumentation_begin();
558 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 	}
561 	instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564 
565 #ifdef CONFIG_PROVE_RCU
566 /**
567  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568  */
569 void rcu_irq_exit_check_preempt(void)
570 {
571 	lockdep_assert_irqs_disabled();
572 
573 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 			 "RCU dynticks_nesting counter underflow/zero!");
575 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 			 DYNTICK_IRQ_NONIDLE,
577 			 "Bad RCU  dynticks_nmi_nesting counter\n");
578 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 			 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582 
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586  *
587  * The scheduler tick is not normally enabled when CPUs enter the kernel
588  * from nohz_full userspace execution.  After all, nohz_full userspace
589  * execution is an RCU quiescent state and the time executing in the kernel
590  * is quite short.  Except of course when it isn't.  And it is not hard to
591  * cause a large system to spend tens of seconds or even minutes looping
592  * in the kernel, which can cause a number of problems, include RCU CPU
593  * stall warnings.
594  *
595  * Therefore, if a nohz_full CPU fails to report a quiescent state
596  * in a timely manner, the RCU grace-period kthread sets that CPU's
597  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598  * exception will invoke this function, which will turn on the scheduler
599  * tick, which will enable RCU to detect that CPU's quiescent states,
600  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601  * The tick will be disabled once a quiescent state is reported for
602  * this CPU.
603  *
604  * Of course, in carefully tuned systems, there might never be an
605  * interrupt or exception.  In that case, the RCU grace-period kthread
606  * will eventually cause one to happen.  However, in less carefully
607  * controlled environments, this function allows RCU to get what it
608  * needs without creating otherwise useless interruptions.
609  */
610 void __rcu_irq_enter_check_tick(void)
611 {
612 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613 
614 	// If we're here from NMI there's nothing to do.
615 	if (in_nmi())
616 		return;
617 
618 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620 
621 	if (!tick_nohz_full_cpu(rdp->cpu) ||
622 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
623 	    READ_ONCE(rdp->rcu_forced_tick)) {
624 		// RCU doesn't need nohz_full help from this CPU, or it is
625 		// already getting that help.
626 		return;
627 	}
628 
629 	// We get here only when not in an extended quiescent state and
630 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
631 	// already watching and (2) The fact that we are in an interrupt
632 	// handler and that the rcu_node lock is an irq-disabled lock
633 	// prevents self-deadlock.  So we can safely recheck under the lock.
634 	// Note that the nohz_full state currently cannot change.
635 	raw_spin_lock_rcu_node(rdp->mynode);
636 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 		// A nohz_full CPU is in the kernel and RCU needs a
638 		// quiescent state.  Turn on the tick!
639 		WRITE_ONCE(rdp->rcu_forced_tick, true);
640 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 	}
642 	raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646 
647 /*
648  * Check to see if any future non-offloaded RCU-related work will need
649  * to be done by the current CPU, even if none need be done immediately,
650  * returning 1 if so.  This function is part of the RCU implementation;
651  * it is -not- an exported member of the RCU API.  This is used by
652  * the idle-entry code to figure out whether it is safe to disable the
653  * scheduler-clock interrupt.
654  *
655  * Just check whether or not this CPU has non-offloaded RCU callbacks
656  * queued.
657  */
658 int rcu_needs_cpu(void)
659 {
660 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663 
664 /*
665  * If any sort of urgency was applied to the current CPU (for example,
666  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667  * to get to a quiescent state, disable it.
668  */
669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 		WRITE_ONCE(rdp->rcu_forced_tick, false);
677 	}
678 }
679 
680 /**
681  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682  *
683  * Return @true if RCU is watching the running CPU and @false otherwise.
684  * An @true return means that this CPU can safely enter RCU read-side
685  * critical sections.
686  *
687  * Although calls to rcu_is_watching() from most parts of the kernel
688  * will return @true, there are important exceptions.  For example, if the
689  * current CPU is deep within its idle loop, in kernel entry/exit code,
690  * or offline, rcu_is_watching() will return @false.
691  *
692  * Make notrace because it can be called by the internal functions of
693  * ftrace, and making this notrace removes unnecessary recursion calls.
694  */
695 notrace bool rcu_is_watching(void)
696 {
697 	bool ret;
698 
699 	preempt_disable_notrace();
700 	ret = !rcu_dynticks_curr_cpu_in_eqs();
701 	preempt_enable_notrace();
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705 
706 /*
707  * If a holdout task is actually running, request an urgent quiescent
708  * state from its CPU.  This is unsynchronized, so migrations can cause
709  * the request to go to the wrong CPU.  Which is OK, all that will happen
710  * is that the CPU's next context switch will be a bit slower and next
711  * time around this task will generate another request.
712  */
713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 	int cpu;
716 
717 	barrier();
718 	cpu = task_cpu(t);
719 	if (!task_curr(t))
720 		return; /* This task is not running on that CPU. */
721 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723 
724 /*
725  * When trying to report a quiescent state on behalf of some other CPU,
726  * it is our responsibility to check for and handle potential overflow
727  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728  * After all, the CPU might be in deep idle state, and thus executing no
729  * code whatsoever.
730  */
731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 	raw_lockdep_assert_held_rcu_node(rnp);
734 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 			 rnp->gp_seq))
736 		WRITE_ONCE(rdp->gpwrap, true);
737 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740 
741 /*
742  * Snapshot the specified CPU's dynticks counter so that we can later
743  * credit them with an implicit quiescent state.  Return 1 if this CPU
744  * is in dynticks idle mode, which is an extended quiescent state.
745  */
746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 		rcu_gpnum_ovf(rdp->mynode, rdp);
752 		return 1;
753 	}
754 	return 0;
755 }
756 
757 /*
758  * Returns positive if the specified CPU has passed through a quiescent state
759  * by virtue of being in or having passed through an dynticks idle state since
760  * the last call to dyntick_save_progress_counter() for this same CPU, or by
761  * virtue of having been offline.
762  *
763  * Returns negative if the specified CPU needs a force resched.
764  *
765  * Returns zero otherwise.
766  */
767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
768 {
769 	unsigned long jtsq;
770 	int ret = 0;
771 	struct rcu_node *rnp = rdp->mynode;
772 
773 	/*
774 	 * If the CPU passed through or entered a dynticks idle phase with
775 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
776 	 * already acknowledged the request to pass through a quiescent
777 	 * state.  Either way, that CPU cannot possibly be in an RCU
778 	 * read-side critical section that started before the beginning
779 	 * of the current RCU grace period.
780 	 */
781 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
782 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
783 		rcu_gpnum_ovf(rnp, rdp);
784 		return 1;
785 	}
786 
787 	/*
788 	 * Complain if a CPU that is considered to be offline from RCU's
789 	 * perspective has not yet reported a quiescent state.  After all,
790 	 * the offline CPU should have reported a quiescent state during
791 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
792 	 * if it ran concurrently with either the CPU going offline or the
793 	 * last task on a leaf rcu_node structure exiting its RCU read-side
794 	 * critical section while all CPUs corresponding to that structure
795 	 * are offline.  This added warning detects bugs in any of these
796 	 * code paths.
797 	 *
798 	 * The rcu_node structure's ->lock is held here, which excludes
799 	 * the relevant portions the CPU-hotplug code, the grace-period
800 	 * initialization code, and the rcu_read_unlock() code paths.
801 	 *
802 	 * For more detail, please refer to the "Hotplug CPU" section
803 	 * of RCU's Requirements documentation.
804 	 */
805 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
806 		struct rcu_node *rnp1;
807 
808 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809 			__func__, rnp->grplo, rnp->grphi, rnp->level,
810 			(long)rnp->gp_seq, (long)rnp->completedqs);
811 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
814 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
815 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
816 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818 		return 1; /* Break things loose after complaining. */
819 	}
820 
821 	/*
822 	 * A CPU running for an extended time within the kernel can
823 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
825 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
826 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827 	 * variable are safe because the assignments are repeated if this
828 	 * CPU failed to pass through a quiescent state.  This code
829 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
830 	 * is set way high.
831 	 */
832 	jtsq = READ_ONCE(jiffies_to_sched_qs);
833 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
834 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
835 	     time_after(jiffies, rcu_state.jiffies_resched) ||
836 	     rcu_state.cbovld)) {
837 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
838 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
839 		smp_store_release(&rdp->rcu_urgent_qs, true);
840 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
841 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
842 	}
843 
844 	/*
845 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
846 	 * The above code handles this, but only for straight cond_resched().
847 	 * And some in-kernel loops check need_resched() before calling
848 	 * cond_resched(), which defeats the above code for CPUs that are
849 	 * running in-kernel with scheduling-clock interrupts disabled.
850 	 * So hit them over the head with the resched_cpu() hammer!
851 	 */
852 	if (tick_nohz_full_cpu(rdp->cpu) &&
853 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854 	     rcu_state.cbovld)) {
855 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
856 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
857 		ret = -1;
858 	}
859 
860 	/*
861 	 * If more than halfway to RCU CPU stall-warning time, invoke
862 	 * resched_cpu() more frequently to try to loosen things up a bit.
863 	 * Also check to see if the CPU is getting hammered with interrupts,
864 	 * but only once per grace period, just to keep the IPIs down to
865 	 * a dull roar.
866 	 */
867 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
868 		if (time_after(jiffies,
869 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
870 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
871 			ret = -1;
872 		}
873 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
874 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
875 		    (rnp->ffmask & rdp->grpmask)) {
876 			rdp->rcu_iw_pending = true;
877 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
878 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
879 		}
880 
881 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882 			int cpu = rdp->cpu;
883 			struct rcu_snap_record *rsrp;
884 			struct kernel_cpustat *kcsp;
885 
886 			kcsp = &kcpustat_cpu(cpu);
887 
888 			rsrp = &rdp->snap_record;
889 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
890 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
891 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
892 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
893 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
894 			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
895 			rsrp->jiffies = jiffies;
896 			rsrp->gp_seq = rdp->gp_seq;
897 		}
898 	}
899 
900 	return ret;
901 }
902 
903 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
905 			      unsigned long gp_seq_req, const char *s)
906 {
907 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
908 				      gp_seq_req, rnp->level,
909 				      rnp->grplo, rnp->grphi, s);
910 }
911 
912 /*
913  * rcu_start_this_gp - Request the start of a particular grace period
914  * @rnp_start: The leaf node of the CPU from which to start.
915  * @rdp: The rcu_data corresponding to the CPU from which to start.
916  * @gp_seq_req: The gp_seq of the grace period to start.
917  *
918  * Start the specified grace period, as needed to handle newly arrived
919  * callbacks.  The required future grace periods are recorded in each
920  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
921  * is reason to awaken the grace-period kthread.
922  *
923  * The caller must hold the specified rcu_node structure's ->lock, which
924  * is why the caller is responsible for waking the grace-period kthread.
925  *
926  * Returns true if the GP thread needs to be awakened else false.
927  */
928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
929 			      unsigned long gp_seq_req)
930 {
931 	bool ret = false;
932 	struct rcu_node *rnp;
933 
934 	/*
935 	 * Use funnel locking to either acquire the root rcu_node
936 	 * structure's lock or bail out if the need for this grace period
937 	 * has already been recorded -- or if that grace period has in
938 	 * fact already started.  If there is already a grace period in
939 	 * progress in a non-leaf node, no recording is needed because the
940 	 * end of the grace period will scan the leaf rcu_node structures.
941 	 * Note that rnp_start->lock must not be released.
942 	 */
943 	raw_lockdep_assert_held_rcu_node(rnp_start);
944 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
946 		if (rnp != rnp_start)
947 			raw_spin_lock_rcu_node(rnp);
948 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
950 		    (rnp != rnp_start &&
951 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
952 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
953 					  TPS("Prestarted"));
954 			goto unlock_out;
955 		}
956 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
957 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
958 			/*
959 			 * We just marked the leaf or internal node, and a
960 			 * grace period is in progress, which means that
961 			 * rcu_gp_cleanup() will see the marking.  Bail to
962 			 * reduce contention.
963 			 */
964 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
965 					  TPS("Startedleaf"));
966 			goto unlock_out;
967 		}
968 		if (rnp != rnp_start && rnp->parent != NULL)
969 			raw_spin_unlock_rcu_node(rnp);
970 		if (!rnp->parent)
971 			break;  /* At root, and perhaps also leaf. */
972 	}
973 
974 	/* If GP already in progress, just leave, otherwise start one. */
975 	if (rcu_gp_in_progress()) {
976 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
977 		goto unlock_out;
978 	}
979 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
980 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
981 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
982 	if (!READ_ONCE(rcu_state.gp_kthread)) {
983 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
984 		goto unlock_out;
985 	}
986 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
987 	ret = true;  /* Caller must wake GP kthread. */
988 unlock_out:
989 	/* Push furthest requested GP to leaf node and rcu_data structure. */
990 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
991 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
993 	}
994 	if (rnp != rnp_start)
995 		raw_spin_unlock_rcu_node(rnp);
996 	return ret;
997 }
998 
999 /*
1000  * Clean up any old requests for the just-ended grace period.  Also return
1001  * whether any additional grace periods have been requested.
1002  */
1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004 {
1005 	bool needmore;
1006 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007 
1008 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009 	if (!needmore)
1010 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1012 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013 	return needmore;
1014 }
1015 
1016 static void swake_up_one_online_ipi(void *arg)
1017 {
1018 	struct swait_queue_head *wqh = arg;
1019 
1020 	swake_up_one(wqh);
1021 }
1022 
1023 static void swake_up_one_online(struct swait_queue_head *wqh)
1024 {
1025 	int cpu = get_cpu();
1026 
1027 	/*
1028 	 * If called from rcutree_report_cpu_starting(), wake up
1029 	 * is dangerous that late in the CPU-down hotplug process. The
1030 	 * scheduler might queue an ignored hrtimer. Defer the wake up
1031 	 * to an online CPU instead.
1032 	 */
1033 	if (unlikely(cpu_is_offline(cpu))) {
1034 		int target;
1035 
1036 		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1037 					 cpu_online_mask);
1038 
1039 		smp_call_function_single(target, swake_up_one_online_ipi,
1040 					 wqh, 0);
1041 		put_cpu();
1042 	} else {
1043 		put_cpu();
1044 		swake_up_one(wqh);
1045 	}
1046 }
1047 
1048 /*
1049  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1050  * interrupt or softirq handler, in which case we just might immediately
1051  * sleep upon return, resulting in a grace-period hang), and don't bother
1052  * awakening when there is nothing for the grace-period kthread to do
1053  * (as in several CPUs raced to awaken, we lost), and finally don't try
1054  * to awaken a kthread that has not yet been created.  If all those checks
1055  * are passed, track some debug information and awaken.
1056  *
1057  * So why do the self-wakeup when in an interrupt or softirq handler
1058  * in the grace-period kthread's context?  Because the kthread might have
1059  * been interrupted just as it was going to sleep, and just after the final
1060  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1061  * is required, and is therefore supplied.
1062  */
1063 static void rcu_gp_kthread_wake(void)
1064 {
1065 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1066 
1067 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1068 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1069 		return;
1070 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1071 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1072 	swake_up_one_online(&rcu_state.gp_wq);
1073 }
1074 
1075 /*
1076  * If there is room, assign a ->gp_seq number to any callbacks on this
1077  * CPU that have not already been assigned.  Also accelerate any callbacks
1078  * that were previously assigned a ->gp_seq number that has since proven
1079  * to be too conservative, which can happen if callbacks get assigned a
1080  * ->gp_seq number while RCU is idle, but with reference to a non-root
1081  * rcu_node structure.  This function is idempotent, so it does not hurt
1082  * to call it repeatedly.  Returns an flag saying that we should awaken
1083  * the RCU grace-period kthread.
1084  *
1085  * The caller must hold rnp->lock with interrupts disabled.
1086  */
1087 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1088 {
1089 	unsigned long gp_seq_req;
1090 	bool ret = false;
1091 
1092 	rcu_lockdep_assert_cblist_protected(rdp);
1093 	raw_lockdep_assert_held_rcu_node(rnp);
1094 
1095 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1096 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1097 		return false;
1098 
1099 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1100 
1101 	/*
1102 	 * Callbacks are often registered with incomplete grace-period
1103 	 * information.  Something about the fact that getting exact
1104 	 * information requires acquiring a global lock...  RCU therefore
1105 	 * makes a conservative estimate of the grace period number at which
1106 	 * a given callback will become ready to invoke.	The following
1107 	 * code checks this estimate and improves it when possible, thus
1108 	 * accelerating callback invocation to an earlier grace-period
1109 	 * number.
1110 	 */
1111 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1112 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1113 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1114 
1115 	/* Trace depending on how much we were able to accelerate. */
1116 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1117 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1118 	else
1119 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1120 
1121 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1122 
1123 	return ret;
1124 }
1125 
1126 /*
1127  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1128  * rcu_node structure's ->lock be held.  It consults the cached value
1129  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1130  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1131  * while holding the leaf rcu_node structure's ->lock.
1132  */
1133 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1134 					struct rcu_data *rdp)
1135 {
1136 	unsigned long c;
1137 	bool needwake;
1138 
1139 	rcu_lockdep_assert_cblist_protected(rdp);
1140 	c = rcu_seq_snap(&rcu_state.gp_seq);
1141 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1142 		/* Old request still live, so mark recent callbacks. */
1143 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1144 		return;
1145 	}
1146 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1147 	needwake = rcu_accelerate_cbs(rnp, rdp);
1148 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1149 	if (needwake)
1150 		rcu_gp_kthread_wake();
1151 }
1152 
1153 /*
1154  * Move any callbacks whose grace period has completed to the
1155  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1156  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1157  * sublist.  This function is idempotent, so it does not hurt to
1158  * invoke it repeatedly.  As long as it is not invoked -too- often...
1159  * Returns true if the RCU grace-period kthread needs to be awakened.
1160  *
1161  * The caller must hold rnp->lock with interrupts disabled.
