1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/random.h> 47 #include <linux/trace_events.h> 48 #include <linux/suspend.h> 49 #include <linux/ftrace.h> 50 #include <linux/tick.h> 51 #include <linux/sysrq.h> 52 #include <linux/kprobes.h> 53 #include <linux/gfp.h> 54 #include <linux/oom.h> 55 #include <linux/smpboot.h> 56 #include <linux/jiffies.h> 57 #include <linux/slab.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/sched/clock.h> 60 #include "../time/tick-internal.h" 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * Steal a bit from the bottom of ->dynticks for idle entry/exit 74 * control. Initially this is for TLB flushing. 75 */ 76 #define RCU_DYNTICK_CTRL_MASK 0x1 77 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 78 #ifndef rcu_eqs_special_exit 79 #define rcu_eqs_special_exit() do { } while (0) 80 #endif 81 82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 83 .dynticks_nesting = 1, 84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 86 }; 87 static struct rcu_state rcu_state = { 88 .level = { &rcu_state.node[0] }, 89 .gp_state = RCU_GP_IDLE, 90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 92 .name = RCU_NAME, 93 .abbr = RCU_ABBR, 94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 97 }; 98 99 /* Dump rcu_node combining tree at boot to verify correct setup. */ 100 static bool dump_tree; 101 module_param(dump_tree, bool, 0444); 102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 103 static bool use_softirq = 1; 104 module_param(use_softirq, bool, 0444); 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 154 /* rcuc/rcub kthread realtime priority */ 155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 156 module_param(kthread_prio, int, 0444); 157 158 /* Delay in jiffies for grace-period initialization delays, debug only. */ 159 160 static int gp_preinit_delay; 161 module_param(gp_preinit_delay, int, 0444); 162 static int gp_init_delay; 163 module_param(gp_init_delay, int, 0444); 164 static int gp_cleanup_delay; 165 module_param(gp_cleanup_delay, int, 0444); 166 167 /* Retrieve RCU kthreads priority for rcutorture */ 168 int rcu_get_gp_kthreads_prio(void) 169 { 170 return kthread_prio; 171 } 172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 173 174 /* 175 * Number of grace periods between delays, normalized by the duration of 176 * the delay. The longer the delay, the more the grace periods between 177 * each delay. The reason for this normalization is that it means that, 178 * for non-zero delays, the overall slowdown of grace periods is constant 179 * regardless of the duration of the delay. This arrangement balances 180 * the need for long delays to increase some race probabilities with the 181 * need for fast grace periods to increase other race probabilities. 182 */ 183 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 184 185 /* 186 * Compute the mask of online CPUs for the specified rcu_node structure. 187 * This will not be stable unless the rcu_node structure's ->lock is 188 * held, but the bit corresponding to the current CPU will be stable 189 * in most contexts. 190 */ 191 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 192 { 193 return READ_ONCE(rnp->qsmaskinitnext); 194 } 195 196 /* 197 * Return true if an RCU grace period is in progress. The READ_ONCE()s 198 * permit this function to be invoked without holding the root rcu_node 199 * structure's ->lock, but of course results can be subject to change. 200 */ 201 static int rcu_gp_in_progress(void) 202 { 203 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 204 } 205 206 /* 207 * Return the number of callbacks queued on the specified CPU. 208 * Handles both the nocbs and normal cases. 209 */ 210 static long rcu_get_n_cbs_cpu(int cpu) 211 { 212 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 213 214 if (rcu_segcblist_is_enabled(&rdp->cblist)) 215 return rcu_segcblist_n_cbs(&rdp->cblist); 216 return 0; 217 } 218 219 void rcu_softirq_qs(void) 220 { 221 rcu_qs(); 222 rcu_preempt_deferred_qs(current); 223 } 224 225 /* 226 * Record entry into an extended quiescent state. This is only to be 227 * called when not already in an extended quiescent state. 228 */ 229 static void rcu_dynticks_eqs_enter(void) 230 { 231 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 232 int seq; 233 234 /* 235 * CPUs seeing atomic_add_return() must see prior RCU read-side 236 * critical sections, and we also must force ordering with the 237 * next idle sojourn. 238 */ 239 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 240 /* Better be in an extended quiescent state! */ 241 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 242 (seq & RCU_DYNTICK_CTRL_CTR)); 243 /* Better not have special action (TLB flush) pending! */ 244 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 245 (seq & RCU_DYNTICK_CTRL_MASK)); 246 } 247 248 /* 249 * Record exit from an extended quiescent state. This is only to be 250 * called from an extended quiescent state. 251 */ 252 static void rcu_dynticks_eqs_exit(void) 253 { 254 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 255 int seq; 256 257 /* 258 * CPUs seeing atomic_add_return() must see prior idle sojourns, 259 * and we also must force ordering with the next RCU read-side 260 * critical section. 261 */ 262 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 264 !(seq & RCU_DYNTICK_CTRL_CTR)); 265 if (seq & RCU_DYNTICK_CTRL_MASK) { 266 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 267 smp_mb__after_atomic(); /* _exit after clearing mask. */ 268 /* Prefer duplicate flushes to losing a flush. */ 269 rcu_eqs_special_exit(); 270 } 271 } 272 273 /* 274 * Reset the current CPU's ->dynticks counter to indicate that the 275 * newly onlined CPU is no longer in an extended quiescent state. 276 * This will either leave the counter unchanged, or increment it 277 * to the next non-quiescent value. 278 * 279 * The non-atomic test/increment sequence works because the upper bits 280 * of the ->dynticks counter are manipulated only by the corresponding CPU, 281 * or when the corresponding CPU is offline. 282 */ 283 static void rcu_dynticks_eqs_online(void) 284 { 285 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 286 287 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 288 return; 289 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 290 } 291 292 /* 293 * Is the current CPU in an extended quiescent state? 294 * 295 * No ordering, as we are sampling CPU-local information. 296 */ 297 static bool rcu_dynticks_curr_cpu_in_eqs(void) 298 { 299 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 300 301 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 302 } 303 304 /* 305 * Snapshot the ->dynticks counter with full ordering so as to allow 306 * stable comparison of this counter with past and future snapshots. 307 */ 308 static int rcu_dynticks_snap(struct rcu_data *rdp) 309 { 310 int snap = atomic_add_return(0, &rdp->dynticks); 311 312 return snap & ~RCU_DYNTICK_CTRL_MASK; 313 } 314 315 /* 316 * Return true if the snapshot returned from rcu_dynticks_snap() 317 * indicates that RCU is in an extended quiescent state. 318 */ 319 static bool rcu_dynticks_in_eqs(int snap) 320 { 321 return !(snap & RCU_DYNTICK_CTRL_CTR); 322 } 323 324 /* 325 * Return true if the CPU corresponding to the specified rcu_data 326 * structure has spent some time in an extended quiescent state since 327 * rcu_dynticks_snap() returned the specified snapshot. 328 */ 329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 330 { 331 return snap != rcu_dynticks_snap(rdp); 332 } 333 334 /* 335 * Set the special (bottom) bit of the specified CPU so that it 336 * will take special action (such as flushing its TLB) on the 337 * next exit from an extended quiescent state. Returns true if 338 * the bit was successfully set, or false if the CPU was not in 339 * an extended quiescent state. 340 */ 341 bool rcu_eqs_special_set(int cpu) 342 { 343 int old; 344 int new; 345 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 346 347 do { 348 old = atomic_read(&rdp->dynticks); 349 if (old & RCU_DYNTICK_CTRL_CTR) 350 return false; 351 new = old | RCU_DYNTICK_CTRL_MASK; 352 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 353 return true; 354 } 355 356 /* 357 * Let the RCU core know that this CPU has gone through the scheduler, 358 * which is a quiescent state. This is called when the need for a 359 * quiescent state is urgent, so we burn an atomic operation and full 360 * memory barriers to let the RCU core know about it, regardless of what 361 * this CPU might (or might not) do in the near future. 362 * 363 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 364 * 365 * The caller must have disabled interrupts and must not be idle. 366 */ 367 void rcu_momentary_dyntick_idle(void) 368 { 369 int special; 370 371 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 372 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 373 &this_cpu_ptr(&rcu_data)->dynticks); 374 /* It is illegal to call this from idle state. */ 375 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 376 rcu_preempt_deferred_qs(current); 377 } 378 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 379 380 /** 381 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle 382 * 383 * If the current CPU is idle and running at a first-level (not nested) 384 * interrupt from idle, return true. The caller must have at least 385 * disabled preemption. 386 */ 387 static int rcu_is_cpu_rrupt_from_idle(void) 388 { 389 /* Called only from within the scheduling-clock interrupt */ 390 lockdep_assert_in_irq(); 391 392 /* Check for counter underflows */ 393 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 394 "RCU dynticks_nesting counter underflow!"); 395 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 396 "RCU dynticks_nmi_nesting counter underflow/zero!"); 397 398 /* Are we at first interrupt nesting level? */ 399 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1) 400 return false; 401 402 /* Does CPU appear to be idle from an RCU standpoint? */ 403 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 404 } 405 406 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */ 407 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */ 408 static long blimit = DEFAULT_RCU_BLIMIT; 409 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 410 static long qhimark = DEFAULT_RCU_QHIMARK; 411 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 412 static long qlowmark = DEFAULT_RCU_QLOMARK; 413 414 module_param(blimit, long, 0444); 415 module_param(qhimark, long, 0444); 416 module_param(qlowmark, long, 0444); 417 418 static ulong jiffies_till_first_fqs = ULONG_MAX; 419 static ulong jiffies_till_next_fqs = ULONG_MAX; 420 static bool rcu_kick_kthreads; 421 static int rcu_divisor = 7; 422 module_param(rcu_divisor, int, 0644); 423 424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 426 module_param(rcu_resched_ns, long, 0644); 427 428 /* 429 * How long the grace period must be before we start recruiting 430 * quiescent-state help from rcu_note_context_switch(). 431 */ 432 static ulong jiffies_till_sched_qs = ULONG_MAX; 433 module_param(jiffies_till_sched_qs, ulong, 0444); 434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 436 437 /* 438 * Make sure that we give the grace-period kthread time to detect any 439 * idle CPUs before taking active measures to force quiescent states. 440 * However, don't go below 100 milliseconds, adjusted upwards for really 441 * large systems. 442 */ 443 static void adjust_jiffies_till_sched_qs(void) 444 { 445 unsigned long j; 446 447 /* If jiffies_till_sched_qs was specified, respect the request. */ 448 if (jiffies_till_sched_qs != ULONG_MAX) { 449 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 450 return; 451 } 452 /* Otherwise, set to third fqs scan, but bound below on large system. */ 453 j = READ_ONCE(jiffies_till_first_fqs) + 454 2 * READ_ONCE(jiffies_till_next_fqs); 455 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 456 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 457 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 458 WRITE_ONCE(jiffies_to_sched_qs, j); 459 } 460 461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 462 { 463 ulong j; 464 int ret = kstrtoul(val, 0, &j); 465 466 if (!ret) { 467 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 468 adjust_jiffies_till_sched_qs(); 469 } 470 return ret; 471 } 472 473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 474 { 475 ulong j; 476 int ret = kstrtoul(val, 0, &j); 477 478 if (!ret) { 479 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 480 adjust_jiffies_till_sched_qs(); 481 } 482 return ret; 483 } 484 485 static struct kernel_param_ops first_fqs_jiffies_ops = { 486 .set = param_set_first_fqs_jiffies, 487 .get = param_get_ulong, 488 }; 489 490 static struct kernel_param_ops next_fqs_jiffies_ops = { 491 .set = param_set_next_fqs_jiffies, 492 .get = param_get_ulong, 493 }; 494 495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 497 module_param(rcu_kick_kthreads, bool, 0644); 498 499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 500 static int rcu_pending(int user); 501 502 /* 503 * Return the number of RCU GPs completed thus far for debug & stats. 504 */ 505 unsigned long rcu_get_gp_seq(void) 506 { 507 return READ_ONCE(rcu_state.gp_seq); 508 } 509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 510 511 /* 512 * Return the number of RCU expedited batches completed thus far for 513 * debug & stats. Odd numbers mean that a batch is in progress, even 514 * numbers mean idle. The value returned will thus be roughly double 515 * the cumulative batches since boot. 516 */ 517 unsigned long rcu_exp_batches_completed(void) 518 { 519 return rcu_state.expedited_sequence; 520 } 521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 522 523 /* 524 * Return the root node of the rcu_state structure. 525 */ 526 static struct rcu_node *rcu_get_root(void) 527 { 528 return &rcu_state.node[0]; 529 } 530 531 /* 532 * Send along grace-period-related data for rcutorture diagnostics. 533 */ 534 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 535 unsigned long *gp_seq) 536 { 537 switch (test_type) { 538 case RCU_FLAVOR: 539 *flags = READ_ONCE(rcu_state.gp_flags); 540 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 541 break; 542 default: 543 break; 544 } 545 } 546 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 547 548 /* 549 * Enter an RCU extended quiescent state, which can be either the 550 * idle loop or adaptive-tickless usermode execution. 551 * 552 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 553 * the possibility of usermode upcalls having messed up our count 554 * of interrupt nesting level during the prior busy period. 555 */ 556 static void rcu_eqs_enter(bool user) 557 { 558 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 559 560 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 561 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 562 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 563 rdp->dynticks_nesting == 0); 564 if (rdp->dynticks_nesting != 1) { 565 rdp->dynticks_nesting--; 566 return; 567 } 568 569 lockdep_assert_irqs_disabled(); 570 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 571 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 572 rdp = this_cpu_ptr(&rcu_data); 573 do_nocb_deferred_wakeup(rdp); 574 rcu_prepare_for_idle(); 575 rcu_preempt_deferred_qs(current); 576 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 577 rcu_dynticks_eqs_enter(); 578 rcu_dynticks_task_enter(); 579 } 580 581 /** 582 * rcu_idle_enter - inform RCU that current CPU is entering idle 583 * 584 * Enter idle mode, in other words, -leave- the mode in which RCU 585 * read-side critical sections can occur. (Though RCU read-side 586 * critical sections can occur in irq handlers in idle, a possibility 587 * handled by irq_enter() and irq_exit().) 588 * 589 * If you add or remove a call to rcu_idle_enter(), be sure to test with 590 * CONFIG_RCU_EQS_DEBUG=y. 591 */ 592 void rcu_idle_enter(void) 593 { 594 lockdep_assert_irqs_disabled(); 595 rcu_eqs_enter(false); 596 } 597 598 #ifdef CONFIG_NO_HZ_FULL 599 /** 600 * rcu_user_enter - inform RCU that we are resuming userspace. 