1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 31 #define pr_fmt(fmt) "rcu: " fmt 32 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/rcupdate_wait.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/sched/debug.h> 42 #include <linux/nmi.h> 43 #include <linux/atomic.h> 44 #include <linux/bitops.h> 45 #include <linux/export.h> 46 #include <linux/completion.h> 47 #include <linux/moduleparam.h> 48 #include <linux/percpu.h> 49 #include <linux/notifier.h> 50 #include <linux/cpu.h> 51 #include <linux/mutex.h> 52 #include <linux/time.h> 53 #include <linux/kernel_stat.h> 54 #include <linux/wait.h> 55 #include <linux/kthread.h> 56 #include <uapi/linux/sched/types.h> 57 #include <linux/prefetch.h> 58 #include <linux/delay.h> 59 #include <linux/stop_machine.h> 60 #include <linux/random.h> 61 #include <linux/trace_events.h> 62 #include <linux/suspend.h> 63 #include <linux/ftrace.h> 64 #include <linux/tick.h> 65 66 #include "tree.h" 67 #include "rcu.h" 68 69 #ifdef MODULE_PARAM_PREFIX 70 #undef MODULE_PARAM_PREFIX 71 #endif 72 #define MODULE_PARAM_PREFIX "rcutree." 73 74 /* Data structures. */ 75 76 /* 77 * Steal a bit from the bottom of ->dynticks for idle entry/exit 78 * control. Initially this is for TLB flushing. 79 */ 80 #define RCU_DYNTICK_CTRL_MASK 0x1 81 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 82 #ifndef rcu_eqs_special_exit 83 #define rcu_eqs_special_exit() do { } while (0) 84 #endif 85 86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 87 .dynticks_nesting = 1, 88 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 89 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 90 }; 91 struct rcu_state rcu_state = { 92 .level = { &rcu_state.node[0] }, 93 .gp_state = RCU_GP_IDLE, 94 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 95 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 96 .name = RCU_NAME, 97 .abbr = RCU_ABBR, 98 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 99 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 100 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 101 }; 102 103 /* Dump rcu_node combining tree at boot to verify correct setup. */ 104 static bool dump_tree; 105 module_param(dump_tree, bool, 0444); 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 /* panic() on RCU Stall sysctl. */ 117 int sysctl_panic_on_rcu_stall __read_mostly; 118 119 /* 120 * The rcu_scheduler_active variable is initialized to the value 121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 122 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 123 * RCU can assume that there is but one task, allowing RCU to (for example) 124 * optimize synchronize_rcu() to a simple barrier(). When this variable 125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 126 * to detect real grace periods. This variable is also used to suppress 127 * boot-time false positives from lockdep-RCU error checking. Finally, it 128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 129 * is fully initialized, including all of its kthreads having been spawned. 130 */ 131 int rcu_scheduler_active __read_mostly; 132 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 133 134 /* 135 * The rcu_scheduler_fully_active variable transitions from zero to one 136 * during the early_initcall() processing, which is after the scheduler 137 * is capable of creating new tasks. So RCU processing (for example, 138 * creating tasks for RCU priority boosting) must be delayed until after 139 * rcu_scheduler_fully_active transitions from zero to one. We also 140 * currently delay invocation of any RCU callbacks until after this point. 141 * 142 * It might later prove better for people registering RCU callbacks during 143 * early boot to take responsibility for these callbacks, but one step at 144 * a time. 145 */ 146 static int rcu_scheduler_fully_active __read_mostly; 147 148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 149 unsigned long gps, unsigned long flags); 150 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 151 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 152 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 153 static void invoke_rcu_core(void); 154 static void invoke_rcu_callbacks(struct rcu_data *rdp); 155 static void rcu_report_exp_rdp(struct rcu_data *rdp); 156 static void sync_sched_exp_online_cleanup(int cpu); 157 158 /* rcuc/rcub kthread realtime priority */ 159 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 160 module_param(kthread_prio, int, 0644); 161 162 /* Delay in jiffies for grace-period initialization delays, debug only. */ 163 164 static int gp_preinit_delay; 165 module_param(gp_preinit_delay, int, 