1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include "../time/tick-internal.h" 66 67 #include "tree.h" 68 #include "rcu.h" 69 70 #ifdef MODULE_PARAM_PREFIX 71 #undef MODULE_PARAM_PREFIX 72 #endif 73 #define MODULE_PARAM_PREFIX "rcutree." 74 75 /* Data structures. */ 76 77 /* 78 * Steal a bit from the bottom of ->dynticks for idle entry/exit 79 * control. Initially this is for TLB flushing. 80 */ 81 #define RCU_DYNTICK_CTRL_MASK 0x1 82 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 83 84 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 85 .dynticks_nesting = 1, 86 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 87 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 88 #ifdef CONFIG_RCU_NOCB_CPU 89 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY, 90 #endif 91 }; 92 static struct rcu_state rcu_state = { 93 .level = { &rcu_state.node[0] }, 94 .gp_state = RCU_GP_IDLE, 95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 97 .name = RCU_NAME, 98 .abbr = RCU_ABBR, 99 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 100 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 101 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 102 }; 103 104 /* Dump rcu_node combining tree at boot to verify correct setup. */ 105 static bool dump_tree; 106 module_param(dump_tree, bool, 0444); 107 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 108 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 109 #ifndef CONFIG_PREEMPT_RT 110 module_param(use_softirq, bool, 0444); 111 #endif 112 /* Control rcu_node-tree auto-balancing at boot time. */ 113 static bool rcu_fanout_exact; 114 module_param(rcu_fanout_exact, bool, 0444); 115 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 116 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 117 module_param(rcu_fanout_leaf, int, 0444); 118 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 119 /* Number of rcu_nodes at specified level. */ 120 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 121 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 122 123 /* 124 * The rcu_scheduler_active variable is initialized to the value 125 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 126 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 127 * RCU can assume that there is but one task, allowing RCU to (for example) 128 * optimize synchronize_rcu() to a simple barrier(). When this variable 129 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 130 * to detect real grace periods. This variable is also used to suppress 131 * boot-time false positives from lockdep-RCU error checking. Finally, it 132 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 133 * is fully initialized, including all of its kthreads having been spawned. 134 */ 135 int rcu_scheduler_active __read_mostly; 136 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 137 138 /* 139 * The rcu_scheduler_fully_active variable transitions from zero to one 140 * during the early_initcall() processing, which is after the scheduler 141 * is capable of creating new tasks. So RCU processing (for example, 142 * creating tasks for RCU priority boosting) must be delayed until after 143 * rcu_scheduler_fully_active transitions from zero to one. We also 144 * currently delay invocation of any RCU callbacks until after this point. 145 * 146 * It might later prove better for people registering RCU callbacks during 147 * early boot to take responsibility for these callbacks, but one step at 148 * a time. 149 */ 150 static int rcu_scheduler_fully_active __read_mostly; 151 152 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 153 unsigned long gps, unsigned long flags); 154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 157 static void invoke_rcu_core(void); 158 static void rcu_report_exp_rdp(struct rcu_data *rdp); 159 static void sync_sched_exp_online_cleanup(int cpu); 160 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 161 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 162 163 /* rcuc/rcub kthread realtime priority */ 164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 165 module_param(kthread_prio, int, 0444); 166 167 /* Delay in jiffies for grace-period initialization delays, debug only. */ 168 169 static int gp_preinit_delay; 170 module_param(gp_preinit_delay, int, 0444); 171 static int gp_init_delay; 172 module_param(gp_init_delay, int, 0444); 173 static int gp_cleanup_delay; 174 module_param(gp_cleanup_delay, int, 0444); 175 176 // Add delay to rcu_read_unlock() for strict grace periods. 177 static int rcu_unlock_delay; 178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 179 module_param(rcu_unlock_delay, int, 0444); 180 #endif 181 182 /* 183 * This rcu parameter is runtime-read-only. It reflects 184 * a minimum allowed number of objects which can be cached 185 * per-CPU. Object size is equal to one page. This value 186 * can be changed at boot time. 187 */ 188 static int rcu_min_cached_objs = 5; 189 module_param(rcu_min_cached_objs, int, 0444); 190 191 // A page shrinker can ask for pages to be freed to make them 192 // available for other parts of the system. This usually happens 193 // under low memory conditions, and in that case we should also 194 // defer page-cache filling for a short time period. 195 // 196 // The default value is 5 seconds, which is long enough to reduce 197 // interference with the shrinker while it asks other systems to 198 // drain their caches. 199 static int rcu_delay_page_cache_fill_msec = 5000; 200 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 201 202 /* Retrieve RCU kthreads priority for rcutorture */ 203 int rcu_get_gp_kthreads_prio(void) 204 { 205 return kthread_prio; 206 } 207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 208 209 /* 210 * Number of grace periods between delays, normalized by the duration of 211 * the delay. The longer the delay, the more the grace periods between 212 * each delay. The reason for this normalization is that it means that, 213 * for non-zero delays, the overall slowdown of grace periods is constant 214 * regardless of the duration of the delay. This arrangement balances 215 * the need for long delays to increase some race probabilities with the 216 * need for fast grace periods to increase other race probabilities. 217 */ 218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 219 220 /* 221 * Compute the mask of online CPUs for the specified rcu_node structure. 222 * This will not be stable unless the rcu_node structure's ->lock is 223 * held, but the bit corresponding to the current CPU will be stable 224 * in most contexts. 225 */ 226 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 227 { 228 return READ_ONCE(rnp->qsmaskinitnext); 229 } 230 231 /* 232 * Return true if an RCU grace period is in progress. The READ_ONCE()s 233 * permit this function to be invoked without holding the root rcu_node 234 * structure's ->lock, but of course results can be subject to change. 235 */ 236 static int rcu_gp_in_progress(void) 237 { 238 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 239 } 240 241 /* 242 * Return the number of callbacks queued on the specified CPU. 243 * Handles both the nocbs and normal cases. 244 */ 245 static long rcu_get_n_cbs_cpu(int cpu) 246 { 247 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 248 249 if (rcu_segcblist_is_enabled(&rdp->cblist)) 250 return rcu_segcblist_n_cbs(&rdp->cblist); 251 return 0; 252 } 253 254 void rcu_softirq_qs(void) 255 { 256 rcu_qs(); 257 rcu_preempt_deferred_qs(current); 258 rcu_tasks_qs(current, false); 259 } 260 261 /* 262 * Record entry into an extended quiescent state. This is only to be 263 * called when not already in an extended quiescent state, that is, 264 * RCU is watching prior to the call to this function and is no longer 265 * watching upon return. 266 */ 267 static noinstr void rcu_dynticks_eqs_enter(void) 268 { 269 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 270 int seq; 271 272 /* 273 * CPUs seeing atomic_add_return() must see prior RCU read-side 274 * critical sections, and we also must force ordering with the 275 * next idle sojourn. 276 */ 277 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 278 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 279 // RCU is no longer watching. Better be in extended quiescent state! 280 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 281 (seq & RCU_DYNTICK_CTRL_CTR)); 282 /* Better not have special action (TLB flush) pending! */ 283 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 284 (seq & RCU_DYNTICK_CTRL_MASK)); 285 } 286 287 /* 288 * Record exit from an extended quiescent state. This is only to be 289 * called from an extended quiescent state, that is, RCU is not watching 290 * prior to the call to this function and is watching upon return. 291 */ 292 static noinstr void rcu_dynticks_eqs_exit(void) 293 { 294 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 295 int seq; 296 297 /* 298 * CPUs seeing atomic_add_return() must see prior idle sojourns, 299 * and we also must force ordering with the next RCU read-side 300 * critical section. 301 */ 302 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 303 // RCU is now watching. Better not be in an extended quiescent state! 304 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 306 !(seq & RCU_DYNTICK_CTRL_CTR)); 307 if (seq & RCU_DYNTICK_CTRL_MASK) { 308 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 309 smp_mb__after_atomic(); /* _exit after clearing mask. */ 310 } 311 } 312 313 /* 314 * Reset the current CPU's ->dynticks counter to indicate that the 315 * newly onlined CPU is no longer in an extended quiescent state. 316 * This will either leave the counter unchanged, or increment it 317 * to the next non-quiescent value. 318 * 319 * The non-atomic test/increment sequence works because the upper bits 320 * of the ->dynticks counter are manipulated only by the corresponding CPU, 321 * or when the corresponding CPU is offline. 322 */ 323 static void rcu_dynticks_eqs_online(void) 324 { 325 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 326 327 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 328 return; 329 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 330 } 331 332 /* 333 * Is the current CPU in an extended quiescent state? 334 * 335 * No ordering, as we are sampling CPU-local information. 336 */ 337 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 338 { 339 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 340 341 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 342 } 343 344 /* 345 * Snapshot the ->dynticks counter with full ordering so as to allow 346 * stable comparison of this counter with past and future snapshots. 347 */ 348 static int rcu_dynticks_snap(struct rcu_data *rdp) 349 { 350 int snap = atomic_add_return(0, &rdp->dynticks); 351 352 return snap & ~RCU_DYNTICK_CTRL_MASK; 353 } 354 355 /* 356 * Return true if the snapshot returned from rcu_dynticks_snap() 357 * indicates that RCU is in an extended quiescent state. 358 */ 359 static bool rcu_dynticks_in_eqs(int snap) 360 { 361 return !(snap & RCU_DYNTICK_CTRL_CTR); 362 } 363 364 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 365 bool rcu_is_idle_cpu(int cpu) 366 { 367 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 368 369 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)); 370 } 371 372 /* 373 * Return true if the CPU corresponding to the specified rcu_data 374 * structure has spent some time in an extended quiescent state since 375 * rcu_dynticks_snap() returned the specified snapshot. 376 */ 377 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 378 { 379 return snap != rcu_dynticks_snap(rdp); 380 } 381 382 /* 383 * Return true if the referenced integer is zero while the specified 384 * CPU remains within a single extended quiescent state. 385 */ 386 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 387 { 388 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 389 int snap; 390 391 // If not quiescent, force back to earlier extended quiescent state. 392 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK | 393 RCU_DYNTICK_CTRL_CTR); 394 395 smp_rmb(); // Order ->dynticks and *vp reads. 396 if (READ_ONCE(*vp)) 397 return false; // Non-zero, so report failure; 398 smp_rmb(); // Order *vp read and ->dynticks re-read. 399 400 // If still in the same extended quiescent state, we are good! 401 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK); 402 } 403 404 /* 405 * Set the special (bottom) bit of the specified CPU so that it 406 * will take special action (such as flushing its TLB) on the 407 * next exit from an extended quiescent state. Returns true if 408 * the bit was successfully set, or false if the CPU was not in 409 * an extended quiescent state. 410 */ 411 bool rcu_eqs_special_set(int cpu) 412 { 413 int old; 414 int new; 415 int new_old; 416 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 417 418 new_old = atomic_read(&rdp->dynticks); 419 do { 420 old = new_old; 421 if (old & RCU_DYNTICK_CTRL_CTR) 422 return false; 423 new = old | RCU_DYNTICK_CTRL_MASK; 424 new_old = atomic_cmpxchg(&rdp->dynticks, old, new); 425 } while (new_old != old); 426 return true; 427 } 428 429 /* 430 * Let the RCU core know that this CPU has gone through the scheduler, 431 * which is a quiescent state. This is called when the need for a 432 * quiescent state is urgent, so we burn an atomic operation and full 433 * memory barriers to let the RCU core know about it, regardless of what 434 * this CPU might (or might not) do in the near future. 435 * 436 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 437 * 438 * The caller must have disabled interrupts and must not be idle. 439 */ 440 notrace void rcu_momentary_dyntick_idle(void) 441 { 442 int special; 443 444 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 445 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 446 &this_cpu_ptr(&rcu_data)->dynticks); 447 /* It is illegal to call this from idle state. */ 448 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 449 rcu_preempt_deferred_qs(current); 450 } 451 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 452 453 /** 454 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 455 * 456 * If the current CPU is idle and running at a first-level (not nested) 457 * interrupt, or directly, from idle, return true. 458 * 459 * The caller must have at least disabled IRQs. 460 */ 461 static int rcu_is_cpu_rrupt_from_idle(void) 462 { 463 long nesting; 464 465 /* 466 * Usually called from the tick; but also used from smp_function_call() 467 * for expedited grace periods. This latter can result in running from 468 * the idle task, instead of an actual IPI. 469 */ 470 lockdep_assert_irqs_disabled(); 471 472 /* Check for counter underflows */ 473 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 474 "RCU dynticks_nesting counter underflow!"); 475 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 476 "RCU dynticks_nmi_nesting counter underflow/zero!"); 477 478 /* Are we at first interrupt nesting level? */ 479 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 480 if (nesting > 1) 481 return false; 482 483 /* 484 * If we're not in an interrupt, we must be in the idle task! 485 */ 486 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 487 488 /* Does CPU appear to be idle from an RCU standpoint? */ 489 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 490 } 491 492 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 493 // Maximum callbacks per rcu_do_batch ... 494 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 495 static long blimit = DEFAULT_RCU_BLIMIT; 496 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 497 static long qhimark = DEFAULT_RCU_QHIMARK; 498 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 499 static long qlowmark = DEFAULT_RCU_QLOMARK; 500 #define DEFAULT_RCU_QOVLD_MULT 2 501 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 502 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 503 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 504 505 module_param(blimit, long, 0444); 506 module_param(qhimark, long, 0444); 507 module_param(qlowmark, long, 0444); 508 module_param(qovld, long, 0444); 509 510 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 511 static ulong jiffies_till_next_fqs = ULONG_MAX; 512 static bool rcu_kick_kthreads; 513 static int rcu_divisor = 7; 514 module_param(rcu_divisor, int, 0644); 515 516 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 517 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 518 module_param(rcu_resched_ns, long, 0644); 519 520 /* 521 * How long the grace period must be before we start recruiting 522 * quiescent-state help from rcu_note_context_switch(). 523 */ 524 static ulong jiffies_till_sched_qs = ULONG_MAX; 525 module_param(jiffies_till_sched_qs, ulong, 0444); 526 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 527 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 528 529 /* 530 * Make sure that we give the grace-period kthread time to detect any 531 * idle CPUs before taking active measures to force quiescent states. 532 * However, don't go below 100 milliseconds, adjusted upwards for really 533 * large systems. 534 */ 535 static void adjust_jiffies_till_sched_qs(void) 536 { 537 unsigned long j; 538 539 /* If jiffies_till_sched_qs was specified, respect the request. */ 540 if (jiffies_till_sched_qs != ULONG_MAX) { 541 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 542 return; 543 } 544 /* Otherwise, set to third fqs scan, but bound below on large system. */ 545 j = READ_ONCE(jiffies_till_first_fqs) + 546 2 * READ_ONCE(jiffies_till_next_fqs); 547 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 548 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 549 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 550 WRITE_ONCE(jiffies_to_sched_qs, j); 551 } 552 553 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 554 { 555 ulong j; 556 int ret = kstrtoul(val, 0, &j); 557 558 if (!ret) { 559 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 560 adjust_jiffies_till_sched_qs(); 561 } 562 return ret; 563 } 564 565 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 566 { 567 ulong j; 568 int ret = kstrtoul(val, 0, &j); 569 570 if (!ret) { 571 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 572 adjust_jiffies_till_sched_qs(); 573 } 574 return ret; 575 } 576 577 static const struct kernel_param_ops first_fqs_jiffies_ops = { 578 .set = param_set_first_fqs_jiffies, 579 .get = param_get_ulong, 580 }; 581 582 static const struct kernel_param_ops next_fqs_jiffies_ops = { 583 .set = param_set_next_fqs_jiffies, 584 .get = param_get_ulong, 585 }; 586 587 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 588 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 589 module_param(rcu_kick_kthreads, bool, 0644); 590 591 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 592 static int rcu_pending(int user); 593 594 /* 595 * Return the number of RCU GPs completed thus far for debug & stats. 596 */ 597 unsigned long rcu_get_gp_seq(void) 598 { 599 return READ_ONCE(rcu_state.gp_seq); 600 } 601 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 602 603 /* 604 * Return the number of RCU expedited batches completed thus far for 605 * debug & stats. Odd numbers mean that a batch is in progress, even 606 * numbers mean idle. The value returned will thus be roughly double 607 * the cumulative batches since boot. 608 */ 609 unsigned long rcu_exp_batches_completed(void) 610 { 611 return rcu_state.expedited_sequence; 612 } 613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 614 615 /* 616 * Return the root node of the rcu_state structure. 617 */ 618 static struct rcu_node *rcu_get_root(void) 619 { 620 return &rcu_state.node[0]; 621 } 622 623 /* 624 * Send along grace-period-related data for rcutorture diagnostics. 625 */ 626 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 627 unsigned long *gp_seq) 628 { 629 switch (test_type) { 630 case RCU_FLAVOR: 631 *flags = READ_ONCE(rcu_state.gp_flags); 632 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 633 break; 634 default: 635 break; 636 } 637 } 638 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 639 640 /* 641 * Enter an RCU extended quiescent state, which can be either the 642 * idle loop or adaptive-tickless usermode execution. 643 * 644 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 645 * the possibility of usermode upcalls having messed up our count 646 * of interrupt nesting level during the prior busy period. 647 */ 648 static noinstr void rcu_eqs_enter(bool user) 649 { 650 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 651 652 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 653 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 654 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 655 rdp->dynticks_nesting == 0); 656 if (rdp->dynticks_nesting != 1) { 657 // RCU will still be watching, so just do accounting and leave. 