601 * 602 * Enter RCU idle mode right before resuming userspace. No use of RCU 603 * is permitted between this call and rcu_user_exit(). This way the 604 * CPU doesn't need to maintain the tick for RCU maintenance purposes 605 * when the CPU runs in userspace. 606 * 607 * If you add or remove a call to rcu_user_enter(), be sure to test with 608 * CONFIG_RCU_EQS_DEBUG=y. 609 */ 610 void rcu_user_enter(void) 611 { 612 lockdep_assert_irqs_disabled(); 613 rcu_eqs_enter(true); 614 } 615 #endif /* CONFIG_NO_HZ_FULL */ 616 617 /* 618 * If we are returning from the outermost NMI handler that interrupted an 619 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 620 * to let the RCU grace-period handling know that the CPU is back to 621 * being RCU-idle. 622 * 623 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 624 * with CONFIG_RCU_EQS_DEBUG=y. 625 */ 626 static __always_inline void rcu_nmi_exit_common(bool irq) 627 { 628 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 629 630 /* 631 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 632 * (We are exiting an NMI handler, so RCU better be paying attention 633 * to us!) 634 */ 635 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 636 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 637 638 /* 639 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 640 * leave it in non-RCU-idle state. 641 */ 642 if (rdp->dynticks_nmi_nesting != 1) { 643 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 644 atomic_read(&rdp->dynticks)); 645 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 646 rdp->dynticks_nmi_nesting - 2); 647 return; 648 } 649 650 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 651 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 652 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 653 654 if (irq) 655 rcu_prepare_for_idle(); 656 657 rcu_dynticks_eqs_enter(); 658 659 if (irq) 660 rcu_dynticks_task_enter(); 661 } 662 663 /** 664 * rcu_nmi_exit - inform RCU of exit from NMI context 665 * 666 * If you add or remove a call to rcu_nmi_exit(), be sure to test 667 * with CONFIG_RCU_EQS_DEBUG=y. 668 */ 669 void rcu_nmi_exit(void) 670 { 671 rcu_nmi_exit_common(false); 672 } 673 674 /** 675 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 676 * 677 * Exit from an interrupt handler, which might possibly result in entering 678 * idle mode, in other words, leaving the mode in which read-side critical 679 * sections can occur. The caller must have disabled interrupts. 680 * 681 * This code assumes that the idle loop never does anything that might 682 * result in unbalanced calls to irq_enter() and irq_exit(). If your 683 * architecture's idle loop violates this assumption, RCU will give you what 684 * you deserve, good and hard. But very infrequently and irreproducibly. 685 * 686 * Use things like work queues to work around this limitation. 687 * 688 * You have been warned. 689 * 690 * If you add or remove a call to rcu_irq_exit(), be sure to test with 691 * CONFIG_RCU_EQS_DEBUG=y. 692 */ 693 void rcu_irq_exit(void) 694 { 695 lockdep_assert_irqs_disabled(); 696 rcu_nmi_exit_common(true); 697 } 698 699 /* 700 * Wrapper for rcu_irq_exit() where interrupts are enabled. 701 * 702 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 703 * with CONFIG_RCU_EQS_DEBUG=y. 704 */ 705 void rcu_irq_exit_irqson(void) 706 { 707 unsigned long flags; 708 709 local_irq_save(flags); 710 rcu_irq_exit(); 711 local_irq_restore(flags); 712 } 713 714 /* 715 * Exit an RCU extended quiescent state, which can be either the 716 * idle loop or adaptive-tickless usermode execution. 717 * 718 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 719 * allow for the possibility of usermode upcalls messing up our count of 720 * interrupt nesting level during the busy period that is just now starting. 721 */ 722 static void rcu_eqs_exit(bool user) 723 { 724 struct rcu_data *rdp; 725 long oldval; 726 727 lockdep_assert_irqs_disabled(); 728 rdp = this_cpu_ptr(&rcu_data); 729 oldval = rdp->dynticks_nesting; 730 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 731 if (oldval) { 732 rdp->dynticks_nesting++; 733 return; 734 } 735 rcu_dynticks_task_exit(); 736 rcu_dynticks_eqs_exit(); 737 rcu_cleanup_after_idle(); 738 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 739 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 740 WRITE_ONCE(rdp->dynticks_nesting, 1); 741 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 742 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 743 } 744 745 /** 746 * rcu_idle_exit - inform RCU that current CPU is leaving idle 747 * 748 * Exit idle mode, in other words, -enter- the mode in which RCU 749 * read-side critical sections can occur. 750 * 751 * If you add or remove a call to rcu_idle_exit(), be sure to test with 752 * CONFIG_RCU_EQS_DEBUG=y. 753 */ 754 void rcu_idle_exit(void) 755 { 756 unsigned long flags; 757 758 local_irq_save(flags); 759 rcu_eqs_exit(false); 760 local_irq_restore(flags); 761 } 762 763 #ifdef CONFIG_NO_HZ_FULL 764 /** 765 * rcu_user_exit - inform RCU that we are exiting userspace. 766 * 767 * Exit RCU idle mode while entering the kernel because it can 768 * run a RCU read side critical section anytime. 769 * 770 * If you add or remove a call to rcu_user_exit(), be sure to test with 771 * CONFIG_RCU_EQS_DEBUG=y. 772 */ 773 void rcu_user_exit(void) 774 { 775 rcu_eqs_exit(1); 776 } 777 #endif /* CONFIG_NO_HZ_FULL */ 778 779 /** 780 * rcu_nmi_enter_common - inform RCU of entry to NMI context 781 * @irq: Is this call from rcu_irq_enter? 782 * 783 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 784 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 785 * that the CPU is active. This implementation permits nested NMIs, as 786 * long as the nesting level does not overflow an int. (You will probably 787 * run out of stack space first.) 788 * 789 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 790 * with CONFIG_RCU_EQS_DEBUG=y. 791 */ 792 static __always_inline void rcu_nmi_enter_common(bool irq) 793 { 794 long incby = 2; 795 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 796 797 /* Complain about underflow. */ 798 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 799 800 /* 801 * If idle from RCU viewpoint, atomically increment ->dynticks 802 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 803 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 804 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 805 * to be in the outermost NMI handler that interrupted an RCU-idle 806 * period (observation due to Andy Lutomirski). 807 */ 808 if (rcu_dynticks_curr_cpu_in_eqs()) { 809 810 if (irq) 811 rcu_dynticks_task_exit(); 812 813 rcu_dynticks_eqs_exit(); 814 815 if (irq) 816 rcu_cleanup_after_idle(); 817 818 incby = 1; 819 } else if (tick_nohz_full_cpu(rdp->cpu) && 820 rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE && 821 READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 822 raw_spin_lock_rcu_node(rdp->mynode); 823 // Recheck under lock. 824 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 825 rdp->rcu_forced_tick = true; 826 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 827 } 828 raw_spin_unlock_rcu_node(rdp->mynode); 829 } 830 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 831 rdp->dynticks_nmi_nesting, 832 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 833 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 834 rdp->dynticks_nmi_nesting + incby); 835 barrier(); 836 } 837 838 /** 839 * rcu_nmi_enter - inform RCU of entry to NMI context 840 */ 841 void rcu_nmi_enter(void) 842 { 843 rcu_nmi_enter_common(false); 844 } 845 NOKPROBE_SYMBOL(rcu_nmi_enter); 846 847 /** 848 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 849 * 850 * Enter an interrupt handler, which might possibly result in exiting 851 * idle mode, in other words, entering the mode in which read-side critical 852 * sections can occur. The caller must have disabled interrupts. 853 * 854 * Note that the Linux kernel is fully capable of entering an interrupt 855 * handler that it never exits, for example when doing upcalls to user mode! 856 * This code assumes that the idle loop never does upcalls to user mode. 857 * If your architecture's idle loop does do upcalls to user mode (or does 858 * anything else that results in unbalanced calls to the irq_enter() and 859 * irq_exit() functions), RCU will give you what you deserve, good and hard. 860 * But very infrequently and irreproducibly. 861 * 862 * Use things like work queues to work around this limitation. 863 * 864 * You have been warned. 865 * 866 * If you add or remove a call to rcu_irq_enter(), be sure to test with 867 * CONFIG_RCU_EQS_DEBUG=y. 868 */ 869 void rcu_irq_enter(void) 870 { 871 lockdep_assert_irqs_disabled(); 872 rcu_nmi_enter_common(true); 873 } 874 875 /* 876 * Wrapper for rcu_irq_enter() where interrupts are enabled. 877 * 878 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 879 * with CONFIG_RCU_EQS_DEBUG=y. 880 */ 881 void rcu_irq_enter_irqson(void) 882 { 883 unsigned long flags; 884 885 local_irq_save(flags); 886 rcu_irq_enter(); 887 local_irq_restore(flags); 888 } 889 890 /* 891 * If any sort of urgency was applied to the current CPU (for example, 892 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 893 * to get to a quiescent state, disable it. 894 */ 895 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 896 { 897 raw_lockdep_assert_held_rcu_node(rdp->mynode); 898 WRITE_ONCE(rdp->rcu_urgent_qs, false); 899 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 900 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 901 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 902 rdp->rcu_forced_tick = false; 903 } 904 } 905 906 /** 907 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 908 * 909 * Return true if RCU is watching the running CPU, which means that this 910 * CPU can safely enter RCU read-side critical sections. In other words, 911 * if the current CPU is not in its idle loop or is in an interrupt or 912 * NMI handler, return true. 913 */ 914 bool notrace rcu_is_watching(void) 915 { 916 bool ret; 917 918 preempt_disable_notrace(); 919 ret = !rcu_dynticks_curr_cpu_in_eqs(); 920 preempt_enable_notrace(); 921 return ret; 922 } 923 EXPORT_SYMBOL_GPL(rcu_is_watching); 924 925 /* 926 * If a holdout task is actually running, request an urgent quiescent 927 * state from its CPU. This is unsynchronized, so migrations can cause 928 * the request to go to the wrong CPU. Which is OK, all that will happen 929 * is that the CPU's next context switch will be a bit slower and next 930 * time around this task will generate another request. 931 */ 932 void rcu_request_urgent_qs_task(struct task_struct *t) 933 { 934 int cpu; 935 936 barrier(); 937 cpu = task_cpu(t); 938 if (!task_curr(t)) 939 return; /* This task is not running on that CPU. */ 940 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 941 } 942 943 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 944 945 /* 946 * Is the current CPU online as far as RCU is concerned? 947 * 948 * Disable preemption to avoid false positives that could otherwise 949 * happen due to the current CPU number being sampled, this task being 950 * preempted, its old CPU being taken offline, resuming on some other CPU, 951 * then determining that its old CPU is now offline. 952 * 953 * Disable checking if in an NMI handler because we cannot safely 954 * report errors from NMI handlers anyway. In addition, it is OK to use 955 * RCU on an offline processor during initial boot, hence the check for 956 * rcu_scheduler_fully_active. 957 */ 958 bool rcu_lockdep_current_cpu_online(void) 959 { 960 struct rcu_data *rdp; 961 struct rcu_node *rnp; 962 bool ret = false; 963 964 if (in_nmi() || !rcu_scheduler_fully_active) 965 return true; 966 preempt_disable(); 967 rdp = this_cpu_ptr(&rcu_data); 968 rnp = rdp->mynode; 969 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 970 ret = true; 971 preempt_enable(); 972 return ret; 973 } 974 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 975 976 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 977 978 /* 979 * We are reporting a quiescent state on behalf of some other CPU, so 980 * it is our responsibility to check for and handle potential overflow 981 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 982 * After all, the CPU might be in deep idle state, and thus executing no 983 * code whatsoever. 984 */ 985 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 986 { 987 raw_lockdep_assert_held_rcu_node(rnp); 988 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 989 rnp->gp_seq)) 990 WRITE_ONCE(rdp->gpwrap, true); 991 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 992 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 993 } 994 995 /* 996 * Snapshot the specified CPU's dynticks counter so that we can later 997 * credit them with an implicit quiescent state. Return 1 if this CPU 998 * is in dynticks idle mode, which is an extended quiescent state. 999 */ 1000 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1001 { 1002 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1003 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1004 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1005 rcu_gpnum_ovf(rdp->mynode, rdp); 1006 return 1; 1007 } 1008 return 0; 1009 } 1010 1011 /* 1012 * Return true if the specified CPU has passed through a quiescent 1013 * state by virtue of being in or having passed through an dynticks 1014 * idle state since the last call to dyntick_save_progress_counter() 1015 * for this same CPU, or by virtue of having been offline. 1016 */ 1017 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1018 { 1019 unsigned long jtsq; 1020 bool *rnhqp; 1021 bool *ruqp; 1022 struct rcu_node *rnp = rdp->mynode; 1023 1024 /* 1025 * If the CPU passed through or entered a dynticks idle phase with 1026 * no active irq/NMI handlers, then we can safely pretend that the CPU 1027 * already acknowledged the request to pass through a quiescent 1028 * state. Either way, that CPU cannot possibly be in an RCU 1029 * read-side critical section that started before the beginning 1030 * of the current RCU grace period. 1031 */ 1032 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1033 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1034 rcu_gpnum_ovf(rnp, rdp); 1035 return 1; 1036 } 1037 1038 /* If waiting too long on an offline CPU, complain. */ 1039 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1040 time_after(jiffies, rcu_state.gp_start + HZ)) { 1041 bool onl; 1042 struct rcu_node *rnp1; 1043 1044 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1045 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1046 __func__, rnp->grplo, rnp->grphi, rnp->level, 1047 (long)rnp->gp_seq, (long)rnp->completedqs); 1048 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1049 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1050 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1051 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1052 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1053 __func__, rdp->cpu, ".o"[onl], 1054 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1055 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1056 return 1; /* Break things loose after complaining. */ 1057 } 1058 1059 /* 1060 * A CPU running for an extended time within the kernel can 1061 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1062 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1063 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1064 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1065 * variable are safe because the assignments are repeated if this 1066 * CPU failed to pass through a quiescent state. This code 1067 * also checks .jiffies_resched in case jiffies_to_sched_qs 1068 * is set way high. 1069 */ 1070 jtsq = READ_ONCE(jiffies_to_sched_qs); 1071 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1072 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1073 if (!READ_ONCE(*rnhqp) && 1074 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1075 time_after(jiffies, rcu_state.jiffies_resched))) { 1076 WRITE_ONCE(*rnhqp, true); 1077 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1078 smp_store_release(ruqp, true); 1079 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1080 WRITE_ONCE(*ruqp, true); 1081 } 1082 1083 /* 1084 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1085 * The above code handles this, but only for straight cond_resched(). 