xref: /openbmc/linux/kernel/rcu/tree.c (revision e3d786a3)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 
31 #define pr_fmt(fmt) "rcu: " fmt
32 
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
64 #include <linux/tick.h>
65 
66 #include "tree.h"
67 #include "rcu.h"
68 
69 #ifdef MODULE_PARAM_PREFIX
70 #undef MODULE_PARAM_PREFIX
71 #endif
72 #define MODULE_PARAM_PREFIX "rcutree."
73 
74 /* Data structures. */
75 
76 /*
77  * Steal a bit from the bottom of ->dynticks for idle entry/exit
78  * control.  Initially this is for TLB flushing.
79  */
80 #define RCU_DYNTICK_CTRL_MASK 0x1
81 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
82 #ifndef rcu_eqs_special_exit
83 #define rcu_eqs_special_exit() do { } while (0)
84 #endif
85 
86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
87 	.dynticks_nesting = 1,
88 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
89 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
90 };
91 struct rcu_state rcu_state = {
92 	.level = { &rcu_state.node[0] },
93 	.gp_state = RCU_GP_IDLE,
94 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
95 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
96 	.name = RCU_NAME,
97 	.abbr = RCU_ABBR,
98 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
99 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
100 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
101 };
102 
103 /* Dump rcu_node combining tree at boot to verify correct setup. */
104 static bool dump_tree;
105 module_param(dump_tree, bool, 0444);
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 /* panic() on RCU Stall sysctl. */
117 int sysctl_panic_on_rcu_stall __read_mostly;
118 
119 /*
120  * The rcu_scheduler_active variable is initialized to the value
121  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
122  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
123  * RCU can assume that there is but one task, allowing RCU to (for example)
124  * optimize synchronize_rcu() to a simple barrier().  When this variable
125  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
126  * to detect real grace periods.  This variable is also used to suppress
127  * boot-time false positives from lockdep-RCU error checking.  Finally, it
128  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
129  * is fully initialized, including all of its kthreads having been spawned.
130  */
131 int rcu_scheduler_active __read_mostly;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133 
134 /*
135  * The rcu_scheduler_fully_active variable transitions from zero to one
136  * during the early_initcall() processing, which is after the scheduler
137  * is capable of creating new tasks.  So RCU processing (for example,
138  * creating tasks for RCU priority boosting) must be delayed until after
139  * rcu_scheduler_fully_active transitions from zero to one.  We also
140  * currently delay invocation of any RCU callbacks until after this point.
141  *
142  * It might later prove better for people registering RCU callbacks during
143  * early boot to take responsibility for these callbacks, but one step at
144  * a time.
145  */
146 static int rcu_scheduler_fully_active __read_mostly;
147 
148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
149 			      unsigned long gps, unsigned long flags);
150 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
151 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
152 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
153 static void invoke_rcu_core(void);
154 static void invoke_rcu_callbacks(struct rcu_data *rdp);
155 static void rcu_report_exp_rdp(struct rcu_data *rdp);
156 static void sync_sched_exp_online_cleanup(int cpu);
157 
158 /* rcuc/rcub kthread realtime priority */
159 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
160 module_param(kthread_prio, int, 0644);
161 
162 /* Delay in jiffies for grace-period initialization delays, debug only. */
163 
164 static int gp_preinit_delay;
165 module_param(gp_preinit_delay, int, 0444);
166 static int gp_init_delay;
167 module_param(gp_init_delay, int, 0444);
168 static int gp_cleanup_delay;
169 module_param(gp_cleanup_delay, int, 0444);
170 
171 /* Retrieve RCU kthreads priority for rcutorture */
172 int rcu_get_gp_kthreads_prio(void)
173 {
174 	return kthread_prio;
175 }
176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
177 
178 /*
179  * Number of grace periods between delays, normalized by the duration of
180  * the delay.  The longer the delay, the more the grace periods between
181  * each delay.  The reason for this normalization is that it means that,
182  * for non-zero delays, the overall slowdown of grace periods is constant
183  * regardless of the duration of the delay.  This arrangement balances
184  * the need for long delays to increase some race probabilities with the
185  * need for fast grace periods to increase other race probabilities.
186  */
187 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
188 
189 /*
190  * Compute the mask of online CPUs for the specified rcu_node structure.
191  * This will not be stable unless the rcu_node structure's ->lock is
192  * held, but the bit corresponding to the current CPU will be stable
193  * in most contexts.
194  */
195 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
196 {
197 	return READ_ONCE(rnp->qsmaskinitnext);
198 }
199 
200 /*
201  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
202  * permit this function to be invoked without holding the root rcu_node
203  * structure's ->lock, but of course results can be subject to change.
204  */
205 static int rcu_gp_in_progress(void)
206 {
207 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
208 }
209 
210 void rcu_softirq_qs(void)
211 {
212 	rcu_qs();
213 	rcu_preempt_deferred_qs(current);
214 }
215 
216 /*
217  * Record entry into an extended quiescent state.  This is only to be
218  * called when not already in an extended quiescent state.
219  */
220 static void rcu_dynticks_eqs_enter(void)
221 {
222 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
223 	int seq;
224 
225 	/*
226 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
227 	 * critical sections, and we also must force ordering with the
228 	 * next idle sojourn.
229 	 */
230 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
231 	/* Better be in an extended quiescent state! */
232 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
233 		     (seq & RCU_DYNTICK_CTRL_CTR));
234 	/* Better not have special action (TLB flush) pending! */
235 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
236 		     (seq & RCU_DYNTICK_CTRL_MASK));
237 }
238 
239 /*
240  * Record exit from an extended quiescent state.  This is only to be
241  * called from an extended quiescent state.
242  */
243 static void rcu_dynticks_eqs_exit(void)
244 {
245 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
246 	int seq;
247 
248 	/*
249 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
250 	 * and we also must force ordering with the next RCU read-side
251 	 * critical section.
252 	 */
253 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
254 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
255 		     !(seq & RCU_DYNTICK_CTRL_CTR));
256 	if (seq & RCU_DYNTICK_CTRL_MASK) {
257 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
258 		smp_mb__after_atomic(); /* _exit after clearing mask. */
259 		/* Prefer duplicate flushes to losing a flush. */
260 		rcu_eqs_special_exit();
261 	}
262 }
263 
264 /*
265  * Reset the current CPU's ->dynticks counter to indicate that the
266  * newly onlined CPU is no longer in an extended quiescent state.
267  * This will either leave the counter unchanged, or increment it
268  * to the next non-quiescent value.
269  *
270  * The non-atomic test/increment sequence works because the upper bits
271  * of the ->dynticks counter are manipulated only by the corresponding CPU,
272  * or when the corresponding CPU is offline.
273  */
274 static void rcu_dynticks_eqs_online(void)
275 {
276 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
277 
278 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
279 		return;
280 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
281 }
282 
283 /*
284  * Is the current CPU in an extended quiescent state?
285  *
286  * No ordering, as we are sampling CPU-local information.
287  */
288 bool rcu_dynticks_curr_cpu_in_eqs(void)
289 {
290 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291 
292 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
293 }
294 
295 /*
296  * Snapshot the ->dynticks counter with full ordering so as to allow
297  * stable comparison of this counter with past and future snapshots.
298  */
299 int rcu_dynticks_snap(struct rcu_data *rdp)
300 {
301 	int snap = atomic_add_return(0, &rdp->dynticks);
302 
303 	return snap & ~RCU_DYNTICK_CTRL_MASK;
304 }
305 
306 /*
307  * Return true if the snapshot returned from rcu_dynticks_snap()
308  * indicates that RCU is in an extended quiescent state.
309  */
310 static bool rcu_dynticks_in_eqs(int snap)
311 {
312 	return !(snap & RCU_DYNTICK_CTRL_CTR);
313 }
314 
315 /*
316  * Return true if the CPU corresponding to the specified rcu_data
317  * structure has spent some time in an extended quiescent state since
318  * rcu_dynticks_snap() returned the specified snapshot.
319  */
320 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
321 {
322 	return snap != rcu_dynticks_snap(rdp);
323 }
324 
325 /*
326  * Set the special (bottom) bit of the specified CPU so that it
327  * will take special action (such as flushing its TLB) on the
328  * next exit from an extended quiescent state.  Returns true if
329  * the bit was successfully set, or false if the CPU was not in
330  * an extended quiescent state.
331  */
332 bool rcu_eqs_special_set(int cpu)
333 {
334 	int old;
335 	int new;
336 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
337 
338 	do {
339 		old = atomic_read(&rdp->dynticks);
340 		if (old & RCU_DYNTICK_CTRL_CTR)
341 			return false;
342 		new = old | RCU_DYNTICK_CTRL_MASK;
343 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
344 	return true;
345 }
346 
347 /*
348  * Let the RCU core know that this CPU has gone through the scheduler,
349  * which is a quiescent state.  This is called when the need for a
350  * quiescent state is urgent, so we burn an atomic operation and full
351  * memory barriers to let the RCU core know about it, regardless of what
352  * this CPU might (or might not) do in the near future.
353  *
354  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
355  *
356  * The caller must have disabled interrupts and must not be idle.
357  */
358 static void __maybe_unused rcu_momentary_dyntick_idle(void)
359 {
360 	int special;
361 
362 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
363 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
364 				    &this_cpu_ptr(&rcu_data)->dynticks);
365 	/* It is illegal to call this from idle state. */
366 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
367 	rcu_preempt_deferred_qs(current);
368 }
369 
370 /**
371  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
372  *
373  * If the current CPU is idle or running at a first-level (not nested)
374  * interrupt from idle, return true.  The caller must have at least
375  * disabled preemption.
376  */
377 static int rcu_is_cpu_rrupt_from_idle(void)
378 {
379 	return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
380 	       __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
381 }
382 
383 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
384 static long blimit = DEFAULT_RCU_BLIMIT;
385 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
386 static long qhimark = DEFAULT_RCU_QHIMARK;
387 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
388 static long qlowmark = DEFAULT_RCU_QLOMARK;
389 
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 
394 static ulong jiffies_till_first_fqs = ULONG_MAX;
395 static ulong jiffies_till_next_fqs = ULONG_MAX;
396 static bool rcu_kick_kthreads;
397 
398 /*
399  * How long the grace period must be before we start recruiting
400  * quiescent-state help from rcu_note_context_switch().
401  */
402 static ulong jiffies_till_sched_qs = ULONG_MAX;
403 module_param(jiffies_till_sched_qs, ulong, 0444);
404 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
405 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
406 
407 /*
408  * Make sure that we give the grace-period kthread time to detect any
409  * idle CPUs before taking active measures to force quiescent states.
410  * However, don't go below 100 milliseconds, adjusted upwards for really
411  * large systems.
412  */
413 static void adjust_jiffies_till_sched_qs(void)
414 {
415 	unsigned long j;
416 
417 	/* If jiffies_till_sched_qs was specified, respect the request. */
418 	if (jiffies_till_sched_qs != ULONG_MAX) {
419 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
420 		return;
421 	}
422 	j = READ_ONCE(jiffies_till_first_fqs) +
423 		      2 * READ_ONCE(jiffies_till_next_fqs);
424 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
425 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
426 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
427 	WRITE_ONCE(jiffies_to_sched_qs, j);
428 }
429 
430 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
431 {
432 	ulong j;
433 	int ret = kstrtoul(val, 0, &j);
434 
435 	if (!ret) {
436 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
437 		adjust_jiffies_till_sched_qs();
438 	}
439 	return ret;
440 }
441 
442 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
443 {
444 	ulong j;
445 	int ret = kstrtoul(val, 0, &j);
446 
447 	if (!ret) {
448 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
449 		adjust_jiffies_till_sched_qs();
450 	}
451 	return ret;
452 }
453 
454 static struct kernel_param_ops first_fqs_jiffies_ops = {
455 	.set = param_set_first_fqs_jiffies,
456 	.get = param_get_ulong,
457 };
458 
459 static struct kernel_param_ops next_fqs_jiffies_ops = {
460 	.set = param_set_next_fqs_jiffies,
461 	.get = param_get_ulong,
462 };
463 
464 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
465 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
466 module_param(rcu_kick_kthreads, bool, 0644);
467 
468 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
469 static void force_quiescent_state(void);
470 static int rcu_pending(void);
471 
472 /*
473  * Return the number of RCU GPs completed thus far for debug & stats.
474  */
475 unsigned long rcu_get_gp_seq(void)
476 {
477 	return READ_ONCE(rcu_state.gp_seq);
478 }
479 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
480 
481 /*
482  * Return the number of RCU expedited batches completed thus far for
483  * debug & stats.  Odd numbers mean that a batch is in progress, even
484  * numbers mean idle.  The value returned will thus be roughly double
485  * the cumulative batches since boot.
486  */
487 unsigned long rcu_exp_batches_completed(void)
488 {
489 	return rcu_state.expedited_sequence;
490 }
491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
492 
493 /*
494  * Force a quiescent state.
495  */
496 void rcu_force_quiescent_state(void)
497 {
498 	force_quiescent_state();
499 }
500 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
501 
502 /*
503  * Show the state of the grace-period kthreads.
504  */
505 void show_rcu_gp_kthreads(void)
506 {
507 	int cpu;
508 	struct rcu_data *rdp;
509 	struct rcu_node *rnp;
510 
511 	pr_info("%s: wait state: %d ->state: %#lx\n", rcu_state.name,
512 		rcu_state.gp_state, rcu_state.gp_kthread->state);
513 	rcu_for_each_node_breadth_first(rnp) {
514 		if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
515 			continue;
516 		pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
517 			rnp->grplo, rnp->grphi, rnp->gp_seq,
518 			rnp->gp_seq_needed);
519 		if (!rcu_is_leaf_node(rnp))
520 			continue;
521 		for_each_leaf_node_possible_cpu(rnp, cpu) {
522 			rdp = per_cpu_ptr(&rcu_data, cpu);
523 			if (rdp->gpwrap ||
524 			    ULONG_CMP_GE(rcu_state.gp_seq,
525 					 rdp->gp_seq_needed))
526 				continue;
527 			pr_info("\tcpu %d ->gp_seq_needed %lu\n",
528 				cpu, rdp->gp_seq_needed);
529 		}
530 	}
531 	/* sched_show_task(rcu_state.gp_kthread); */
532 }
533 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
534 
535 /*
536  * Send along grace-period-related data for rcutorture diagnostics.
537  */
538 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
539 			    unsigned long *gp_seq)
540 {
541 	switch (test_type) {
542 	case RCU_FLAVOR:
543 	case RCU_BH_FLAVOR:
544 	case RCU_SCHED_FLAVOR:
545 		*flags = READ_ONCE(rcu_state.gp_flags);
546 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
547 		break;
548 	default:
549 		break;
550 	}
551 }
552 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
553 
554 /*
555  * Return the root node of the rcu_state structure.
