1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 .gpwrap = true, 80 #ifdef CONFIG_RCU_NOCB_CPU 81 .cblist.flags = SEGCBLIST_RCU_CORE, 82 #endif 83 }; 84 static struct rcu_state rcu_state = { 85 .level = { &rcu_state.node[0] }, 86 .gp_state = RCU_GP_IDLE, 87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 148 static void invoke_rcu_core(void); 149 static void rcu_report_exp_rdp(struct rcu_data *rdp); 150 static void sync_sched_exp_online_cleanup(int cpu); 151 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 152 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 153 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 154 static bool rcu_init_invoked(void); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 157 158 /* 159 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 160 * real-time priority(enabling/disabling) is controlled by 161 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 162 */ 163 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 164 module_param(kthread_prio, int, 0444); 165 166 /* Delay in jiffies for grace-period initialization delays, debug only. */ 167 168 static int gp_preinit_delay; 169 module_param(gp_preinit_delay, int, 0444); 170 static int gp_init_delay; 171 module_param(gp_init_delay, int, 0444); 172 static int gp_cleanup_delay; 173 module_param(gp_cleanup_delay, int, 0444); 174 175 // Add delay to rcu_read_unlock() for strict grace periods. 176 static int rcu_unlock_delay; 177 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 178 module_param(rcu_unlock_delay, int, 0444); 179 #endif 180 181 /* 182 * This rcu parameter is runtime-read-only. It reflects 183 * a minimum allowed number of objects which can be cached 184 * per-CPU. Object size is equal to one page. This value 185 * can be changed at boot time. 186 */ 187 static int rcu_min_cached_objs = 5; 188 module_param(rcu_min_cached_objs, int, 0444); 189 190 // A page shrinker can ask for pages to be freed to make them 191 // available for other parts of the system. This usually happens 192 // under low memory conditions, and in that case we should also 193 // defer page-cache filling for a short time period. 194 // 195 // The default value is 5 seconds, which is long enough to reduce 196 // interference with the shrinker while it asks other systems to 197 // drain their caches. 198 static int rcu_delay_page_cache_fill_msec = 5000; 199 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 200 201 /* Retrieve RCU kthreads priority for rcutorture */ 202 int rcu_get_gp_kthreads_prio(void) 203 { 204 return kthread_prio; 205 } 206 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 207 208 /* 209 * Number of grace periods between delays, normalized by the duration of 210 * the delay. The longer the delay, the more the grace periods between 211 * each delay. The reason for this normalization is that it means that, 212 * for non-zero delays, the overall slowdown of grace periods is constant 213 * regardless of the duration of the delay. This arrangement balances 214 * the need for long delays to increase some race probabilities with the 215 * need for fast grace periods to increase other race probabilities. 216 */ 217 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 218 219 /* 220 * Return true if an RCU grace period is in progress. The READ_ONCE()s 221 * permit this function to be invoked without holding the root rcu_node 222 * structure's ->lock, but of course results can be subject to change. 223 */ 224 static int rcu_gp_in_progress(void) 225 { 226 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 227 } 228 229 /* 230 * Return the number of callbacks queued on the specified CPU. 231 * Handles both the nocbs and normal cases. 232 */ 233 static long rcu_get_n_cbs_cpu(int cpu) 234 { 235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 236 237 if (rcu_segcblist_is_enabled(&rdp->cblist)) 238 return rcu_segcblist_n_cbs(&rdp->cblist); 239 return 0; 240 } 241 242 void rcu_softirq_qs(void) 243 { 244 rcu_qs(); 245 rcu_preempt_deferred_qs(current); 246 rcu_tasks_qs(current, false); 247 } 248 249 /* 250 * Reset the current CPU's ->dynticks counter to indicate that the 251 * newly onlined CPU is no longer in an extended quiescent state. 252 * This will either leave the counter unchanged, or increment it 253 * to the next non-quiescent value. 254 * 255 * The non-atomic test/increment sequence works because the upper bits 256 * of the ->dynticks counter are manipulated only by the corresponding CPU, 257 * or when the corresponding CPU is offline. 258 */ 259 static void rcu_dynticks_eqs_online(void) 260 { 261 if (ct_dynticks() & RCU_DYNTICKS_IDX) 262 return; 263 ct_state_inc(RCU_DYNTICKS_IDX); 264 } 265 266 /* 267 * Snapshot the ->dynticks counter with full ordering so as to allow 268 * stable comparison of this counter with past and future snapshots. 269 */ 270 static int rcu_dynticks_snap(int cpu) 271 { 272 smp_mb(); // Fundamental RCU ordering guarantee. 273 return ct_dynticks_cpu_acquire(cpu); 274 } 275 276 /* 277 * Return true if the snapshot returned from rcu_dynticks_snap() 278 * indicates that RCU is in an extended quiescent state. 279 */ 280 static bool rcu_dynticks_in_eqs(int snap) 281 { 282 return !(snap & RCU_DYNTICKS_IDX); 283 } 284 285 /* 286 * Return true if the CPU corresponding to the specified rcu_data 287 * structure has spent some time in an extended quiescent state since 288 * rcu_dynticks_snap() returned the specified snapshot. 289 */ 290 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 291 { 292 return snap != rcu_dynticks_snap(rdp->cpu); 293 } 294 295 /* 296 * Return true if the referenced integer is zero while the specified 297 * CPU remains within a single extended quiescent state. 298 */ 299 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 300 { 301 int snap; 302 303 // If not quiescent, force back to earlier extended quiescent state. 304 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 305 smp_rmb(); // Order ->dynticks and *vp reads. 306 if (READ_ONCE(*vp)) 307 return false; // Non-zero, so report failure; 308 smp_rmb(); // Order *vp read and ->dynticks re-read. 309 310 // If still in the same extended quiescent state, we are good! 311 return snap == ct_dynticks_cpu(cpu); 312 } 313 314 /* 315 * Let the RCU core know that this CPU has gone through the scheduler, 316 * which is a quiescent state. This is called when the need for a 317 * quiescent state is urgent, so we burn an atomic operation and full 318 * memory barriers to let the RCU core know about it, regardless of what 319 * this CPU might (or might not) do in the near future. 320 * 321 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 322 * 323 * The caller must have disabled interrupts and must not be idle. 324 */ 325 notrace void rcu_momentary_dyntick_idle(void) 326 { 327 int seq; 328 329 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 330 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 331 /* It is illegal to call this from idle state. */ 332 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 333 rcu_preempt_deferred_qs(current); 334 } 335 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 336 337 /** 338 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 339 * 340 * If the current CPU is idle and running at a first-level (not nested) 341 * interrupt, or directly, from idle, return true. 342 * 343 * The caller must have at least disabled IRQs. 344 */ 345 static int rcu_is_cpu_rrupt_from_idle(void) 346 { 347 long nesting; 348 349 /* 350 * Usually called from the tick; but also used from smp_function_call() 351 * for expedited grace periods. This latter can result in running from 352 * the idle task, instead of an actual IPI. 353 */ 354 lockdep_assert_irqs_disabled(); 355 356 /* Check for counter underflows */ 357 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 358 "RCU dynticks_nesting counter underflow!"); 359 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 360 "RCU dynticks_nmi_nesting counter underflow/zero!"); 361 362 /* Are we at first interrupt nesting level? */ 363 nesting = ct_dynticks_nmi_nesting(); 364 if (nesting > 1) 365 return false; 366 367 /* 368 * If we're not in an interrupt, we must be in the idle task! 369 */ 370 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 371 372 /* Does CPU appear to be idle from an RCU standpoint? */ 373 return ct_dynticks_nesting() == 0; 374 } 375 376 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 377 // Maximum callbacks per rcu_do_batch ... 378 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 379 static long blimit = DEFAULT_RCU_BLIMIT; 380 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 381 static long qhimark = DEFAULT_RCU_QHIMARK; 382 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 383 static long qlowmark = DEFAULT_RCU_QLOMARK; 384 #define DEFAULT_RCU_QOVLD_MULT 2 385 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 386 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 387 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 388 389 module_param(blimit, long, 0444); 390 module_param(qhimark, long, 0444); 391 module_param(qlowmark, long, 0444); 392 module_param(qovld, long, 0444); 393 394 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 395 static ulong jiffies_till_next_fqs = ULONG_MAX; 396 static bool rcu_kick_kthreads; 397 static int rcu_divisor = 7; 398 module_param(rcu_divisor, int, 0644); 399 400 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 401 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 402 module_param(rcu_resched_ns, long, 0644); 403 404 /* 405 * How long the grace period must be before we start recruiting 406 * quiescent-state help from rcu_note_context_switch(). 407 */ 408 static ulong jiffies_till_sched_qs = ULONG_MAX; 409 module_param(jiffies_till_sched_qs, ulong, 0444); 410 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 411 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 412 413 /* 414 * Make sure that we give the grace-period kthread time to detect any 415 * idle CPUs before taking active measures to force quiescent states. 416 * However, don't go below 100 milliseconds, adjusted upwards for really 417 * large systems. 418 */ 419 static void adjust_jiffies_till_sched_qs(void) 420 { 421 unsigned long j; 422 423 /* If jiffies_till_sched_qs was specified, respect the request. */ 424 if (jiffies_till_sched_qs != ULONG_MAX) { 425 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 426 return; 427 } 428 /* Otherwise, set to third fqs scan, but bound below on large system. */ 429 j = READ_ONCE(jiffies_till_first_fqs) + 430 2 * READ_ONCE(jiffies_till_next_fqs); 431 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 432 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 433 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 434 WRITE_ONCE(jiffies_to_sched_qs, j); 435 } 436 437 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 438 { 439 ulong j; 440 int ret = kstrtoul(val, 0, &j); 441 442 if (!ret) { 443 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 444 adjust_jiffies_till_sched_qs(); 445 } 446 return ret; 447 } 448 449 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 450 { 451 ulong j; 452 int ret = kstrtoul(val, 0, &j); 453 454 if (!ret) { 455 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 456 adjust_jiffies_till_sched_qs(); 457 } 458 return ret; 459 } 460 461 static const struct kernel_param_ops first_fqs_jiffies_ops = { 462 .set = param_set_first_fqs_jiffies, 463 .get = param_get_ulong, 464 }; 465 466 static const struct kernel_param_ops next_fqs_jiffies_ops = { 467 .set = param_set_next_fqs_jiffies, 468 .get = param_get_ulong, 469 }; 470 471 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 472 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 473 module_param(rcu_kick_kthreads, bool, 0644); 474 475 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 476 static int rcu_pending(int user); 477 478 /* 479 * Return the number of RCU GPs completed thus far for debug & stats. 480 */ 481 unsigned long rcu_get_gp_seq(void) 482 { 483 return READ_ONCE(rcu_state.gp_seq); 484 } 485 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 486 487 /* 488 * Return the number of RCU expedited batches completed thus far for 489 * debug & stats. Odd numbers mean that a batch is in progress, even 490 * numbers mean idle. The value returned will thus be roughly double 491 * the cumulative batches since boot. 492 */ 493 unsigned long rcu_exp_batches_completed(void) 494 { 495 return rcu_state.expedited_sequence; 496 } 497 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 498 499 /* 500 * Return the root node of the rcu_state structure. 501 */ 502 static struct rcu_node *rcu_get_root(void) 503 { 504 return &rcu_state.node[0]; 505 } 506 507 /* 508 * Send along grace-period-related data for rcutorture diagnostics. 509 */ 510 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 511 unsigned long *gp_seq) 512 { 513 switch (test_type) { 514 case RCU_FLAVOR: 515 *flags = READ_ONCE(rcu_state.gp_flags); 516 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 517 break; 518 default: 519 break; 520 } 521 } 522 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 523 524 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 525 /* 526 * An empty function that will trigger a reschedule on 527 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 528 */ 529 static void late_wakeup_func(struct irq_work *work) 530 { 531 } 532 533 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 534 IRQ_WORK_INIT(late_wakeup_func); 535 536 /* 537 * If either: 538 * 539 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 540 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 541 * 542 * In these cases the late RCU wake ups aren't supported in the resched loops and our 543 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 544 * get re-enabled again. 545 */ 546 noinstr void rcu_irq_work_resched(void) 547 { 548 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 549 550 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 551 return; 552 553 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 554 return; 555 556 instrumentation_begin(); 557 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 558 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 559 } 560 instrumentation_end(); 561 } 562 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 563 564 #ifdef CONFIG_PROVE_RCU 565 /** 566 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 567 */ 568 void rcu_irq_exit_check_preempt(void) 569 { 570 lockdep_assert_irqs_disabled(); 571 572 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 573 "RCU dynticks_nesting counter underflow/zero!"); 574 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 575 DYNTICK_IRQ_NONIDLE, 576 "Bad RCU dynticks_nmi_nesting counter\n"); 577 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 578 "RCU in extended quiescent state!"); 579 } 580 #endif /* #ifdef CONFIG_PROVE_RCU */ 581 582 #ifdef CONFIG_NO_HZ_FULL 583 /** 584 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 585 * 586 * The scheduler tick is not normally enabled when CPUs enter the kernel 587 * from nohz_full userspace execution. After all, nohz_full userspace 588 * execution is an RCU quiescent state and the time executing in the kernel 589 * is quite short. Except of course when it isn't. And it is not hard to 590 * cause a large system to spend tens of seconds or even minutes looping 591 * in the kernel, which can cause a number of problems, include RCU CPU 592 * stall warnings. 593 * 594 * Therefore, if a nohz_full CPU fails to report a quiescent state 595 * in a timely manner, the RCU grace-period kthread sets that CPU's 596 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 597 * exception will invoke this function, which will turn on the scheduler 598 * tick, which will enable RCU to detect that CPU's quiescent states, 599 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 600 * The tick will be disabled once a quiescent state is reported for 601 * this CPU. 602 * 603 * Of course, in carefully tuned systems, there might never be an 604 * interrupt or exception. In that case, the RCU grace-period kthread 605 * will eventually cause one to happen. However, in less carefully 606 * controlled environments, this function allows RCU to get what it 607 * needs without creating otherwise useless interruptions. 608 */ 609 void __rcu_irq_enter_check_tick(void) 610 { 611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 612 613 // If we're here from NMI there's nothing to do. 614 if (in_nmi()) 615 return; 616 617 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 618 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 619 620 if (!tick_nohz_full_cpu(rdp->cpu) || 621 !READ_ONCE(rdp->rcu_urgent_qs) || 622 READ_ONCE(rdp->rcu_forced_tick)) { 623 // RCU doesn't need nohz_full help from this CPU, or it is 624 // already getting that help. 625 return; 626 } 627 628 // We get here only when not in an extended quiescent state and 629 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 630 // already watching and (2) The fact that we are in an interrupt 631 // handler and that the rcu_node lock is an irq-disabled lock 632 // prevents self-deadlock. So we can safely recheck under the lock. 633 // Note that the nohz_full state currently cannot change. 634 raw_spin_lock_rcu_node(rdp->mynode); 635 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 636 // A nohz_full CPU is in the kernel and RCU needs a 637 // quiescent state. Turn on the tick! 638 WRITE_ONCE(rdp->rcu_forced_tick, true); 639 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 640 } 641 raw_spin_unlock_rcu_node(rdp->mynode); 642 } 643 #endif /* CONFIG_NO_HZ_FULL */ 644 645 /* 646 * Check to see if any future non-offloaded RCU-related work will need 647 * to be done by the current CPU, even if none need be done immediately, 648 * returning 1 if so. This function is part of the RCU implementation; 649 * it is -not- an exported member of the RCU API. This is used by 650 * the idle-entry code to figure out whether it is safe to disable the 651 * scheduler-clock interrupt. 652 * 653 * Just check whether or not this CPU has non-offloaded RCU callbacks 654 * queued. 655 */ 656 int rcu_needs_cpu(void) 657 { 658 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 659 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 660 } 661 662 /* 663 * If any sort of urgency was applied to the current CPU (for example, 664 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 665 * to get to a quiescent state, disable it. 666 */ 667 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 668 { 669 raw_lockdep_assert_held_rcu_node(rdp->mynode); 670 WRITE_ONCE(rdp->rcu_urgent_qs, false); 671 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 672 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 673 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 674 WRITE_ONCE(rdp->rcu_forced_tick, false); 675 } 676 } 677 678 /** 679 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 680 * 681 * Return true if RCU is watching the running CPU, which means that this 682 * CPU can safely enter RCU read-side critical sections. In other words, 683 * if the current CPU is not in its idle loop or is in an interrupt or 684 * NMI handler, return true. 685 * 686 * Make notrace because it can be called by the internal functions of 687 * ftrace, and making this notrace removes unnecessary recursion calls. 688 */ 689 notrace bool rcu_is_watching(void) 690 { 691 bool ret; 692 693 preempt_disable_notrace(); 694 ret = !rcu_dynticks_curr_cpu_in_eqs(); 695 preempt_enable_notrace(); 696 return ret; 697 } 698 EXPORT_SYMBOL_GPL(rcu_is_watching); 699 700 /* 701 * If a holdout task is actually running, request an urgent quiescent 702 * state from its CPU. This is unsynchronized, so migrations can cause 703 * the request to go to the wrong CPU. Which is OK, all that will happen 704 * is that the CPU's next context switch will be a bit slower and next 705 * time around this task will generate another request. 706 */ 707 void rcu_request_urgent_qs_task(struct task_struct *t) 708 { 709 int cpu; 710 711 barrier(); 712 cpu = task_cpu(t); 713 if (!task_curr(t)) 714 return; /* This task is not running on that CPU. */ 715 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 716 } 717 718 /* 719 * When trying to report a quiescent state on behalf of some other CPU, 720 * it is our responsibility to check for and handle potential overflow 721 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 722 * After all, the CPU might be in deep idle state, and thus executing no 723 * code whatsoever. 724 */ 725 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 726 { 727 raw_lockdep_assert_held_rcu_node(rnp); 728 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 729 rnp->gp_seq)) 730 WRITE_ONCE(rdp->gpwrap, true); 731 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 732 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 733 } 734 735 /* 736 * Snapshot the specified CPU's dynticks counter so that we can later 737 * credit them with an implicit quiescent state. Return 1 if this CPU 738 * is in dynticks idle mode, which is an extended quiescent state. 