1086 * And some in-kernel loops check need_resched() before calling 1087 * cond_resched(), which defeats the above code for CPUs that are 1088 * running in-kernel with scheduling-clock interrupts disabled. 1089 * So hit them over the head with the resched_cpu() hammer! 1090 */ 1091 if (tick_nohz_full_cpu(rdp->cpu) && 1092 time_after(jiffies, 1093 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1094 WRITE_ONCE(*ruqp, true); 1095 resched_cpu(rdp->cpu); 1096 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1097 } 1098 1099 /* 1100 * If more than halfway to RCU CPU stall-warning time, invoke 1101 * resched_cpu() more frequently to try to loosen things up a bit. 1102 * Also check to see if the CPU is getting hammered with interrupts, 1103 * but only once per grace period, just to keep the IPIs down to 1104 * a dull roar. 1105 */ 1106 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1107 if (time_after(jiffies, 1108 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1109 resched_cpu(rdp->cpu); 1110 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1111 } 1112 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1113 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1114 (rnp->ffmask & rdp->grpmask)) { 1115 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1116 rdp->rcu_iw_pending = true; 1117 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1118 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1119 } 1120 } 1121 1122 return 0; 1123 } 1124 1125 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1126 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1127 unsigned long gp_seq_req, const char *s) 1128 { 1129 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1130 rnp->level, rnp->grplo, rnp->grphi, s); 1131 } 1132 1133 /* 1134 * rcu_start_this_gp - Request the start of a particular grace period 1135 * @rnp_start: The leaf node of the CPU from which to start. 1136 * @rdp: The rcu_data corresponding to the CPU from which to start. 1137 * @gp_seq_req: The gp_seq of the grace period to start. 1138 * 1139 * Start the specified grace period, as needed to handle newly arrived 1140 * callbacks. The required future grace periods are recorded in each 1141 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1142 * is reason to awaken the grace-period kthread. 1143 * 1144 * The caller must hold the specified rcu_node structure's ->lock, which 1145 * is why the caller is responsible for waking the grace-period kthread. 1146 * 1147 * Returns true if the GP thread needs to be awakened else false. 1148 */ 1149 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1150 unsigned long gp_seq_req) 1151 { 1152 bool ret = false; 1153 struct rcu_node *rnp; 1154 1155 /* 1156 * Use funnel locking to either acquire the root rcu_node 1157 * structure's lock or bail out if the need for this grace period 1158 * has already been recorded -- or if that grace period has in 1159 * fact already started. If there is already a grace period in 1160 * progress in a non-leaf node, no recording is needed because the 1161 * end of the grace period will scan the leaf rcu_node structures. 1162 * Note that rnp_start->lock must not be released. 1163 */ 1164 raw_lockdep_assert_held_rcu_node(rnp_start); 1165 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1166 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1167 if (rnp != rnp_start) 1168 raw_spin_lock_rcu_node(rnp); 1169 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1170 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1171 (rnp != rnp_start && 1172 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1173 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1174 TPS("Prestarted")); 1175 goto unlock_out; 1176 } 1177 rnp->gp_seq_needed = gp_seq_req; 1178 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1179 /* 1180 * We just marked the leaf or internal node, and a 1181 * grace period is in progress, which means that 1182 * rcu_gp_cleanup() will see the marking. Bail to 1183 * reduce contention. 1184 */ 1185 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1186 TPS("Startedleaf")); 1187 goto unlock_out; 1188 } 1189 if (rnp != rnp_start && rnp->parent != NULL) 1190 raw_spin_unlock_rcu_node(rnp); 1191 if (!rnp->parent) 1192 break; /* At root, and perhaps also leaf. */ 1193 } 1194 1195 /* If GP already in progress, just leave, otherwise start one. */ 1196 if (rcu_gp_in_progress()) { 1197 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1198 goto unlock_out; 1199 } 1200 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1201 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1202 rcu_state.gp_req_activity = jiffies; 1203 if (!rcu_state.gp_kthread) { 1204 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1205 goto unlock_out; 1206 } 1207 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1208 ret = true; /* Caller must wake GP kthread. */ 1209 unlock_out: 1210 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1211 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1212 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1213 rdp->gp_seq_needed = rnp->gp_seq_needed; 1214 } 1215 if (rnp != rnp_start) 1216 raw_spin_unlock_rcu_node(rnp); 1217 return ret; 1218 } 1219 1220 /* 1221 * Clean up any old requests for the just-ended grace period. Also return 1222 * whether any additional grace periods have been requested. 1223 */ 1224 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1225 { 1226 bool needmore; 1227 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1228 1229 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1230 if (!needmore) 1231 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1232 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1233 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1234 return needmore; 1235 } 1236 1237 /* 1238 * Awaken the grace-period kthread. Don't do a self-awaken (unless in 1239 * an interrupt or softirq handler), and don't bother awakening when there 1240 * is nothing for the grace-period kthread to do (as in several CPUs raced 1241 * to awaken, and we lost), and finally don't try to awaken a kthread that 1242 * has not yet been created. If all those checks are passed, track some 1243 * debug information and awaken. 1244 * 1245 * So why do the self-wakeup when in an interrupt or softirq handler 1246 * in the grace-period kthread's context? Because the kthread might have 1247 * been interrupted just as it was going to sleep, and just after the final 1248 * pre-sleep check of the awaken condition. In this case, a wakeup really 1249 * is required, and is therefore supplied. 1250 */ 1251 static void rcu_gp_kthread_wake(void) 1252 { 1253 if ((current == rcu_state.gp_kthread && 1254 !in_irq() && !in_serving_softirq()) || 1255 !READ_ONCE(rcu_state.gp_flags) || 1256 !rcu_state.gp_kthread) 1257 return; 1258 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1259 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1260 swake_up_one(&rcu_state.gp_wq); 1261 } 1262 1263 /* 1264 * If there is room, assign a ->gp_seq number to any callbacks on this 1265 * CPU that have not already been assigned. Also accelerate any callbacks 1266 * that were previously assigned a ->gp_seq number that has since proven 1267 * to be too conservative, which can happen if callbacks get assigned a 1268 * ->gp_seq number while RCU is idle, but with reference to a non-root 1269 * rcu_node structure. This function is idempotent, so it does not hurt 1270 * to call it repeatedly. Returns an flag saying that we should awaken 1271 * the RCU grace-period kthread. 1272 * 1273 * The caller must hold rnp->lock with interrupts disabled. 1274 */ 1275 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1276 { 1277 unsigned long gp_seq_req; 1278 bool ret = false; 1279 1280 rcu_lockdep_assert_cblist_protected(rdp); 1281 raw_lockdep_assert_held_rcu_node(rnp); 1282 1283 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1284 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1285 return false; 1286 1287 /* 1288 * Callbacks are often registered with incomplete grace-period 1289 * information. Something about the fact that getting exact 1290 * information requires acquiring a global lock... RCU therefore 1291 * makes a conservative estimate of the grace period number at which 1292 * a given callback will become ready to invoke. The following 1293 * code checks this estimate and improves it when possible, thus 1294 * accelerating callback invocation to an earlier grace-period 1295 * number. 1296 */ 1297 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1298 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1299 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1300 1301 /* Trace depending on how much we were able to accelerate. */ 1302 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1303 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1304 else 1305 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1306 return ret; 1307 } 1308 1309 /* 1310 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1311 * rcu_node structure's ->lock be held. It consults the cached value 1312 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1313 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1314 * while holding the leaf rcu_node structure's ->lock. 1315 */ 1316 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1317 struct rcu_data *rdp) 1318 { 1319 unsigned long c; 1320 bool needwake; 1321 1322 rcu_lockdep_assert_cblist_protected(rdp); 1323 c = rcu_seq_snap(&rcu_state.gp_seq); 1324 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1325 /* Old request still live, so mark recent callbacks. */ 1326 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1327 return; 1328 } 1329 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1330 needwake = rcu_accelerate_cbs(rnp, rdp); 1331 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1332 if (needwake) 1333 rcu_gp_kthread_wake(); 1334 } 1335 1336 /* 1337 * Move any callbacks whose grace period has completed to the 1338 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1339 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1340 * sublist. This function is idempotent, so it does not hurt to 1341 * invoke it repeatedly. As long as it is not invoked -too- often... 1342 * Returns true if the RCU grace-period kthread needs to be awakened. 1343 * 1344 * The caller must hold rnp->lock with interrupts disabled. 1345 */ 1346 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1347 { 1348 rcu_lockdep_assert_cblist_protected(rdp); 1349 raw_lockdep_assert_held_rcu_node(rnp); 1350 1351 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1352 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1353 return false; 1354 1355 /* 1356 * Find all callbacks whose ->gp_seq numbers indicate that they 1357 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1358 */ 1359 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1360 1361 /* Classify any remaining callbacks. */ 1362 return rcu_accelerate_cbs(rnp, rdp); 1363 } 1364 1365 /* 1366 * Move and classify callbacks, but only if doing so won't require 1367 * that the RCU grace-period kthread be awakened. 1368 */ 1369 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1370 struct rcu_data *rdp) 1371 { 1372 rcu_lockdep_assert_cblist_protected(rdp); 1373 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1374 !raw_spin_trylock_rcu_node(rnp)) 1375 return; 1376 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1377 raw_spin_unlock_rcu_node(rnp); 1378 } 1379 1380 /* 1381 * Update CPU-local rcu_data state to record the beginnings and ends of 1382 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1383 * structure corresponding to the current CPU, and must have irqs disabled. 1384 * Returns true if the grace-period kthread needs to be awakened. 1385 */ 1386 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1387 { 1388 bool ret = false; 1389 bool need_gp; 1390 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1391 rcu_segcblist_is_offloaded(&rdp->cblist); 1392 1393 raw_lockdep_assert_held_rcu_node(rnp); 1394 1395 if (rdp->gp_seq == rnp->gp_seq) 1396 return false; /* Nothing to do. */ 1397 1398 /* Handle the ends of any preceding grace periods first. */ 1399 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1400 unlikely(READ_ONCE(rdp->gpwrap))) { 1401 if (!offloaded) 1402 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1403 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1404 } else { 1405 if (!offloaded) 1406 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1407 } 1408 1409 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1410 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1411 unlikely(READ_ONCE(rdp->gpwrap))) { 1412 /* 1413 * If the current grace period is waiting for this CPU, 1414 * set up to detect a quiescent state, otherwise don't 1415 * go looking for one. 1416 */ 1417 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1418 need_gp = !!(rnp->qsmask & rdp->grpmask); 1419 rdp->cpu_no_qs.b.norm = need_gp; 1420 rdp->core_needs_qs = need_gp; 1421 zero_cpu_stall_ticks(rdp); 1422 } 1423 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1424 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1425 rdp->gp_seq_needed = rnp->gp_seq_needed; 1426 WRITE_ONCE(rdp->gpwrap, false); 1427 rcu_gpnum_ovf(rnp, rdp); 1428 return ret; 1429 } 1430 1431 static void note_gp_changes(struct rcu_data *rdp) 1432 { 1433 unsigned long flags; 1434 bool needwake; 1435 struct rcu_node *rnp; 1436 1437 local_irq_save(flags); 1438 rnp = rdp->mynode; 1439 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1440 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1441 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1442 local_irq_restore(flags); 1443 return; 1444 } 1445 needwake = __note_gp_changes(rnp, rdp); 1446 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1447 if (needwake) 1448 rcu_gp_kthread_wake(); 1449 } 1450 1451 static void rcu_gp_slow(int delay) 1452 { 1453 if (delay > 0 && 1454 !(rcu_seq_ctr(rcu_state.gp_seq) % 1455 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1456 schedule_timeout_uninterruptible(delay); 1457 } 1458 1459 /* 1460 * Initialize a new grace period. Return false if no grace period required. 1461 */ 1462 static bool rcu_gp_init(void) 1463 { 1464 unsigned long flags; 1465 unsigned long oldmask; 1466 unsigned long mask; 1467 struct rcu_data *rdp; 1468 struct rcu_node *rnp = rcu_get_root(); 1469 1470 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1471 raw_spin_lock_irq_rcu_node(rnp); 1472 if (!READ_ONCE(rcu_state.gp_flags)) { 1473 /* Spurious wakeup, tell caller to go back to sleep. */ 1474 raw_spin_unlock_irq_rcu_node(rnp); 1475 return false; 1476 } 1477 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1478 1479 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1480 /* 1481 * Grace period already in progress, don't start another. 1482 * Not supposed to be able to happen. 