556  */
557 static struct rcu_node *rcu_get_root(void)
558 {
559 	return &rcu_state.node[0];
560 }
561 
562 /*
563  * Enter an RCU extended quiescent state, which can be either the
564  * idle loop or adaptive-tickless usermode execution.
565  *
566  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
567  * the possibility of usermode upcalls having messed up our count
568  * of interrupt nesting level during the prior busy period.
569  */
570 static void rcu_eqs_enter(bool user)
571 {
572 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
573 
574 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
575 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
576 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
577 		     rdp->dynticks_nesting == 0);
578 	if (rdp->dynticks_nesting != 1) {
579 		rdp->dynticks_nesting--;
580 		return;
581 	}
582 
583 	lockdep_assert_irqs_disabled();
584 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
585 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
586 	rdp = this_cpu_ptr(&rcu_data);
587 	do_nocb_deferred_wakeup(rdp);
588 	rcu_prepare_for_idle();
589 	rcu_preempt_deferred_qs(current);
590 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
591 	rcu_dynticks_eqs_enter();
592 	rcu_dynticks_task_enter();
593 }
594 
595 /**
596  * rcu_idle_enter - inform RCU that current CPU is entering idle
597  *
598  * Enter idle mode, in other words, -leave- the mode in which RCU
599  * read-side critical sections can occur.  (Though RCU read-side
600  * critical sections can occur in irq handlers in idle, a possibility
601  * handled by irq_enter() and irq_exit().)
602  *
603  * If you add or remove a call to rcu_idle_enter(), be sure to test with
604  * CONFIG_RCU_EQS_DEBUG=y.
605  */
606 void rcu_idle_enter(void)
607 {
608 	lockdep_assert_irqs_disabled();
609 	rcu_eqs_enter(false);
610 }
611 
612 #ifdef CONFIG_NO_HZ_FULL
613 /**
614  * rcu_user_enter - inform RCU that we are resuming userspace.
615  *
616  * Enter RCU idle mode right before resuming userspace.  No use of RCU
617  * is permitted between this call and rcu_user_exit(). This way the
618  * CPU doesn't need to maintain the tick for RCU maintenance purposes
619  * when the CPU runs in userspace.
620  *
621  * If you add or remove a call to rcu_user_enter(), be sure to test with
622  * CONFIG_RCU_EQS_DEBUG=y.
623  */
624 void rcu_user_enter(void)
625 {
626 	lockdep_assert_irqs_disabled();
627 	rcu_eqs_enter(true);
628 }
629 #endif /* CONFIG_NO_HZ_FULL */
630 
631 /*
632  * If we are returning from the outermost NMI handler that interrupted an
633  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
634  * to let the RCU grace-period handling know that the CPU is back to
635  * being RCU-idle.
636  *
637  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
638  * with CONFIG_RCU_EQS_DEBUG=y.
639  */
640 static __always_inline void rcu_nmi_exit_common(bool irq)
641 {
642 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
643 
644 	/*
645 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
646 	 * (We are exiting an NMI handler, so RCU better be paying attention
647 	 * to us!)
648 	 */
649 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
650 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
651 
652 	/*
653 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
654 	 * leave it in non-RCU-idle state.
655 	 */
656 	if (rdp->dynticks_nmi_nesting != 1) {
657 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
658 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
659 			   rdp->dynticks_nmi_nesting - 2);
660 		return;
661 	}
662 
663 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
664 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
665 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
666 
667 	if (irq)
668 		rcu_prepare_for_idle();
669 
670 	rcu_dynticks_eqs_enter();
671 
672 	if (irq)
673 		rcu_dynticks_task_enter();
674 }
675 
676 /**
677  * rcu_nmi_exit - inform RCU of exit from NMI context
678  * @irq: Is this call from rcu_irq_exit?
679  *
680  * If you add or remove a call to rcu_nmi_exit(), be sure to test
681  * with CONFIG_RCU_EQS_DEBUG=y.
682  */
683 void rcu_nmi_exit(void)
684 {
685 	rcu_nmi_exit_common(false);
686 }
687 
688 /**
689  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
690  *
691  * Exit from an interrupt handler, which might possibly result in entering
692  * idle mode, in other words, leaving the mode in which read-side critical
693  * sections can occur.  The caller must have disabled interrupts.
694  *
695  * This code assumes that the idle loop never does anything that might
696  * result in unbalanced calls to irq_enter() and irq_exit().  If your
697  * architecture's idle loop violates this assumption, RCU will give you what
698  * you deserve, good and hard.  But very infrequently and irreproducibly.
699  *
700  * Use things like work queues to work around this limitation.
701  *
702  * You have been warned.
703  *
704  * If you add or remove a call to rcu_irq_exit(), be sure to test with
705  * CONFIG_RCU_EQS_DEBUG=y.
706  */
707 void rcu_irq_exit(void)
708 {
709 	lockdep_assert_irqs_disabled();
710 	rcu_nmi_exit_common(true);
711 }
712 
713 /*
714  * Wrapper for rcu_irq_exit() where interrupts are enabled.
715  *
716  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
717  * with CONFIG_RCU_EQS_DEBUG=y.
718  */
719 void rcu_irq_exit_irqson(void)
720 {
721 	unsigned long flags;
722 
723 	local_irq_save(flags);
724 	rcu_irq_exit();
725 	local_irq_restore(flags);
726 }
727 
728 /*
729  * Exit an RCU extended quiescent state, which can be either the
730  * idle loop or adaptive-tickless usermode execution.
731  *
732  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
733  * allow for the possibility of usermode upcalls messing up our count of
734  * interrupt nesting level during the busy period that is just now starting.
735  */
736 static void rcu_eqs_exit(bool user)
737 {
738 	struct rcu_data *rdp;
739 	long oldval;
740 
741 	lockdep_assert_irqs_disabled();
742 	rdp = this_cpu_ptr(&rcu_data);
743 	oldval = rdp->dynticks_nesting;
744 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
745 	if (oldval) {
746 		rdp->dynticks_nesting++;
747 		return;
748 	}
749 	rcu_dynticks_task_exit();
750 	rcu_dynticks_eqs_exit();
751 	rcu_cleanup_after_idle();
752 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
753 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
754 	WRITE_ONCE(rdp->dynticks_nesting, 1);
755 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
756 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
757 }
758 
759 /**
760  * rcu_idle_exit - inform RCU that current CPU is leaving idle
761  *
762  * Exit idle mode, in other words, -enter- the mode in which RCU
763  * read-side critical sections can occur.
764  *
765  * If you add or remove a call to rcu_idle_exit(), be sure to test with
766  * CONFIG_RCU_EQS_DEBUG=y.
767  */
768 void rcu_idle_exit(void)
769 {
770 	unsigned long flags;
771 
772 	local_irq_save(flags);
773 	rcu_eqs_exit(false);
774 	local_irq_restore(flags);
775 }
776 
777 #ifdef CONFIG_NO_HZ_FULL
778 /**
779  * rcu_user_exit - inform RCU that we are exiting userspace.
780  *
781  * Exit RCU idle mode while entering the kernel because it can
782  * run a RCU read side critical section anytime.
783  *
784  * If you add or remove a call to rcu_user_exit(), be sure to test with
785  * CONFIG_RCU_EQS_DEBUG=y.
786  */
787 void rcu_user_exit(void)
788 {
789 	rcu_eqs_exit(1);
790 }
791 #endif /* CONFIG_NO_HZ_FULL */
792 
793 /**
794  * rcu_nmi_enter_common - inform RCU of entry to NMI context
795  * @irq: Is this call from rcu_irq_enter?
796  *
797  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
798  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
799  * that the CPU is active.  This implementation permits nested NMIs, as
800  * long as the nesting level does not overflow an int.  (You will probably
801  * run out of stack space first.)
802  *
803  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
804  * with CONFIG_RCU_EQS_DEBUG=y.
805  */
806 static __always_inline void rcu_nmi_enter_common(bool irq)
807 {
808 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
809 	long incby = 2;
810 
811 	/* Complain about underflow. */
812 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
813 
814 	/*
815 	 * If idle from RCU viewpoint, atomically increment ->dynticks
816 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
817 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
818 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
819 	 * to be in the outermost NMI handler that interrupted an RCU-idle
820 	 * period (observation due to Andy Lutomirski).
821 	 */
822 	if (rcu_dynticks_curr_cpu_in_eqs()) {
823 
824 		if (irq)
825 			rcu_dynticks_task_exit();
826 
827 		rcu_dynticks_eqs_exit();
828 
829 		if (irq)
830 			rcu_cleanup_after_idle();
831 
832 		incby = 1;
833 	}
834 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
835 			  rdp->dynticks_nmi_nesting,
836 			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
837 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
838 		   rdp->dynticks_nmi_nesting + incby);
839 	barrier();
840 }
841 
842 /**
843  * rcu_nmi_enter - inform RCU of entry to NMI context
844  */
845 void rcu_nmi_enter(void)
846 {
847 	rcu_nmi_enter_common(false);
848 }
849 
850 /**
851  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
852  *
853  * Enter an interrupt handler, which might possibly result in exiting
854  * idle mode, in other words, entering the mode in which read-side critical
855  * sections can occur.  The caller must have disabled interrupts.
856  *
857  * Note that the Linux kernel is fully capable of entering an interrupt
858  * handler that it never exits, for example when doing upcalls to user mode!
859  * This code assumes that the idle loop never does upcalls to user mode.
860  * If your architecture's idle loop does do upcalls to user mode (or does
861  * anything else that results in unbalanced calls to the irq_enter() and
862  * irq_exit() functions), RCU will give you what you deserve, good and hard.
863  * But very infrequently and irreproducibly.
864  *
865  * Use things like work queues to work around this limitation.
866  *
867  * You have been warned.
868  *
869  * If you add or remove a call to rcu_irq_enter(), be sure to test with
870  * CONFIG_RCU_EQS_DEBUG=y.
871  */
872 void rcu_irq_enter(void)
873 {
874 	lockdep_assert_irqs_disabled();
875 	rcu_nmi_enter_common(true);
876 }
877 
878 /*
879  * Wrapper for rcu_irq_enter() where interrupts are enabled.
880  *
881  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
882  * with CONFIG_RCU_EQS_DEBUG=y.
883  */
884 void rcu_irq_enter_irqson(void)
885 {
886 	unsigned long flags;
887 
888 	local_irq_save(flags);
889 	rcu_irq_enter();
890 	local_irq_restore(flags);
891 }
892 
893 /**
894  * rcu_is_watching - see if RCU thinks that the current CPU is idle
895  *
896  * Return true if RCU is watching the running CPU, which means that this
897  * CPU can safely enter RCU read-side critical sections.  In other words,
898  * if the current CPU is in its idle loop and is neither in an interrupt
899  * or NMI handler, return true.
900  */
901 bool notrace rcu_is_watching(void)
902 {
903 	bool ret;
904 
905 	preempt_disable_notrace();
906 	ret = !rcu_dynticks_curr_cpu_in_eqs();
907 	preempt_enable_notrace();
908 	return ret;
909 }
910 EXPORT_SYMBOL_GPL(rcu_is_watching);
911 
912 /*
913  * If a holdout task is actually running, request an urgent quiescent
914  * state from its CPU.  This is unsynchronized, so migrations can cause
915  * the request to go to the wrong CPU.  Which is OK, all that will happen
916  * is that the CPU's next context switch will be a bit slower and next
917  * time around this task will generate another request.
918  */
919 void rcu_request_urgent_qs_task(struct task_struct *t)
920 {
921 	int cpu;
922 
923 	barrier();
924 	cpu = task_cpu(t);
925 	if (!task_curr(t))
926 		return; /* This task is not running on that CPU. */
927 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
928 }
929 
930 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
931 
932 /*
933  * Is the current CPU online as far as RCU is concerned?
934  *
935  * Disable preemption to avoid false positives that could otherwise
936  * happen due to the current CPU number being sampled, this task being
937  * preempted, its old CPU being taken offline, resuming on some other CPU,
938  * then determining that its old CPU is now offline.
939  *
940  * Disable checking if in an NMI handler because we cannot safely
941  * report errors from NMI handlers anyway.  In addition, it is OK to use
942  * RCU on an offline processor during initial boot, hence the check for
943  * rcu_scheduler_fully_active.
944  */
945 bool rcu_lockdep_current_cpu_online(void)
946 {
947 	struct rcu_data *rdp;
948 	struct rcu_node *rnp;
949 	bool ret = false;
950 
951 	if (in_nmi() || !rcu_scheduler_fully_active)
952 		return true;
953 	preempt_disable();
954 	rdp = this_cpu_ptr(&rcu_data);
955 	rnp = rdp->mynode;
956 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
957 		ret = true;
958 	preempt_enable();
959 	return ret;
960 }
961 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
962 
963 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
964 
965 /*
966  * We are reporting a quiescent state on behalf of some other CPU, so
967  * it is our responsibility to check for and handle potential overflow
968  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
969  * After all, the CPU might be in deep idle state, and thus executing no
970  * code whatsoever.
971  */
972 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
973 {
974 	raw_lockdep_assert_held_rcu_node(rnp);
975 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
976 			 rnp->gp_seq))
977 		WRITE_ONCE(rdp->gpwrap, true);
978 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
979 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
980 }
981 
982 /*
983  * Snapshot the specified CPU's dynticks counter so that we can later
984  * credit them with an implicit quiescent state.  Return 1 if this CPU
985  * is in dynticks idle mode, which is an extended quiescent state.
986  */
987 static int dyntick_save_progress_counter(struct rcu_data *rdp)
988 {
989 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
990 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
991 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
992 		rcu_gpnum_ovf(rdp->mynode, rdp);
993 		return 1;
994 	}
995 	return 0;
996 }
997 
998 /*
999  * Handler for the irq_work request posted when a grace period has
1000  * gone on for too long, but not yet long enough for an RCU CPU
1001  * stall warning.  Set state appropriately, but just complain if
1002  * there is unexpected state on entry.
1003  */
1004 static void rcu_iw_handler(struct irq_work *iwp)
1005 {
1006 	struct rcu_data *rdp;
1007 	struct rcu_node *rnp;
1008 
1009 	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1010 	rnp = rdp->mynode;
1011 	raw_spin_lock_rcu_node(rnp);
1012 	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1013 		rdp->rcu_iw_gp_seq = rnp->gp_seq;
1014 		rdp->rcu_iw_pending = false;
1015 	}
1016 	raw_spin_unlock_rcu_node(rnp);
1017 }
1018 
1019 /*
1020  * Return true if the specified CPU has passed through a quiescent
1021  * state by virtue of being in or having passed through an dynticks
1022  * idle state since the last call to dyntick_save_progress_counter()
1023  * for this same CPU, or by virtue of having been offline.