658 rdp->dynticks_nesting--; 659 return; 660 } 661 662 lockdep_assert_irqs_disabled(); 663 instrumentation_begin(); 664 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 665 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 666 rcu_prepare_for_idle(); 667 rcu_preempt_deferred_qs(current); 668 669 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 670 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 671 672 instrumentation_end(); 673 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 674 // RCU is watching here ... 675 rcu_dynticks_eqs_enter(); 676 // ... but is no longer watching here. 677 rcu_dynticks_task_enter(); 678 } 679 680 /** 681 * rcu_idle_enter - inform RCU that current CPU is entering idle 682 * 683 * Enter idle mode, in other words, -leave- the mode in which RCU 684 * read-side critical sections can occur. (Though RCU read-side 685 * critical sections can occur in irq handlers in idle, a possibility 686 * handled by irq_enter() and irq_exit().) 687 * 688 * If you add or remove a call to rcu_idle_enter(), be sure to test with 689 * CONFIG_RCU_EQS_DEBUG=y. 690 */ 691 void rcu_idle_enter(void) 692 { 693 lockdep_assert_irqs_disabled(); 694 rcu_eqs_enter(false); 695 } 696 EXPORT_SYMBOL_GPL(rcu_idle_enter); 697 698 #ifdef CONFIG_NO_HZ_FULL 699 700 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK) 701 /* 702 * An empty function that will trigger a reschedule on 703 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 704 */ 705 static void late_wakeup_func(struct irq_work *work) 706 { 707 } 708 709 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 710 IRQ_WORK_INIT(late_wakeup_func); 711 712 /* 713 * If either: 714 * 715 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 716 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 717 * 718 * In these cases the late RCU wake ups aren't supported in the resched loops and our 719 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 720 * get re-enabled again. 721 */ 722 noinstr static void rcu_irq_work_resched(void) 723 { 724 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 725 726 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 727 return; 728 729 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 730 return; 731 732 instrumentation_begin(); 733 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 734 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 735 } 736 instrumentation_end(); 737 } 738 739 #else 740 static inline void rcu_irq_work_resched(void) { } 741 #endif 742 743 /** 744 * rcu_user_enter - inform RCU that we are resuming userspace. 745 * 746 * Enter RCU idle mode right before resuming userspace. No use of RCU 747 * is permitted between this call and rcu_user_exit(). This way the 748 * CPU doesn't need to maintain the tick for RCU maintenance purposes 749 * when the CPU runs in userspace. 750 * 751 * If you add or remove a call to rcu_user_enter(), be sure to test with 752 * CONFIG_RCU_EQS_DEBUG=y. 753 */ 754 noinstr void rcu_user_enter(void) 755 { 756 lockdep_assert_irqs_disabled(); 757 758 /* 759 * Other than generic entry implementation, we may be past the last 760 * rescheduling opportunity in the entry code. Trigger a self IPI 761 * that will fire and reschedule once we resume in user/guest mode. 762 */ 763 rcu_irq_work_resched(); 764 rcu_eqs_enter(true); 765 } 766 767 #endif /* CONFIG_NO_HZ_FULL */ 768 769 /** 770 * rcu_nmi_exit - inform RCU of exit from NMI context 771 * 772 * If we are returning from the outermost NMI handler that interrupted an 773 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 774 * to let the RCU grace-period handling know that the CPU is back to 775 * being RCU-idle. 776 * 777 * If you add or remove a call to rcu_nmi_exit(), be sure to test 778 * with CONFIG_RCU_EQS_DEBUG=y. 779 */ 780 noinstr void rcu_nmi_exit(void) 781 { 782 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 783 784 instrumentation_begin(); 785 /* 786 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 787 * (We are exiting an NMI handler, so RCU better be paying attention 788 * to us!) 789 */ 790 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 791 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 792 793 /* 794 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 795 * leave it in non-RCU-idle state. 796 */ 797 if (rdp->dynticks_nmi_nesting != 1) { 798 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 799 atomic_read(&rdp->dynticks)); 800 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 801 rdp->dynticks_nmi_nesting - 2); 802 instrumentation_end(); 803 return; 804 } 805 806 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 807 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 808 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 809 810 if (!in_nmi()) 811 rcu_prepare_for_idle(); 812 813 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 814 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 815 instrumentation_end(); 816 817 // RCU is watching here ... 818 rcu_dynticks_eqs_enter(); 819 // ... but is no longer watching here. 820 821 if (!in_nmi()) 822 rcu_dynticks_task_enter(); 823 } 824 825 /** 826 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 827 * 828 * Exit from an interrupt handler, which might possibly result in entering 829 * idle mode, in other words, leaving the mode in which read-side critical 830 * sections can occur. The caller must have disabled interrupts. 831 * 832 * This code assumes that the idle loop never does anything that might 833 * result in unbalanced calls to irq_enter() and irq_exit(). If your 834 * architecture's idle loop violates this assumption, RCU will give you what 835 * you deserve, good and hard. But very infrequently and irreproducibly. 836 * 837 * Use things like work queues to work around this limitation. 838 * 839 * You have been warned. 840 * 841 * If you add or remove a call to rcu_irq_exit(), be sure to test with 842 * CONFIG_RCU_EQS_DEBUG=y. 843 */ 844 void noinstr rcu_irq_exit(void) 845 { 846 lockdep_assert_irqs_disabled(); 847 rcu_nmi_exit(); 848 } 849 850 #ifdef CONFIG_PROVE_RCU 851 /** 852 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 853 */ 854 void rcu_irq_exit_check_preempt(void) 855 { 856 lockdep_assert_irqs_disabled(); 857 858 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 859 "RCU dynticks_nesting counter underflow/zero!"); 860 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 861 DYNTICK_IRQ_NONIDLE, 862 "Bad RCU dynticks_nmi_nesting counter\n"); 863 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 864 "RCU in extended quiescent state!"); 865 } 866 #endif /* #ifdef CONFIG_PROVE_RCU */ 867 868 /* 869 * Wrapper for rcu_irq_exit() where interrupts are enabled. 870 * 871 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 872 * with CONFIG_RCU_EQS_DEBUG=y. 873 */ 874 void rcu_irq_exit_irqson(void) 875 { 876 unsigned long flags; 877 878 local_irq_save(flags); 879 rcu_irq_exit(); 880 local_irq_restore(flags); 881 } 882 883 /* 884 * Exit an RCU extended quiescent state, which can be either the 885 * idle loop or adaptive-tickless usermode execution. 886 * 887 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 888 * allow for the possibility of usermode upcalls messing up our count of 889 * interrupt nesting level during the busy period that is just now starting. 890 */ 891 static void noinstr rcu_eqs_exit(bool user) 892 { 893 struct rcu_data *rdp; 894 long oldval; 895 896 lockdep_assert_irqs_disabled(); 897 rdp = this_cpu_ptr(&rcu_data); 898 oldval = rdp->dynticks_nesting; 899 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 900 if (oldval) { 901 // RCU was already watching, so just do accounting and leave. 902 rdp->dynticks_nesting++; 903 return; 904 } 905 rcu_dynticks_task_exit(); 906 // RCU is not watching here ... 907 rcu_dynticks_eqs_exit(); 908 // ... but is watching here. 909 instrumentation_begin(); 910 911 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 912 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 913 914 rcu_cleanup_after_idle(); 915 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 916 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 917 WRITE_ONCE(rdp->dynticks_nesting, 1); 918 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 919 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 920 instrumentation_end(); 921 } 922 923 /** 924 * rcu_idle_exit - inform RCU that current CPU is leaving idle 925 * 926 * Exit idle mode, in other words, -enter- the mode in which RCU 927 * read-side critical sections can occur. 928 * 929 * If you add or remove a call to rcu_idle_exit(), be sure to test with 930 * CONFIG_RCU_EQS_DEBUG=y. 931 */ 932 void rcu_idle_exit(void) 933 { 934 unsigned long flags; 935 936 local_irq_save(flags); 937 rcu_eqs_exit(false); 938 local_irq_restore(flags); 939 } 940 EXPORT_SYMBOL_GPL(rcu_idle_exit); 941 942 #ifdef CONFIG_NO_HZ_FULL 943 /** 944 * rcu_user_exit - inform RCU that we are exiting userspace. 945 * 946 * Exit RCU idle mode while entering the kernel because it can 947 * run a RCU read side critical section anytime. 948 * 949 * If you add or remove a call to rcu_user_exit(), be sure to test with 950 * CONFIG_RCU_EQS_DEBUG=y. 951 */ 952 void noinstr rcu_user_exit(void) 953 { 954 rcu_eqs_exit(true); 955 } 956 957 /** 958 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 959 * 960 * The scheduler tick is not normally enabled when CPUs enter the kernel 961 * from nohz_full userspace execution. After all, nohz_full userspace 962 * execution is an RCU quiescent state and the time executing in the kernel 963 * is quite short. Except of course when it isn't. And it is not hard to 964 * cause a large system to spend tens of seconds or even minutes looping 965 * in the kernel, which can cause a number of problems, include RCU CPU 966 * stall warnings. 967 * 968 * Therefore, if a nohz_full CPU fails to report a quiescent state 969 * in a timely manner, the RCU grace-period kthread sets that CPU's 970 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 971 * exception will invoke this function, which will turn on the scheduler 972 * tick, which will enable RCU to detect that CPU's quiescent states, 973 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 974 * The tick will be disabled once a quiescent state is reported for 975 * this CPU. 976 * 977 * Of course, in carefully tuned systems, there might never be an 978 * interrupt or exception. In that case, the RCU grace-period kthread 979 * will eventually cause one to happen. However, in less carefully 980 * controlled environments, this function allows RCU to get what it 981 * needs without creating otherwise useless interruptions. 982 */ 983 void __rcu_irq_enter_check_tick(void) 984 { 985 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 986 987 // If we're here from NMI there's nothing to do. 988 if (in_nmi()) 989 return; 990 991 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 992 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 993 994 if (!tick_nohz_full_cpu(rdp->cpu) || 995 !READ_ONCE(rdp->rcu_urgent_qs) || 996 READ_ONCE(rdp->rcu_forced_tick)) { 997 // RCU doesn't need nohz_full help from this CPU, or it is 998 // already getting that help. 999 return; 1000 } 1001 1002 // We get here only when not in an extended quiescent state and 1003 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 1004 // already watching and (2) The fact that we are in an interrupt 1005 // handler and that the rcu_node lock is an irq-disabled lock 1006 // prevents self-deadlock. So we can safely recheck under the lock. 1007 // Note that the nohz_full state currently cannot change. 1008 raw_spin_lock_rcu_node(rdp->mynode); 1009 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 1010 // A nohz_full CPU is in the kernel and RCU needs a 1011 // quiescent state. Turn on the tick! 1012 WRITE_ONCE(rdp->rcu_forced_tick, true); 1013 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1014 } 1015 raw_spin_unlock_rcu_node(rdp->mynode); 1016 } 1017 #endif /* CONFIG_NO_HZ_FULL */ 1018 1019 /** 1020 * rcu_nmi_enter - inform RCU of entry to NMI context 1021 * 1022 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 1023 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 1024 * that the CPU is active. This implementation permits nested NMIs, as 1025 * long as the nesting level does not overflow an int. (You will probably 1026 * run out of stack space first.) 1027 * 1028 * If you add or remove a call to rcu_nmi_enter(), be sure to test 1029 * with CONFIG_RCU_EQS_DEBUG=y. 1030 */ 1031 noinstr void rcu_nmi_enter(void) 1032 { 1033 long incby = 2; 1034 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1035 1036 /* Complain about underflow. */ 1037 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 1038 1039 /* 1040 * If idle from RCU viewpoint, atomically increment ->dynticks 1041 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1042 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1043 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1044 * to be in the outermost NMI handler that interrupted an RCU-idle 1045 * period (observation due to Andy Lutomirski). 1046 */ 1047 if (rcu_dynticks_curr_cpu_in_eqs()) { 1048 1049 if (!in_nmi()) 1050 rcu_dynticks_task_exit(); 1051 1052 // RCU is not watching here ... 1053 rcu_dynticks_eqs_exit(); 1054 // ... but is watching here. 1055 1056 if (!in_nmi()) { 1057 instrumentation_begin(); 1058 rcu_cleanup_after_idle(); 1059 instrumentation_end(); 1060 } 1061 1062 instrumentation_begin(); 1063 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1064 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1065 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1066 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1067 1068 incby = 1; 1069 } else if (!in_nmi()) { 1070 instrumentation_begin(); 1071 rcu_irq_enter_check_tick(); 1072 } else { 1073 instrumentation_begin(); 1074 } 1075 1076 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1077 rdp->dynticks_nmi_nesting, 1078 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1079 instrumentation_end(); 1080 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1081 rdp->dynticks_nmi_nesting + incby); 1082 barrier(); 1083 } 1084 1085 /** 1086 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1087 * 1088 * Enter an interrupt handler, which might possibly result in exiting 1089 * idle mode, in other words, entering the mode in which read-side critical 1090 * sections can occur. The caller must have disabled interrupts. 1091 * 1092 * Note that the Linux kernel is fully capable of entering an interrupt 1093 * handler that it never exits, for example when doing upcalls to user mode! 1094 * This code assumes that the idle loop never does upcalls to user mode. 1095 * If your architecture's idle loop does do upcalls to user mode (or does 1096 * anything else that results in unbalanced calls to the irq_enter() and 1097 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1098 * But very infrequently and irreproducibly. 1099 * 1100 * Use things like work queues to work around this limitation. 1101 * 1102 * You have been warned. 1103 * 1104 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1105 * CONFIG_RCU_EQS_DEBUG=y. 1106 */ 1107 noinstr void rcu_irq_enter(void) 1108 { 1109 lockdep_assert_irqs_disabled(); 1110 rcu_nmi_enter(); 1111 } 1112 1113 /* 1114 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1115 * 1116 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1117 * with CONFIG_RCU_EQS_DEBUG=y. 1118 */ 1119 void rcu_irq_enter_irqson(void) 1120 { 1121 unsigned long flags; 1122 1123 local_irq_save(flags); 1124 rcu_irq_enter(); 1125 local_irq_restore(flags); 1126 } 1127 1128 /* 1129 * If any sort of urgency was applied to the current CPU (for example, 1130 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1131 * to get to a quiescent state, disable it. 1132 */ 1133 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1134 { 1135 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1136 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1137 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1138 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1139 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1140 WRITE_ONCE(rdp->rcu_forced_tick, false); 1141 } 1142 } 1143 1144 /** 1145 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1146 * 1147 * Return true if RCU is watching the running CPU, which means that this 1148 * CPU can safely enter RCU read-side critical sections. In other words, 1149 * if the current CPU is not in its idle loop or is in an interrupt or 1150 * NMI handler, return true. 1151 * 1152 * Make notrace because it can be called by the internal functions of 1153 * ftrace, and making this notrace removes unnecessary recursion calls. 1154 */ 1155 notrace bool rcu_is_watching(void) 1156 { 1157 bool ret; 1158 1159 preempt_disable_notrace(); 1160 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1161 preempt_enable_notrace(); 1162 return ret; 1163 } 1164 EXPORT_SYMBOL_GPL(rcu_is_watching); 1165 1166 /* 1167 * If a holdout task is actually running, request an urgent quiescent 1168 * state from its CPU. This is unsynchronized, so migrations can cause 1169 * the request to go to the wrong CPU. Which is OK, all that will happen 1170 * is that the CPU's next context switch will be a bit slower and next 1171 * time around this task will generate another request. 1172 */ 1173 void rcu_request_urgent_qs_task(struct task_struct *t) 1174 { 1175 int cpu; 1176 1177 barrier(); 1178 cpu = task_cpu(t); 1179 if (!task_curr(t)) 1180 return; /* This task is not running on that CPU. */ 1181 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1182 } 1183 1184 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1185 1186 /* 1187 * Is the current CPU online as far as RCU is concerned? 1188 * 1189 * Disable preemption to avoid false positives that could otherwise 1190 * happen due to the current CPU number being sampled, this task being 1191 * preempted, its old CPU being taken offline, resuming on some other CPU, 1192 * then determining that its old CPU is now offline. 1193 * 1194 * Disable checking if in an NMI handler because we cannot safely 1195 * report errors from NMI handlers anyway. In addition, it is OK to use 1196 * RCU on an offline processor during initial boot, hence the check for 1197 * rcu_scheduler_fully_active. 1198 */ 1199 bool rcu_lockdep_current_cpu_online(void) 1200 { 1201 struct rcu_data *rdp; 1202 struct rcu_node *rnp; 1203 bool ret = false; 1204 1205 if (in_nmi() || !rcu_scheduler_fully_active) 1206 return true; 1207 preempt_disable_notrace(); 1208 rdp = this_cpu_ptr(&rcu_data); 1209 rnp = rdp->mynode; 1210 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1) 1211 ret = true; 1212 preempt_enable_notrace(); 1213 return ret; 1214 } 1215 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1216 1217 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1218 1219 /* 1220 * When trying to report a quiescent state on behalf of some other CPU, 1221 * it is our responsibility to check for and handle potential overflow 1222 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1223 * After all, the CPU might be in deep idle state, and thus executing no 1224 * code whatsoever. 1225 */ 1226 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1227 { 1228 raw_lockdep_assert_held_rcu_node(rnp); 1229 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1230 rnp->gp_seq)) 1231 WRITE_ONCE(rdp->gpwrap, true); 1232 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1233 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1234 } 1235 1236 /* 1237 * Snapshot the specified CPU's dynticks counter so that we can later 1238 * credit them with an implicit quiescent state. Return 1 if this CPU 1239 * is in dynticks idle mode, which is an extended quiescent state. 1240 */ 1241 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1242 { 1243 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1244 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1245 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1246 rcu_gpnum_ovf(rdp->mynode, rdp); 1247 return 1; 1248 } 1249 return 0; 1250 } 1251 1252 /* 1253 * Return true if the specified CPU has passed through a quiescent 1254 * state by virtue of being in or having passed through an dynticks 1255 * idle state since the last call to dyntick_save_progress_counter() 1256 * for this same CPU, or by virtue of having been offline. 