1483 */ 1484 raw_spin_unlock_irq_rcu_node(rnp); 1485 return false; 1486 } 1487 1488 /* Advance to a new grace period and initialize state. */ 1489 record_gp_stall_check_time(); 1490 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1491 rcu_seq_start(&rcu_state.gp_seq); 1492 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1493 raw_spin_unlock_irq_rcu_node(rnp); 1494 1495 /* 1496 * Apply per-leaf buffered online and offline operations to the 1497 * rcu_node tree. Note that this new grace period need not wait 1498 * for subsequent online CPUs, and that quiescent-state forcing 1499 * will handle subsequent offline CPUs. 1500 */ 1501 rcu_state.gp_state = RCU_GP_ONOFF; 1502 rcu_for_each_leaf_node(rnp) { 1503 raw_spin_lock(&rcu_state.ofl_lock); 1504 raw_spin_lock_irq_rcu_node(rnp); 1505 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1506 !rnp->wait_blkd_tasks) { 1507 /* Nothing to do on this leaf rcu_node structure. */ 1508 raw_spin_unlock_irq_rcu_node(rnp); 1509 raw_spin_unlock(&rcu_state.ofl_lock); 1510 continue; 1511 } 1512 1513 /* Record old state, apply changes to ->qsmaskinit field. */ 1514 oldmask = rnp->qsmaskinit; 1515 rnp->qsmaskinit = rnp->qsmaskinitnext; 1516 1517 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1518 if (!oldmask != !rnp->qsmaskinit) { 1519 if (!oldmask) { /* First online CPU for rcu_node. */ 1520 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1521 rcu_init_new_rnp(rnp); 1522 } else if (rcu_preempt_has_tasks(rnp)) { 1523 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1524 } else { /* Last offline CPU and can propagate. */ 1525 rcu_cleanup_dead_rnp(rnp); 1526 } 1527 } 1528 1529 /* 1530 * If all waited-on tasks from prior grace period are 1531 * done, and if all this rcu_node structure's CPUs are 1532 * still offline, propagate up the rcu_node tree and 1533 * clear ->wait_blkd_tasks. Otherwise, if one of this 1534 * rcu_node structure's CPUs has since come back online, 1535 * simply clear ->wait_blkd_tasks. 1536 */ 1537 if (rnp->wait_blkd_tasks && 1538 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1539 rnp->wait_blkd_tasks = false; 1540 if (!rnp->qsmaskinit) 1541 rcu_cleanup_dead_rnp(rnp); 1542 } 1543 1544 raw_spin_unlock_irq_rcu_node(rnp); 1545 raw_spin_unlock(&rcu_state.ofl_lock); 1546 } 1547 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1548 1549 /* 1550 * Set the quiescent-state-needed bits in all the rcu_node 1551 * structures for all currently online CPUs in breadth-first 1552 * order, starting from the root rcu_node structure, relying on the 1553 * layout of the tree within the rcu_state.node[] array. Note that 1554 * other CPUs will access only the leaves of the hierarchy, thus 1555 * seeing that no grace period is in progress, at least until the 1556 * corresponding leaf node has been initialized. 1557 * 1558 * The grace period cannot complete until the initialization 1559 * process finishes, because this kthread handles both. 1560 */ 1561 rcu_state.gp_state = RCU_GP_INIT; 1562 rcu_for_each_node_breadth_first(rnp) { 1563 rcu_gp_slow(gp_init_delay); 1564 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1565 rdp = this_cpu_ptr(&rcu_data); 1566 rcu_preempt_check_blocked_tasks(rnp); 1567 rnp->qsmask = rnp->qsmaskinit; 1568 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1569 if (rnp == rdp->mynode) 1570 (void)__note_gp_changes(rnp, rdp); 1571 rcu_preempt_boost_start_gp(rnp); 1572 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1573 rnp->level, rnp->grplo, 1574 rnp->grphi, rnp->qsmask); 1575 /* Quiescent states for tasks on any now-offline CPUs. */ 1576 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1577 rnp->rcu_gp_init_mask = mask; 1578 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1579 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1580 else 1581 raw_spin_unlock_irq_rcu_node(rnp); 1582 cond_resched_tasks_rcu_qs(); 1583 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1584 } 1585 1586 return true; 1587 } 1588 1589 /* 1590 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1591 * time. 1592 */ 1593 static bool rcu_gp_fqs_check_wake(int *gfp) 1594 { 1595 struct rcu_node *rnp = rcu_get_root(); 1596 1597 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1598 *gfp = READ_ONCE(rcu_state.gp_flags); 1599 if (*gfp & RCU_GP_FLAG_FQS) 1600 return true; 1601 1602 /* The current grace period has completed. */ 1603 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1604 return true; 1605 1606 return false; 1607 } 1608 1609 /* 1610 * Do one round of quiescent-state forcing. 1611 */ 1612 static void rcu_gp_fqs(bool first_time) 1613 { 1614 struct rcu_node *rnp = rcu_get_root(); 1615 1616 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1617 rcu_state.n_force_qs++; 1618 if (first_time) { 1619 /* Collect dyntick-idle snapshots. */ 1620 force_qs_rnp(dyntick_save_progress_counter); 1621 } else { 1622 /* Handle dyntick-idle and offline CPUs. */ 1623 force_qs_rnp(rcu_implicit_dynticks_qs); 1624 } 1625 /* Clear flag to prevent immediate re-entry. */ 1626 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1627 raw_spin_lock_irq_rcu_node(rnp); 1628 WRITE_ONCE(rcu_state.gp_flags, 1629 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1630 raw_spin_unlock_irq_rcu_node(rnp); 1631 } 1632 } 1633 1634 /* 1635 * Loop doing repeated quiescent-state forcing until the grace period ends. 1636 */ 1637 static void rcu_gp_fqs_loop(void) 1638 { 1639 bool first_gp_fqs; 1640 int gf; 1641 unsigned long j; 1642 int ret; 1643 struct rcu_node *rnp = rcu_get_root(); 1644 1645 first_gp_fqs = true; 1646 j = READ_ONCE(jiffies_till_first_fqs); 1647 ret = 0; 1648 for (;;) { 1649 if (!ret) { 1650 rcu_state.jiffies_force_qs = jiffies + j; 1651 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1652 jiffies + (j ? 3 * j : 2)); 1653 } 1654 trace_rcu_grace_period(rcu_state.name, 1655 READ_ONCE(rcu_state.gp_seq), 1656 TPS("fqswait")); 1657 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1658 ret = swait_event_idle_timeout_exclusive( 1659 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1660 rcu_state.gp_state = RCU_GP_DOING_FQS; 1661 /* Locking provides needed memory barriers. */ 1662 /* If grace period done, leave loop. */ 1663 if (!READ_ONCE(rnp->qsmask) && 1664 !rcu_preempt_blocked_readers_cgp(rnp)) 1665 break; 1666 /* If time for quiescent-state forcing, do it. */ 1667 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1668 (gf & RCU_GP_FLAG_FQS)) { 1669 trace_rcu_grace_period(rcu_state.name, 1670 READ_ONCE(rcu_state.gp_seq), 1671 TPS("fqsstart")); 1672 rcu_gp_fqs(first_gp_fqs); 1673 first_gp_fqs = false; 1674 trace_rcu_grace_period(rcu_state.name, 1675 READ_ONCE(rcu_state.gp_seq), 1676 TPS("fqsend")); 1677 cond_resched_tasks_rcu_qs(); 1678 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1679 ret = 0; /* Force full wait till next FQS. */ 1680 j = READ_ONCE(jiffies_till_next_fqs); 1681 } else { 1682 /* Deal with stray signal. */ 1683 cond_resched_tasks_rcu_qs(); 1684 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1685 WARN_ON(signal_pending(current)); 1686 trace_rcu_grace_period(rcu_state.name, 1687 READ_ONCE(rcu_state.gp_seq), 1688 TPS("fqswaitsig")); 1689 ret = 1; /* Keep old FQS timing. */ 1690 j = jiffies; 1691 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1692 j = 1; 1693 else 1694 j = rcu_state.jiffies_force_qs - j; 1695 } 1696 } 1697 } 1698 1699 /* 1700 * Clean up after the old grace period. 1701 */ 1702 static void rcu_gp_cleanup(void) 1703 { 1704 unsigned long gp_duration; 1705 bool needgp = false; 1706 unsigned long new_gp_seq; 1707 bool offloaded; 1708 struct rcu_data *rdp; 1709 struct rcu_node *rnp = rcu_get_root(); 1710 struct swait_queue_head *sq; 1711 1712 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1713 raw_spin_lock_irq_rcu_node(rnp); 1714 rcu_state.gp_end = jiffies; 1715 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1716 if (gp_duration > rcu_state.gp_max) 1717 rcu_state.gp_max = gp_duration; 1718 1719 /* 1720 * We know the grace period is complete, but to everyone else 1721 * it appears to still be ongoing. But it is also the case 1722 * that to everyone else it looks like there is nothing that 1723 * they can do to advance the grace period. It is therefore 1724 * safe for us to drop the lock in order to mark the grace 1725 * period as completed in all of the rcu_node structures. 1726 */ 1727 raw_spin_unlock_irq_rcu_node(rnp); 1728 1729 /* 1730 * Propagate new ->gp_seq value to rcu_node structures so that 1731 * other CPUs don't have to wait until the start of the next grace 1732 * period to process their callbacks. This also avoids some nasty 1733 * RCU grace-period initialization races by forcing the end of 1734 * the current grace period to be completely recorded in all of 1735 * the rcu_node structures before the beginning of the next grace 1736 * period is recorded in any of the rcu_node structures. 1737 */ 1738 new_gp_seq = rcu_state.gp_seq; 1739 rcu_seq_end(&new_gp_seq); 1740 rcu_for_each_node_breadth_first(rnp) { 1741 raw_spin_lock_irq_rcu_node(rnp); 1742 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1743 dump_blkd_tasks(rnp, 10); 1744 WARN_ON_ONCE(rnp->qsmask); 1745 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1746 rdp = this_cpu_ptr(&rcu_data); 1747 if (rnp == rdp->mynode) 1748 needgp = __note_gp_changes(rnp, rdp) || needgp; 1749 /* smp_mb() provided by prior unlock-lock pair. */ 1750 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1751 sq = rcu_nocb_gp_get(rnp); 1752 raw_spin_unlock_irq_rcu_node(rnp); 1753 rcu_nocb_gp_cleanup(sq); 1754 cond_resched_tasks_rcu_qs(); 1755 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1756 rcu_gp_slow(gp_cleanup_delay); 1757 } 1758 rnp = rcu_get_root(); 1759 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1760 1761 /* Declare grace period done, trace first to use old GP number. */ 1762 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1763 rcu_seq_end(&rcu_state.gp_seq); 1764 rcu_state.gp_state = RCU_GP_IDLE; 1765 /* Check for GP requests since above loop. */ 1766 rdp = this_cpu_ptr(&rcu_data); 1767 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1768 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1769 TPS("CleanupMore")); 1770 needgp = true; 1771 } 1772 /* Advance CBs to reduce false positives below. */ 1773 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1774 rcu_segcblist_is_offloaded(&rdp->cblist); 1775 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1776 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1777 rcu_state.gp_req_activity = jiffies; 1778 trace_rcu_grace_period(rcu_state.name, 1779 READ_ONCE(rcu_state.gp_seq), 1780 TPS("newreq")); 1781 } else { 1782 WRITE_ONCE(rcu_state.gp_flags, 1783 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1784 } 1785 raw_spin_unlock_irq_rcu_node(rnp); 1786 } 1787 1788 /* 1789 * Body of kthread that handles grace periods. 1790 */ 1791 static int __noreturn rcu_gp_kthread(void *unused) 1792 { 1793 rcu_bind_gp_kthread(); 1794 for (;;) { 1795 1796 /* Handle grace-period start. */ 1797 for (;;) { 1798 trace_rcu_grace_period(rcu_state.name, 1799 READ_ONCE(rcu_state.gp_seq), 1800 TPS("reqwait")); 1801 rcu_state.gp_state = RCU_GP_WAIT_GPS; 1802 swait_event_idle_exclusive(rcu_state.gp_wq, 1803 READ_ONCE(rcu_state.gp_flags) & 1804 RCU_GP_FLAG_INIT); 1805 rcu_state.gp_state = RCU_GP_DONE_GPS; 1806 /* Locking provides needed memory barrier. */ 1807 if (rcu_gp_init()) 1808 break; 1809 cond_resched_tasks_rcu_qs(); 1810 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1811 WARN_ON(signal_pending(current)); 1812 trace_rcu_grace_period(rcu_state.name, 1813 READ_ONCE(rcu_state.gp_seq), 1814 TPS("reqwaitsig")); 1815 } 1816 1817 /* Handle quiescent-state forcing. */ 1818 rcu_gp_fqs_loop(); 1819 1820 /* Handle grace-period end. */ 1821 rcu_state.gp_state = RCU_GP_CLEANUP; 1822 rcu_gp_cleanup(); 1823 rcu_state.gp_state = RCU_GP_CLEANED; 1824 } 1825 } 1826 1827 /* 1828 * Report a full set of quiescent states to the rcu_state data structure. 1829 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1830 * another grace period is required. Whether we wake the grace-period 1831 * kthread or it awakens itself for the next round of quiescent-state 1832 * forcing, that kthread will clean up after the just-completed grace 1833 * period. Note that the caller must hold rnp->lock, which is released 1834 * before return. 1835 */ 1836 static void rcu_report_qs_rsp(unsigned long flags) 1837 __releases(rcu_get_root()->lock) 1838 { 1839 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1840 WARN_ON_ONCE(!rcu_gp_in_progress()); 1841 WRITE_ONCE(rcu_state.gp_flags, 1842 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1843 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1844 rcu_gp_kthread_wake(); 1845 } 1846 1847 /* 1848 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1849 * Allows quiescent states for a group of CPUs to be reported at one go 1850 * to the specified rcu_node structure, though all the CPUs in the group 1851 * must be represented by the same rcu_node structure (which need not be a 1852 * leaf rcu_node structure, though it often will be). The gps parameter 1853 * is the grace-period snapshot, which means that the quiescent states 1854 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1855 * must be held upon entry, and it is released before return. 1856 * 1857 * As a special case, if mask is zero, the bit-already-cleared check is 1858 * disabled. This allows propagating quiescent state due to resumed tasks 1859 * during grace-period initialization. 1860 */ 1861 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1862 unsigned long gps, unsigned long flags) 1863 __releases(rnp->lock) 1864 { 1865 unsigned long oldmask = 0; 1866 struct rcu_node *rnp_c; 1867 1868 raw_lockdep_assert_held_rcu_node(rnp); 1869 1870 /* Walk up the rcu_node hierarchy. */ 1871 for (;;) { 1872 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1873 1874 /* 1875 * Our bit has already been cleared, or the 1876 * relevant grace period is already over, so done. 1877 */ 1878 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1879 return; 1880 } 1881 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1882 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1883 rcu_preempt_blocked_readers_cgp(rnp)); 1884 rnp->qsmask &= ~mask; 1885 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1886 mask, rnp->qsmask, rnp->level, 1887 rnp->grplo, rnp->grphi, 1888 !!rnp->gp_tasks); 1889 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1890 1891 /* Other bits still set at this level, so done. */ 1892 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1893 return; 1894 } 1895 rnp->completedqs = rnp->gp_seq; 1896 mask = rnp->grpmask; 1897 if (rnp->parent == NULL) { 1898 1899 /* No more levels. Exit loop holding root lock. */ 1900 1901 break; 1902 } 1903 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1904 rnp_c = rnp; 1905 rnp = rnp->parent; 1906 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1907 oldmask = rnp_c->qsmask; 1908 } 1909 1910 /* 1911 * Get here if we are the last CPU to pass through a quiescent 1912 * state for this grace period. Invoke rcu_report_qs_rsp() 1913 * to clean up and start the next grace period if one is needed. 1914 */ 1915 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1916 } 1917 1918 /* 1919 * Record a quiescent state for all tasks that were previously queued 1920 * on the specified rcu_node structure and that were blocking the current 1921 * RCU grace period. The caller must hold the corresponding rnp->lock with 1922 * irqs disabled, and this lock is released upon return, but irqs remain 1923 * disabled. 1924 */ 1925 static void __maybe_unused 1926 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1927 __releases(rnp->lock) 1928 { 1929 unsigned long gps; 1930 unsigned long mask; 1931 struct rcu_node *rnp_p; 1932 1933 raw_lockdep_assert_held_rcu_node(rnp); 1934 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1935 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1936 rnp->qsmask != 0) { 1937 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1938 return; /* Still need more quiescent states! */ 1939 } 1940 1941 rnp->completedqs = rnp->gp_seq; 1942 rnp_p = rnp->parent; 1943 if (rnp_p == NULL) { 1944 /* 1945 * Only one rcu_node structure in the tree, so don't 1946 * try to report up to its nonexistent parent! 