0444); 166 static int gp_init_delay; 167 module_param(gp_init_delay, int, 0444); 168 static int gp_cleanup_delay; 169 module_param(gp_cleanup_delay, int, 0444); 170 171 /* Retrieve RCU kthreads priority for rcutorture */ 172 int rcu_get_gp_kthreads_prio(void) 173 { 174 return kthread_prio; 175 } 176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 177 178 /* 179 * Number of grace periods between delays, normalized by the duration of 180 * the delay. The longer the delay, the more the grace periods between 181 * each delay. The reason for this normalization is that it means that, 182 * for non-zero delays, the overall slowdown of grace periods is constant 183 * regardless of the duration of the delay. This arrangement balances 184 * the need for long delays to increase some race probabilities with the 185 * need for fast grace periods to increase other race probabilities. 186 */ 187 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 188 189 /* 190 * Compute the mask of online CPUs for the specified rcu_node structure. 191 * This will not be stable unless the rcu_node structure's ->lock is 192 * held, but the bit corresponding to the current CPU will be stable 193 * in most contexts. 194 */ 195 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 196 { 197 return READ_ONCE(rnp->qsmaskinitnext); 198 } 199 200 /* 201 * Return true if an RCU grace period is in progress. The READ_ONCE()s 202 * permit this function to be invoked without holding the root rcu_node 203 * structure's ->lock, but of course results can be subject to change. 204 */ 205 static int rcu_gp_in_progress(void) 206 { 207 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 208 } 209 210 void rcu_softirq_qs(void) 211 { 212 rcu_qs(); 213 rcu_preempt_deferred_qs(current); 214 } 215 216 /* 217 * Record entry into an extended quiescent state. This is only to be 218 * called when not already in an extended quiescent state. 219 */ 220 static void rcu_dynticks_eqs_enter(void) 221 { 222 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 223 int seq; 224 225 /* 226 * CPUs seeing atomic_add_return() must see prior RCU read-side 227 * critical sections, and we also must force ordering with the 228 * next idle sojourn. 229 */ 230 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 231 /* Better be in an extended quiescent state! */ 232 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 233 (seq & RCU_DYNTICK_CTRL_CTR)); 234 /* Better not have special action (TLB flush) pending! */ 235 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 236 (seq & RCU_DYNTICK_CTRL_MASK)); 237 } 238 239 /* 240 * Record exit from an extended quiescent state. This is only to be 241 * called from an extended quiescent state. 242 */ 243 static void rcu_dynticks_eqs_exit(void) 244 { 245 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 246 int seq; 247 248 /* 249 * CPUs seeing atomic_add_return() must see prior idle sojourns, 250 * and we also must force ordering with the next RCU read-side 251 * critical section. 252 */ 253 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 254 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 255 !(seq & RCU_DYNTICK_CTRL_CTR)); 256 if (seq & RCU_DYNTICK_CTRL_MASK) { 257 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 258 smp_mb__after_atomic(); /* _exit after clearing mask. */ 259 /* Prefer duplicate flushes to losing a flush. */ 260 rcu_eqs_special_exit(); 261 } 262 } 263 264 /* 265 * Reset the current CPU's ->dynticks counter to indicate that the 266 * newly onlined CPU is no longer in an extended quiescent state. 267 * This will either leave the counter unchanged, or increment it 268 * to the next non-quiescent value. 269 * 270 * The non-atomic test/increment sequence works because the upper bits 271 * of the ->dynticks counter are manipulated only by the corresponding CPU, 272 * or when the corresponding CPU is offline. 273 */ 274 static void rcu_dynticks_eqs_online(void) 275 { 276 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 277 278 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 279 return; 280 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 281 } 282 283 /* 284 * Is the current CPU in an extended quiescent state? 285 * 286 * No ordering, as we are sampling CPU-local information. 287 */ 288 bool rcu_dynticks_curr_cpu_in_eqs(void) 289 { 290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 291 292 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 293 } 294 295 /* 296 * Snapshot the ->dynticks counter with full ordering so as to allow 297 * stable comparison of this counter with past and future snapshots. 