1257 */ 1258 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1259 { 1260 unsigned long jtsq; 1261 bool *rnhqp; 1262 bool *ruqp; 1263 struct rcu_node *rnp = rdp->mynode; 1264 1265 /* 1266 * If the CPU passed through or entered a dynticks idle phase with 1267 * no active irq/NMI handlers, then we can safely pretend that the CPU 1268 * already acknowledged the request to pass through a quiescent 1269 * state. Either way, that CPU cannot possibly be in an RCU 1270 * read-side critical section that started before the beginning 1271 * of the current RCU grace period. 1272 */ 1273 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1274 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1275 rcu_gpnum_ovf(rnp, rdp); 1276 return 1; 1277 } 1278 1279 /* 1280 * Complain if a CPU that is considered to be offline from RCU's 1281 * perspective has not yet reported a quiescent state. After all, 1282 * the offline CPU should have reported a quiescent state during 1283 * the CPU-offline process, or, failing that, by rcu_gp_init() 1284 * if it ran concurrently with either the CPU going offline or the 1285 * last task on a leaf rcu_node structure exiting its RCU read-side 1286 * critical section while all CPUs corresponding to that structure 1287 * are offline. This added warning detects bugs in any of these 1288 * code paths. 1289 * 1290 * The rcu_node structure's ->lock is held here, which excludes 1291 * the relevant portions the CPU-hotplug code, the grace-period 1292 * initialization code, and the rcu_read_unlock() code paths. 1293 * 1294 * For more detail, please refer to the "Hotplug CPU" section 1295 * of RCU's Requirements documentation. 1296 */ 1297 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) { 1298 bool onl; 1299 struct rcu_node *rnp1; 1300 1301 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1302 __func__, rnp->grplo, rnp->grphi, rnp->level, 1303 (long)rnp->gp_seq, (long)rnp->completedqs); 1304 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1305 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1306 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1307 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1308 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1309 __func__, rdp->cpu, ".o"[onl], 1310 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1311 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1312 return 1; /* Break things loose after complaining. */ 1313 } 1314 1315 /* 1316 * A CPU running for an extended time within the kernel can 1317 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1318 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1319 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1320 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1321 * variable are safe because the assignments are repeated if this 1322 * CPU failed to pass through a quiescent state. This code 1323 * also checks .jiffies_resched in case jiffies_to_sched_qs 1324 * is set way high. 1325 */ 1326 jtsq = READ_ONCE(jiffies_to_sched_qs); 1327 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1328 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1329 if (!READ_ONCE(*rnhqp) && 1330 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1331 time_after(jiffies, rcu_state.jiffies_resched) || 1332 rcu_state.cbovld)) { 1333 WRITE_ONCE(*rnhqp, true); 1334 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1335 smp_store_release(ruqp, true); 1336 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1337 WRITE_ONCE(*ruqp, true); 1338 } 1339 1340 /* 1341 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1342 * The above code handles this, but only for straight cond_resched(). 1343 * And some in-kernel loops check need_resched() before calling 1344 * cond_resched(), which defeats the above code for CPUs that are 1345 * running in-kernel with scheduling-clock interrupts disabled. 1346 * So hit them over the head with the resched_cpu() hammer! 1347 */ 1348 if (tick_nohz_full_cpu(rdp->cpu) && 1349 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1350 rcu_state.cbovld)) { 1351 WRITE_ONCE(*ruqp, true); 1352 resched_cpu(rdp->cpu); 1353 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1354 } 1355 1356 /* 1357 * If more than halfway to RCU CPU stall-warning time, invoke 1358 * resched_cpu() more frequently to try to loosen things up a bit. 1359 * Also check to see if the CPU is getting hammered with interrupts, 1360 * but only once per grace period, just to keep the IPIs down to 1361 * a dull roar. 1362 */ 1363 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1364 if (time_after(jiffies, 1365 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1366 resched_cpu(rdp->cpu); 1367 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1368 } 1369 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1370 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1371 (rnp->ffmask & rdp->grpmask)) { 1372 rdp->rcu_iw_pending = true; 1373 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1374 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1375 } 1376 } 1377 1378 return 0; 1379 } 1380 1381 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1382 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1383 unsigned long gp_seq_req, const char *s) 1384 { 1385 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1386 gp_seq_req, rnp->level, 1387 rnp->grplo, rnp->grphi, s); 1388 } 1389 1390 /* 1391 * rcu_start_this_gp - Request the start of a particular grace period 1392 * @rnp_start: The leaf node of the CPU from which to start. 1393 * @rdp: The rcu_data corresponding to the CPU from which to start. 1394 * @gp_seq_req: The gp_seq of the grace period to start. 1395 * 1396 * Start the specified grace period, as needed to handle newly arrived 1397 * callbacks. The required future grace periods are recorded in each 1398 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1399 * is reason to awaken the grace-period kthread. 1400 * 1401 * The caller must hold the specified rcu_node structure's ->lock, which 1402 * is why the caller is responsible for waking the grace-period kthread. 1403 * 1404 * Returns true if the GP thread needs to be awakened else false. 1405 */ 1406 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1407 unsigned long gp_seq_req) 1408 { 1409 bool ret = false; 1410 struct rcu_node *rnp; 1411 1412 /* 1413 * Use funnel locking to either acquire the root rcu_node 1414 * structure's lock or bail out if the need for this grace period 1415 * has already been recorded -- or if that grace period has in 1416 * fact already started. If there is already a grace period in 1417 * progress in a non-leaf node, no recording is needed because the 1418 * end of the grace period will scan the leaf rcu_node structures. 1419 * Note that rnp_start->lock must not be released. 1420 */ 1421 raw_lockdep_assert_held_rcu_node(rnp_start); 1422 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1423 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1424 if (rnp != rnp_start) 1425 raw_spin_lock_rcu_node(rnp); 1426 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1427 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1428 (rnp != rnp_start && 1429 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1430 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1431 TPS("Prestarted")); 1432 goto unlock_out; 1433 } 1434 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1435 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1436 /* 1437 * We just marked the leaf or internal node, and a 1438 * grace period is in progress, which means that 1439 * rcu_gp_cleanup() will see the marking. Bail to 1440 * reduce contention. 1441 */ 1442 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1443 TPS("Startedleaf")); 1444 goto unlock_out; 1445 } 1446 if (rnp != rnp_start && rnp->parent != NULL) 1447 raw_spin_unlock_rcu_node(rnp); 1448 if (!rnp->parent) 1449 break; /* At root, and perhaps also leaf. */ 1450 } 1451 1452 /* If GP already in progress, just leave, otherwise start one. */ 1453 if (rcu_gp_in_progress()) { 1454 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1455 goto unlock_out; 1456 } 1457 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1458 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1459 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1460 if (!READ_ONCE(rcu_state.gp_kthread)) { 1461 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1462 goto unlock_out; 1463 } 1464 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1465 ret = true; /* Caller must wake GP kthread. */ 1466 unlock_out: 1467 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1468 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1469 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1470 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1471 } 1472 if (rnp != rnp_start) 1473 raw_spin_unlock_rcu_node(rnp); 1474 return ret; 1475 } 1476 1477 /* 1478 * Clean up any old requests for the just-ended grace period. Also return 1479 * whether any additional grace periods have been requested. 1480 */ 1481 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1482 { 1483 bool needmore; 1484 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1485 1486 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1487 if (!needmore) 1488 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1489 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1490 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1491 return needmore; 1492 } 1493 1494 /* 1495 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1496 * interrupt or softirq handler, in which case we just might immediately 1497 * sleep upon return, resulting in a grace-period hang), and don't bother 1498 * awakening when there is nothing for the grace-period kthread to do 1499 * (as in several CPUs raced to awaken, we lost), and finally don't try 1500 * to awaken a kthread that has not yet been created. If all those checks 1501 * are passed, track some debug information and awaken. 1502 * 1503 * So why do the self-wakeup when in an interrupt or softirq handler 1504 * in the grace-period kthread's context? Because the kthread might have 1505 * been interrupted just as it was going to sleep, and just after the final 1506 * pre-sleep check of the awaken condition. In this case, a wakeup really 1507 * is required, and is therefore supplied. 1508 */ 1509 static void rcu_gp_kthread_wake(void) 1510 { 1511 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1512 1513 if ((current == t && !in_irq() && !in_serving_softirq()) || 1514 !READ_ONCE(rcu_state.gp_flags) || !t) 1515 return; 1516 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1517 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1518 swake_up_one(&rcu_state.gp_wq); 1519 } 1520 1521 /* 1522 * If there is room, assign a ->gp_seq number to any callbacks on this 1523 * CPU that have not already been assigned. Also accelerate any callbacks 1524 * that were previously assigned a ->gp_seq number that has since proven 1525 * to be too conservative, which can happen if callbacks get assigned a 1526 * ->gp_seq number while RCU is idle, but with reference to a non-root 1527 * rcu_node structure. This function is idempotent, so it does not hurt 1528 * to call it repeatedly. Returns an flag saying that we should awaken 1529 * the RCU grace-period kthread. 1530 * 1531 * The caller must hold rnp->lock with interrupts disabled. 1532 */ 1533 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1534 { 1535 unsigned long gp_seq_req; 1536 bool ret = false; 1537 1538 rcu_lockdep_assert_cblist_protected(rdp); 1539 raw_lockdep_assert_held_rcu_node(rnp); 1540 1541 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1542 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1543 return false; 1544 1545 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1546 1547 /* 1548 * Callbacks are often registered with incomplete grace-period 1549 * information. Something about the fact that getting exact 1550 * information requires acquiring a global lock... RCU therefore 1551 * makes a conservative estimate of the grace period number at which 1552 * a given callback will become ready to invoke. The following 1553 * code checks this estimate and improves it when possible, thus 1554 * accelerating callback invocation to an earlier grace-period 1555 * number. 1556 */ 1557 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1558 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1559 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1560 1561 /* Trace depending on how much we were able to accelerate. */ 1562 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1563 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1564 else 1565 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1566 1567 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1568 1569 return ret; 1570 } 1571 1572 /* 1573 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1574 * rcu_node structure's ->lock be held. It consults the cached value 1575 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1576 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1577 * while holding the leaf rcu_node structure's ->lock. 1578 */ 1579 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1580 struct rcu_data *rdp) 1581 { 1582 unsigned long c; 1583 bool needwake; 1584 1585 rcu_lockdep_assert_cblist_protected(rdp); 1586 c = rcu_seq_snap(&rcu_state.gp_seq); 1587 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1588 /* Old request still live, so mark recent callbacks. */ 1589 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1590 return; 1591 } 1592 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1593 needwake = rcu_accelerate_cbs(rnp, rdp); 1594 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1595 if (needwake) 1596 rcu_gp_kthread_wake(); 1597 } 1598 1599 /* 1600 * Move any callbacks whose grace period has completed to the 1601 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1602 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1603 * sublist. This function is idempotent, so it does not hurt to 1604 * invoke it repeatedly. As long as it is not invoked -too- often... 1605 * Returns true if the RCU grace-period kthread needs to be awakened. 1606 * 1607 * The caller must hold rnp->lock with interrupts disabled. 1608 */ 1609 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1610 { 1611 rcu_lockdep_assert_cblist_protected(rdp); 1612 raw_lockdep_assert_held_rcu_node(rnp); 1613 1614 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1615 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1616 return false; 1617 1618 /* 1619 * Find all callbacks whose ->gp_seq numbers indicate that they 1620 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1621 */ 1622 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1623 1624 /* Classify any remaining callbacks. */ 1625 return rcu_accelerate_cbs(rnp, rdp); 1626 } 1627 1628 /* 1629 * Move and classify callbacks, but only if doing so won't require 1630 * that the RCU grace-period kthread be awakened. 1631 */ 1632 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1633 struct rcu_data *rdp) 1634 { 1635 rcu_lockdep_assert_cblist_protected(rdp); 1636 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1637 !raw_spin_trylock_rcu_node(rnp)) 1638 return; 1639 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1640 raw_spin_unlock_rcu_node(rnp); 1641 } 1642 1643 /* 1644 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1645 * quiescent state. This is intended to be invoked when the CPU notices 1646 * a new grace period. 1647 */ 1648 static void rcu_strict_gp_check_qs(void) 1649 { 1650 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1651 rcu_read_lock(); 1652 rcu_read_unlock(); 1653 } 1654 } 1655 1656 /* 1657 * Update CPU-local rcu_data state to record the beginnings and ends of 1658 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1659 * structure corresponding to the current CPU, and must have irqs disabled. 1660 * Returns true if the grace-period kthread needs to be awakened. 1661 */ 1662 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1663 { 1664 bool ret = false; 1665 bool need_qs; 1666 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1667 1668 raw_lockdep_assert_held_rcu_node(rnp); 1669 1670 if (rdp->gp_seq == rnp->gp_seq) 1671 return false; /* Nothing to do. */ 1672 1673 /* Handle the ends of any preceding grace periods first. */ 1674 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1675 unlikely(READ_ONCE(rdp->gpwrap))) { 1676 if (!offloaded) 1677 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1678 rdp->core_needs_qs = false; 1679 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1680 } else { 1681 if (!offloaded) 1682 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1683 if (rdp->core_needs_qs) 1684 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1685 } 1686 1687 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1688 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1689 unlikely(READ_ONCE(rdp->gpwrap))) { 1690 /* 1691 * If the current grace period is waiting for this CPU, 1692 * set up to detect a quiescent state, otherwise don't 1693 * go looking for one. 1694 */ 1695 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1696 need_qs = !!(rnp->qsmask & rdp->grpmask); 1697 rdp->cpu_no_qs.b.norm = need_qs; 1698 rdp->core_needs_qs = need_qs; 1699 zero_cpu_stall_ticks(rdp); 1700 } 1701 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1702 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1703 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1704 WRITE_ONCE(rdp->gpwrap, false); 1705 rcu_gpnum_ovf(rnp, rdp); 1706 return ret; 1707 } 1708 1709 static void note_gp_changes(struct rcu_data *rdp) 1710 { 1711 unsigned long flags; 1712 bool needwake; 1713 struct rcu_node *rnp; 1714 1715 local_irq_save(flags); 1716 rnp = rdp->mynode; 1717 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1718 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1719 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1720 local_irq_restore(flags); 1721 return; 1722 } 1723 needwake = __note_gp_changes(rnp, rdp); 1724 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1725 rcu_strict_gp_check_qs(); 1726 if (needwake) 1727 rcu_gp_kthread_wake(); 1728 } 1729 1730 static void rcu_gp_slow(int delay) 1731 { 1732 if (delay > 0 && 1733 !(rcu_seq_ctr(rcu_state.gp_seq) % 1734 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1735 schedule_timeout_idle(delay); 1736 } 1737 1738 static unsigned long sleep_duration; 1739 1740 /* Allow rcutorture to stall the grace-period kthread. */ 1741 void rcu_gp_set_torture_wait(int duration) 1742 { 1743 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1744 WRITE_ONCE(sleep_duration, duration); 1745 } 1746 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1747 1748 /* Actually implement the aforementioned wait. */ 1749 static void rcu_gp_torture_wait(void) 1750 { 1751 unsigned long duration; 1752 1753 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1754 return; 1755 duration = xchg(&sleep_duration, 0UL); 1756 if (duration > 0) { 1757 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1758 schedule_timeout_idle(duration); 1759 pr_alert("%s: Wait complete\n", __func__); 1760 } 1761 } 1762 1763 /* 1764 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1765 * processing. 1766 */ 1767 static void rcu_strict_gp_boundary(void *unused) 1768 { 1769 invoke_rcu_core(); 1770 } 1771 1772 /* 1773 * Initialize a new grace period. Return false if no grace period required. 1774 */ 1775 static bool rcu_gp_init(void) 1776 { 1777 unsigned long firstseq; 1778 unsigned long flags; 1779 unsigned long oldmask; 1780 unsigned long mask; 1781 struct rcu_data *rdp; 1782 struct rcu_node *rnp = rcu_get_root(); 1783 1784 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1785 raw_spin_lock_irq_rcu_node(rnp); 1786 if (!READ_ONCE(rcu_state.gp_flags)) { 1787 /* Spurious wakeup, tell caller to go back to sleep. */ 1788 raw_spin_unlock_irq_rcu_node(rnp); 1789 return false; 1790 } 1791 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1792 1793 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1794 /* 1795 * Grace period already in progress, don't start another. 1796 * Not supposed to be able to happen. 1797 */ 1798 raw_spin_unlock_irq_rcu_node(rnp); 1799 return false; 1800 } 1801 1802 /* Advance to a new grace period and initialize state. */ 1803 record_gp_stall_check_time(); 1804 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1805 rcu_seq_start(&rcu_state.gp_seq); 1806 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1807 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1808 raw_spin_unlock_irq_rcu_node(rnp); 1809 1810 /* 1811 * Apply per-leaf buffered online and offline operations to 1812 * the rcu_node tree. Note that this new grace period need not 1813 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1814 * offlining path, when combined with checks in this function, 1815 * will handle CPUs that are currently going offline or that will 1816 * go offline later. Please also refer to "Hotplug CPU" section 1817 * of RCU's Requirements documentation. 