739 */ 740 static int dyntick_save_progress_counter(struct rcu_data *rdp) 741 { 742 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 743 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 744 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 745 rcu_gpnum_ovf(rdp->mynode, rdp); 746 return 1; 747 } 748 return 0; 749 } 750 751 /* 752 * Return true if the specified CPU has passed through a quiescent 753 * state by virtue of being in or having passed through an dynticks 754 * idle state since the last call to dyntick_save_progress_counter() 755 * for this same CPU, or by virtue of having been offline. 756 */ 757 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 758 { 759 unsigned long jtsq; 760 struct rcu_node *rnp = rdp->mynode; 761 762 /* 763 * If the CPU passed through or entered a dynticks idle phase with 764 * no active irq/NMI handlers, then we can safely pretend that the CPU 765 * already acknowledged the request to pass through a quiescent 766 * state. Either way, that CPU cannot possibly be in an RCU 767 * read-side critical section that started before the beginning 768 * of the current RCU grace period. 769 */ 770 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 771 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 772 rcu_gpnum_ovf(rnp, rdp); 773 return 1; 774 } 775 776 /* 777 * Complain if a CPU that is considered to be offline from RCU's 778 * perspective has not yet reported a quiescent state. After all, 779 * the offline CPU should have reported a quiescent state during 780 * the CPU-offline process, or, failing that, by rcu_gp_init() 781 * if it ran concurrently with either the CPU going offline or the 782 * last task on a leaf rcu_node structure exiting its RCU read-side 783 * critical section while all CPUs corresponding to that structure 784 * are offline. This added warning detects bugs in any of these 785 * code paths. 786 * 787 * The rcu_node structure's ->lock is held here, which excludes 788 * the relevant portions the CPU-hotplug code, the grace-period 789 * initialization code, and the rcu_read_unlock() code paths. 790 * 791 * For more detail, please refer to the "Hotplug CPU" section 792 * of RCU's Requirements documentation. 793 */ 794 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 795 struct rcu_node *rnp1; 796 797 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 798 __func__, rnp->grplo, rnp->grphi, rnp->level, 799 (long)rnp->gp_seq, (long)rnp->completedqs); 800 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 801 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 802 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 803 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 804 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 805 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 806 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 807 return 1; /* Break things loose after complaining. */ 808 } 809 810 /* 811 * A CPU running for an extended time within the kernel can 812 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 813 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 814 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 815 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 816 * variable are safe because the assignments are repeated if this 817 * CPU failed to pass through a quiescent state. This code 818 * also checks .jiffies_resched in case jiffies_to_sched_qs 819 * is set way high. 820 */ 821 jtsq = READ_ONCE(jiffies_to_sched_qs); 822 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 823 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 824 time_after(jiffies, rcu_state.jiffies_resched) || 825 rcu_state.cbovld)) { 826 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 827 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 828 smp_store_release(&rdp->rcu_urgent_qs, true); 829 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 830 WRITE_ONCE(rdp->rcu_urgent_qs, true); 831 } 832 833 /* 834 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 835 * The above code handles this, but only for straight cond_resched(). 836 * And some in-kernel loops check need_resched() before calling 837 * cond_resched(), which defeats the above code for CPUs that are 838 * running in-kernel with scheduling-clock interrupts disabled. 839 * So hit them over the head with the resched_cpu() hammer! 840 */ 841 if (tick_nohz_full_cpu(rdp->cpu) && 842 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 843 rcu_state.cbovld)) { 844 WRITE_ONCE(rdp->rcu_urgent_qs, true); 845 resched_cpu(rdp->cpu); 846 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 847 } 848 849 /* 850 * If more than halfway to RCU CPU stall-warning time, invoke 851 * resched_cpu() more frequently to try to loosen things up a bit. 852 * Also check to see if the CPU is getting hammered with interrupts, 853 * but only once per grace period, just to keep the IPIs down to 854 * a dull roar. 855 */ 856 if (time_after(jiffies, rcu_state.jiffies_resched)) { 857 if (time_after(jiffies, 858 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 859 resched_cpu(rdp->cpu); 860 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 861 } 862 if (IS_ENABLED(CONFIG_IRQ_WORK) && 863 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 864 (rnp->ffmask & rdp->grpmask)) { 865 rdp->rcu_iw_pending = true; 866 rdp->rcu_iw_gp_seq = rnp->gp_seq; 867 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 868 } 869 870 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 871 int cpu = rdp->cpu; 872 struct rcu_snap_record *rsrp; 873 struct kernel_cpustat *kcsp; 874 875 kcsp = &kcpustat_cpu(cpu); 876 877 rsrp = &rdp->snap_record; 878 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 879 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 880 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 881 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 882 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 883 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 884 rsrp->jiffies = jiffies; 885 rsrp->gp_seq = rdp->gp_seq; 886 } 887 } 888 889 return 0; 890 } 891 892 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 893 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 894 unsigned long gp_seq_req, const char *s) 895 { 896 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 897 gp_seq_req, rnp->level, 898 rnp->grplo, rnp->grphi, s); 899 } 900 901 /* 902 * rcu_start_this_gp - Request the start of a particular grace period 903 * @rnp_start: The leaf node of the CPU from which to start. 904 * @rdp: The rcu_data corresponding to the CPU from which to start. 905 * @gp_seq_req: The gp_seq of the grace period to start. 906 * 907 * Start the specified grace period, as needed to handle newly arrived 908 * callbacks. The required future grace periods are recorded in each 909 * rcu_node structure's ->gp_seq_needed field. Returns true if there 910 * is reason to awaken the grace-period kthread. 911 * 912 * The caller must hold the specified rcu_node structure's ->lock, which 913 * is why the caller is responsible for waking the grace-period kthread. 914 * 915 * Returns true if the GP thread needs to be awakened else false. 916 */ 917 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 918 unsigned long gp_seq_req) 919 { 920 bool ret = false; 921 struct rcu_node *rnp; 922 923 /* 924 * Use funnel locking to either acquire the root rcu_node 925 * structure's lock or bail out if the need for this grace period 926 * has already been recorded -- or if that grace period has in 927 * fact already started. If there is already a grace period in 928 * progress in a non-leaf node, no recording is needed because the 929 * end of the grace period will scan the leaf rcu_node structures. 930 * Note that rnp_start->lock must not be released. 931 */ 932 raw_lockdep_assert_held_rcu_node(rnp_start); 933 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 934 for (rnp = rnp_start; 1; rnp = rnp->parent) { 935 if (rnp != rnp_start) 936 raw_spin_lock_rcu_node(rnp); 937 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 938 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 939 (rnp != rnp_start && 940 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 941 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 942 TPS("Prestarted")); 943 goto unlock_out; 944 } 945 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 946 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 947 /* 948 * We just marked the leaf or internal node, and a 949 * grace period is in progress, which means that 950 * rcu_gp_cleanup() will see the marking. Bail to 951 * reduce contention. 952 */ 953 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 954 TPS("Startedleaf")); 955 goto unlock_out; 956 } 957 if (rnp != rnp_start && rnp->parent != NULL) 958 raw_spin_unlock_rcu_node(rnp); 959 if (!rnp->parent) 960 break; /* At root, and perhaps also leaf. */ 961 } 962 963 /* If GP already in progress, just leave, otherwise start one. */ 964 if (rcu_gp_in_progress()) { 965 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 966 goto unlock_out; 967 } 968 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 969 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 970 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 971 if (!READ_ONCE(rcu_state.gp_kthread)) { 972 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 973 goto unlock_out; 974 } 975 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 976 ret = true; /* Caller must wake GP kthread. */ 977 unlock_out: 978 /* Push furthest requested GP to leaf node and rcu_data structure. */ 979 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 980 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 981 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 982 } 983 if (rnp != rnp_start) 984 raw_spin_unlock_rcu_node(rnp); 985 return ret; 986 } 987 988 /* 989 * Clean up any old requests for the just-ended grace period. Also return 990 * whether any additional grace periods have been requested. 991 */ 992 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 993 { 994 bool needmore; 995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 996 997 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 998 if (!needmore) 999 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1000 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1001 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1002 return needmore; 1003 } 1004 1005 /* 1006 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1007 * interrupt or softirq handler, in which case we just might immediately 1008 * sleep upon return, resulting in a grace-period hang), and don't bother 1009 * awakening when there is nothing for the grace-period kthread to do 1010 * (as in several CPUs raced to awaken, we lost), and finally don't try 1011 * to awaken a kthread that has not yet been created. If all those checks 1012 * are passed, track some debug information and awaken. 1013 * 1014 * So why do the self-wakeup when in an interrupt or softirq handler 1015 * in the grace-period kthread's context? Because the kthread might have 1016 * been interrupted just as it was going to sleep, and just after the final 1017 * pre-sleep check of the awaken condition. In this case, a wakeup really 1018 * is required, and is therefore supplied. 1019 */ 1020 static void rcu_gp_kthread_wake(void) 1021 { 1022 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1023 1024 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1025 !READ_ONCE(rcu_state.gp_flags) || !t) 1026 return; 1027 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1028 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1029 swake_up_one(&rcu_state.gp_wq); 1030 } 1031 1032 /* 1033 * If there is room, assign a ->gp_seq number to any callbacks on this 1034 * CPU that have not already been assigned. Also accelerate any callbacks 1035 * that were previously assigned a ->gp_seq number that has since proven 1036 * to be too conservative, which can happen if callbacks get assigned a 1037 * ->gp_seq number while RCU is idle, but with reference to a non-root 1038 * rcu_node structure. This function is idempotent, so it does not hurt 1039 * to call it repeatedly. Returns an flag saying that we should awaken 1040 * the RCU grace-period kthread. 1041 * 1042 * The caller must hold rnp->lock with interrupts disabled. 1043 */ 1044 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1045 { 1046 unsigned long gp_seq_req; 1047 bool ret = false; 1048 1049 rcu_lockdep_assert_cblist_protected(rdp); 1050 raw_lockdep_assert_held_rcu_node(rnp); 1051 1052 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1053 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1054 return false; 1055 1056 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1057 1058 /* 1059 * Callbacks are often registered with incomplete grace-period 1060 * information. Something about the fact that getting exact 1061 * information requires acquiring a global lock... RCU therefore 1062 * makes a conservative estimate of the grace period number at which 1063 * a given callback will become ready to invoke. The following 1064 * code checks this estimate and improves it when possible, thus 1065 * accelerating callback invocation to an earlier grace-period 1066 * number. 1067 */ 1068 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1069 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1070 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1071 1072 /* Trace depending on how much we were able to accelerate. */ 1073 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1074 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1075 else 1076 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1077 1078 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1079 1080 return ret; 1081 } 1082 1083 /* 1084 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1085 * rcu_node structure's ->lock be held. It consults the cached value 1086 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1087 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1088 * while holding the leaf rcu_node structure's ->lock. 1089 */ 1090 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1091 struct rcu_data *rdp) 1092 { 1093 unsigned long c; 1094 bool needwake; 1095 1096 rcu_lockdep_assert_cblist_protected(rdp); 1097 c = rcu_seq_snap(&rcu_state.gp_seq); 1098 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1099 /* Old request still live, so mark recent callbacks. */ 1100 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1101 return; 1102 } 1103 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1104 needwake = rcu_accelerate_cbs(rnp, rdp); 1105 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1106 if (needwake) 1107 rcu_gp_kthread_wake(); 1108 } 1109 1110 /* 1111 * Move any callbacks whose grace period has completed to the 1112 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1113 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1114 * sublist. This function is idempotent, so it does not hurt to 1115 * invoke it repeatedly. As long as it is not invoked -too- often... 1116 * Returns true if the RCU grace-period kthread needs to be awakened. 1117 * 1118 * The caller must hold rnp->lock with interrupts disabled. 1119 */ 1120 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1121 { 1122 rcu_lockdep_assert_cblist_protected(rdp); 1123 raw_lockdep_assert_held_rcu_node(rnp); 1124 1125 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1126 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1127 return false; 1128 1129 /* 1130 * Find all callbacks whose ->gp_seq numbers indicate that they 1131 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1132 */ 1133 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1134 1135 /* Classify any remaining callbacks. */ 1136 return rcu_accelerate_cbs(rnp, rdp); 1137 } 1138 1139 /* 1140 * Move and classify callbacks, but only if doing so won't require 1141 * that the RCU grace-period kthread be awakened. 1142 */ 1143 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1144 struct rcu_data *rdp) 1145 { 1146 rcu_lockdep_assert_cblist_protected(rdp); 1147 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1148 return; 1149 // The grace period cannot end while we hold the rcu_node lock. 1150 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1151 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1152 raw_spin_unlock_rcu_node(rnp); 1153 } 1154 1155 /* 1156 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1157 * quiescent state. This is intended to be invoked when the CPU notices 1158 * a new grace period. 1159 */ 1160 static void rcu_strict_gp_check_qs(void) 1161 { 1162 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1163 rcu_read_lock(); 1164 rcu_read_unlock(); 1165 } 1166 } 1167 1168 /* 1169 * Update CPU-local rcu_data state to record the beginnings and ends of 1170 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1171 * structure corresponding to the current CPU, and must have irqs disabled. 1172 * Returns true if the grace-period kthread needs to be awakened. 1173 */ 1174 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1175 { 1176 bool ret = false; 1177 bool need_qs; 1178 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1179 1180 raw_lockdep_assert_held_rcu_node(rnp); 1181 1182 if (rdp->gp_seq == rnp->gp_seq) 1183 return false; /* Nothing to do. */ 1184 1185 /* Handle the ends of any preceding grace periods first. */ 1186 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1187 unlikely(READ_ONCE(rdp->gpwrap))) { 1188 if (!offloaded) 1189 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1190 rdp->core_needs_qs = false; 1191 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1192 } else { 1193 if (!offloaded) 1194 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1195 if (rdp->core_needs_qs) 1196 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1197 } 1198 1199 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1200 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1201 unlikely(READ_ONCE(rdp->gpwrap))) { 1202 /* 1203 * If the current grace period is waiting for this CPU, 1204 * set up to detect a quiescent state, otherwise don't 1205 * go looking for one. 1206 */ 1207 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1208 need_qs = !!(rnp->qsmask & rdp->grpmask); 1209 rdp->cpu_no_qs.b.norm = need_qs; 1210 rdp->core_needs_qs = need_qs; 1211 zero_cpu_stall_ticks(rdp); 1212 } 1213 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1214 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1215 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1216 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1217 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1218 WRITE_ONCE(rdp->gpwrap, false); 1219 rcu_gpnum_ovf(rnp, rdp); 1220 return ret; 1221 } 1222 1223 static void note_gp_changes(struct rcu_data *rdp) 1224 { 1225 unsigned long flags; 1226 bool needwake; 1227 struct rcu_node *rnp; 1228 1229 local_irq_save(flags); 1230 rnp = rdp->mynode; 1231 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1232 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1233 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1234 local_irq_restore(flags); 1235 return; 1236 } 1237 needwake = __note_gp_changes(rnp, rdp); 1238 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1239 rcu_strict_gp_check_qs(); 1240 if (needwake) 1241 rcu_gp_kthread_wake(); 1242 } 1243 1244 static atomic_t *rcu_gp_slow_suppress; 1245 1246 /* Register a counter to suppress debugging grace-period delays. */ 1247 void rcu_gp_slow_register(atomic_t *rgssp) 1248 { 1249 WARN_ON_ONCE(rcu_gp_slow_suppress); 1250 1251 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1252 } 1253 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1254 1255 /* Unregister a counter, with NULL for not caring which. */ 1256 void rcu_gp_slow_unregister(atomic_t *rgssp) 1257 { 1258 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1259 1260 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1261 } 1262 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1263 1264 static bool rcu_gp_slow_is_suppressed(void) 1265 { 1266 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1267 1268 return rgssp && atomic_read(rgssp); 1269 } 1270 1271 static void rcu_gp_slow(int delay) 1272 { 1273 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1274 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1275 schedule_timeout_idle(delay); 1276 } 1277 1278 static unsigned long sleep_duration; 1279 1280 /* Allow rcutorture to stall the grace-period kthread. */ 1281 void rcu_gp_set_torture_wait(int duration) 1282 { 1283 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1284 WRITE_ONCE(sleep_duration, duration); 1285 } 1286 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1287 1288 /* Actually implement the aforementioned wait. */ 1289 static void rcu_gp_torture_wait(void) 1290 { 1291 unsigned long duration; 1292 1293 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1294 return; 1295 duration = xchg(&sleep_duration, 0UL); 1296 if (duration > 0) { 1297 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1298 schedule_timeout_idle(duration); 1299 pr_alert("%s: Wait complete\n", __func__); 1300 } 1301 } 1302 1303 /* 1304 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1305 * processing. 1306 */ 1307 static void rcu_strict_gp_boundary(void *unused) 1308 { 1309 invoke_rcu_core(); 1310 } 1311 1312 // Make the polled API aware of the beginning of a grace period. 