1947 */ 1948 rcu_report_qs_rsp(flags); 1949 return; 1950 } 1951 1952 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1953 gps = rnp->gp_seq; 1954 mask = rnp->grpmask; 1955 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1956 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1957 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1958 } 1959 1960 /* 1961 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1962 * structure. This must be called from the specified CPU. 1963 */ 1964 static void 1965 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 1966 { 1967 unsigned long flags; 1968 unsigned long mask; 1969 bool needwake = false; 1970 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1971 rcu_segcblist_is_offloaded(&rdp->cblist); 1972 struct rcu_node *rnp; 1973 1974 rnp = rdp->mynode; 1975 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1976 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1977 rdp->gpwrap) { 1978 1979 /* 1980 * The grace period in which this quiescent state was 1981 * recorded has ended, so don't report it upwards. 1982 * We will instead need a new quiescent state that lies 1983 * within the current grace period. 1984 */ 1985 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1986 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1987 return; 1988 } 1989 mask = rdp->grpmask; 1990 if ((rnp->qsmask & mask) == 0) { 1991 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1992 } else { 1993 /* 1994 * This GP can't end until cpu checks in, so all of our 1995 * callbacks can be processed during the next GP. 1996 */ 1997 if (!offloaded) 1998 needwake = rcu_accelerate_cbs(rnp, rdp); 1999 2000 rcu_disable_urgency_upon_qs(rdp); 2001 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2002 /* ^^^ Released rnp->lock */ 2003 if (needwake) 2004 rcu_gp_kthread_wake(); 2005 } 2006 } 2007 2008 /* 2009 * Check to see if there is a new grace period of which this CPU 2010 * is not yet aware, and if so, set up local rcu_data state for it. 2011 * Otherwise, see if this CPU has just passed through its first 2012 * quiescent state for this grace period, and record that fact if so. 2013 */ 2014 static void 2015 rcu_check_quiescent_state(struct rcu_data *rdp) 2016 { 2017 /* Check for grace-period ends and beginnings. */ 2018 note_gp_changes(rdp); 2019 2020 /* 2021 * Does this CPU still need to do its part for current grace period? 2022 * If no, return and let the other CPUs do their part as well. 2023 */ 2024 if (!rdp->core_needs_qs) 2025 return; 2026 2027 /* 2028 * Was there a quiescent state since the beginning of the grace 2029 * period? If no, then exit and wait for the next call. 2030 */ 2031 if (rdp->cpu_no_qs.b.norm) 2032 return; 2033 2034 /* 2035 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2036 * judge of that). 2037 */ 2038 rcu_report_qs_rdp(rdp->cpu, rdp); 2039 } 2040 2041 /* 2042 * Near the end of the offline process. Trace the fact that this CPU 2043 * is going offline. 2044 */ 2045 int rcutree_dying_cpu(unsigned int cpu) 2046 { 2047 bool blkd; 2048 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2049 struct rcu_node *rnp = rdp->mynode; 2050 2051 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2052 return 0; 2053 2054 blkd = !!(rnp->qsmask & rdp->grpmask); 2055 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2056 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2057 return 0; 2058 } 2059 2060 /* 2061 * All CPUs for the specified rcu_node structure have gone offline, 2062 * and all tasks that were preempted within an RCU read-side critical 2063 * section while running on one of those CPUs have since exited their RCU 2064 * read-side critical section. Some other CPU is reporting this fact with 2065 * the specified rcu_node structure's ->lock held and interrupts disabled. 2066 * This function therefore goes up the tree of rcu_node structures, 2067 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2068 * the leaf rcu_node structure's ->qsmaskinit field has already been 2069 * updated. 2070 * 2071 * This function does check that the specified rcu_node structure has 2072 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2073 * prematurely. That said, invoking it after the fact will cost you 2074 * a needless lock acquisition. So once it has done its work, don't 2075 * invoke it again. 2076 */ 2077 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2078 { 2079 long mask; 2080 struct rcu_node *rnp = rnp_leaf; 2081 2082 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2083 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2084 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2085 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2086 return; 2087 for (;;) { 2088 mask = rnp->grpmask; 2089 rnp = rnp->parent; 2090 if (!rnp) 2091 break; 2092 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2093 rnp->qsmaskinit &= ~mask; 2094 /* Between grace periods, so better already be zero! */ 2095 WARN_ON_ONCE(rnp->qsmask); 2096 if (rnp->qsmaskinit) { 2097 raw_spin_unlock_rcu_node(rnp); 2098 /* irqs remain disabled. */ 2099 return; 2100 } 2101 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2102 } 2103 } 2104 2105 /* 2106 * The CPU has been completely removed, and some other CPU is reporting 2107 * this fact from process context. Do the remainder of the cleanup. 2108 * There can only be one CPU hotplug operation at a time, so no need for 2109 * explicit locking. 2110 */ 2111 int rcutree_dead_cpu(unsigned int cpu) 2112 { 2113 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2114 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2115 2116 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2117 return 0; 2118 2119 /* Adjust any no-longer-needed kthreads. */ 2120 rcu_boost_kthread_setaffinity(rnp, -1); 2121 /* Do any needed no-CB deferred wakeups from this CPU. */ 2122 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2123 2124 // Stop-machine done, so allow nohz_full to disable tick. 2125 tick_dep_clear(TICK_DEP_BIT_RCU); 2126 return 0; 2127 } 2128 2129 /* 2130 * Invoke any RCU callbacks that have made it to the end of their grace 2131 * period. Thottle as specified by rdp->blimit. 2132 */ 2133 static void rcu_do_batch(struct rcu_data *rdp) 2134 { 2135 unsigned long flags; 2136 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2137 rcu_segcblist_is_offloaded(&rdp->cblist); 2138 struct rcu_head *rhp; 2139 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2140 long bl, count; 2141 long pending, tlimit = 0; 2142 2143 /* If no callbacks are ready, just return. */ 2144 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2145 trace_rcu_batch_start(rcu_state.name, 2146 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2147 trace_rcu_batch_end(rcu_state.name, 0, 2148 !rcu_segcblist_empty(&rdp->cblist), 2149 need_resched(), is_idle_task(current), 2150 rcu_is_callbacks_kthread()); 2151 return; 2152 } 2153 2154 /* 2155 * Extract the list of ready callbacks, disabling to prevent 2156 * races with call_rcu() from interrupt handlers. Leave the 2157 * callback counts, as rcu_barrier() needs to be conservative. 2158 */ 2159 local_irq_save(flags); 2160 rcu_nocb_lock(rdp); 2161 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2162 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2163 bl = max(rdp->blimit, pending >> rcu_divisor); 2164 if (unlikely(bl > 100)) 2165 tlimit = local_clock() + rcu_resched_ns; 2166 trace_rcu_batch_start(rcu_state.name, 2167 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2168 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2169 if (offloaded) 2170 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2171 rcu_nocb_unlock_irqrestore(rdp, flags); 2172 2173 /* Invoke callbacks. */ 2174 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2175 rhp = rcu_cblist_dequeue(&rcl); 2176 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2177 rcu_callback_t f; 2178 2179 debug_rcu_head_unqueue(rhp); 2180 2181 rcu_lock_acquire(&rcu_callback_map); 2182 trace_rcu_invoke_callback(rcu_state.name, rhp); 2183 2184 f = rhp->func; 2185 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2186 f(rhp); 2187 2188 rcu_lock_release(&rcu_callback_map); 2189 2190 /* 2191 * Stop only if limit reached and CPU has something to do. 2192 * Note: The rcl structure counts down from zero. 2193 */ 2194 if (-rcl.len >= bl && !offloaded && 2195 (need_resched() || 2196 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2197 break; 2198 if (unlikely(tlimit)) { 2199 /* only call local_clock() every 32 callbacks */ 2200 if (likely((-rcl.len & 31) || local_clock() < tlimit)) 2201 continue; 2202 /* Exceeded the time limit, so leave. */ 2203 break; 2204 } 2205 if (offloaded) { 2206 WARN_ON_ONCE(in_serving_softirq()); 2207 local_bh_enable(); 2208 lockdep_assert_irqs_enabled(); 2209 cond_resched_tasks_rcu_qs(); 2210 lockdep_assert_irqs_enabled(); 2211 local_bh_disable(); 2212 } 2213 } 2214 2215 local_irq_save(flags); 2216 rcu_nocb_lock(rdp); 2217 count = -rcl.len; 2218 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2219 is_idle_task(current), rcu_is_callbacks_kthread()); 2220 2221 /* Update counts and requeue any remaining callbacks. */ 2222 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2223 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2224 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2225 2226 /* Reinstate batch limit if we have worked down the excess. */ 2227 count = rcu_segcblist_n_cbs(&rdp->cblist); 2228 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2229 rdp->blimit = blimit; 2230 2231 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2232 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2233 rdp->qlen_last_fqs_check = 0; 2234 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2235 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2236 rdp->qlen_last_fqs_check = count; 2237 2238 /* 2239 * The following usually indicates a double call_rcu(). To track 2240 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2241 */ 2242 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist)); 2243 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2244 count != 0 && rcu_segcblist_empty(&rdp->cblist)); 2245 2246 rcu_nocb_unlock_irqrestore(rdp, flags); 2247 2248 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2249 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2250 invoke_rcu_core(); 2251 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2252 } 2253 2254 /* 2255 * This function is invoked from each scheduling-clock interrupt, 2256 * and checks to see if this CPU is in a non-context-switch quiescent 2257 * state, for example, user mode or idle loop. It also schedules RCU 2258 * core processing. If the current grace period has gone on too long, 2259 * it will ask the scheduler to manufacture a context switch for the sole 2260 * purpose of providing a providing the needed quiescent state. 2261 */ 2262 void rcu_sched_clock_irq(int user) 2263 { 2264 trace_rcu_utilization(TPS("Start scheduler-tick")); 2265 raw_cpu_inc(rcu_data.ticks_this_gp); 2266 /* The load-acquire pairs with the store-release setting to true. */ 2267 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2268 /* Idle and userspace execution already are quiescent states. */ 2269 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2270 set_tsk_need_resched(current); 2271 set_preempt_need_resched(); 2272 } 2273 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2274 } 2275 rcu_flavor_sched_clock_irq(user); 2276 if (rcu_pending(user)) 2277 invoke_rcu_core(); 2278 2279 trace_rcu_utilization(TPS("End scheduler-tick")); 2280 } 2281 2282 /* 2283 * Scan the leaf rcu_node structures. For each structure on which all 2284 * CPUs have reported a quiescent state and on which there are tasks 2285 * blocking the current grace period, initiate RCU priority boosting. 2286 * Otherwise, invoke the specified function to check dyntick state for 2287 * each CPU that has not yet reported a quiescent state. 2288 */ 2289 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2290 { 2291 int cpu; 2292 unsigned long flags; 2293 unsigned long mask; 2294 struct rcu_data *rdp; 2295 struct rcu_node *rnp; 2296 2297 rcu_for_each_leaf_node(rnp) { 2298 cond_resched_tasks_rcu_qs(); 2299 mask = 0; 2300 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2301 if (rnp->qsmask == 0) { 2302 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) || 2303 rcu_preempt_blocked_readers_cgp(rnp)) { 2304 /* 2305 * No point in scanning bits because they 2306 * are all zero. But we might need to 2307 * priority-boost blocked readers. 2308 */ 2309 rcu_initiate_boost(rnp, flags); 2310 /* rcu_initiate_boost() releases rnp->lock */ 2311 continue; 2312 } 2313 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2314 continue; 2315 } 2316 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2317 rdp = per_cpu_ptr(&rcu_data, cpu); 2318 if (f(rdp)) { 2319 mask |= rdp->grpmask; 2320 rcu_disable_urgency_upon_qs(rdp); 2321 } 2322 } 2323 if (mask != 0) { 2324 /* Idle/offline CPUs, report (releases rnp->lock). */ 2325 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2326 } else { 2327 /* Nothing to do here, so just drop the lock. */ 2328 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2329 } 2330 } 2331 } 2332 2333 /* 2334 * Force quiescent states on reluctant CPUs, and also detect which 2335 * CPUs are in dyntick-idle mode. 2336 */ 2337 void rcu_force_quiescent_state(void) 2338 { 2339 unsigned long flags; 2340 bool ret; 2341 struct rcu_node *rnp; 2342 struct rcu_node *rnp_old = NULL; 2343 2344 /* Funnel through hierarchy to reduce memory contention. */ 2345 rnp = __this_cpu_read(rcu_data.mynode); 2346 for (; rnp != NULL; rnp = rnp->parent) { 2347 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2348 !raw_spin_trylock(&rnp->fqslock); 2349 if (rnp_old != NULL) 2350 raw_spin_unlock(&rnp_old->fqslock); 2351 if (ret) 2352 return; 2353 rnp_old = rnp; 2354 } 2355 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2356 2357 /* Reached the root of the rcu_node tree, acquire lock. */ 2358 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2359 raw_spin_unlock(&rnp_old->fqslock); 2360 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2361 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2362 return; /* Someone beat us to it. */ 2363 } 2364 WRITE_ONCE(rcu_state.gp_flags, 2365 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2366 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2367 rcu_gp_kthread_wake(); 2368 } 2369 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2370 2371 /* Perform RCU core processing work for the current CPU. */ 2372 static __latent_entropy void rcu_core(void) 2373 { 2374 unsigned long flags; 2375 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2376 struct rcu_node *rnp = rdp->mynode; 2377 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2378 rcu_segcblist_is_offloaded(&rdp->cblist); 2379 2380 if (cpu_is_offline(smp_processor_id())) 2381 return; 2382 trace_rcu_utilization(TPS("Start RCU core")); 2383 WARN_ON_ONCE(!rdp->beenonline); 2384 2385 /* Report any deferred quiescent states if preemption enabled. */ 2386 if (!(preempt_count() & PREEMPT_MASK)) { 2387 rcu_preempt_deferred_qs(current); 2388 } else if (rcu_preempt_need_deferred_qs(current)) { 2389 set_tsk_need_resched(current); 2390 set_preempt_need_resched(); 2391 } 2392 2393 /* Update RCU state based on any recent quiescent states. */ 2394 rcu_check_quiescent_state(rdp); 2395 2396 /* No grace period and unregistered callbacks? */ 2397 if (!rcu_gp_in_progress() && 2398 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) { 2399 local_irq_save(flags); 2400 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2401 rcu_accelerate_cbs_unlocked(rnp, rdp); 2402 local_irq_restore(flags); 2403 } 2404 2405 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2406 2407 /* If there are callbacks ready, invoke them. */ 2408 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) && 2409 likely(READ_ONCE(rcu_scheduler_fully_active))) 2410 rcu_do_batch(rdp); 2411 2412 /* Do any needed deferred wakeups of rcuo kthreads. */ 2413 do_nocb_deferred_wakeup(rdp); 2414 trace_rcu_utilization(TPS("End RCU core")); 2415 } 2416 2417 static void rcu_core_si(struct softirq_action *h) 2418 { 2419 rcu_core(); 2420 } 2421 2422 static void rcu_wake_cond(struct task_struct *t, int status) 2423 { 2424 /* 2425 * If the thread is yielding, only wake it when this 2426 * is invoked from idle 2427 */ 2428 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2429 wake_up_process(t); 2430 } 2431 2432 static void invoke_rcu_core_kthread(void) 2433 { 2434 struct task_struct *t; 2435 unsigned long flags; 2436 2437 local_irq_save(flags); 2438 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2439 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2440 if (t != NULL && t != current) 2441 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2442 local_irq_restore(flags); 2443 } 2444 2445 /* 2446 * Wake up this CPU's rcuc kthread to do RCU core processing. 