298 */ 299 int rcu_dynticks_snap(struct rcu_data *rdp) 300 { 301 int snap = atomic_add_return(0, &rdp->dynticks); 302 303 return snap & ~RCU_DYNTICK_CTRL_MASK; 304 } 305 306 /* 307 * Return true if the snapshot returned from rcu_dynticks_snap() 308 * indicates that RCU is in an extended quiescent state. 309 */ 310 static bool rcu_dynticks_in_eqs(int snap) 311 { 312 return !(snap & RCU_DYNTICK_CTRL_CTR); 313 } 314 315 /* 316 * Return true if the CPU corresponding to the specified rcu_data 317 * structure has spent some time in an extended quiescent state since 318 * rcu_dynticks_snap() returned the specified snapshot. 319 */ 320 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 321 { 322 return snap != rcu_dynticks_snap(rdp); 323 } 324 325 /* 326 * Set the special (bottom) bit of the specified CPU so that it 327 * will take special action (such as flushing its TLB) on the 328 * next exit from an extended quiescent state. Returns true if 329 * the bit was successfully set, or false if the CPU was not in 330 * an extended quiescent state. 331 */ 332 bool rcu_eqs_special_set(int cpu) 333 { 334 int old; 335 int new; 336 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 337 338 do { 339 old = atomic_read(&rdp->dynticks); 340 if (old & RCU_DYNTICK_CTRL_CTR) 341 return false; 342 new = old | RCU_DYNTICK_CTRL_MASK; 343 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 344 return true; 345 } 346 347 /* 348 * Let the RCU core know that this CPU has gone through the scheduler, 349 * which is a quiescent state. This is called when the need for a 350 * quiescent state is urgent, so we burn an atomic operation and full 351 * memory barriers to let the RCU core know about it, regardless of what 352 * this CPU might (or might not) do in the near future. 353 * 354 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 355 * 356 * The caller must have disabled interrupts and must not be idle. 357 */ 358 static void __maybe_unused rcu_momentary_dyntick_idle(void) 359 { 360 int special; 361 362 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 363 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 364 &this_cpu_ptr(&rcu_data)->dynticks); 365 /* It is illegal to call this from idle state. */ 366 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 367 rcu_preempt_deferred_qs(current); 368 } 369 370 /** 371 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 372 * 373 * If the current CPU is idle or running at a first-level (not nested) 374 * interrupt from idle, return true. The caller must have at least 375 * disabled preemption. 376 */ 377 static int rcu_is_cpu_rrupt_from_idle(void) 378 { 379 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 && 380 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1; 381 } 382 383 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 384 static long blimit = DEFAULT_RCU_BLIMIT; 385 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 386 static long qhimark = DEFAULT_RCU_QHIMARK; 387 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 388 static long qlowmark = DEFAULT_RCU_QLOMARK; 389 390 module_param(blimit, long, 0444); 391 module_param(qhimark, long, 0444); 392 module_param(qlowmark, long, 0444); 393 394 static ulong jiffies_till_first_fqs = ULONG_MAX; 395 static ulong jiffies_till_next_fqs = ULONG_MAX; 396 static bool rcu_kick_kthreads; 397 398 /* 399 * How long the grace period must be before we start recruiting 400 * quiescent-state help from rcu_note_context_switch(). 401 */ 402 static ulong jiffies_till_sched_qs = ULONG_MAX; 403 module_param(jiffies_till_sched_qs, ulong, 0444); 404 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */ 405 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 406 407 /* 408 * Make sure that we give the grace-period kthread time to detect any 409 * idle CPUs before taking active measures to force quiescent states. 410 * However, don't go below 100 milliseconds, adjusted upwards for really 411 * large systems. 