1313 static void rcu_poll_gp_seq_start(unsigned long *snap) 1314 { 1315 struct rcu_node *rnp = rcu_get_root(); 1316 1317 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1318 raw_lockdep_assert_held_rcu_node(rnp); 1319 1320 // If RCU was idle, note beginning of GP. 1321 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1322 rcu_seq_start(&rcu_state.gp_seq_polled); 1323 1324 // Either way, record current state. 1325 *snap = rcu_state.gp_seq_polled; 1326 } 1327 1328 // Make the polled API aware of the end of a grace period. 1329 static void rcu_poll_gp_seq_end(unsigned long *snap) 1330 { 1331 struct rcu_node *rnp = rcu_get_root(); 1332 1333 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1334 raw_lockdep_assert_held_rcu_node(rnp); 1335 1336 // If the previously noted GP is still in effect, record the 1337 // end of that GP. Either way, zero counter to avoid counter-wrap 1338 // problems. 1339 if (*snap && *snap == rcu_state.gp_seq_polled) { 1340 rcu_seq_end(&rcu_state.gp_seq_polled); 1341 rcu_state.gp_seq_polled_snap = 0; 1342 rcu_state.gp_seq_polled_exp_snap = 0; 1343 } else { 1344 *snap = 0; 1345 } 1346 } 1347 1348 // Make the polled API aware of the beginning of a grace period, but 1349 // where caller does not hold the root rcu_node structure's lock. 1350 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1351 { 1352 unsigned long flags; 1353 struct rcu_node *rnp = rcu_get_root(); 1354 1355 if (rcu_init_invoked()) { 1356 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1357 lockdep_assert_irqs_enabled(); 1358 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1359 } 1360 rcu_poll_gp_seq_start(snap); 1361 if (rcu_init_invoked()) 1362 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1363 } 1364 1365 // Make the polled API aware of the end of a grace period, but where 1366 // caller does not hold the root rcu_node structure's lock. 1367 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1368 { 1369 unsigned long flags; 1370 struct rcu_node *rnp = rcu_get_root(); 1371 1372 if (rcu_init_invoked()) { 1373 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1374 lockdep_assert_irqs_enabled(); 1375 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1376 } 1377 rcu_poll_gp_seq_end(snap); 1378 if (rcu_init_invoked()) 1379 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1380 } 1381 1382 /* 1383 * Initialize a new grace period. Return false if no grace period required. 1384 */ 1385 static noinline_for_stack bool rcu_gp_init(void) 1386 { 1387 unsigned long flags; 1388 unsigned long oldmask; 1389 unsigned long mask; 1390 struct rcu_data *rdp; 1391 struct rcu_node *rnp = rcu_get_root(); 1392 1393 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1394 raw_spin_lock_irq_rcu_node(rnp); 1395 if (!READ_ONCE(rcu_state.gp_flags)) { 1396 /* Spurious wakeup, tell caller to go back to sleep. */ 1397 raw_spin_unlock_irq_rcu_node(rnp); 1398 return false; 1399 } 1400 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1401 1402 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1403 /* 1404 * Grace period already in progress, don't start another. 1405 * Not supposed to be able to happen. 1406 */ 1407 raw_spin_unlock_irq_rcu_node(rnp); 1408 return false; 1409 } 1410 1411 /* Advance to a new grace period and initialize state. */ 1412 record_gp_stall_check_time(); 1413 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1414 rcu_seq_start(&rcu_state.gp_seq); 1415 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1416 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1417 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1418 raw_spin_unlock_irq_rcu_node(rnp); 1419 1420 /* 1421 * Apply per-leaf buffered online and offline operations to 1422 * the rcu_node tree. Note that this new grace period need not 1423 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1424 * offlining path, when combined with checks in this function, 1425 * will handle CPUs that are currently going offline or that will 1426 * go offline later. Please also refer to "Hotplug CPU" section 1427 * of RCU's Requirements documentation. 1428 */ 1429 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1430 /* Exclude CPU hotplug operations. */ 1431 rcu_for_each_leaf_node(rnp) { 1432 local_irq_save(flags); 1433 arch_spin_lock(&rcu_state.ofl_lock); 1434 raw_spin_lock_rcu_node(rnp); 1435 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1436 !rnp->wait_blkd_tasks) { 1437 /* Nothing to do on this leaf rcu_node structure. */ 1438 raw_spin_unlock_rcu_node(rnp); 1439 arch_spin_unlock(&rcu_state.ofl_lock); 1440 local_irq_restore(flags); 1441 continue; 1442 } 1443 1444 /* Record old state, apply changes to ->qsmaskinit field. */ 1445 oldmask = rnp->qsmaskinit; 1446 rnp->qsmaskinit = rnp->qsmaskinitnext; 1447 1448 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1449 if (!oldmask != !rnp->qsmaskinit) { 1450 if (!oldmask) { /* First online CPU for rcu_node. */ 1451 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1452 rcu_init_new_rnp(rnp); 1453 } else if (rcu_preempt_has_tasks(rnp)) { 1454 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1455 } else { /* Last offline CPU and can propagate. */ 1456 rcu_cleanup_dead_rnp(rnp); 1457 } 1458 } 1459 1460 /* 1461 * If all waited-on tasks from prior grace period are 1462 * done, and if all this rcu_node structure's CPUs are 1463 * still offline, propagate up the rcu_node tree and 1464 * clear ->wait_blkd_tasks. Otherwise, if one of this 1465 * rcu_node structure's CPUs has since come back online, 1466 * simply clear ->wait_blkd_tasks. 1467 */ 1468 if (rnp->wait_blkd_tasks && 1469 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1470 rnp->wait_blkd_tasks = false; 1471 if (!rnp->qsmaskinit) 1472 rcu_cleanup_dead_rnp(rnp); 1473 } 1474 1475 raw_spin_unlock_rcu_node(rnp); 1476 arch_spin_unlock(&rcu_state.ofl_lock); 1477 local_irq_restore(flags); 1478 } 1479 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1480 1481 /* 1482 * Set the quiescent-state-needed bits in all the rcu_node 1483 * structures for all currently online CPUs in breadth-first 1484 * order, starting from the root rcu_node structure, relying on the 1485 * layout of the tree within the rcu_state.node[] array. Note that 1486 * other CPUs will access only the leaves of the hierarchy, thus 1487 * seeing that no grace period is in progress, at least until the 1488 * corresponding leaf node has been initialized. 1489 * 1490 * The grace period cannot complete until the initialization 1491 * process finishes, because this kthread handles both. 1492 */ 1493 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1494 rcu_for_each_node_breadth_first(rnp) { 1495 rcu_gp_slow(gp_init_delay); 1496 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1497 rdp = this_cpu_ptr(&rcu_data); 1498 rcu_preempt_check_blocked_tasks(rnp); 1499 rnp->qsmask = rnp->qsmaskinit; 1500 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1501 if (rnp == rdp->mynode) 1502 (void)__note_gp_changes(rnp, rdp); 1503 rcu_preempt_boost_start_gp(rnp); 1504 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1505 rnp->level, rnp->grplo, 1506 rnp->grphi, rnp->qsmask); 1507 /* Quiescent states for tasks on any now-offline CPUs. */ 1508 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1509 rnp->rcu_gp_init_mask = mask; 1510 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1511 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1512 else 1513 raw_spin_unlock_irq_rcu_node(rnp); 1514 cond_resched_tasks_rcu_qs(); 1515 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1516 } 1517 1518 // If strict, make all CPUs aware of new grace period. 1519 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1520 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1521 1522 return true; 1523 } 1524 1525 /* 1526 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1527 * time. 1528 */ 1529 static bool rcu_gp_fqs_check_wake(int *gfp) 1530 { 1531 struct rcu_node *rnp = rcu_get_root(); 1532 1533 // If under overload conditions, force an immediate FQS scan. 1534 if (*gfp & RCU_GP_FLAG_OVLD) 1535 return true; 1536 1537 // Someone like call_rcu() requested a force-quiescent-state scan. 1538 *gfp = READ_ONCE(rcu_state.gp_flags); 1539 if (*gfp & RCU_GP_FLAG_FQS) 1540 return true; 1541 1542 // The current grace period has completed. 1543 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1544 return true; 1545 1546 return false; 1547 } 1548 1549 /* 1550 * Do one round of quiescent-state forcing. 1551 */ 1552 static void rcu_gp_fqs(bool first_time) 1553 { 1554 struct rcu_node *rnp = rcu_get_root(); 1555 1556 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1557 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1558 if (first_time) { 1559 /* Collect dyntick-idle snapshots. */ 1560 force_qs_rnp(dyntick_save_progress_counter); 1561 } else { 1562 /* Handle dyntick-idle and offline CPUs. */ 1563 force_qs_rnp(rcu_implicit_dynticks_qs); 1564 } 1565 /* Clear flag to prevent immediate re-entry. */ 1566 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1567 raw_spin_lock_irq_rcu_node(rnp); 1568 WRITE_ONCE(rcu_state.gp_flags, 1569 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1570 raw_spin_unlock_irq_rcu_node(rnp); 1571 } 1572 } 1573 1574 /* 1575 * Loop doing repeated quiescent-state forcing until the grace period ends. 1576 */ 1577 static noinline_for_stack void rcu_gp_fqs_loop(void) 1578 { 1579 bool first_gp_fqs = true; 1580 int gf = 0; 1581 unsigned long j; 1582 int ret; 1583 struct rcu_node *rnp = rcu_get_root(); 1584 1585 j = READ_ONCE(jiffies_till_first_fqs); 1586 if (rcu_state.cbovld) 1587 gf = RCU_GP_FLAG_OVLD; 1588 ret = 0; 1589 for (;;) { 1590 if (rcu_state.cbovld) { 1591 j = (j + 2) / 3; 1592 if (j <= 0) 1593 j = 1; 1594 } 1595 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1596 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1597 /* 1598 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1599 * update; required for stall checks. 1600 */ 1601 smp_wmb(); 1602 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1603 jiffies + (j ? 3 * j : 2)); 1604 } 1605 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1606 TPS("fqswait")); 1607 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1608 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1609 rcu_gp_fqs_check_wake(&gf), j); 1610 rcu_gp_torture_wait(); 1611 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1612 /* Locking provides needed memory barriers. */ 1613 /* 1614 * Exit the loop if the root rcu_node structure indicates that the grace period 1615 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1616 * is required only for single-node rcu_node trees because readers blocking 1617 * the current grace period are queued only on leaf rcu_node structures. 1618 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1619 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1620 * the corresponding leaf nodes have passed through their quiescent state. 1621 */ 1622 if (!READ_ONCE(rnp->qsmask) && 1623 !rcu_preempt_blocked_readers_cgp(rnp)) 1624 break; 1625 /* If time for quiescent-state forcing, do it. */ 1626 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1627 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1628 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1629 TPS("fqsstart")); 1630 rcu_gp_fqs(first_gp_fqs); 1631 gf = 0; 1632 if (first_gp_fqs) { 1633 first_gp_fqs = false; 1634 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1635 } 1636 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1637 TPS("fqsend")); 1638 cond_resched_tasks_rcu_qs(); 1639 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1640 ret = 0; /* Force full wait till next FQS. */ 1641 j = READ_ONCE(jiffies_till_next_fqs); 1642 } else { 1643 /* Deal with stray signal. */ 1644 cond_resched_tasks_rcu_qs(); 1645 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1646 WARN_ON(signal_pending(current)); 1647 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1648 TPS("fqswaitsig")); 1649 ret = 1; /* Keep old FQS timing. */ 1650 j = jiffies; 1651 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1652 j = 1; 1653 else 1654 j = rcu_state.jiffies_force_qs - j; 1655 gf = 0; 1656 } 1657 } 1658 } 1659 1660 /* 1661 * Clean up after the old grace period. 1662 */ 1663 static noinline void rcu_gp_cleanup(void) 1664 { 1665 int cpu; 1666 bool needgp = false; 1667 unsigned long gp_duration; 1668 unsigned long new_gp_seq; 1669 bool offloaded; 1670 struct rcu_data *rdp; 1671 struct rcu_node *rnp = rcu_get_root(); 1672 struct swait_queue_head *sq; 1673 1674 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1675 raw_spin_lock_irq_rcu_node(rnp); 1676 rcu_state.gp_end = jiffies; 1677 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1678 if (gp_duration > rcu_state.gp_max) 1679 rcu_state.gp_max = gp_duration; 1680 1681 /* 1682 * We know the grace period is complete, but to everyone else 1683 * it appears to still be ongoing. But it is also the case 1684 * that to everyone else it looks like there is nothing that 1685 * they can do to advance the grace period. It is therefore 1686 * safe for us to drop the lock in order to mark the grace 1687 * period as completed in all of the rcu_node structures. 1688 */ 1689 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1690 raw_spin_unlock_irq_rcu_node(rnp); 1691 1692 /* 1693 * Propagate new ->gp_seq value to rcu_node structures so that 1694 * other CPUs don't have to wait until the start of the next grace 1695 * period to process their callbacks. This also avoids some nasty 1696 * RCU grace-period initialization races by forcing the end of 1697 * the current grace period to be completely recorded in all of 1698 * the rcu_node structures before the beginning of the next grace 1699 * period is recorded in any of the rcu_node structures. 1700 */ 1701 new_gp_seq = rcu_state.gp_seq; 1702 rcu_seq_end(&new_gp_seq); 1703 rcu_for_each_node_breadth_first(rnp) { 1704 raw_spin_lock_irq_rcu_node(rnp); 1705 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1706 dump_blkd_tasks(rnp, 10); 1707 WARN_ON_ONCE(rnp->qsmask); 1708 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1709 if (!rnp->parent) 1710 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1711 rdp = this_cpu_ptr(&rcu_data); 1712 if (rnp == rdp->mynode) 1713 needgp = __note_gp_changes(rnp, rdp) || needgp; 1714 /* smp_mb() provided by prior unlock-lock pair. */ 1715 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1716 // Reset overload indication for CPUs no longer overloaded 1717 if (rcu_is_leaf_node(rnp)) 1718 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1719 rdp = per_cpu_ptr(&rcu_data, cpu); 1720 check_cb_ovld_locked(rdp, rnp); 1721 } 1722 sq = rcu_nocb_gp_get(rnp); 1723 raw_spin_unlock_irq_rcu_node(rnp); 1724 rcu_nocb_gp_cleanup(sq); 1725 cond_resched_tasks_rcu_qs(); 1726 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1727 rcu_gp_slow(gp_cleanup_delay); 1728 } 1729 rnp = rcu_get_root(); 1730 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1731 1732 /* Declare grace period done, trace first to use old GP number. */ 1733 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1734 rcu_seq_end(&rcu_state.gp_seq); 1735 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1736 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1737 /* Check for GP requests since above loop. */ 1738 rdp = this_cpu_ptr(&rcu_data); 1739 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1740 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1741 TPS("CleanupMore")); 1742 needgp = true; 1743 } 1744 /* Advance CBs to reduce false positives below. */ 1745 offloaded = rcu_rdp_is_offloaded(rdp); 1746 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1747 1748 // We get here if a grace period was needed (“needgp”) 1749 // and the above call to rcu_accelerate_cbs() did not set 1750 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1751 // the need for another grace period). The purpose 1752 // of the “offloaded” check is to avoid invoking 1753 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1754 // hold the ->nocb_lock needed to safely access an offloaded 1755 // ->cblist. We do not want to acquire that lock because 1756 // it can be heavily contended during callback floods. 1757 1758 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1759 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1760 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1761 } else { 1762 1763 // We get here either if there is no need for an 1764 // additional grace period or if rcu_accelerate_cbs() has 1765 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1766 // So all we need to do is to clear all of the other 1767 // ->gp_flags bits. 1768 1769 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1770 } 1771 raw_spin_unlock_irq_rcu_node(rnp); 1772 1773 // If strict, make all CPUs aware of the end of the old grace period. 1774 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1775 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1776 } 1777 1778 /* 1779 * Body of kthread that handles grace periods. 1780 */ 1781 static int __noreturn rcu_gp_kthread(void *unused) 1782 { 1783 rcu_bind_gp_kthread(); 1784 for (;;) { 1785 1786 /* Handle grace-period start. */ 1787 for (;;) { 1788 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1789 TPS("reqwait")); 1790 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1791 swait_event_idle_exclusive(rcu_state.gp_wq, 1792 READ_ONCE(rcu_state.gp_flags) & 1793 RCU_GP_FLAG_INIT); 1794 rcu_gp_torture_wait(); 1795 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1796 /* Locking provides needed memory barrier. */ 1797 if (rcu_gp_init()) 1798 break; 1799 cond_resched_tasks_rcu_qs(); 1800 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1801 WARN_ON(signal_pending(current)); 1802 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1803 TPS("reqwaitsig")); 1804 } 1805 1806 /* Handle quiescent-state forcing. */ 1807 rcu_gp_fqs_loop(); 1808 1809 /* Handle grace-period end. */ 1810 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1811 rcu_gp_cleanup(); 1812 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1813 } 1814 } 1815 1816 /* 1817 * Report a full set of quiescent states to the rcu_state data structure. 1818 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1819 * another grace period is required. Whether we wake the grace-period 1820 * kthread or it awakens itself for the next round of quiescent-state 1821 * forcing, that kthread will clean up after the just-completed grace 1822 * period. Note that the caller must hold rnp->lock, which is released 1823 * before return. 1824 */ 1825 static void rcu_report_qs_rsp(unsigned long flags) 1826 __releases(rcu_get_root()->lock) 1827 { 1828 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1829 WARN_ON_ONCE(!rcu_gp_in_progress()); 1830 WRITE_ONCE(rcu_state.gp_flags, 1831 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1832 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1833 rcu_gp_kthread_wake(); 1834 } 1835 1836 /* 1837 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1838 * Allows quiescent states for a group of CPUs to be reported at one go 1839 * to the specified rcu_node structure, though all the CPUs in the group 1840 * must be represented by the same rcu_node structure (which need not be a 1841 * leaf rcu_node structure, though it often will be). The gps parameter 1842 * is the grace-period snapshot, which means that the quiescent states 1843 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1844 * must be held upon entry, and it is released before return. 1845 * 1846 * As a special case, if mask is zero, the bit-already-cleared check is 1847 * disabled. This allows propagating quiescent state due to resumed tasks 1848 * during grace-period initialization. 1849 */ 1850 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1851 unsigned long gps, unsigned long flags) 1852 __releases(rnp->lock) 1853 { 1854 unsigned long oldmask = 0; 1855 struct rcu_node *rnp_c; 1856 1857 raw_lockdep_assert_held_rcu_node(rnp); 1858 1859 /* Walk up the rcu_node hierarchy. */ 1860 for (;;) { 1861 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1862 1863 /* 1864 * Our bit has already been cleared, or the 1865 * relevant grace period is already over, so done. 1866 */ 1867 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1868 return; 1869 } 1870 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1871 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1872 rcu_preempt_blocked_readers_cgp(rnp)); 1873 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1874 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1875 mask, rnp->qsmask, rnp->level, 1876 rnp->grplo, rnp->grphi, 1877 !!rnp->gp_tasks); 1878 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1879 1880 /* Other bits still set at this level, so done. */ 1881 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1882 return; 1883 } 1884 rnp->completedqs = rnp->gp_seq; 1885 mask = rnp->grpmask; 1886 if (rnp->parent == NULL) { 1887 1888 /* No more levels. Exit loop holding root lock. */ 1889 1890 break; 1891 } 1892 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1893 rnp_c = rnp; 1894 rnp = rnp->parent; 1895 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1896 oldmask = READ_ONCE(rnp_c->qsmask); 1897 } 1898 1899 /* 1900 * Get here if we are the last CPU to pass through a quiescent 1901 * state for this grace period. Invoke rcu_report_qs_rsp() 1902 * to clean up and start the next grace period if one is needed. 