1162  */
1163 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1164 {
1165 	rcu_lockdep_assert_cblist_protected(rdp);
1166 	raw_lockdep_assert_held_rcu_node(rnp);
1167 
1168 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1169 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1170 		return false;
1171 
1172 	/*
1173 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1174 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1175 	 */
1176 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1177 
1178 	/* Classify any remaining callbacks. */
1179 	return rcu_accelerate_cbs(rnp, rdp);
1180 }
1181 
1182 /*
1183  * Move and classify callbacks, but only if doing so won't require
1184  * that the RCU grace-period kthread be awakened.
1185  */
1186 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1187 						  struct rcu_data *rdp)
1188 {
1189 	rcu_lockdep_assert_cblist_protected(rdp);
1190 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1191 		return;
1192 	// The grace period cannot end while we hold the rcu_node lock.
1193 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1194 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1195 	raw_spin_unlock_rcu_node(rnp);
1196 }
1197 
1198 /*
1199  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1200  * quiescent state.  This is intended to be invoked when the CPU notices
1201  * a new grace period.
1202  */
1203 static void rcu_strict_gp_check_qs(void)
1204 {
1205 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1206 		rcu_read_lock();
1207 		rcu_read_unlock();
1208 	}
1209 }
1210 
1211 /*
1212  * Update CPU-local rcu_data state to record the beginnings and ends of
1213  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1214  * structure corresponding to the current CPU, and must have irqs disabled.
1215  * Returns true if the grace-period kthread needs to be awakened.
1216  */
1217 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1218 {
1219 	bool ret = false;
1220 	bool need_qs;
1221 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1222 
1223 	raw_lockdep_assert_held_rcu_node(rnp);
1224 
1225 	if (rdp->gp_seq == rnp->gp_seq)
1226 		return false; /* Nothing to do. */
1227 
1228 	/* Handle the ends of any preceding grace periods first. */
1229 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1230 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1231 		if (!offloaded)
1232 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1233 		rdp->core_needs_qs = false;
1234 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1235 	} else {
1236 		if (!offloaded)
1237 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1238 		if (rdp->core_needs_qs)
1239 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1240 	}
1241 
1242 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1243 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1244 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1245 		/*
1246 		 * If the current grace period is waiting for this CPU,
1247 		 * set up to detect a quiescent state, otherwise don't
1248 		 * go looking for one.
1249 		 */
1250 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1251 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1252 		rdp->cpu_no_qs.b.norm = need_qs;
1253 		rdp->core_needs_qs = need_qs;
1254 		zero_cpu_stall_ticks(rdp);
1255 	}
1256 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1257 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1258 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1259 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1260 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1261 	WRITE_ONCE(rdp->gpwrap, false);
1262 	rcu_gpnum_ovf(rnp, rdp);
1263 	return ret;
1264 }
1265 
1266 static void note_gp_changes(struct rcu_data *rdp)
1267 {
1268 	unsigned long flags;
1269 	bool needwake;
1270 	struct rcu_node *rnp;
1271 
1272 	local_irq_save(flags);
1273 	rnp = rdp->mynode;
1274 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1275 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1276 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1277 		local_irq_restore(flags);
1278 		return;
1279 	}
1280 	needwake = __note_gp_changes(rnp, rdp);
1281 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1282 	rcu_strict_gp_check_qs();
1283 	if (needwake)
1284 		rcu_gp_kthread_wake();
1285 }
1286 
1287 static atomic_t *rcu_gp_slow_suppress;
1288 
1289 /* Register a counter to suppress debugging grace-period delays. */
1290 void rcu_gp_slow_register(atomic_t *rgssp)
1291 {
1292 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1293 
1294 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1295 }
1296 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1297 
1298 /* Unregister a counter, with NULL for not caring which. */
1299 void rcu_gp_slow_unregister(atomic_t *rgssp)
1300 {
1301 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1302 
1303 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1306 
1307 static bool rcu_gp_slow_is_suppressed(void)
1308 {
1309 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1310 
1311 	return rgssp && atomic_read(rgssp);
1312 }
1313 
1314 static void rcu_gp_slow(int delay)
1315 {
1316 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1317 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1318 		schedule_timeout_idle(delay);
1319 }
1320 
1321 static unsigned long sleep_duration;
1322 
1323 /* Allow rcutorture to stall the grace-period kthread. */
1324 void rcu_gp_set_torture_wait(int duration)
1325 {
1326 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1327 		WRITE_ONCE(sleep_duration, duration);
1328 }
1329 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1330 
1331 /* Actually implement the aforementioned wait. */
1332 static void rcu_gp_torture_wait(void)
1333 {
1334 	unsigned long duration;
1335 
1336 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1337 		return;
1338 	duration = xchg(&sleep_duration, 0UL);
1339 	if (duration > 0) {
1340 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1341 		schedule_timeout_idle(duration);
1342 		pr_alert("%s: Wait complete\n", __func__);
1343 	}
1344 }
1345 
1346 /*
1347  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1348  * processing.
1349  */
1350 static void rcu_strict_gp_boundary(void *unused)
1351 {
1352 	invoke_rcu_core();
1353 }
1354 
1355 // Make the polled API aware of the beginning of a grace period.
1356 static void rcu_poll_gp_seq_start(unsigned long *snap)
1357 {
1358 	struct rcu_node *rnp = rcu_get_root();
1359 
1360 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1361 		raw_lockdep_assert_held_rcu_node(rnp);
1362 
1363 	// If RCU was idle, note beginning of GP.
1364 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1365 		rcu_seq_start(&rcu_state.gp_seq_polled);
1366 
1367 	// Either way, record current state.
1368 	*snap = rcu_state.gp_seq_polled;
1369 }
1370 
1371 // Make the polled API aware of the end of a grace period.
1372 static void rcu_poll_gp_seq_end(unsigned long *snap)
1373 {
1374 	struct rcu_node *rnp = rcu_get_root();
1375 
1376 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1377 		raw_lockdep_assert_held_rcu_node(rnp);
1378 
1379 	// If the previously noted GP is still in effect, record the
1380 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1381 	// problems.
1382 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1383 		rcu_seq_end(&rcu_state.gp_seq_polled);
1384 		rcu_state.gp_seq_polled_snap = 0;
1385 		rcu_state.gp_seq_polled_exp_snap = 0;
1386 	} else {
1387 		*snap = 0;
1388 	}
1389 }
1390 
1391 // Make the polled API aware of the beginning of a grace period, but
1392 // where caller does not hold the root rcu_node structure's lock.
1393 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1394 {
1395 	unsigned long flags;
1396 	struct rcu_node *rnp = rcu_get_root();
1397 
1398 	if (rcu_init_invoked()) {
1399 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1400 			lockdep_assert_irqs_enabled();
1401 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1402 	}
1403 	rcu_poll_gp_seq_start(snap);
1404 	if (rcu_init_invoked())
1405 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1406 }
1407 
1408 // Make the polled API aware of the end of a grace period, but where
1409 // caller does not hold the root rcu_node structure's lock.
1410 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1411 {
1412 	unsigned long flags;
1413 	struct rcu_node *rnp = rcu_get_root();
1414 
1415 	if (rcu_init_invoked()) {
1416 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1417 			lockdep_assert_irqs_enabled();
1418 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1419 	}
1420 	rcu_poll_gp_seq_end(snap);
1421 	if (rcu_init_invoked())
1422 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1423 }
1424 
1425 /*
1426  * Initialize a new grace period.  Return false if no grace period required.
1427  */
1428 static noinline_for_stack bool rcu_gp_init(void)
1429 {
1430 	unsigned long flags;
1431 	unsigned long oldmask;
1432 	unsigned long mask;
1433 	struct rcu_data *rdp;
1434 	struct rcu_node *rnp = rcu_get_root();
1435 
1436 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1437 	raw_spin_lock_irq_rcu_node(rnp);
1438 	if (!READ_ONCE(rcu_state.gp_flags)) {
1439 		/* Spurious wakeup, tell caller to go back to sleep.  */
1440 		raw_spin_unlock_irq_rcu_node(rnp);
1441 		return false;
1442 	}
1443 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1444 
1445 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1446 		/*
1447 		 * Grace period already in progress, don't start another.
1448 		 * Not supposed to be able to happen.
1449 		 */
1450 		raw_spin_unlock_irq_rcu_node(rnp);
1451 		return false;
1452 	}
1453 
1454 	/* Advance to a new grace period and initialize state. */
1455 	record_gp_stall_check_time();
1456 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1457 	rcu_seq_start(&rcu_state.gp_seq);
1458 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1459 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1460 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1461 	raw_spin_unlock_irq_rcu_node(rnp);
1462 
1463 	/*
1464 	 * Apply per-leaf buffered online and offline operations to
1465 	 * the rcu_node tree. Note that this new grace period need not
1466 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1467 	 * offlining path, when combined with checks in this function,
1468 	 * will handle CPUs that are currently going offline or that will
1469 	 * go offline later.  Please also refer to "Hotplug CPU" section
1470 	 * of RCU's Requirements documentation.
1471 	 */
1472 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1473 	/* Exclude CPU hotplug operations. */
1474 	rcu_for_each_leaf_node(rnp) {
1475 		local_irq_save(flags);
1476 		arch_spin_lock(&rcu_state.ofl_lock);
1477 		raw_spin_lock_rcu_node(rnp);
1478 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1479 		    !rnp->wait_blkd_tasks) {
1480 			/* Nothing to do on this leaf rcu_node structure. */
1481 			raw_spin_unlock_rcu_node(rnp);
1482 			arch_spin_unlock(&rcu_state.ofl_lock);
1483 			local_irq_restore(flags);
1484 			continue;
1485 		}
1486 
1487 		/* Record old state, apply changes to ->qsmaskinit field. */
1488 		oldmask = rnp->qsmaskinit;
1489 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1490 
1491 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1492 		if (!oldmask != !rnp->qsmaskinit) {
1493 			if (!oldmask) { /* First online CPU for rcu_node. */
1494 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1495 					rcu_init_new_rnp(rnp);
1496 			} else if (rcu_preempt_has_tasks(rnp)) {
1497 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1498 			} else { /* Last offline CPU and can propagate. */
1499 				rcu_cleanup_dead_rnp(rnp);
1500 			}
1501 		}
1502 
1503 		/*
1504 		 * If all waited-on tasks from prior grace period are
1505 		 * done, and if all this rcu_node structure's CPUs are
1506 		 * still offline, propagate up the rcu_node tree and
1507 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1508 		 * rcu_node structure's CPUs has since come back online,
1509 		 * simply clear ->wait_blkd_tasks.
1510 		 */
1511 		if (rnp->wait_blkd_tasks &&
1512 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1513 			rnp->wait_blkd_tasks = false;
1514 			if (!rnp->qsmaskinit)
1515 				rcu_cleanup_dead_rnp(rnp);
1516 		}
1517 
1518 		raw_spin_unlock_rcu_node(rnp);
1519 		arch_spin_unlock(&rcu_state.ofl_lock);
1520 		local_irq_restore(flags);
1521 	}
1522 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1523 
1524 	/*
1525 	 * Set the quiescent-state-needed bits in all the rcu_node
1526 	 * structures for all currently online CPUs in breadth-first
1527 	 * order, starting from the root rcu_node structure, relying on the
1528 	 * layout of the tree within the rcu_state.node[] array.  Note that
1529 	 * other CPUs will access only the leaves of the hierarchy, thus
1530 	 * seeing that no grace period is in progress, at least until the
1531 	 * corresponding leaf node has been initialized.
1532 	 *
1533 	 * The grace period cannot complete until the initialization
1534 	 * process finishes, because this kthread handles both.
1535 	 */
1536 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1537 	rcu_for_each_node_breadth_first(rnp) {
1538 		rcu_gp_slow(gp_init_delay);
1539 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1540 		rdp = this_cpu_ptr(&rcu_data);
1541 		rcu_preempt_check_blocked_tasks(rnp);
1542 		rnp->qsmask = rnp->qsmaskinit;
1543 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1544 		if (rnp == rdp->mynode)
1545 			(void)__note_gp_changes(rnp, rdp);
1546 		rcu_preempt_boost_start_gp(rnp);
1547 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1548 					    rnp->level, rnp->grplo,
1549 					    rnp->grphi, rnp->qsmask);
1550 		/* Quiescent states for tasks on any now-offline CPUs. */
1551 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1552 		rnp->rcu_gp_init_mask = mask;
1553 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1554 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1555 		else
1556 			raw_spin_unlock_irq_rcu_node(rnp);
1557 		cond_resched_tasks_rcu_qs();
1558 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1559 	}
1560 
1561 	// If strict, make all CPUs aware of new grace period.
1562 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1563 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1564 
1565 	return true;
1566 }
1567 
1568 /*
1569  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1570  * time.
1571  */
1572 static bool rcu_gp_fqs_check_wake(int *gfp)
1573 {
1574 	struct rcu_node *rnp = rcu_get_root();
1575 
1576 	// If under overload conditions, force an immediate FQS scan.
1577 	if (*gfp & RCU_GP_FLAG_OVLD)
1578 		return true;
1579 
1580 	// Someone like call_rcu() requested a force-quiescent-state scan.
1581 	*gfp = READ_ONCE(rcu_state.gp_flags);
1582 	if (*gfp & RCU_GP_FLAG_FQS)
1583 		return true;
1584 
1585 	// The current grace period has completed.
1586 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1587 		return true;
1588 
1589 	return false;
1590 }
1591 
1592 /*
1593  * Do one round of quiescent-state forcing.
1594  */
1595 static void rcu_gp_fqs(bool first_time)
1596 {
1597 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1598 	struct rcu_node *rnp = rcu_get_root();
1599 
1600 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1601 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1602 
1603 	WARN_ON_ONCE(nr_fqs > 3);
1604 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1605 	if (nr_fqs) {
1606 		if (nr_fqs == 1) {
1607 			WRITE_ONCE(rcu_state.jiffies_stall,
1608 				   jiffies + rcu_jiffies_till_stall_check());
1609 		}
1610 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1611 	}
1612 
1613 	if (first_time) {
1614 		/* Collect dyntick-idle snapshots. */
1615 		force_qs_rnp(dyntick_save_progress_counter);
1616 	} else {
1617 		/* Handle dyntick-idle and offline CPUs. */
1618 		force_qs_rnp(rcu_implicit_dynticks_qs);
1619 	}
1620 	/* Clear flag to prevent immediate re-entry. */
1621 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1622 		raw_spin_lock_irq_rcu_node(rnp);
1623 		WRITE_ONCE(rcu_state.gp_flags,
1624 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1625 		raw_spin_unlock_irq_rcu_node(rnp);
1626 	}
1627 }
1628 
1629 /*
1630  * Loop doing repeated quiescent-state forcing until the grace period ends.
1631  */
1632 static noinline_for_stack void rcu_gp_fqs_loop(void)
1633 {
1634 	bool first_gp_fqs = true;
1635 	int gf = 0;
1636 	unsigned long j;
1637 	int ret;
1638 	struct rcu_node *rnp = rcu_get_root();
1639 
1640 	j = READ_ONCE(jiffies_till_first_fqs);
1641 	if (rcu_state.cbovld)
1642 		gf = RCU_GP_FLAG_OVLD;
1643 	ret = 0;
1644 	for (;;) {
1645 		if (rcu_state.cbovld) {
1646 			j = (j + 2) / 3;
1647 			if (j <= 0)
1648 				j = 1;
1649 		}
1650 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1651 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1652 			/*
1653 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1654 			 * update; required for stall checks.
1655 			 */
1656 			smp_wmb();
1657 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1658 				   jiffies + (j ? 3 * j : 2));
1659 		}
1660 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1661 				       TPS("fqswait"));
1662 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1663 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1664 				 rcu_gp_fqs_check_wake(&gf), j);
1665 		rcu_gp_torture_wait();
1666 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1667 		/* Locking provides needed memory barriers. */
1668 		/*
1669 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1670 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1671 		 * is required only for single-node rcu_node trees because readers blocking
1672 		 * the current grace period are queued only on leaf rcu_node structures.
1673 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1674 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1675 		 * the corresponding leaf nodes have passed through their quiescent state.
1676 		 */
1677 		if (!READ_ONCE(rnp->qsmask) &&
1678 		    !rcu_preempt_blocked_readers_cgp(rnp))
1679 			break;
1680 		/* If time for quiescent-state forcing, do it. */
1681 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1682 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1683 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1684 					       TPS("fqsstart"));
1685 			rcu_gp_fqs(first_gp_fqs);
1686 			gf = 0;
1687 			if (first_gp_fqs) {
1688 				first_gp_fqs = false;
1689 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1690 			}
1691 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1692 					       TPS("fqsend"));
1693 			cond_resched_tasks_rcu_qs();
1694 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695 			ret = 0; /* Force full wait till next FQS. */
1696 			j = READ_ONCE(jiffies_till_next_fqs);
1697 		} else {
1698 			/* Deal with stray signal. */
1699 			cond_resched_tasks_rcu_qs();
1700 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1701 			WARN_ON(signal_pending(current));
1702 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1703 					       TPS("fqswaitsig"));
1704 			ret = 1; /* Keep old FQS timing. */
1705 			j = jiffies;
1706 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1707 				j = 1;
1708 			else
1709 				j = rcu_state.jiffies_force_qs - j;
1710 			gf = 0;
1711 		}
1712 	}
1713 }
1714 
1715 /*
1716  * Clean up after the old grace period.
1717  */
1718 static noinline void rcu_gp_cleanup(void)
1719 {
1720 	int cpu;
1721 	bool needgp = false;
1722 	unsigned long gp_duration;
1723 	unsigned long new_gp_seq;
1724 	bool offloaded;
1725 	struct rcu_data *rdp;
1726 	struct rcu_node *rnp = rcu_get_root();
1727 	struct swait_queue_head *sq;
1728 
1729 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1730 	raw_spin_lock_irq_rcu_node(rnp);
1731 	rcu_state.gp_end = jiffies;
1732 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1733 	if (gp_duration > rcu_state.gp_max)
1734 		rcu_state.gp_max = gp_duration;
1735 
1736 	/*
1737 	 * We know the grace period is complete, but to everyone else
1738 	 * it appears to still be ongoing.  But it is also the case
1739 	 * that to everyone else it looks like there is nothing that
1740 	 * they can do to advance the grace period.  It is therefore
1741 	 * safe for us to drop the lock in order to mark the grace
1742 	 * period as completed in all of the rcu_node structures.