2447 */ 2448 static void invoke_rcu_core(void) 2449 { 2450 if (!cpu_online(smp_processor_id())) 2451 return; 2452 if (use_softirq) 2453 raise_softirq(RCU_SOFTIRQ); 2454 else 2455 invoke_rcu_core_kthread(); 2456 } 2457 2458 static void rcu_cpu_kthread_park(unsigned int cpu) 2459 { 2460 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2461 } 2462 2463 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2464 { 2465 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2466 } 2467 2468 /* 2469 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2470 * the RCU softirq used in configurations of RCU that do not support RCU 2471 * priority boosting. 2472 */ 2473 static void rcu_cpu_kthread(unsigned int cpu) 2474 { 2475 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2476 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2477 int spincnt; 2478 2479 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2480 for (spincnt = 0; spincnt < 10; spincnt++) { 2481 local_bh_disable(); 2482 *statusp = RCU_KTHREAD_RUNNING; 2483 local_irq_disable(); 2484 work = *workp; 2485 *workp = 0; 2486 local_irq_enable(); 2487 if (work) 2488 rcu_core(); 2489 local_bh_enable(); 2490 if (*workp == 0) { 2491 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2492 *statusp = RCU_KTHREAD_WAITING; 2493 return; 2494 } 2495 } 2496 *statusp = RCU_KTHREAD_YIELDING; 2497 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2498 schedule_timeout_interruptible(2); 2499 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2500 *statusp = RCU_KTHREAD_WAITING; 2501 } 2502 2503 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2504 .store = &rcu_data.rcu_cpu_kthread_task, 2505 .thread_should_run = rcu_cpu_kthread_should_run, 2506 .thread_fn = rcu_cpu_kthread, 2507 .thread_comm = "rcuc/%u", 2508 .setup = rcu_cpu_kthread_setup, 2509 .park = rcu_cpu_kthread_park, 2510 }; 2511 2512 /* 2513 * Spawn per-CPU RCU core processing kthreads. 2514 */ 2515 static int __init rcu_spawn_core_kthreads(void) 2516 { 2517 int cpu; 2518 2519 for_each_possible_cpu(cpu) 2520 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2521 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2522 return 0; 2523 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2524 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2525 return 0; 2526 } 2527 early_initcall(rcu_spawn_core_kthreads); 2528 2529 /* 2530 * Handle any core-RCU processing required by a call_rcu() invocation. 2531 */ 2532 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2533 unsigned long flags) 2534 { 2535 /* 2536 * If called from an extended quiescent state, invoke the RCU 2537 * core in order to force a re-evaluation of RCU's idleness. 2538 */ 2539 if (!rcu_is_watching()) 2540 invoke_rcu_core(); 2541 2542 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2543 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2544 return; 2545 2546 /* 2547 * Force the grace period if too many callbacks or too long waiting. 2548 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2549 * if some other CPU has recently done so. Also, don't bother 2550 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2551 * is the only one waiting for a grace period to complete. 2552 */ 2553 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2554 rdp->qlen_last_fqs_check + qhimark)) { 2555 2556 /* Are we ignoring a completed grace period? */ 2557 note_gp_changes(rdp); 2558 2559 /* Start a new grace period if one not already started. */ 2560 if (!rcu_gp_in_progress()) { 2561 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2562 } else { 2563 /* Give the grace period a kick. */ 2564 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2565 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2566 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2567 rcu_force_quiescent_state(); 2568 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2569 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2570 } 2571 } 2572 } 2573 2574 /* 2575 * RCU callback function to leak a callback. 2576 */ 2577 static void rcu_leak_callback(struct rcu_head *rhp) 2578 { 2579 } 2580 2581 /* 2582 * Helper function for call_rcu() and friends. The cpu argument will 2583 * normally be -1, indicating "currently running CPU". It may specify 2584 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2585 * is expected to specify a CPU. 2586 */ 2587 static void 2588 __call_rcu(struct rcu_head *head, rcu_callback_t func) 2589 { 2590 unsigned long flags; 2591 struct rcu_data *rdp; 2592 bool was_alldone; 2593 2594 /* Misaligned rcu_head! */ 2595 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2596 2597 if (debug_rcu_head_queue(head)) { 2598 /* 2599 * Probable double call_rcu(), so leak the callback. 2600 * Use rcu:rcu_callback trace event to find the previous 2601 * time callback was passed to __call_rcu(). 2602 */ 2603 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n", 2604 head, head->func); 2605 WRITE_ONCE(head->func, rcu_leak_callback); 2606 return; 2607 } 2608 head->func = func; 2609 head->next = NULL; 2610 local_irq_save(flags); 2611 rdp = this_cpu_ptr(&rcu_data); 2612 2613 /* Add the callback to our list. */ 2614 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2615 // This can trigger due to call_rcu() from offline CPU: 2616 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2617 WARN_ON_ONCE(!rcu_is_watching()); 2618 // Very early boot, before rcu_init(). Initialize if needed 2619 // and then drop through to queue the callback. 2620 if (rcu_segcblist_empty(&rdp->cblist)) 2621 rcu_segcblist_init(&rdp->cblist); 2622 } 2623 2624 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2625 return; // Enqueued onto ->nocb_bypass, so just leave. 2626 /* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */ 2627 rcu_segcblist_enqueue(&rdp->cblist, head); 2628 if (__is_kfree_rcu_offset((unsigned long)func)) 2629 trace_rcu_kfree_callback(rcu_state.name, head, 2630 (unsigned long)func, 2631 rcu_segcblist_n_cbs(&rdp->cblist)); 2632 else 2633 trace_rcu_callback(rcu_state.name, head, 2634 rcu_segcblist_n_cbs(&rdp->cblist)); 2635 2636 /* Go handle any RCU core processing required. */ 2637 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2638 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) { 2639 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2640 } else { 2641 __call_rcu_core(rdp, head, flags); 2642 local_irq_restore(flags); 2643 } 2644 } 2645 2646 /** 2647 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2648 * @head: structure to be used for queueing the RCU updates. 2649 * @func: actual callback function to be invoked after the grace period 2650 * 2651 * The callback function will be invoked some time after a full grace 2652 * period elapses, in other words after all pre-existing RCU read-side 2653 * critical sections have completed. However, the callback function 2654 * might well execute concurrently with RCU read-side critical sections 2655 * that started after call_rcu() was invoked. RCU read-side critical 2656 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2657 * may be nested. In addition, regions of code across which interrupts, 2658 * preemption, or softirqs have been disabled also serve as RCU read-side 2659 * critical sections. This includes hardware interrupt handlers, softirq 2660 * handlers, and NMI handlers. 2661 * 2662 * Note that all CPUs must agree that the grace period extended beyond 2663 * all pre-existing RCU read-side critical section. On systems with more 2664 * than one CPU, this means that when "func()" is invoked, each CPU is 2665 * guaranteed to have executed a full memory barrier since the end of its 2666 * last RCU read-side critical section whose beginning preceded the call 2667 * to call_rcu(). It also means that each CPU executing an RCU read-side 2668 * critical section that continues beyond the start of "func()" must have 2669 * executed a memory barrier after the call_rcu() but before the beginning 2670 * of that RCU read-side critical section. Note that these guarantees 2671 * include CPUs that are offline, idle, or executing in user mode, as 2672 * well as CPUs that are executing in the kernel. 2673 * 2674 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2675 * resulting RCU callback function "func()", then both CPU A and CPU B are 2676 * guaranteed to execute a full memory barrier during the time interval 2677 * between the call to call_rcu() and the invocation of "func()" -- even 2678 * if CPU A and CPU B are the same CPU (but again only if the system has 2679 * more than one CPU). 2680 */ 2681 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2682 { 2683 __call_rcu(head, func); 2684 } 2685 EXPORT_SYMBOL_GPL(call_rcu); 2686 2687 2688 /* Maximum number of jiffies to wait before draining a batch. */ 2689 #define KFREE_DRAIN_JIFFIES (HZ / 50) 2690 #define KFREE_N_BATCHES 2 2691 2692 /** 2693 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2694 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2695 * @head_free: List of kfree_rcu() objects waiting for a grace period 2696 * @krcp: Pointer to @kfree_rcu_cpu structure 2697 */ 2698 2699 struct kfree_rcu_cpu_work { 2700 struct rcu_work rcu_work; 2701 struct rcu_head *head_free; 2702 struct kfree_rcu_cpu *krcp; 2703 }; 2704 2705 /** 2706 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2707 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2708 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2709 * @lock: Synchronize access to this structure 2710 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2711 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 2712 * @initialized: The @lock and @rcu_work fields have been initialized 2713 * 2714 * This is a per-CPU structure. The reason that it is not included in 2715 * the rcu_data structure is to permit this code to be extracted from 2716 * the RCU files. Such extraction could allow further optimization of 2717 * the interactions with the slab allocators. 2718 */ 2719 struct kfree_rcu_cpu { 2720 struct rcu_head *head; 2721 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2722 spinlock_t lock; 2723 struct delayed_work monitor_work; 2724 bool monitor_todo; 2725 bool initialized; 2726 }; 2727 2728 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc); 2729 2730 /* 2731 * This function is invoked in workqueue context after a grace period. 2732 * It frees all the objects queued on ->head_free. 2733 */ 2734 static void kfree_rcu_work(struct work_struct *work) 2735 { 2736 unsigned long flags; 2737 struct rcu_head *head, *next; 2738 struct kfree_rcu_cpu *krcp; 2739 struct kfree_rcu_cpu_work *krwp; 2740 2741 krwp = container_of(to_rcu_work(work), 2742 struct kfree_rcu_cpu_work, rcu_work); 2743 krcp = krwp->krcp; 2744 spin_lock_irqsave(&krcp->lock, flags); 2745 head = krwp->head_free; 2746 krwp->head_free = NULL; 2747 spin_unlock_irqrestore(&krcp->lock, flags); 2748 2749 // List "head" is now private, so traverse locklessly. 2750 for (; head; head = next) { 2751 unsigned long offset = (unsigned long)head->func; 2752 2753 next = head->next; 2754 // Potentially optimize with kfree_bulk in future. 2755 debug_rcu_head_unqueue(head); 2756 rcu_lock_acquire(&rcu_callback_map); 2757 trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset); 2758 2759 if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset))) { 2760 /* Could be optimized with kfree_bulk() in future. */ 2761 kfree((void *)head - offset); 2762 } 2763 2764 rcu_lock_release(&rcu_callback_map); 2765 cond_resched_tasks_rcu_qs(); 2766 } 2767 } 2768 2769 /* 2770 * Schedule the kfree batch RCU work to run in workqueue context after a GP. 2771 * 2772 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES 2773 * timeout has been reached. 2774 */ 2775 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp) 2776 { 2777 int i; 2778 struct kfree_rcu_cpu_work *krwp = NULL; 2779 2780 lockdep_assert_held(&krcp->lock); 2781 for (i = 0; i < KFREE_N_BATCHES; i++) 2782 if (!krcp->krw_arr[i].head_free) { 2783 krwp = &(krcp->krw_arr[i]); 2784 break; 2785 } 2786 2787 // If a previous RCU batch is in progress, we cannot immediately 2788 // queue another one, so return false to tell caller to retry. 2789 if (!krwp) 2790 return false; 2791 2792 krwp->head_free = krcp->head; 2793 krcp->head = NULL; 2794 INIT_RCU_WORK(&krwp->rcu_work, kfree_rcu_work); 2795 queue_rcu_work(system_wq, &krwp->rcu_work); 2796 return true; 2797 } 2798 2799 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp, 2800 unsigned long flags) 2801 { 2802 // Attempt to start a new batch. 2803 krcp->monitor_todo = false; 2804 if (queue_kfree_rcu_work(krcp)) { 2805 // Success! Our job is done here. 2806 spin_unlock_irqrestore(&krcp->lock, flags); 2807 return; 2808 } 2809 2810 // Previous RCU batch still in progress, try again later. 2811 krcp->monitor_todo = true; 2812 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 2813 spin_unlock_irqrestore(&krcp->lock, flags); 2814 } 2815 2816 /* 2817 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 2818 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch. 2819 */ 2820 static void kfree_rcu_monitor(struct work_struct *work) 2821 { 2822 unsigned long flags; 2823 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, 2824 monitor_work.work); 2825 2826 spin_lock_irqsave(&krcp->lock, flags); 2827 if (krcp->monitor_todo) 2828 kfree_rcu_drain_unlock(krcp, flags); 2829 else 2830 spin_unlock_irqrestore(&krcp->lock, flags); 2831 } 2832 2833 /* 2834 * Queue a request for lazy invocation of kfree() after a grace period. 2835 * 2836 * Each kfree_call_rcu() request is added to a batch. The batch will be drained 2837 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch 2838 * will be kfree'd in workqueue context. This allows us to: 2839 * 2840 * 1. Batch requests together to reduce the number of grace periods during 2841 * heavy kfree_rcu() load. 2842 * 2843 * 2. It makes it possible to use kfree_bulk() on a large number of 2844 * kfree_rcu() requests thus reducing cache misses and the per-object 2845 * overhead of kfree(). 2846 */ 2847 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2848 { 2849 unsigned long flags; 2850 struct kfree_rcu_cpu *krcp; 2851 2852 local_irq_save(flags); // For safely calling this_cpu_ptr(). 2853 krcp = this_cpu_ptr(&krc); 2854 if (krcp->initialized) 2855 spin_lock(&krcp->lock); 2856 2857 // Queue the object but don't yet schedule the batch. 2858 if (debug_rcu_head_queue(head)) { 2859 // Probable double kfree_rcu(), just leak. 2860 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 2861 __func__, head); 2862 goto unlock_return; 2863 } 2864 head->func = func; 2865 head->next = krcp->head; 2866 krcp->head = head; 2867 2868 // Set timer to drain after KFREE_DRAIN_JIFFIES. 2869 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 2870 !krcp->monitor_todo) { 2871 krcp->monitor_todo = true; 2872 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 2873 } 2874 2875 unlock_return: 2876 if (krcp->initialized) 2877 spin_unlock(&krcp->lock); 2878 local_irq_restore(flags); 2879 } 2880 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2881 2882 void __init kfree_rcu_scheduler_running(void) 2883 { 2884 int cpu; 2885 unsigned long flags; 2886 2887 for_each_online_cpu(cpu) { 2888 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 2889 2890 spin_lock_irqsave(&krcp->lock, flags); 2891 if (!krcp->head || krcp->monitor_todo) { 2892 spin_unlock_irqrestore(&krcp->lock, flags); 2893 continue; 2894 } 2895 krcp->monitor_todo = true; 2896 schedule_delayed_work_on(cpu, &krcp->monitor_work, 2897 KFREE_DRAIN_JIFFIES); 2898 spin_unlock_irqrestore(&krcp->lock, flags); 2899 } 2900 } 2901 2902 /* 2903 * During early boot, any blocking grace-period wait automatically 2904 * implies a grace period. Later on, this is never the case for PREEMPTION. 