1024  */
1025 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1026 {
1027 	unsigned long jtsq;
1028 	bool *rnhqp;
1029 	bool *ruqp;
1030 	struct rcu_node *rnp = rdp->mynode;
1031 
1032 	/*
1033 	 * If the CPU passed through or entered a dynticks idle phase with
1034 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1035 	 * already acknowledged the request to pass through a quiescent
1036 	 * state.  Either way, that CPU cannot possibly be in an RCU
1037 	 * read-side critical section that started before the beginning
1038 	 * of the current RCU grace period.
1039 	 */
1040 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1041 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1042 		rcu_gpnum_ovf(rnp, rdp);
1043 		return 1;
1044 	}
1045 
1046 	/* If waiting too long on an offline CPU, complain. */
1047 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1048 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1049 		bool onl;
1050 		struct rcu_node *rnp1;
1051 
1052 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1053 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1054 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1055 			(long)rnp->gp_seq, (long)rnp->completedqs);
1056 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1057 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1058 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1059 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1060 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1061 			__func__, rdp->cpu, ".o"[onl],
1062 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1063 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1064 		return 1; /* Break things loose after complaining. */
1065 	}
1066 
1067 	/*
1068 	 * A CPU running for an extended time within the kernel can
1069 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1070 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1071 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1072 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1073 	 * variable are safe because the assignments are repeated if this
1074 	 * CPU failed to pass through a quiescent state.  This code
1075 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1076 	 * is set way high.
1077 	 */
1078 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1079 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1080 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1081 	if (!READ_ONCE(*rnhqp) &&
1082 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1083 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1084 		WRITE_ONCE(*rnhqp, true);
1085 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1086 		smp_store_release(ruqp, true);
1087 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1088 		WRITE_ONCE(*ruqp, true);
1089 	}
1090 
1091 	/*
1092 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
1093 	 * The above code handles this, but only for straight cond_resched().
1094 	 * And some in-kernel loops check need_resched() before calling
1095 	 * cond_resched(), which defeats the above code for CPUs that are
1096 	 * running in-kernel with scheduling-clock interrupts disabled.
1097 	 * So hit them over the head with the resched_cpu() hammer!
1098 	 */
1099 	if (tick_nohz_full_cpu(rdp->cpu) &&
1100 		   time_after(jiffies,
1101 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1102 		resched_cpu(rdp->cpu);
1103 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1104 	}
1105 
1106 	/*
1107 	 * If more than halfway to RCU CPU stall-warning time, invoke
1108 	 * resched_cpu() more frequently to try to loosen things up a bit.
1109 	 * Also check to see if the CPU is getting hammered with interrupts,
1110 	 * but only once per grace period, just to keep the IPIs down to
1111 	 * a dull roar.
1112 	 */
1113 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1114 		if (time_after(jiffies,
1115 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1116 			resched_cpu(rdp->cpu);
1117 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1118 		}
1119 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1120 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1121 		    (rnp->ffmask & rdp->grpmask)) {
1122 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1123 			rdp->rcu_iw_pending = true;
1124 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1125 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1126 		}
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static void record_gp_stall_check_time(void)
1133 {
1134 	unsigned long j = jiffies;
1135 	unsigned long j1;
1136 
1137 	rcu_state.gp_start = j;
1138 	j1 = rcu_jiffies_till_stall_check();
1139 	/* Record ->gp_start before ->jiffies_stall. */
1140 	smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1141 	rcu_state.jiffies_resched = j + j1 / 2;
1142 	rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
1143 }
1144 
1145 /*
1146  * Convert a ->gp_state value to a character string.
1147  */
1148 static const char *gp_state_getname(short gs)
1149 {
1150 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1151 		return "???";
1152 	return gp_state_names[gs];
1153 }
1154 
1155 /*
1156  * Complain about starvation of grace-period kthread.
1157  */
1158 static void rcu_check_gp_kthread_starvation(void)
1159 {
1160 	struct task_struct *gpk = rcu_state.gp_kthread;
1161 	unsigned long j;
1162 
1163 	j = jiffies - READ_ONCE(rcu_state.gp_activity);
1164 	if (j > 2 * HZ) {
1165 		pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1166 		       rcu_state.name, j,
1167 		       (long)rcu_seq_current(&rcu_state.gp_seq),
1168 		       rcu_state.gp_flags,
1169 		       gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1170 		       gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1171 		if (gpk) {
1172 			pr_err("RCU grace-period kthread stack dump:\n");
1173 			sched_show_task(gpk);
1174 			wake_up_process(gpk);
1175 		}
1176 	}
1177 }
1178 
1179 /*
1180  * Dump stacks of all tasks running on stalled CPUs.  First try using
1181  * NMIs, but fall back to manual remote stack tracing on architectures
1182  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1183  * traces are more accurate because they are printed by the target CPU.
1184  */
1185 static void rcu_dump_cpu_stacks(void)
1186 {
1187 	int cpu;
1188 	unsigned long flags;
1189 	struct rcu_node *rnp;
1190 
1191 	rcu_for_each_leaf_node(rnp) {
1192 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1193 		for_each_leaf_node_possible_cpu(rnp, cpu)
1194 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1195 				if (!trigger_single_cpu_backtrace(cpu))
1196 					dump_cpu_task(cpu);
1197 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1198 	}
1199 }
1200 
1201 /*
1202  * If too much time has passed in the current grace period, and if
1203  * so configured, go kick the relevant kthreads.
1204  */
1205 static void rcu_stall_kick_kthreads(void)
1206 {
1207 	unsigned long j;
1208 
1209 	if (!rcu_kick_kthreads)
1210 		return;
1211 	j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1212 	if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1213 	    (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1214 		WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1215 			  rcu_state.name);
1216 		rcu_ftrace_dump(DUMP_ALL);
1217 		wake_up_process(rcu_state.gp_kthread);
1218 		WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
1219 	}
1220 }
1221 
1222 static void panic_on_rcu_stall(void)
1223 {
1224 	if (sysctl_panic_on_rcu_stall)
1225 		panic("RCU Stall\n");
1226 }
1227 
1228 static void print_other_cpu_stall(unsigned long gp_seq)
1229 {
1230 	int cpu;
1231 	unsigned long flags;
1232 	unsigned long gpa;
1233 	unsigned long j;
1234 	int ndetected = 0;
1235 	struct rcu_node *rnp = rcu_get_root();
1236 	long totqlen = 0;
1237 
1238 	/* Kick and suppress, if so configured. */
1239 	rcu_stall_kick_kthreads();
1240 	if (rcu_cpu_stall_suppress)
1241 		return;
1242 
1243 	/*
1244 	 * OK, time to rat on our buddy...
1245 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1246 	 * RCU CPU stall warnings.
1247 	 */
1248 	pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
1249 	print_cpu_stall_info_begin();
1250 	rcu_for_each_leaf_node(rnp) {
1251 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1252 		ndetected += rcu_print_task_stall(rnp);
1253 		if (rnp->qsmask != 0) {
1254 			for_each_leaf_node_possible_cpu(rnp, cpu)
1255 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1256 					print_cpu_stall_info(cpu);
1257 					ndetected++;
1258 				}
1259 		}
1260 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1261 	}
1262 
1263 	print_cpu_stall_info_end();
1264 	for_each_possible_cpu(cpu)
1265 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
1266 							    cpu)->cblist);
1267 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1268 	       smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1269 	       (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1270 	if (ndetected) {
1271 		rcu_dump_cpu_stacks();
1272 
1273 		/* Complain about tasks blocking the grace period. */
1274 		rcu_print_detail_task_stall();
1275 	} else {
1276 		if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
1277 			pr_err("INFO: Stall ended before state dump start\n");
1278 		} else {
1279 			j = jiffies;
1280 			gpa = READ_ONCE(rcu_state.gp_activity);
1281 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1282 			       rcu_state.name, j - gpa, j, gpa,
1283 			       READ_ONCE(jiffies_till_next_fqs),
1284 			       rcu_get_root()->qsmask);
1285 			/* In this case, the current CPU might be at fault. */
1286 			sched_show_task(current);
1287 		}
1288 	}
1289 	/* Rewrite if needed in case of slow consoles. */
1290 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1291 		WRITE_ONCE(rcu_state.jiffies_stall,
1292 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1293 
1294 	rcu_check_gp_kthread_starvation();
1295 
1296 	panic_on_rcu_stall();
1297 
1298 	force_quiescent_state();  /* Kick them all. */
1299 }
1300 
1301 static void print_cpu_stall(void)
1302 {
1303 	int cpu;
1304 	unsigned long flags;
1305 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1306 	struct rcu_node *rnp = rcu_get_root();
1307 	long totqlen = 0;
1308 
1309 	/* Kick and suppress, if so configured. */
1310 	rcu_stall_kick_kthreads();
1311 	if (rcu_cpu_stall_suppress)
1312 		return;
1313 
1314 	/*
1315 	 * OK, time to rat on ourselves...
1316 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1317 	 * RCU CPU stall warnings.
1318 	 */
1319 	pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
1320 	print_cpu_stall_info_begin();
1321 	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1322 	print_cpu_stall_info(smp_processor_id());
1323 	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1324 	print_cpu_stall_info_end();
1325 	for_each_possible_cpu(cpu)
1326 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
1327 							    cpu)->cblist);
1328 	pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1329 		jiffies - rcu_state.gp_start,
1330 		(long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1331 
1332 	rcu_check_gp_kthread_starvation();
1333 
1334 	rcu_dump_cpu_stacks();
1335 
1336 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1337 	/* Rewrite if needed in case of slow consoles. */
1338 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1339 		WRITE_ONCE(rcu_state.jiffies_stall,
1340 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1341 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1342 
1343 	panic_on_rcu_stall();
1344 
1345 	/*
1346 	 * Attempt to revive the RCU machinery by forcing a context switch.
1347 	 *
1348 	 * A context switch would normally allow the RCU state machine to make
1349 	 * progress and it could be we're stuck in kernel space without context
1350 	 * switches for an entirely unreasonable amount of time.
1351 	 */
1352 	set_tsk_need_resched(current);
1353 	set_preempt_need_resched();
1354 }
1355 
1356 static void check_cpu_stall(struct rcu_data *rdp)
1357 {
1358 	unsigned long gs1;
1359 	unsigned long gs2;
1360 	unsigned long gps;
1361 	unsigned long j;
1362 	unsigned long jn;
1363 	unsigned long js;
1364 	struct rcu_node *rnp;
1365 
1366 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1367 	    !rcu_gp_in_progress())
1368 		return;
1369 	rcu_stall_kick_kthreads();
1370 	j = jiffies;
1371 
1372 	/*
1373 	 * Lots of memory barriers to reject false positives.
1374 	 *
1375 	 * The idea is to pick up rcu_state.gp_seq, then
1376 	 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1377 	 * another copy of rcu_state.gp_seq.  These values are updated in
1378 	 * the opposite order with memory barriers (or equivalent) during
1379 	 * grace-period initialization and cleanup.  Now, a false positive
1380 	 * can occur if we get an new value of rcu_state.gp_start and a old
1381 	 * value of rcu_state.jiffies_stall.  But given the memory barriers,
1382 	 * the only way that this can happen is if one grace period ends
1383 	 * and another starts between these two fetches.  This is detected
1384 	 * by comparing the second fetch of rcu_state.gp_seq with the
1385 	 * previous fetch from rcu_state.gp_seq.
1386 	 *
1387 	 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1388 	 * and rcu_state.gp_start suffice to forestall false positives.
1389 	 */
1390 	gs1 = READ_ONCE(rcu_state.gp_seq);
1391 	smp_rmb(); /* Pick up ->gp_seq first... */
1392 	js = READ_ONCE(rcu_state.jiffies_stall);
1393 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1394 	gps = READ_ONCE(rcu_state.gp_start);
1395 	smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1396 	gs2 = READ_ONCE(rcu_state.gp_seq);
1397 	if (gs1 != gs2 ||
1398 	    ULONG_CMP_LT(j, js) ||
1399 	    ULONG_CMP_GE(gps, js))
1400 		return; /* No stall or GP completed since entering function. */
1401 	rnp = rdp->mynode;
1402 	jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1403 	if (rcu_gp_in_progress() &&
1404 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1405 	    cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1406 
1407 		/* We haven't checked in, so go dump stack. */
1408 		print_cpu_stall();
1409 
1410 	} else if (rcu_gp_in_progress() &&
1411 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1412 		   cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1413 
1414 		/* They had a few time units to dump stack, so complain. */
1415 		print_other_cpu_stall(gs2);
1416 	}
1417 }
1418 
1419 /**
1420  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1421  *
1422  * Set the stall-warning timeout way off into the future, thus preventing
1423  * any RCU CPU stall-warning messages from appearing in the current set of
1424  * RCU grace periods.
1425  *
1426  * The caller must disable hard irqs.
1427  */
1428 void rcu_cpu_stall_reset(void)
1429 {
1430 	WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
1431 }
1432 
1433 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1434 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1435 			      unsigned long gp_seq_req, const char *s)
1436 {
1437 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1438 				      rnp->level, rnp->grplo, rnp->grphi, s);
1439 }
1440 
1441 /*
1442  * rcu_start_this_gp - Request the start of a particular grace period
1443  * @rnp_start: The leaf node of the CPU from which to start.
1444  * @rdp: The rcu_data corresponding to the CPU from which to start.
1445  * @gp_seq_req: The gp_seq of the grace period to start.
1446  *
1447  * Start the specified grace period, as needed to handle newly arrived
1448  * callbacks.  The required future grace periods are recorded in each
1449  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1450  * is reason to awaken the grace-period kthread.
1451  *
1452  * The caller must hold the specified rcu_node structure's ->lock, which
1453  * is why the caller is responsible for waking the grace-period kthread.
1454  *
1455  * Returns true if the GP thread needs to be awakened else false.
1456  */
1457 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1458 			      unsigned long gp_seq_req)
1459 {
1460 	bool ret = false;
1461 	struct rcu_node *rnp;
1462 
1463 	/*
1464 	 * Use funnel locking to either acquire the root rcu_node
1465 	 * structure's lock or bail out if the need for this grace period
1466 	 * has already been recorded -- or if that grace period has in
1467 	 * fact already started.  If there is already a grace period in
1468 	 * progress in a non-leaf node, no recording is needed because the
1469 	 * end of the grace period will scan the leaf rcu_node structures.
1470 	 * Note that rnp_start->lock must not be released.
1471 	 */
1472 	raw_lockdep_assert_held_rcu_node(rnp_start);
1473 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1474 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1475 		if (rnp != rnp_start)
1476 			raw_spin_lock_rcu_node(rnp);
1477 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1478 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1479 		    (rnp != rnp_start &&
1480 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1481 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1482 					  TPS("Prestarted"));
1483 			goto unlock_out;
1484 		}
1485 		rnp->gp_seq_needed = gp_seq_req;
1486 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1487 			/*
1488 			 * We just marked the leaf or internal node, and a
1489 			 * grace period is in progress, which means that
1490 			 * rcu_gp_cleanup() will see the marking.  Bail to
1491 			 * reduce contention.