1743 	 */
1744 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1745 	raw_spin_unlock_irq_rcu_node(rnp);
1746 
1747 	/*
1748 	 * Propagate new ->gp_seq value to rcu_node structures so that
1749 	 * other CPUs don't have to wait until the start of the next grace
1750 	 * period to process their callbacks.  This also avoids some nasty
1751 	 * RCU grace-period initialization races by forcing the end of
1752 	 * the current grace period to be completely recorded in all of
1753 	 * the rcu_node structures before the beginning of the next grace
1754 	 * period is recorded in any of the rcu_node structures.
1755 	 */
1756 	new_gp_seq = rcu_state.gp_seq;
1757 	rcu_seq_end(&new_gp_seq);
1758 	rcu_for_each_node_breadth_first(rnp) {
1759 		raw_spin_lock_irq_rcu_node(rnp);
1760 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1761 			dump_blkd_tasks(rnp, 10);
1762 		WARN_ON_ONCE(rnp->qsmask);
1763 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1764 		if (!rnp->parent)
1765 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1766 		rdp = this_cpu_ptr(&rcu_data);
1767 		if (rnp == rdp->mynode)
1768 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1769 		/* smp_mb() provided by prior unlock-lock pair. */
1770 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1771 		// Reset overload indication for CPUs no longer overloaded
1772 		if (rcu_is_leaf_node(rnp))
1773 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1774 				rdp = per_cpu_ptr(&rcu_data, cpu);
1775 				check_cb_ovld_locked(rdp, rnp);
1776 			}
1777 		sq = rcu_nocb_gp_get(rnp);
1778 		raw_spin_unlock_irq_rcu_node(rnp);
1779 		rcu_nocb_gp_cleanup(sq);
1780 		cond_resched_tasks_rcu_qs();
1781 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1782 		rcu_gp_slow(gp_cleanup_delay);
1783 	}
1784 	rnp = rcu_get_root();
1785 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1786 
1787 	/* Declare grace period done, trace first to use old GP number. */
1788 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1789 	rcu_seq_end(&rcu_state.gp_seq);
1790 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1791 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1792 	/* Check for GP requests since above loop. */
1793 	rdp = this_cpu_ptr(&rcu_data);
1794 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1795 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1796 				  TPS("CleanupMore"));
1797 		needgp = true;
1798 	}
1799 	/* Advance CBs to reduce false positives below. */
1800 	offloaded = rcu_rdp_is_offloaded(rdp);
1801 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1802 
1803 		// We get here if a grace period was needed (“needgp”)
1804 		// and the above call to rcu_accelerate_cbs() did not set
1805 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1806 		// the need for another grace period).  The purpose
1807 		// of the “offloaded” check is to avoid invoking
1808 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1809 		// hold the ->nocb_lock needed to safely access an offloaded
1810 		// ->cblist.  We do not want to acquire that lock because
1811 		// it can be heavily contended during callback floods.
1812 
1813 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1814 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1815 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1816 	} else {
1817 
1818 		// We get here either if there is no need for an
1819 		// additional grace period or if rcu_accelerate_cbs() has
1820 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1821 		// So all we need to do is to clear all of the other
1822 		// ->gp_flags bits.
1823 
1824 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1825 	}
1826 	raw_spin_unlock_irq_rcu_node(rnp);
1827 
1828 	// If strict, make all CPUs aware of the end of the old grace period.
1829 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1830 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1831 }
1832 
1833 /*
1834  * Body of kthread that handles grace periods.
1835  */
1836 static int __noreturn rcu_gp_kthread(void *unused)
1837 {
1838 	rcu_bind_gp_kthread();
1839 	for (;;) {
1840 
1841 		/* Handle grace-period start. */
1842 		for (;;) {
1843 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1844 					       TPS("reqwait"));
1845 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1846 			swait_event_idle_exclusive(rcu_state.gp_wq,
1847 					 READ_ONCE(rcu_state.gp_flags) &
1848 					 RCU_GP_FLAG_INIT);
1849 			rcu_gp_torture_wait();
1850 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1851 			/* Locking provides needed memory barrier. */
1852 			if (rcu_gp_init())
1853 				break;
1854 			cond_resched_tasks_rcu_qs();
1855 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1856 			WARN_ON(signal_pending(current));
1857 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1858 					       TPS("reqwaitsig"));
1859 		}
1860 
1861 		/* Handle quiescent-state forcing. */
1862 		rcu_gp_fqs_loop();
1863 
1864 		/* Handle grace-period end. */
1865 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1866 		rcu_gp_cleanup();
1867 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1868 	}
1869 }
1870 
1871 /*
1872  * Report a full set of quiescent states to the rcu_state data structure.
1873  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1874  * another grace period is required.  Whether we wake the grace-period
1875  * kthread or it awakens itself for the next round of quiescent-state
1876  * forcing, that kthread will clean up after the just-completed grace
1877  * period.  Note that the caller must hold rnp->lock, which is released
1878  * before return.
1879  */
1880 static void rcu_report_qs_rsp(unsigned long flags)
1881 	__releases(rcu_get_root()->lock)
1882 {
1883 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1884 	WARN_ON_ONCE(!rcu_gp_in_progress());
1885 	WRITE_ONCE(rcu_state.gp_flags,
1886 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1887 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1888 	rcu_gp_kthread_wake();
1889 }
1890 
1891 /*
1892  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1893  * Allows quiescent states for a group of CPUs to be reported at one go
1894  * to the specified rcu_node structure, though all the CPUs in the group
1895  * must be represented by the same rcu_node structure (which need not be a
1896  * leaf rcu_node structure, though it often will be).  The gps parameter
1897  * is the grace-period snapshot, which means that the quiescent states
1898  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1899  * must be held upon entry, and it is released before return.
1900  *
1901  * As a special case, if mask is zero, the bit-already-cleared check is
1902  * disabled.  This allows propagating quiescent state due to resumed tasks
1903  * during grace-period initialization.
1904  */
1905 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1906 			      unsigned long gps, unsigned long flags)
1907 	__releases(rnp->lock)
1908 {
1909 	unsigned long oldmask = 0;
1910 	struct rcu_node *rnp_c;
1911 
1912 	raw_lockdep_assert_held_rcu_node(rnp);
1913 
1914 	/* Walk up the rcu_node hierarchy. */
1915 	for (;;) {
1916 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1917 
1918 			/*
1919 			 * Our bit has already been cleared, or the
1920 			 * relevant grace period is already over, so done.
1921 			 */
1922 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1923 			return;
1924 		}
1925 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1926 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1927 			     rcu_preempt_blocked_readers_cgp(rnp));
1928 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1929 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1930 						 mask, rnp->qsmask, rnp->level,
1931 						 rnp->grplo, rnp->grphi,
1932 						 !!rnp->gp_tasks);
1933 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1934 
1935 			/* Other bits still set at this level, so done. */
1936 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1937 			return;
1938 		}
1939 		rnp->completedqs = rnp->gp_seq;
1940 		mask = rnp->grpmask;
1941 		if (rnp->parent == NULL) {
1942 
1943 			/* No more levels.  Exit loop holding root lock. */
1944 
1945 			break;
1946 		}
1947 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1948 		rnp_c = rnp;
1949 		rnp = rnp->parent;
1950 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1951 		oldmask = READ_ONCE(rnp_c->qsmask);
1952 	}
1953 
1954 	/*
1955 	 * Get here if we are the last CPU to pass through a quiescent
1956 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1957 	 * to clean up and start the next grace period if one is needed.
1958 	 */
1959 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1960 }
1961 
1962 /*
1963  * Record a quiescent state for all tasks that were previously queued
1964  * on the specified rcu_node structure and that were blocking the current
1965  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1966  * irqs disabled, and this lock is released upon return, but irqs remain
1967  * disabled.
1968  */
1969 static void __maybe_unused
1970 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1971 	__releases(rnp->lock)
1972 {
1973 	unsigned long gps;
1974 	unsigned long mask;
1975 	struct rcu_node *rnp_p;
1976 
1977 	raw_lockdep_assert_held_rcu_node(rnp);
1978 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1979 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1980 	    rnp->qsmask != 0) {
1981 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1982 		return;  /* Still need more quiescent states! */
1983 	}
1984 
1985 	rnp->completedqs = rnp->gp_seq;
1986 	rnp_p = rnp->parent;
1987 	if (rnp_p == NULL) {
1988 		/*
1989 		 * Only one rcu_node structure in the tree, so don't
1990 		 * try to report up to its nonexistent parent!
1991 		 */
1992 		rcu_report_qs_rsp(flags);
1993 		return;
1994 	}
1995 
1996 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1997 	gps = rnp->gp_seq;
1998 	mask = rnp->grpmask;
1999 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2000 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2001 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2002 }
2003 
2004 /*
2005  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2006  * structure.  This must be called from the specified CPU.
2007  */
2008 static void
2009 rcu_report_qs_rdp(struct rcu_data *rdp)
2010 {
2011 	unsigned long flags;
2012 	unsigned long mask;
2013 	bool needacc = false;
2014 	struct rcu_node *rnp;
2015 
2016 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2017 	rnp = rdp->mynode;
2018 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2019 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2020 	    rdp->gpwrap) {
2021 
2022 		/*
2023 		 * The grace period in which this quiescent state was
2024 		 * recorded has ended, so don't report it upwards.
2025 		 * We will instead need a new quiescent state that lies
2026 		 * within the current grace period.
2027 		 */
2028 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2029 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030 		return;
2031 	}
2032 	mask = rdp->grpmask;
2033 	rdp->core_needs_qs = false;
2034 	if ((rnp->qsmask & mask) == 0) {
2035 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2036 	} else {
2037 		/*
2038 		 * This GP can't end until cpu checks in, so all of our
2039 		 * callbacks can be processed during the next GP.
2040 		 *
2041 		 * NOCB kthreads have their own way to deal with that...
2042 		 */
2043 		if (!rcu_rdp_is_offloaded(rdp)) {
2044 			/*
2045 			 * The current GP has not yet ended, so it
2046 			 * should not be possible for rcu_accelerate_cbs()
2047 			 * to return true.  So complain, but don't awaken.
2048 			 */
2049 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2050 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2051 			/*
2052 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2053 			 * if in the middle of a (de-)offloading process.
2054 			 */
2055 			needacc = true;
2056 		}
2057 
2058 		rcu_disable_urgency_upon_qs(rdp);
2059 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2060 		/* ^^^ Released rnp->lock */
2061 
2062 		if (needacc) {
2063 			rcu_nocb_lock_irqsave(rdp, flags);
2064 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2065 			rcu_nocb_unlock_irqrestore(rdp, flags);
2066 		}
2067 	}
2068 }
2069 
2070 /*
2071  * Check to see if there is a new grace period of which this CPU
2072  * is not yet aware, and if so, set up local rcu_data state for it.
2073  * Otherwise, see if this CPU has just passed through its first
2074  * quiescent state for this grace period, and record that fact if so.
2075  */
2076 static void
2077 rcu_check_quiescent_state(struct rcu_data *rdp)
2078 {
2079 	/* Check for grace-period ends and beginnings. */
2080 	note_gp_changes(rdp);
2081 
2082 	/*
2083 	 * Does this CPU still need to do its part for current grace period?
2084 	 * If no, return and let the other CPUs do their part as well.
2085 	 */
2086 	if (!rdp->core_needs_qs)
2087 		return;
2088 
2089 	/*
2090 	 * Was there a quiescent state since the beginning of the grace
2091 	 * period? If no, then exit and wait for the next call.
2092 	 */
2093 	if (rdp->cpu_no_qs.b.norm)
2094 		return;
2095 
2096 	/*
2097 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2098 	 * judge of that).
2099 	 */
2100 	rcu_report_qs_rdp(rdp);
2101 }
2102 
2103 /* Return true if callback-invocation time limit exceeded. */
2104 static bool rcu_do_batch_check_time(long count, long tlimit,
2105 				    bool jlimit_check, unsigned long jlimit)
2106 {
2107 	// Invoke local_clock() only once per 32 consecutive callbacks.
2108 	return unlikely(tlimit) &&
2109 	       (!likely(count & 31) ||
2110 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2111 		 jlimit_check && time_after(jiffies, jlimit))) &&
2112 	       local_clock() >= tlimit;
2113 }
2114 
2115 /*
2116  * Invoke any RCU callbacks that have made it to the end of their grace
2117  * period.  Throttle as specified by rdp->blimit.
2118  */
2119 static void rcu_do_batch(struct rcu_data *rdp)
2120 {
2121 	long bl;
2122 	long count = 0;
2123 	int div;
2124 	bool __maybe_unused empty;
2125 	unsigned long flags;
2126 	unsigned long jlimit;
2127 	bool jlimit_check = false;
2128 	long pending;
2129 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2130 	struct rcu_head *rhp;
2131 	long tlimit = 0;
2132 
2133 	/* If no callbacks are ready, just return. */
2134 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135 		trace_rcu_batch_start(rcu_state.name,
2136 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2137 		trace_rcu_batch_end(rcu_state.name, 0,
2138 				    !rcu_segcblist_empty(&rdp->cblist),
2139 				    need_resched(), is_idle_task(current),
2140 				    rcu_is_callbacks_kthread(rdp));
2141 		return;
2142 	}
2143 
2144 	/*
2145 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2146 	 * races with call_rcu() from interrupt handlers.  Leave the
2147 	 * callback counts, as rcu_barrier() needs to be conservative.
2148 	 */
2149 	rcu_nocb_lock_irqsave(rdp, flags);
2150 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2151 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2152 	div = READ_ONCE(rcu_divisor);
2153 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2154 	bl = max(rdp->blimit, pending >> div);
2155 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2156 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2157 		const long npj = NSEC_PER_SEC / HZ;
2158 		long rrn = READ_ONCE(rcu_resched_ns);
2159 
2160 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2161 		tlimit = local_clock() + rrn;
2162 		jlimit = jiffies + (rrn + npj + 1) / npj;
2163 		jlimit_check = true;
2164 	}
2165 	trace_rcu_batch_start(rcu_state.name,
2166 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2167 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2168 	if (rcu_rdp_is_offloaded(rdp))
2169 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2170 
2171 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2172 	rcu_nocb_unlock_irqrestore(rdp, flags);
2173 
2174 	/* Invoke callbacks. */
2175 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2176 	rhp = rcu_cblist_dequeue(&rcl);
2177 
2178 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2179 		rcu_callback_t f;
2180 
2181 		count++;
2182 		debug_rcu_head_unqueue(rhp);
2183 
2184 		rcu_lock_acquire(&rcu_callback_map);
2185 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2186 
2187 		f = rhp->func;
2188 		debug_rcu_head_callback(rhp);
2189 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2190 		f(rhp);
2191 
2192 		rcu_lock_release(&rcu_callback_map);
2193 
2194 		/*
2195 		 * Stop only if limit reached and CPU has something to do.
2196 		 */
2197 		if (in_serving_softirq()) {
2198 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2199 				break;
2200 			/*
2201 			 * Make sure we don't spend too much time here and deprive other
2202 			 * softirq vectors of CPU cycles.
2203 			 */
2204 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2205 				break;
2206 		} else {
2207 			// In rcuc/rcuoc context, so no worries about
2208 			// depriving other softirq vectors of CPU cycles.
2209 			local_bh_enable();
2210 			lockdep_assert_irqs_enabled();
2211 			cond_resched_tasks_rcu_qs();
2212 			lockdep_assert_irqs_enabled();
2213 			local_bh_disable();
2214 			// But rcuc kthreads can delay quiescent-state
2215 			// reporting, so check time limits for them.
2216 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2217 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2218 				rdp->rcu_cpu_has_work = 1;
2219 				break;
2220 			}
2221 		}
2222 	}
2223 
2224 	rcu_nocb_lock_irqsave(rdp, flags);
2225 	rdp->n_cbs_invoked += count;
2226 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2227 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2228 
2229 	/* Update counts and requeue any remaining callbacks. */
2230 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2231 	rcu_segcblist_add_len(&rdp->cblist, -count);
2232 
2233 	/* Reinstate batch limit if we have worked down the excess. */
2234 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2235 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2236 		rdp->blimit = blimit;
2237 
2238 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2239 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2240 		rdp->qlen_last_fqs_check = 0;
2241 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2242 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2243 		rdp->qlen_last_fqs_check = count;
2244 
2245 	/*
2246 	 * The following usually indicates a double call_rcu().  To track
2247 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2248 	 */
2249 	empty = rcu_segcblist_empty(&rdp->cblist);
2250 	WARN_ON_ONCE(count == 0 && !empty);
2251 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2252 		     count != 0 && empty);
2253 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2254 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2255 
2256 	rcu_nocb_unlock_irqrestore(rdp, flags);
2257 
2258 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2259 }
2260 
2261 /*
2262  * This function is invoked from each scheduling-clock interrupt,
2263  * and checks to see if this CPU is in a non-context-switch quiescent
2264  * state, for example, user mode or idle loop.  It also schedules RCU
2265  * core processing.  If the current grace period has gone on too long,
2266  * it will ask the scheduler to manufacture a context switch for the sole
2267  * purpose of providing the needed quiescent state.
2268  */
2269 void rcu_sched_clock_irq(int user)
2270 {
2271 	unsigned long j;
2272 
2273 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2274 		j = jiffies;
2275 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2276 		__this_cpu_write(rcu_data.last_sched_clock, j);
2277 	}
2278 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2279 	lockdep_assert_irqs_disabled();
2280 	raw_cpu_inc(rcu_data.ticks_this_gp);
2281 	/* The load-acquire pairs with the store-release setting to true. */
2282 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2283 		/* Idle and userspace execution already are quiescent states. */
2284 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2285 			set_tsk_need_resched(current);
2286 			set_preempt_need_resched();
2287 		}
2288 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2289 	}
2290 	rcu_flavor_sched_clock_irq(user);
2291 	if (rcu_pending(user))
2292 		invoke_rcu_core();
2293 	if (user || rcu_is_cpu_rrupt_from_idle())
2294 		rcu_note_voluntary_context_switch(current);
2295 	lockdep_assert_irqs_disabled();
2296 
2297 	trace_rcu_utilization(TPS("End scheduler-tick"));
2298 }
2299 
2300 /*
2301  * Scan the leaf rcu_node structures.  For each structure on which all
2302  * CPUs have reported a quiescent state and on which there are tasks
2303  * blocking the current grace period, initiate RCU priority boosting.