1903 */ 1904 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1905 } 1906 1907 /* 1908 * Record a quiescent state for all tasks that were previously queued 1909 * on the specified rcu_node structure and that were blocking the current 1910 * RCU grace period. The caller must hold the corresponding rnp->lock with 1911 * irqs disabled, and this lock is released upon return, but irqs remain 1912 * disabled. 1913 */ 1914 static void __maybe_unused 1915 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1916 __releases(rnp->lock) 1917 { 1918 unsigned long gps; 1919 unsigned long mask; 1920 struct rcu_node *rnp_p; 1921 1922 raw_lockdep_assert_held_rcu_node(rnp); 1923 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1924 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1925 rnp->qsmask != 0) { 1926 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1927 return; /* Still need more quiescent states! */ 1928 } 1929 1930 rnp->completedqs = rnp->gp_seq; 1931 rnp_p = rnp->parent; 1932 if (rnp_p == NULL) { 1933 /* 1934 * Only one rcu_node structure in the tree, so don't 1935 * try to report up to its nonexistent parent! 1936 */ 1937 rcu_report_qs_rsp(flags); 1938 return; 1939 } 1940 1941 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1942 gps = rnp->gp_seq; 1943 mask = rnp->grpmask; 1944 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1945 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1946 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1947 } 1948 1949 /* 1950 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1951 * structure. This must be called from the specified CPU. 1952 */ 1953 static void 1954 rcu_report_qs_rdp(struct rcu_data *rdp) 1955 { 1956 unsigned long flags; 1957 unsigned long mask; 1958 bool needwake = false; 1959 bool needacc = false; 1960 struct rcu_node *rnp; 1961 1962 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 1963 rnp = rdp->mynode; 1964 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1965 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1966 rdp->gpwrap) { 1967 1968 /* 1969 * The grace period in which this quiescent state was 1970 * recorded has ended, so don't report it upwards. 1971 * We will instead need a new quiescent state that lies 1972 * within the current grace period. 1973 */ 1974 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1975 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1976 return; 1977 } 1978 mask = rdp->grpmask; 1979 rdp->core_needs_qs = false; 1980 if ((rnp->qsmask & mask) == 0) { 1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1982 } else { 1983 /* 1984 * This GP can't end until cpu checks in, so all of our 1985 * callbacks can be processed during the next GP. 1986 * 1987 * NOCB kthreads have their own way to deal with that... 1988 */ 1989 if (!rcu_rdp_is_offloaded(rdp)) { 1990 needwake = rcu_accelerate_cbs(rnp, rdp); 1991 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 1992 /* 1993 * ...but NOCB kthreads may miss or delay callbacks acceleration 1994 * if in the middle of a (de-)offloading process. 1995 */ 1996 needacc = true; 1997 } 1998 1999 rcu_disable_urgency_upon_qs(rdp); 2000 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2001 /* ^^^ Released rnp->lock */ 2002 if (needwake) 2003 rcu_gp_kthread_wake(); 2004 2005 if (needacc) { 2006 rcu_nocb_lock_irqsave(rdp, flags); 2007 rcu_accelerate_cbs_unlocked(rnp, rdp); 2008 rcu_nocb_unlock_irqrestore(rdp, flags); 2009 } 2010 } 2011 } 2012 2013 /* 2014 * Check to see if there is a new grace period of which this CPU 2015 * is not yet aware, and if so, set up local rcu_data state for it. 2016 * Otherwise, see if this CPU has just passed through its first 2017 * quiescent state for this grace period, and record that fact if so. 2018 */ 2019 static void 2020 rcu_check_quiescent_state(struct rcu_data *rdp) 2021 { 2022 /* Check for grace-period ends and beginnings. */ 2023 note_gp_changes(rdp); 2024 2025 /* 2026 * Does this CPU still need to do its part for current grace period? 2027 * If no, return and let the other CPUs do their part as well. 2028 */ 2029 if (!rdp->core_needs_qs) 2030 return; 2031 2032 /* 2033 * Was there a quiescent state since the beginning of the grace 2034 * period? If no, then exit and wait for the next call. 2035 */ 2036 if (rdp->cpu_no_qs.b.norm) 2037 return; 2038 2039 /* 2040 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2041 * judge of that). 2042 */ 2043 rcu_report_qs_rdp(rdp); 2044 } 2045 2046 /* 2047 * Invoke any RCU callbacks that have made it to the end of their grace 2048 * period. Throttle as specified by rdp->blimit. 2049 */ 2050 static void rcu_do_batch(struct rcu_data *rdp) 2051 { 2052 int div; 2053 bool __maybe_unused empty; 2054 unsigned long flags; 2055 struct rcu_head *rhp; 2056 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2057 long bl, count = 0; 2058 long pending, tlimit = 0; 2059 2060 /* If no callbacks are ready, just return. */ 2061 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2062 trace_rcu_batch_start(rcu_state.name, 2063 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2064 trace_rcu_batch_end(rcu_state.name, 0, 2065 !rcu_segcblist_empty(&rdp->cblist), 2066 need_resched(), is_idle_task(current), 2067 rcu_is_callbacks_kthread(rdp)); 2068 return; 2069 } 2070 2071 /* 2072 * Extract the list of ready callbacks, disabling IRQs to prevent 2073 * races with call_rcu() from interrupt handlers. Leave the 2074 * callback counts, as rcu_barrier() needs to be conservative. 2075 */ 2076 rcu_nocb_lock_irqsave(rdp, flags); 2077 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2078 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2079 div = READ_ONCE(rcu_divisor); 2080 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2081 bl = max(rdp->blimit, pending >> div); 2082 if (in_serving_softirq() && unlikely(bl > 100)) { 2083 long rrn = READ_ONCE(rcu_resched_ns); 2084 2085 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2086 tlimit = local_clock() + rrn; 2087 } 2088 trace_rcu_batch_start(rcu_state.name, 2089 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2090 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2091 if (rcu_rdp_is_offloaded(rdp)) 2092 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2093 2094 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2095 rcu_nocb_unlock_irqrestore(rdp, flags); 2096 2097 /* Invoke callbacks. */ 2098 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2099 rhp = rcu_cblist_dequeue(&rcl); 2100 2101 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2102 rcu_callback_t f; 2103 2104 count++; 2105 debug_rcu_head_unqueue(rhp); 2106 2107 rcu_lock_acquire(&rcu_callback_map); 2108 trace_rcu_invoke_callback(rcu_state.name, rhp); 2109 2110 f = rhp->func; 2111 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2112 f(rhp); 2113 2114 rcu_lock_release(&rcu_callback_map); 2115 2116 /* 2117 * Stop only if limit reached and CPU has something to do. 2118 */ 2119 if (in_serving_softirq()) { 2120 if (count >= bl && (need_resched() || !is_idle_task(current))) 2121 break; 2122 /* 2123 * Make sure we don't spend too much time here and deprive other 2124 * softirq vectors of CPU cycles. 2125 */ 2126 if (unlikely(tlimit)) { 2127 /* only call local_clock() every 32 callbacks */ 2128 if (likely((count & 31) || local_clock() < tlimit)) 2129 continue; 2130 /* Exceeded the time limit, so leave. */ 2131 break; 2132 } 2133 } else { 2134 local_bh_enable(); 2135 lockdep_assert_irqs_enabled(); 2136 cond_resched_tasks_rcu_qs(); 2137 lockdep_assert_irqs_enabled(); 2138 local_bh_disable(); 2139 } 2140 } 2141 2142 rcu_nocb_lock_irqsave(rdp, flags); 2143 rdp->n_cbs_invoked += count; 2144 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2145 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2146 2147 /* Update counts and requeue any remaining callbacks. */ 2148 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2149 rcu_segcblist_add_len(&rdp->cblist, -count); 2150 2151 /* Reinstate batch limit if we have worked down the excess. */ 2152 count = rcu_segcblist_n_cbs(&rdp->cblist); 2153 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2154 rdp->blimit = blimit; 2155 2156 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2157 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2158 rdp->qlen_last_fqs_check = 0; 2159 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2160 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2161 rdp->qlen_last_fqs_check = count; 2162 2163 /* 2164 * The following usually indicates a double call_rcu(). To track 2165 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2166 */ 2167 empty = rcu_segcblist_empty(&rdp->cblist); 2168 WARN_ON_ONCE(count == 0 && !empty); 2169 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2170 count != 0 && empty); 2171 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2172 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2173 2174 rcu_nocb_unlock_irqrestore(rdp, flags); 2175 2176 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2177 } 2178 2179 /* 2180 * This function is invoked from each scheduling-clock interrupt, 2181 * and checks to see if this CPU is in a non-context-switch quiescent 2182 * state, for example, user mode or idle loop. It also schedules RCU 2183 * core processing. If the current grace period has gone on too long, 2184 * it will ask the scheduler to manufacture a context switch for the sole 2185 * purpose of providing the needed quiescent state. 2186 */ 2187 void rcu_sched_clock_irq(int user) 2188 { 2189 unsigned long j; 2190 2191 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2192 j = jiffies; 2193 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2194 __this_cpu_write(rcu_data.last_sched_clock, j); 2195 } 2196 trace_rcu_utilization(TPS("Start scheduler-tick")); 2197 lockdep_assert_irqs_disabled(); 2198 raw_cpu_inc(rcu_data.ticks_this_gp); 2199 /* The load-acquire pairs with the store-release setting to true. */ 2200 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2201 /* Idle and userspace execution already are quiescent states. */ 2202 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2203 set_tsk_need_resched(current); 2204 set_preempt_need_resched(); 2205 } 2206 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2207 } 2208 rcu_flavor_sched_clock_irq(user); 2209 if (rcu_pending(user)) 2210 invoke_rcu_core(); 2211 if (user || rcu_is_cpu_rrupt_from_idle()) 2212 rcu_note_voluntary_context_switch(current); 2213 lockdep_assert_irqs_disabled(); 2214 2215 trace_rcu_utilization(TPS("End scheduler-tick")); 2216 } 2217 2218 /* 2219 * Scan the leaf rcu_node structures. For each structure on which all 2220 * CPUs have reported a quiescent state and on which there are tasks 2221 * blocking the current grace period, initiate RCU priority boosting. 2222 * Otherwise, invoke the specified function to check dyntick state for 2223 * each CPU that has not yet reported a quiescent state. 2224 */ 2225 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2226 { 2227 int cpu; 2228 unsigned long flags; 2229 unsigned long mask; 2230 struct rcu_data *rdp; 2231 struct rcu_node *rnp; 2232 2233 rcu_state.cbovld = rcu_state.cbovldnext; 2234 rcu_state.cbovldnext = false; 2235 rcu_for_each_leaf_node(rnp) { 2236 cond_resched_tasks_rcu_qs(); 2237 mask = 0; 2238 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2239 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2240 if (rnp->qsmask == 0) { 2241 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2242 /* 2243 * No point in scanning bits because they 2244 * are all zero. But we might need to 2245 * priority-boost blocked readers. 2246 */ 2247 rcu_initiate_boost(rnp, flags); 2248 /* rcu_initiate_boost() releases rnp->lock */ 2249 continue; 2250 } 2251 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2252 continue; 2253 } 2254 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2255 rdp = per_cpu_ptr(&rcu_data, cpu); 2256 if (f(rdp)) { 2257 mask |= rdp->grpmask; 2258 rcu_disable_urgency_upon_qs(rdp); 2259 } 2260 } 2261 if (mask != 0) { 2262 /* Idle/offline CPUs, report (releases rnp->lock). */ 2263 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2264 } else { 2265 /* Nothing to do here, so just drop the lock. */ 2266 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2267 } 2268 } 2269 } 2270 2271 /* 2272 * Force quiescent states on reluctant CPUs, and also detect which 2273 * CPUs are in dyntick-idle mode. 2274 */ 2275 void rcu_force_quiescent_state(void) 2276 { 2277 unsigned long flags; 2278 bool ret; 2279 struct rcu_node *rnp; 2280 struct rcu_node *rnp_old = NULL; 2281 2282 /* Funnel through hierarchy to reduce memory contention. */ 2283 rnp = raw_cpu_read(rcu_data.mynode); 2284 for (; rnp != NULL; rnp = rnp->parent) { 2285 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2286 !raw_spin_trylock(&rnp->fqslock); 2287 if (rnp_old != NULL) 2288 raw_spin_unlock(&rnp_old->fqslock); 2289 if (ret) 2290 return; 2291 rnp_old = rnp; 2292 } 2293 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2294 2295 /* Reached the root of the rcu_node tree, acquire lock. */ 2296 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2297 raw_spin_unlock(&rnp_old->fqslock); 2298 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2299 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2300 return; /* Someone beat us to it. */ 2301 } 2302 WRITE_ONCE(rcu_state.gp_flags, 2303 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2304 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2305 rcu_gp_kthread_wake(); 2306 } 2307 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2308 2309 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2310 // grace periods. 2311 static void strict_work_handler(struct work_struct *work) 2312 { 2313 rcu_read_lock(); 2314 rcu_read_unlock(); 2315 } 2316 2317 /* Perform RCU core processing work for the current CPU. */ 2318 static __latent_entropy void rcu_core(void) 2319 { 2320 unsigned long flags; 2321 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2322 struct rcu_node *rnp = rdp->mynode; 2323 /* 2324 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2325 * Therefore this function can race with concurrent NOCB (de-)offloading 2326 * on this CPU and the below condition must be considered volatile. 2327 * However if we race with: 2328 * 2329 * _ Offloading: In the worst case we accelerate or process callbacks 2330 * concurrently with NOCB kthreads. We are guaranteed to 2331 * call rcu_nocb_lock() if that happens. 2332 * 2333 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2334 * processing. This is fine because the early stage 2335 * of deoffloading invokes rcu_core() after setting 2336 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2337 * what could have been dismissed without the need to wait 2338 * for the next rcu_pending() check in the next jiffy. 2339 */ 2340 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2341 2342 if (cpu_is_offline(smp_processor_id())) 2343 return; 2344 trace_rcu_utilization(TPS("Start RCU core")); 2345 WARN_ON_ONCE(!rdp->beenonline); 2346 2347 /* Report any deferred quiescent states if preemption enabled. */ 2348 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2349 rcu_preempt_deferred_qs(current); 2350 } else if (rcu_preempt_need_deferred_qs(current)) { 2351 set_tsk_need_resched(current); 2352 set_preempt_need_resched(); 2353 } 2354 2355 /* Update RCU state based on any recent quiescent states. */ 2356 rcu_check_quiescent_state(rdp); 2357 2358 /* No grace period and unregistered callbacks? */ 2359 if (!rcu_gp_in_progress() && 2360 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2361 rcu_nocb_lock_irqsave(rdp, flags); 2362 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2363 rcu_accelerate_cbs_unlocked(rnp, rdp); 2364 rcu_nocb_unlock_irqrestore(rdp, flags); 2365 } 2366 2367 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2368 2369 /* If there are callbacks ready, invoke them. */ 2370 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2371 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2372 rcu_do_batch(rdp); 2373 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2374 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2375 invoke_rcu_core(); 2376 } 2377 2378 /* Do any needed deferred wakeups of rcuo kthreads. */ 2379 do_nocb_deferred_wakeup(rdp); 2380 trace_rcu_utilization(TPS("End RCU core")); 2381 2382 // If strict GPs, schedule an RCU reader in a clean environment. 2383 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2384 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2385 } 2386 2387 static void rcu_core_si(struct softirq_action *h) 2388 { 2389 rcu_core(); 2390 } 2391 2392 static void rcu_wake_cond(struct task_struct *t, int status) 2393 { 2394 /* 2395 * If the thread is yielding, only wake it when this 2396 * is invoked from idle 2397 */ 2398 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2399 wake_up_process(t); 2400 } 2401 2402 static void invoke_rcu_core_kthread(void) 2403 { 2404 struct task_struct *t; 2405 unsigned long flags; 2406 2407 local_irq_save(flags); 2408 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2409 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2410 if (t != NULL && t != current) 2411 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2412 local_irq_restore(flags); 2413 } 2414 2415 /* 2416 * Wake up this CPU's rcuc kthread to do RCU core processing. 2417 */ 2418 static void invoke_rcu_core(void) 2419 { 2420 if (!cpu_online(smp_processor_id())) 2421 return; 2422 if (use_softirq) 2423 raise_softirq(RCU_SOFTIRQ); 2424 else 2425 invoke_rcu_core_kthread(); 2426 } 2427 2428 static void rcu_cpu_kthread_park(unsigned int cpu) 2429 { 2430 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2431 } 2432 2433 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2434 { 2435 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2436 } 2437 2438 /* 2439 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2440 * the RCU softirq used in configurations of RCU that do not support RCU 2441 * priority boosting. 2442 */ 2443 static void rcu_cpu_kthread(unsigned int cpu) 2444 { 2445 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2446 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2447 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2448 int spincnt; 2449 2450 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2451 for (spincnt = 0; spincnt < 10; spincnt++) { 2452 WRITE_ONCE(*j, jiffies); 2453 local_bh_disable(); 2454 *statusp = RCU_KTHREAD_RUNNING; 2455 local_irq_disable(); 2456 work = *workp; 2457 *workp = 0; 2458 local_irq_enable(); 2459 if (work) 2460 rcu_core(); 2461 local_bh_enable(); 2462 if (*workp == 0) { 2463 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2464 *statusp = RCU_KTHREAD_WAITING; 2465 return; 2466 } 2467 } 2468 *statusp = RCU_KTHREAD_YIELDING; 2469 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2470 schedule_timeout_idle(2); 2471 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2472 *statusp = RCU_KTHREAD_WAITING; 2473 WRITE_ONCE(*j, jiffies); 2474 } 2475 2476 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2477 .store = &rcu_data.rcu_cpu_kthread_task, 2478 .thread_should_run = rcu_cpu_kthread_should_run, 2479 .thread_fn = rcu_cpu_kthread, 2480 .thread_comm = "rcuc/%u", 2481 .setup = rcu_cpu_kthread_setup, 2482 .park = rcu_cpu_kthread_park, 2483 }; 2484 2485 /* 2486 * Spawn per-CPU RCU core processing kthreads. 2487 */ 2488 static int __init rcu_spawn_core_kthreads(void) 2489 { 2490 int cpu; 2491 2492 for_each_possible_cpu(cpu) 2493 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2494 if (use_softirq) 2495 return 0; 2496 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2497 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2498 return 0; 2499 } 2500 2501 /* 2502 * Handle any core-RCU processing required by a call_rcu() invocation. 2503 */ 2504 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2505 unsigned long flags) 2506 { 2507 /* 2508 * If called from an extended quiescent state, invoke the RCU 2509 * core in order to force a re-evaluation of RCU's idleness. 2510 */ 2511 if (!rcu_is_watching()) 2512 invoke_rcu_core(); 2513 2514 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2515 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2516 return; 2517 2518 /* 2519 * Force the grace period if too many callbacks or too long waiting. 2520 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2521 * if some other CPU has recently done so. Also, don't bother 2522 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2523 * is the only one waiting for a grace period to complete. 2524 */ 2525 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2526 rdp->qlen_last_fqs_check + qhimark)) { 2527 2528 /* Are we ignoring a completed grace period? */ 2529 note_gp_changes(rdp); 2530 2531 /* Start a new grace period if one not already started. */ 2532 if (!rcu_gp_in_progress()) { 2533 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2534 } else { 2535 /* Give the grace period a kick. */ 2536 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2537 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2538 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2539 rcu_force_quiescent_state(); 2540 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2541 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2542 } 2543 } 2544 } 2545 2546 /* 2547 * RCU callback function to leak a callback. 