1492 			 */
1493 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1494 					  TPS("Startedleaf"));
1495 			goto unlock_out;
1496 		}
1497 		if (rnp != rnp_start && rnp->parent != NULL)
1498 			raw_spin_unlock_rcu_node(rnp);
1499 		if (!rnp->parent)
1500 			break;  /* At root, and perhaps also leaf. */
1501 	}
1502 
1503 	/* If GP already in progress, just leave, otherwise start one. */
1504 	if (rcu_gp_in_progress()) {
1505 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1506 		goto unlock_out;
1507 	}
1508 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1509 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1510 	rcu_state.gp_req_activity = jiffies;
1511 	if (!rcu_state.gp_kthread) {
1512 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1513 		goto unlock_out;
1514 	}
1515 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1516 	ret = true;  /* Caller must wake GP kthread. */
1517 unlock_out:
1518 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1519 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1520 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1521 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1522 	}
1523 	if (rnp != rnp_start)
1524 		raw_spin_unlock_rcu_node(rnp);
1525 	return ret;
1526 }
1527 
1528 /*
1529  * Clean up any old requests for the just-ended grace period.  Also return
1530  * whether any additional grace periods have been requested.
1531  */
1532 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1533 {
1534 	bool needmore;
1535 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1536 
1537 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1538 	if (!needmore)
1539 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1540 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1541 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1542 	return needmore;
1543 }
1544 
1545 /*
1546  * Awaken the grace-period kthread.  Don't do a self-awaken, and don't
1547  * bother awakening when there is nothing for the grace-period kthread
1548  * to do (as in several CPUs raced to awaken, and we lost), and finally
1549  * don't try to awaken a kthread that has not yet been created.
1550  */
1551 static void rcu_gp_kthread_wake(void)
1552 {
1553 	if (current == rcu_state.gp_kthread ||
1554 	    !READ_ONCE(rcu_state.gp_flags) ||
1555 	    !rcu_state.gp_kthread)
1556 		return;
1557 	swake_up_one(&rcu_state.gp_wq);
1558 }
1559 
1560 /*
1561  * If there is room, assign a ->gp_seq number to any callbacks on this
1562  * CPU that have not already been assigned.  Also accelerate any callbacks
1563  * that were previously assigned a ->gp_seq number that has since proven
1564  * to be too conservative, which can happen if callbacks get assigned a
1565  * ->gp_seq number while RCU is idle, but with reference to a non-root
1566  * rcu_node structure.  This function is idempotent, so it does not hurt
1567  * to call it repeatedly.  Returns an flag saying that we should awaken
1568  * the RCU grace-period kthread.
1569  *
1570  * The caller must hold rnp->lock with interrupts disabled.
1571  */
1572 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1573 {
1574 	unsigned long gp_seq_req;
1575 	bool ret = false;
1576 
1577 	raw_lockdep_assert_held_rcu_node(rnp);
1578 
1579 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1580 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1581 		return false;
1582 
1583 	/*
1584 	 * Callbacks are often registered with incomplete grace-period
1585 	 * information.  Something about the fact that getting exact
1586 	 * information requires acquiring a global lock...  RCU therefore
1587 	 * makes a conservative estimate of the grace period number at which
1588 	 * a given callback will become ready to invoke.	The following
1589 	 * code checks this estimate and improves it when possible, thus
1590 	 * accelerating callback invocation to an earlier grace-period
1591 	 * number.
1592 	 */
1593 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1594 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1595 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1596 
1597 	/* Trace depending on how much we were able to accelerate. */
1598 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1599 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1600 	else
1601 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1602 	return ret;
1603 }
1604 
1605 /*
1606  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1607  * rcu_node structure's ->lock be held.  It consults the cached value
1608  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1609  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1610  * while holding the leaf rcu_node structure's ->lock.
1611  */
1612 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1613 					struct rcu_data *rdp)
1614 {
1615 	unsigned long c;
1616 	bool needwake;
1617 
1618 	lockdep_assert_irqs_disabled();
1619 	c = rcu_seq_snap(&rcu_state.gp_seq);
1620 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1621 		/* Old request still live, so mark recent callbacks. */
1622 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1623 		return;
1624 	}
1625 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1626 	needwake = rcu_accelerate_cbs(rnp, rdp);
1627 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1628 	if (needwake)
1629 		rcu_gp_kthread_wake();
1630 }
1631 
1632 /*
1633  * Move any callbacks whose grace period has completed to the
1634  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1635  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1636  * sublist.  This function is idempotent, so it does not hurt to
1637  * invoke it repeatedly.  As long as it is not invoked -too- often...
1638  * Returns true if the RCU grace-period kthread needs to be awakened.
1639  *
1640  * The caller must hold rnp->lock with interrupts disabled.
1641  */
1642 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1643 {
1644 	raw_lockdep_assert_held_rcu_node(rnp);
1645 
1646 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1647 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1648 		return false;
1649 
1650 	/*
1651 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1652 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1653 	 */
1654 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1655 
1656 	/* Classify any remaining callbacks. */
1657 	return rcu_accelerate_cbs(rnp, rdp);
1658 }
1659 
1660 /*
1661  * Update CPU-local rcu_data state to record the beginnings and ends of
1662  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1663  * structure corresponding to the current CPU, and must have irqs disabled.
1664  * Returns true if the grace-period kthread needs to be awakened.
1665  */
1666 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1667 {
1668 	bool ret;
1669 	bool need_gp;
1670 
1671 	raw_lockdep_assert_held_rcu_node(rnp);
1672 
1673 	if (rdp->gp_seq == rnp->gp_seq)
1674 		return false; /* Nothing to do. */
1675 
1676 	/* Handle the ends of any preceding grace periods first. */
1677 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1678 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1679 		ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1680 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1681 	} else {
1682 		ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1683 	}
1684 
1685 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1686 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1687 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1688 		/*
1689 		 * If the current grace period is waiting for this CPU,
1690 		 * set up to detect a quiescent state, otherwise don't
1691 		 * go looking for one.
1692 		 */
1693 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1694 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1695 		rdp->cpu_no_qs.b.norm = need_gp;
1696 		rdp->core_needs_qs = need_gp;
1697 		zero_cpu_stall_ticks(rdp);
1698 	}
1699 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1700 	if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1701 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1702 	WRITE_ONCE(rdp->gpwrap, false);
1703 	rcu_gpnum_ovf(rnp, rdp);
1704 	return ret;
1705 }
1706 
1707 static void note_gp_changes(struct rcu_data *rdp)
1708 {
1709 	unsigned long flags;
1710 	bool needwake;
1711 	struct rcu_node *rnp;
1712 
1713 	local_irq_save(flags);
1714 	rnp = rdp->mynode;
1715 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1716 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1717 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1718 		local_irq_restore(flags);
1719 		return;
1720 	}
1721 	needwake = __note_gp_changes(rnp, rdp);
1722 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1723 	if (needwake)
1724 		rcu_gp_kthread_wake();
1725 }
1726 
1727 static void rcu_gp_slow(int delay)
1728 {
1729 	if (delay > 0 &&
1730 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1731 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1732 		schedule_timeout_uninterruptible(delay);
1733 }
1734 
1735 /*
1736  * Initialize a new grace period.  Return false if no grace period required.
1737  */
1738 static bool rcu_gp_init(void)
1739 {
1740 	unsigned long flags;
1741 	unsigned long oldmask;
1742 	unsigned long mask;
1743 	struct rcu_data *rdp;
1744 	struct rcu_node *rnp = rcu_get_root();
1745 
1746 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1747 	raw_spin_lock_irq_rcu_node(rnp);
1748 	if (!READ_ONCE(rcu_state.gp_flags)) {
1749 		/* Spurious wakeup, tell caller to go back to sleep.  */
1750 		raw_spin_unlock_irq_rcu_node(rnp);
1751 		return false;
1752 	}
1753 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1754 
1755 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1756 		/*
1757 		 * Grace period already in progress, don't start another.
1758 		 * Not supposed to be able to happen.
1759 		 */
1760 		raw_spin_unlock_irq_rcu_node(rnp);
1761 		return false;
1762 	}
1763 
1764 	/* Advance to a new grace period and initialize state. */
1765 	record_gp_stall_check_time();
1766 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1767 	rcu_seq_start(&rcu_state.gp_seq);
1768 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1769 	raw_spin_unlock_irq_rcu_node(rnp);
1770 
1771 	/*
1772 	 * Apply per-leaf buffered online and offline operations to the
1773 	 * rcu_node tree.  Note that this new grace period need not wait
1774 	 * for subsequent online CPUs, and that quiescent-state forcing
1775 	 * will handle subsequent offline CPUs.
1776 	 */
1777 	rcu_state.gp_state = RCU_GP_ONOFF;
1778 	rcu_for_each_leaf_node(rnp) {
1779 		raw_spin_lock(&rcu_state.ofl_lock);
1780 		raw_spin_lock_irq_rcu_node(rnp);
1781 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1782 		    !rnp->wait_blkd_tasks) {
1783 			/* Nothing to do on this leaf rcu_node structure. */
1784 			raw_spin_unlock_irq_rcu_node(rnp);
1785 			raw_spin_unlock(&rcu_state.ofl_lock);
1786 			continue;
1787 		}
1788 
1789 		/* Record old state, apply changes to ->qsmaskinit field. */
1790 		oldmask = rnp->qsmaskinit;
1791 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1792 
1793 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1794 		if (!oldmask != !rnp->qsmaskinit) {
1795 			if (!oldmask) { /* First online CPU for rcu_node. */
1796 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1797 					rcu_init_new_rnp(rnp);
1798 			} else if (rcu_preempt_has_tasks(rnp)) {
1799 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1800 			} else { /* Last offline CPU and can propagate. */
1801 				rcu_cleanup_dead_rnp(rnp);
1802 			}
1803 		}
1804 
1805 		/*
1806 		 * If all waited-on tasks from prior grace period are
1807 		 * done, and if all this rcu_node structure's CPUs are
1808 		 * still offline, propagate up the rcu_node tree and
1809 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1810 		 * rcu_node structure's CPUs has since come back online,
1811 		 * simply clear ->wait_blkd_tasks.
1812 		 */
1813 		if (rnp->wait_blkd_tasks &&
1814 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1815 			rnp->wait_blkd_tasks = false;
1816 			if (!rnp->qsmaskinit)
1817 				rcu_cleanup_dead_rnp(rnp);
1818 		}
1819 
1820 		raw_spin_unlock_irq_rcu_node(rnp);
1821 		raw_spin_unlock(&rcu_state.ofl_lock);
1822 	}
1823 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1824 
1825 	/*
1826 	 * Set the quiescent-state-needed bits in all the rcu_node
1827 	 * structures for all currently online CPUs in breadth-first
1828 	 * order, starting from the root rcu_node structure, relying on the
1829 	 * layout of the tree within the rcu_state.node[] array.  Note that
1830 	 * other CPUs will access only the leaves of the hierarchy, thus
1831 	 * seeing that no grace period is in progress, at least until the
1832 	 * corresponding leaf node has been initialized.
1833 	 *
1834 	 * The grace period cannot complete until the initialization
1835 	 * process finishes, because this kthread handles both.
1836 	 */
1837 	rcu_state.gp_state = RCU_GP_INIT;
1838 	rcu_for_each_node_breadth_first(rnp) {
1839 		rcu_gp_slow(gp_init_delay);
1840 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1841 		rdp = this_cpu_ptr(&rcu_data);
1842 		rcu_preempt_check_blocked_tasks(rnp);
1843 		rnp->qsmask = rnp->qsmaskinit;
1844 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1845 		if (rnp == rdp->mynode)
1846 			(void)__note_gp_changes(rnp, rdp);
1847 		rcu_preempt_boost_start_gp(rnp);
1848 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1849 					    rnp->level, rnp->grplo,
1850 					    rnp->grphi, rnp->qsmask);
1851 		/* Quiescent states for tasks on any now-offline CPUs. */
1852 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1853 		rnp->rcu_gp_init_mask = mask;
1854 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1855 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1856 		else
1857 			raw_spin_unlock_irq_rcu_node(rnp);
1858 		cond_resched_tasks_rcu_qs();
1859 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1860 	}
1861 
1862 	return true;
1863 }
1864 
1865 /*
1866  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1867  * time.
1868  */
1869 static bool rcu_gp_fqs_check_wake(int *gfp)
1870 {
1871 	struct rcu_node *rnp = rcu_get_root();
1872 
1873 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1874 	*gfp = READ_ONCE(rcu_state.gp_flags);
1875 	if (*gfp & RCU_GP_FLAG_FQS)
1876 		return true;
1877 
1878 	/* The current grace period has completed. */
1879 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1880 		return true;
1881 
1882 	return false;
1883 }
1884 
1885 /*
1886  * Do one round of quiescent-state forcing.
1887  */
1888 static void rcu_gp_fqs(bool first_time)
1889 {
1890 	struct rcu_node *rnp = rcu_get_root();
1891 
1892 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1893 	rcu_state.n_force_qs++;
1894 	if (first_time) {
1895 		/* Collect dyntick-idle snapshots. */
1896 		force_qs_rnp(dyntick_save_progress_counter);
1897 	} else {
1898 		/* Handle dyntick-idle and offline CPUs. */
1899 		force_qs_rnp(rcu_implicit_dynticks_qs);
1900 	}
1901 	/* Clear flag to prevent immediate re-entry. */
1902 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1903 		raw_spin_lock_irq_rcu_node(rnp);
1904 		WRITE_ONCE(rcu_state.gp_flags,
1905 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1906 		raw_spin_unlock_irq_rcu_node(rnp);
1907 	}
1908 }
1909 
1910 /*
1911  * Loop doing repeated quiescent-state forcing until the grace period ends.