2304  * Otherwise, invoke the specified function to check dyntick state for
2305  * each CPU that has not yet reported a quiescent state.
2306  */
2307 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2308 {
2309 	int cpu;
2310 	unsigned long flags;
2311 	struct rcu_node *rnp;
2312 
2313 	rcu_state.cbovld = rcu_state.cbovldnext;
2314 	rcu_state.cbovldnext = false;
2315 	rcu_for_each_leaf_node(rnp) {
2316 		unsigned long mask = 0;
2317 		unsigned long rsmask = 0;
2318 
2319 		cond_resched_tasks_rcu_qs();
2320 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2321 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2322 		if (rnp->qsmask == 0) {
2323 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2324 				/*
2325 				 * No point in scanning bits because they
2326 				 * are all zero.  But we might need to
2327 				 * priority-boost blocked readers.
2328 				 */
2329 				rcu_initiate_boost(rnp, flags);
2330 				/* rcu_initiate_boost() releases rnp->lock */
2331 				continue;
2332 			}
2333 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2334 			continue;
2335 		}
2336 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2337 			struct rcu_data *rdp;
2338 			int ret;
2339 
2340 			rdp = per_cpu_ptr(&rcu_data, cpu);
2341 			ret = f(rdp);
2342 			if (ret > 0) {
2343 				mask |= rdp->grpmask;
2344 				rcu_disable_urgency_upon_qs(rdp);
2345 			}
2346 			if (ret < 0)
2347 				rsmask |= rdp->grpmask;
2348 		}
2349 		if (mask != 0) {
2350 			/* Idle/offline CPUs, report (releases rnp->lock). */
2351 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2352 		} else {
2353 			/* Nothing to do here, so just drop the lock. */
2354 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2355 		}
2356 
2357 		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2358 			resched_cpu(cpu);
2359 	}
2360 }
2361 
2362 /*
2363  * Force quiescent states on reluctant CPUs, and also detect which
2364  * CPUs are in dyntick-idle mode.
2365  */
2366 void rcu_force_quiescent_state(void)
2367 {
2368 	unsigned long flags;
2369 	bool ret;
2370 	struct rcu_node *rnp;
2371 	struct rcu_node *rnp_old = NULL;
2372 
2373 	/* Funnel through hierarchy to reduce memory contention. */
2374 	rnp = raw_cpu_read(rcu_data.mynode);
2375 	for (; rnp != NULL; rnp = rnp->parent) {
2376 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2377 		       !raw_spin_trylock(&rnp->fqslock);
2378 		if (rnp_old != NULL)
2379 			raw_spin_unlock(&rnp_old->fqslock);
2380 		if (ret)
2381 			return;
2382 		rnp_old = rnp;
2383 	}
2384 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2385 
2386 	/* Reached the root of the rcu_node tree, acquire lock. */
2387 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2388 	raw_spin_unlock(&rnp_old->fqslock);
2389 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2390 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2391 		return;  /* Someone beat us to it. */
2392 	}
2393 	WRITE_ONCE(rcu_state.gp_flags,
2394 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2395 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2396 	rcu_gp_kthread_wake();
2397 }
2398 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2399 
2400 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2401 // grace periods.
2402 static void strict_work_handler(struct work_struct *work)
2403 {
2404 	rcu_read_lock();
2405 	rcu_read_unlock();
2406 }
2407 
2408 /* Perform RCU core processing work for the current CPU.  */
2409 static __latent_entropy void rcu_core(void)
2410 {
2411 	unsigned long flags;
2412 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2413 	struct rcu_node *rnp = rdp->mynode;
2414 	/*
2415 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2416 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2417 	 * on this CPU and the below condition must be considered volatile.
2418 	 * However if we race with:
2419 	 *
2420 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2421 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2422 	 *                 call rcu_nocb_lock() if that happens.
2423 	 *
2424 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2425 	 *                 processing. This is fine because the early stage
2426 	 *                 of deoffloading invokes rcu_core() after setting
2427 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2428 	 *                 what could have been dismissed without the need to wait
2429 	 *                 for the next rcu_pending() check in the next jiffy.
2430 	 */
2431 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2432 
2433 	if (cpu_is_offline(smp_processor_id()))
2434 		return;
2435 	trace_rcu_utilization(TPS("Start RCU core"));
2436 	WARN_ON_ONCE(!rdp->beenonline);
2437 
2438 	/* Report any deferred quiescent states if preemption enabled. */
2439 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2440 		rcu_preempt_deferred_qs(current);
2441 	} else if (rcu_preempt_need_deferred_qs(current)) {
2442 		set_tsk_need_resched(current);
2443 		set_preempt_need_resched();
2444 	}
2445 
2446 	/* Update RCU state based on any recent quiescent states. */
2447 	rcu_check_quiescent_state(rdp);
2448 
2449 	/* No grace period and unregistered callbacks? */
2450 	if (!rcu_gp_in_progress() &&
2451 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2452 		rcu_nocb_lock_irqsave(rdp, flags);
2453 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2454 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2455 		rcu_nocb_unlock_irqrestore(rdp, flags);
2456 	}
2457 
2458 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2459 
2460 	/* If there are callbacks ready, invoke them. */
2461 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2462 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2463 		rcu_do_batch(rdp);
2464 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2465 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2466 			invoke_rcu_core();
2467 	}
2468 
2469 	/* Do any needed deferred wakeups of rcuo kthreads. */
2470 	do_nocb_deferred_wakeup(rdp);
2471 	trace_rcu_utilization(TPS("End RCU core"));
2472 
2473 	// If strict GPs, schedule an RCU reader in a clean environment.
2474 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2475 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2476 }
2477 
2478 static void rcu_core_si(struct softirq_action *h)
2479 {
2480 	rcu_core();
2481 }
2482 
2483 static void rcu_wake_cond(struct task_struct *t, int status)
2484 {
2485 	/*
2486 	 * If the thread is yielding, only wake it when this
2487 	 * is invoked from idle
2488 	 */
2489 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2490 		wake_up_process(t);
2491 }
2492 
2493 static void invoke_rcu_core_kthread(void)
2494 {
2495 	struct task_struct *t;
2496 	unsigned long flags;
2497 
2498 	local_irq_save(flags);
2499 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2500 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2501 	if (t != NULL && t != current)
2502 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2503 	local_irq_restore(flags);
2504 }
2505 
2506 /*
2507  * Wake up this CPU's rcuc kthread to do RCU core processing.
2508  */
2509 static void invoke_rcu_core(void)
2510 {
2511 	if (!cpu_online(smp_processor_id()))
2512 		return;
2513 	if (use_softirq)
2514 		raise_softirq(RCU_SOFTIRQ);
2515 	else
2516 		invoke_rcu_core_kthread();
2517 }
2518 
2519 static void rcu_cpu_kthread_park(unsigned int cpu)
2520 {
2521 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2522 }
2523 
2524 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2525 {
2526 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2527 }
2528 
2529 /*
2530  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2531  * the RCU softirq used in configurations of RCU that do not support RCU
2532  * priority boosting.
2533  */
2534 static void rcu_cpu_kthread(unsigned int cpu)
2535 {
2536 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2537 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2538 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2539 	int spincnt;
2540 
2541 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2542 	for (spincnt = 0; spincnt < 10; spincnt++) {
2543 		WRITE_ONCE(*j, jiffies);
2544 		local_bh_disable();
2545 		*statusp = RCU_KTHREAD_RUNNING;
2546 		local_irq_disable();
2547 		work = *workp;
2548 		WRITE_ONCE(*workp, 0);
2549 		local_irq_enable();
2550 		if (work)
2551 			rcu_core();
2552 		local_bh_enable();
2553 		if (!READ_ONCE(*workp)) {
2554 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2555 			*statusp = RCU_KTHREAD_WAITING;
2556 			return;
2557 		}
2558 	}
2559 	*statusp = RCU_KTHREAD_YIELDING;
2560 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2561 	schedule_timeout_idle(2);
2562 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2563 	*statusp = RCU_KTHREAD_WAITING;
2564 	WRITE_ONCE(*j, jiffies);
2565 }
2566 
2567 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2568 	.store			= &rcu_data.rcu_cpu_kthread_task,
2569 	.thread_should_run	= rcu_cpu_kthread_should_run,
2570 	.thread_fn		= rcu_cpu_kthread,
2571 	.thread_comm		= "rcuc/%u",
2572 	.setup			= rcu_cpu_kthread_setup,
2573 	.park			= rcu_cpu_kthread_park,
2574 };
2575 
2576 /*
2577  * Spawn per-CPU RCU core processing kthreads.
2578  */
2579 static int __init rcu_spawn_core_kthreads(void)
2580 {
2581 	int cpu;
2582 
2583 	for_each_possible_cpu(cpu)
2584 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2585 	if (use_softirq)
2586 		return 0;
2587 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2588 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2589 	return 0;
2590 }
2591 
2592 /*
2593  * Handle any core-RCU processing required by a call_rcu() invocation.
2594  */
2595 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2596 			    unsigned long flags)
2597 {
2598 	/*
2599 	 * If called from an extended quiescent state, invoke the RCU
2600 	 * core in order to force a re-evaluation of RCU's idleness.
2601 	 */
2602 	if (!rcu_is_watching())
2603 		invoke_rcu_core();
2604 
2605 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2606 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2607 		return;
2608 
2609 	/*
2610 	 * Force the grace period if too many callbacks or too long waiting.
2611 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2612 	 * if some other CPU has recently done so.  Also, don't bother
2613 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2614 	 * is the only one waiting for a grace period to complete.
2615 	 */
2616 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2617 		     rdp->qlen_last_fqs_check + qhimark)) {
2618 
2619 		/* Are we ignoring a completed grace period? */
2620 		note_gp_changes(rdp);
2621 
2622 		/* Start a new grace period if one not already started. */
2623 		if (!rcu_gp_in_progress()) {
2624 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2625 		} else {
2626 			/* Give the grace period a kick. */
2627 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2628 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2629 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2630 				rcu_force_quiescent_state();
2631 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2632 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2633 		}
2634 	}
2635 }
2636 
2637 /*
2638  * RCU callback function to leak a callback.
2639  */
2640 static void rcu_leak_callback(struct rcu_head *rhp)
2641 {
2642 }
2643 
2644 /*
2645  * Check and if necessary update the leaf rcu_node structure's
2646  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2647  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2648  * structure's ->lock.
2649  */
2650 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2651 {
2652 	raw_lockdep_assert_held_rcu_node(rnp);
2653 	if (qovld_calc <= 0)
2654 		return; // Early boot and wildcard value set.
2655 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2656 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2657 	else
2658 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2659 }
2660 
2661 /*
2662  * Check and if necessary update the leaf rcu_node structure's
2663  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2664  * number of queued RCU callbacks.  No locks need be held, but the
2665  * caller must have disabled interrupts.
2666  *
2667  * Note that this function ignores the possibility that there are a lot
2668  * of callbacks all of which have already seen the end of their respective
2669  * grace periods.  This omission is due to the need for no-CBs CPUs to
2670  * be holding ->nocb_lock to do this check, which is too heavy for a
2671  * common-case operation.
2672  */
2673 static void check_cb_ovld(struct rcu_data *rdp)
2674 {
2675 	struct rcu_node *const rnp = rdp->mynode;
2676 
2677 	if (qovld_calc <= 0 ||
2678 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2679 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2680 		return; // Early boot wildcard value or already set correctly.
2681 	raw_spin_lock_rcu_node(rnp);
2682 	check_cb_ovld_locked(rdp, rnp);
2683 	raw_spin_unlock_rcu_node(rnp);
2684 }
2685 
2686 static void
2687 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2688 {
2689 	static atomic_t doublefrees;
2690 	unsigned long flags;
2691 	bool lazy;
2692 	struct rcu_data *rdp;
2693 	bool was_alldone;
2694 
2695 	/* Misaligned rcu_head! */
2696 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2697 
2698 	if (debug_rcu_head_queue(head)) {
2699 		/*
2700 		 * Probable double call_rcu(), so leak the callback.
2701 		 * Use rcu:rcu_callback trace event to find the previous
2702 		 * time callback was passed to call_rcu().
2703 		 */
2704 		if (atomic_inc_return(&doublefrees) < 4) {
2705 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2706 			mem_dump_obj(head);
2707 		}
2708 		WRITE_ONCE(head->func, rcu_leak_callback);
2709 		return;
2710 	}
2711 	head->func = func;
2712 	head->next = NULL;
2713 	kasan_record_aux_stack_noalloc(head);
2714 	local_irq_save(flags);
2715 	rdp = this_cpu_ptr(&rcu_data);
2716 	lazy = lazy_in && !rcu_async_should_hurry();
2717 
2718 	/* Add the callback to our list. */
2719 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2720 		// This can trigger due to call_rcu() from offline CPU:
2721 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2722 		WARN_ON_ONCE(!rcu_is_watching());
2723 		// Very early boot, before rcu_init().  Initialize if needed
2724 		// and then drop through to queue the callback.
2725 		if (rcu_segcblist_empty(&rdp->cblist))
2726 			rcu_segcblist_init(&rdp->cblist);
2727 	}
2728 
2729 	check_cb_ovld(rdp);
2730 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
2731 		local_irq_restore(flags);
2732 		return; // Enqueued onto ->nocb_bypass, so just leave.
2733 	}
2734 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2735 	rcu_segcblist_enqueue(&rdp->cblist, head);
2736 	if (__is_kvfree_rcu_offset((unsigned long)func))
2737 		trace_rcu_kvfree_callback(rcu_state.name, head,
2738 					 (unsigned long)func,
2739 					 rcu_segcblist_n_cbs(&rdp->cblist));
2740 	else
2741 		trace_rcu_callback(rcu_state.name, head,
2742 				   rcu_segcblist_n_cbs(&rdp->cblist));
2743 
2744 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2745 
2746 	/* Go handle any RCU core processing required. */
2747 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2748 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2749 	} else {
2750 		__call_rcu_core(rdp, head, flags);
2751 	}
2752 	local_irq_restore(flags);
2753 }
2754 
2755 #ifdef CONFIG_RCU_LAZY
2756 /**
2757  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2758  * flush all lazy callbacks (including the new one) to the main ->cblist while
2759  * doing so.
2760  *
2761  * @head: structure to be used for queueing the RCU updates.
2762  * @func: actual callback function to be invoked after the grace period
2763  *
2764  * The callback function will be invoked some time after a full grace
2765  * period elapses, in other words after all pre-existing RCU read-side
2766  * critical sections have completed.
2767  *
2768  * Use this API instead of call_rcu() if you don't want the callback to be
2769  * invoked after very long periods of time, which can happen on systems without
2770  * memory pressure and on systems which are lightly loaded or mostly idle.
2771  * This function will cause callbacks to be invoked sooner than later at the
2772  * expense of extra power. Other than that, this function is identical to, and
2773  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2774  * ordering and other functionality.
2775  */
2776 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2777 {
2778 	return __call_rcu_common(head, func, false);
2779 }
2780 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2781 #endif
2782 
2783 /**
2784  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2785  * By default the callbacks are 'lazy' and are kept hidden from the main
2786  * ->cblist to prevent starting of grace periods too soon.
2787  * If you desire grace periods to start very soon, use call_rcu_hurry().
2788  *
2789  * @head: structure to be used for queueing the RCU updates.
2790  * @func: actual callback function to be invoked after the grace period
2791  *
2792  * The callback function will be invoked some time after a full grace
2793  * period elapses, in other words after all pre-existing RCU read-side
2794  * critical sections have completed.  However, the callback function
2795  * might well execute concurrently with RCU read-side critical sections
2796  * that started after call_rcu() was invoked.
2797  *
2798  * RCU read-side critical sections are delimited by rcu_read_lock()
2799  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2800  * v5.0 and later, regions of code across which interrupts, preemption,
2801  * or softirqs have been disabled also serve as RCU read-side critical
2802  * sections.  This includes hardware interrupt handlers, softirq handlers,
2803  * and NMI handlers.
2804  *
2805  * Note that all CPUs must agree that the grace period extended beyond
2806  * all pre-existing RCU read-side critical section.  On systems with more
2807  * than one CPU, this means that when "func()" is invoked, each CPU is
2808  * guaranteed to have executed a full memory barrier since the end of its
2809  * last RCU read-side critical section whose beginning preceded the call
2810  * to call_rcu().  It also means that each CPU executing an RCU read-side
2811  * critical section that continues beyond the start of "func()" must have
2812  * executed a memory barrier after the call_rcu() but before the beginning
2813  * of that RCU read-side critical section.  Note that these guarantees
2814  * include CPUs that are offline, idle, or executing in user mode, as
2815  * well as CPUs that are executing in the kernel.
2816  *
2817  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2818  * resulting RCU callback function "func()", then both CPU A and CPU B are
2819  * guaranteed to execute a full memory barrier during the time interval
2820  * between the call to call_rcu() and the invocation of "func()" -- even
2821  * if CPU A and CPU B are the same CPU (but again only if the system has
2822  * more than one CPU).
2823  *
2824  * Implementation of these memory-ordering guarantees is described here:
2825  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2826  */
2827 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2828 {
2829 	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2830 }
2831 EXPORT_SYMBOL_GPL(call_rcu);
2832 
2833 /* Maximum number of jiffies to wait before draining a batch. */
2834 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2835 #define KFREE_N_BATCHES 2
2836 #define FREE_N_CHANNELS 2
2837 
2838 /**
2839  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2840  * @list: List node. All blocks are linked between each other
2841  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2842  * @nr_records: Number of active pointers in the array
2843  * @records: Array of the kvfree_rcu() pointers
2844  */
2845 struct kvfree_rcu_bulk_data {
2846 	struct list_head list;
2847 	struct rcu_gp_oldstate gp_snap;
2848 	unsigned long nr_records;
2849 	void *records[];
2850 };
2851 
2852 /*
2853  * This macro defines how many entries the "records" array
2854  * will contain. It is based on the fact that the size of
2855  * kvfree_rcu_bulk_data structure becomes exactly one page.