1818 */ 1819 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1820 rcu_for_each_leaf_node(rnp) { 1821 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values. 1822 firstseq = READ_ONCE(rnp->ofl_seq); 1823 if (firstseq & 0x1) 1824 while (firstseq == READ_ONCE(rnp->ofl_seq)) 1825 schedule_timeout_idle(1); // Can't wake unless RCU is watching. 1826 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values. 1827 raw_spin_lock(&rcu_state.ofl_lock); 1828 raw_spin_lock_irq_rcu_node(rnp); 1829 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1830 !rnp->wait_blkd_tasks) { 1831 /* Nothing to do on this leaf rcu_node structure. */ 1832 raw_spin_unlock_irq_rcu_node(rnp); 1833 raw_spin_unlock(&rcu_state.ofl_lock); 1834 continue; 1835 } 1836 1837 /* Record old state, apply changes to ->qsmaskinit field. */ 1838 oldmask = rnp->qsmaskinit; 1839 rnp->qsmaskinit = rnp->qsmaskinitnext; 1840 1841 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1842 if (!oldmask != !rnp->qsmaskinit) { 1843 if (!oldmask) { /* First online CPU for rcu_node. */ 1844 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1845 rcu_init_new_rnp(rnp); 1846 } else if (rcu_preempt_has_tasks(rnp)) { 1847 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1848 } else { /* Last offline CPU and can propagate. */ 1849 rcu_cleanup_dead_rnp(rnp); 1850 } 1851 } 1852 1853 /* 1854 * If all waited-on tasks from prior grace period are 1855 * done, and if all this rcu_node structure's CPUs are 1856 * still offline, propagate up the rcu_node tree and 1857 * clear ->wait_blkd_tasks. Otherwise, if one of this 1858 * rcu_node structure's CPUs has since come back online, 1859 * simply clear ->wait_blkd_tasks. 1860 */ 1861 if (rnp->wait_blkd_tasks && 1862 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1863 rnp->wait_blkd_tasks = false; 1864 if (!rnp->qsmaskinit) 1865 rcu_cleanup_dead_rnp(rnp); 1866 } 1867 1868 raw_spin_unlock_irq_rcu_node(rnp); 1869 raw_spin_unlock(&rcu_state.ofl_lock); 1870 } 1871 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1872 1873 /* 1874 * Set the quiescent-state-needed bits in all the rcu_node 1875 * structures for all currently online CPUs in breadth-first 1876 * order, starting from the root rcu_node structure, relying on the 1877 * layout of the tree within the rcu_state.node[] array. Note that 1878 * other CPUs will access only the leaves of the hierarchy, thus 1879 * seeing that no grace period is in progress, at least until the 1880 * corresponding leaf node has been initialized. 1881 * 1882 * The grace period cannot complete until the initialization 1883 * process finishes, because this kthread handles both. 1884 */ 1885 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1886 rcu_for_each_node_breadth_first(rnp) { 1887 rcu_gp_slow(gp_init_delay); 1888 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1889 rdp = this_cpu_ptr(&rcu_data); 1890 rcu_preempt_check_blocked_tasks(rnp); 1891 rnp->qsmask = rnp->qsmaskinit; 1892 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1893 if (rnp == rdp->mynode) 1894 (void)__note_gp_changes(rnp, rdp); 1895 rcu_preempt_boost_start_gp(rnp); 1896 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1897 rnp->level, rnp->grplo, 1898 rnp->grphi, rnp->qsmask); 1899 /* Quiescent states for tasks on any now-offline CPUs. */ 1900 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1901 rnp->rcu_gp_init_mask = mask; 1902 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1903 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1904 else 1905 raw_spin_unlock_irq_rcu_node(rnp); 1906 cond_resched_tasks_rcu_qs(); 1907 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1908 } 1909 1910 // If strict, make all CPUs aware of new grace period. 1911 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1912 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1913 1914 return true; 1915 } 1916 1917 /* 1918 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1919 * time. 1920 */ 1921 static bool rcu_gp_fqs_check_wake(int *gfp) 1922 { 1923 struct rcu_node *rnp = rcu_get_root(); 1924 1925 // If under overload conditions, force an immediate FQS scan. 1926 if (*gfp & RCU_GP_FLAG_OVLD) 1927 return true; 1928 1929 // Someone like call_rcu() requested a force-quiescent-state scan. 1930 *gfp = READ_ONCE(rcu_state.gp_flags); 1931 if (*gfp & RCU_GP_FLAG_FQS) 1932 return true; 1933 1934 // The current grace period has completed. 1935 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1936 return true; 1937 1938 return false; 1939 } 1940 1941 /* 1942 * Do one round of quiescent-state forcing. 1943 */ 1944 static void rcu_gp_fqs(bool first_time) 1945 { 1946 struct rcu_node *rnp = rcu_get_root(); 1947 1948 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1949 rcu_state.n_force_qs++; 1950 if (first_time) { 1951 /* Collect dyntick-idle snapshots. */ 1952 force_qs_rnp(dyntick_save_progress_counter); 1953 } else { 1954 /* Handle dyntick-idle and offline CPUs. */ 1955 force_qs_rnp(rcu_implicit_dynticks_qs); 1956 } 1957 /* Clear flag to prevent immediate re-entry. */ 1958 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1959 raw_spin_lock_irq_rcu_node(rnp); 1960 WRITE_ONCE(rcu_state.gp_flags, 1961 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1962 raw_spin_unlock_irq_rcu_node(rnp); 1963 } 1964 } 1965 1966 /* 1967 * Loop doing repeated quiescent-state forcing until the grace period ends. 1968 */ 1969 static void rcu_gp_fqs_loop(void) 1970 { 1971 bool first_gp_fqs; 1972 int gf = 0; 1973 unsigned long j; 1974 int ret; 1975 struct rcu_node *rnp = rcu_get_root(); 1976 1977 first_gp_fqs = true; 1978 j = READ_ONCE(jiffies_till_first_fqs); 1979 if (rcu_state.cbovld) 1980 gf = RCU_GP_FLAG_OVLD; 1981 ret = 0; 1982 for (;;) { 1983 if (!ret) { 1984 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1985 /* 1986 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1987 * update; required for stall checks. 1988 */ 1989 smp_wmb(); 1990 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1991 jiffies + (j ? 3 * j : 2)); 1992 } 1993 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1994 TPS("fqswait")); 1995 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1996 ret = swait_event_idle_timeout_exclusive( 1997 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1998 rcu_gp_torture_wait(); 1999 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2000 /* Locking provides needed memory barriers. */ 2001 /* If grace period done, leave loop. */ 2002 if (!READ_ONCE(rnp->qsmask) && 2003 !rcu_preempt_blocked_readers_cgp(rnp)) 2004 break; 2005 /* If time for quiescent-state forcing, do it. */ 2006 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2007 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2008 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2009 TPS("fqsstart")); 2010 rcu_gp_fqs(first_gp_fqs); 2011 gf = 0; 2012 if (first_gp_fqs) { 2013 first_gp_fqs = false; 2014 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2015 } 2016 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2017 TPS("fqsend")); 2018 cond_resched_tasks_rcu_qs(); 2019 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2020 ret = 0; /* Force full wait till next FQS. */ 2021 j = READ_ONCE(jiffies_till_next_fqs); 2022 } else { 2023 /* Deal with stray signal. */ 2024 cond_resched_tasks_rcu_qs(); 2025 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2026 WARN_ON(signal_pending(current)); 2027 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2028 TPS("fqswaitsig")); 2029 ret = 1; /* Keep old FQS timing. */ 2030 j = jiffies; 2031 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2032 j = 1; 2033 else 2034 j = rcu_state.jiffies_force_qs - j; 2035 gf = 0; 2036 } 2037 } 2038 } 2039 2040 /* 2041 * Clean up after the old grace period. 2042 */ 2043 static noinline void rcu_gp_cleanup(void) 2044 { 2045 int cpu; 2046 bool needgp = false; 2047 unsigned long gp_duration; 2048 unsigned long new_gp_seq; 2049 bool offloaded; 2050 struct rcu_data *rdp; 2051 struct rcu_node *rnp = rcu_get_root(); 2052 struct swait_queue_head *sq; 2053 2054 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2055 raw_spin_lock_irq_rcu_node(rnp); 2056 rcu_state.gp_end = jiffies; 2057 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2058 if (gp_duration > rcu_state.gp_max) 2059 rcu_state.gp_max = gp_duration; 2060 2061 /* 2062 * We know the grace period is complete, but to everyone else 2063 * it appears to still be ongoing. But it is also the case 2064 * that to everyone else it looks like there is nothing that 2065 * they can do to advance the grace period. It is therefore 2066 * safe for us to drop the lock in order to mark the grace 2067 * period as completed in all of the rcu_node structures. 2068 */ 2069 raw_spin_unlock_irq_rcu_node(rnp); 2070 2071 /* 2072 * Propagate new ->gp_seq value to rcu_node structures so that 2073 * other CPUs don't have to wait until the start of the next grace 2074 * period to process their callbacks. This also avoids some nasty 2075 * RCU grace-period initialization races by forcing the end of 2076 * the current grace period to be completely recorded in all of 2077 * the rcu_node structures before the beginning of the next grace 2078 * period is recorded in any of the rcu_node structures. 2079 */ 2080 new_gp_seq = rcu_state.gp_seq; 2081 rcu_seq_end(&new_gp_seq); 2082 rcu_for_each_node_breadth_first(rnp) { 2083 raw_spin_lock_irq_rcu_node(rnp); 2084 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2085 dump_blkd_tasks(rnp, 10); 2086 WARN_ON_ONCE(rnp->qsmask); 2087 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2088 rdp = this_cpu_ptr(&rcu_data); 2089 if (rnp == rdp->mynode) 2090 needgp = __note_gp_changes(rnp, rdp) || needgp; 2091 /* smp_mb() provided by prior unlock-lock pair. */ 2092 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2093 // Reset overload indication for CPUs no longer overloaded 2094 if (rcu_is_leaf_node(rnp)) 2095 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2096 rdp = per_cpu_ptr(&rcu_data, cpu); 2097 check_cb_ovld_locked(rdp, rnp); 2098 } 2099 sq = rcu_nocb_gp_get(rnp); 2100 raw_spin_unlock_irq_rcu_node(rnp); 2101 rcu_nocb_gp_cleanup(sq); 2102 cond_resched_tasks_rcu_qs(); 2103 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2104 rcu_gp_slow(gp_cleanup_delay); 2105 } 2106 rnp = rcu_get_root(); 2107 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2108 2109 /* Declare grace period done, trace first to use old GP number. */ 2110 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2111 rcu_seq_end(&rcu_state.gp_seq); 2112 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2113 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2114 /* Check for GP requests since above loop. */ 2115 rdp = this_cpu_ptr(&rcu_data); 2116 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2117 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2118 TPS("CleanupMore")); 2119 needgp = true; 2120 } 2121 /* Advance CBs to reduce false positives below. */ 2122 offloaded = rcu_rdp_is_offloaded(rdp); 2123 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2124 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2125 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2126 trace_rcu_grace_period(rcu_state.name, 2127 rcu_state.gp_seq, 2128 TPS("newreq")); 2129 } else { 2130 WRITE_ONCE(rcu_state.gp_flags, 2131 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2132 } 2133 raw_spin_unlock_irq_rcu_node(rnp); 2134 2135 // If strict, make all CPUs aware of the end of the old grace period. 2136 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2137 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2138 } 2139 2140 /* 2141 * Body of kthread that handles grace periods. 2142 */ 2143 static int __noreturn rcu_gp_kthread(void *unused) 2144 { 2145 rcu_bind_gp_kthread(); 2146 for (;;) { 2147 2148 /* Handle grace-period start. */ 2149 for (;;) { 2150 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2151 TPS("reqwait")); 2152 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2153 swait_event_idle_exclusive(rcu_state.gp_wq, 2154 READ_ONCE(rcu_state.gp_flags) & 2155 RCU_GP_FLAG_INIT); 2156 rcu_gp_torture_wait(); 2157 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2158 /* Locking provides needed memory barrier. */ 2159 if (rcu_gp_init()) 2160 break; 2161 cond_resched_tasks_rcu_qs(); 2162 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2163 WARN_ON(signal_pending(current)); 2164 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2165 TPS("reqwaitsig")); 2166 } 2167 2168 /* Handle quiescent-state forcing. */ 2169 rcu_gp_fqs_loop(); 2170 2171 /* Handle grace-period end. */ 2172 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2173 rcu_gp_cleanup(); 2174 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2175 } 2176 } 2177 2178 /* 2179 * Report a full set of quiescent states to the rcu_state data structure. 2180 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2181 * another grace period is required. Whether we wake the grace-period 2182 * kthread or it awakens itself for the next round of quiescent-state 2183 * forcing, that kthread will clean up after the just-completed grace 2184 * period. Note that the caller must hold rnp->lock, which is released 2185 * before return. 2186 */ 2187 static void rcu_report_qs_rsp(unsigned long flags) 2188 __releases(rcu_get_root()->lock) 2189 { 2190 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2191 WARN_ON_ONCE(!rcu_gp_in_progress()); 2192 WRITE_ONCE(rcu_state.gp_flags, 2193 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2194 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2195 rcu_gp_kthread_wake(); 2196 } 2197 2198 /* 2199 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2200 * Allows quiescent states for a group of CPUs to be reported at one go 2201 * to the specified rcu_node structure, though all the CPUs in the group 2202 * must be represented by the same rcu_node structure (which need not be a 2203 * leaf rcu_node structure, though it often will be). The gps parameter 2204 * is the grace-period snapshot, which means that the quiescent states 2205 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2206 * must be held upon entry, and it is released before return. 2207 * 2208 * As a special case, if mask is zero, the bit-already-cleared check is 2209 * disabled. This allows propagating quiescent state due to resumed tasks 2210 * during grace-period initialization. 2211 */ 2212 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2213 unsigned long gps, unsigned long flags) 2214 __releases(rnp->lock) 2215 { 2216 unsigned long oldmask = 0; 2217 struct rcu_node *rnp_c; 2218 2219 raw_lockdep_assert_held_rcu_node(rnp); 2220 2221 /* Walk up the rcu_node hierarchy. */ 2222 for (;;) { 2223 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2224 2225 /* 2226 * Our bit has already been cleared, or the 2227 * relevant grace period is already over, so done. 2228 */ 2229 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2230 return; 2231 } 2232 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2233 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2234 rcu_preempt_blocked_readers_cgp(rnp)); 2235 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2236 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2237 mask, rnp->qsmask, rnp->level, 2238 rnp->grplo, rnp->grphi, 2239 !!rnp->gp_tasks); 2240 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2241 2242 /* Other bits still set at this level, so done. */ 2243 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2244 return; 2245 } 2246 rnp->completedqs = rnp->gp_seq; 2247 mask = rnp->grpmask; 2248 if (rnp->parent == NULL) { 2249 2250 /* No more levels. Exit loop holding root lock. */ 2251 2252 break; 2253 } 2254 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2255 rnp_c = rnp; 2256 rnp = rnp->parent; 2257 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2258 oldmask = READ_ONCE(rnp_c->qsmask); 2259 } 2260 2261 /* 2262 * Get here if we are the last CPU to pass through a quiescent 2263 * state for this grace period. Invoke rcu_report_qs_rsp() 2264 * to clean up and start the next grace period if one is needed. 2265 */ 2266 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2267 } 2268 2269 /* 2270 * Record a quiescent state for all tasks that were previously queued 2271 * on the specified rcu_node structure and that were blocking the current 2272 * RCU grace period. The caller must hold the corresponding rnp->lock with 2273 * irqs disabled, and this lock is released upon return, but irqs remain 2274 * disabled. 2275 */ 2276 static void __maybe_unused 2277 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2278 __releases(rnp->lock) 2279 { 2280 unsigned long gps; 2281 unsigned long mask; 2282 struct rcu_node *rnp_p; 2283 2284 raw_lockdep_assert_held_rcu_node(rnp); 2285 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2286 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2287 rnp->qsmask != 0) { 2288 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2289 return; /* Still need more quiescent states! */ 2290 } 2291 2292 rnp->completedqs = rnp->gp_seq; 2293 rnp_p = rnp->parent; 2294 if (rnp_p == NULL) { 2295 /* 2296 * Only one rcu_node structure in the tree, so don't 2297 * try to report up to its nonexistent parent! 2298 */ 2299 rcu_report_qs_rsp(flags); 2300 return; 2301 } 2302 2303 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2304 gps = rnp->gp_seq; 2305 mask = rnp->grpmask; 2306 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2307 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2308 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2309 } 2310 2311 /* 2312 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2313 * structure. This must be called from the specified CPU. 2314 */ 2315 static void 2316 rcu_report_qs_rdp(struct rcu_data *rdp) 2317 { 2318 unsigned long flags; 2319 unsigned long mask; 2320 bool needwake = false; 2321 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2322 struct rcu_node *rnp; 2323 2324 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2325 rnp = rdp->mynode; 2326 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2327 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2328 rdp->gpwrap) { 2329 2330 /* 2331 * The grace period in which this quiescent state was 2332 * recorded has ended, so don't report it upwards. 2333 * We will instead need a new quiescent state that lies 2334 * within the current grace period. 2335 */ 2336 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2337 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2338 return; 2339 } 2340 mask = rdp->grpmask; 2341 rdp->core_needs_qs = false; 2342 if ((rnp->qsmask & mask) == 0) { 2343 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2344 } else { 2345 /* 2346 * This GP can't end until cpu checks in, so all of our 2347 * callbacks can be processed during the next GP. 2348 */ 2349 if (!offloaded) 2350 needwake = rcu_accelerate_cbs(rnp, rdp); 2351 2352 rcu_disable_urgency_upon_qs(rdp); 2353 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2354 /* ^^^ Released rnp->lock */ 2355 if (needwake) 2356 rcu_gp_kthread_wake(); 2357 } 2358 } 2359 2360 /* 2361 * Check to see if there is a new grace period of which this CPU 2362 * is not yet aware, and if so, set up local rcu_data state for it. 2363 * Otherwise, see if this CPU has just passed through its first 2364 * quiescent state for this grace period, and record that fact if so. 2365 */ 2366 static void 2367 rcu_check_quiescent_state(struct rcu_data *rdp) 2368 { 2369 /* Check for grace-period ends and beginnings. */ 2370 note_gp_changes(rdp); 2371 2372 /* 2373 * Does this CPU still need to do its part for current grace period? 2374 * If no, return and let the other CPUs do their part as well. 2375 */ 2376 if (!rdp->core_needs_qs) 2377 return; 2378 2379 /* 2380 * Was there a quiescent state since the beginning of the grace 2381 * period? If no, then exit and wait for the next call. 2382 */ 2383 if (rdp->cpu_no_qs.b.norm) 2384 return; 2385 2386 /* 2387 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2388 * judge of that). 2389 */ 2390 rcu_report_qs_rdp(rdp); 2391 } 2392 2393 /* 2394 * Near the end of the offline process. Trace the fact that this CPU 2395 * is going offline. 2396 */ 2397 int rcutree_dying_cpu(unsigned int cpu) 2398 { 2399 bool blkd; 2400 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2401 struct rcu_node *rnp = rdp->mynode; 2402 2403 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2404 return 0; 2405 2406 blkd = !!