1912  */
1913 static void rcu_gp_fqs_loop(void)
1914 {
1915 	bool first_gp_fqs;
1916 	int gf;
1917 	unsigned long j;
1918 	int ret;
1919 	struct rcu_node *rnp = rcu_get_root();
1920 
1921 	first_gp_fqs = true;
1922 	j = READ_ONCE(jiffies_till_first_fqs);
1923 	ret = 0;
1924 	for (;;) {
1925 		if (!ret) {
1926 			rcu_state.jiffies_force_qs = jiffies + j;
1927 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1928 				   jiffies + 3 * j);
1929 		}
1930 		trace_rcu_grace_period(rcu_state.name,
1931 				       READ_ONCE(rcu_state.gp_seq),
1932 				       TPS("fqswait"));
1933 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1934 		ret = swait_event_idle_timeout_exclusive(
1935 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1936 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1937 		/* Locking provides needed memory barriers. */
1938 		/* If grace period done, leave loop. */
1939 		if (!READ_ONCE(rnp->qsmask) &&
1940 		    !rcu_preempt_blocked_readers_cgp(rnp))
1941 			break;
1942 		/* If time for quiescent-state forcing, do it. */
1943 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1944 		    (gf & RCU_GP_FLAG_FQS)) {
1945 			trace_rcu_grace_period(rcu_state.name,
1946 					       READ_ONCE(rcu_state.gp_seq),
1947 					       TPS("fqsstart"));
1948 			rcu_gp_fqs(first_gp_fqs);
1949 			first_gp_fqs = false;
1950 			trace_rcu_grace_period(rcu_state.name,
1951 					       READ_ONCE(rcu_state.gp_seq),
1952 					       TPS("fqsend"));
1953 			cond_resched_tasks_rcu_qs();
1954 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1955 			ret = 0; /* Force full wait till next FQS. */
1956 			j = READ_ONCE(jiffies_till_next_fqs);
1957 		} else {
1958 			/* Deal with stray signal. */
1959 			cond_resched_tasks_rcu_qs();
1960 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1961 			WARN_ON(signal_pending(current));
1962 			trace_rcu_grace_period(rcu_state.name,
1963 					       READ_ONCE(rcu_state.gp_seq),
1964 					       TPS("fqswaitsig"));
1965 			ret = 1; /* Keep old FQS timing. */
1966 			j = jiffies;
1967 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1968 				j = 1;
1969 			else
1970 				j = rcu_state.jiffies_force_qs - j;
1971 		}
1972 	}
1973 }
1974 
1975 /*
1976  * Clean up after the old grace period.
1977  */
1978 static void rcu_gp_cleanup(void)
1979 {
1980 	unsigned long gp_duration;
1981 	bool needgp = false;
1982 	unsigned long new_gp_seq;
1983 	struct rcu_data *rdp;
1984 	struct rcu_node *rnp = rcu_get_root();
1985 	struct swait_queue_head *sq;
1986 
1987 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1988 	raw_spin_lock_irq_rcu_node(rnp);
1989 	gp_duration = jiffies - rcu_state.gp_start;
1990 	if (gp_duration > rcu_state.gp_max)
1991 		rcu_state.gp_max = gp_duration;
1992 
1993 	/*
1994 	 * We know the grace period is complete, but to everyone else
1995 	 * it appears to still be ongoing.  But it is also the case
1996 	 * that to everyone else it looks like there is nothing that
1997 	 * they can do to advance the grace period.  It is therefore
1998 	 * safe for us to drop the lock in order to mark the grace
1999 	 * period as completed in all of the rcu_node structures.
2000 	 */
2001 	raw_spin_unlock_irq_rcu_node(rnp);
2002 
2003 	/*
2004 	 * Propagate new ->gp_seq value to rcu_node structures so that
2005 	 * other CPUs don't have to wait until the start of the next grace
2006 	 * period to process their callbacks.  This also avoids some nasty
2007 	 * RCU grace-period initialization races by forcing the end of
2008 	 * the current grace period to be completely recorded in all of
2009 	 * the rcu_node structures before the beginning of the next grace
2010 	 * period is recorded in any of the rcu_node structures.
2011 	 */
2012 	new_gp_seq = rcu_state.gp_seq;
2013 	rcu_seq_end(&new_gp_seq);
2014 	rcu_for_each_node_breadth_first(rnp) {
2015 		raw_spin_lock_irq_rcu_node(rnp);
2016 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2017 			dump_blkd_tasks(rnp, 10);
2018 		WARN_ON_ONCE(rnp->qsmask);
2019 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2020 		rdp = this_cpu_ptr(&rcu_data);
2021 		if (rnp == rdp->mynode)
2022 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2023 		/* smp_mb() provided by prior unlock-lock pair. */
2024 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2025 		sq = rcu_nocb_gp_get(rnp);
2026 		raw_spin_unlock_irq_rcu_node(rnp);
2027 		rcu_nocb_gp_cleanup(sq);
2028 		cond_resched_tasks_rcu_qs();
2029 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2030 		rcu_gp_slow(gp_cleanup_delay);
2031 	}
2032 	rnp = rcu_get_root();
2033 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2034 
2035 	/* Declare grace period done. */
2036 	rcu_seq_end(&rcu_state.gp_seq);
2037 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2038 	rcu_state.gp_state = RCU_GP_IDLE;
2039 	/* Check for GP requests since above loop. */
2040 	rdp = this_cpu_ptr(&rcu_data);
2041 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2042 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2043 				  TPS("CleanupMore"));
2044 		needgp = true;
2045 	}
2046 	/* Advance CBs to reduce false positives below. */
2047 	if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
2048 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2049 		rcu_state.gp_req_activity = jiffies;
2050 		trace_rcu_grace_period(rcu_state.name,
2051 				       READ_ONCE(rcu_state.gp_seq),
2052 				       TPS("newreq"));
2053 	} else {
2054 		WRITE_ONCE(rcu_state.gp_flags,
2055 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2056 	}
2057 	raw_spin_unlock_irq_rcu_node(rnp);
2058 }
2059 
2060 /*
2061  * Body of kthread that handles grace periods.
2062  */
2063 static int __noreturn rcu_gp_kthread(void *unused)
2064 {
2065 	rcu_bind_gp_kthread();
2066 	for (;;) {
2067 
2068 		/* Handle grace-period start. */
2069 		for (;;) {
2070 			trace_rcu_grace_period(rcu_state.name,
2071 					       READ_ONCE(rcu_state.gp_seq),
2072 					       TPS("reqwait"));
2073 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2074 			swait_event_idle_exclusive(rcu_state.gp_wq,
2075 					 READ_ONCE(rcu_state.gp_flags) &
2076 					 RCU_GP_FLAG_INIT);
2077 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2078 			/* Locking provides needed memory barrier. */
2079 			if (rcu_gp_init())
2080 				break;
2081 			cond_resched_tasks_rcu_qs();
2082 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2083 			WARN_ON(signal_pending(current));
2084 			trace_rcu_grace_period(rcu_state.name,
2085 					       READ_ONCE(rcu_state.gp_seq),
2086 					       TPS("reqwaitsig"));
2087 		}
2088 
2089 		/* Handle quiescent-state forcing. */
2090 		rcu_gp_fqs_loop();
2091 
2092 		/* Handle grace-period end. */
2093 		rcu_state.gp_state = RCU_GP_CLEANUP;
2094 		rcu_gp_cleanup();
2095 		rcu_state.gp_state = RCU_GP_CLEANED;
2096 	}
2097 }
2098 
2099 /*
2100  * Report a full set of quiescent states to the rcu_state data structure.
2101  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2102  * another grace period is required.  Whether we wake the grace-period
2103  * kthread or it awakens itself for the next round of quiescent-state
2104  * forcing, that kthread will clean up after the just-completed grace
2105  * period.  Note that the caller must hold rnp->lock, which is released
2106  * before return.
2107  */
2108 static void rcu_report_qs_rsp(unsigned long flags)
2109 	__releases(rcu_get_root()->lock)
2110 {
2111 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2112 	WARN_ON_ONCE(!rcu_gp_in_progress());
2113 	WRITE_ONCE(rcu_state.gp_flags,
2114 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2115 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2116 	rcu_gp_kthread_wake();
2117 }
2118 
2119 /*
2120  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2121  * Allows quiescent states for a group of CPUs to be reported at one go
2122  * to the specified rcu_node structure, though all the CPUs in the group
2123  * must be represented by the same rcu_node structure (which need not be a
2124  * leaf rcu_node structure, though it often will be).  The gps parameter
2125  * is the grace-period snapshot, which means that the quiescent states
2126  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2127  * must be held upon entry, and it is released before return.
2128  *
2129  * As a special case, if mask is zero, the bit-already-cleared check is
2130  * disabled.  This allows propagating quiescent state due to resumed tasks
2131  * during grace-period initialization.
2132  */
2133 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2134 			      unsigned long gps, unsigned long flags)
2135 	__releases(rnp->lock)
2136 {
2137 	unsigned long oldmask = 0;
2138 	struct rcu_node *rnp_c;
2139 
2140 	raw_lockdep_assert_held_rcu_node(rnp);
2141 
2142 	/* Walk up the rcu_node hierarchy. */
2143 	for (;;) {
2144 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2145 
2146 			/*
2147 			 * Our bit has already been cleared, or the
2148 			 * relevant grace period is already over, so done.
2149 			 */
2150 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2151 			return;
2152 		}
2153 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2154 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2155 			     rcu_preempt_blocked_readers_cgp(rnp));
2156 		rnp->qsmask &= ~mask;
2157 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2158 						 mask, rnp->qsmask, rnp->level,
2159 						 rnp->grplo, rnp->grphi,
2160 						 !!rnp->gp_tasks);
2161 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2162 
2163 			/* Other bits still set at this level, so done. */
2164 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2165 			return;
2166 		}
2167 		rnp->completedqs = rnp->gp_seq;
2168 		mask = rnp->grpmask;
2169 		if (rnp->parent == NULL) {
2170 
2171 			/* No more levels.  Exit loop holding root lock. */
2172 
2173 			break;
2174 		}
2175 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2176 		rnp_c = rnp;
2177 		rnp = rnp->parent;
2178 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2179 		oldmask = rnp_c->qsmask;
2180 	}
2181 
2182 	/*
2183 	 * Get here if we are the last CPU to pass through a quiescent
2184 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2185 	 * to clean up and start the next grace period if one is needed.
2186 	 */
2187 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2188 }
2189 
2190 /*
2191  * Record a quiescent state for all tasks that were previously queued
2192  * on the specified rcu_node structure and that were blocking the current
2193  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2194  * irqs disabled, and this lock is released upon return, but irqs remain
2195  * disabled.
2196  */
2197 static void __maybe_unused
2198 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2199 	__releases(rnp->lock)
2200 {
2201 	unsigned long gps;
2202 	unsigned long mask;
2203 	struct rcu_node *rnp_p;
2204 
2205 	raw_lockdep_assert_held_rcu_node(rnp);
2206 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
2207 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2208 	    rnp->qsmask != 0) {
2209 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2210 		return;  /* Still need more quiescent states! */
2211 	}
2212 
2213 	rnp->completedqs = rnp->gp_seq;
2214 	rnp_p = rnp->parent;
2215 	if (rnp_p == NULL) {
2216 		/*
2217 		 * Only one rcu_node structure in the tree, so don't
2218 		 * try to report up to its nonexistent parent!
2219 		 */
2220 		rcu_report_qs_rsp(flags);
2221 		return;
2222 	}
2223 
2224 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2225 	gps = rnp->gp_seq;
2226 	mask = rnp->grpmask;
2227 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2228 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2229 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2230 }
2231 
2232 /*
2233  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2234  * structure.  This must be called from the specified CPU.
2235  */
2236 static void
2237 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2238 {
2239 	unsigned long flags;
2240 	unsigned long mask;
2241 	bool needwake;
2242 	struct rcu_node *rnp;
2243 
2244 	rnp = rdp->mynode;
2245 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2246 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2247 	    rdp->gpwrap) {
2248 
2249 		/*
2250 		 * The grace period in which this quiescent state was
2251 		 * recorded has ended, so don't report it upwards.
2252 		 * We will instead need a new quiescent state that lies
2253 		 * within the current grace period.
2254 		 */
2255 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2256 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2257 		return;
2258 	}
2259 	mask = rdp->grpmask;
2260 	if ((rnp->qsmask & mask) == 0) {
2261 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2262 	} else {
2263 		rdp->core_needs_qs = false;
2264 
2265 		/*
2266 		 * This GP can't end until cpu checks in, so all of our
2267 		 * callbacks can be processed during the next GP.
2268 		 */
2269 		needwake = rcu_accelerate_cbs(rnp, rdp);
2270 
2271 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2272 		/* ^^^ Released rnp->lock */
2273 		if (needwake)
2274 			rcu_gp_kthread_wake();
2275 	}
2276 }
2277 
2278 /*
2279  * Check to see if there is a new grace period of which this CPU
2280  * is not yet aware, and if so, set up local rcu_data state for it.
2281  * Otherwise, see if this CPU has just passed through its first
2282  * quiescent state for this grace period, and record that fact if so.
2283  */
2284 static void
2285 rcu_check_quiescent_state(struct rcu_data *rdp)
2286 {
2287 	/* Check for grace-period ends and beginnings. */
2288 	note_gp_changes(rdp);
2289 
2290 	/*
2291 	 * Does this CPU still need to do its part for current grace period?
2292 	 * If no, return and let the other CPUs do their part as well.
2293 	 */
2294 	if (!rdp->core_needs_qs)
2295 		return;
2296 
2297 	/*
2298 	 * Was there a quiescent state since the beginning of the grace
2299 	 * period? If no, then exit and wait for the next call.
2300 	 */
2301 	if (rdp->cpu_no_qs.b.norm)
2302 		return;
2303 
2304 	/*
2305 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2306 	 * judge of that).
2307 	 */
2308 	rcu_report_qs_rdp(rdp->cpu, rdp);
2309 }
2310 
2311 /*
2312  * Near the end of the offline process.  Trace the fact that this CPU
2313  * is going offline.
2314  */
2315 int rcutree_dying_cpu(unsigned int cpu)
2316 {
2317 	RCU_TRACE(bool blkd;)
2318 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
2319 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2320 
2321 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2322 		return 0;
2323 
2324 	RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2325 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2326 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2327 	return 0;
2328 }
2329 
2330 /*
2331  * All CPUs for the specified rcu_node structure have gone offline,
2332  * and all tasks that were preempted within an RCU read-side critical
2333  * section while running on one of those CPUs have since exited their RCU
2334  * read-side critical section.  Some other CPU is reporting this fact with
2335  * the specified rcu_node structure's ->lock held and interrupts disabled.
2336  * This function therefore goes up the tree of rcu_node structures,
2337  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2338  * the leaf rcu_node structure's ->qsmaskinit field has already been
2339  * updated.
2340  *
2341  * This function does check that the specified rcu_node structure has
2342  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2343  * prematurely.  That said, invoking it after the fact will cost you
2344  * a needless lock acquisition.  So once it has done its work, don't
2345  * invoke it again.
2346  */
2347 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2348 {
2349 	long mask;
2350 	struct rcu_node *rnp = rnp_leaf;
2351 
2352 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2353 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2354 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2355 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2356 		return;
2357 	for (;;) {
2358 		mask = rnp->grpmask;
2359 		rnp = rnp->parent;
2360 		if (!rnp)
2361 			break;
2362 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2363 		rnp->qsmaskinit &= ~mask;
2364 		/* Between grace periods, so better already be zero! */
2365 		WARN_ON_ONCE(rnp->qsmask);
2366 		if (rnp->qsmaskinit) {
2367 			raw_spin_unlock_rcu_node(rnp);
2368 			/* irqs remain disabled. */
2369 			return;
2370 		}
2371 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2372 	}
2373 }
2374 
2375 /*
2376  * The CPU has been completely removed, and some other CPU is reporting
2377  * this fact from process context.  Do the remainder of the cleanup.