2856  */
2857 #define KVFREE_BULK_MAX_ENTR \
2858 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2859 
2860 /**
2861  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2862  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2863  * @head_free: List of kfree_rcu() objects waiting for a grace period
2864  * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2865  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2866  * @krcp: Pointer to @kfree_rcu_cpu structure
2867  */
2868 
2869 struct kfree_rcu_cpu_work {
2870 	struct rcu_work rcu_work;
2871 	struct rcu_head *head_free;
2872 	struct rcu_gp_oldstate head_free_gp_snap;
2873 	struct list_head bulk_head_free[FREE_N_CHANNELS];
2874 	struct kfree_rcu_cpu *krcp;
2875 };
2876 
2877 /**
2878  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2879  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2880  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2881  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2882  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2883  * @lock: Synchronize access to this structure
2884  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2885  * @initialized: The @rcu_work fields have been initialized
2886  * @head_count: Number of objects in rcu_head singular list
2887  * @bulk_count: Number of objects in bulk-list
2888  * @bkvcache:
2889  *	A simple cache list that contains objects for reuse purpose.
2890  *	In order to save some per-cpu space the list is singular.
2891  *	Even though it is lockless an access has to be protected by the
2892  *	per-cpu lock.
2893  * @page_cache_work: A work to refill the cache when it is empty
2894  * @backoff_page_cache_fill: Delay cache refills
2895  * @work_in_progress: Indicates that page_cache_work is running
2896  * @hrtimer: A hrtimer for scheduling a page_cache_work
2897  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2898  *
2899  * This is a per-CPU structure.  The reason that it is not included in
2900  * the rcu_data structure is to permit this code to be extracted from
2901  * the RCU files.  Such extraction could allow further optimization of
2902  * the interactions with the slab allocators.
2903  */
2904 struct kfree_rcu_cpu {
2905 	// Objects queued on a linked list
2906 	// through their rcu_head structures.
2907 	struct rcu_head *head;
2908 	unsigned long head_gp_snap;
2909 	atomic_t head_count;
2910 
2911 	// Objects queued on a bulk-list.
2912 	struct list_head bulk_head[FREE_N_CHANNELS];
2913 	atomic_t bulk_count[FREE_N_CHANNELS];
2914 
2915 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2916 	raw_spinlock_t lock;
2917 	struct delayed_work monitor_work;
2918 	bool initialized;
2919 
2920 	struct delayed_work page_cache_work;
2921 	atomic_t backoff_page_cache_fill;
2922 	atomic_t work_in_progress;
2923 	struct hrtimer hrtimer;
2924 
2925 	struct llist_head bkvcache;
2926 	int nr_bkv_objs;
2927 };
2928 
2929 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2930 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2931 };
2932 
2933 static __always_inline void
2934 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2935 {
2936 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2937 	int i;
2938 
2939 	for (i = 0; i < bhead->nr_records; i++)
2940 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2941 #endif
2942 }
2943 
2944 static inline struct kfree_rcu_cpu *
2945 krc_this_cpu_lock(unsigned long *flags)
2946 {
2947 	struct kfree_rcu_cpu *krcp;
2948 
2949 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2950 	krcp = this_cpu_ptr(&krc);
2951 	raw_spin_lock(&krcp->lock);
2952 
2953 	return krcp;
2954 }
2955 
2956 static inline void
2957 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2958 {
2959 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2960 }
2961 
2962 static inline struct kvfree_rcu_bulk_data *
2963 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2964 {
2965 	if (!krcp->nr_bkv_objs)
2966 		return NULL;
2967 
2968 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2969 	return (struct kvfree_rcu_bulk_data *)
2970 		llist_del_first(&krcp->bkvcache);
2971 }
2972 
2973 static inline bool
2974 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2975 	struct kvfree_rcu_bulk_data *bnode)
2976 {
2977 	// Check the limit.
2978 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2979 		return false;
2980 
2981 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2982 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2983 	return true;
2984 }
2985 
2986 static int
2987 drain_page_cache(struct kfree_rcu_cpu *krcp)
2988 {
2989 	unsigned long flags;
2990 	struct llist_node *page_list, *pos, *n;
2991 	int freed = 0;
2992 
2993 	if (!rcu_min_cached_objs)
2994 		return 0;
2995 
2996 	raw_spin_lock_irqsave(&krcp->lock, flags);
2997 	page_list = llist_del_all(&krcp->bkvcache);
2998 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
2999 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3000 
3001 	llist_for_each_safe(pos, n, page_list) {
3002 		free_page((unsigned long)pos);
3003 		freed++;
3004 	}
3005 
3006 	return freed;
3007 }
3008 
3009 static void
3010 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3011 	struct kvfree_rcu_bulk_data *bnode, int idx)
3012 {
3013 	unsigned long flags;
3014 	int i;
3015 
3016 	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3017 		debug_rcu_bhead_unqueue(bnode);
3018 		rcu_lock_acquire(&rcu_callback_map);
3019 		if (idx == 0) { // kmalloc() / kfree().
3020 			trace_rcu_invoke_kfree_bulk_callback(
3021 				rcu_state.name, bnode->nr_records,
3022 				bnode->records);
3023 
3024 			kfree_bulk(bnode->nr_records, bnode->records);
3025 		} else { // vmalloc() / vfree().
3026 			for (i = 0; i < bnode->nr_records; i++) {
3027 				trace_rcu_invoke_kvfree_callback(
3028 					rcu_state.name, bnode->records[i], 0);
3029 
3030 				vfree(bnode->records[i]);
3031 			}
3032 		}
3033 		rcu_lock_release(&rcu_callback_map);
3034 	}
3035 
3036 	raw_spin_lock_irqsave(&krcp->lock, flags);
3037 	if (put_cached_bnode(krcp, bnode))
3038 		bnode = NULL;
3039 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3040 
3041 	if (bnode)
3042 		free_page((unsigned long) bnode);
3043 
3044 	cond_resched_tasks_rcu_qs();
3045 }
3046 
3047 static void
3048 kvfree_rcu_list(struct rcu_head *head)
3049 {
3050 	struct rcu_head *next;
3051 
3052 	for (; head; head = next) {
3053 		void *ptr = (void *) head->func;
3054 		unsigned long offset = (void *) head - ptr;
3055 
3056 		next = head->next;
3057 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3058 		rcu_lock_acquire(&rcu_callback_map);
3059 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3060 
3061 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3062 			kvfree(ptr);
3063 
3064 		rcu_lock_release(&rcu_callback_map);
3065 		cond_resched_tasks_rcu_qs();
3066 	}
3067 }
3068 
3069 /*
3070  * This function is invoked in workqueue context after a grace period.
3071  * It frees all the objects queued on ->bulk_head_free or ->head_free.
3072  */
3073 static void kfree_rcu_work(struct work_struct *work)
3074 {
3075 	unsigned long flags;
3076 	struct kvfree_rcu_bulk_data *bnode, *n;
3077 	struct list_head bulk_head[FREE_N_CHANNELS];
3078 	struct rcu_head *head;
3079 	struct kfree_rcu_cpu *krcp;
3080 	struct kfree_rcu_cpu_work *krwp;
3081 	struct rcu_gp_oldstate head_gp_snap;
3082 	int i;
3083 
3084 	krwp = container_of(to_rcu_work(work),
3085 		struct kfree_rcu_cpu_work, rcu_work);
3086 	krcp = krwp->krcp;
3087 
3088 	raw_spin_lock_irqsave(&krcp->lock, flags);
3089 	// Channels 1 and 2.
3090 	for (i = 0; i < FREE_N_CHANNELS; i++)
3091 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3092 
3093 	// Channel 3.
3094 	head = krwp->head_free;
3095 	krwp->head_free = NULL;
3096 	head_gp_snap = krwp->head_free_gp_snap;
3097 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3098 
3099 	// Handle the first two channels.
3100 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3101 		// Start from the tail page, so a GP is likely passed for it.
3102 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3103 			kvfree_rcu_bulk(krcp, bnode, i);
3104 	}
3105 
3106 	/*
3107 	 * This is used when the "bulk" path can not be used for the
3108 	 * double-argument of kvfree_rcu().  This happens when the
3109 	 * page-cache is empty, which means that objects are instead
3110 	 * queued on a linked list through their rcu_head structures.
3111 	 * This list is named "Channel 3".
3112 	 */
3113 	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3114 		kvfree_rcu_list(head);
3115 }
3116 
3117 static bool
3118 need_offload_krc(struct kfree_rcu_cpu *krcp)
3119 {
3120 	int i;
3121 
3122 	for (i = 0; i < FREE_N_CHANNELS; i++)
3123 		if (!list_empty(&krcp->bulk_head[i]))
3124 			return true;
3125 
3126 	return !!READ_ONCE(krcp->head);
3127 }
3128 
3129 static bool
3130 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3131 {
3132 	int i;
3133 
3134 	for (i = 0; i < FREE_N_CHANNELS; i++)
3135 		if (!list_empty(&krwp->bulk_head_free[i]))
3136 			return true;
3137 
3138 	return !!krwp->head_free;
3139 }
3140 
3141 static int krc_count(struct kfree_rcu_cpu *krcp)
3142 {
3143 	int sum = atomic_read(&krcp->head_count);
3144 	int i;
3145 
3146 	for (i = 0; i < FREE_N_CHANNELS; i++)
3147 		sum += atomic_read(&krcp->bulk_count[i]);
3148 
3149 	return sum;
3150 }
3151 
3152 static void
3153 __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3154 {
3155 	long delay, delay_left;
3156 
3157 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3158 	if (delayed_work_pending(&krcp->monitor_work)) {
3159 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3160 		if (delay < delay_left)
3161 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3162 		return;
3163 	}
3164 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3165 }
3166 
3167 static void
3168 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3169 {
3170 	unsigned long flags;
3171 
3172 	raw_spin_lock_irqsave(&krcp->lock, flags);
3173 	__schedule_delayed_monitor_work(krcp);
3174 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3175 }
3176 
3177 static void
3178 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3179 {
3180 	struct list_head bulk_ready[FREE_N_CHANNELS];
3181 	struct kvfree_rcu_bulk_data *bnode, *n;
3182 	struct rcu_head *head_ready = NULL;
3183 	unsigned long flags;
3184 	int i;
3185 
3186 	raw_spin_lock_irqsave(&krcp->lock, flags);
3187 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3188 		INIT_LIST_HEAD(&bulk_ready[i]);
3189 
3190 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3191 			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3192 				break;
3193 
3194 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3195 			list_move(&bnode->list, &bulk_ready[i]);
3196 		}
3197 	}
3198 
3199 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3200 		head_ready = krcp->head;
3201 		atomic_set(&krcp->head_count, 0);
3202 		WRITE_ONCE(krcp->head, NULL);
3203 	}
3204 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3205 
3206 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3207 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3208 			kvfree_rcu_bulk(krcp, bnode, i);
3209 	}
3210 
3211 	if (head_ready)
3212 		kvfree_rcu_list(head_ready);
3213 }
3214 
3215 /*
3216  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3217  */
3218 static void kfree_rcu_monitor(struct work_struct *work)
3219 {
3220 	struct kfree_rcu_cpu *krcp = container_of(work,
3221 		struct kfree_rcu_cpu, monitor_work.work);
3222 	unsigned long flags;
3223 	int i, j;
3224 
3225 	// Drain ready for reclaim.
3226 	kvfree_rcu_drain_ready(krcp);
3227 
3228 	raw_spin_lock_irqsave(&krcp->lock, flags);
3229 
3230 	// Attempt to start a new batch.
3231 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3232 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3233 
3234 		// Try to detach bulk_head or head and attach it, only when
3235 		// all channels are free.  Any channel is not free means at krwp
3236 		// there is on-going rcu work to handle krwp's free business.
3237 		if (need_wait_for_krwp_work(krwp))
3238 			continue;
3239 
3240 		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3241 		if (need_offload_krc(krcp)) {
3242 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3243 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3244 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3245 				if (list_empty(&krwp->bulk_head_free[j])) {
3246 					atomic_set(&krcp->bulk_count[j], 0);
3247 					list_replace_init(&krcp->bulk_head[j],
3248 						&krwp->bulk_head_free[j]);
3249 				}
3250 			}
3251 
3252 			// Channel 3 corresponds to both SLAB and vmalloc
3253 			// objects queued on the linked list.
3254 			if (!krwp->head_free) {
3255 				krwp->head_free = krcp->head;
3256 				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3257 				atomic_set(&krcp->head_count, 0);
3258 				WRITE_ONCE(krcp->head, NULL);
3259 			}
3260 
3261 			// One work is per one batch, so there are three
3262 			// "free channels", the batch can handle. It can
3263 			// be that the work is in the pending state when
3264 			// channels have been detached following by each
3265 			// other.
3266 			queue_rcu_work(system_wq, &krwp->rcu_work);
3267 		}
3268 	}
3269 
3270 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3271 
3272 	// If there is nothing to detach, it means that our job is
3273 	// successfully done here. In case of having at least one
3274 	// of the channels that is still busy we should rearm the
3275 	// work to repeat an attempt. Because previous batches are
3276 	// still in progress.
3277 	if (need_offload_krc(krcp))
3278 		schedule_delayed_monitor_work(krcp);
3279 }
3280 
3281 static enum hrtimer_restart
3282 schedule_page_work_fn(struct hrtimer *t)
3283 {
3284 	struct kfree_rcu_cpu *krcp =
3285 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3286 
3287 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3288 	return HRTIMER_NORESTART;
3289 }
3290 
3291 static void fill_page_cache_func(struct work_struct *work)
3292 {
3293 	struct kvfree_rcu_bulk_data *bnode;
3294 	struct kfree_rcu_cpu *krcp =
3295 		container_of(work, struct kfree_rcu_cpu,
3296 			page_cache_work.work);
3297 	unsigned long flags;
3298 	int nr_pages;
3299 	bool pushed;
3300 	int i;
3301 
3302 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3303 		1 : rcu_min_cached_objs;
3304 
3305 	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3306 		bnode = (struct kvfree_rcu_bulk_data *)
3307 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3308 
3309 		if (!bnode)
3310 			break;
3311 
3312 		raw_spin_lock_irqsave(&krcp->lock, flags);
3313 		pushed = put_cached_bnode(krcp, bnode);
3314 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3315 
3316 		if (!pushed) {
3317 			free_page((unsigned long) bnode);
3318 			break;
3319 		}
3320 	}
3321 
3322 	atomic_set(&krcp->work_in_progress, 0);
3323 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3324 }
3325 
3326 static void
3327 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3328 {
3329 	// If cache disabled, bail out.
3330 	if (!rcu_min_cached_objs)
3331 		return;
3332 
3333 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3334 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3335 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3336 			queue_delayed_work(system_wq,
3337 				&krcp->page_cache_work,
3338 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3339 		} else {
3340 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3341 			krcp->hrtimer.function = schedule_page_work_fn;
3342 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3343 		}
3344 	}
3345 }
3346 
3347 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3348 // state specified by flags.  If can_alloc is true, the caller must
3349 // be schedulable and not be holding any locks or mutexes that might be
3350 // acquired by the memory allocator or anything that it might invoke.
3351 // Returns true if ptr was successfully recorded, else the caller must
3352 // use a fallback.
3353 static inline bool
3354 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3355 	unsigned long *flags, void *ptr, bool can_alloc)
3356 {
3357 	struct kvfree_rcu_bulk_data *bnode;
3358 	int idx;
3359 
3360 	*krcp = krc_this_cpu_lock(flags);
3361 	if (unlikely(!(*krcp)->initialized))
3362 		return false;
3363 
3364 	idx = !!is_vmalloc_addr(ptr);
3365 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3366 		struct kvfree_rcu_bulk_data, list);
3367 
3368 	/* Check if a new block is required. */
3369 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3370 		bnode = get_cached_bnode(*krcp);
3371 		if (!bnode && can_alloc) {
3372 			krc_this_cpu_unlock(*krcp, *flags);
3373 
3374 			// __GFP_NORETRY - allows a light-weight direct reclaim
3375 			// what is OK from minimizing of fallback hitting point of
3376 			// view. Apart of that it forbids any OOM invoking what is
3377 			// also beneficial since we are about to release memory soon.
3378 			//
3379 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3380 			// memory reserves. Please note we have a fallback path.
3381 			//
3382 			// __GFP_NOWARN - it is supposed that an allocation can
3383 			// be failed under low memory or high memory pressure
3384 			// scenarios.
3385 			bnode = (struct kvfree_rcu_bulk_data *)
3386 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3387 			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3388 		}
3389 
3390 		if (!bnode)
3391 			return false;
3392 
3393 		// Initialize the new block and attach it.
3394 		bnode->nr_records = 0;
3395 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3396 	}
3397 
3398 	// Finally insert and update the GP for this page.
3399 	bnode->records[bnode->nr_records++] = ptr;
3400 	get_state_synchronize_rcu_full(&bnode->gp_snap);
3401 	atomic_inc(&(*krcp)->bulk_count[idx]);
3402 
3403 	return true;
3404 }
3405 
3406 /*
3407  * Queue a request for lazy invocation of the appropriate free routine
3408  * after a grace period.  Please note that three paths are maintained,
3409  * two for the common case using arrays of pointers and a third one that
3410  * is used only when the main paths cannot be used, for example, due to
3411  * memory pressure.
3412  *
3413  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3414  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3415  * be free'd in workqueue context. This allows us to: batch requests together to
3416  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3417  */
3418 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3419 {
3420 	unsigned long flags;
3421 	struct kfree_rcu_cpu *krcp;
3422 	bool success;
3423 
3424 	/*
3425 	 * Please note there is a limitation for the head-less
3426 	 * variant, that is why there is a clear rule for such
3427 	 * objects: it can be used from might_sleep() context
3428 	 * only. For other places please embed an rcu_head to
3429 	 * your data.