(rnp->qsmask & rdp->grpmask); 2407 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2408 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2409 return 0; 2410 } 2411 2412 /* 2413 * All CPUs for the specified rcu_node structure have gone offline, 2414 * and all tasks that were preempted within an RCU read-side critical 2415 * section while running on one of those CPUs have since exited their RCU 2416 * read-side critical section. Some other CPU is reporting this fact with 2417 * the specified rcu_node structure's ->lock held and interrupts disabled. 2418 * This function therefore goes up the tree of rcu_node structures, 2419 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2420 * the leaf rcu_node structure's ->qsmaskinit field has already been 2421 * updated. 2422 * 2423 * This function does check that the specified rcu_node structure has 2424 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2425 * prematurely. That said, invoking it after the fact will cost you 2426 * a needless lock acquisition. So once it has done its work, don't 2427 * invoke it again. 2428 */ 2429 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2430 { 2431 long mask; 2432 struct rcu_node *rnp = rnp_leaf; 2433 2434 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2435 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2436 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2437 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2438 return; 2439 for (;;) { 2440 mask = rnp->grpmask; 2441 rnp = rnp->parent; 2442 if (!rnp) 2443 break; 2444 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2445 rnp->qsmaskinit &= ~mask; 2446 /* Between grace periods, so better already be zero! */ 2447 WARN_ON_ONCE(rnp->qsmask); 2448 if (rnp->qsmaskinit) { 2449 raw_spin_unlock_rcu_node(rnp); 2450 /* irqs remain disabled. */ 2451 return; 2452 } 2453 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2454 } 2455 } 2456 2457 /* 2458 * The CPU has been completely removed, and some other CPU is reporting 2459 * this fact from process context. Do the remainder of the cleanup. 2460 * There can only be one CPU hotplug operation at a time, so no need for 2461 * explicit locking. 2462 */ 2463 int rcutree_dead_cpu(unsigned int cpu) 2464 { 2465 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2466 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2467 2468 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2469 return 0; 2470 2471 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2472 /* Adjust any no-longer-needed kthreads. */ 2473 rcu_boost_kthread_setaffinity(rnp, -1); 2474 /* Do any needed no-CB deferred wakeups from this CPU. */ 2475 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2476 2477 // Stop-machine done, so allow nohz_full to disable tick. 2478 tick_dep_clear(TICK_DEP_BIT_RCU); 2479 return 0; 2480 } 2481 2482 /* 2483 * Invoke any RCU callbacks that have made it to the end of their grace 2484 * period. Throttle as specified by rdp->blimit. 2485 */ 2486 static void rcu_do_batch(struct rcu_data *rdp) 2487 { 2488 int div; 2489 bool __maybe_unused empty; 2490 unsigned long flags; 2491 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2492 struct rcu_head *rhp; 2493 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2494 long bl, count = 0; 2495 long pending, tlimit = 0; 2496 2497 /* If no callbacks are ready, just return. */ 2498 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2499 trace_rcu_batch_start(rcu_state.name, 2500 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2501 trace_rcu_batch_end(rcu_state.name, 0, 2502 !rcu_segcblist_empty(&rdp->cblist), 2503 need_resched(), is_idle_task(current), 2504 rcu_is_callbacks_kthread()); 2505 return; 2506 } 2507 2508 /* 2509 * Extract the list of ready callbacks, disabling to prevent 2510 * races with call_rcu() from interrupt handlers. Leave the 2511 * callback counts, as rcu_barrier() needs to be conservative. 2512 */ 2513 local_irq_save(flags); 2514 rcu_nocb_lock(rdp); 2515 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2516 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2517 div = READ_ONCE(rcu_divisor); 2518 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2519 bl = max(rdp->blimit, pending >> div); 2520 if (unlikely(bl > 100)) { 2521 long rrn = READ_ONCE(rcu_resched_ns); 2522 2523 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2524 tlimit = local_clock() + rrn; 2525 } 2526 trace_rcu_batch_start(rcu_state.name, 2527 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2528 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2529 if (offloaded) 2530 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2531 2532 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2533 rcu_nocb_unlock_irqrestore(rdp, flags); 2534 2535 /* Invoke callbacks. */ 2536 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2537 rhp = rcu_cblist_dequeue(&rcl); 2538 2539 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2540 rcu_callback_t f; 2541 2542 count++; 2543 debug_rcu_head_unqueue(rhp); 2544 2545 rcu_lock_acquire(&rcu_callback_map); 2546 trace_rcu_invoke_callback(rcu_state.name, rhp); 2547 2548 f = rhp->func; 2549 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2550 f(rhp); 2551 2552 rcu_lock_release(&rcu_callback_map); 2553 2554 /* 2555 * Stop only if limit reached and CPU has something to do. 2556 */ 2557 if (count >= bl && !offloaded && 2558 (need_resched() || 2559 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2560 break; 2561 if (unlikely(tlimit)) { 2562 /* only call local_clock() every 32 callbacks */ 2563 if (likely((count & 31) || local_clock() < tlimit)) 2564 continue; 2565 /* Exceeded the time limit, so leave. */ 2566 break; 2567 } 2568 if (!in_serving_softirq()) { 2569 local_bh_enable(); 2570 lockdep_assert_irqs_enabled(); 2571 cond_resched_tasks_rcu_qs(); 2572 lockdep_assert_irqs_enabled(); 2573 local_bh_disable(); 2574 } 2575 } 2576 2577 local_irq_save(flags); 2578 rcu_nocb_lock(rdp); 2579 rdp->n_cbs_invoked += count; 2580 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2581 is_idle_task(current), rcu_is_callbacks_kthread()); 2582 2583 /* Update counts and requeue any remaining callbacks. */ 2584 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2585 rcu_segcblist_add_len(&rdp->cblist, -count); 2586 2587 /* Reinstate batch limit if we have worked down the excess. */ 2588 count = rcu_segcblist_n_cbs(&rdp->cblist); 2589 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2590 rdp->blimit = blimit; 2591 2592 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2593 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2594 rdp->qlen_last_fqs_check = 0; 2595 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2596 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2597 rdp->qlen_last_fqs_check = count; 2598 2599 /* 2600 * The following usually indicates a double call_rcu(). To track 2601 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2602 */ 2603 empty = rcu_segcblist_empty(&rdp->cblist); 2604 WARN_ON_ONCE(count == 0 && !empty); 2605 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2606 count != 0 && empty); 2607 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2608 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2609 2610 rcu_nocb_unlock_irqrestore(rdp, flags); 2611 2612 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2613 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2614 invoke_rcu_core(); 2615 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2616 } 2617 2618 /* 2619 * This function is invoked from each scheduling-clock interrupt, 2620 * and checks to see if this CPU is in a non-context-switch quiescent 2621 * state, for example, user mode or idle loop. It also schedules RCU 2622 * core processing. If the current grace period has gone on too long, 2623 * it will ask the scheduler to manufacture a context switch for the sole 2624 * purpose of providing the needed quiescent state. 2625 */ 2626 void rcu_sched_clock_irq(int user) 2627 { 2628 trace_rcu_utilization(TPS("Start scheduler-tick")); 2629 lockdep_assert_irqs_disabled(); 2630 raw_cpu_inc(rcu_data.ticks_this_gp); 2631 /* The load-acquire pairs with the store-release setting to true. */ 2632 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2633 /* Idle and userspace execution already are quiescent states. */ 2634 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2635 set_tsk_need_resched(current); 2636 set_preempt_need_resched(); 2637 } 2638 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2639 } 2640 rcu_flavor_sched_clock_irq(user); 2641 if (rcu_pending(user)) 2642 invoke_rcu_core(); 2643 lockdep_assert_irqs_disabled(); 2644 2645 trace_rcu_utilization(TPS("End scheduler-tick")); 2646 } 2647 2648 /* 2649 * Scan the leaf rcu_node structures. For each structure on which all 2650 * CPUs have reported a quiescent state and on which there are tasks 2651 * blocking the current grace period, initiate RCU priority boosting. 2652 * Otherwise, invoke the specified function to check dyntick state for 2653 * each CPU that has not yet reported a quiescent state. 2654 */ 2655 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2656 { 2657 int cpu; 2658 unsigned long flags; 2659 unsigned long mask; 2660 struct rcu_data *rdp; 2661 struct rcu_node *rnp; 2662 2663 rcu_state.cbovld = rcu_state.cbovldnext; 2664 rcu_state.cbovldnext = false; 2665 rcu_for_each_leaf_node(rnp) { 2666 cond_resched_tasks_rcu_qs(); 2667 mask = 0; 2668 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2669 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2670 if (rnp->qsmask == 0) { 2671 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2672 /* 2673 * No point in scanning bits because they 2674 * are all zero. But we might need to 2675 * priority-boost blocked readers. 2676 */ 2677 rcu_initiate_boost(rnp, flags); 2678 /* rcu_initiate_boost() releases rnp->lock */ 2679 continue; 2680 } 2681 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2682 continue; 2683 } 2684 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2685 rdp = per_cpu_ptr(&rcu_data, cpu); 2686 if (f(rdp)) { 2687 mask |= rdp->grpmask; 2688 rcu_disable_urgency_upon_qs(rdp); 2689 } 2690 } 2691 if (mask != 0) { 2692 /* Idle/offline CPUs, report (releases rnp->lock). */ 2693 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2694 } else { 2695 /* Nothing to do here, so just drop the lock. */ 2696 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2697 } 2698 } 2699 } 2700 2701 /* 2702 * Force quiescent states on reluctant CPUs, and also detect which 2703 * CPUs are in dyntick-idle mode. 2704 */ 2705 void rcu_force_quiescent_state(void) 2706 { 2707 unsigned long flags; 2708 bool ret; 2709 struct rcu_node *rnp; 2710 struct rcu_node *rnp_old = NULL; 2711 2712 /* Funnel through hierarchy to reduce memory contention. */ 2713 rnp = __this_cpu_read(rcu_data.mynode); 2714 for (; rnp != NULL; rnp = rnp->parent) { 2715 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2716 !raw_spin_trylock(&rnp->fqslock); 2717 if (rnp_old != NULL) 2718 raw_spin_unlock(&rnp_old->fqslock); 2719 if (ret) 2720 return; 2721 rnp_old = rnp; 2722 } 2723 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2724 2725 /* Reached the root of the rcu_node tree, acquire lock. */ 2726 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2727 raw_spin_unlock(&rnp_old->fqslock); 2728 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2729 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2730 return; /* Someone beat us to it. */ 2731 } 2732 WRITE_ONCE(rcu_state.gp_flags, 2733 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2734 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2735 rcu_gp_kthread_wake(); 2736 } 2737 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2738 2739 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2740 // grace periods. 2741 static void strict_work_handler(struct work_struct *work) 2742 { 2743 rcu_read_lock(); 2744 rcu_read_unlock(); 2745 } 2746 2747 /* Perform RCU core processing work for the current CPU. */ 2748 static __latent_entropy void rcu_core(void) 2749 { 2750 unsigned long flags; 2751 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2752 struct rcu_node *rnp = rdp->mynode; 2753 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2754 2755 if (cpu_is_offline(smp_processor_id())) 2756 return; 2757 trace_rcu_utilization(TPS("Start RCU core")); 2758 WARN_ON_ONCE(!rdp->beenonline); 2759 2760 /* Report any deferred quiescent states if preemption enabled. */ 2761 if (!(preempt_count() & PREEMPT_MASK)) { 2762 rcu_preempt_deferred_qs(current); 2763 } else if (rcu_preempt_need_deferred_qs(current)) { 2764 set_tsk_need_resched(current); 2765 set_preempt_need_resched(); 2766 } 2767 2768 /* Update RCU state based on any recent quiescent states. */ 2769 rcu_check_quiescent_state(rdp); 2770 2771 /* No grace period and unregistered callbacks? */ 2772 if (!rcu_gp_in_progress() && 2773 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2774 rcu_nocb_lock_irqsave(rdp, flags); 2775 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2776 rcu_accelerate_cbs_unlocked(rnp, rdp); 2777 rcu_nocb_unlock_irqrestore(rdp, flags); 2778 } 2779 2780 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2781 2782 /* If there are callbacks ready, invoke them. */ 2783 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2784 likely(READ_ONCE(rcu_scheduler_fully_active))) 2785 rcu_do_batch(rdp); 2786 2787 /* Do any needed deferred wakeups of rcuo kthreads. */ 2788 do_nocb_deferred_wakeup(rdp); 2789 trace_rcu_utilization(TPS("End RCU core")); 2790 2791 // If strict GPs, schedule an RCU reader in a clean environment. 2792 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2793 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2794 } 2795 2796 static void rcu_core_si(struct softirq_action *h) 2797 { 2798 rcu_core(); 2799 } 2800 2801 static void rcu_wake_cond(struct task_struct *t, int status) 2802 { 2803 /* 2804 * If the thread is yielding, only wake it when this 2805 * is invoked from idle 2806 */ 2807 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2808 wake_up_process(t); 2809 } 2810 2811 static void invoke_rcu_core_kthread(void) 2812 { 2813 struct task_struct *t; 2814 unsigned long flags; 2815 2816 local_irq_save(flags); 2817 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2818 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2819 if (t != NULL && t != current) 2820 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2821 local_irq_restore(flags); 2822 } 2823 2824 /* 2825 * Wake up this CPU's rcuc kthread to do RCU core processing. 2826 */ 2827 static void invoke_rcu_core(void) 2828 { 2829 if (!cpu_online(smp_processor_id())) 2830 return; 2831 if (use_softirq) 2832 raise_softirq(RCU_SOFTIRQ); 2833 else 2834 invoke_rcu_core_kthread(); 2835 } 2836 2837 static void rcu_cpu_kthread_park(unsigned int cpu) 2838 { 2839 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2840 } 2841 2842 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2843 { 2844 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2845 } 2846 2847 /* 2848 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2849 * the RCU softirq used in configurations of RCU that do not support RCU 2850 * priority boosting. 2851 */ 2852 static void rcu_cpu_kthread(unsigned int cpu) 2853 { 2854 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2855 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2856 int spincnt; 2857 2858 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2859 for (spincnt = 0; spincnt < 10; spincnt++) { 2860 local_bh_disable(); 2861 *statusp = RCU_KTHREAD_RUNNING; 2862 local_irq_disable(); 2863 work = *workp; 2864 *workp = 0; 2865 local_irq_enable(); 2866 if (work) 2867 rcu_core(); 2868 local_bh_enable(); 2869 if (*workp == 0) { 2870 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2871 *statusp = RCU_KTHREAD_WAITING; 2872 return; 2873 } 2874 } 2875 *statusp = RCU_KTHREAD_YIELDING; 2876 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2877 schedule_timeout_idle(2); 2878 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2879 *statusp = RCU_KTHREAD_WAITING; 2880 } 2881 2882 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2883 .store = &rcu_data.rcu_cpu_kthread_task, 2884 .thread_should_run = rcu_cpu_kthread_should_run, 2885 .thread_fn = rcu_cpu_kthread, 2886 .thread_comm = "rcuc/%u", 2887 .setup = rcu_cpu_kthread_setup, 2888 .park = rcu_cpu_kthread_park, 2889 }; 2890 2891 /* 2892 * Spawn per-CPU RCU core processing kthreads. 2893 */ 2894 static int __init rcu_spawn_core_kthreads(void) 2895 { 2896 int cpu; 2897 2898 for_each_possible_cpu(cpu) 2899 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2900 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2901 return 0; 2902 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2903 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2904 return 0; 2905 } 2906 2907 /* 2908 * Handle any core-RCU processing required by a call_rcu() invocation. 2909 */ 2910 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2911 unsigned long flags) 2912 { 2913 /* 2914 * If called from an extended quiescent state, invoke the RCU 2915 * core in order to force a re-evaluation of RCU's idleness. 2916 */ 2917 if (!rcu_is_watching()) 2918 invoke_rcu_core(); 2919 2920 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2921 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2922 return; 2923 2924 /* 2925 * Force the grace period if too many callbacks or too long waiting. 2926 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2927 * if some other CPU has recently done so. Also, don't bother 2928 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2929 * is the only one waiting for a grace period to complete. 2930 */ 2931 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2932 rdp->qlen_last_fqs_check + qhimark)) { 2933 2934 /* Are we ignoring a completed grace period? */ 2935 note_gp_changes(rdp); 2936 2937 /* Start a new grace period if one not already started. */ 2938 if (!rcu_gp_in_progress()) { 2939 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2940 } else { 2941 /* Give the grace period a kick. */ 2942 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2943 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2944 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2945 rcu_force_quiescent_state(); 2946 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2947 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2948 } 2949 } 2950 } 2951 2952 /* 2953 * RCU callback function to leak a callback. 2954 */ 2955 static void rcu_leak_callback(struct rcu_head *rhp) 2956 { 2957 } 2958 2959 /* 2960 * Check and if necessary update the leaf rcu_node structure's 2961 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2962 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2963 * structure's ->lock. 2964 */ 2965 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2966 { 2967 raw_lockdep_assert_held_rcu_node(rnp); 2968 if (qovld_calc <= 0) 2969 return; // Early boot and wildcard value set. 2970 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2971 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2972 else 2973 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2974 } 2975 2976 /* 2977 * Check and if necessary update the leaf rcu_node structure's 2978 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2979 * number of queued RCU callbacks. No locks need be held, but the 2980 * caller must have disabled interrupts. 2981 * 2982 * Note that this function ignores the possibility that there are a lot 2983 * of callbacks all of which have already seen the end of their respective 2984 * grace periods. This omission is due to the need for no-CBs CPUs to 2985 * be holding ->nocb_lock to do this check, which is too heavy for a 2986 * common-case operation. 2987 */ 2988 static void check_cb_ovld(struct rcu_data *rdp) 2989 { 2990 struct rcu_node *const rnp = rdp->mynode; 2991 2992 if (qovld_calc <= 0 || 2993 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2994 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2995 return; // Early boot wildcard value or already set correctly. 2996 raw_spin_lock_rcu_node(rnp); 2997 check_cb_ovld_locked(rdp, rnp); 2998 raw_spin_unlock_rcu_node(rnp); 2999 } 3000 3001 /* Helper function for call_rcu() and friends. */ 3002 static void 3003 __call_rcu(struct rcu_head *head, rcu_callback_t func) 3004 { 3005 static atomic_t doublefrees; 3006 unsigned long flags; 3007 struct rcu_data *rdp; 3008 bool was_alldone; 3009 3010 /* Misaligned rcu_head! */ 3011 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3012 3013 if (debug_rcu_head_queue(head)) { 3014 /* 3015 * Probable double call_rcu(), so leak the callback. 