2378  * There can only be one CPU hotplug operation at a time, so no need for
2379  * explicit locking.
2380  */
2381 int rcutree_dead_cpu(unsigned int cpu)
2382 {
2383 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2384 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2385 
2386 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2387 		return 0;
2388 
2389 	/* Adjust any no-longer-needed kthreads. */
2390 	rcu_boost_kthread_setaffinity(rnp, -1);
2391 	/* Do any needed no-CB deferred wakeups from this CPU. */
2392 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2393 	return 0;
2394 }
2395 
2396 /*
2397  * Invoke any RCU callbacks that have made it to the end of their grace
2398  * period.  Thottle as specified by rdp->blimit.
2399  */
2400 static void rcu_do_batch(struct rcu_data *rdp)
2401 {
2402 	unsigned long flags;
2403 	struct rcu_head *rhp;
2404 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2405 	long bl, count;
2406 
2407 	/* If no callbacks are ready, just return. */
2408 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2409 		trace_rcu_batch_start(rcu_state.name,
2410 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2411 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2412 		trace_rcu_batch_end(rcu_state.name, 0,
2413 				    !rcu_segcblist_empty(&rdp->cblist),
2414 				    need_resched(), is_idle_task(current),
2415 				    rcu_is_callbacks_kthread());
2416 		return;
2417 	}
2418 
2419 	/*
2420 	 * Extract the list of ready callbacks, disabling to prevent
2421 	 * races with call_rcu() from interrupt handlers.  Leave the
2422 	 * callback counts, as rcu_barrier() needs to be conservative.
2423 	 */
2424 	local_irq_save(flags);
2425 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2426 	bl = rdp->blimit;
2427 	trace_rcu_batch_start(rcu_state.name,
2428 			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2429 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2430 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2431 	local_irq_restore(flags);
2432 
2433 	/* Invoke callbacks. */
2434 	rhp = rcu_cblist_dequeue(&rcl);
2435 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2436 		debug_rcu_head_unqueue(rhp);
2437 		if (__rcu_reclaim(rcu_state.name, rhp))
2438 			rcu_cblist_dequeued_lazy(&rcl);
2439 		/*
2440 		 * Stop only if limit reached and CPU has something to do.
2441 		 * Note: The rcl structure counts down from zero.
2442 		 */
2443 		if (-rcl.len >= bl &&
2444 		    (need_resched() ||
2445 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2446 			break;
2447 	}
2448 
2449 	local_irq_save(flags);
2450 	count = -rcl.len;
2451 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2452 			    is_idle_task(current), rcu_is_callbacks_kthread());
2453 
2454 	/* Update counts and requeue any remaining callbacks. */
2455 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2456 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2457 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2458 
2459 	/* Reinstate batch limit if we have worked down the excess. */
2460 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2461 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2462 		rdp->blimit = blimit;
2463 
2464 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2465 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2466 		rdp->qlen_last_fqs_check = 0;
2467 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2468 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2469 		rdp->qlen_last_fqs_check = count;
2470 
2471 	/*
2472 	 * The following usually indicates a double call_rcu().  To track
2473 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2474 	 */
2475 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2476 
2477 	local_irq_restore(flags);
2478 
2479 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2480 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2481 		invoke_rcu_core();
2482 }
2483 
2484 /*
2485  * Check to see if this CPU is in a non-context-switch quiescent state
2486  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2487  * Also schedule RCU core processing.
2488  *
2489  * This function must be called from hardirq context.  It is normally
2490  * invoked from the scheduling-clock interrupt.
2491  */
2492 void rcu_check_callbacks(int user)
2493 {
2494 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2495 	raw_cpu_inc(rcu_data.ticks_this_gp);
2496 	/* The load-acquire pairs with the store-release setting to true. */
2497 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2498 		/* Idle and userspace execution already are quiescent states. */
2499 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2500 			set_tsk_need_resched(current);
2501 			set_preempt_need_resched();
2502 		}
2503 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2504 	}
2505 	rcu_flavor_check_callbacks(user);
2506 	if (rcu_pending())
2507 		invoke_rcu_core();
2508 
2509 	trace_rcu_utilization(TPS("End scheduler-tick"));
2510 }
2511 
2512 /*
2513  * Scan the leaf rcu_node structures, processing dyntick state for any that
2514  * have not yet encountered a quiescent state, using the function specified.
2515  * Also initiate boosting for any threads blocked on the root rcu_node.
2516  *
2517  * The caller must have suppressed start of new grace periods.
2518  */
2519 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2520 {
2521 	int cpu;
2522 	unsigned long flags;
2523 	unsigned long mask;
2524 	struct rcu_node *rnp;
2525 
2526 	rcu_for_each_leaf_node(rnp) {
2527 		cond_resched_tasks_rcu_qs();
2528 		mask = 0;
2529 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2530 		if (rnp->qsmask == 0) {
2531 			if (!IS_ENABLED(CONFIG_PREEMPT) ||
2532 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2533 				/*
2534 				 * No point in scanning bits because they
2535 				 * are all zero.  But we might need to
2536 				 * priority-boost blocked readers.
2537 				 */
2538 				rcu_initiate_boost(rnp, flags);
2539 				/* rcu_initiate_boost() releases rnp->lock */
2540 				continue;
2541 			}
2542 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2543 			continue;
2544 		}
2545 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2546 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2547 			if ((rnp->qsmask & bit) != 0) {
2548 				if (f(per_cpu_ptr(&rcu_data, cpu)))
2549 					mask |= bit;
2550 			}
2551 		}
2552 		if (mask != 0) {
2553 			/* Idle/offline CPUs, report (releases rnp->lock). */
2554 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2555 		} else {
2556 			/* Nothing to do here, so just drop the lock. */
2557 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2558 		}
2559 	}
2560 }
2561 
2562 /*
2563  * Force quiescent states on reluctant CPUs, and also detect which
2564  * CPUs are in dyntick-idle mode.
2565  */
2566 static void force_quiescent_state(void)
2567 {
2568 	unsigned long flags;
2569 	bool ret;
2570 	struct rcu_node *rnp;
2571 	struct rcu_node *rnp_old = NULL;
2572 
2573 	/* Funnel through hierarchy to reduce memory contention. */
2574 	rnp = __this_cpu_read(rcu_data.mynode);
2575 	for (; rnp != NULL; rnp = rnp->parent) {
2576 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2577 		      !raw_spin_trylock(&rnp->fqslock);
2578 		if (rnp_old != NULL)
2579 			raw_spin_unlock(&rnp_old->fqslock);
2580 		if (ret)
2581 			return;
2582 		rnp_old = rnp;
2583 	}
2584 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2585 
2586 	/* Reached the root of the rcu_node tree, acquire lock. */
2587 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2588 	raw_spin_unlock(&rnp_old->fqslock);
2589 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2590 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2591 		return;  /* Someone beat us to it. */
2592 	}
2593 	WRITE_ONCE(rcu_state.gp_flags,
2594 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2595 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2596 	rcu_gp_kthread_wake();
2597 }
2598 
2599 /*
2600  * This function checks for grace-period requests that fail to motivate
2601  * RCU to come out of its idle mode.
2602  */
2603 static void
2604 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp)
2605 {
2606 	const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
2607 	unsigned long flags;
2608 	unsigned long j;
2609 	struct rcu_node *rnp_root = rcu_get_root();
2610 	static atomic_t warned = ATOMIC_INIT(0);
2611 
2612 	if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
2613 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2614 		return;
2615 	j = jiffies; /* Expensive access, and in common case don't get here. */
2616 	if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2617 	    time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2618 	    atomic_read(&warned))
2619 		return;
2620 
2621 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2622 	j = jiffies;
2623 	if (rcu_gp_in_progress() ||
2624 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2625 	    time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2626 	    time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2627 	    atomic_read(&warned)) {
2628 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2629 		return;
2630 	}
2631 	/* Hold onto the leaf lock to make others see warned==1. */
2632 
2633 	if (rnp_root != rnp)
2634 		raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2635 	j = jiffies;
2636 	if (rcu_gp_in_progress() ||
2637 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2638 	    time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2639 	    time_before(j, rcu_state.gp_activity + gpssdelay) ||
2640 	    atomic_xchg(&warned, 1)) {
2641 		raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2642 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2643 		return;
2644 	}
2645 	pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2646 		 __func__, (long)READ_ONCE(rcu_state.gp_seq),
2647 		 (long)READ_ONCE(rnp_root->gp_seq_needed),
2648 		 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity,
2649 		 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name,
2650 		 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL);
2651 	WARN_ON(1);
2652 	if (rnp_root != rnp)
2653 		raw_spin_unlock_rcu_node(rnp_root);
2654 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2655 }
2656 
2657 /*
2658  * This does the RCU core processing work for the specified rcu_data
2659  * structures.  This may be called only from the CPU to whom the rdp
2660  * belongs.
2661  */
2662 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2663 {
2664 	unsigned long flags;
2665 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2666 	struct rcu_node *rnp = rdp->mynode;
2667 
2668 	if (cpu_is_offline(smp_processor_id()))
2669 		return;
2670 	trace_rcu_utilization(TPS("Start RCU core"));
2671 	WARN_ON_ONCE(!rdp->beenonline);
2672 
2673 	/* Report any deferred quiescent states if preemption enabled. */
2674 	if (!(preempt_count() & PREEMPT_MASK)) {
2675 		rcu_preempt_deferred_qs(current);
2676 	} else if (rcu_preempt_need_deferred_qs(current)) {
2677 		set_tsk_need_resched(current);
2678 		set_preempt_need_resched();
2679 	}
2680 
2681 	/* Update RCU state based on any recent quiescent states. */
2682 	rcu_check_quiescent_state(rdp);
2683 
2684 	/* No grace period and unregistered callbacks? */
2685 	if (!rcu_gp_in_progress() &&
2686 	    rcu_segcblist_is_enabled(&rdp->cblist)) {
2687 		local_irq_save(flags);
2688 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2689 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2690 		local_irq_restore(flags);
2691 	}
2692 
2693 	rcu_check_gp_start_stall(rnp, rdp);
2694 
2695 	/* If there are callbacks ready, invoke them. */
2696 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2697 		invoke_rcu_callbacks(rdp);
2698 
2699 	/* Do any needed deferred wakeups of rcuo kthreads. */
2700 	do_nocb_deferred_wakeup(rdp);
2701 	trace_rcu_utilization(TPS("End RCU core"));
2702 }
2703 
2704 /*
2705  * Schedule RCU callback invocation.  If the running implementation of RCU
2706  * does not support RCU priority boosting, just do a direct call, otherwise
2707  * wake up the per-CPU kernel kthread.  Note that because we are running
2708  * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2709  * cannot disappear out from under us.
2710  */
2711 static void invoke_rcu_callbacks(struct rcu_data *rdp)
2712 {
2713 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2714 		return;
2715 	if (likely(!rcu_state.boost)) {
2716 		rcu_do_batch(rdp);
2717 		return;
2718 	}
2719 	invoke_rcu_callbacks_kthread();
2720 }
2721 
2722 static void invoke_rcu_core(void)
2723 {
2724 	if (cpu_online(smp_processor_id()))
2725 		raise_softirq(RCU_SOFTIRQ);
2726 }
2727 
2728 /*
2729  * Handle any core-RCU processing required by a call_rcu() invocation.
2730  */
2731 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2732 			    unsigned long flags)
2733 {
2734 	/*
2735 	 * If called from an extended quiescent state, invoke the RCU
2736 	 * core in order to force a re-evaluation of RCU's idleness.
2737 	 */
2738 	if (!rcu_is_watching())
2739 		invoke_rcu_core();
2740 
2741 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2742 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2743 		return;
2744 
2745 	/*
2746 	 * Force the grace period if too many callbacks or too long waiting.
2747 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2748 	 * if some other CPU has recently done so.  Also, don't bother
2749 	 * invoking force_quiescent_state() if the newly enqueued callback
2750 	 * is the only one waiting for a grace period to complete.
2751 	 */
2752 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2753 		     rdp->qlen_last_fqs_check + qhimark)) {
2754 
2755 		/* Are we ignoring a completed grace period? */
2756 		note_gp_changes(rdp);
2757 
2758 		/* Start a new grace period if one not already started. */
2759 		if (!rcu_gp_in_progress()) {
2760 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2761 		} else {
2762 			/* Give the grace period a kick. */
2763 			rdp->blimit = LONG_MAX;
2764 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2765 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2766 				force_quiescent_state();
2767 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2768 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2769 		}
2770 	}
2771 }
2772 
2773 /*
2774  * RCU callback function to leak a callback.
2775  */
2776 static void rcu_leak_callback(struct rcu_head *rhp)
2777 {
2778 }
2779 
2780 /*
2781  * Helper function for call_rcu() and friends.  The cpu argument will
2782  * normally be -1, indicating "currently running CPU".  It may specify
2783  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2784  * is expected to specify a CPU.
2785  */
2786 static void
2787 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2788 {
2789 	unsigned long flags;
2790 	struct rcu_data *rdp;
2791 
2792 	/* Misaligned rcu_head! */
2793 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2794 
2795 	if (debug_rcu_head_queue(head)) {
2796 		/*
2797 		 * Probable double call_rcu(), so leak the callback.
2798 		 * Use rcu:rcu_callback trace event to find the previous
2799 		 * time callback was passed to __call_rcu().
2800 		 */
2801 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2802 			  head, head->func);
2803 		WRITE_ONCE(head->func, rcu_leak_callback);
2804 		return;
2805 	}
2806 	head->func = func;
2807 	head->next = NULL;
2808 	local_irq_save(flags);
2809 	rdp = this_cpu_ptr(&rcu_data);
2810 
2811 	/* Add the callback to our list. */
2812 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2813 		int offline;
2814 
2815 		if (cpu != -1)
2816 			rdp = per_cpu_ptr(&rcu_data, cpu);
2817 		if (likely(rdp->mynode)) {
2818 			/* Post-boot, so this should be for a no-CBs CPU. */
2819 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2820 			WARN_ON_ONCE(offline);
2821 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
2822 			local_irq_restore(flags);
2823 			return;
2824 		}
2825 		/*
2826 		 * Very early boot, before rcu_init().  Initialize if needed
2827 		 * and then drop through to queue the callback.
2828 		 */
2829 		BUG_ON(cpu != -1);
2830 		WARN_ON_ONCE(!rcu_is_watching());
2831 		if (rcu_segcblist_empty(&rdp->cblist))
2832 			rcu_segcblist_init(&rdp->cblist);
2833 	}
2834 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2835 	if (!lazy)
2836 		rcu_idle_count_callbacks_posted();
2837 
2838 	if (__is_kfree_rcu_offset((unsigned long)func))
2839 		trace_rcu_kfree_callback(rcu_state.name, head,
2840 					 (unsigned long)func,
2841 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2842 					 rcu_segcblist_n_cbs(&rdp->cblist));
2843 	else
2844 		trace_rcu_callback(rcu_state.name, head,
2845 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2846 				   rcu_segcblist_n_cbs(&rdp->cblist));
2847 
2848 	/* Go handle any RCU core processing required. */
2849 	__call_rcu_core(rdp, head, flags);
2850 	local_irq_restore(flags);
2851 }
2852 
2853 /**
2854  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2855  * @head: structure to be used for queueing the RCU updates.