3430 	 */
3431 	if (!head)
3432 		might_sleep();
3433 
3434 	// Queue the object but don't yet schedule the batch.
3435 	if (debug_rcu_head_queue(ptr)) {
3436 		// Probable double kfree_rcu(), just leak.
3437 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3438 			  __func__, head);
3439 
3440 		// Mark as success and leave.
3441 		return;
3442 	}
3443 
3444 	kasan_record_aux_stack_noalloc(ptr);
3445 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3446 	if (!success) {
3447 		run_page_cache_worker(krcp);
3448 
3449 		if (head == NULL)
3450 			// Inline if kvfree_rcu(one_arg) call.
3451 			goto unlock_return;
3452 
3453 		head->func = ptr;
3454 		head->next = krcp->head;
3455 		WRITE_ONCE(krcp->head, head);
3456 		atomic_inc(&krcp->head_count);
3457 
3458 		// Take a snapshot for this krcp.
3459 		krcp->head_gp_snap = get_state_synchronize_rcu();
3460 		success = true;
3461 	}
3462 
3463 	/*
3464 	 * The kvfree_rcu() caller considers the pointer freed at this point
3465 	 * and likely removes any references to it. Since the actual slab
3466 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3467 	 * this object (no scanning or false positives reporting).
3468 	 */
3469 	kmemleak_ignore(ptr);
3470 
3471 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3472 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3473 		__schedule_delayed_monitor_work(krcp);
3474 
3475 unlock_return:
3476 	krc_this_cpu_unlock(krcp, flags);
3477 
3478 	/*
3479 	 * Inline kvfree() after synchronize_rcu(). We can do
3480 	 * it from might_sleep() context only, so the current
3481 	 * CPU can pass the QS state.
3482 	 */
3483 	if (!success) {
3484 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3485 		synchronize_rcu();
3486 		kvfree(ptr);
3487 	}
3488 }
3489 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3490 
3491 static unsigned long
3492 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3493 {
3494 	int cpu;
3495 	unsigned long count = 0;
3496 
3497 	/* Snapshot count of all CPUs */
3498 	for_each_possible_cpu(cpu) {
3499 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3500 
3501 		count += krc_count(krcp);
3502 		count += READ_ONCE(krcp->nr_bkv_objs);
3503 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3504 	}
3505 
3506 	return count == 0 ? SHRINK_EMPTY : count;
3507 }
3508 
3509 static unsigned long
3510 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3511 {
3512 	int cpu, freed = 0;
3513 
3514 	for_each_possible_cpu(cpu) {
3515 		int count;
3516 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3517 
3518 		count = krc_count(krcp);
3519 		count += drain_page_cache(krcp);
3520 		kfree_rcu_monitor(&krcp->monitor_work.work);
3521 
3522 		sc->nr_to_scan -= count;
3523 		freed += count;
3524 
3525 		if (sc->nr_to_scan <= 0)
3526 			break;
3527 	}
3528 
3529 	return freed == 0 ? SHRINK_STOP : freed;
3530 }
3531 
3532 static struct shrinker kfree_rcu_shrinker = {
3533 	.count_objects = kfree_rcu_shrink_count,
3534 	.scan_objects = kfree_rcu_shrink_scan,
3535 	.batch = 0,
3536 	.seeks = DEFAULT_SEEKS,
3537 };
3538 
3539 void __init kfree_rcu_scheduler_running(void)
3540 {
3541 	int cpu;
3542 
3543 	for_each_possible_cpu(cpu) {
3544 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3545 
3546 		if (need_offload_krc(krcp))
3547 			schedule_delayed_monitor_work(krcp);
3548 	}
3549 }
3550 
3551 /*
3552  * During early boot, any blocking grace-period wait automatically
3553  * implies a grace period.
3554  *
3555  * Later on, this could in theory be the case for kernels built with
3556  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3557  * is not a common case.  Furthermore, this optimization would cause
3558  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3559  * grace-period optimization is ignored once the scheduler is running.
3560  */
3561 static int rcu_blocking_is_gp(void)
3562 {
3563 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3564 		might_sleep();
3565 		return false;
3566 	}
3567 	return true;
3568 }
3569 
3570 /**
3571  * synchronize_rcu - wait until a grace period has elapsed.
3572  *
3573  * Control will return to the caller some time after a full grace
3574  * period has elapsed, in other words after all currently executing RCU
3575  * read-side critical sections have completed.  Note, however, that
3576  * upon return from synchronize_rcu(), the caller might well be executing
3577  * concurrently with new RCU read-side critical sections that began while
3578  * synchronize_rcu() was waiting.
3579  *
3580  * RCU read-side critical sections are delimited by rcu_read_lock()
3581  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3582  * v5.0 and later, regions of code across which interrupts, preemption,
3583  * or softirqs have been disabled also serve as RCU read-side critical
3584  * sections.  This includes hardware interrupt handlers, softirq handlers,
3585  * and NMI handlers.
3586  *
3587  * Note that this guarantee implies further memory-ordering guarantees.
3588  * On systems with more than one CPU, when synchronize_rcu() returns,
3589  * each CPU is guaranteed to have executed a full memory barrier since
3590  * the end of its last RCU read-side critical section whose beginning
3591  * preceded the call to synchronize_rcu().  In addition, each CPU having
3592  * an RCU read-side critical section that extends beyond the return from
3593  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3594  * after the beginning of synchronize_rcu() and before the beginning of
3595  * that RCU read-side critical section.  Note that these guarantees include
3596  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3597  * that are executing in the kernel.
3598  *
3599  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3600  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3601  * to have executed a full memory barrier during the execution of
3602  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3603  * again only if the system has more than one CPU).
3604  *
3605  * Implementation of these memory-ordering guarantees is described here:
3606  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3607  */
3608 void synchronize_rcu(void)
3609 {
3610 	unsigned long flags;
3611 	struct rcu_node *rnp;
3612 
3613 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3614 			 lock_is_held(&rcu_lock_map) ||
3615 			 lock_is_held(&rcu_sched_lock_map),
3616 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3617 	if (!rcu_blocking_is_gp()) {
3618 		if (rcu_gp_is_expedited())
3619 			synchronize_rcu_expedited();
3620 		else
3621 			wait_rcu_gp(call_rcu_hurry);
3622 		return;
3623 	}
3624 
3625 	// Context allows vacuous grace periods.
3626 	// Note well that this code runs with !PREEMPT && !SMP.
3627 	// In addition, all code that advances grace periods runs at
3628 	// process level.  Therefore, this normal GP overlaps with other
3629 	// normal GPs only by being fully nested within them, which allows
3630 	// reuse of ->gp_seq_polled_snap.
3631 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3632 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3633 
3634 	// Update the normal grace-period counters to record
3635 	// this grace period, but only those used by the boot CPU.
3636 	// The rcu_scheduler_starting() will take care of the rest of
3637 	// these counters.
3638 	local_irq_save(flags);
3639 	WARN_ON_ONCE(num_online_cpus() > 1);
3640 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3641 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3642 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3643 	local_irq_restore(flags);
3644 }
3645 EXPORT_SYMBOL_GPL(synchronize_rcu);
3646 
3647 /**
3648  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3649  * @rgosp: Place to put state cookie
3650  *
3651  * Stores into @rgosp a value that will always be treated by functions
3652  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3653  * has already completed.
3654  */
3655 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3656 {
3657 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3658 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3659 }
3660 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3661 
3662 /**
3663  * get_state_synchronize_rcu - Snapshot current RCU state
3664  *
3665  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3666  * or poll_state_synchronize_rcu() to determine whether or not a full
3667  * grace period has elapsed in the meantime.
3668  */
3669 unsigned long get_state_synchronize_rcu(void)
3670 {
3671 	/*
3672 	 * Any prior manipulation of RCU-protected data must happen
3673 	 * before the load from ->gp_seq.
3674 	 */
3675 	smp_mb();  /* ^^^ */
3676 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3677 }
3678 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3679 
3680 /**
3681  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3682  * @rgosp: location to place combined normal/expedited grace-period state
3683  *
3684  * Places the normal and expedited grace-period states in @rgosp.  This
3685  * state value can be passed to a later call to cond_synchronize_rcu_full()
3686  * or poll_state_synchronize_rcu_full() to determine whether or not a
3687  * grace period (whether normal or expedited) has elapsed in the meantime.
3688  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3689  * long, but is guaranteed to see all grace periods.  In contrast, the
3690  * combined state occupies less memory, but can sometimes fail to take
3691  * grace periods into account.
3692  *
3693  * This does not guarantee that the needed grace period will actually
3694  * start.
3695  */
3696 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3697 {
3698 	struct rcu_node *rnp = rcu_get_root();
3699 
3700 	/*
3701 	 * Any prior manipulation of RCU-protected data must happen
3702 	 * before the loads from ->gp_seq and ->expedited_sequence.
3703 	 */
3704 	smp_mb();  /* ^^^ */
3705 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3706 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3707 }
3708 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3709 
3710 /*
3711  * Helper function for start_poll_synchronize_rcu() and
3712  * start_poll_synchronize_rcu_full().
3713  */
3714 static void start_poll_synchronize_rcu_common(void)
3715 {
3716 	unsigned long flags;
3717 	bool needwake;
3718 	struct rcu_data *rdp;
3719 	struct rcu_node *rnp;
3720 
3721 	lockdep_assert_irqs_enabled();
3722 	local_irq_save(flags);
3723 	rdp = this_cpu_ptr(&rcu_data);
3724 	rnp = rdp->mynode;
3725 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3726 	// Note it is possible for a grace period to have elapsed between
3727 	// the above call to get_state_synchronize_rcu() and the below call
3728 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3729 	// get a grace period that no one needed.  These accesses are ordered
3730 	// by smp_mb(), and we are accessing them in the opposite order
3731 	// from which they are updated at grace-period start, as required.
3732 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3733 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3734 	if (needwake)
3735 		rcu_gp_kthread_wake();
3736 }
3737 
3738 /**
3739  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3740  *
3741  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3742  * or poll_state_synchronize_rcu() to determine whether or not a full
3743  * grace period has elapsed in the meantime.  If the needed grace period
3744  * is not already slated to start, notifies RCU core of the need for that
3745  * grace period.
3746  *
3747  * Interrupts must be enabled for the case where it is necessary to awaken
3748  * the grace-period kthread.
3749  */
3750 unsigned long start_poll_synchronize_rcu(void)
3751 {
3752 	unsigned long gp_seq = get_state_synchronize_rcu();
3753 
3754 	start_poll_synchronize_rcu_common();
3755 	return gp_seq;
3756 }
3757 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3758 
3759 /**
3760  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3761  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3762  *
3763  * Places the normal and expedited grace-period states in *@rgos.  This
3764  * state value can be passed to a later call to cond_synchronize_rcu_full()
3765  * or poll_state_synchronize_rcu_full() to determine whether or not a
3766  * grace period (whether normal or expedited) has elapsed in the meantime.
3767  * If the needed grace period is not already slated to start, notifies
3768  * RCU core of the need for that grace period.
3769  *
3770  * Interrupts must be enabled for the case where it is necessary to awaken
3771  * the grace-period kthread.
3772  */
3773 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3774 {
3775 	get_state_synchronize_rcu_full(rgosp);
3776 
3777 	start_poll_synchronize_rcu_common();
3778 }
3779 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3780 
3781 /**
3782  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3783  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3784  *
3785  * If a full RCU grace period has elapsed since the earlier call from
3786  * which @oldstate was obtained, return @true, otherwise return @false.
3787  * If @false is returned, it is the caller's responsibility to invoke this
3788  * function later on until it does return @true.  Alternatively, the caller
3789  * can explicitly wait for a grace period, for example, by passing @oldstate
3790  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3791  * on the one hand or by directly invoking either synchronize_rcu() or
3792  * synchronize_rcu_expedited() on the other.
3793  *
3794  * Yes, this function does not take counter wrap into account.
3795  * But counter wrap is harmless.  If the counter wraps, we have waited for
3796  * more than a billion grace periods (and way more on a 64-bit system!).
3797  * Those needing to keep old state values for very long time periods
3798  * (many hours even on 32-bit systems) should check them occasionally and
3799  * either refresh them or set a flag indicating that the grace period has
3800  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3801  * to get a guaranteed-completed grace-period state.
3802  *
3803  * In addition, because oldstate compresses the grace-period state for
3804  * both normal and expedited grace periods into a single unsigned long,
3805  * it can miss a grace period when synchronize_rcu() runs concurrently
3806  * with synchronize_rcu_expedited().  If this is unacceptable, please
3807  * instead use the _full() variant of these polling APIs.
3808  *
3809  * This function provides the same memory-ordering guarantees that
3810  * would be provided by a synchronize_rcu() that was invoked at the call
3811  * to the function that provided @oldstate, and that returned at the end
3812  * of this function.
3813  */
3814 bool poll_state_synchronize_rcu(unsigned long oldstate)
3815 {
3816 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3817 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3818 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3819 		return true;
3820 	}
3821 	return false;
3822 }
3823 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3824 
3825 /**
3826  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3827  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3828  *
3829  * If a full RCU grace period has elapsed since the earlier call from
3830  * which *rgosp was obtained, return @true, otherwise return @false.
3831  * If @false is returned, it is the caller's responsibility to invoke this
3832  * function later on until it does return @true.  Alternatively, the caller
3833  * can explicitly wait for a grace period, for example, by passing @rgosp
3834  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3835  *
3836  * Yes, this function does not take counter wrap into account.
3837  * But counter wrap is harmless.  If the counter wraps, we have waited
3838  * for more than a billion grace periods (and way more on a 64-bit
3839  * system!).  Those needing to keep rcu_gp_oldstate values for very
3840  * long time periods (many hours even on 32-bit systems) should check
3841  * them occasionally and either refresh them or set a flag indicating
3842  * that the grace period has completed.  Alternatively, they can use
3843  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3844  * grace-period state.
3845  *
3846  * This function provides the same memory-ordering guarantees that would
3847  * be provided by a synchronize_rcu() that was invoked at the call to
3848  * the function that provided @rgosp, and that returned at the end of this
3849  * function.  And this guarantee requires that the root rcu_node structure's
3850  * ->gp_seq field be checked instead of that of the rcu_state structure.
3851  * The problem is that the just-ending grace-period's callbacks can be
3852  * invoked between the time that the root rcu_node structure's ->gp_seq
3853  * field is updated and the time that the rcu_state structure's ->gp_seq
3854  * field is updated.  Therefore, if a single synchronize_rcu() is to
3855  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3856  * then the root rcu_node structure is the one that needs to be polled.
3857  */
3858 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3859 {
3860 	struct rcu_node *rnp = rcu_get_root();
3861 
3862 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3863 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3864 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3865 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3866 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3867 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3868 		return true;
3869 	}
3870 	return false;
3871 }
3872 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3873 
3874 /**
3875  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3876  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3877  *
3878  * If a full RCU grace period has elapsed since the earlier call to
3879  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3880  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3881  *
3882  * Yes, this function does not take counter wrap into account.
3883  * But counter wrap is harmless.  If the counter wraps, we have waited for
3884  * more than 2 billion grace periods (and way more on a 64-bit system!),
3885  * so waiting for a couple of additional grace periods should be just fine.
3886  *
3887  * This function provides the same memory-ordering guarantees that
3888  * would be provided by a synchronize_rcu() that was invoked at the call
3889  * to the function that provided @oldstate and that returned at the end
3890  * of this function.
3891  */
3892 void cond_synchronize_rcu(unsigned long oldstate)
3893 {
3894 	if (!poll_state_synchronize_rcu(oldstate))
3895 		synchronize_rcu();
3896 }
3897 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3898 
3899 /**
3900  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3901  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3902  *
3903  * If a full RCU grace period has elapsed since the call to
3904  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3905  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3906  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3907  * for a full grace period.
3908  *
3909  * Yes, this function does not take counter wrap into account.
3910  * But counter wrap is harmless.  If the counter wraps, we have waited for
3911  * more than 2 billion grace periods (and way more on a 64-bit system!),
3912  * so waiting for a couple of additional grace periods should be just fine.
3913  *
3914  * This function provides the same memory-ordering guarantees that
3915  * would be provided by a synchronize_rcu() that was invoked at the call
3916  * to the function that provided @rgosp and that returned at the end of
3917  * this function.
3918  */
3919 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3920 {
3921 	if (!poll_state_synchronize_rcu_full(rgosp))
3922 		synchronize_rcu();
3923 }
3924 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3925 
3926 /*
3927  * Check to see if there is any immediate RCU-related work to be done by
3928  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3929  * in order of increasing expense: checks that can be carried out against
3930  * CPU-local state are performed first.  However, we must check for CPU
3931  * stalls first, else we might not get a chance.
3932  */
3933 static int rcu_pending(int user)
3934 {
3935 	bool gp_in_progress;
3936 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3937 	struct rcu_node *rnp = rdp->mynode;
3938 
3939 	lockdep_assert_irqs_disabled();
3940 
3941 	/* Check for CPU stalls, if enabled. */
3942 	check_cpu_stall(rdp);
3943 
3944 	/* Does this CPU need a deferred NOCB wakeup? */
3945 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3946 		return 1;
3947 
3948 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3949 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3950 		return 0;
3951 
3952 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3953 	gp_in_progress = rcu_gp_in_progress();
3954 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3955 		return 1;
3956 
3957 	/* Does this CPU have callbacks ready to invoke? */
3958 	if (!rcu_rdp_is_offloaded(rdp) &&
3959 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3960 		return 1;
3961 
3962 	/* Has RCU gone idle with this CPU needing another grace period? */
3963 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3964 	    !rcu_rdp_is_offloaded(rdp) &&
3965 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3966 		return 1;
3967 
3968 	/* Have RCU grace period completed or started?  */
3969 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3970 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3971 		return 1;
3972 
3973 	/* nothing to do */
3974 	return 0;
3975 }
3976 
3977 /*
3978  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3979  * the compiler is expected to optimize this away.