3016 * Use rcu:rcu_callback trace event to find the previous 3017 * time callback was passed to __call_rcu(). 3018 */ 3019 if (atomic_inc_return(&doublefrees) < 4) { 3020 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3021 mem_dump_obj(head); 3022 } 3023 WRITE_ONCE(head->func, rcu_leak_callback); 3024 return; 3025 } 3026 head->func = func; 3027 head->next = NULL; 3028 local_irq_save(flags); 3029 kasan_record_aux_stack(head); 3030 rdp = this_cpu_ptr(&rcu_data); 3031 3032 /* Add the callback to our list. */ 3033 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3034 // This can trigger due to call_rcu() from offline CPU: 3035 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3036 WARN_ON_ONCE(!rcu_is_watching()); 3037 // Very early boot, before rcu_init(). Initialize if needed 3038 // and then drop through to queue the callback. 3039 if (rcu_segcblist_empty(&rdp->cblist)) 3040 rcu_segcblist_init(&rdp->cblist); 3041 } 3042 3043 check_cb_ovld(rdp); 3044 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 3045 return; // Enqueued onto ->nocb_bypass, so just leave. 3046 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 3047 rcu_segcblist_enqueue(&rdp->cblist, head); 3048 if (__is_kvfree_rcu_offset((unsigned long)func)) 3049 trace_rcu_kvfree_callback(rcu_state.name, head, 3050 (unsigned long)func, 3051 rcu_segcblist_n_cbs(&rdp->cblist)); 3052 else 3053 trace_rcu_callback(rcu_state.name, head, 3054 rcu_segcblist_n_cbs(&rdp->cblist)); 3055 3056 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 3057 3058 /* Go handle any RCU core processing required. */ 3059 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 3060 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 3061 } else { 3062 __call_rcu_core(rdp, head, flags); 3063 local_irq_restore(flags); 3064 } 3065 } 3066 3067 /** 3068 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3069 * @head: structure to be used for queueing the RCU updates. 3070 * @func: actual callback function to be invoked after the grace period 3071 * 3072 * The callback function will be invoked some time after a full grace 3073 * period elapses, in other words after all pre-existing RCU read-side 3074 * critical sections have completed. However, the callback function 3075 * might well execute concurrently with RCU read-side critical sections 3076 * that started after call_rcu() was invoked. 3077 * 3078 * RCU read-side critical sections are delimited by rcu_read_lock() 3079 * and rcu_read_unlock(), and may be nested. In addition, but only in 3080 * v5.0 and later, regions of code across which interrupts, preemption, 3081 * or softirqs have been disabled also serve as RCU read-side critical 3082 * sections. This includes hardware interrupt handlers, softirq handlers, 3083 * and NMI handlers. 3084 * 3085 * Note that all CPUs must agree that the grace period extended beyond 3086 * all pre-existing RCU read-side critical section. On systems with more 3087 * than one CPU, this means that when "func()" is invoked, each CPU is 3088 * guaranteed to have executed a full memory barrier since the end of its 3089 * last RCU read-side critical section whose beginning preceded the call 3090 * to call_rcu(). It also means that each CPU executing an RCU read-side 3091 * critical section that continues beyond the start of "func()" must have 3092 * executed a memory barrier after the call_rcu() but before the beginning 3093 * of that RCU read-side critical section. Note that these guarantees 3094 * include CPUs that are offline, idle, or executing in user mode, as 3095 * well as CPUs that are executing in the kernel. 3096 * 3097 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3098 * resulting RCU callback function "func()", then both CPU A and CPU B are 3099 * guaranteed to execute a full memory barrier during the time interval 3100 * between the call to call_rcu() and the invocation of "func()" -- even 3101 * if CPU A and CPU B are the same CPU (but again only if the system has 3102 * more than one CPU). 3103 * 3104 * Implementation of these memory-ordering guarantees is described here: 3105 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3106 */ 3107 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3108 { 3109 __call_rcu(head, func); 3110 } 3111 EXPORT_SYMBOL_GPL(call_rcu); 3112 3113 3114 /* Maximum number of jiffies to wait before draining a batch. */ 3115 #define KFREE_DRAIN_JIFFIES (HZ / 50) 3116 #define KFREE_N_BATCHES 2 3117 #define FREE_N_CHANNELS 2 3118 3119 /** 3120 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3121 * @nr_records: Number of active pointers in the array 3122 * @next: Next bulk object in the block chain 3123 * @records: Array of the kvfree_rcu() pointers 3124 */ 3125 struct kvfree_rcu_bulk_data { 3126 unsigned long nr_records; 3127 struct kvfree_rcu_bulk_data *next; 3128 void *records[]; 3129 }; 3130 3131 /* 3132 * This macro defines how many entries the "records" array 3133 * will contain. It is based on the fact that the size of 3134 * kvfree_rcu_bulk_data structure becomes exactly one page. 3135 */ 3136 #define KVFREE_BULK_MAX_ENTR \ 3137 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3138 3139 /** 3140 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3141 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3142 * @head_free: List of kfree_rcu() objects waiting for a grace period 3143 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3144 * @krcp: Pointer to @kfree_rcu_cpu structure 3145 */ 3146 3147 struct kfree_rcu_cpu_work { 3148 struct rcu_work rcu_work; 3149 struct rcu_head *head_free; 3150 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3151 struct kfree_rcu_cpu *krcp; 3152 }; 3153 3154 /** 3155 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3156 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3157 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3158 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3159 * @lock: Synchronize access to this structure 3160 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3161 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3162 * @initialized: The @rcu_work fields have been initialized 3163 * @count: Number of objects for which GP not started 3164 * @bkvcache: 3165 * A simple cache list that contains objects for reuse purpose. 3166 * In order to save some per-cpu space the list is singular. 3167 * Even though it is lockless an access has to be protected by the 3168 * per-cpu lock. 3169 * @page_cache_work: A work to refill the cache when it is empty 3170 * @backoff_page_cache_fill: Delay cache refills 3171 * @work_in_progress: Indicates that page_cache_work is running 3172 * @hrtimer: A hrtimer for scheduling a page_cache_work 3173 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3174 * 3175 * This is a per-CPU structure. The reason that it is not included in 3176 * the rcu_data structure is to permit this code to be extracted from 3177 * the RCU files. Such extraction could allow further optimization of 3178 * the interactions with the slab allocators. 3179 */ 3180 struct kfree_rcu_cpu { 3181 struct rcu_head *head; 3182 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3183 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3184 raw_spinlock_t lock; 3185 struct delayed_work monitor_work; 3186 bool monitor_todo; 3187 bool initialized; 3188 int count; 3189 3190 struct delayed_work page_cache_work; 3191 atomic_t backoff_page_cache_fill; 3192 atomic_t work_in_progress; 3193 struct hrtimer hrtimer; 3194 3195 struct llist_head bkvcache; 3196 int nr_bkv_objs; 3197 }; 3198 3199 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3200 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3201 }; 3202 3203 static __always_inline void 3204 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3205 { 3206 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3207 int i; 3208 3209 for (i = 0; i < bhead->nr_records; i++) 3210 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3211 #endif 3212 } 3213 3214 static inline struct kfree_rcu_cpu * 3215 krc_this_cpu_lock(unsigned long *flags) 3216 { 3217 struct kfree_rcu_cpu *krcp; 3218 3219 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3220 krcp = this_cpu_ptr(&krc); 3221 raw_spin_lock(&krcp->lock); 3222 3223 return krcp; 3224 } 3225 3226 static inline void 3227 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3228 { 3229 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3230 } 3231 3232 static inline struct kvfree_rcu_bulk_data * 3233 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3234 { 3235 if (!krcp->nr_bkv_objs) 3236 return NULL; 3237 3238 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 3239 return (struct kvfree_rcu_bulk_data *) 3240 llist_del_first(&krcp->bkvcache); 3241 } 3242 3243 static inline bool 3244 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3245 struct kvfree_rcu_bulk_data *bnode) 3246 { 3247 // Check the limit. 3248 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3249 return false; 3250 3251 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3252 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 3253 return true; 3254 } 3255 3256 static int 3257 drain_page_cache(struct kfree_rcu_cpu *krcp) 3258 { 3259 unsigned long flags; 3260 struct llist_node *page_list, *pos, *n; 3261 int freed = 0; 3262 3263 raw_spin_lock_irqsave(&krcp->lock, flags); 3264 page_list = llist_del_all(&krcp->bkvcache); 3265 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3266 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3267 3268 llist_for_each_safe(pos, n, page_list) { 3269 free_page((unsigned long)pos); 3270 freed++; 3271 } 3272 3273 return freed; 3274 } 3275 3276 /* 3277 * This function is invoked in workqueue context after a grace period. 3278 * It frees all the objects queued on ->bkvhead_free or ->head_free. 3279 */ 3280 static void kfree_rcu_work(struct work_struct *work) 3281 { 3282 unsigned long flags; 3283 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3284 struct rcu_head *head, *next; 3285 struct kfree_rcu_cpu *krcp; 3286 struct kfree_rcu_cpu_work *krwp; 3287 int i, j; 3288 3289 krwp = container_of(to_rcu_work(work), 3290 struct kfree_rcu_cpu_work, rcu_work); 3291 krcp = krwp->krcp; 3292 3293 raw_spin_lock_irqsave(&krcp->lock, flags); 3294 // Channels 1 and 2. 3295 for (i = 0; i < FREE_N_CHANNELS; i++) { 3296 bkvhead[i] = krwp->bkvhead_free[i]; 3297 krwp->bkvhead_free[i] = NULL; 3298 } 3299 3300 // Channel 3. 3301 head = krwp->head_free; 3302 krwp->head_free = NULL; 3303 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3304 3305 // Handle the first two channels. 3306 for (i = 0; i < FREE_N_CHANNELS; i++) { 3307 for (; bkvhead[i]; bkvhead[i] = bnext) { 3308 bnext = bkvhead[i]->next; 3309 debug_rcu_bhead_unqueue(bkvhead[i]); 3310 3311 rcu_lock_acquire(&rcu_callback_map); 3312 if (i == 0) { // kmalloc() / kfree(). 3313 trace_rcu_invoke_kfree_bulk_callback( 3314 rcu_state.name, bkvhead[i]->nr_records, 3315 bkvhead[i]->records); 3316 3317 kfree_bulk(bkvhead[i]->nr_records, 3318 bkvhead[i]->records); 3319 } else { // vmalloc() / vfree(). 3320 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3321 trace_rcu_invoke_kvfree_callback( 3322 rcu_state.name, 3323 bkvhead[i]->records[j], 0); 3324 3325 vfree(bkvhead[i]->records[j]); 3326 } 3327 } 3328 rcu_lock_release(&rcu_callback_map); 3329 3330 raw_spin_lock_irqsave(&krcp->lock, flags); 3331 if (put_cached_bnode(krcp, bkvhead[i])) 3332 bkvhead[i] = NULL; 3333 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3334 3335 if (bkvhead[i]) 3336 free_page((unsigned long) bkvhead[i]); 3337 3338 cond_resched_tasks_rcu_qs(); 3339 } 3340 } 3341 3342 /* 3343 * This is used when the "bulk" path can not be used for the 3344 * double-argument of kvfree_rcu(). This happens when the 3345 * page-cache is empty, which means that objects are instead 3346 * queued on a linked list through their rcu_head structures. 3347 * This list is named "Channel 3". 3348 */ 3349 for (; head; head = next) { 3350 unsigned long offset = (unsigned long)head->func; 3351 void *ptr = (void *)head - offset; 3352 3353 next = head->next; 3354 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3355 rcu_lock_acquire(&rcu_callback_map); 3356 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3357 3358 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3359 kvfree(ptr); 3360 3361 rcu_lock_release(&rcu_callback_map); 3362 cond_resched_tasks_rcu_qs(); 3363 } 3364 } 3365 3366 /* 3367 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3368 */ 3369 static void kfree_rcu_monitor(struct work_struct *work) 3370 { 3371 struct kfree_rcu_cpu *krcp = container_of(work, 3372 struct kfree_rcu_cpu, monitor_work.work); 3373 unsigned long flags; 3374 int i, j; 3375 3376 raw_spin_lock_irqsave(&krcp->lock, flags); 3377 3378 // Attempt to start a new batch. 3379 for (i = 0; i < KFREE_N_BATCHES; i++) { 3380 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3381 3382 // Try to detach bkvhead or head and attach it over any 3383 // available corresponding free channel. It can be that 3384 // a previous RCU batch is in progress, it means that 3385 // immediately to queue another one is not possible so 3386 // in that case the monitor work is rearmed. 3387 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3388 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3389 (krcp->head && !krwp->head_free)) { 3390 // Channel 1 corresponds to the SLAB-pointer bulk path. 3391 // Channel 2 corresponds to vmalloc-pointer bulk path. 3392 for (j = 0; j < FREE_N_CHANNELS; j++) { 3393 if (!krwp->bkvhead_free[j]) { 3394 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3395 krcp->bkvhead[j] = NULL; 3396 } 3397 } 3398 3399 // Channel 3 corresponds to both SLAB and vmalloc 3400 // objects queued on the linked list. 3401 if (!krwp->head_free) { 3402 krwp->head_free = krcp->head; 3403 krcp->head = NULL; 3404 } 3405 3406 WRITE_ONCE(krcp->count, 0); 3407 3408 // One work is per one batch, so there are three 3409 // "free channels", the batch can handle. It can 3410 // be that the work is in the pending state when 3411 // channels have been detached following by each 3412 // other. 3413 queue_rcu_work(system_wq, &krwp->rcu_work); 3414 } 3415 } 3416 3417 // If there is nothing to detach, it means that our job is 3418 // successfully done here. In case of having at least one 3419 // of the channels that is still busy we should rearm the 3420 // work to repeat an attempt. Because previous batches are 3421 // still in progress. 3422 if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) 3423 krcp->monitor_todo = false; 3424 else 3425 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3426 3427 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3428 } 3429 3430 static enum hrtimer_restart 3431 schedule_page_work_fn(struct hrtimer *t) 3432 { 3433 struct kfree_rcu_cpu *krcp = 3434 container_of(t, struct kfree_rcu_cpu, hrtimer); 3435 3436 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3437 return HRTIMER_NORESTART; 3438 } 3439 3440 static void fill_page_cache_func(struct work_struct *work) 3441 { 3442 struct kvfree_rcu_bulk_data *bnode; 3443 struct kfree_rcu_cpu *krcp = 3444 container_of(work, struct kfree_rcu_cpu, 3445 page_cache_work.work); 3446 unsigned long flags; 3447 int nr_pages; 3448 bool pushed; 3449 int i; 3450 3451 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3452 1 : rcu_min_cached_objs; 3453 3454 for (i = 0; i < nr_pages; i++) { 3455 bnode = (struct kvfree_rcu_bulk_data *) 3456 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3457 3458 if (bnode) { 3459 raw_spin_lock_irqsave(&krcp->lock, flags); 3460 pushed = put_cached_bnode(krcp, bnode); 3461 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3462 3463 if (!pushed) { 3464 free_page((unsigned long) bnode); 3465 break; 3466 } 3467 } 3468 } 3469 3470 atomic_set(&krcp->work_in_progress, 0); 3471 atomic_set(&krcp->backoff_page_cache_fill, 0); 3472 } 3473 3474 static void 3475 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3476 { 3477 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3478 !atomic_xchg(&krcp->work_in_progress, 1)) { 3479 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3480 queue_delayed_work(system_wq, 3481 &krcp->page_cache_work, 3482 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3483 } else { 3484 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3485 krcp->hrtimer.function = schedule_page_work_fn; 3486 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3487 } 3488 } 3489 } 3490 3491 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3492 // state specified by flags. If can_alloc is true, the caller must 3493 // be schedulable and not be holding any locks or mutexes that might be 3494 // acquired by the memory allocator or anything that it might invoke. 3495 // Returns true if ptr was successfully recorded, else the caller must 3496 // use a fallback. 3497 static inline bool 3498 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3499 unsigned long *flags, void *ptr, bool can_alloc) 3500 { 3501 struct kvfree_rcu_bulk_data *bnode; 3502 int idx; 3503 3504 *krcp = krc_this_cpu_lock(flags); 3505 if (unlikely(!(*krcp)->initialized)) 3506 return false; 3507 3508 idx = !!is_vmalloc_addr(ptr); 3509 3510 /* Check if a new block is required. */ 3511 if (!(*krcp)->bkvhead[idx] || 3512 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3513 bnode = get_cached_bnode(*krcp); 3514 if (!bnode && can_alloc) { 3515 krc_this_cpu_unlock(*krcp, *flags); 3516 3517 // __GFP_NORETRY - allows a light-weight direct reclaim 3518 // what is OK from minimizing of fallback hitting point of 3519 // view. Apart of that it forbids any OOM invoking what is 3520 // also beneficial since we are about to release memory soon. 3521 // 3522 // __GFP_NOMEMALLOC - prevents from consuming of all the 3523 // memory reserves. Please note we have a fallback path. 3524 // 3525 // __GFP_NOWARN - it is supposed that an allocation can 3526 // be failed under low memory or high memory pressure 3527 // scenarios. 3528 bnode = (struct kvfree_rcu_bulk_data *) 3529 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3530 *krcp = krc_this_cpu_lock(flags); 3531 } 3532 3533 if (!bnode) 3534 return false; 3535 3536 /* Initialize the new block. */ 3537 bnode->nr_records = 0; 3538 bnode->next = (*krcp)->bkvhead[idx]; 3539 3540 /* Attach it to the head. */ 3541 (*krcp)->bkvhead[idx] = bnode; 3542 } 3543 3544 /* Finally insert. */ 3545 (*krcp)->bkvhead[idx]->records 3546 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3547 3548 return true; 3549 } 3550 3551 /* 3552 * Queue a request for lazy invocation of the appropriate free routine 3553 * after a grace period. Please note that three paths are maintained, 3554 * two for the common case using arrays of pointers and a third one that 3555 * is used only when the main paths cannot be used, for example, due to 3556 * memory pressure. 3557 * 3558 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3559 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3560 * be free'd in workqueue context. This allows us to: batch requests together to 3561 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3562 */ 3563 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3564 { 3565 unsigned long flags; 3566 struct kfree_rcu_cpu *krcp; 3567 bool success; 3568 void *ptr; 3569 3570 if (head) { 3571 ptr = (void *) head - (unsigned long) func; 3572 } else { 3573 /* 3574 * Please note there is a limitation for the head-less 3575 * variant, that is why there is a clear rule for such 3576 * objects: it can be used from might_sleep() context 3577 * only. For other places please embed an rcu_head to 3578 * your data. 3579 */ 3580 might_sleep(); 3581 ptr = (unsigned long *) func; 3582 } 3583 3584 // Queue the object but don't yet schedule the batch. 3585 if (debug_rcu_head_queue(ptr)) { 3586 // Probable double kfree_rcu(), just leak. 3587 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3588 __func__, head); 3589 3590 // Mark as success and leave. 3591 return; 3592 } 3593 3594 kasan_record_aux_stack(ptr); 3595 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3596 if (!success) { 3597 run_page_cache_worker(krcp); 3598 3599 if (head == NULL) 3600 // Inline if kvfree_rcu(one_arg) call. 3601 goto unlock_return; 3602 3603 head->func = func; 3604 head->next = krcp->head; 3605 krcp->head = head; 3606 success = true; 3607 } 3608 3609 WRITE_ONCE(krcp->count, krcp->count + 1); 3610 3611 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3612 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3613 !krcp->monitor_todo) { 3614 krcp->monitor_todo = true; 3615 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3616 } 3617 3618 unlock_return: 3619 krc_this_cpu_unlock(krcp, flags); 3620 3621 /* 3622 * Inline kvfree() after synchronize_rcu(). We can do 3623 * it from might_sleep() context only, so the current 3624 * CPU can pass the QS state. 