2856  * @func: actual callback function to be invoked after the grace period
2857  *
2858  * The callback function will be invoked some time after a full grace
2859  * period elapses, in other words after all pre-existing RCU read-side
2860  * critical sections have completed.  However, the callback function
2861  * might well execute concurrently with RCU read-side critical sections
2862  * that started after call_rcu() was invoked.  RCU read-side critical
2863  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2864  * may be nested.  In addition, regions of code across which interrupts,
2865  * preemption, or softirqs have been disabled also serve as RCU read-side
2866  * critical sections.  This includes hardware interrupt handlers, softirq
2867  * handlers, and NMI handlers.
2868  *
2869  * Note that all CPUs must agree that the grace period extended beyond
2870  * all pre-existing RCU read-side critical section.  On systems with more
2871  * than one CPU, this means that when "func()" is invoked, each CPU is
2872  * guaranteed to have executed a full memory barrier since the end of its
2873  * last RCU read-side critical section whose beginning preceded the call
2874  * to call_rcu().  It also means that each CPU executing an RCU read-side
2875  * critical section that continues beyond the start of "func()" must have
2876  * executed a memory barrier after the call_rcu() but before the beginning
2877  * of that RCU read-side critical section.  Note that these guarantees
2878  * include CPUs that are offline, idle, or executing in user mode, as
2879  * well as CPUs that are executing in the kernel.
2880  *
2881  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2882  * resulting RCU callback function "func()", then both CPU A and CPU B are
2883  * guaranteed to execute a full memory barrier during the time interval
2884  * between the call to call_rcu() and the invocation of "func()" -- even
2885  * if CPU A and CPU B are the same CPU (but again only if the system has
2886  * more than one CPU).
2887  */
2888 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2889 {
2890 	__call_rcu(head, func, -1, 0);
2891 }
2892 EXPORT_SYMBOL_GPL(call_rcu);
2893 
2894 /*
2895  * Queue an RCU callback for lazy invocation after a grace period.
2896  * This will likely be later named something like "call_rcu_lazy()",
2897  * but this change will require some way of tagging the lazy RCU
2898  * callbacks in the list of pending callbacks. Until then, this
2899  * function may only be called from __kfree_rcu().
2900  */
2901 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2902 {
2903 	__call_rcu(head, func, -1, 1);
2904 }
2905 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2906 
2907 /**
2908  * get_state_synchronize_rcu - Snapshot current RCU state
2909  *
2910  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2911  * to determine whether or not a full grace period has elapsed in the
2912  * meantime.
2913  */
2914 unsigned long get_state_synchronize_rcu(void)
2915 {
2916 	/*
2917 	 * Any prior manipulation of RCU-protected data must happen
2918 	 * before the load from ->gp_seq.
2919 	 */
2920 	smp_mb();  /* ^^^ */
2921 	return rcu_seq_snap(&rcu_state.gp_seq);
2922 }
2923 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2924 
2925 /**
2926  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2927  *
2928  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2929  *
2930  * If a full RCU grace period has elapsed since the earlier call to
2931  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2932  * synchronize_rcu() to wait for a full grace period.
2933  *
2934  * Yes, this function does not take counter wrap into account.  But
2935  * counter wrap is harmless.  If the counter wraps, we have waited for
2936  * more than 2 billion grace periods (and way more on a 64-bit system!),
2937  * so waiting for one additional grace period should be just fine.
2938  */
2939 void cond_synchronize_rcu(unsigned long oldstate)
2940 {
2941 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2942 		synchronize_rcu();
2943 	else
2944 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2945 }
2946 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2947 
2948 /*
2949  * Check to see if there is any immediate RCU-related work to be done by
2950  * the current CPU, returning 1 if so and zero otherwise.  The checks are
2951  * in order of increasing expense: checks that can be carried out against
2952  * CPU-local state are performed first.  However, we must check for CPU
2953  * stalls first, else we might not get a chance.
2954  */
2955 static int rcu_pending(void)
2956 {
2957 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2958 	struct rcu_node *rnp = rdp->mynode;
2959 
2960 	/* Check for CPU stalls, if enabled. */
2961 	check_cpu_stall(rdp);
2962 
2963 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2964 	if (rcu_nohz_full_cpu())
2965 		return 0;
2966 
2967 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2968 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2969 		return 1;
2970 
2971 	/* Does this CPU have callbacks ready to invoke? */
2972 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2973 		return 1;
2974 
2975 	/* Has RCU gone idle with this CPU needing another grace period? */
2976 	if (!rcu_gp_in_progress() &&
2977 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
2978 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2979 		return 1;
2980 
2981 	/* Have RCU grace period completed or started?  */
2982 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2983 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2984 		return 1;
2985 
2986 	/* Does this CPU need a deferred NOCB wakeup? */
2987 	if (rcu_nocb_need_deferred_wakeup(rdp))
2988 		return 1;
2989 
2990 	/* nothing to do */
2991 	return 0;
2992 }
2993 
2994 /*
2995  * Return true if the specified CPU has any callback.  If all_lazy is
2996  * non-NULL, store an indication of whether all callbacks are lazy.
2997  * (If there are no callbacks, all of them are deemed to be lazy.)
2998  */
2999 static bool rcu_cpu_has_callbacks(bool *all_lazy)
3000 {
3001 	bool al = true;
3002 	bool hc = false;
3003 	struct rcu_data *rdp;
3004 
3005 	rdp = this_cpu_ptr(&rcu_data);
3006 	if (!rcu_segcblist_empty(&rdp->cblist)) {
3007 		hc = true;
3008 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist))
3009 			al = false;
3010 	}
3011 	if (all_lazy)
3012 		*all_lazy = al;
3013 	return hc;
3014 }
3015 
3016 /*
3017  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3018  * the compiler is expected to optimize this away.
3019  */
3020 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3021 {
3022 	trace_rcu_barrier(rcu_state.name, s, cpu,
3023 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3024 }
3025 
3026 /*
3027  * RCU callback function for rcu_barrier().  If we are last, wake
3028  * up the task executing rcu_barrier().
3029  */
3030 static void rcu_barrier_callback(struct rcu_head *rhp)
3031 {
3032 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3033 		rcu_barrier_trace(TPS("LastCB"), -1,
3034 				   rcu_state.barrier_sequence);
3035 		complete(&rcu_state.barrier_completion);
3036 	} else {
3037 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3038 	}
3039 }
3040 
3041 /*
3042  * Called with preemption disabled, and from cross-cpu IRQ context.
3043  */
3044 static void rcu_barrier_func(void *unused)
3045 {
3046 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3047 
3048 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3049 	rdp->barrier_head.func = rcu_barrier_callback;
3050 	debug_rcu_head_queue(&rdp->barrier_head);
3051 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3052 		atomic_inc(&rcu_state.barrier_cpu_count);
3053 	} else {
3054 		debug_rcu_head_unqueue(&rdp->barrier_head);
3055 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3056 				   rcu_state.barrier_sequence);
3057 	}
3058 }
3059 
3060 /**
3061  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3062  *
3063  * Note that this primitive does not necessarily wait for an RCU grace period
3064  * to complete.  For example, if there are no RCU callbacks queued anywhere
3065  * in the system, then rcu_barrier() is within its rights to return
3066  * immediately, without waiting for anything, much less an RCU grace period.
3067  */
3068 void rcu_barrier(void)
3069 {
3070 	int cpu;
3071 	struct rcu_data *rdp;
3072 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3073 
3074 	rcu_barrier_trace(TPS("Begin"), -1, s);
3075 
3076 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3077 	mutex_lock(&rcu_state.barrier_mutex);
3078 
3079 	/* Did someone else do our work for us? */
3080 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3081 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3082 				   rcu_state.barrier_sequence);
3083 		smp_mb(); /* caller's subsequent code after above check. */
3084 		mutex_unlock(&rcu_state.barrier_mutex);
3085 		return;
3086 	}
3087 
3088 	/* Mark the start of the barrier operation. */
3089 	rcu_seq_start(&rcu_state.barrier_sequence);
3090 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3091 
3092 	/*
3093 	 * Initialize the count to one rather than to zero in order to
3094 	 * avoid a too-soon return to zero in case of a short grace period
3095 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3096 	 * to ensure that no offline CPU has callbacks queued.
3097 	 */
3098 	init_completion(&rcu_state.barrier_completion);
3099 	atomic_set(&rcu_state.barrier_cpu_count, 1);
3100 	get_online_cpus();
3101 
3102 	/*
3103 	 * Force each CPU with callbacks to register a new callback.
3104 	 * When that callback is invoked, we will know that all of the
3105 	 * corresponding CPU's preceding callbacks have been invoked.
3106 	 */
3107 	for_each_possible_cpu(cpu) {
3108 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3109 			continue;
3110 		rdp = per_cpu_ptr(&rcu_data, cpu);
3111 		if (rcu_is_nocb_cpu(cpu)) {
3112 			if (!rcu_nocb_cpu_needs_barrier(cpu)) {
3113 				rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
3114 						   rcu_state.barrier_sequence);
3115 			} else {
3116 				rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
3117 						   rcu_state.barrier_sequence);
3118 				smp_mb__before_atomic();
3119 				atomic_inc(&rcu_state.barrier_cpu_count);
3120 				__call_rcu(&rdp->barrier_head,
3121 					   rcu_barrier_callback, cpu, 0);
3122 			}
3123 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3124 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3125 					   rcu_state.barrier_sequence);
3126 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3127 		} else {
3128 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3129 					   rcu_state.barrier_sequence);
3130 		}
3131 	}
3132 	put_online_cpus();
3133 
3134 	/*
3135 	 * Now that we have an rcu_barrier_callback() callback on each
3136 	 * CPU, and thus each counted, remove the initial count.
3137 	 */
3138 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3139 		complete(&rcu_state.barrier_completion);
3140 
3141 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3142 	wait_for_completion(&rcu_state.barrier_completion);
3143 
3144 	/* Mark the end of the barrier operation. */
3145 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3146 	rcu_seq_end(&rcu_state.barrier_sequence);
3147 
3148 	/* Other rcu_barrier() invocations can now safely proceed. */
3149 	mutex_unlock(&rcu_state.barrier_mutex);
3150 }
3151 EXPORT_SYMBOL_GPL(rcu_barrier);
3152 
3153 /*
3154  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3155  * first CPU in a given leaf rcu_node structure coming online.  The caller
3156  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3157  * disabled.
3158  */
3159 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3160 {
3161 	long mask;
3162 	long oldmask;
3163 	struct rcu_node *rnp = rnp_leaf;
3164 
3165 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3166 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3167 	for (;;) {
3168 		mask = rnp->grpmask;
3169 		rnp = rnp->parent;
3170 		if (rnp == NULL)
3171 			return;
3172 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3173 		oldmask = rnp->qsmaskinit;
3174 		rnp->qsmaskinit |= mask;
3175 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3176 		if (oldmask)
3177 			return;
3178 	}
3179 }
3180 
3181 /*
3182  * Do boot-time initialization of a CPU's per-CPU RCU data.
3183  */
3184 static void __init
3185 rcu_boot_init_percpu_data(int cpu)
3186 {
3187 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3188 
3189 	/* Set up local state, ensuring consistent view of global state. */
3190 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3191 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3192 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3193 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3194 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3195 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3196 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3197 	rdp->cpu = cpu;
3198 	rcu_boot_init_nocb_percpu_data(rdp);
3199 }
3200 
3201 /*
3202  * Invoked early in the CPU-online process, when pretty much all services
3203  * are available.  The incoming CPU is not present.
3204  *
3205  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3206  * offline event can be happening at a given time.  Note also that we can
3207  * accept some slop in the rsp->gp_seq access due to the fact that this
3208  * CPU cannot possibly have any RCU callbacks in flight yet.
3209  */
3210 int rcutree_prepare_cpu(unsigned int cpu)
3211 {
3212 	unsigned long flags;
3213 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3214 	struct rcu_node *rnp = rcu_get_root();
3215 
3216 	/* Set up local state, ensuring consistent view of global state. */
3217 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3218 	rdp->qlen_last_fqs_check = 0;
3219 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3220 	rdp->blimit = blimit;
3221 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3222 	    !init_nocb_callback_list(rdp))
3223 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3224 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3225 	rcu_dynticks_eqs_online();
3226 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3227 
3228 	/*
3229 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3230 	 * propagation up the rcu_node tree will happen at the beginning
3231 	 * of the next grace period.
3232 	 */
3233 	rnp = rdp->mynode;
3234 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3235 	rdp->beenonline = true;	 /* We have now been online. */
3236 	rdp->gp_seq = rnp->gp_seq;
3237 	rdp->gp_seq_needed = rnp->gp_seq;
3238 	rdp->cpu_no_qs.b.norm = true;
3239 	rdp->core_needs_qs = false;
3240 	rdp->rcu_iw_pending = false;
3241 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3242 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3243 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3244 	rcu_prepare_kthreads(cpu);
3245 	rcu_spawn_all_nocb_kthreads(cpu);
3246 
3247 	return 0;
3248 }
3249 
3250 /*
3251  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3252  */
3253 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3254 {
3255 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3256 
3257 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3258 }
3259 
3260 /*
3261  * Near the end of the CPU-online process.  Pretty much all services
3262  * enabled, and the CPU is now very much alive.
3263  */
3264 int rcutree_online_cpu(unsigned int cpu)
3265 {
3266 	unsigned long flags;
3267 	struct rcu_data *rdp;
3268 	struct rcu_node *rnp;
3269 
3270 	rdp = per_cpu_ptr(&rcu_data, cpu);
3271 	rnp = rdp->mynode;
3272 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3273 	rnp->ffmask |= rdp->grpmask;
3274 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3275 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3276 		srcu_online_cpu(cpu);
3277 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3278 		return 0; /* Too early in boot for scheduler work. */
3279 	sync_sched_exp_online_cleanup(cpu);
3280 	rcutree_affinity_setting(cpu, -1);
3281 	return 0;
3282 }
3283 
3284 /*
3285  * Near the beginning of the process.  The CPU is still very much alive
3286  * with pretty much all services enabled.