2548 */ 2549 static void rcu_leak_callback(struct rcu_head *rhp) 2550 { 2551 } 2552 2553 /* 2554 * Check and if necessary update the leaf rcu_node structure's 2555 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2556 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2557 * structure's ->lock. 2558 */ 2559 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2560 { 2561 raw_lockdep_assert_held_rcu_node(rnp); 2562 if (qovld_calc <= 0) 2563 return; // Early boot and wildcard value set. 2564 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2565 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2566 else 2567 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2568 } 2569 2570 /* 2571 * Check and if necessary update the leaf rcu_node structure's 2572 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2573 * number of queued RCU callbacks. No locks need be held, but the 2574 * caller must have disabled interrupts. 2575 * 2576 * Note that this function ignores the possibility that there are a lot 2577 * of callbacks all of which have already seen the end of their respective 2578 * grace periods. This omission is due to the need for no-CBs CPUs to 2579 * be holding ->nocb_lock to do this check, which is too heavy for a 2580 * common-case operation. 2581 */ 2582 static void check_cb_ovld(struct rcu_data *rdp) 2583 { 2584 struct rcu_node *const rnp = rdp->mynode; 2585 2586 if (qovld_calc <= 0 || 2587 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2588 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2589 return; // Early boot wildcard value or already set correctly. 2590 raw_spin_lock_rcu_node(rnp); 2591 check_cb_ovld_locked(rdp, rnp); 2592 raw_spin_unlock_rcu_node(rnp); 2593 } 2594 2595 static void 2596 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2597 { 2598 static atomic_t doublefrees; 2599 unsigned long flags; 2600 bool lazy; 2601 struct rcu_data *rdp; 2602 bool was_alldone; 2603 2604 /* Misaligned rcu_head! */ 2605 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2606 2607 if (debug_rcu_head_queue(head)) { 2608 /* 2609 * Probable double call_rcu(), so leak the callback. 2610 * Use rcu:rcu_callback trace event to find the previous 2611 * time callback was passed to call_rcu(). 2612 */ 2613 if (atomic_inc_return(&doublefrees) < 4) { 2614 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2615 mem_dump_obj(head); 2616 } 2617 WRITE_ONCE(head->func, rcu_leak_callback); 2618 return; 2619 } 2620 head->func = func; 2621 head->next = NULL; 2622 kasan_record_aux_stack_noalloc(head); 2623 local_irq_save(flags); 2624 rdp = this_cpu_ptr(&rcu_data); 2625 lazy = lazy_in && !rcu_async_should_hurry(); 2626 2627 /* Add the callback to our list. */ 2628 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2629 // This can trigger due to call_rcu() from offline CPU: 2630 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2631 WARN_ON_ONCE(!rcu_is_watching()); 2632 // Very early boot, before rcu_init(). Initialize if needed 2633 // and then drop through to queue the callback. 2634 if (rcu_segcblist_empty(&rdp->cblist)) 2635 rcu_segcblist_init(&rdp->cblist); 2636 } 2637 2638 check_cb_ovld(rdp); 2639 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2640 return; // Enqueued onto ->nocb_bypass, so just leave. 2641 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2642 rcu_segcblist_enqueue(&rdp->cblist, head); 2643 if (__is_kvfree_rcu_offset((unsigned long)func)) 2644 trace_rcu_kvfree_callback(rcu_state.name, head, 2645 (unsigned long)func, 2646 rcu_segcblist_n_cbs(&rdp->cblist)); 2647 else 2648 trace_rcu_callback(rcu_state.name, head, 2649 rcu_segcblist_n_cbs(&rdp->cblist)); 2650 2651 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2652 2653 /* Go handle any RCU core processing required. */ 2654 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2655 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2656 } else { 2657 __call_rcu_core(rdp, head, flags); 2658 local_irq_restore(flags); 2659 } 2660 } 2661 2662 #ifdef CONFIG_RCU_LAZY 2663 /** 2664 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2665 * flush all lazy callbacks (including the new one) to the main ->cblist while 2666 * doing so. 2667 * 2668 * @head: structure to be used for queueing the RCU updates. 2669 * @func: actual callback function to be invoked after the grace period 2670 * 2671 * The callback function will be invoked some time after a full grace 2672 * period elapses, in other words after all pre-existing RCU read-side 2673 * critical sections have completed. 2674 * 2675 * Use this API instead of call_rcu() if you don't want the callback to be 2676 * invoked after very long periods of time, which can happen on systems without 2677 * memory pressure and on systems which are lightly loaded or mostly idle. 2678 * This function will cause callbacks to be invoked sooner than later at the 2679 * expense of extra power. Other than that, this function is identical to, and 2680 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2681 * ordering and other functionality. 2682 */ 2683 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2684 { 2685 return __call_rcu_common(head, func, false); 2686 } 2687 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2688 #endif 2689 2690 /** 2691 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2692 * By default the callbacks are 'lazy' and are kept hidden from the main 2693 * ->cblist to prevent starting of grace periods too soon. 2694 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2695 * 2696 * @head: structure to be used for queueing the RCU updates. 2697 * @func: actual callback function to be invoked after the grace period 2698 * 2699 * The callback function will be invoked some time after a full grace 2700 * period elapses, in other words after all pre-existing RCU read-side 2701 * critical sections have completed. However, the callback function 2702 * might well execute concurrently with RCU read-side critical sections 2703 * that started after call_rcu() was invoked. 2704 * 2705 * RCU read-side critical sections are delimited by rcu_read_lock() 2706 * and rcu_read_unlock(), and may be nested. In addition, but only in 2707 * v5.0 and later, regions of code across which interrupts, preemption, 2708 * or softirqs have been disabled also serve as RCU read-side critical 2709 * sections. This includes hardware interrupt handlers, softirq handlers, 2710 * and NMI handlers. 2711 * 2712 * Note that all CPUs must agree that the grace period extended beyond 2713 * all pre-existing RCU read-side critical section. On systems with more 2714 * than one CPU, this means that when "func()" is invoked, each CPU is 2715 * guaranteed to have executed a full memory barrier since the end of its 2716 * last RCU read-side critical section whose beginning preceded the call 2717 * to call_rcu(). It also means that each CPU executing an RCU read-side 2718 * critical section that continues beyond the start of "func()" must have 2719 * executed a memory barrier after the call_rcu() but before the beginning 2720 * of that RCU read-side critical section. Note that these guarantees 2721 * include CPUs that are offline, idle, or executing in user mode, as 2722 * well as CPUs that are executing in the kernel. 2723 * 2724 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2725 * resulting RCU callback function "func()", then both CPU A and CPU B are 2726 * guaranteed to execute a full memory barrier during the time interval 2727 * between the call to call_rcu() and the invocation of "func()" -- even 2728 * if CPU A and CPU B are the same CPU (but again only if the system has 2729 * more than one CPU). 2730 * 2731 * Implementation of these memory-ordering guarantees is described here: 2732 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2733 */ 2734 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2735 { 2736 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2737 } 2738 EXPORT_SYMBOL_GPL(call_rcu); 2739 2740 /* Maximum number of jiffies to wait before draining a batch. */ 2741 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2742 #define KFREE_N_BATCHES 2 2743 #define FREE_N_CHANNELS 2 2744 2745 /** 2746 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2747 * @list: List node. All blocks are linked between each other 2748 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2749 * @nr_records: Number of active pointers in the array 2750 * @records: Array of the kvfree_rcu() pointers 2751 */ 2752 struct kvfree_rcu_bulk_data { 2753 struct list_head list; 2754 unsigned long gp_snap; 2755 unsigned long nr_records; 2756 void *records[]; 2757 }; 2758 2759 /* 2760 * This macro defines how many entries the "records" array 2761 * will contain. It is based on the fact that the size of 2762 * kvfree_rcu_bulk_data structure becomes exactly one page. 2763 */ 2764 #define KVFREE_BULK_MAX_ENTR \ 2765 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2766 2767 /** 2768 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2769 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2770 * @head_free: List of kfree_rcu() objects waiting for a grace period 2771 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2772 * @krcp: Pointer to @kfree_rcu_cpu structure 2773 */ 2774 2775 struct kfree_rcu_cpu_work { 2776 struct rcu_work rcu_work; 2777 struct rcu_head *head_free; 2778 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2779 struct kfree_rcu_cpu *krcp; 2780 }; 2781 2782 /** 2783 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2784 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2785 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2786 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2787 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2788 * @lock: Synchronize access to this structure 2789 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2790 * @initialized: The @rcu_work fields have been initialized 2791 * @head_count: Number of objects in rcu_head singular list 2792 * @bulk_count: Number of objects in bulk-list 2793 * @bkvcache: 2794 * A simple cache list that contains objects for reuse purpose. 2795 * In order to save some per-cpu space the list is singular. 2796 * Even though it is lockless an access has to be protected by the 2797 * per-cpu lock. 2798 * @page_cache_work: A work to refill the cache when it is empty 2799 * @backoff_page_cache_fill: Delay cache refills 2800 * @work_in_progress: Indicates that page_cache_work is running 2801 * @hrtimer: A hrtimer for scheduling a page_cache_work 2802 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2803 * 2804 * This is a per-CPU structure. The reason that it is not included in 2805 * the rcu_data structure is to permit this code to be extracted from 2806 * the RCU files. Such extraction could allow further optimization of 2807 * the interactions with the slab allocators. 2808 */ 2809 struct kfree_rcu_cpu { 2810 // Objects queued on a linked list 2811 // through their rcu_head structures. 2812 struct rcu_head *head; 2813 unsigned long head_gp_snap; 2814 atomic_t head_count; 2815 2816 // Objects queued on a bulk-list. 2817 struct list_head bulk_head[FREE_N_CHANNELS]; 2818 atomic_t bulk_count[FREE_N_CHANNELS]; 2819 2820 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2821 raw_spinlock_t lock; 2822 struct delayed_work monitor_work; 2823 bool initialized; 2824 2825 struct delayed_work page_cache_work; 2826 atomic_t backoff_page_cache_fill; 2827 atomic_t work_in_progress; 2828 struct hrtimer hrtimer; 2829 2830 struct llist_head bkvcache; 2831 int nr_bkv_objs; 2832 }; 2833 2834 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2835 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2836 }; 2837 2838 static __always_inline void 2839 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2840 { 2841 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2842 int i; 2843 2844 for (i = 0; i < bhead->nr_records; i++) 2845 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2846 #endif 2847 } 2848 2849 static inline struct kfree_rcu_cpu * 2850 krc_this_cpu_lock(unsigned long *flags) 2851 { 2852 struct kfree_rcu_cpu *krcp; 2853 2854 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2855 krcp = this_cpu_ptr(&krc); 2856 raw_spin_lock(&krcp->lock); 2857 2858 return krcp; 2859 } 2860 2861 static inline void 2862 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2863 { 2864 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2865 } 2866 2867 static inline struct kvfree_rcu_bulk_data * 2868 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2869 { 2870 if (!krcp->nr_bkv_objs) 2871 return NULL; 2872 2873 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2874 return (struct kvfree_rcu_bulk_data *) 2875 llist_del_first(&krcp->bkvcache); 2876 } 2877 2878 static inline bool 2879 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2880 struct kvfree_rcu_bulk_data *bnode) 2881 { 2882 // Check the limit. 2883 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2884 return false; 2885 2886 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2887 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2888 return true; 2889 } 2890 2891 static int 2892 drain_page_cache(struct kfree_rcu_cpu *krcp) 2893 { 2894 unsigned long flags; 2895 struct llist_node *page_list, *pos, *n; 2896 int freed = 0; 2897 2898 raw_spin_lock_irqsave(&krcp->lock, flags); 2899 page_list = llist_del_all(&krcp->bkvcache); 2900 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2901 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2902 2903 llist_for_each_safe(pos, n, page_list) { 2904 free_page((unsigned long)pos); 2905 freed++; 2906 } 2907 2908 return freed; 2909 } 2910 2911 static void 2912 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 2913 struct kvfree_rcu_bulk_data *bnode, int idx) 2914 { 2915 unsigned long flags; 2916 int i; 2917 2918 debug_rcu_bhead_unqueue(bnode); 2919 2920 rcu_lock_acquire(&rcu_callback_map); 2921 if (idx == 0) { // kmalloc() / kfree(). 2922 trace_rcu_invoke_kfree_bulk_callback( 2923 rcu_state.name, bnode->nr_records, 2924 bnode->records); 2925 2926 kfree_bulk(bnode->nr_records, bnode->records); 2927 } else { // vmalloc() / vfree(). 2928 for (i = 0; i < bnode->nr_records; i++) { 2929 trace_rcu_invoke_kvfree_callback( 2930 rcu_state.name, bnode->records[i], 0); 2931 2932 vfree(bnode->records[i]); 2933 } 2934 } 2935 rcu_lock_release(&rcu_callback_map); 2936 2937 raw_spin_lock_irqsave(&krcp->lock, flags); 2938 if (put_cached_bnode(krcp, bnode)) 2939 bnode = NULL; 2940 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2941 2942 if (bnode) 2943 free_page((unsigned long) bnode); 2944 2945 cond_resched_tasks_rcu_qs(); 2946 } 2947 2948 static void 2949 kvfree_rcu_list(struct rcu_head *head) 2950 { 2951 struct rcu_head *next; 2952 2953 for (; head; head = next) { 2954 void *ptr = (void *) head->func; 2955 unsigned long offset = (void *) head - ptr; 2956 2957 next = head->next; 2958 debug_rcu_head_unqueue((struct rcu_head *)ptr); 2959 rcu_lock_acquire(&rcu_callback_map); 2960 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 2961 2962 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 2963 kvfree(ptr); 2964 2965 rcu_lock_release(&rcu_callback_map); 2966 cond_resched_tasks_rcu_qs(); 2967 } 2968 } 2969 2970 /* 2971 * This function is invoked in workqueue context after a grace period. 2972 * It frees all the objects queued on ->bulk_head_free or ->head_free. 2973 */ 2974 static void kfree_rcu_work(struct work_struct *work) 2975 { 2976 unsigned long flags; 2977 struct kvfree_rcu_bulk_data *bnode, *n; 2978 struct list_head bulk_head[FREE_N_CHANNELS]; 2979 struct rcu_head *head; 2980 struct kfree_rcu_cpu *krcp; 2981 struct kfree_rcu_cpu_work *krwp; 2982 int i; 2983 2984 krwp = container_of(to_rcu_work(work), 2985 struct kfree_rcu_cpu_work, rcu_work); 2986 krcp = krwp->krcp; 2987 2988 raw_spin_lock_irqsave(&krcp->lock, flags); 2989 // Channels 1 and 2. 2990 for (i = 0; i < FREE_N_CHANNELS; i++) 2991 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 2992 2993 // Channel 3. 2994 head = krwp->head_free; 2995 krwp->head_free = NULL; 2996 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2997 2998 // Handle the first two channels. 2999 for (i = 0; i < FREE_N_CHANNELS; i++) { 3000 // Start from the tail page, so a GP is likely passed for it. 3001 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3002 kvfree_rcu_bulk(krcp, bnode, i); 3003 } 3004 3005 /* 3006 * This is used when the "bulk" path can not be used for the 3007 * double-argument of kvfree_rcu(). This happens when the 3008 * page-cache is empty, which means that objects are instead 3009 * queued on a linked list through their rcu_head structures. 3010 * This list is named "Channel 3". 3011 */ 3012 kvfree_rcu_list(head); 3013 } 3014 3015 static bool 3016 need_offload_krc(struct kfree_rcu_cpu *krcp) 3017 { 3018 int i; 3019 3020 for (i = 0; i < FREE_N_CHANNELS; i++) 3021 if (!list_empty(&krcp->bulk_head[i])) 3022 return true; 3023 3024 return !!READ_ONCE(krcp->head); 3025 } 3026 3027 static bool 3028 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3029 { 3030 int i; 3031 3032 for (i = 0; i < FREE_N_CHANNELS; i++) 3033 if (!list_empty(&krwp->bulk_head_free[i])) 3034 return true; 3035 3036 return !!krwp->head_free; 3037 } 3038 3039 static int krc_count(struct kfree_rcu_cpu *krcp) 3040 { 3041 int sum = atomic_read(&krcp->head_count); 3042 int i; 3043 3044 for (i = 0; i < FREE_N_CHANNELS; i++) 3045 sum += atomic_read(&krcp->bulk_count[i]); 3046 3047 return sum; 3048 } 3049 3050 static void 3051 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3052 { 3053 long delay, delay_left; 3054 3055 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3056 if (delayed_work_pending(&krcp->monitor_work)) { 3057 delay_left = krcp->monitor_work.timer.expires - jiffies; 3058 if (delay < delay_left) 3059 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3060 return; 3061 } 3062 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3063 } 3064 3065 static void 3066 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3067 { 3068 struct list_head bulk_ready[FREE_N_CHANNELS]; 3069 struct kvfree_rcu_bulk_data *bnode, *n; 3070 struct rcu_head *head_ready = NULL; 3071 unsigned long flags; 3072 int i; 3073 3074 raw_spin_lock_irqsave(&krcp->lock, flags); 3075 for (i = 0; i < FREE_N_CHANNELS; i++) { 3076 INIT_LIST_HEAD(&bulk_ready[i]); 3077 3078 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3079 if (!poll_state_synchronize_rcu(bnode->gp_snap)) 3080 break; 3081 3082 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3083 list_move(&bnode->list, &bulk_ready[i]); 3084 } 3085 } 3086 3087 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3088 head_ready = krcp->head; 3089 atomic_set(&krcp->head_count, 0); 3090 WRITE_ONCE(krcp->head, NULL); 3091 } 3092 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3093 3094 for (i = 0; i < FREE_N_CHANNELS; i++) { 3095 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3096 kvfree_rcu_bulk(krcp, bnode, i); 3097 } 3098 3099 if (head_ready) 3100 kvfree_rcu_list(head_ready); 3101 } 3102 3103 /* 3104 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3105 */ 3106 static void kfree_rcu_monitor(struct work_struct *work) 3107 { 3108 struct kfree_rcu_cpu *krcp = container_of(work, 3109 struct kfree_rcu_cpu, monitor_work.work); 3110 unsigned long flags; 3111 int i, j; 3112 3113 // Drain ready for reclaim. 3114 kvfree_rcu_drain_ready(krcp); 3115 3116 raw_spin_lock_irqsave(&krcp->lock, flags); 3117 3118 // Attempt to start a new batch. 3119 for (i = 0; i < KFREE_N_BATCHES; i++) { 3120 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3121 3122 // Try to detach bulk_head or head and attach it, only when 3123 // all channels are free. Any channel is not free means at krwp 3124 // there is on-going rcu work to handle krwp's free business. 3125 if (need_wait_for_krwp_work(krwp)) 3126 continue; 3127 3128 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3129 if (need_offload_krc(krcp)) { 3130 // Channel 1 corresponds to the SLAB-pointer bulk path. 3131 // Channel 2 corresponds to vmalloc-pointer bulk path. 3132 for (j = 0; j < FREE_N_CHANNELS; j++) { 3133 if (list_empty(&krwp->bulk_head_free[j])) { 3134 atomic_set(&krcp->bulk_count[j], 0); 3135 list_replace_init(&krcp->bulk_head[j], 3136 &krwp->bulk_head_free[j]); 3137 } 3138 } 3139 3140 // Channel 3 corresponds to both SLAB and vmalloc 3141 // objects queued on the linked list. 3142 if (!krwp->head_free) { 3143 krwp->head_free = krcp->head; 3144 atomic_set(&krcp->head_count, 0); 3145 WRITE_ONCE(krcp->head, NULL); 3146 } 3147 3148 // One work is per one batch, so there are three 3149 // "free channels", the batch can handle. It can 3150 // be that the work is in the pending state when 3151 // channels have been detached following by each 3152 // other. 3153 queue_rcu_work(system_wq, &krwp->rcu_work); 3154 } 3155 } 3156 3157 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3158 3159 // If there is nothing to detach, it means that our job is 3160 // successfully done here. In case of having at least one 3161 // of the channels that is still busy we should rearm the 3162 // work to repeat an attempt. Because previous batches are 3163 // still in progress. 