3625 */ 3626 if (!success) { 3627 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3628 synchronize_rcu(); 3629 kvfree(ptr); 3630 } 3631 } 3632 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3633 3634 static unsigned long 3635 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3636 { 3637 int cpu; 3638 unsigned long count = 0; 3639 3640 /* Snapshot count of all CPUs */ 3641 for_each_possible_cpu(cpu) { 3642 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3643 3644 count += READ_ONCE(krcp->count); 3645 count += READ_ONCE(krcp->nr_bkv_objs); 3646 atomic_set(&krcp->backoff_page_cache_fill, 1); 3647 } 3648 3649 return count; 3650 } 3651 3652 static unsigned long 3653 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3654 { 3655 int cpu, freed = 0; 3656 3657 for_each_possible_cpu(cpu) { 3658 int count; 3659 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3660 3661 count = krcp->count; 3662 count += drain_page_cache(krcp); 3663 kfree_rcu_monitor(&krcp->monitor_work.work); 3664 3665 sc->nr_to_scan -= count; 3666 freed += count; 3667 3668 if (sc->nr_to_scan <= 0) 3669 break; 3670 } 3671 3672 return freed == 0 ? SHRINK_STOP : freed; 3673 } 3674 3675 static struct shrinker kfree_rcu_shrinker = { 3676 .count_objects = kfree_rcu_shrink_count, 3677 .scan_objects = kfree_rcu_shrink_scan, 3678 .batch = 0, 3679 .seeks = DEFAULT_SEEKS, 3680 }; 3681 3682 void __init kfree_rcu_scheduler_running(void) 3683 { 3684 int cpu; 3685 unsigned long flags; 3686 3687 for_each_possible_cpu(cpu) { 3688 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3689 3690 raw_spin_lock_irqsave(&krcp->lock, flags); 3691 if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) || 3692 krcp->monitor_todo) { 3693 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3694 continue; 3695 } 3696 krcp->monitor_todo = true; 3697 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3698 KFREE_DRAIN_JIFFIES); 3699 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3700 } 3701 } 3702 3703 /* 3704 * During early boot, any blocking grace-period wait automatically 3705 * implies a grace period. Later on, this is never the case for PREEMPTION. 3706 * 3707 * However, because a context switch is a grace period for !PREEMPTION, any 3708 * blocking grace-period wait automatically implies a grace period if 3709 * there is only one CPU online at any point time during execution of 3710 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3711 * occasionally incorrectly indicate that there are multiple CPUs online 3712 * when there was in fact only one the whole time, as this just adds some 3713 * overhead: RCU still operates correctly. 3714 */ 3715 static int rcu_blocking_is_gp(void) 3716 { 3717 int ret; 3718 3719 if (IS_ENABLED(CONFIG_PREEMPTION)) 3720 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3721 might_sleep(); /* Check for RCU read-side critical section. */ 3722 preempt_disable(); 3723 /* 3724 * If the rcu_state.n_online_cpus counter is equal to one, 3725 * there is only one CPU, and that CPU sees all prior accesses 3726 * made by any CPU that was online at the time of its access. 3727 * Furthermore, if this counter is equal to one, its value cannot 3728 * change until after the preempt_enable() below. 3729 * 3730 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3731 * all later CPUs (both this one and any that come online later 3732 * on) are guaranteed to see all accesses prior to this point 3733 * in the code, without the need for additional memory barriers. 3734 * Those memory barriers are provided by CPU-hotplug code. 3735 */ 3736 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3737 preempt_enable(); 3738 return ret; 3739 } 3740 3741 /** 3742 * synchronize_rcu - wait until a grace period has elapsed. 3743 * 3744 * Control will return to the caller some time after a full grace 3745 * period has elapsed, in other words after all currently executing RCU 3746 * read-side critical sections have completed. Note, however, that 3747 * upon return from synchronize_rcu(), the caller might well be executing 3748 * concurrently with new RCU read-side critical sections that began while 3749 * synchronize_rcu() was waiting. 3750 * 3751 * RCU read-side critical sections are delimited by rcu_read_lock() 3752 * and rcu_read_unlock(), and may be nested. In addition, but only in 3753 * v5.0 and later, regions of code across which interrupts, preemption, 3754 * or softirqs have been disabled also serve as RCU read-side critical 3755 * sections. This includes hardware interrupt handlers, softirq handlers, 3756 * and NMI handlers. 3757 * 3758 * Note that this guarantee implies further memory-ordering guarantees. 3759 * On systems with more than one CPU, when synchronize_rcu() returns, 3760 * each CPU is guaranteed to have executed a full memory barrier since 3761 * the end of its last RCU read-side critical section whose beginning 3762 * preceded the call to synchronize_rcu(). In addition, each CPU having 3763 * an RCU read-side critical section that extends beyond the return from 3764 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3765 * after the beginning of synchronize_rcu() and before the beginning of 3766 * that RCU read-side critical section. Note that these guarantees include 3767 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3768 * that are executing in the kernel. 3769 * 3770 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3771 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3772 * to have executed a full memory barrier during the execution of 3773 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3774 * again only if the system has more than one CPU). 3775 * 3776 * Implementation of these memory-ordering guarantees is described here: 3777 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3778 */ 3779 void synchronize_rcu(void) 3780 { 3781 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3782 lock_is_held(&rcu_lock_map) || 3783 lock_is_held(&rcu_sched_lock_map), 3784 "Illegal synchronize_rcu() in RCU read-side critical section"); 3785 if (rcu_blocking_is_gp()) 3786 return; // Context allows vacuous grace periods. 3787 if (rcu_gp_is_expedited()) 3788 synchronize_rcu_expedited(); 3789 else 3790 wait_rcu_gp(call_rcu); 3791 } 3792 EXPORT_SYMBOL_GPL(synchronize_rcu); 3793 3794 /** 3795 * get_state_synchronize_rcu - Snapshot current RCU state 3796 * 3797 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3798 * or poll_state_synchronize_rcu() to determine whether or not a full 3799 * grace period has elapsed in the meantime. 3800 */ 3801 unsigned long get_state_synchronize_rcu(void) 3802 { 3803 /* 3804 * Any prior manipulation of RCU-protected data must happen 3805 * before the load from ->gp_seq. 3806 */ 3807 smp_mb(); /* ^^^ */ 3808 return rcu_seq_snap(&rcu_state.gp_seq); 3809 } 3810 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3811 3812 /** 3813 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3814 * 3815 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3816 * or poll_state_synchronize_rcu() to determine whether or not a full 3817 * grace period has elapsed in the meantime. If the needed grace period 3818 * is not already slated to start, notifies RCU core of the need for that 3819 * grace period. 3820 * 3821 * Interrupts must be enabled for the case where it is necessary to awaken 3822 * the grace-period kthread. 3823 */ 3824 unsigned long start_poll_synchronize_rcu(void) 3825 { 3826 unsigned long flags; 3827 unsigned long gp_seq = get_state_synchronize_rcu(); 3828 bool needwake; 3829 struct rcu_data *rdp; 3830 struct rcu_node *rnp; 3831 3832 lockdep_assert_irqs_enabled(); 3833 local_irq_save(flags); 3834 rdp = this_cpu_ptr(&rcu_data); 3835 rnp = rdp->mynode; 3836 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3837 needwake = rcu_start_this_gp(rnp, rdp, gp_seq); 3838 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3839 if (needwake) 3840 rcu_gp_kthread_wake(); 3841 return gp_seq; 3842 } 3843 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3844 3845 /** 3846 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period 3847 * 3848 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3849 * 3850 * If a full RCU grace period has elapsed since the earlier call from 3851 * which oldstate was obtained, return @true, otherwise return @false. 3852 * If @false is returned, it is the caller's responsibility to invoke this 3853 * function later on until it does return @true. Alternatively, the caller 3854 * can explicitly wait for a grace period, for example, by passing @oldstate 3855 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3856 * 3857 * Yes, this function does not take counter wrap into account. 3858 * But counter wrap is harmless. If the counter wraps, we have waited for 3859 * more than 2 billion grace periods (and way more on a 64-bit system!). 3860 * Those needing to keep oldstate values for very long time periods 3861 * (many hours even on 32-bit systems) should check them occasionally 3862 * and either refresh them or set a flag indicating that the grace period 3863 * has completed. 3864 * 3865 * This function provides the same memory-ordering guarantees that 3866 * would be provided by a synchronize_rcu() that was invoked at the call 3867 * to the function that provided @oldstate, and that returned at the end 3868 * of this function. 3869 */ 3870 bool poll_state_synchronize_rcu(unsigned long oldstate) 3871 { 3872 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) { 3873 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3874 return true; 3875 } 3876 return false; 3877 } 3878 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3879 3880 /** 3881 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3882 * 3883 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3884 * 3885 * If a full RCU grace period has elapsed since the earlier call to 3886 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3887 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3888 * 3889 * Yes, this function does not take counter wrap into account. But 3890 * counter wrap is harmless. If the counter wraps, we have waited for 3891 * more than 2 billion grace periods (and way more on a 64-bit system!), 3892 * so waiting for one additional grace period should be just fine. 3893 * 3894 * This function provides the same memory-ordering guarantees that 3895 * would be provided by a synchronize_rcu() that was invoked at the call 3896 * to the function that provided @oldstate, and that returned at the end 3897 * of this function. 3898 */ 3899 void cond_synchronize_rcu(unsigned long oldstate) 3900 { 3901 if (!poll_state_synchronize_rcu(oldstate)) 3902 synchronize_rcu(); 3903 } 3904 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3905 3906 /* 3907 * Check to see if there is any immediate RCU-related work to be done by 3908 * the current CPU, returning 1 if so and zero otherwise. The checks are 3909 * in order of increasing expense: checks that can be carried out against 3910 * CPU-local state are performed first. However, we must check for CPU 3911 * stalls first, else we might not get a chance. 3912 */ 3913 static int rcu_pending(int user) 3914 { 3915 bool gp_in_progress; 3916 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3917 struct rcu_node *rnp = rdp->mynode; 3918 3919 lockdep_assert_irqs_disabled(); 3920 3921 /* Check for CPU stalls, if enabled. */ 3922 check_cpu_stall(rdp); 3923 3924 /* Does this CPU need a deferred NOCB wakeup? */ 3925 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3926 return 1; 3927 3928 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3929 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3930 return 0; 3931 3932 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3933 gp_in_progress = rcu_gp_in_progress(); 3934 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3935 return 1; 3936 3937 /* Does this CPU have callbacks ready to invoke? */ 3938 if (!rcu_rdp_is_offloaded(rdp) && 3939 rcu_segcblist_ready_cbs(&rdp->cblist)) 3940 return 1; 3941 3942 /* Has RCU gone idle with this CPU needing another grace period? */ 3943 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3944 !rcu_rdp_is_offloaded(rdp) && 3945 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3946 return 1; 3947 3948 /* Have RCU grace period completed or started? */ 3949 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3950 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3951 return 1; 3952 3953 /* nothing to do */ 3954 return 0; 3955 } 3956 3957 /* 3958 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3959 * the compiler is expected to optimize this away. 3960 */ 3961 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3962 { 3963 trace_rcu_barrier(rcu_state.name, s, cpu, 3964 atomic_read(&rcu_state.barrier_cpu_count), done); 3965 } 3966 3967 /* 3968 * RCU callback function for rcu_barrier(). If we are last, wake 3969 * up the task executing rcu_barrier(). 3970 * 3971 * Note that the value of rcu_state.barrier_sequence must be captured 3972 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3973 * other CPUs might count the value down to zero before this CPU gets 3974 * around to invoking rcu_barrier_trace(), which might result in bogus 3975 * data from the next instance of rcu_barrier(). 3976 */ 3977 static void rcu_barrier_callback(struct rcu_head *rhp) 3978 { 3979 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3980 3981 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3982 rcu_barrier_trace(TPS("LastCB"), -1, s); 3983 complete(&rcu_state.barrier_completion); 3984 } else { 3985 rcu_barrier_trace(TPS("CB"), -1, s); 3986 } 3987 } 3988 3989 /* 3990 * Called with preemption disabled, and from cross-cpu IRQ context. 3991 */ 3992 static void rcu_barrier_func(void *cpu_in) 3993 { 3994 uintptr_t cpu = (uintptr_t)cpu_in; 3995 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3996 3997 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3998 rdp->barrier_head.func = rcu_barrier_callback; 3999 debug_rcu_head_queue(&rdp->barrier_head); 4000 rcu_nocb_lock(rdp); 4001 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 4002 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 4003 atomic_inc(&rcu_state.barrier_cpu_count); 4004 } else { 4005 debug_rcu_head_unqueue(&rdp->barrier_head); 4006 rcu_barrier_trace(TPS("IRQNQ"), -1, 4007 rcu_state.barrier_sequence); 4008 } 4009 rcu_nocb_unlock(rdp); 4010 } 4011 4012 /** 4013 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4014 * 4015 * Note that this primitive does not necessarily wait for an RCU grace period 4016 * to complete. For example, if there are no RCU callbacks queued anywhere 4017 * in the system, then rcu_barrier() is within its rights to return 4018 * immediately, without waiting for anything, much less an RCU grace period. 4019 */ 4020 void rcu_barrier(void) 4021 { 4022 uintptr_t cpu; 4023 struct rcu_data *rdp; 4024 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4025 4026 rcu_barrier_trace(TPS("Begin"), -1, s); 4027 4028 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4029 mutex_lock(&rcu_state.barrier_mutex); 4030 4031 /* Did someone else do our work for us? */ 4032 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4033 rcu_barrier_trace(TPS("EarlyExit"), -1, 4034 rcu_state.barrier_sequence); 4035 smp_mb(); /* caller's subsequent code after above check. */ 4036 mutex_unlock(&rcu_state.barrier_mutex); 4037 return; 4038 } 4039 4040 /* Mark the start of the barrier operation. */ 4041 rcu_seq_start(&rcu_state.barrier_sequence); 4042 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4043 4044 /* 4045 * Initialize the count to two rather than to zero in order 4046 * to avoid a too-soon return to zero in case of an immediate 4047 * invocation of the just-enqueued callback (or preemption of 4048 * this task). Exclude CPU-hotplug operations to ensure that no 4049 * offline non-offloaded CPU has callbacks queued. 4050 */ 4051 init_completion(&rcu_state.barrier_completion); 4052 atomic_set(&rcu_state.barrier_cpu_count, 2); 4053 get_online_cpus(); 4054 4055 /* 4056 * Force each CPU with callbacks to register a new callback. 4057 * When that callback is invoked, we will know that all of the 4058 * corresponding CPU's preceding callbacks have been invoked. 4059 */ 4060 for_each_possible_cpu(cpu) { 4061 rdp = per_cpu_ptr(&rcu_data, cpu); 4062 if (cpu_is_offline(cpu) && 4063 !rcu_rdp_is_offloaded(rdp)) 4064 continue; 4065 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 4066 rcu_barrier_trace(TPS("OnlineQ"), cpu, 4067 rcu_state.barrier_sequence); 4068 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 4069 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 4070 cpu_is_offline(cpu)) { 4071 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 4072 rcu_state.barrier_sequence); 4073 local_irq_disable(); 4074 rcu_barrier_func((void *)cpu); 4075 local_irq_enable(); 4076 } else if (cpu_is_offline(cpu)) { 4077 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 4078 rcu_state.barrier_sequence); 4079 } else { 4080 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 4081 rcu_state.barrier_sequence); 4082 } 4083 } 4084 put_online_cpus(); 4085 4086 /* 4087 * Now that we have an rcu_barrier_callback() callback on each 4088 * CPU, and thus each counted, remove the initial count. 4089 */ 4090 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4091 complete(&rcu_state.barrier_completion); 4092 4093 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4094 wait_for_completion(&rcu_state.barrier_completion); 4095 4096 /* Mark the end of the barrier operation. */ 4097 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4098 rcu_seq_end(&rcu_state.barrier_sequence); 4099 4100 /* Other rcu_barrier() invocations can now safely proceed. */ 4101 mutex_unlock(&rcu_state.barrier_mutex); 4102 } 4103 EXPORT_SYMBOL_GPL(rcu_barrier); 4104 4105 /* 4106 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4107 * first CPU in a given leaf rcu_node structure coming online. The caller 4108 * must hold the corresponding leaf rcu_node ->lock with interrupts 4109 * disabled. 4110 */ 4111 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4112 { 4113 long mask; 4114 long oldmask; 4115 struct rcu_node *rnp = rnp_leaf; 4116 4117 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4118 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4119 for (;;) { 4120 mask = rnp->grpmask; 4121 rnp = rnp->parent; 4122 if (rnp == NULL) 4123 return; 4124 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4125 oldmask = rnp->qsmaskinit; 4126 rnp->qsmaskinit |= mask; 4127 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4128 if (oldmask) 4129 return; 4130 } 4131 } 4132 4133 /* 4134 * Do boot-time initialization of a CPU's per-CPU RCU data. 4135 */ 4136 static void __init 4137 rcu_boot_init_percpu_data(int cpu) 4138 { 4139 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4140 4141 /* Set up local state, ensuring consistent view of global state. */ 4142 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4143 INIT_WORK(&rdp->strict_work, strict_work_handler); 4144 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 4145 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 4146 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4147 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4148 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4149 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4150 rdp->cpu = cpu; 4151 rcu_boot_init_nocb_percpu_data(rdp); 4152 } 4153 4154 /* 4155 * Invoked early in the CPU-online process, when pretty much all services 4156 * are available. The incoming CPU is not present. 4157 * 4158 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4159 * offline event can be happening at a given time. Note also that we can 4160 * accept some slop in the rsp->gp_seq access due to the fact that this 4161 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4162 * And any offloaded callbacks are being numbered elsewhere. 4163 */ 4164 int rcutree_prepare_cpu(unsigned int cpu) 4165 { 4166 unsigned long flags; 4167 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4168 struct rcu_node *rnp = rcu_get_root(); 4169 4170 /* Set up local state, ensuring consistent view of global state. */ 4171 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4172 rdp->qlen_last_fqs_check = 0; 4173 rdp->n_force_qs_snap = rcu_state.n_force_qs; 4174 rdp->blimit = blimit; 4175 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4176 rcu_dynticks_eqs_online(); 4177 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4178 4179 /* 4180 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4181 * (re-)initialized. 