3287  */
3288 int rcutree_offline_cpu(unsigned int cpu)
3289 {
3290 	unsigned long flags;
3291 	struct rcu_data *rdp;
3292 	struct rcu_node *rnp;
3293 
3294 	rdp = per_cpu_ptr(&rcu_data, cpu);
3295 	rnp = rdp->mynode;
3296 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3297 	rnp->ffmask &= ~rdp->grpmask;
3298 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3299 
3300 	rcutree_affinity_setting(cpu, cpu);
3301 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3302 		srcu_offline_cpu(cpu);
3303 	return 0;
3304 }
3305 
3306 static DEFINE_PER_CPU(int, rcu_cpu_started);
3307 
3308 /*
3309  * Mark the specified CPU as being online so that subsequent grace periods
3310  * (both expedited and normal) will wait on it.  Note that this means that
3311  * incoming CPUs are not allowed to use RCU read-side critical sections
3312  * until this function is called.  Failing to observe this restriction
3313  * will result in lockdep splats.
3314  *
3315  * Note that this function is special in that it is invoked directly
3316  * from the incoming CPU rather than from the cpuhp_step mechanism.
3317  * This is because this function must be invoked at a precise location.
3318  */
3319 void rcu_cpu_starting(unsigned int cpu)
3320 {
3321 	unsigned long flags;
3322 	unsigned long mask;
3323 	int nbits;
3324 	unsigned long oldmask;
3325 	struct rcu_data *rdp;
3326 	struct rcu_node *rnp;
3327 
3328 	if (per_cpu(rcu_cpu_started, cpu))
3329 		return;
3330 
3331 	per_cpu(rcu_cpu_started, cpu) = 1;
3332 
3333 	rdp = per_cpu_ptr(&rcu_data, cpu);
3334 	rnp = rdp->mynode;
3335 	mask = rdp->grpmask;
3336 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3337 	rnp->qsmaskinitnext |= mask;
3338 	oldmask = rnp->expmaskinitnext;
3339 	rnp->expmaskinitnext |= mask;
3340 	oldmask ^= rnp->expmaskinitnext;
3341 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3342 	/* Allow lockless access for expedited grace periods. */
3343 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3344 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3345 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3346 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3347 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3348 		/* Report QS -after- changing ->qsmaskinitnext! */
3349 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3350 	} else {
3351 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3352 	}
3353 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3354 }
3355 
3356 #ifdef CONFIG_HOTPLUG_CPU
3357 /*
3358  * The outgoing function has no further need of RCU, so remove it from
3359  * the rcu_node tree's ->qsmaskinitnext bit masks.
3360  *
3361  * Note that this function is special in that it is invoked directly
3362  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3363  * This is because this function must be invoked at a precise location.
3364  */
3365 void rcu_report_dead(unsigned int cpu)
3366 {
3367 	unsigned long flags;
3368 	unsigned long mask;
3369 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3370 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3371 
3372 	/* QS for any half-done expedited grace period. */
3373 	preempt_disable();
3374 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3375 	preempt_enable();
3376 	rcu_preempt_deferred_qs(current);
3377 
3378 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3379 	mask = rdp->grpmask;
3380 	raw_spin_lock(&rcu_state.ofl_lock);
3381 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3382 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3383 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3384 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3385 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3386 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3387 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3388 	}
3389 	rnp->qsmaskinitnext &= ~mask;
3390 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3391 	raw_spin_unlock(&rcu_state.ofl_lock);
3392 
3393 	per_cpu(rcu_cpu_started, cpu) = 0;
3394 }
3395 
3396 /*
3397  * The outgoing CPU has just passed through the dying-idle state, and we
3398  * are being invoked from the CPU that was IPIed to continue the offline
3399  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3400  */
3401 void rcutree_migrate_callbacks(int cpu)
3402 {
3403 	unsigned long flags;
3404 	struct rcu_data *my_rdp;
3405 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3406 	struct rcu_node *rnp_root = rcu_get_root();
3407 	bool needwake;
3408 
3409 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3410 		return;  /* No callbacks to migrate. */
3411 
3412 	local_irq_save(flags);
3413 	my_rdp = this_cpu_ptr(&rcu_data);
3414 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3415 		local_irq_restore(flags);
3416 		return;
3417 	}
3418 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3419 	/* Leverage recent GPs and set GP for new callbacks. */
3420 	needwake = rcu_advance_cbs(rnp_root, rdp) ||
3421 		   rcu_advance_cbs(rnp_root, my_rdp);
3422 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3423 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3424 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3425 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3426 	if (needwake)
3427 		rcu_gp_kthread_wake();
3428 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3429 		  !rcu_segcblist_empty(&rdp->cblist),
3430 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3431 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3432 		  rcu_segcblist_first_cb(&rdp->cblist));
3433 }
3434 #endif
3435 
3436 /*
3437  * On non-huge systems, use expedited RCU grace periods to make suspend
3438  * and hibernation run faster.
3439  */
3440 static int rcu_pm_notify(struct notifier_block *self,
3441 			 unsigned long action, void *hcpu)
3442 {
3443 	switch (action) {
3444 	case PM_HIBERNATION_PREPARE:
3445 	case PM_SUSPEND_PREPARE:
3446 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3447 			rcu_expedite_gp();
3448 		break;
3449 	case PM_POST_HIBERNATION:
3450 	case PM_POST_SUSPEND:
3451 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3452 			rcu_unexpedite_gp();
3453 		break;
3454 	default:
3455 		break;
3456 	}
3457 	return NOTIFY_OK;
3458 }
3459 
3460 /*
3461  * Spawn the kthreads that handle RCU's grace periods.
3462  */
3463 static int __init rcu_spawn_gp_kthread(void)
3464 {
3465 	unsigned long flags;
3466 	int kthread_prio_in = kthread_prio;
3467 	struct rcu_node *rnp;
3468 	struct sched_param sp;
3469 	struct task_struct *t;
3470 
3471 	/* Force priority into range. */
3472 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3473 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3474 		kthread_prio = 2;
3475 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3476 		kthread_prio = 1;
3477 	else if (kthread_prio < 0)
3478 		kthread_prio = 0;
3479 	else if (kthread_prio > 99)
3480 		kthread_prio = 99;
3481 
3482 	if (kthread_prio != kthread_prio_in)
3483 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3484 			 kthread_prio, kthread_prio_in);
3485 
3486 	rcu_scheduler_fully_active = 1;
3487 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3488 	BUG_ON(IS_ERR(t));
3489 	rnp = rcu_get_root();
3490 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3491 	rcu_state.gp_kthread = t;
3492 	if (kthread_prio) {
3493 		sp.sched_priority = kthread_prio;
3494 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3495 	}
3496 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3497 	wake_up_process(t);
3498 	rcu_spawn_nocb_kthreads();
3499 	rcu_spawn_boost_kthreads();
3500 	return 0;
3501 }
3502 early_initcall(rcu_spawn_gp_kthread);
3503 
3504 /*
3505  * This function is invoked towards the end of the scheduler's
3506  * initialization process.  Before this is called, the idle task might
3507  * contain synchronous grace-period primitives (during which time, this idle
3508  * task is booting the system, and such primitives are no-ops).  After this
3509  * function is called, any synchronous grace-period primitives are run as
3510  * expedited, with the requesting task driving the grace period forward.
3511  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3512  * runtime RCU functionality.
3513  */
3514 void rcu_scheduler_starting(void)
3515 {
3516 	WARN_ON(num_online_cpus() != 1);
3517 	WARN_ON(nr_context_switches() > 0);
3518 	rcu_test_sync_prims();
3519 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3520 	rcu_test_sync_prims();
3521 }
3522 
3523 /*
3524  * Helper function for rcu_init() that initializes the rcu_state structure.
3525  */
3526 static void __init rcu_init_one(void)
3527 {
3528 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3529 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3530 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3531 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3532 
3533 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3534 	int cpustride = 1;
3535 	int i;
3536 	int j;
3537 	struct rcu_node *rnp;
3538 
3539 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3540 
3541 	/* Silence gcc 4.8 false positive about array index out of range. */
3542 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3543 		panic("rcu_init_one: rcu_num_lvls out of range");
3544 
3545 	/* Initialize the level-tracking arrays. */
3546 
3547 	for (i = 1; i < rcu_num_lvls; i++)
3548 		rcu_state.level[i] =
3549 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3550 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3551 
3552 	/* Initialize the elements themselves, starting from the leaves. */
3553 
3554 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3555 		cpustride *= levelspread[i];
3556 		rnp = rcu_state.level[i];
3557 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3558 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3559 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3560 						   &rcu_node_class[i], buf[i]);
3561 			raw_spin_lock_init(&rnp->fqslock);
3562 			lockdep_set_class_and_name(&rnp->fqslock,
3563 						   &rcu_fqs_class[i], fqs[i]);
3564 			rnp->gp_seq = rcu_state.gp_seq;
3565 			rnp->gp_seq_needed = rcu_state.gp_seq;
3566 			rnp->completedqs = rcu_state.gp_seq;
3567 			rnp->qsmask = 0;
3568 			rnp->qsmaskinit = 0;
3569 			rnp->grplo = j * cpustride;
3570 			rnp->grphi = (j + 1) * cpustride - 1;
3571 			if (rnp->grphi >= nr_cpu_ids)
3572 				rnp->grphi = nr_cpu_ids - 1;
3573 			if (i == 0) {
3574 				rnp->grpnum = 0;
3575 				rnp->grpmask = 0;
3576 				rnp->parent = NULL;
3577 			} else {
3578 				rnp->grpnum = j % levelspread[i - 1];
3579 				rnp->grpmask = BIT(rnp->grpnum);
3580 				rnp->parent = rcu_state.level[i - 1] +
3581 					      j / levelspread[i - 1];
3582 			}
3583 			rnp->level = i;
3584 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3585 			rcu_init_one_nocb(rnp);
3586 			init_waitqueue_head(&rnp->exp_wq[0]);
3587 			init_waitqueue_head(&rnp->exp_wq[1]);
3588 			init_waitqueue_head(&rnp->exp_wq[2]);
3589 			init_waitqueue_head(&rnp->exp_wq[3]);
3590 			spin_lock_init(&rnp->exp_lock);
3591 		}
3592 	}
3593 
3594 	init_swait_queue_head(&rcu_state.gp_wq);
3595 	init_swait_queue_head(&rcu_state.expedited_wq);
3596 	rnp = rcu_first_leaf_node();
3597 	for_each_possible_cpu(i) {
3598 		while (i > rnp->grphi)
3599 			rnp++;
3600 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3601 		rcu_boot_init_percpu_data(i);
3602 	}
3603 }
3604 
3605 /*
3606  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3607  * replace the definitions in tree.h because those are needed to size
3608  * the ->node array in the rcu_state structure.
3609  */
3610 static void __init rcu_init_geometry(void)
3611 {
3612 	ulong d;
3613 	int i;
3614 	int rcu_capacity[RCU_NUM_LVLS];
3615 
3616 	/*
3617 	 * Initialize any unspecified boot parameters.
3618 	 * The default values of jiffies_till_first_fqs and
3619 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3620 	 * value, which is a function of HZ, then adding one for each
3621 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3622 	 */
3623 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3624 	if (jiffies_till_first_fqs == ULONG_MAX)
3625 		jiffies_till_first_fqs = d;
3626 	if (jiffies_till_next_fqs == ULONG_MAX)
3627 		jiffies_till_next_fqs = d;
3628 	if (jiffies_till_sched_qs == ULONG_MAX)
3629 		adjust_jiffies_till_sched_qs();
3630 
3631 	/* If the compile-time values are accurate, just leave. */
3632 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3633 	    nr_cpu_ids == NR_CPUS)
3634 		return;
3635 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3636 		rcu_fanout_leaf, nr_cpu_ids);
3637 
3638 	/*
3639 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3640 	 * and cannot exceed the number of bits in the rcu_node masks.
3641 	 * Complain and fall back to the compile-time values if this
3642 	 * limit is exceeded.
3643 	 */
3644 	if (rcu_fanout_leaf < 2 ||
3645 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3646 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3647 		WARN_ON(1);
3648 		return;
3649 	}
3650 
3651 	/*
3652 	 * Compute number of nodes that can be handled an rcu_node tree
3653 	 * with the given number of levels.
3654 	 */
3655 	rcu_capacity[0] = rcu_fanout_leaf;
3656 	for (i = 1; i < RCU_NUM_LVLS; i++)
3657 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3658 
3659 	/*
3660 	 * The tree must be able to accommodate the configured number of CPUs.
3661 	 * If this limit is exceeded, fall back to the compile-time values.
3662 	 */
3663 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3664 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3665 		WARN_ON(1);
3666 		return;
3667 	}
3668 
3669 	/* Calculate the number of levels in the tree. */
3670 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3671 	}
3672 	rcu_num_lvls = i + 1;
3673 
3674 	/* Calculate the number of rcu_nodes at each level of the tree. */
3675 	for (i = 0; i < rcu_num_lvls; i++) {
3676 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3677 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3678 	}
3679 
3680 	/* Calculate the total number of rcu_node structures. */
3681 	rcu_num_nodes = 0;
3682 	for (i = 0; i < rcu_num_lvls; i++)
3683 		rcu_num_nodes += num_rcu_lvl[i];
3684 }
3685 
3686 /*
3687  * Dump out the structure of the rcu_node combining tree associated
3688  * with the rcu_state structure.
3689  */
3690 static void __init rcu_dump_rcu_node_tree(void)
3691 {
3692 	int level = 0;
3693 	struct rcu_node *rnp;
3694 
3695 	pr_info("rcu_node tree layout dump\n");
3696 	pr_info(" ");
3697 	rcu_for_each_node_breadth_first(rnp) {
3698 		if (rnp->level != level) {
3699 			pr_cont("\n");
3700 			pr_info(" ");
3701 			level = rnp->level;
3702 		}
3703 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3704 	}
3705 	pr_cont("\n");
3706 }
3707 
3708 struct workqueue_struct *rcu_gp_wq;
3709 struct workqueue_struct *rcu_par_gp_wq;
3710 
3711 void __init rcu_init(void)
3712 {
3713 	int cpu;
3714 
3715 	rcu_early_boot_tests();
3716 
3717 	rcu_bootup_announce();
3718 	rcu_init_geometry();
3719 	rcu_init_one();
3720 	if (dump_tree)
3721 		rcu_dump_rcu_node_tree();
3722 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3723 
3724 	/*
3725 	 * We don't need protection against CPU-hotplug here because
3726 	 * this is called early in boot, before either interrupts
3727 	 * or the scheduler are operational.
3728 	 */
3729 	pm_notifier(rcu_pm_notify, 0);
3730 	for_each_online_cpu(cpu) {
3731 		rcutree_prepare_cpu(cpu);
3732 		rcu_cpu_starting(cpu);
3733 		rcutree_online_cpu(cpu);
3734 	}
3735 
3736 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3737 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3738 	WARN_ON(!rcu_gp_wq);
3739 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3740 	WARN_ON(!rcu_par_gp_wq);
3741 	srcu_init();
3742 }
3743 
3744 #include "tree_exp.h"
3745 #include "tree_plugin.h"
3746