2905 * 2906 * Howevr, because a context switch is a grace period for !PREEMPTION, any 2907 * blocking grace-period wait automatically implies a grace period if 2908 * there is only one CPU online at any point time during execution of 2909 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 2910 * occasionally incorrectly indicate that there are multiple CPUs online 2911 * when there was in fact only one the whole time, as this just adds some 2912 * overhead: RCU still operates correctly. 2913 */ 2914 static int rcu_blocking_is_gp(void) 2915 { 2916 int ret; 2917 2918 if (IS_ENABLED(CONFIG_PREEMPTION)) 2919 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 2920 might_sleep(); /* Check for RCU read-side critical section. */ 2921 preempt_disable(); 2922 ret = num_online_cpus() <= 1; 2923 preempt_enable(); 2924 return ret; 2925 } 2926 2927 /** 2928 * synchronize_rcu - wait until a grace period has elapsed. 2929 * 2930 * Control will return to the caller some time after a full grace 2931 * period has elapsed, in other words after all currently executing RCU 2932 * read-side critical sections have completed. Note, however, that 2933 * upon return from synchronize_rcu(), the caller might well be executing 2934 * concurrently with new RCU read-side critical sections that began while 2935 * synchronize_rcu() was waiting. RCU read-side critical sections are 2936 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 2937 * In addition, regions of code across which interrupts, preemption, or 2938 * softirqs have been disabled also serve as RCU read-side critical 2939 * sections. This includes hardware interrupt handlers, softirq handlers, 2940 * and NMI handlers. 2941 * 2942 * Note that this guarantee implies further memory-ordering guarantees. 2943 * On systems with more than one CPU, when synchronize_rcu() returns, 2944 * each CPU is guaranteed to have executed a full memory barrier since 2945 * the end of its last RCU read-side critical section whose beginning 2946 * preceded the call to synchronize_rcu(). In addition, each CPU having 2947 * an RCU read-side critical section that extends beyond the return from 2948 * synchronize_rcu() is guaranteed to have executed a full memory barrier 2949 * after the beginning of synchronize_rcu() and before the beginning of 2950 * that RCU read-side critical section. Note that these guarantees include 2951 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2952 * that are executing in the kernel. 2953 * 2954 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 2955 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2956 * to have executed a full memory barrier during the execution of 2957 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 2958 * again only if the system has more than one CPU). 2959 */ 2960 void synchronize_rcu(void) 2961 { 2962 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 2963 lock_is_held(&rcu_lock_map) || 2964 lock_is_held(&rcu_sched_lock_map), 2965 "Illegal synchronize_rcu() in RCU read-side critical section"); 2966 if (rcu_blocking_is_gp()) 2967 return; 2968 if (rcu_gp_is_expedited()) 2969 synchronize_rcu_expedited(); 2970 else 2971 wait_rcu_gp(call_rcu); 2972 } 2973 EXPORT_SYMBOL_GPL(synchronize_rcu); 2974 2975 /** 2976 * get_state_synchronize_rcu - Snapshot current RCU state 2977 * 2978 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2979 * to determine whether or not a full grace period has elapsed in the 2980 * meantime. 2981 */ 2982 unsigned long get_state_synchronize_rcu(void) 2983 { 2984 /* 2985 * Any prior manipulation of RCU-protected data must happen 2986 * before the load from ->gp_seq. 2987 */ 2988 smp_mb(); /* ^^^ */ 2989 return rcu_seq_snap(&rcu_state.gp_seq); 2990 } 2991 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2992 2993 /** 2994 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2995 * 2996 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2997 * 2998 * If a full RCU grace period has elapsed since the earlier call to 2999 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3000 * synchronize_rcu() to wait for a full grace period. 3001 * 3002 * Yes, this function does not take counter wrap into account. But 3003 * counter wrap is harmless. If the counter wraps, we have waited for 3004 * more than 2 billion grace periods (and way more on a 64-bit system!), 3005 * so waiting for one additional grace period should be just fine. 3006 */ 3007 void cond_synchronize_rcu(unsigned long oldstate) 3008 { 3009 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3010 synchronize_rcu(); 3011 else 3012 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3013 } 3014 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3015 3016 /* 3017 * Check to see if there is any immediate RCU-related work to be done by 3018 * the current CPU, returning 1 if so and zero otherwise. The checks are 3019 * in order of increasing expense: checks that can be carried out against 3020 * CPU-local state are performed first. However, we must check for CPU 3021 * stalls first, else we might not get a chance. 3022 */ 3023 static int rcu_pending(int user) 3024 { 3025 bool gp_in_progress; 3026 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3027 struct rcu_node *rnp = rdp->mynode; 3028 3029 /* Check for CPU stalls, if enabled. */ 3030 check_cpu_stall(rdp); 3031 3032 /* Does this CPU need a deferred NOCB wakeup? */ 3033 if (rcu_nocb_need_deferred_wakeup(rdp)) 3034 return 1; 3035 3036 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3037 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3038 return 0; 3039 3040 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3041 gp_in_progress = rcu_gp_in_progress(); 3042 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3043 return 1; 3044 3045 /* Does this CPU have callbacks ready to invoke? */ 3046 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3047 return 1; 3048 3049 /* Has RCU gone idle with this CPU needing another grace period? */ 3050 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3051 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) || 3052 !rcu_segcblist_is_offloaded(&rdp->cblist)) && 3053 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3054 return 1; 3055 3056 /* Have RCU grace period completed or started? */ 3057 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3058 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3059 return 1; 3060 3061 /* nothing to do */ 3062 return 0; 3063 } 3064 3065 /* 3066 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3067 * the compiler is expected to optimize this away. 3068 */ 3069 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3070 { 3071 trace_rcu_barrier(rcu_state.name, s, cpu, 3072 atomic_read(&rcu_state.barrier_cpu_count), done); 3073 } 3074 3075 /* 3076 * RCU callback function for rcu_barrier(). If we are last, wake 3077 * up the task executing rcu_barrier(). 3078 */ 3079 static void rcu_barrier_callback(struct rcu_head *rhp) 3080 { 3081 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3082 rcu_barrier_trace(TPS("LastCB"), -1, 3083 rcu_state.barrier_sequence); 3084 complete(&rcu_state.barrier_completion); 3085 } else { 3086 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3087 } 3088 } 3089 3090 /* 3091 * Called with preemption disabled, and from cross-cpu IRQ context. 3092 */ 3093 static void rcu_barrier_func(void *unused) 3094 { 3095 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3096 3097 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3098 rdp->barrier_head.func = rcu_barrier_callback; 3099 debug_rcu_head_queue(&rdp->barrier_head); 3100 rcu_nocb_lock(rdp); 3101 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3102 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3103 atomic_inc(&rcu_state.barrier_cpu_count); 3104 } else { 3105 debug_rcu_head_unqueue(&rdp->barrier_head); 3106 rcu_barrier_trace(TPS("IRQNQ"), -1, 3107 rcu_state.barrier_sequence); 3108 } 3109 rcu_nocb_unlock(rdp); 3110 } 3111 3112 /** 3113 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3114 * 3115 * Note that this primitive does not necessarily wait for an RCU grace period 3116 * to complete. For example, if there are no RCU callbacks queued anywhere 3117 * in the system, then rcu_barrier() is within its rights to return 3118 * immediately, without waiting for anything, much less an RCU grace period. 3119 */ 3120 void rcu_barrier(void) 3121 { 3122 int cpu; 3123 struct rcu_data *rdp; 3124 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3125 3126 rcu_barrier_trace(TPS("Begin"), -1, s); 3127 3128 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3129 mutex_lock(&rcu_state.barrier_mutex); 3130 3131 /* Did someone else do our work for us? */ 3132 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3133 rcu_barrier_trace(TPS("EarlyExit"), -1, 3134 rcu_state.barrier_sequence); 3135 smp_mb(); /* caller's subsequent code after above check. */ 3136 mutex_unlock(&rcu_state.barrier_mutex); 3137 return; 3138 } 3139 3140 /* Mark the start of the barrier operation. */ 3141 rcu_seq_start(&rcu_state.barrier_sequence); 3142 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3143 3144 /* 3145 * Initialize the count to one rather than to zero in order to 3146 * avoid a too-soon return to zero in case of a short grace period 3147 * (or preemption of this task). Exclude CPU-hotplug operations 3148 * to ensure that no offline CPU has callbacks queued. 3149 */ 3150 init_completion(&rcu_state.barrier_completion); 3151 atomic_set(&rcu_state.barrier_cpu_count, 1); 3152 get_online_cpus(); 3153 3154 /* 3155 * Force each CPU with callbacks to register a new callback. 3156 * When that callback is invoked, we will know that all of the 3157 * corresponding CPU's preceding callbacks have been invoked. 3158 */ 3159 for_each_possible_cpu(cpu) { 3160 rdp = per_cpu_ptr(&rcu_data, cpu); 3161 if (!cpu_online(cpu) && 3162 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3163 continue; 3164 if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3165 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3166 rcu_state.barrier_sequence); 3167 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3168 } else { 3169 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3170 rcu_state.barrier_sequence); 3171 } 3172 } 3173 put_online_cpus(); 3174 3175 /* 3176 * Now that we have an rcu_barrier_callback() callback on each 3177 * CPU, and thus each counted, remove the initial count. 3178 */ 3179 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3180 complete(&rcu_state.barrier_completion); 3181 3182 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3183 wait_for_completion(&rcu_state.barrier_completion); 3184 3185 /* Mark the end of the barrier operation. */ 3186 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3187 rcu_seq_end(&rcu_state.barrier_sequence); 3188 3189 /* Other rcu_barrier() invocations can now safely proceed. */ 3190 mutex_unlock(&rcu_state.barrier_mutex); 3191 } 3192 EXPORT_SYMBOL_GPL(rcu_barrier); 3193 3194 /* 3195 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3196 * first CPU in a given leaf rcu_node structure coming online. The caller 3197 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3198 * disabled. 3199 */ 3200 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3201 { 3202 long mask; 3203 long oldmask; 3204 struct rcu_node *rnp = rnp_leaf; 3205 3206 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3207 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3208 for (;;) { 3209 mask = rnp->grpmask; 3210 rnp = rnp->parent; 3211 if (rnp == NULL) 3212 return; 3213 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3214 oldmask = rnp->qsmaskinit; 3215 rnp->qsmaskinit |= mask; 3216 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3217 if (oldmask) 3218 return; 3219 } 3220 } 3221 3222 /* 3223 * Do boot-time initialization of a CPU's per-CPU RCU data. 3224 */ 3225 static void __init 3226 rcu_boot_init_percpu_data(int cpu) 3227 { 3228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3229 3230 /* Set up local state, ensuring consistent view of global state. */ 3231 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3232 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3233 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3234 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3235 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3236 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3237 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3238 rdp->cpu = cpu; 3239 rcu_boot_init_nocb_percpu_data(rdp); 3240 } 3241 3242 /* 3243 * Invoked early in the CPU-online process, when pretty much all services 3244 * are available. The incoming CPU is not present. 3245 * 3246 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3247 * offline event can be happening at a given time. Note also that we can 3248 * accept some slop in the rsp->gp_seq access due to the fact that this 3249 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 3250 * And any offloaded callbacks are being numbered elsewhere. 3251 */ 3252 int rcutree_prepare_cpu(unsigned int cpu) 3253 { 3254 unsigned long flags; 3255 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3256 struct rcu_node *rnp = rcu_get_root(); 3257 3258 /* Set up local state, ensuring consistent view of global state. */ 3259 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3260 rdp->qlen_last_fqs_check = 0; 3261 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3262 rdp->blimit = blimit; 3263 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3264 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3265 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3266 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3267 rcu_dynticks_eqs_online(); 3268 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3269 3270 /* 3271 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3272 * propagation up the rcu_node tree will happen at the beginning 3273 * of the next grace period. 3274 */ 3275 rnp = rdp->mynode; 3276 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3277 rdp->beenonline = true; /* We have now been online. */ 3278 rdp->gp_seq = rnp->gp_seq; 3279 rdp->gp_seq_needed = rnp->gp_seq; 3280 rdp->cpu_no_qs.b.norm = true; 3281 rdp->core_needs_qs = false; 3282 rdp->rcu_iw_pending = false; 3283 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3284 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3286 rcu_prepare_kthreads(cpu); 3287 rcu_spawn_cpu_nocb_kthread(cpu); 3288 3289 return 0; 3290 } 3291 3292 /* 3293 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3294 */ 3295 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3296 { 3297 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3298 3299 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3300 } 3301 3302 /* 3303 * Near the end of the CPU-online process. Pretty much all services 3304 * enabled, and the CPU is now very much alive. 3305 */ 3306 int rcutree_online_cpu(unsigned int cpu) 3307 { 3308 unsigned long flags; 3309 struct rcu_data *rdp; 3310 struct rcu_node *rnp; 3311 3312 rdp = per_cpu_ptr(&rcu_data, cpu); 3313 rnp = rdp->mynode; 3314 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3315 rnp->ffmask |= rdp->grpmask; 3316 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3317 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3318 return 0; /* Too early in boot for scheduler work. */ 3319 sync_sched_exp_online_cleanup(cpu); 3320 rcutree_affinity_setting(cpu, -1); 3321 3322 // Stop-machine done, so allow nohz_full to disable tick. 3323 tick_dep_clear(TICK_DEP_BIT_RCU); 3324 return 0; 3325 } 3326 3327 /* 3328 * Near the beginning of the process. The CPU is still very much alive 3329 * with pretty much all services enabled. 