3980  */
3981 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3982 {
3983 	trace_rcu_barrier(rcu_state.name, s, cpu,
3984 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3985 }
3986 
3987 /*
3988  * RCU callback function for rcu_barrier().  If we are last, wake
3989  * up the task executing rcu_barrier().
3990  *
3991  * Note that the value of rcu_state.barrier_sequence must be captured
3992  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3993  * other CPUs might count the value down to zero before this CPU gets
3994  * around to invoking rcu_barrier_trace(), which might result in bogus
3995  * data from the next instance of rcu_barrier().
3996  */
3997 static void rcu_barrier_callback(struct rcu_head *rhp)
3998 {
3999 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4000 
4001 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4002 		rcu_barrier_trace(TPS("LastCB"), -1, s);
4003 		complete(&rcu_state.barrier_completion);
4004 	} else {
4005 		rcu_barrier_trace(TPS("CB"), -1, s);
4006 	}
4007 }
4008 
4009 /*
4010  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4011  */
4012 static void rcu_barrier_entrain(struct rcu_data *rdp)
4013 {
4014 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4015 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4016 	bool wake_nocb = false;
4017 	bool was_alldone = false;
4018 
4019 	lockdep_assert_held(&rcu_state.barrier_lock);
4020 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4021 		return;
4022 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4023 	rdp->barrier_head.func = rcu_barrier_callback;
4024 	debug_rcu_head_queue(&rdp->barrier_head);
4025 	rcu_nocb_lock(rdp);
4026 	/*
4027 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4028 	 * queue. This way we don't wait for bypass timer that can reach seconds
4029 	 * if it's fully lazy.
4030 	 */
4031 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4032 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4033 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4034 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4035 		atomic_inc(&rcu_state.barrier_cpu_count);
4036 	} else {
4037 		debug_rcu_head_unqueue(&rdp->barrier_head);
4038 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4039 	}
4040 	rcu_nocb_unlock(rdp);
4041 	if (wake_nocb)
4042 		wake_nocb_gp(rdp, false);
4043 	smp_store_release(&rdp->barrier_seq_snap, gseq);
4044 }
4045 
4046 /*
4047  * Called with preemption disabled, and from cross-cpu IRQ context.
4048  */
4049 static void rcu_barrier_handler(void *cpu_in)
4050 {
4051 	uintptr_t cpu = (uintptr_t)cpu_in;
4052 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4053 
4054 	lockdep_assert_irqs_disabled();
4055 	WARN_ON_ONCE(cpu != rdp->cpu);
4056 	WARN_ON_ONCE(cpu != smp_processor_id());
4057 	raw_spin_lock(&rcu_state.barrier_lock);
4058 	rcu_barrier_entrain(rdp);
4059 	raw_spin_unlock(&rcu_state.barrier_lock);
4060 }
4061 
4062 /**
4063  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4064  *
4065  * Note that this primitive does not necessarily wait for an RCU grace period
4066  * to complete.  For example, if there are no RCU callbacks queued anywhere
4067  * in the system, then rcu_barrier() is within its rights to return
4068  * immediately, without waiting for anything, much less an RCU grace period.
4069  */
4070 void rcu_barrier(void)
4071 {
4072 	uintptr_t cpu;
4073 	unsigned long flags;
4074 	unsigned long gseq;
4075 	struct rcu_data *rdp;
4076 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4077 
4078 	rcu_barrier_trace(TPS("Begin"), -1, s);
4079 
4080 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4081 	mutex_lock(&rcu_state.barrier_mutex);
4082 
4083 	/* Did someone else do our work for us? */
4084 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4085 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4086 		smp_mb(); /* caller's subsequent code after above check. */
4087 		mutex_unlock(&rcu_state.barrier_mutex);
4088 		return;
4089 	}
4090 
4091 	/* Mark the start of the barrier operation. */
4092 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4093 	rcu_seq_start(&rcu_state.barrier_sequence);
4094 	gseq = rcu_state.barrier_sequence;
4095 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4096 
4097 	/*
4098 	 * Initialize the count to two rather than to zero in order
4099 	 * to avoid a too-soon return to zero in case of an immediate
4100 	 * invocation of the just-enqueued callback (or preemption of
4101 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4102 	 * offline non-offloaded CPU has callbacks queued.
4103 	 */
4104 	init_completion(&rcu_state.barrier_completion);
4105 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4106 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4107 
4108 	/*
4109 	 * Force each CPU with callbacks to register a new callback.
4110 	 * When that callback is invoked, we will know that all of the
4111 	 * corresponding CPU's preceding callbacks have been invoked.
4112 	 */
4113 	for_each_possible_cpu(cpu) {
4114 		rdp = per_cpu_ptr(&rcu_data, cpu);
4115 retry:
4116 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4117 			continue;
4118 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4119 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4120 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4121 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4122 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4123 			continue;
4124 		}
4125 		if (!rcu_rdp_cpu_online(rdp)) {
4126 			rcu_barrier_entrain(rdp);
4127 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4128 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4129 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4130 			continue;
4131 		}
4132 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4133 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4134 			schedule_timeout_uninterruptible(1);
4135 			goto retry;
4136 		}
4137 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4138 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4139 	}
4140 
4141 	/*
4142 	 * Now that we have an rcu_barrier_callback() callback on each
4143 	 * CPU, and thus each counted, remove the initial count.
4144 	 */
4145 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4146 		complete(&rcu_state.barrier_completion);
4147 
4148 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4149 	wait_for_completion(&rcu_state.barrier_completion);
4150 
4151 	/* Mark the end of the barrier operation. */
4152 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4153 	rcu_seq_end(&rcu_state.barrier_sequence);
4154 	gseq = rcu_state.barrier_sequence;
4155 	for_each_possible_cpu(cpu) {
4156 		rdp = per_cpu_ptr(&rcu_data, cpu);
4157 
4158 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4159 	}
4160 
4161 	/* Other rcu_barrier() invocations can now safely proceed. */
4162 	mutex_unlock(&rcu_state.barrier_mutex);
4163 }
4164 EXPORT_SYMBOL_GPL(rcu_barrier);
4165 
4166 /*
4167  * Compute the mask of online CPUs for the specified rcu_node structure.
4168  * This will not be stable unless the rcu_node structure's ->lock is
4169  * held, but the bit corresponding to the current CPU will be stable
4170  * in most contexts.
4171  */
4172 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4173 {
4174 	return READ_ONCE(rnp->qsmaskinitnext);
4175 }
4176 
4177 /*
4178  * Is the CPU corresponding to the specified rcu_data structure online
4179  * from RCU's perspective?  This perspective is given by that structure's
4180  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4181  */
4182 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4183 {
4184 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4185 }
4186 
4187 bool rcu_cpu_online(int cpu)
4188 {
4189 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4190 
4191 	return rcu_rdp_cpu_online(rdp);
4192 }
4193 
4194 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4195 
4196 /*
4197  * Is the current CPU online as far as RCU is concerned?
4198  *
4199  * Disable preemption to avoid false positives that could otherwise
4200  * happen due to the current CPU number being sampled, this task being
4201  * preempted, its old CPU being taken offline, resuming on some other CPU,
4202  * then determining that its old CPU is now offline.
4203  *
4204  * Disable checking if in an NMI handler because we cannot safely
4205  * report errors from NMI handlers anyway.  In addition, it is OK to use
4206  * RCU on an offline processor during initial boot, hence the check for
4207  * rcu_scheduler_fully_active.
4208  */
4209 bool rcu_lockdep_current_cpu_online(void)
4210 {
4211 	struct rcu_data *rdp;
4212 	bool ret = false;
4213 
4214 	if (in_nmi() || !rcu_scheduler_fully_active)
4215 		return true;
4216 	preempt_disable_notrace();
4217 	rdp = this_cpu_ptr(&rcu_data);
4218 	/*
4219 	 * Strictly, we care here about the case where the current CPU is
4220 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4221 	 * not being up to date. So arch_spin_is_locked() might have a
4222 	 * false positive if it's held by some *other* CPU, but that's
4223 	 * OK because that just means a false *negative* on the warning.
4224 	 */
4225 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4226 		ret = true;
4227 	preempt_enable_notrace();
4228 	return ret;
4229 }
4230 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4231 
4232 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4233 
4234 // Has rcu_init() been invoked?  This is used (for example) to determine
4235 // whether spinlocks may be acquired safely.
4236 static bool rcu_init_invoked(void)
4237 {
4238 	return !!rcu_state.n_online_cpus;
4239 }
4240 
4241 /*
4242  * Near the end of the offline process.  Trace the fact that this CPU
4243  * is going offline.
4244  */
4245 int rcutree_dying_cpu(unsigned int cpu)
4246 {
4247 	bool blkd;
4248 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4249 	struct rcu_node *rnp = rdp->mynode;
4250 
4251 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4252 		return 0;
4253 
4254 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4255 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4256 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4257 	return 0;
4258 }
4259 
4260 /*
4261  * All CPUs for the specified rcu_node structure have gone offline,
4262  * and all tasks that were preempted within an RCU read-side critical
4263  * section while running on one of those CPUs have since exited their RCU
4264  * read-side critical section.  Some other CPU is reporting this fact with
4265  * the specified rcu_node structure's ->lock held and interrupts disabled.
4266  * This function therefore goes up the tree of rcu_node structures,
4267  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4268  * the leaf rcu_node structure's ->qsmaskinit field has already been
4269  * updated.
4270  *
4271  * This function does check that the specified rcu_node structure has
4272  * all CPUs offline and no blocked tasks, so it is OK to invoke it
4273  * prematurely.  That said, invoking it after the fact will cost you
4274  * a needless lock acquisition.  So once it has done its work, don't
4275  * invoke it again.
4276  */
4277 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4278 {
4279 	long mask;
4280 	struct rcu_node *rnp = rnp_leaf;
4281 
4282 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4283 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4284 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4285 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4286 		return;
4287 	for (;;) {
4288 		mask = rnp->grpmask;
4289 		rnp = rnp->parent;
4290 		if (!rnp)
4291 			break;
4292 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4293 		rnp->qsmaskinit &= ~mask;
4294 		/* Between grace periods, so better already be zero! */
4295 		WARN_ON_ONCE(rnp->qsmask);
4296 		if (rnp->qsmaskinit) {
4297 			raw_spin_unlock_rcu_node(rnp);
4298 			/* irqs remain disabled. */
4299 			return;
4300 		}
4301 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4302 	}
4303 }
4304 
4305 /*
4306  * The CPU has been completely removed, and some other CPU is reporting
4307  * this fact from process context.  Do the remainder of the cleanup.
4308  * There can only be one CPU hotplug operation at a time, so no need for
4309  * explicit locking.
4310  */
4311 int rcutree_dead_cpu(unsigned int cpu)
4312 {
4313 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4314 		return 0;
4315 
4316 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4317 	// Stop-machine done, so allow nohz_full to disable tick.
4318 	tick_dep_clear(TICK_DEP_BIT_RCU);
4319 	return 0;
4320 }
4321 
4322 /*
4323  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4324  * first CPU in a given leaf rcu_node structure coming online.  The caller
4325  * must hold the corresponding leaf rcu_node ->lock with interrupts
4326  * disabled.
4327  */
4328 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4329 {
4330 	long mask;
4331 	long oldmask;
4332 	struct rcu_node *rnp = rnp_leaf;
4333 
4334 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4335 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4336 	for (;;) {
4337 		mask = rnp->grpmask;
4338 		rnp = rnp->parent;
4339 		if (rnp == NULL)
4340 			return;
4341 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4342 		oldmask = rnp->qsmaskinit;
4343 		rnp->qsmaskinit |= mask;
4344 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4345 		if (oldmask)
4346 			return;
4347 	}
4348 }
4349 
4350 /*
4351  * Do boot-time initialization of a CPU's per-CPU RCU data.
4352  */
4353 static void __init
4354 rcu_boot_init_percpu_data(int cpu)
4355 {
4356 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4357 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4358 
4359 	/* Set up local state, ensuring consistent view of global state. */
4360 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4361 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4362 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4363 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4364 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4365 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4366 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4367 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4368 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4369 	rdp->last_sched_clock = jiffies;
4370 	rdp->cpu = cpu;
4371 	rcu_boot_init_nocb_percpu_data(rdp);
4372 }
4373 
4374 /*
4375  * Invoked early in the CPU-online process, when pretty much all services
4376  * are available.  The incoming CPU is not present.
4377  *
4378  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4379  * offline event can be happening at a given time.  Note also that we can
4380  * accept some slop in the rsp->gp_seq access due to the fact that this
4381  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4382  * And any offloaded callbacks are being numbered elsewhere.
4383  */
4384 int rcutree_prepare_cpu(unsigned int cpu)
4385 {
4386 	unsigned long flags;
4387 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4388 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4389 	struct rcu_node *rnp = rcu_get_root();
4390 
4391 	/* Set up local state, ensuring consistent view of global state. */
4392 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4393 	rdp->qlen_last_fqs_check = 0;
4394 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4395 	rdp->blimit = blimit;
4396 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4397 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4398 
4399 	/*
4400 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4401 	 * (re-)initialized.
4402 	 */
4403 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4404 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4405 
4406 	/*
4407 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4408 	 * propagation up the rcu_node tree will happen at the beginning
4409 	 * of the next grace period.
4410 	 */
4411 	rnp = rdp->mynode;
4412 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4413 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4414 	rdp->gp_seq_needed = rdp->gp_seq;
4415 	rdp->cpu_no_qs.b.norm = true;
4416 	rdp->core_needs_qs = false;
4417 	rdp->rcu_iw_pending = false;
4418 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4419 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4420 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4421 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4422 	rcu_spawn_one_boost_kthread(rnp);
4423 	rcu_spawn_cpu_nocb_kthread(cpu);
4424 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4425 
4426 	return 0;
4427 }
4428 
4429 /*
4430  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4431  */
4432 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4433 {
4434 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4435 
4436 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4437 }
4438 
4439 /*
4440  * Has the specified (known valid) CPU ever been fully online?
4441  */
4442 bool rcu_cpu_beenfullyonline(int cpu)
4443 {
4444 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4445 
4446 	return smp_load_acquire(&rdp->beenonline);
4447 }
4448 
4449 /*
4450  * Near the end of the CPU-online process.  Pretty much all services
4451  * enabled, and the CPU is now very much alive.
4452  */
4453 int rcutree_online_cpu(unsigned int cpu)
4454 {
4455 	unsigned long flags;
4456 	struct rcu_data *rdp;
4457 	struct rcu_node *rnp;
4458 
4459 	rdp = per_cpu_ptr(&rcu_data, cpu);
4460 	rnp = rdp->mynode;
4461 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4462 	rnp->ffmask |= rdp->grpmask;
4463 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4464 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4465 		return 0; /* Too early in boot for scheduler work. */
4466 	sync_sched_exp_online_cleanup(cpu);
4467 	rcutree_affinity_setting(cpu, -1);
4468 
4469 	// Stop-machine done, so allow nohz_full to disable tick.
4470 	tick_dep_clear(TICK_DEP_BIT_RCU);
4471 	return 0;
4472 }
4473 
4474 /*
4475  * Near the beginning of the process.  The CPU is still very much alive
4476  * with pretty much all services enabled.
4477  */
4478 int rcutree_offline_cpu(unsigned int cpu)
4479 {
4480 	unsigned long flags;
4481 	struct rcu_data *rdp;
4482 	struct rcu_node *rnp;
4483 
4484 	rdp = per_cpu_ptr(&rcu_data, cpu);
4485 	rnp = rdp->mynode;
4486 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4487 	rnp->ffmask &= ~rdp->grpmask;
4488 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4489 
4490 	rcutree_affinity_setting(cpu, cpu);
4491 
4492 	// nohz_full CPUs need the tick for stop-machine to work quickly
4493 	tick_dep_set(TICK_DEP_BIT_RCU);
4494 	return 0;
4495 }
4496 
4497 /*
4498  * Mark the specified CPU as being online so that subsequent grace periods
4499  * (both expedited and normal) will wait on it.  Note that this means that
4500  * incoming CPUs are not allowed to use RCU read-side critical sections
4501  * until this function is called.  Failing to observe this restriction
4502  * will result in lockdep splats.
4503  *
4504  * Note that this function is special in that it is invoked directly
4505  * from the incoming CPU rather than from the cpuhp_step mechanism.
4506  * This is because this function must be invoked at a precise location.
4507  * This incoming CPU must not have enabled interrupts yet.
4508  */
4509 void rcu_cpu_starting(unsigned int cpu)
4510 {
4511 	unsigned long mask;
4512 	struct rcu_data *rdp;
4513 	struct rcu_node *rnp;
4514 	bool newcpu;
4515 
4516 	lockdep_assert_irqs_disabled();
4517 	rdp = per_cpu_ptr(&rcu_data, cpu);
4518 	if (rdp->cpu_started)
4519 		return;
4520 	rdp->cpu_started = true;
4521 
4522 	rnp = rdp->mynode;
4523 	mask = rdp->grpmask;
4524 	arch_spin_lock(&rcu_state.ofl_lock);
4525 	rcu_dynticks_eqs_online();
4526 	raw_spin_lock(&rcu_state.barrier_lock);
4527 	raw_spin_lock_rcu_node(rnp);
4528 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4529 	raw_spin_unlock(&rcu_state.barrier_lock);
4530 	newcpu = !(rnp->expmaskinitnext & mask);
4531 	rnp->expmaskinitnext |= mask;
4532 	/* Allow lockless access for expedited grace periods. */
4533 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4534 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4535 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4536 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4537 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4538 
4539 	/* An incoming CPU should never be blocking a grace period. */
4540 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4541 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4542 		unsigned long flags;
4543 
4544 		local_irq_save(flags);
4545 		rcu_disable_urgency_upon_qs(rdp);
4546 		/* Report QS -after- changing ->qsmaskinitnext! */
4547 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4548 	} else {
4549 		raw_spin_unlock_rcu_node(rnp);
4550 	}
4551 	arch_spin_unlock(&rcu_state.ofl_lock);
4552 	smp_store_release(&rdp->beenonline, true);
4553 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4554 }
4555 
4556 /*
4557  * The outgoing function has no further need of RCU, so remove it from
4558  * the rcu_node tree's ->qsmaskinitnext bit masks.