4182 */ 4183 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4184 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4185 4186 /* 4187 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4188 * propagation up the rcu_node tree will happen at the beginning 4189 * of the next grace period. 4190 */ 4191 rnp = rdp->mynode; 4192 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4193 rdp->beenonline = true; /* We have now been online. */ 4194 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4195 rdp->gp_seq_needed = rdp->gp_seq; 4196 rdp->cpu_no_qs.b.norm = true; 4197 rdp->core_needs_qs = false; 4198 rdp->rcu_iw_pending = false; 4199 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4200 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4201 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4203 rcu_spawn_one_boost_kthread(rnp); 4204 rcu_spawn_cpu_nocb_kthread(cpu); 4205 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4206 4207 return 0; 4208 } 4209 4210 /* 4211 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4212 */ 4213 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4214 { 4215 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4216 4217 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4218 } 4219 4220 /* 4221 * Near the end of the CPU-online process. Pretty much all services 4222 * enabled, and the CPU is now very much alive. 4223 */ 4224 int rcutree_online_cpu(unsigned int cpu) 4225 { 4226 unsigned long flags; 4227 struct rcu_data *rdp; 4228 struct rcu_node *rnp; 4229 4230 rdp = per_cpu_ptr(&rcu_data, cpu); 4231 rnp = rdp->mynode; 4232 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4233 rnp->ffmask |= rdp->grpmask; 4234 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4235 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4236 return 0; /* Too early in boot for scheduler work. */ 4237 sync_sched_exp_online_cleanup(cpu); 4238 rcutree_affinity_setting(cpu, -1); 4239 4240 // Stop-machine done, so allow nohz_full to disable tick. 4241 tick_dep_clear(TICK_DEP_BIT_RCU); 4242 return 0; 4243 } 4244 4245 /* 4246 * Near the beginning of the process. The CPU is still very much alive 4247 * with pretty much all services enabled. 4248 */ 4249 int rcutree_offline_cpu(unsigned int cpu) 4250 { 4251 unsigned long flags; 4252 struct rcu_data *rdp; 4253 struct rcu_node *rnp; 4254 4255 rdp = per_cpu_ptr(&rcu_data, cpu); 4256 rnp = rdp->mynode; 4257 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4258 rnp->ffmask &= ~rdp->grpmask; 4259 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4260 4261 rcutree_affinity_setting(cpu, cpu); 4262 4263 // nohz_full CPUs need the tick for stop-machine to work quickly 4264 tick_dep_set(TICK_DEP_BIT_RCU); 4265 return 0; 4266 } 4267 4268 /* 4269 * Mark the specified CPU as being online so that subsequent grace periods 4270 * (both expedited and normal) will wait on it. Note that this means that 4271 * incoming CPUs are not allowed to use RCU read-side critical sections 4272 * until this function is called. Failing to observe this restriction 4273 * will result in lockdep splats. 4274 * 4275 * Note that this function is special in that it is invoked directly 4276 * from the incoming CPU rather than from the cpuhp_step mechanism. 4277 * This is because this function must be invoked at a precise location. 4278 */ 4279 void rcu_cpu_starting(unsigned int cpu) 4280 { 4281 unsigned long flags; 4282 unsigned long mask; 4283 struct rcu_data *rdp; 4284 struct rcu_node *rnp; 4285 bool newcpu; 4286 4287 rdp = per_cpu_ptr(&rcu_data, cpu); 4288 if (rdp->cpu_started) 4289 return; 4290 rdp->cpu_started = true; 4291 4292 rnp = rdp->mynode; 4293 mask = rdp->grpmask; 4294 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4295 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4296 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4297 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4298 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4299 newcpu = !(rnp->expmaskinitnext & mask); 4300 rnp->expmaskinitnext |= mask; 4301 /* Allow lockless access for expedited grace periods. */ 4302 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4303 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4304 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4305 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4306 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4307 4308 /* An incoming CPU should never be blocking a grace period. */ 4309 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4310 rcu_disable_urgency_upon_qs(rdp); 4311 /* Report QS -after- changing ->qsmaskinitnext! */ 4312 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4313 } else { 4314 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4315 } 4316 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4317 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4318 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4319 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4320 } 4321 4322 /* 4323 * The outgoing function has no further need of RCU, so remove it from 4324 * the rcu_node tree's ->qsmaskinitnext bit masks. 4325 * 4326 * Note that this function is special in that it is invoked directly 4327 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4328 * This is because this function must be invoked at a precise location. 4329 */ 4330 void rcu_report_dead(unsigned int cpu) 4331 { 4332 unsigned long flags; 4333 unsigned long mask; 4334 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4335 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4336 4337 // Do any dangling deferred wakeups. 4338 do_nocb_deferred_wakeup(rdp); 4339 4340 /* QS for any half-done expedited grace period. */ 4341 preempt_disable(); 4342 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 4343 preempt_enable(); 4344 rcu_preempt_deferred_qs(current); 4345 4346 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4347 mask = rdp->grpmask; 4348 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4349 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4350 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4351 raw_spin_lock(&rcu_state.ofl_lock); 4352 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4353 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4354 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4355 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4356 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4357 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4358 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4359 } 4360 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4361 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4362 raw_spin_unlock(&rcu_state.ofl_lock); 4363 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4364 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4365 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4366 4367 rdp->cpu_started = false; 4368 } 4369 4370 #ifdef CONFIG_HOTPLUG_CPU 4371 /* 4372 * The outgoing CPU has just passed through the dying-idle state, and we 4373 * are being invoked from the CPU that was IPIed to continue the offline 4374 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4375 */ 4376 void rcutree_migrate_callbacks(int cpu) 4377 { 4378 unsigned long flags; 4379 struct rcu_data *my_rdp; 4380 struct rcu_node *my_rnp; 4381 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4382 bool needwake; 4383 4384 if (rcu_rdp_is_offloaded(rdp) || 4385 rcu_segcblist_empty(&rdp->cblist)) 4386 return; /* No callbacks to migrate. */ 4387 4388 local_irq_save(flags); 4389 my_rdp = this_cpu_ptr(&rcu_data); 4390 my_rnp = my_rdp->mynode; 4391 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4392 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4393 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4394 /* Leverage recent GPs and set GP for new callbacks. */ 4395 needwake = rcu_advance_cbs(my_rnp, rdp) || 4396 rcu_advance_cbs(my_rnp, my_rdp); 4397 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4398 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4399 rcu_segcblist_disable(&rdp->cblist); 4400 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 4401 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4402 if (rcu_rdp_is_offloaded(my_rdp)) { 4403 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4404 __call_rcu_nocb_wake(my_rdp, true, flags); 4405 } else { 4406 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4407 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4408 } 4409 if (needwake) 4410 rcu_gp_kthread_wake(); 4411 lockdep_assert_irqs_enabled(); 4412 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4413 !rcu_segcblist_empty(&rdp->cblist), 4414 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4415 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4416 rcu_segcblist_first_cb(&rdp->cblist)); 4417 } 4418 #endif 4419 4420 /* 4421 * On non-huge systems, use expedited RCU grace periods to make suspend 4422 * and hibernation run faster. 4423 */ 4424 static int rcu_pm_notify(struct notifier_block *self, 4425 unsigned long action, void *hcpu) 4426 { 4427 switch (action) { 4428 case PM_HIBERNATION_PREPARE: 4429 case PM_SUSPEND_PREPARE: 4430 rcu_expedite_gp(); 4431 break; 4432 case PM_POST_HIBERNATION: 4433 case PM_POST_SUSPEND: 4434 rcu_unexpedite_gp(); 4435 break; 4436 default: 4437 break; 4438 } 4439 return NOTIFY_OK; 4440 } 4441 4442 /* 4443 * Spawn the kthreads that handle RCU's grace periods. 4444 */ 4445 static int __init rcu_spawn_gp_kthread(void) 4446 { 4447 unsigned long flags; 4448 int kthread_prio_in = kthread_prio; 4449 struct rcu_node *rnp; 4450 struct sched_param sp; 4451 struct task_struct *t; 4452 4453 /* Force priority into range. */ 4454 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4455 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4456 kthread_prio = 2; 4457 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4458 kthread_prio = 1; 4459 else if (kthread_prio < 0) 4460 kthread_prio = 0; 4461 else if (kthread_prio > 99) 4462 kthread_prio = 99; 4463 4464 if (kthread_prio != kthread_prio_in) 4465 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4466 kthread_prio, kthread_prio_in); 4467 4468 rcu_scheduler_fully_active = 1; 4469 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4470 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4471 return 0; 4472 if (kthread_prio) { 4473 sp.sched_priority = kthread_prio; 4474 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4475 } 4476 rnp = rcu_get_root(); 4477 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4478 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4479 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4480 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4481 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4483 wake_up_process(t); 4484 rcu_spawn_nocb_kthreads(); 4485 rcu_spawn_boost_kthreads(); 4486 rcu_spawn_core_kthreads(); 4487 return 0; 4488 } 4489 early_initcall(rcu_spawn_gp_kthread); 4490 4491 /* 4492 * This function is invoked towards the end of the scheduler's 4493 * initialization process. Before this is called, the idle task might 4494 * contain synchronous grace-period primitives (during which time, this idle 4495 * task is booting the system, and such primitives are no-ops). After this 4496 * function is called, any synchronous grace-period primitives are run as 4497 * expedited, with the requesting task driving the grace period forward. 4498 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4499 * runtime RCU functionality. 4500 */ 4501 void rcu_scheduler_starting(void) 4502 { 4503 WARN_ON(num_online_cpus() != 1); 4504 WARN_ON(nr_context_switches() > 0); 4505 rcu_test_sync_prims(); 4506 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4507 rcu_test_sync_prims(); 4508 } 4509 4510 /* 4511 * Helper function for rcu_init() that initializes the rcu_state structure. 4512 */ 4513 static void __init rcu_init_one(void) 4514 { 4515 static const char * const buf[] = RCU_NODE_NAME_INIT; 4516 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4517 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4518 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4519 4520 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4521 int cpustride = 1; 4522 int i; 4523 int j; 4524 struct rcu_node *rnp; 4525 4526 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4527 4528 /* Silence gcc 4.8 false positive about array index out of range. */ 4529 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4530 panic("rcu_init_one: rcu_num_lvls out of range"); 4531 4532 /* Initialize the level-tracking arrays. */ 4533 4534 for (i = 1; i < rcu_num_lvls; i++) 4535 rcu_state.level[i] = 4536 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4537 rcu_init_levelspread(levelspread, num_rcu_lvl); 4538 4539 /* Initialize the elements themselves, starting from the leaves. */ 4540 4541 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4542 cpustride *= levelspread[i]; 4543 rnp = rcu_state.level[i]; 4544 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4545 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4546 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4547 &rcu_node_class[i], buf[i]); 4548 raw_spin_lock_init(&rnp->fqslock); 4549 lockdep_set_class_and_name(&rnp->fqslock, 4550 &rcu_fqs_class[i], fqs[i]); 4551 rnp->gp_seq = rcu_state.gp_seq; 4552 rnp->gp_seq_needed = rcu_state.gp_seq; 4553 rnp->completedqs = rcu_state.gp_seq; 4554 rnp->qsmask = 0; 4555 rnp->qsmaskinit = 0; 4556 rnp->grplo = j * cpustride; 4557 rnp->grphi = (j + 1) * cpustride - 1; 4558 if (rnp->grphi >= nr_cpu_ids) 4559 rnp->grphi = nr_cpu_ids - 1; 4560 if (i == 0) { 4561 rnp->grpnum = 0; 4562 rnp->grpmask = 0; 4563 rnp->parent = NULL; 4564 } else { 4565 rnp->grpnum = j % levelspread[i - 1]; 4566 rnp->grpmask = BIT(rnp->grpnum); 4567 rnp->parent = rcu_state.level[i - 1] + 4568 j / levelspread[i - 1]; 4569 } 4570 rnp->level = i; 4571 INIT_LIST_HEAD(&rnp->blkd_tasks); 4572 rcu_init_one_nocb(rnp); 4573 init_waitqueue_head(&rnp->exp_wq[0]); 4574 init_waitqueue_head(&rnp->exp_wq[1]); 4575 init_waitqueue_head(&rnp->exp_wq[2]); 4576 init_waitqueue_head(&rnp->exp_wq[3]); 4577 spin_lock_init(&rnp->exp_lock); 4578 } 4579 } 4580 4581 init_swait_queue_head(&rcu_state.gp_wq); 4582 init_swait_queue_head(&rcu_state.expedited_wq); 4583 rnp = rcu_first_leaf_node(); 4584 for_each_possible_cpu(i) { 4585 while (i > rnp->grphi) 4586 rnp++; 4587 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4588 rcu_boot_init_percpu_data(i); 4589 } 4590 } 4591 4592 /* 4593 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4594 * replace the definitions in tree.h because those are needed to size 4595 * the ->node array in the rcu_state structure. 4596 */ 4597 void rcu_init_geometry(void) 4598 { 4599 ulong d; 4600 int i; 4601 static unsigned long old_nr_cpu_ids; 4602 int rcu_capacity[RCU_NUM_LVLS]; 4603 static bool initialized; 4604 4605 if (initialized) { 4606 /* 4607 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4608 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4609 */ 4610 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4611 return; 4612 } 4613 4614 old_nr_cpu_ids = nr_cpu_ids; 4615 initialized = true; 4616 4617 /* 4618 * Initialize any unspecified boot parameters. 4619 * The default values of jiffies_till_first_fqs and 4620 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4621 * value, which is a function of HZ, then adding one for each 4622 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4623 */ 4624 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4625 if (jiffies_till_first_fqs == ULONG_MAX) 4626 jiffies_till_first_fqs = d; 4627 if (jiffies_till_next_fqs == ULONG_MAX) 4628 jiffies_till_next_fqs = d; 4629 adjust_jiffies_till_sched_qs(); 4630 4631 /* If the compile-time values are accurate, just leave. */ 4632 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4633 nr_cpu_ids == NR_CPUS) 4634 return; 4635 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4636 rcu_fanout_leaf, nr_cpu_ids); 4637 4638 /* 4639 * The boot-time rcu_fanout_leaf parameter must be at least two 4640 * and cannot exceed the number of bits in the rcu_node masks. 4641 * Complain and fall back to the compile-time values if this 4642 * limit is exceeded. 4643 */ 4644 if (rcu_fanout_leaf < 2 || 4645 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4646 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4647 WARN_ON(1); 4648 return; 4649 } 4650 4651 /* 4652 * Compute number of nodes that can be handled an rcu_node tree 4653 * with the given number of levels. 4654 */ 4655 rcu_capacity[0] = rcu_fanout_leaf; 4656 for (i = 1; i < RCU_NUM_LVLS; i++) 4657 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4658 4659 /* 4660 * The tree must be able to accommodate the configured number of CPUs. 4661 * If this limit is exceeded, fall back to the compile-time values. 4662 */ 4663 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4664 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4665 WARN_ON(1); 4666 return; 4667 } 4668 4669 /* Calculate the number of levels in the tree. */ 4670 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4671 } 4672 rcu_num_lvls = i + 1; 4673 4674 /* Calculate the number of rcu_nodes at each level of the tree. */ 4675 for (i = 0; i < rcu_num_lvls; i++) { 4676 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4677 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4678 } 4679 4680 /* Calculate the total number of rcu_node structures. */ 4681 rcu_num_nodes = 0; 4682 for (i = 0; i < rcu_num_lvls; i++) 4683 rcu_num_nodes += num_rcu_lvl[i]; 4684 } 4685 4686 /* 4687 * Dump out the structure of the rcu_node combining tree associated 4688 * with the rcu_state structure. 4689 */ 4690 static void __init rcu_dump_rcu_node_tree(void) 4691 { 4692 int level = 0; 4693 struct rcu_node *rnp; 4694 4695 pr_info("rcu_node tree layout dump\n"); 4696 pr_info(" "); 4697 rcu_for_each_node_breadth_first(rnp) { 4698 if (rnp->level != level) { 4699 pr_cont("\n"); 4700 pr_info(" "); 4701 level = rnp->level; 4702 } 4703 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4704 } 4705 pr_cont("\n"); 4706 } 4707 4708 struct workqueue_struct *rcu_gp_wq; 4709 struct workqueue_struct *rcu_par_gp_wq; 4710 4711 static void __init kfree_rcu_batch_init(void) 4712 { 4713 int cpu; 4714 int i; 4715 4716 /* Clamp it to [0:100] seconds interval. */ 4717 if (rcu_delay_page_cache_fill_msec < 0 || 4718 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4719 4720 rcu_delay_page_cache_fill_msec = 4721 clamp(rcu_delay_page_cache_fill_msec, 0, 4722 (int) (100 * MSEC_PER_SEC)); 4723 4724 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4725 rcu_delay_page_cache_fill_msec); 4726 } 4727 4728 for_each_possible_cpu(cpu) { 4729 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4730 4731 for (i = 0; i < KFREE_N_BATCHES; i++) { 4732 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4733 krcp->krw_arr[i].krcp = krcp; 4734 } 4735 4736 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4737 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4738 krcp->initialized = true; 4739 } 4740 if (register_shrinker(&kfree_rcu_shrinker)) 4741 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4742 } 4743 4744 void __init rcu_init(void) 4745 { 4746 int cpu; 4747 4748 rcu_early_boot_tests(); 4749 4750 kfree_rcu_batch_init(); 4751 rcu_bootup_announce(); 4752 rcu_init_geometry(); 4753 rcu_init_one(); 4754 if (dump_tree) 4755 rcu_dump_rcu_node_tree(); 4756 if (use_softirq) 4757 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4758 4759 /* 4760 * We don't need protection against CPU-hotplug here because 4761 * this is called early in boot, before either interrupts 4762 * or the scheduler are operational. 4763 */ 4764 pm_notifier(rcu_pm_notify, 0); 4765 for_each_online_cpu(cpu) { 4766 rcutree_prepare_cpu(cpu); 4767 rcu_cpu_starting(cpu); 4768 rcutree_online_cpu(cpu); 4769 } 4770 4771 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4772 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4773 WARN_ON(!rcu_gp_wq); 4774 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4775 WARN_ON(!rcu_par_gp_wq); 4776 4777 /* Fill in default value for rcutree.qovld boot parameter. */ 4778 /* -After- the rcu_node ->lock fields are initialized! */ 4779 if (qovld < 0) 4780 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4781 else 4782 qovld_calc = qovld; 4783 } 4784 4785 #include "tree_stall.h" 4786 #include "tree_exp.h" 4787 #include "tree_plugin.h" 4788