3330 */ 3331 int rcutree_offline_cpu(unsigned int cpu) 3332 { 3333 unsigned long flags; 3334 struct rcu_data *rdp; 3335 struct rcu_node *rnp; 3336 3337 rdp = per_cpu_ptr(&rcu_data, cpu); 3338 rnp = rdp->mynode; 3339 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3340 rnp->ffmask &= ~rdp->grpmask; 3341 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3342 3343 rcutree_affinity_setting(cpu, cpu); 3344 3345 // nohz_full CPUs need the tick for stop-machine to work quickly 3346 tick_dep_set(TICK_DEP_BIT_RCU); 3347 return 0; 3348 } 3349 3350 static DEFINE_PER_CPU(int, rcu_cpu_started); 3351 3352 /* 3353 * Mark the specified CPU as being online so that subsequent grace periods 3354 * (both expedited and normal) will wait on it. Note that this means that 3355 * incoming CPUs are not allowed to use RCU read-side critical sections 3356 * until this function is called. Failing to observe this restriction 3357 * will result in lockdep splats. 3358 * 3359 * Note that this function is special in that it is invoked directly 3360 * from the incoming CPU rather than from the cpuhp_step mechanism. 3361 * This is because this function must be invoked at a precise location. 3362 */ 3363 void rcu_cpu_starting(unsigned int cpu) 3364 { 3365 unsigned long flags; 3366 unsigned long mask; 3367 int nbits; 3368 unsigned long oldmask; 3369 struct rcu_data *rdp; 3370 struct rcu_node *rnp; 3371 3372 if (per_cpu(rcu_cpu_started, cpu)) 3373 return; 3374 3375 per_cpu(rcu_cpu_started, cpu) = 1; 3376 3377 rdp = per_cpu_ptr(&rcu_data, cpu); 3378 rnp = rdp->mynode; 3379 mask = rdp->grpmask; 3380 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3381 rnp->qsmaskinitnext |= mask; 3382 oldmask = rnp->expmaskinitnext; 3383 rnp->expmaskinitnext |= mask; 3384 oldmask ^= rnp->expmaskinitnext; 3385 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3386 /* Allow lockless access for expedited grace periods. */ 3387 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3388 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3389 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3390 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3391 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3392 rcu_disable_urgency_upon_qs(rdp); 3393 /* Report QS -after- changing ->qsmaskinitnext! */ 3394 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3395 } else { 3396 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3397 } 3398 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3399 } 3400 3401 #ifdef CONFIG_HOTPLUG_CPU 3402 /* 3403 * The outgoing function has no further need of RCU, so remove it from 3404 * the rcu_node tree's ->qsmaskinitnext bit masks. 3405 * 3406 * Note that this function is special in that it is invoked directly 3407 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3408 * This is because this function must be invoked at a precise location. 3409 */ 3410 void rcu_report_dead(unsigned int cpu) 3411 { 3412 unsigned long flags; 3413 unsigned long mask; 3414 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3415 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3416 3417 /* QS for any half-done expedited grace period. */ 3418 preempt_disable(); 3419 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3420 preempt_enable(); 3421 rcu_preempt_deferred_qs(current); 3422 3423 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3424 mask = rdp->grpmask; 3425 raw_spin_lock(&rcu_state.ofl_lock); 3426 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3427 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3428 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3429 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3430 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3431 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3432 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3433 } 3434 rnp->qsmaskinitnext &= ~mask; 3435 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3436 raw_spin_unlock(&rcu_state.ofl_lock); 3437 3438 per_cpu(rcu_cpu_started, cpu) = 0; 3439 } 3440 3441 /* 3442 * The outgoing CPU has just passed through the dying-idle state, and we 3443 * are being invoked from the CPU that was IPIed to continue the offline 3444 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3445 */ 3446 void rcutree_migrate_callbacks(int cpu) 3447 { 3448 unsigned long flags; 3449 struct rcu_data *my_rdp; 3450 struct rcu_node *my_rnp; 3451 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3452 bool needwake; 3453 3454 if (rcu_segcblist_is_offloaded(&rdp->cblist) || 3455 rcu_segcblist_empty(&rdp->cblist)) 3456 return; /* No callbacks to migrate. */ 3457 3458 local_irq_save(flags); 3459 my_rdp = this_cpu_ptr(&rcu_data); 3460 my_rnp = my_rdp->mynode; 3461 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 3462 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 3463 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 3464 /* Leverage recent GPs and set GP for new callbacks. */ 3465 needwake = rcu_advance_cbs(my_rnp, rdp) || 3466 rcu_advance_cbs(my_rnp, my_rdp); 3467 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3468 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 3469 rcu_segcblist_disable(&rdp->cblist); 3470 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3471 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3472 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) { 3473 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 3474 __call_rcu_nocb_wake(my_rdp, true, flags); 3475 } else { 3476 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 3477 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 3478 } 3479 if (needwake) 3480 rcu_gp_kthread_wake(); 3481 lockdep_assert_irqs_enabled(); 3482 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3483 !rcu_segcblist_empty(&rdp->cblist), 3484 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3485 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3486 rcu_segcblist_first_cb(&rdp->cblist)); 3487 } 3488 #endif 3489 3490 /* 3491 * On non-huge systems, use expedited RCU grace periods to make suspend 3492 * and hibernation run faster. 3493 */ 3494 static int rcu_pm_notify(struct notifier_block *self, 3495 unsigned long action, void *hcpu) 3496 { 3497 switch (action) { 3498 case PM_HIBERNATION_PREPARE: 3499 case PM_SUSPEND_PREPARE: 3500 rcu_expedite_gp(); 3501 break; 3502 case PM_POST_HIBERNATION: 3503 case PM_POST_SUSPEND: 3504 rcu_unexpedite_gp(); 3505 break; 3506 default: 3507 break; 3508 } 3509 return NOTIFY_OK; 3510 } 3511 3512 /* 3513 * Spawn the kthreads that handle RCU's grace periods. 3514 */ 3515 static int __init rcu_spawn_gp_kthread(void) 3516 { 3517 unsigned long flags; 3518 int kthread_prio_in = kthread_prio; 3519 struct rcu_node *rnp; 3520 struct sched_param sp; 3521 struct task_struct *t; 3522 3523 /* Force priority into range. */ 3524 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3525 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3526 kthread_prio = 2; 3527 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3528 kthread_prio = 1; 3529 else if (kthread_prio < 0) 3530 kthread_prio = 0; 3531 else if (kthread_prio > 99) 3532 kthread_prio = 99; 3533 3534 if (kthread_prio != kthread_prio_in) 3535 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3536 kthread_prio, kthread_prio_in); 3537 3538 rcu_scheduler_fully_active = 1; 3539 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3540 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3541 return 0; 3542 if (kthread_prio) { 3543 sp.sched_priority = kthread_prio; 3544 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3545 } 3546 rnp = rcu_get_root(); 3547 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3548 rcu_state.gp_kthread = t; 3549 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3550 wake_up_process(t); 3551 rcu_spawn_nocb_kthreads(); 3552 rcu_spawn_boost_kthreads(); 3553 return 0; 3554 } 3555 early_initcall(rcu_spawn_gp_kthread); 3556 3557 /* 3558 * This function is invoked towards the end of the scheduler's 3559 * initialization process. Before this is called, the idle task might 3560 * contain synchronous grace-period primitives (during which time, this idle 3561 * task is booting the system, and such primitives are no-ops). After this 3562 * function is called, any synchronous grace-period primitives are run as 3563 * expedited, with the requesting task driving the grace period forward. 3564 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3565 * runtime RCU functionality. 3566 */ 3567 void rcu_scheduler_starting(void) 3568 { 3569 WARN_ON(num_online_cpus() != 1); 3570 WARN_ON(nr_context_switches() > 0); 3571 rcu_test_sync_prims(); 3572 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3573 rcu_test_sync_prims(); 3574 } 3575 3576 /* 3577 * Helper function for rcu_init() that initializes the rcu_state structure. 3578 */ 3579 static void __init rcu_init_one(void) 3580 { 3581 static const char * const buf[] = RCU_NODE_NAME_INIT; 3582 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3583 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3584 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3585 3586 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3587 int cpustride = 1; 3588 int i; 3589 int j; 3590 struct rcu_node *rnp; 3591 3592 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3593 3594 /* Silence gcc 4.8 false positive about array index out of range. */ 3595 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3596 panic("rcu_init_one: rcu_num_lvls out of range"); 3597 3598 /* Initialize the level-tracking arrays. */ 3599 3600 for (i = 1; i < rcu_num_lvls; i++) 3601 rcu_state.level[i] = 3602 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3603 rcu_init_levelspread(levelspread, num_rcu_lvl); 3604 3605 /* Initialize the elements themselves, starting from the leaves. */ 3606 3607 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3608 cpustride *= levelspread[i]; 3609 rnp = rcu_state.level[i]; 3610 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3611 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3612 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3613 &rcu_node_class[i], buf[i]); 3614 raw_spin_lock_init(&rnp->fqslock); 3615 lockdep_set_class_and_name(&rnp->fqslock, 3616 &rcu_fqs_class[i], fqs[i]); 3617 rnp->gp_seq = rcu_state.gp_seq; 3618 rnp->gp_seq_needed = rcu_state.gp_seq; 3619 rnp->completedqs = rcu_state.gp_seq; 3620 rnp->qsmask = 0; 3621 rnp->qsmaskinit = 0; 3622 rnp->grplo = j * cpustride; 3623 rnp->grphi = (j + 1) * cpustride - 1; 3624 if (rnp->grphi >= nr_cpu_ids) 3625 rnp->grphi = nr_cpu_ids - 1; 3626 if (i == 0) { 3627 rnp->grpnum = 0; 3628 rnp->grpmask = 0; 3629 rnp->parent = NULL; 3630 } else { 3631 rnp->grpnum = j % levelspread[i - 1]; 3632 rnp->grpmask = BIT(rnp->grpnum); 3633 rnp->parent = rcu_state.level[i - 1] + 3634 j / levelspread[i - 1]; 3635 } 3636 rnp->level = i; 3637 INIT_LIST_HEAD(&rnp->blkd_tasks); 3638 rcu_init_one_nocb(rnp); 3639 init_waitqueue_head(&rnp->exp_wq[0]); 3640 init_waitqueue_head(&rnp->exp_wq[1]); 3641 init_waitqueue_head(&rnp->exp_wq[2]); 3642 init_waitqueue_head(&rnp->exp_wq[3]); 3643 spin_lock_init(&rnp->exp_lock); 3644 } 3645 } 3646 3647 init_swait_queue_head(&rcu_state.gp_wq); 3648 init_swait_queue_head(&rcu_state.expedited_wq); 3649 rnp = rcu_first_leaf_node(); 3650 for_each_possible_cpu(i) { 3651 while (i > rnp->grphi) 3652 rnp++; 3653 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3654 rcu_boot_init_percpu_data(i); 3655 } 3656 } 3657 3658 /* 3659 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3660 * replace the definitions in tree.h because those are needed to size 3661 * the ->node array in the rcu_state structure. 3662 */ 3663 static void __init rcu_init_geometry(void) 3664 { 3665 ulong d; 3666 int i; 3667 int rcu_capacity[RCU_NUM_LVLS]; 3668 3669 /* 3670 * Initialize any unspecified boot parameters. 3671 * The default values of jiffies_till_first_fqs and 3672 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3673 * value, which is a function of HZ, then adding one for each 3674 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3675 */ 3676 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3677 if (jiffies_till_first_fqs == ULONG_MAX) 3678 jiffies_till_first_fqs = d; 3679 if (jiffies_till_next_fqs == ULONG_MAX) 3680 jiffies_till_next_fqs = d; 3681 adjust_jiffies_till_sched_qs(); 3682 3683 /* If the compile-time values are accurate, just leave. */ 3684 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3685 nr_cpu_ids == NR_CPUS) 3686 return; 3687 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3688 rcu_fanout_leaf, nr_cpu_ids); 3689 3690 /* 3691 * The boot-time rcu_fanout_leaf parameter must be at least two 3692 * and cannot exceed the number of bits in the rcu_node masks. 3693 * Complain and fall back to the compile-time values if this 3694 * limit is exceeded. 3695 */ 3696 if (rcu_fanout_leaf < 2 || 3697 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3698 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3699 WARN_ON(1); 3700 return; 3701 } 3702 3703 /* 3704 * Compute number of nodes that can be handled an rcu_node tree 3705 * with the given number of levels. 3706 */ 3707 rcu_capacity[0] = rcu_fanout_leaf; 3708 for (i = 1; i < RCU_NUM_LVLS; i++) 3709 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3710 3711 /* 3712 * The tree must be able to accommodate the configured number of CPUs. 3713 * If this limit is exceeded, fall back to the compile-time values. 3714 */ 3715 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3716 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3717 WARN_ON(1); 3718 return; 3719 } 3720 3721 /* Calculate the number of levels in the tree. */ 3722 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3723 } 3724 rcu_num_lvls = i + 1; 3725 3726 /* Calculate the number of rcu_nodes at each level of the tree. */ 3727 for (i = 0; i < rcu_num_lvls; i++) { 3728 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3729 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3730 } 3731 3732 /* Calculate the total number of rcu_node structures. */ 3733 rcu_num_nodes = 0; 3734 for (i = 0; i < rcu_num_lvls; i++) 3735 rcu_num_nodes += num_rcu_lvl[i]; 3736 } 3737 3738 /* 3739 * Dump out the structure of the rcu_node combining tree associated 3740 * with the rcu_state structure. 3741 */ 3742 static void __init rcu_dump_rcu_node_tree(void) 3743 { 3744 int level = 0; 3745 struct rcu_node *rnp; 3746 3747 pr_info("rcu_node tree layout dump\n"); 3748 pr_info(" "); 3749 rcu_for_each_node_breadth_first(rnp) { 3750 if (rnp->level != level) { 3751 pr_cont("\n"); 3752 pr_info(" "); 3753 level = rnp->level; 3754 } 3755 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3756 } 3757 pr_cont("\n"); 3758 } 3759 3760 struct workqueue_struct *rcu_gp_wq; 3761 struct workqueue_struct *rcu_par_gp_wq; 3762 3763 static void __init kfree_rcu_batch_init(void) 3764 { 3765 int cpu; 3766 int i; 3767 3768 for_each_possible_cpu(cpu) { 3769 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3770 3771 spin_lock_init(&krcp->lock); 3772 for (i = 0; i < KFREE_N_BATCHES; i++) 3773 krcp->krw_arr[i].krcp = krcp; 3774 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 3775 krcp->initialized = true; 3776 } 3777 } 3778 3779 void __init rcu_init(void) 3780 { 3781 int cpu; 3782 3783 rcu_early_boot_tests(); 3784 3785 kfree_rcu_batch_init(); 3786 rcu_bootup_announce(); 3787 rcu_init_geometry(); 3788 rcu_init_one(); 3789 if (dump_tree) 3790 rcu_dump_rcu_node_tree(); 3791 if (use_softirq) 3792 open_softirq(RCU_SOFTIRQ, rcu_core_si); 3793 3794 /* 3795 * We don't need protection against CPU-hotplug here because 3796 * this is called early in boot, before either interrupts 3797 * or the scheduler are operational. 3798 */ 3799 pm_notifier(rcu_pm_notify, 0); 3800 for_each_online_cpu(cpu) { 3801 rcutree_prepare_cpu(cpu); 3802 rcu_cpu_starting(cpu); 3803 rcutree_online_cpu(cpu); 3804 } 3805 3806 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3807 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3808 WARN_ON(!rcu_gp_wq); 3809 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3810 WARN_ON(!rcu_par_gp_wq); 3811 srcu_init(); 3812 } 3813 3814 #include "tree_stall.h" 3815 #include "tree_exp.h" 3816 #include "tree_plugin.h" 3817