4559  *
4560  * Note that this function is special in that it is invoked directly
4561  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4562  * This is because this function must be invoked at a precise location.
4563  */
4564 void rcu_report_dead(unsigned int cpu)
4565 {
4566 	unsigned long flags, seq_flags;
4567 	unsigned long mask;
4568 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4569 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4570 
4571 	// Do any dangling deferred wakeups.
4572 	do_nocb_deferred_wakeup(rdp);
4573 
4574 	rcu_preempt_deferred_qs(current);
4575 
4576 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4577 	mask = rdp->grpmask;
4578 	local_irq_save(seq_flags);
4579 	arch_spin_lock(&rcu_state.ofl_lock);
4580 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4581 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4582 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4583 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4584 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4585 		rcu_disable_urgency_upon_qs(rdp);
4586 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4587 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4588 	}
4589 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4590 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4591 	arch_spin_unlock(&rcu_state.ofl_lock);
4592 	local_irq_restore(seq_flags);
4593 
4594 	rdp->cpu_started = false;
4595 }
4596 
4597 #ifdef CONFIG_HOTPLUG_CPU
4598 /*
4599  * The outgoing CPU has just passed through the dying-idle state, and we
4600  * are being invoked from the CPU that was IPIed to continue the offline
4601  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4602  */
4603 void rcutree_migrate_callbacks(int cpu)
4604 {
4605 	unsigned long flags;
4606 	struct rcu_data *my_rdp;
4607 	struct rcu_node *my_rnp;
4608 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4609 	bool needwake;
4610 
4611 	if (rcu_rdp_is_offloaded(rdp))
4612 		return;
4613 
4614 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4615 	if (rcu_segcblist_empty(&rdp->cblist)) {
4616 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4617 		return;  /* No callbacks to migrate. */
4618 	}
4619 
4620 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4621 	rcu_barrier_entrain(rdp);
4622 	my_rdp = this_cpu_ptr(&rcu_data);
4623 	my_rnp = my_rdp->mynode;
4624 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4625 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4626 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4627 	/* Leverage recent GPs and set GP for new callbacks. */
4628 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4629 		   rcu_advance_cbs(my_rnp, my_rdp);
4630 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4631 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4632 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4633 	rcu_segcblist_disable(&rdp->cblist);
4634 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4635 	check_cb_ovld_locked(my_rdp, my_rnp);
4636 	if (rcu_rdp_is_offloaded(my_rdp)) {
4637 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4638 		__call_rcu_nocb_wake(my_rdp, true, flags);
4639 	} else {
4640 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4641 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4642 	}
4643 	local_irq_restore(flags);
4644 	if (needwake)
4645 		rcu_gp_kthread_wake();
4646 	lockdep_assert_irqs_enabled();
4647 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4648 		  !rcu_segcblist_empty(&rdp->cblist),
4649 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4650 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4651 		  rcu_segcblist_first_cb(&rdp->cblist));
4652 }
4653 #endif
4654 
4655 /*
4656  * On non-huge systems, use expedited RCU grace periods to make suspend
4657  * and hibernation run faster.
4658  */
4659 static int rcu_pm_notify(struct notifier_block *self,
4660 			 unsigned long action, void *hcpu)
4661 {
4662 	switch (action) {
4663 	case PM_HIBERNATION_PREPARE:
4664 	case PM_SUSPEND_PREPARE:
4665 		rcu_async_hurry();
4666 		rcu_expedite_gp();
4667 		break;
4668 	case PM_POST_HIBERNATION:
4669 	case PM_POST_SUSPEND:
4670 		rcu_unexpedite_gp();
4671 		rcu_async_relax();
4672 		break;
4673 	default:
4674 		break;
4675 	}
4676 	return NOTIFY_OK;
4677 }
4678 
4679 #ifdef CONFIG_RCU_EXP_KTHREAD
4680 struct kthread_worker *rcu_exp_gp_kworker;
4681 struct kthread_worker *rcu_exp_par_gp_kworker;
4682 
4683 static void __init rcu_start_exp_gp_kworkers(void)
4684 {
4685 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4686 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4687 	struct sched_param param = { .sched_priority = kthread_prio };
4688 
4689 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4690 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4691 		pr_err("Failed to create %s!\n", gp_kworker_name);
4692 		rcu_exp_gp_kworker = NULL;
4693 		return;
4694 	}
4695 
4696 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4697 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4698 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4699 		rcu_exp_par_gp_kworker = NULL;
4700 		kthread_destroy_worker(rcu_exp_gp_kworker);
4701 		rcu_exp_gp_kworker = NULL;
4702 		return;
4703 	}
4704 
4705 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4706 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4707 				   &param);
4708 }
4709 
4710 static inline void rcu_alloc_par_gp_wq(void)
4711 {
4712 }
4713 #else /* !CONFIG_RCU_EXP_KTHREAD */
4714 struct workqueue_struct *rcu_par_gp_wq;
4715 
4716 static void __init rcu_start_exp_gp_kworkers(void)
4717 {
4718 }
4719 
4720 static inline void rcu_alloc_par_gp_wq(void)
4721 {
4722 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4723 	WARN_ON(!rcu_par_gp_wq);
4724 }
4725 #endif /* CONFIG_RCU_EXP_KTHREAD */
4726 
4727 /*
4728  * Spawn the kthreads that handle RCU's grace periods.
4729  */
4730 static int __init rcu_spawn_gp_kthread(void)
4731 {
4732 	unsigned long flags;
4733 	struct rcu_node *rnp;
4734 	struct sched_param sp;
4735 	struct task_struct *t;
4736 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4737 
4738 	rcu_scheduler_fully_active = 1;
4739 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4740 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4741 		return 0;
4742 	if (kthread_prio) {
4743 		sp.sched_priority = kthread_prio;
4744 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4745 	}
4746 	rnp = rcu_get_root();
4747 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4748 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4749 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4750 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4751 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4752 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4753 	wake_up_process(t);
4754 	/* This is a pre-SMP initcall, we expect a single CPU */
4755 	WARN_ON(num_online_cpus() > 1);
4756 	/*
4757 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4758 	 * due to rcu_scheduler_fully_active.
4759 	 */
4760 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4761 	rcu_spawn_one_boost_kthread(rdp->mynode);
4762 	rcu_spawn_core_kthreads();
4763 	/* Create kthread worker for expedited GPs */
4764 	rcu_start_exp_gp_kworkers();
4765 	return 0;
4766 }
4767 early_initcall(rcu_spawn_gp_kthread);
4768 
4769 /*
4770  * This function is invoked towards the end of the scheduler's
4771  * initialization process.  Before this is called, the idle task might
4772  * contain synchronous grace-period primitives (during which time, this idle
4773  * task is booting the system, and such primitives are no-ops).  After this
4774  * function is called, any synchronous grace-period primitives are run as
4775  * expedited, with the requesting task driving the grace period forward.
4776  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4777  * runtime RCU functionality.
4778  */
4779 void rcu_scheduler_starting(void)
4780 {
4781 	unsigned long flags;
4782 	struct rcu_node *rnp;
4783 
4784 	WARN_ON(num_online_cpus() != 1);
4785 	WARN_ON(nr_context_switches() > 0);
4786 	rcu_test_sync_prims();
4787 
4788 	// Fix up the ->gp_seq counters.
4789 	local_irq_save(flags);
4790 	rcu_for_each_node_breadth_first(rnp)
4791 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4792 	local_irq_restore(flags);
4793 
4794 	// Switch out of early boot mode.
4795 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4796 	rcu_test_sync_prims();
4797 }
4798 
4799 /*
4800  * Helper function for rcu_init() that initializes the rcu_state structure.
4801  */
4802 static void __init rcu_init_one(void)
4803 {
4804 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4805 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4806 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4807 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4808 
4809 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4810 	int cpustride = 1;
4811 	int i;
4812 	int j;
4813 	struct rcu_node *rnp;
4814 
4815 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4816 
4817 	/* Silence gcc 4.8 false positive about array index out of range. */
4818 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4819 		panic("rcu_init_one: rcu_num_lvls out of range");
4820 
4821 	/* Initialize the level-tracking arrays. */
4822 
4823 	for (i = 1; i < rcu_num_lvls; i++)
4824 		rcu_state.level[i] =
4825 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4826 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4827 
4828 	/* Initialize the elements themselves, starting from the leaves. */
4829 
4830 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4831 		cpustride *= levelspread[i];
4832 		rnp = rcu_state.level[i];
4833 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4834 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4835 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4836 						   &rcu_node_class[i], buf[i]);
4837 			raw_spin_lock_init(&rnp->fqslock);
4838 			lockdep_set_class_and_name(&rnp->fqslock,
4839 						   &rcu_fqs_class[i], fqs[i]);
4840 			rnp->gp_seq = rcu_state.gp_seq;
4841 			rnp->gp_seq_needed = rcu_state.gp_seq;
4842 			rnp->completedqs = rcu_state.gp_seq;
4843 			rnp->qsmask = 0;
4844 			rnp->qsmaskinit = 0;
4845 			rnp->grplo = j * cpustride;
4846 			rnp->grphi = (j + 1) * cpustride - 1;
4847 			if (rnp->grphi >= nr_cpu_ids)
4848 				rnp->grphi = nr_cpu_ids - 1;
4849 			if (i == 0) {
4850 				rnp->grpnum = 0;
4851 				rnp->grpmask = 0;
4852 				rnp->parent = NULL;
4853 			} else {
4854 				rnp->grpnum = j % levelspread[i - 1];
4855 				rnp->grpmask = BIT(rnp->grpnum);
4856 				rnp->parent = rcu_state.level[i - 1] +
4857 					      j / levelspread[i - 1];
4858 			}
4859 			rnp->level = i;
4860 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4861 			rcu_init_one_nocb(rnp);
4862 			init_waitqueue_head(&rnp->exp_wq[0]);
4863 			init_waitqueue_head(&rnp->exp_wq[1]);
4864 			init_waitqueue_head(&rnp->exp_wq[2]);
4865 			init_waitqueue_head(&rnp->exp_wq[3]);
4866 			spin_lock_init(&rnp->exp_lock);
4867 			mutex_init(&rnp->boost_kthread_mutex);
4868 			raw_spin_lock_init(&rnp->exp_poll_lock);
4869 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4870 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4871 		}
4872 	}
4873 
4874 	init_swait_queue_head(&rcu_state.gp_wq);
4875 	init_swait_queue_head(&rcu_state.expedited_wq);
4876 	rnp = rcu_first_leaf_node();
4877 	for_each_possible_cpu(i) {
4878 		while (i > rnp->grphi)
4879 			rnp++;
4880 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4881 		rcu_boot_init_percpu_data(i);
4882 	}
4883 }
4884 
4885 /*
4886  * Force priority from the kernel command-line into range.
4887  */
4888 static void __init sanitize_kthread_prio(void)
4889 {
4890 	int kthread_prio_in = kthread_prio;
4891 
4892 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4893 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4894 		kthread_prio = 2;
4895 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4896 		kthread_prio = 1;
4897 	else if (kthread_prio < 0)
4898 		kthread_prio = 0;
4899 	else if (kthread_prio > 99)
4900 		kthread_prio = 99;
4901 
4902 	if (kthread_prio != kthread_prio_in)
4903 		pr_alert("%s: Limited prio to %d from %d\n",
4904 			 __func__, kthread_prio, kthread_prio_in);
4905 }
4906 
4907 /*
4908  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4909  * replace the definitions in tree.h because those are needed to size
4910  * the ->node array in the rcu_state structure.
4911  */
4912 void rcu_init_geometry(void)
4913 {
4914 	ulong d;
4915 	int i;
4916 	static unsigned long old_nr_cpu_ids;
4917 	int rcu_capacity[RCU_NUM_LVLS];
4918 	static bool initialized;
4919 
4920 	if (initialized) {
4921 		/*
4922 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4923 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4924 		 */
4925 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4926 		return;
4927 	}
4928 
4929 	old_nr_cpu_ids = nr_cpu_ids;
4930 	initialized = true;
4931 
4932 	/*
4933 	 * Initialize any unspecified boot parameters.
4934 	 * The default values of jiffies_till_first_fqs and
4935 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4936 	 * value, which is a function of HZ, then adding one for each
4937 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4938 	 */
4939 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4940 	if (jiffies_till_first_fqs == ULONG_MAX)
4941 		jiffies_till_first_fqs = d;
4942 	if (jiffies_till_next_fqs == ULONG_MAX)
4943 		jiffies_till_next_fqs = d;
4944 	adjust_jiffies_till_sched_qs();
4945 
4946 	/* If the compile-time values are accurate, just leave. */
4947 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4948 	    nr_cpu_ids == NR_CPUS)
4949 		return;
4950 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4951 		rcu_fanout_leaf, nr_cpu_ids);
4952 
4953 	/*
4954 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4955 	 * and cannot exceed the number of bits in the rcu_node masks.
4956 	 * Complain and fall back to the compile-time values if this
4957 	 * limit is exceeded.
4958 	 */
4959 	if (rcu_fanout_leaf < 2 ||
4960 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4961 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4962 		WARN_ON(1);
4963 		return;
4964 	}
4965 
4966 	/*
4967 	 * Compute number of nodes that can be handled an rcu_node tree
4968 	 * with the given number of levels.
4969 	 */
4970 	rcu_capacity[0] = rcu_fanout_leaf;
4971 	for (i = 1; i < RCU_NUM_LVLS; i++)
4972 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4973 
4974 	/*
4975 	 * The tree must be able to accommodate the configured number of CPUs.
4976 	 * If this limit is exceeded, fall back to the compile-time values.
4977 	 */
4978 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4979 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4980 		WARN_ON(1);
4981 		return;
4982 	}
4983 
4984 	/* Calculate the number of levels in the tree. */
4985 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4986 	}
4987 	rcu_num_lvls = i + 1;
4988 
4989 	/* Calculate the number of rcu_nodes at each level of the tree. */
4990 	for (i = 0; i < rcu_num_lvls; i++) {
4991 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4992 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4993 	}
4994 
4995 	/* Calculate the total number of rcu_node structures. */
4996 	rcu_num_nodes = 0;
4997 	for (i = 0; i < rcu_num_lvls; i++)
4998 		rcu_num_nodes += num_rcu_lvl[i];
4999 }
5000 
5001 /*
5002  * Dump out the structure of the rcu_node combining tree associated
5003  * with the rcu_state structure.
5004  */
5005 static void __init rcu_dump_rcu_node_tree(void)
5006 {
5007 	int level = 0;
5008 	struct rcu_node *rnp;
5009 
5010 	pr_info("rcu_node tree layout dump\n");
5011 	pr_info(" ");
5012 	rcu_for_each_node_breadth_first(rnp) {
5013 		if (rnp->level != level) {
5014 			pr_cont("\n");
5015 			pr_info(" ");
5016 			level = rnp->level;
5017 		}
5018 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5019 	}
5020 	pr_cont("\n");
5021 }
5022 
5023 struct workqueue_struct *rcu_gp_wq;
5024 
5025 static void __init kfree_rcu_batch_init(void)
5026 {
5027 	int cpu;
5028 	int i, j;
5029 
5030 	/* Clamp it to [0:100] seconds interval. */
5031 	if (rcu_delay_page_cache_fill_msec < 0 ||
5032 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5033 
5034 		rcu_delay_page_cache_fill_msec =
5035 			clamp(rcu_delay_page_cache_fill_msec, 0,
5036 				(int) (100 * MSEC_PER_SEC));
5037 
5038 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5039 			rcu_delay_page_cache_fill_msec);
5040 	}
5041 
5042 	for_each_possible_cpu(cpu) {
5043 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5044 
5045 		for (i = 0; i < KFREE_N_BATCHES; i++) {
5046 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5047 			krcp->krw_arr[i].krcp = krcp;
5048 
5049 			for (j = 0; j < FREE_N_CHANNELS; j++)
5050 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5051 		}
5052 
5053 		for (i = 0; i < FREE_N_CHANNELS; i++)
5054 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5055 
5056 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5057 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5058 		krcp->initialized = true;
5059 	}
5060 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
5061 		pr_err("Failed to register kfree_rcu() shrinker!\n");
5062 }
5063 
5064 void __init rcu_init(void)
5065 {
5066 	int cpu = smp_processor_id();
5067 
5068 	rcu_early_boot_tests();
5069 
5070 	kfree_rcu_batch_init();
5071 	rcu_bootup_announce();
5072 	sanitize_kthread_prio();
5073 	rcu_init_geometry();
5074 	rcu_init_one();
5075 	if (dump_tree)
5076 		rcu_dump_rcu_node_tree();
5077 	if (use_softirq)
5078 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5079 
5080 	/*
5081 	 * We don't need protection against CPU-hotplug here because
5082 	 * this is called early in boot, before either interrupts
5083 	 * or the scheduler are operational.
5084 	 */
5085 	pm_notifier(rcu_pm_notify, 0);
5086 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5087 	rcutree_prepare_cpu(cpu);
5088 	rcu_cpu_starting(cpu);
5089 	rcutree_online_cpu(cpu);
5090 
5091 	/* Create workqueue for Tree SRCU and for expedited GPs. */
5092 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5093 	WARN_ON(!rcu_gp_wq);
5094 	rcu_alloc_par_gp_wq();
5095 
5096 	/* Fill in default value for rcutree.qovld boot parameter. */
5097 	/* -After- the rcu_node ->lock fields are initialized! */
5098 	if (qovld < 0)
5099 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5100 	else
5101 		qovld_calc = qovld;
5102 
5103 	// Kick-start in case any polled grace periods started early.
5104 	(void)start_poll_synchronize_rcu_expedited();
5105 
5106 	rcu_test_sync_prims();
5107 }
5108 
5109 #include "tree_stall.h"
5110 #include "tree_exp.h"
5111 #include "tree_nocb.h"
5112 #include "tree_plugin.h"
5113