3164 if (need_offload_krc(krcp)) 3165 schedule_delayed_monitor_work(krcp); 3166 } 3167 3168 static enum hrtimer_restart 3169 schedule_page_work_fn(struct hrtimer *t) 3170 { 3171 struct kfree_rcu_cpu *krcp = 3172 container_of(t, struct kfree_rcu_cpu, hrtimer); 3173 3174 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3175 return HRTIMER_NORESTART; 3176 } 3177 3178 static void fill_page_cache_func(struct work_struct *work) 3179 { 3180 struct kvfree_rcu_bulk_data *bnode; 3181 struct kfree_rcu_cpu *krcp = 3182 container_of(work, struct kfree_rcu_cpu, 3183 page_cache_work.work); 3184 unsigned long flags; 3185 int nr_pages; 3186 bool pushed; 3187 int i; 3188 3189 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3190 1 : rcu_min_cached_objs; 3191 3192 for (i = 0; i < nr_pages; i++) { 3193 bnode = (struct kvfree_rcu_bulk_data *) 3194 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3195 3196 if (!bnode) 3197 break; 3198 3199 raw_spin_lock_irqsave(&krcp->lock, flags); 3200 pushed = put_cached_bnode(krcp, bnode); 3201 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3202 3203 if (!pushed) { 3204 free_page((unsigned long) bnode); 3205 break; 3206 } 3207 } 3208 3209 atomic_set(&krcp->work_in_progress, 0); 3210 atomic_set(&krcp->backoff_page_cache_fill, 0); 3211 } 3212 3213 static void 3214 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3215 { 3216 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3217 !atomic_xchg(&krcp->work_in_progress, 1)) { 3218 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3219 queue_delayed_work(system_wq, 3220 &krcp->page_cache_work, 3221 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3222 } else { 3223 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3224 krcp->hrtimer.function = schedule_page_work_fn; 3225 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3226 } 3227 } 3228 } 3229 3230 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3231 // state specified by flags. If can_alloc is true, the caller must 3232 // be schedulable and not be holding any locks or mutexes that might be 3233 // acquired by the memory allocator or anything that it might invoke. 3234 // Returns true if ptr was successfully recorded, else the caller must 3235 // use a fallback. 3236 static inline bool 3237 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3238 unsigned long *flags, void *ptr, bool can_alloc) 3239 { 3240 struct kvfree_rcu_bulk_data *bnode; 3241 int idx; 3242 3243 *krcp = krc_this_cpu_lock(flags); 3244 if (unlikely(!(*krcp)->initialized)) 3245 return false; 3246 3247 idx = !!is_vmalloc_addr(ptr); 3248 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3249 struct kvfree_rcu_bulk_data, list); 3250 3251 /* Check if a new block is required. */ 3252 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3253 bnode = get_cached_bnode(*krcp); 3254 if (!bnode && can_alloc) { 3255 krc_this_cpu_unlock(*krcp, *flags); 3256 3257 // __GFP_NORETRY - allows a light-weight direct reclaim 3258 // what is OK from minimizing of fallback hitting point of 3259 // view. Apart of that it forbids any OOM invoking what is 3260 // also beneficial since we are about to release memory soon. 3261 // 3262 // __GFP_NOMEMALLOC - prevents from consuming of all the 3263 // memory reserves. Please note we have a fallback path. 3264 // 3265 // __GFP_NOWARN - it is supposed that an allocation can 3266 // be failed under low memory or high memory pressure 3267 // scenarios. 3268 bnode = (struct kvfree_rcu_bulk_data *) 3269 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3270 *krcp = krc_this_cpu_lock(flags); 3271 } 3272 3273 if (!bnode) 3274 return false; 3275 3276 // Initialize the new block and attach it. 3277 bnode->nr_records = 0; 3278 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3279 } 3280 3281 // Finally insert and update the GP for this page. 3282 bnode->records[bnode->nr_records++] = ptr; 3283 bnode->gp_snap = get_state_synchronize_rcu(); 3284 atomic_inc(&(*krcp)->bulk_count[idx]); 3285 3286 return true; 3287 } 3288 3289 /* 3290 * Queue a request for lazy invocation of the appropriate free routine 3291 * after a grace period. Please note that three paths are maintained, 3292 * two for the common case using arrays of pointers and a third one that 3293 * is used only when the main paths cannot be used, for example, due to 3294 * memory pressure. 3295 * 3296 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3297 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3298 * be free'd in workqueue context. This allows us to: batch requests together to 3299 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3300 */ 3301 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3302 { 3303 unsigned long flags; 3304 struct kfree_rcu_cpu *krcp; 3305 bool success; 3306 3307 /* 3308 * Please note there is a limitation for the head-less 3309 * variant, that is why there is a clear rule for such 3310 * objects: it can be used from might_sleep() context 3311 * only. For other places please embed an rcu_head to 3312 * your data. 3313 */ 3314 if (!head) 3315 might_sleep(); 3316 3317 // Queue the object but don't yet schedule the batch. 3318 if (debug_rcu_head_queue(ptr)) { 3319 // Probable double kfree_rcu(), just leak. 3320 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3321 __func__, head); 3322 3323 // Mark as success and leave. 3324 return; 3325 } 3326 3327 kasan_record_aux_stack_noalloc(ptr); 3328 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3329 if (!success) { 3330 run_page_cache_worker(krcp); 3331 3332 if (head == NULL) 3333 // Inline if kvfree_rcu(one_arg) call. 3334 goto unlock_return; 3335 3336 head->func = ptr; 3337 head->next = krcp->head; 3338 WRITE_ONCE(krcp->head, head); 3339 atomic_inc(&krcp->head_count); 3340 3341 // Take a snapshot for this krcp. 3342 krcp->head_gp_snap = get_state_synchronize_rcu(); 3343 success = true; 3344 } 3345 3346 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3347 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3348 schedule_delayed_monitor_work(krcp); 3349 3350 unlock_return: 3351 krc_this_cpu_unlock(krcp, flags); 3352 3353 /* 3354 * Inline kvfree() after synchronize_rcu(). We can do 3355 * it from might_sleep() context only, so the current 3356 * CPU can pass the QS state. 3357 */ 3358 if (!success) { 3359 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3360 synchronize_rcu(); 3361 kvfree(ptr); 3362 } 3363 } 3364 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3365 3366 static unsigned long 3367 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3368 { 3369 int cpu; 3370 unsigned long count = 0; 3371 3372 /* Snapshot count of all CPUs */ 3373 for_each_possible_cpu(cpu) { 3374 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3375 3376 count += krc_count(krcp); 3377 count += READ_ONCE(krcp->nr_bkv_objs); 3378 atomic_set(&krcp->backoff_page_cache_fill, 1); 3379 } 3380 3381 return count == 0 ? SHRINK_EMPTY : count; 3382 } 3383 3384 static unsigned long 3385 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3386 { 3387 int cpu, freed = 0; 3388 3389 for_each_possible_cpu(cpu) { 3390 int count; 3391 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3392 3393 count = krc_count(krcp); 3394 count += drain_page_cache(krcp); 3395 kfree_rcu_monitor(&krcp->monitor_work.work); 3396 3397 sc->nr_to_scan -= count; 3398 freed += count; 3399 3400 if (sc->nr_to_scan <= 0) 3401 break; 3402 } 3403 3404 return freed == 0 ? SHRINK_STOP : freed; 3405 } 3406 3407 static struct shrinker kfree_rcu_shrinker = { 3408 .count_objects = kfree_rcu_shrink_count, 3409 .scan_objects = kfree_rcu_shrink_scan, 3410 .batch = 0, 3411 .seeks = DEFAULT_SEEKS, 3412 }; 3413 3414 void __init kfree_rcu_scheduler_running(void) 3415 { 3416 int cpu; 3417 3418 for_each_possible_cpu(cpu) { 3419 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3420 3421 if (need_offload_krc(krcp)) 3422 schedule_delayed_monitor_work(krcp); 3423 } 3424 } 3425 3426 /* 3427 * During early boot, any blocking grace-period wait automatically 3428 * implies a grace period. 3429 * 3430 * Later on, this could in theory be the case for kernels built with 3431 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3432 * is not a common case. Furthermore, this optimization would cause 3433 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3434 * grace-period optimization is ignored once the scheduler is running. 3435 */ 3436 static int rcu_blocking_is_gp(void) 3437 { 3438 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3439 might_sleep(); 3440 return false; 3441 } 3442 return true; 3443 } 3444 3445 /** 3446 * synchronize_rcu - wait until a grace period has elapsed. 3447 * 3448 * Control will return to the caller some time after a full grace 3449 * period has elapsed, in other words after all currently executing RCU 3450 * read-side critical sections have completed. Note, however, that 3451 * upon return from synchronize_rcu(), the caller might well be executing 3452 * concurrently with new RCU read-side critical sections that began while 3453 * synchronize_rcu() was waiting. 3454 * 3455 * RCU read-side critical sections are delimited by rcu_read_lock() 3456 * and rcu_read_unlock(), and may be nested. In addition, but only in 3457 * v5.0 and later, regions of code across which interrupts, preemption, 3458 * or softirqs have been disabled also serve as RCU read-side critical 3459 * sections. This includes hardware interrupt handlers, softirq handlers, 3460 * and NMI handlers. 3461 * 3462 * Note that this guarantee implies further memory-ordering guarantees. 3463 * On systems with more than one CPU, when synchronize_rcu() returns, 3464 * each CPU is guaranteed to have executed a full memory barrier since 3465 * the end of its last RCU read-side critical section whose beginning 3466 * preceded the call to synchronize_rcu(). In addition, each CPU having 3467 * an RCU read-side critical section that extends beyond the return from 3468 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3469 * after the beginning of synchronize_rcu() and before the beginning of 3470 * that RCU read-side critical section. Note that these guarantees include 3471 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3472 * that are executing in the kernel. 3473 * 3474 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3475 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3476 * to have executed a full memory barrier during the execution of 3477 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3478 * again only if the system has more than one CPU). 3479 * 3480 * Implementation of these memory-ordering guarantees is described here: 3481 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3482 */ 3483 void synchronize_rcu(void) 3484 { 3485 unsigned long flags; 3486 struct rcu_node *rnp; 3487 3488 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3489 lock_is_held(&rcu_lock_map) || 3490 lock_is_held(&rcu_sched_lock_map), 3491 "Illegal synchronize_rcu() in RCU read-side critical section"); 3492 if (!rcu_blocking_is_gp()) { 3493 if (rcu_gp_is_expedited()) 3494 synchronize_rcu_expedited(); 3495 else 3496 wait_rcu_gp(call_rcu_hurry); 3497 return; 3498 } 3499 3500 // Context allows vacuous grace periods. 3501 // Note well that this code runs with !PREEMPT && !SMP. 3502 // In addition, all code that advances grace periods runs at 3503 // process level. Therefore, this normal GP overlaps with other 3504 // normal GPs only by being fully nested within them, which allows 3505 // reuse of ->gp_seq_polled_snap. 3506 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3507 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3508 3509 // Update the normal grace-period counters to record 3510 // this grace period, but only those used by the boot CPU. 3511 // The rcu_scheduler_starting() will take care of the rest of 3512 // these counters. 3513 local_irq_save(flags); 3514 WARN_ON_ONCE(num_online_cpus() > 1); 3515 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3516 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3517 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3518 local_irq_restore(flags); 3519 } 3520 EXPORT_SYMBOL_GPL(synchronize_rcu); 3521 3522 /** 3523 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3524 * @rgosp: Place to put state cookie 3525 * 3526 * Stores into @rgosp a value that will always be treated by functions 3527 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3528 * has already completed. 3529 */ 3530 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3531 { 3532 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3533 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3534 } 3535 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3536 3537 /** 3538 * get_state_synchronize_rcu - Snapshot current RCU state 3539 * 3540 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3541 * or poll_state_synchronize_rcu() to determine whether or not a full 3542 * grace period has elapsed in the meantime. 3543 */ 3544 unsigned long get_state_synchronize_rcu(void) 3545 { 3546 /* 3547 * Any prior manipulation of RCU-protected data must happen 3548 * before the load from ->gp_seq. 3549 */ 3550 smp_mb(); /* ^^^ */ 3551 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3552 } 3553 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3554 3555 /** 3556 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3557 * @rgosp: location to place combined normal/expedited grace-period state 3558 * 3559 * Places the normal and expedited grace-period states in @rgosp. This 3560 * state value can be passed to a later call to cond_synchronize_rcu_full() 3561 * or poll_state_synchronize_rcu_full() to determine whether or not a 3562 * grace period (whether normal or expedited) has elapsed in the meantime. 3563 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3564 * long, but is guaranteed to see all grace periods. In contrast, the 3565 * combined state occupies less memory, but can sometimes fail to take 3566 * grace periods into account. 3567 * 3568 * This does not guarantee that the needed grace period will actually 3569 * start. 3570 */ 3571 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3572 { 3573 struct rcu_node *rnp = rcu_get_root(); 3574 3575 /* 3576 * Any prior manipulation of RCU-protected data must happen 3577 * before the loads from ->gp_seq and ->expedited_sequence. 3578 */ 3579 smp_mb(); /* ^^^ */ 3580 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3581 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3582 } 3583 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3584 3585 /* 3586 * Helper function for start_poll_synchronize_rcu() and 3587 * start_poll_synchronize_rcu_full(). 3588 */ 3589 static void start_poll_synchronize_rcu_common(void) 3590 { 3591 unsigned long flags; 3592 bool needwake; 3593 struct rcu_data *rdp; 3594 struct rcu_node *rnp; 3595 3596 lockdep_assert_irqs_enabled(); 3597 local_irq_save(flags); 3598 rdp = this_cpu_ptr(&rcu_data); 3599 rnp = rdp->mynode; 3600 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3601 // Note it is possible for a grace period to have elapsed between 3602 // the above call to get_state_synchronize_rcu() and the below call 3603 // to rcu_seq_snap. This is OK, the worst that happens is that we 3604 // get a grace period that no one needed. These accesses are ordered 3605 // by smp_mb(), and we are accessing them in the opposite order 3606 // from which they are updated at grace-period start, as required. 3607 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3608 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3609 if (needwake) 3610 rcu_gp_kthread_wake(); 3611 } 3612 3613 /** 3614 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3615 * 3616 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3617 * or poll_state_synchronize_rcu() to determine whether or not a full 3618 * grace period has elapsed in the meantime. If the needed grace period 3619 * is not already slated to start, notifies RCU core of the need for that 3620 * grace period. 3621 * 3622 * Interrupts must be enabled for the case where it is necessary to awaken 3623 * the grace-period kthread. 3624 */ 3625 unsigned long start_poll_synchronize_rcu(void) 3626 { 3627 unsigned long gp_seq = get_state_synchronize_rcu(); 3628 3629 start_poll_synchronize_rcu_common(); 3630 return gp_seq; 3631 } 3632 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3633 3634 /** 3635 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3636 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3637 * 3638 * Places the normal and expedited grace-period states in *@rgos. This 3639 * state value can be passed to a later call to cond_synchronize_rcu_full() 3640 * or poll_state_synchronize_rcu_full() to determine whether or not a 3641 * grace period (whether normal or expedited) has elapsed in the meantime. 3642 * If the needed grace period is not already slated to start, notifies 3643 * RCU core of the need for that grace period. 3644 * 3645 * Interrupts must be enabled for the case where it is necessary to awaken 3646 * the grace-period kthread. 3647 */ 3648 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3649 { 3650 get_state_synchronize_rcu_full(rgosp); 3651 3652 start_poll_synchronize_rcu_common(); 3653 } 3654 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3655 3656 /** 3657 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3658 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3659 * 3660 * If a full RCU grace period has elapsed since the earlier call from 3661 * which @oldstate was obtained, return @true, otherwise return @false. 3662 * If @false is returned, it is the caller's responsibility to invoke this 3663 * function later on until it does return @true. Alternatively, the caller 3664 * can explicitly wait for a grace period, for example, by passing @oldstate 3665 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3666 * on the one hand or by directly invoking either synchronize_rcu() or 3667 * synchronize_rcu_expedited() on the other. 3668 * 3669 * Yes, this function does not take counter wrap into account. 3670 * But counter wrap is harmless. If the counter wraps, we have waited for 3671 * more than a billion grace periods (and way more on a 64-bit system!). 3672 * Those needing to keep old state values for very long time periods 3673 * (many hours even on 32-bit systems) should check them occasionally and 3674 * either refresh them or set a flag indicating that the grace period has 3675 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3676 * to get a guaranteed-completed grace-period state. 3677 * 3678 * In addition, because oldstate compresses the grace-period state for 3679 * both normal and expedited grace periods into a single unsigned long, 3680 * it can miss a grace period when synchronize_rcu() runs concurrently 3681 * with synchronize_rcu_expedited(). If this is unacceptable, please 3682 * instead use the _full() variant of these polling APIs. 3683 * 3684 * This function provides the same memory-ordering guarantees that 3685 * would be provided by a synchronize_rcu() that was invoked at the call 3686 * to the function that provided @oldstate, and that returned at the end 3687 * of this function. 3688 */ 3689 bool poll_state_synchronize_rcu(unsigned long oldstate) 3690 { 3691 if (oldstate == RCU_GET_STATE_COMPLETED || 3692 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3693 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3694 return true; 3695 } 3696 return false; 3697 } 3698 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3699 3700 /** 3701 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3702 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3703 * 3704 * If a full RCU grace period has elapsed since the earlier call from 3705 * which *rgosp was obtained, return @true, otherwise return @false. 3706 * If @false is returned, it is the caller's responsibility to invoke this 3707 * function later on until it does return @true. Alternatively, the caller 3708 * can explicitly wait for a grace period, for example, by passing @rgosp 3709 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3710 * 3711 * Yes, this function does not take counter wrap into account. 3712 * But counter wrap is harmless. If the counter wraps, we have waited 3713 * for more than a billion grace periods (and way more on a 64-bit 3714 * system!). Those needing to keep rcu_gp_oldstate values for very 3715 * long time periods (many hours even on 32-bit systems) should check 3716 * them occasionally and either refresh them or set a flag indicating 3717 * that the grace period has completed. Alternatively, they can use 3718 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3719 * grace-period state. 3720 * 3721 * This function provides the same memory-ordering guarantees that would 3722 * be provided by a synchronize_rcu() that was invoked at the call to 3723 * the function that provided @rgosp, and that returned at the end of this 3724 * function. And this guarantee requires that the root rcu_node structure's 3725 * ->gp_seq field be checked instead of that of the rcu_state structure. 3726 * The problem is that the just-ending grace-period's callbacks can be 3727 * invoked between the time that the root rcu_node structure's ->gp_seq 3728 * field is updated and the time that the rcu_state structure's ->gp_seq 3729 * field is updated. Therefore, if a single synchronize_rcu() is to 3730 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3731 * then the root rcu_node structure is the one that needs to be polled. 3732 */ 3733 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3734 { 3735 struct rcu_node *rnp = rcu_get_root(); 3736 3737 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3738 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3739 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3740 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3741 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3742 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3743 return true; 3744 } 3745 return false; 3746 } 3747 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3748 3749 /** 3750 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3751 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3752 * 3753 * If a full RCU grace period has elapsed since the earlier call to 3754 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3755 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3756 * 3757 * Yes, this function does not take counter wrap into account. 3758 * But counter wrap is harmless. If the counter wraps, we have waited for 3759 * more than 2 billion grace periods (and way more on a 64-bit system!), 3760 * so waiting for a couple of additional grace periods should be just fine. 3761 * 3762 * This function provides the same memory-ordering guarantees that 3763 * would be provided by a synchronize_rcu() that was invoked at the call 3764 * to the function that provided @oldstate and that returned at the end 3765 * of this function. 3766 */ 3767 void cond_synchronize_rcu(unsigned long oldstate) 3768 { 3769 if (!poll_state_synchronize_rcu(oldstate)) 3770 synchronize_rcu(); 3771 } 3772 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3773 3774 /** 3775 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3776 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3777 * 3778 * If a full RCU grace period has elapsed since the call to 3779 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3780 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3781 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3782 * for a full grace period. 3783 * 3784 * Yes, this function does not take counter wrap into account. 3785 * But counter wrap is harmless. If the counter wraps, we have waited for 3786 * more than 2 billion grace periods (and way more on a 64-bit system!), 3787 * so waiting for a couple of additional grace periods should be just fine. 3788 * 3789 * This function provides the same memory-ordering guarantees that 3790 * would be provided by a synchronize_rcu() that was invoked at the call 3791 * to the function that provided @rgosp and that returned at the end of 3792 * this function. 3793 */ 3794 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3795 { 3796 if (!poll_state_synchronize_rcu_full(rgosp)) 3797 synchronize_rcu(); 3798 } 3799 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3800 3801 /* 3802 * Check to see if there is any immediate RCU-related work to be done by 3803 * the current CPU, returning 1 if so and zero otherwise. The checks are 3804 * in order of increasing expense: checks that can be carried out against 3805 * CPU-local state are performed first. However, we must check for CPU 3806 * stalls first, else we might not get a chance. 3807 */ 3808 static int rcu_pending(int user) 3809 { 3810 bool gp_in_progress; 3811 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3812 struct rcu_node *rnp = rdp->mynode; 3813 3814 lockdep_assert_irqs_disabled(); 3815 3816 /* Check for CPU stalls, if enabled. */ 3817 check_cpu_stall(rdp); 3818 3819 /* Does this CPU need a deferred NOCB wakeup? */ 3820 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3821 return 1; 3822 3823 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3824 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3825 return 0; 3826 3827 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3828 gp_in_progress = rcu_gp_in_progress(); 3829 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3830 return 1; 3831 3832 /* Does this CPU have callbacks ready to invoke? */ 3833 if (!rcu_rdp_is_offloaded(rdp) && 3834 rcu_segcblist_ready_cbs(&rdp->cblist)) 3835 return 1; 3836 3837 /* Has RCU gone idle with this CPU needing another grace period? */ 3838 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3839 !rcu_rdp_is_offloaded(rdp) && 3840 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3841 return 1; 3842 3843 /* Have RCU grace period completed or started? */ 3844 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3845 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3846 return 1; 3847 3848 /* nothing to do */ 3849 return 0; 3850 } 3851 3852 /* 3853 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3854 * the compiler is expected to optimize this away. 3855 */ 3856 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3857 { 3858 trace_rcu_barrier(rcu_state.name, s, cpu, 3859 atomic_read(&rcu_state.barrier_cpu_count), done); 3860 } 3861 3862 /* 3863 * RCU callback function for rcu_barrier(). If we are last, wake 3864 * up the task executing rcu_barrier(). 3865 * 3866 * Note that the value of rcu_state.barrier_sequence must be captured 3867 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3868 * other CPUs might count the value down to zero before this CPU gets 3869 * around to invoking rcu_barrier_trace(), which might result in bogus 3870 * data from the next instance of rcu_barrier(). 3871 */ 3872 static void rcu_barrier_callback(struct rcu_head *rhp) 3873 { 3874 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3875 3876 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3877 rcu_barrier_trace(TPS("LastCB"), -1, s); 3878 complete(&rcu_state.barrier_completion); 3879 } else { 3880 rcu_barrier_trace(TPS("CB"), -1, s); 3881 } 3882 } 3883 3884 /* 3885 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3886 */ 3887 static void rcu_barrier_entrain(struct rcu_data *rdp) 3888 { 3889 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3890 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3891 bool wake_nocb = false; 3892 bool was_alldone = false; 3893 3894 lockdep_assert_held(&rcu_state.barrier_lock); 3895 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3896 return; 3897 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3898 rdp->barrier_head.func = rcu_barrier_callback; 3899 debug_rcu_head_queue(&rdp->barrier_head); 3900 rcu_nocb_lock(rdp); 3901 /* 3902 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3903 * queue. This way we don't wait for bypass timer that can reach seconds 3904 * if it's fully lazy. 3905 */ 3906 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3907 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3908 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3909 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3910 atomic_inc(&rcu_state.barrier_cpu_count); 3911 } else { 3912 debug_rcu_head_unqueue(&rdp->barrier_head); 3913 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3914 } 3915 rcu_nocb_unlock(rdp); 3916 if (wake_nocb) 3917 wake_nocb_gp(rdp, false); 3918 smp_store_release(&rdp->barrier_seq_snap, gseq); 3919 } 3920 3921 /* 3922 * Called with preemption disabled, and from cross-cpu IRQ context. 3923 */ 3924 static void rcu_barrier_handler(void *cpu_in) 3925 { 3926 uintptr_t cpu = (uintptr_t)cpu_in; 3927 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3928 3929 lockdep_assert_irqs_disabled(); 3930 WARN_ON_ONCE(cpu != rdp->cpu); 3931 WARN_ON_ONCE(cpu != smp_processor_id()); 3932 raw_spin_lock(&rcu_state.barrier_lock); 3933 rcu_barrier_entrain(rdp); 3934 raw_spin_unlock(&rcu_state.barrier_lock); 3935 } 3936 3937 /** 3938 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3939 * 3940 * Note that this primitive does not necessarily wait for an RCU grace period 3941 * to complete. For example, if there are no RCU callbacks queued anywhere 3942 * in the system, then rcu_barrier() is within its rights to return 3943 * immediately, without waiting for anything, much less an RCU grace period. 3944 */ 3945 void rcu_barrier(void) 3946 { 3947 uintptr_t cpu; 3948 unsigned long flags; 3949 unsigned long gseq; 3950 struct rcu_data *rdp; 3951 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3952 3953 rcu_barrier_trace(TPS("Begin"), -1, s); 3954 3955 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3956 mutex_lock(&rcu_state.barrier_mutex); 3957 3958 /* Did someone else do our work for us? */ 3959 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3960 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3961 smp_mb(); /* caller's subsequent code after above check. */ 3962 mutex_unlock(&rcu_state.barrier_mutex); 3963 return; 3964 } 3965 3966 /* Mark the start of the barrier operation. */ 3967 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3968 rcu_seq_start(&rcu_state.barrier_sequence); 3969 gseq = rcu_state.barrier_sequence; 3970 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3971 3972 /* 3973 * Initialize the count to two rather than to zero in order 3974 * to avoid a too-soon return to zero in case of an immediate 3975 * invocation of the just-enqueued callback (or preemption of 3976 * this task). Exclude CPU-hotplug operations to ensure that no 3977 * offline non-offloaded CPU has callbacks queued. 3978 */ 3979 init_completion(&rcu_state.barrier_completion); 3980 atomic_set(&rcu_state.barrier_cpu_count, 2); 3981 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3982 3983 /* 3984 * Force each CPU with callbacks to register a new callback. 3985 * When that callback is invoked, we will know that all of the 3986 * corresponding CPU's preceding callbacks have been invoked. 3987 */ 3988 for_each_possible_cpu(cpu) { 3989 rdp = per_cpu_ptr(&rcu_data, cpu); 3990 retry: 3991 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3992 continue; 3993 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3994 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 3995 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3996 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3997 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 3998 continue; 3999 } 4000 if (!rcu_rdp_cpu_online(rdp)) { 4001 rcu_barrier_entrain(rdp); 4002 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4003 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4004 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4005 continue; 4006 } 4007 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4008 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4009 schedule_timeout_uninterruptible(1); 4010 goto retry; 4011 } 4012 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4013 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4014 } 4015 4016 /* 4017 * Now that we have an rcu_barrier_callback() callback on each 4018 * CPU, and thus each counted, remove the initial count. 4019 */ 4020 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4021 complete(&rcu_state.barrier_completion); 4022 4023 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4024 wait_for_completion(&rcu_state.barrier_completion); 4025 4026 /* Mark the end of the barrier operation. */ 4027 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4028 rcu_seq_end(&rcu_state.barrier_sequence); 4029 gseq = rcu_state.barrier_sequence; 4030 for_each_possible_cpu(cpu) { 4031 rdp = per_cpu_ptr(&rcu_data, cpu); 4032 4033 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4034 } 4035 4036 /* Other rcu_barrier() invocations can now safely proceed. */ 4037 mutex_unlock(&rcu_state.barrier_mutex); 4038 } 4039 EXPORT_SYMBOL_GPL(rcu_barrier); 4040 4041 /* 4042 * Compute the mask of online CPUs for the specified rcu_node structure. 4043 * This will not be stable unless the rcu_node structure's ->lock is 4044 * held, but the bit corresponding to the current CPU will be stable 4045 * in most contexts. 4046 */ 4047 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4048 { 4049 return READ_ONCE(rnp->qsmaskinitnext); 4050 } 4051 4052 /* 4053 * Is the CPU corresponding to the specified rcu_data structure online 4054 * from RCU's perspective? This perspective is given by that structure's 4055 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4056 */ 4057 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4058 { 4059 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4060 } 4061 4062 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4063 4064 /* 4065 * Is the current CPU online as far as RCU is concerned? 4066 * 4067 * Disable preemption to avoid false positives that could otherwise 4068 * happen due to the current CPU number being sampled, this task being 4069 * preempted, its old CPU being taken offline, resuming on some other CPU, 4070 * then determining that its old CPU is now offline. 4071 * 4072 * Disable checking if in an NMI handler because we cannot safely 4073 * report errors from NMI handlers anyway. In addition, it is OK to use 4074 * RCU on an offline processor during initial boot, hence the check for 4075 * rcu_scheduler_fully_active. 4076 */ 4077 bool rcu_lockdep_current_cpu_online(void) 4078 { 4079 struct rcu_data *rdp; 4080 bool ret = false; 4081 4082 if (in_nmi() || !rcu_scheduler_fully_active) 4083 return true; 4084 preempt_disable_notrace(); 4085 rdp = this_cpu_ptr(&rcu_data); 4086 /* 4087 * Strictly, we care here about the case where the current CPU is 4088 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 4089 * not being up to date. So arch_spin_is_locked() might have a 4090 * false positive if it's held by some *other* CPU, but that's 4091 * OK because that just means a false *negative* on the warning. 4092 */ 4093 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4094 ret = true; 4095 preempt_enable_notrace(); 4096 return ret; 4097 } 4098 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4099 4100 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4101 4102 // Has rcu_init() been invoked? This is used (for example) to determine 4103 // whether spinlocks may be acquired safely. 4104 static bool rcu_init_invoked(void) 4105 { 4106 return !!rcu_state.n_online_cpus; 4107 } 4108 4109 /* 4110 * Near the end of the offline process. Trace the fact that this CPU 4111 * is going offline. 4112 */ 4113 int rcutree_dying_cpu(unsigned int cpu) 4114 { 4115 bool blkd; 4116 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4117 struct rcu_node *rnp = rdp->mynode; 4118 4119 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4120 return 0; 4121 4122 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4123 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4124 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4125 return 0; 4126 } 4127 4128 /* 4129 * All CPUs for the specified rcu_node structure have gone offline, 4130 * and all tasks that were preempted within an RCU read-side critical 4131 * section while running on one of those CPUs have since exited their RCU 4132 * read-side critical section. Some other CPU is reporting this fact with 4133 * the specified rcu_node structure's ->lock held and interrupts disabled. 4134 * This function therefore goes up the tree of rcu_node structures, 4135 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4136 * the leaf rcu_node structure's ->qsmaskinit field has already been 4137 * updated. 4138 * 4139 * This function does check that the specified rcu_node structure has 4140 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4141 * prematurely. That said, invoking it after the fact will cost you 4142 * a needless lock acquisition. So once it has done its work, don't 4143 * invoke it again. 4144 */ 4145 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4146 { 4147 long mask; 4148 struct rcu_node *rnp = rnp_leaf; 4149 4150 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4151 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4152 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4153 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4154 return; 4155 for (;;) { 4156 mask = rnp->grpmask; 4157 rnp = rnp->parent; 4158 if (!rnp) 4159 break; 4160 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4161 rnp->qsmaskinit &= ~mask; 4162 /* Between grace periods, so better already be zero! */ 4163 WARN_ON_ONCE(rnp->qsmask); 4164 if (rnp->qsmaskinit) { 4165 raw_spin_unlock_rcu_node(rnp); 4166 /* irqs remain disabled. */ 4167 return; 4168 } 4169 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4170 } 4171 } 4172 4173 /* 4174 * The CPU has been completely removed, and some other CPU is reporting 4175 * this fact from process context. Do the remainder of the cleanup. 4176 * There can only be one CPU hotplug operation at a time, so no need for 4177 * explicit locking. 4178 */ 4179 int rcutree_dead_cpu(unsigned int cpu) 4180 { 4181 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4182 return 0; 4183 4184 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4185 // Stop-machine done, so allow nohz_full to disable tick. 4186 tick_dep_clear(TICK_DEP_BIT_RCU); 4187 return 0; 4188 } 4189 4190 /* 4191 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4192 * first CPU in a given leaf rcu_node structure coming online. The caller 4193 * must hold the corresponding leaf rcu_node ->lock with interrupts 4194 * disabled. 4195 */ 4196 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4197 { 4198 long mask; 4199 long oldmask; 4200 struct rcu_node *rnp = rnp_leaf; 4201 4202 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4203 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4204 for (;;) { 4205 mask = rnp->grpmask; 4206 rnp = rnp->parent; 4207 if (rnp == NULL) 4208 return; 4209 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4210 oldmask = rnp->qsmaskinit; 4211 rnp->qsmaskinit |= mask; 4212 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4213 if (oldmask) 4214 return; 4215 } 4216 } 4217 4218 /* 4219 * Do boot-time initialization of a CPU's per-CPU RCU data. 4220 */ 4221 static void __init 4222 rcu_boot_init_percpu_data(int cpu) 4223 { 4224 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4225 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4226 4227 /* Set up local state, ensuring consistent view of global state. */ 4228 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4229 INIT_WORK(&rdp->strict_work, strict_work_handler); 4230 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4231 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4232 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4233 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4234 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4235 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4236 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4237 rdp->last_sched_clock = jiffies; 4238 rdp->cpu = cpu; 4239 rcu_boot_init_nocb_percpu_data(rdp); 4240 } 4241 4242 /* 4243 * Invoked early in the CPU-online process, when pretty much all services 4244 * are available. The incoming CPU is not present. 4245 * 4246 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4247 * offline event can be happening at a given time. Note also that we can 4248 * accept some slop in the rsp->gp_seq access due to the fact that this 4249 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4250 * And any offloaded callbacks are being numbered elsewhere. 4251 */ 4252 int rcutree_prepare_cpu(unsigned int cpu) 4253 { 4254 unsigned long flags; 4255 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4256 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4257 struct rcu_node *rnp = rcu_get_root(); 4258 4259 /* Set up local state, ensuring consistent view of global state. */ 4260 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4261 rdp->qlen_last_fqs_check = 0; 4262 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4263 rdp->blimit = blimit; 4264 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4265 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4266 4267 /* 4268 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4269 * (re-)initialized. 4270 */ 4271 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4272 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4273 4274 /* 4275 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4276 * propagation up the rcu_node tree will happen at the beginning 4277 * of the next grace period. 4278 */ 4279 rnp = rdp->mynode; 4280 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4281 rdp->beenonline = true; /* We have now been online. */ 4282 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4283 rdp->gp_seq_needed = rdp->gp_seq; 4284 rdp->cpu_no_qs.b.norm = true; 4285 rdp->core_needs_qs = false; 4286 rdp->rcu_iw_pending = false; 4287 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4288 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4289 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4290 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4291 rcu_spawn_one_boost_kthread(rnp); 4292 rcu_spawn_cpu_nocb_kthread(cpu); 4293 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4294 4295 return 0; 4296 } 4297 4298 /* 4299 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4300 */ 4301 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4302 { 4303 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4304 4305 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4306 } 4307 4308 /* 4309 * Near the end of the CPU-online process. Pretty much all services 4310 * enabled, and the CPU is now very much alive. 4311 */ 4312 int rcutree_online_cpu(unsigned int cpu) 4313 { 4314 unsigned long flags; 4315 struct rcu_data *rdp; 4316 struct rcu_node *rnp; 4317 4318 rdp = per_cpu_ptr(&rcu_data, cpu); 4319 rnp = rdp->mynode; 4320 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4321 rnp->ffmask |= rdp->grpmask; 4322 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4323 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4324 return 0; /* Too early in boot for scheduler work. */ 4325 sync_sched_exp_online_cleanup(cpu); 4326 rcutree_affinity_setting(cpu, -1); 4327 4328 // Stop-machine done, so allow nohz_full to disable tick. 4329 tick_dep_clear(TICK_DEP_BIT_RCU); 4330 return 0; 4331 } 4332 4333 /* 4334 * Near the beginning of the process. The CPU is still very much alive 4335 * with pretty much all services enabled. 4336 */ 4337 int rcutree_offline_cpu(unsigned int cpu) 4338 { 4339 unsigned long flags; 4340 struct rcu_data *rdp; 4341 struct rcu_node *rnp; 4342 4343 rdp = per_cpu_ptr(&rcu_data, cpu); 4344 rnp = rdp->mynode; 4345 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4346 rnp->ffmask &= ~rdp->grpmask; 4347 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4348 4349 rcutree_affinity_setting(cpu, cpu); 4350 4351 // nohz_full CPUs need the tick for stop-machine to work quickly 4352 tick_dep_set(TICK_DEP_BIT_RCU); 4353 return 0; 4354 } 4355 4356 /* 4357 * Mark the specified CPU as being online so that subsequent grace periods 4358 * (both expedited and normal) will wait on it. Note that this means that 4359 * incoming CPUs are not allowed to use RCU read-side critical sections 4360 * until this function is called. Failing to observe this restriction 4361 * will result in lockdep splats. 4362 * 4363 * Note that this function is special in that it is invoked directly 4364 * from the incoming CPU rather than from the cpuhp_step mechanism. 4365 * This is because this function must be invoked at a precise location. 4366 */ 4367 void rcu_cpu_starting(unsigned int cpu) 4368 { 4369 unsigned long flags; 4370 unsigned long mask; 4371 struct rcu_data *rdp; 4372 struct rcu_node *rnp; 4373 bool newcpu; 4374 4375 rdp = per_cpu_ptr(&rcu_data, cpu); 4376 if (rdp->cpu_started) 4377 return; 4378 rdp->cpu_started = true; 4379 4380 rnp = rdp->mynode; 4381 mask = rdp->grpmask; 4382 local_irq_save(flags); 4383 arch_spin_lock(&rcu_state.ofl_lock); 4384 rcu_dynticks_eqs_online(); 4385 raw_spin_lock(&rcu_state.barrier_lock); 4386 raw_spin_lock_rcu_node(rnp); 4387 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4388 raw_spin_unlock(&rcu_state.barrier_lock); 4389 newcpu = !(rnp->expmaskinitnext & mask); 4390 rnp->expmaskinitnext |= mask; 4391 /* Allow lockless access for expedited grace periods. */ 4392 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4393 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4394 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4395 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4396 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4397 4398 /* An incoming CPU should never be blocking a grace period. */ 4399 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4400 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4401 unsigned long flags2; 4402 4403 local_irq_save(flags2); 4404 rcu_disable_urgency_upon_qs(rdp); 4405 /* Report QS -after- changing ->qsmaskinitnext! */ 4406 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); 4407 } else { 4408 raw_spin_unlock_rcu_node(rnp); 4409 } 4410 arch_spin_unlock(&rcu_state.ofl_lock); 4411 local_irq_restore(flags); 4412 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4413 } 4414 4415 /* 4416 * The outgoing function has no further need of RCU, so remove it from 4417 * the rcu_node tree's ->qsmaskinitnext bit masks. 4418 * 4419 * Note that this function is special in that it is invoked directly 4420 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4421 * This is because this function must be invoked at a precise location. 4422 */ 4423 void rcu_report_dead(unsigned int cpu) 4424 { 4425 unsigned long flags, seq_flags; 4426 unsigned long mask; 4427 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4428 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4429 4430 // Do any dangling deferred wakeups. 4431 do_nocb_deferred_wakeup(rdp); 4432 4433 rcu_preempt_deferred_qs(current); 4434 4435 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4436 mask = rdp->grpmask; 4437 local_irq_save(seq_flags); 4438 arch_spin_lock(&rcu_state.ofl_lock); 4439 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4440 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4441 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4442 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4443 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4444 rcu_disable_urgency_upon_qs(rdp); 4445 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4446 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4447 } 4448 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4450 arch_spin_unlock(&rcu_state.ofl_lock); 4451 local_irq_restore(seq_flags); 4452 4453 rdp->cpu_started = false; 4454 } 4455 4456 #ifdef CONFIG_HOTPLUG_CPU 4457 /* 4458 * The outgoing CPU has just passed through the dying-idle state, and we 4459 * are being invoked from the CPU that was IPIed to continue the offline 4460 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4461 */ 4462 void rcutree_migrate_callbacks(int cpu) 4463 { 4464 unsigned long flags; 4465 struct rcu_data *my_rdp; 4466 struct rcu_node *my_rnp; 4467 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4468 bool needwake; 4469 4470 if (rcu_rdp_is_offloaded(rdp) || 4471 rcu_segcblist_empty(&rdp->cblist)) 4472 return; /* No callbacks to migrate. */ 4473 4474 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4475 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4476 rcu_barrier_entrain(rdp); 4477 my_rdp = this_cpu_ptr(&rcu_data); 4478 my_rnp = my_rdp->mynode; 4479 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4480 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4481 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4482 /* Leverage recent GPs and set GP for new callbacks. */ 4483 needwake = rcu_advance_cbs(my_rnp, rdp) || 4484 rcu_advance_cbs(my_rnp, my_rdp); 4485 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4486 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4487 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4488 rcu_segcblist_disable(&rdp->cblist); 4489 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4490 check_cb_ovld_locked(my_rdp, my_rnp); 4491 if (rcu_rdp_is_offloaded(my_rdp)) { 4492 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4493 __call_rcu_nocb_wake(my_rdp, true, flags); 4494 } else { 4495 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4496 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4497 } 4498 if (needwake) 4499 rcu_gp_kthread_wake(); 4500 lockdep_assert_irqs_enabled(); 4501 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4502 !rcu_segcblist_empty(&rdp->cblist), 4503 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4504 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4505 rcu_segcblist_first_cb(&rdp->cblist)); 4506 } 4507 #endif 4508 4509 /* 4510 * On non-huge systems, use expedited RCU grace periods to make suspend 4511 * and hibernation run faster. 4512 */ 4513 static int rcu_pm_notify(struct notifier_block *self, 4514 unsigned long action, void *hcpu) 4515 { 4516 switch (action) { 4517 case PM_HIBERNATION_PREPARE: 4518 case PM_SUSPEND_PREPARE: 4519 rcu_async_hurry(); 4520 rcu_expedite_gp(); 4521 break; 4522 case PM_POST_HIBERNATION: 4523 case PM_POST_SUSPEND: 4524 rcu_unexpedite_gp(); 4525 rcu_async_relax(); 4526 break; 4527 default: 4528 break; 4529 } 4530 return NOTIFY_OK; 4531 } 4532 4533 #ifdef CONFIG_RCU_EXP_KTHREAD 4534 struct kthread_worker *rcu_exp_gp_kworker; 4535 struct kthread_worker *rcu_exp_par_gp_kworker; 4536 4537 static void __init rcu_start_exp_gp_kworkers(void) 4538 { 4539 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4540 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4541 struct sched_param param = { .sched_priority = kthread_prio }; 4542 4543 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4544 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4545 pr_err("Failed to create %s!\n", gp_kworker_name); 4546 return; 4547 } 4548 4549 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4550 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4551 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4552 kthread_destroy_worker(rcu_exp_gp_kworker); 4553 return; 4554 } 4555 4556 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4557 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4558 ¶m); 4559 } 4560 4561 static inline void rcu_alloc_par_gp_wq(void) 4562 { 4563 } 4564 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4565 struct workqueue_struct *rcu_par_gp_wq; 4566 4567 static void __init rcu_start_exp_gp_kworkers(void) 4568 { 4569 } 4570 4571 static inline void rcu_alloc_par_gp_wq(void) 4572 { 4573 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4574 WARN_ON(!rcu_par_gp_wq); 4575 } 4576 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4577 4578 /* 4579 * Spawn the kthreads that handle RCU's grace periods. 4580 */ 4581 static int __init rcu_spawn_gp_kthread(void) 4582 { 4583 unsigned long flags; 4584 struct rcu_node *rnp; 4585 struct sched_param sp; 4586 struct task_struct *t; 4587 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4588 4589 rcu_scheduler_fully_active = 1; 4590 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4591 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4592 return 0; 4593 if (kthread_prio) { 4594 sp.sched_priority = kthread_prio; 4595 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4596 } 4597 rnp = rcu_get_root(); 4598 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4599 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4600 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4601 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4602 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4603 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4604 wake_up_process(t); 4605 /* This is a pre-SMP initcall, we expect a single CPU */ 4606 WARN_ON(num_online_cpus() > 1); 4607 /* 4608 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4609 * due to rcu_scheduler_fully_active. 4610 */ 4611 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4612 rcu_spawn_one_boost_kthread(rdp->mynode); 4613 rcu_spawn_core_kthreads(); 4614 /* Create kthread worker for expedited GPs */ 4615 rcu_start_exp_gp_kworkers(); 4616 return 0; 4617 } 4618 early_initcall(rcu_spawn_gp_kthread); 4619 4620 /* 4621 * This function is invoked towards the end of the scheduler's 4622 * initialization process. Before this is called, the idle task might 4623 * contain synchronous grace-period primitives (during which time, this idle 4624 * task is booting the system, and such primitives are no-ops). After this 4625 * function is called, any synchronous grace-period primitives are run as 4626 * expedited, with the requesting task driving the grace period forward. 4627 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4628 * runtime RCU functionality. 4629 */ 4630 void rcu_scheduler_starting(void) 4631 { 4632 unsigned long flags; 4633 struct rcu_node *rnp; 4634 4635 WARN_ON(num_online_cpus() != 1); 4636 WARN_ON(nr_context_switches() > 0); 4637 rcu_test_sync_prims(); 4638 4639 // Fix up the ->gp_seq counters. 4640 local_irq_save(flags); 4641 rcu_for_each_node_breadth_first(rnp) 4642 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4643 local_irq_restore(flags); 4644 4645 // Switch out of early boot mode. 4646 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4647 rcu_test_sync_prims(); 4648 } 4649 4650 /* 4651 * Helper function for rcu_init() that initializes the rcu_state structure. 4652 */ 4653 static void __init rcu_init_one(void) 4654 { 4655 static const char * const buf[] = RCU_NODE_NAME_INIT; 4656 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4657 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4658 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4659 4660 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4661 int cpustride = 1; 4662 int i; 4663 int j; 4664 struct rcu_node *rnp; 4665 4666 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4667 4668 /* Silence gcc 4.8 false positive about array index out of range. */ 4669 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4670 panic("rcu_init_one: rcu_num_lvls out of range"); 4671 4672 /* Initialize the level-tracking arrays. */ 4673 4674 for (i = 1; i < rcu_num_lvls; i++) 4675 rcu_state.level[i] = 4676 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4677 rcu_init_levelspread(levelspread, num_rcu_lvl); 4678 4679 /* Initialize the elements themselves, starting from the leaves. */ 4680 4681 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4682 cpustride *= levelspread[i]; 4683 rnp = rcu_state.level[i]; 4684 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4685 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4686 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4687 &rcu_node_class[i], buf[i]); 4688 raw_spin_lock_init(&rnp->fqslock); 4689 lockdep_set_class_and_name(&rnp->fqslock, 4690 &rcu_fqs_class[i], fqs[i]); 4691 rnp->gp_seq = rcu_state.gp_seq; 4692 rnp->gp_seq_needed = rcu_state.gp_seq; 4693 rnp->completedqs = rcu_state.gp_seq; 4694 rnp->qsmask = 0; 4695 rnp->qsmaskinit = 0; 4696 rnp->grplo = j * cpustride; 4697 rnp->grphi = (j + 1) * cpustride - 1; 4698 if (rnp->grphi >= nr_cpu_ids) 4699 rnp->grphi = nr_cpu_ids - 1; 4700 if (i == 0) { 4701 rnp->grpnum = 0; 4702 rnp->grpmask = 0; 4703 rnp->parent = NULL; 4704 } else { 4705 rnp->grpnum = j % levelspread[i - 1]; 4706 rnp->grpmask = BIT(rnp->grpnum); 4707 rnp->parent = rcu_state.level[i - 1] + 4708 j / levelspread[i - 1]; 4709 } 4710 rnp->level = i; 4711 INIT_LIST_HEAD(&rnp->blkd_tasks); 4712 rcu_init_one_nocb(rnp); 4713 init_waitqueue_head(&rnp->exp_wq[0]); 4714 init_waitqueue_head(&rnp->exp_wq[1]); 4715 init_waitqueue_head(&rnp->exp_wq[2]); 4716 init_waitqueue_head(&rnp->exp_wq[3]); 4717 spin_lock_init(&rnp->exp_lock); 4718 mutex_init(&rnp->boost_kthread_mutex); 4719 raw_spin_lock_init(&rnp->exp_poll_lock); 4720 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4721 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4722 } 4723 } 4724 4725 init_swait_queue_head(&rcu_state.gp_wq); 4726 init_swait_queue_head(&rcu_state.expedited_wq); 4727 rnp = rcu_first_leaf_node(); 4728 for_each_possible_cpu(i) { 4729 while (i > rnp->grphi) 4730 rnp++; 4731 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4732 rcu_boot_init_percpu_data(i); 4733 } 4734 } 4735 4736 /* 4737 * Force priority from the kernel command-line into range. 4738 */ 4739 static void __init sanitize_kthread_prio(void) 4740 { 4741 int kthread_prio_in = kthread_prio; 4742 4743 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4744 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4745 kthread_prio = 2; 4746 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4747 kthread_prio = 1; 4748 else if (kthread_prio < 0) 4749 kthread_prio = 0; 4750 else if (kthread_prio > 99) 4751 kthread_prio = 99; 4752 4753 if (kthread_prio != kthread_prio_in) 4754 pr_alert("%s: Limited prio to %d from %d\n", 4755 __func__, kthread_prio, kthread_prio_in); 4756 } 4757 4758 /* 4759 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4760 * replace the definitions in tree.h because those are needed to size 4761 * the ->node array in the rcu_state structure. 4762 */ 4763 void rcu_init_geometry(void) 4764 { 4765 ulong d; 4766 int i; 4767 static unsigned long old_nr_cpu_ids; 4768 int rcu_capacity[RCU_NUM_LVLS]; 4769 static bool initialized; 4770 4771 if (initialized) { 4772 /* 4773 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4774 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4775 */ 4776 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4777 return; 4778 } 4779 4780 old_nr_cpu_ids = nr_cpu_ids; 4781 initialized = true; 4782 4783 /* 4784 * Initialize any unspecified boot parameters. 4785 * The default values of jiffies_till_first_fqs and 4786 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4787 * value, which is a function of HZ, then adding one for each 4788 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4789 */ 4790 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4791 if (jiffies_till_first_fqs == ULONG_MAX) 4792 jiffies_till_first_fqs = d; 4793 if (jiffies_till_next_fqs == ULONG_MAX) 4794 jiffies_till_next_fqs = d; 4795 adjust_jiffies_till_sched_qs(); 4796 4797 /* If the compile-time values are accurate, just leave. */ 4798 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4799 nr_cpu_ids == NR_CPUS) 4800 return; 4801 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4802 rcu_fanout_leaf, nr_cpu_ids); 4803 4804 /* 4805 * The boot-time rcu_fanout_leaf parameter must be at least two 4806 * and cannot exceed the number of bits in the rcu_node masks. 4807 * Complain and fall back to the compile-time values if this 4808 * limit is exceeded. 4809 */ 4810 if (rcu_fanout_leaf < 2 || 4811 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4812 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4813 WARN_ON(1); 4814 return; 4815 } 4816 4817 /* 4818 * Compute number of nodes that can be handled an rcu_node tree 4819 * with the given number of levels. 4820 */ 4821 rcu_capacity[0] = rcu_fanout_leaf; 4822 for (i = 1; i < RCU_NUM_LVLS; i++) 4823 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4824 4825 /* 4826 * The tree must be able to accommodate the configured number of CPUs. 4827 * If this limit is exceeded, fall back to the compile-time values. 4828 */ 4829 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4830 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4831 WARN_ON(1); 4832 return; 4833 } 4834 4835 /* Calculate the number of levels in the tree. */ 4836 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4837 } 4838 rcu_num_lvls = i + 1; 4839 4840 /* Calculate the number of rcu_nodes at each level of the tree. */ 4841 for (i = 0; i < rcu_num_lvls; i++) { 4842 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4843 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4844 } 4845 4846 /* Calculate the total number of rcu_node structures. */ 4847 rcu_num_nodes = 0; 4848 for (i = 0; i < rcu_num_lvls; i++) 4849 rcu_num_nodes += num_rcu_lvl[i]; 4850 } 4851 4852 /* 4853 * Dump out the structure of the rcu_node combining tree associated 4854 * with the rcu_state structure. 4855 */ 4856 static void __init rcu_dump_rcu_node_tree(void) 4857 { 4858 int level = 0; 4859 struct rcu_node *rnp; 4860 4861 pr_info("rcu_node tree layout dump\n"); 4862 pr_info(" "); 4863 rcu_for_each_node_breadth_first(rnp) { 4864 if (rnp->level != level) { 4865 pr_cont("\n"); 4866 pr_info(" "); 4867 level = rnp->level; 4868 } 4869 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4870 } 4871 pr_cont("\n"); 4872 } 4873 4874 struct workqueue_struct *rcu_gp_wq; 4875 4876 static void __init kfree_rcu_batch_init(void) 4877 { 4878 int cpu; 4879 int i, j; 4880 4881 /* Clamp it to [0:100] seconds interval. */ 4882 if (rcu_delay_page_cache_fill_msec < 0 || 4883 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4884 4885 rcu_delay_page_cache_fill_msec = 4886 clamp(rcu_delay_page_cache_fill_msec, 0, 4887 (int) (100 * MSEC_PER_SEC)); 4888 4889 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4890 rcu_delay_page_cache_fill_msec); 4891 } 4892 4893 for_each_possible_cpu(cpu) { 4894 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4895 4896 for (i = 0; i < KFREE_N_BATCHES; i++) { 4897 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4898 krcp->krw_arr[i].krcp = krcp; 4899 4900 for (j = 0; j < FREE_N_CHANNELS; j++) 4901 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 4902 } 4903 4904 for (i = 0; i < FREE_N_CHANNELS; i++) 4905 INIT_LIST_HEAD(&krcp->bulk_head[i]); 4906 4907 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4908 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4909 krcp->initialized = true; 4910 } 4911 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4912 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4913 } 4914 4915 void __init rcu_init(void) 4916 { 4917 int cpu = smp_processor_id(); 4918 4919 rcu_early_boot_tests(); 4920 4921 kfree_rcu_batch_init(); 4922 rcu_bootup_announce(); 4923 sanitize_kthread_prio(); 4924 rcu_init_geometry(); 4925 rcu_init_one(); 4926 if (dump_tree) 4927 rcu_dump_rcu_node_tree(); 4928 if (use_softirq) 4929 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4930 4931 /* 4932 * We don't need protection against CPU-hotplug here because 4933 * this is called early in boot, before either interrupts 4934 * or the scheduler are operational. 4935 */ 4936 pm_notifier(rcu_pm_notify, 0); 4937 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4938 rcutree_prepare_cpu(cpu); 4939 rcu_cpu_starting(cpu); 4940 rcutree_online_cpu(cpu); 4941 4942 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4943 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4944 WARN_ON(!rcu_gp_wq); 4945 rcu_alloc_par_gp_wq(); 4946 4947 /* Fill in default value for rcutree.qovld boot parameter. */ 4948 /* -After- the rcu_node ->lock fields are initialized! */ 4949 if (qovld < 0) 4950 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4951 else 4952 qovld_calc = qovld; 4953 4954 // Kick-start any polled grace periods that started early. 4955 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1)) 4956 (void)start_poll_synchronize_rcu_expedited(); 4957 4958 rcu_test_sync_prims(); 4959 } 4960 4961 #include "tree_stall.h" 4962 #include "tree_exp.h" 4963 #include "tree_nocb.h" 4964 #include "tree_plugin.h" 4965