412 */ 413 static void adjust_jiffies_till_sched_qs(void) 414 { 415 unsigned long j; 416 417 /* If jiffies_till_sched_qs was specified, respect the request. */ 418 if (jiffies_till_sched_qs != ULONG_MAX) { 419 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 420 return; 421 } 422 j = READ_ONCE(jiffies_till_first_fqs) + 423 2 * READ_ONCE(jiffies_till_next_fqs); 424 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 425 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 426 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 427 WRITE_ONCE(jiffies_to_sched_qs, j); 428 } 429 430 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 431 { 432 ulong j; 433 int ret = kstrtoul(val, 0, &j); 434 435 if (!ret) { 436 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 437 adjust_jiffies_till_sched_qs(); 438 } 439 return ret; 440 } 441 442 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 443 { 444 ulong j; 445 int ret = kstrtoul(val, 0, &j); 446 447 if (!ret) { 448 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 449 adjust_jiffies_till_sched_qs(); 450 } 451 return ret; 452 } 453 454 static struct kernel_param_ops first_fqs_jiffies_ops = { 455 .set = param_set_first_fqs_jiffies, 456 .get = param_get_ulong, 457 }; 458 459 static struct kernel_param_ops next_fqs_jiffies_ops = { 460 .set = param_set_next_fqs_jiffies, 461 .get = param_get_ulong, 462 }; 463 464 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 465 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 466 module_param(rcu_kick_kthreads, bool, 0644); 467 468 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 469 static void force_quiescent_state(void); 470 static int rcu_pending(void); 471 472 /* 473 * Return the number of RCU GPs completed thus far for debug & stats. 474 */ 475 unsigned long rcu_get_gp_seq(void) 476 { 477 return READ_ONCE(rcu_state.gp_seq); 478 } 479 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 480 481 /* 482 * Return the number of RCU expedited batches completed thus far for 483 * debug & stats. Odd numbers mean that a batch is in progress, even 484 * numbers mean idle. The value returned will thus be roughly double 485 * the cumulative batches since boot. 486 */ 487 unsigned long rcu_exp_batches_completed(void) 488 { 489 return rcu_state.expedited_sequence; 490 } 491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 492 493 /* 494 * Force a quiescent state. 495 */ 496 void rcu_force_quiescent_state(void) 497 { 498 force_quiescent_state(); 499 } 500 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 501 502 /* 503 * Show the state of the grace-period kthreads. 504 */ 505 void show_rcu_gp_kthreads(void) 506 { 507 int cpu; 508 struct rcu_data *rdp; 509 struct rcu_node *rnp; 510 511 pr_info("%s: wait state: %d ->state: %#lx\n", rcu_state.name, 512 rcu_state.gp_state, rcu_state.gp_kthread->state); 513 rcu_for_each_node_breadth_first(rnp) { 514 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed)) 515 continue; 516 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n", 517 rnp->grplo, rnp->grphi, rnp->gp_seq, 518 rnp->gp_seq_needed); 519 if (!rcu_is_leaf_node(rnp)) 520 continue; 521 for_each_leaf_node_possible_cpu(rnp, cpu) { 522 rdp = per_cpu_ptr(&rcu_data, cpu); 523 if (rdp->gpwrap || 524 ULONG_CMP_GE(rcu_state.gp_seq, 525 rdp->gp_seq_needed)) 526 continue; 527 pr_info("\tcpu %d ->gp_seq_needed %lu\n", 528 cpu, rdp->gp_seq_needed); 529 } 530 } 531 /* sched_show_task(rcu_state.gp_kthread); */ 532 } 533 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 534 535 /* 536 * Send along grace-period-related data for rcutorture diagnostics. 537 */ 538 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 539 unsigned long *gp_seq) 540 { 541 switch (test_type) { 542 case RCU_FLAVOR: 543 case RCU_BH_FLAVOR: 544 case RCU_SCHED_FLAVOR: 545 *flags = READ_ONCE(rcu_state.gp_flags); 546 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 547 break; 548 default: 549 break; 550 } 551 } 552 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 553 554 /* 555 * Return the root node of the rcu_state structure. 556 */ 557 static struct rcu_node *rcu_get_root(void) 558 { 559 return &rcu_state.node[0]; 560 } 561 562 /* 563 * Enter an RCU extended quiescent state, which can be either the 564 * idle loop or adaptive-tickless usermode execution. 565 * 566 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 567 * the possibility of usermode upcalls having messed up our count 568 * of interrupt nesting level during the prior busy period. 569 */ 570 static void rcu_eqs_enter(bool user) 571 { 572 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 573 574 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 575 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 576 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 577 rdp->dynticks_nesting == 0); 578 if (rdp->dynticks_nesting != 1) { 579 rdp->dynticks_nesting--; 580 return; 581 } 582 583 lockdep_assert_irqs_disabled(); 584 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 585 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 586 rdp = this_cpu_ptr(&rcu_data); 587 do_nocb_deferred_wakeup(rdp); 588 rcu_prepare_for_idle(); 589 rcu_preempt_deferred_qs(current); 590 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 591 rcu_dynticks_eqs_enter(); 592 rcu_dynticks_task_enter(); 593 } 594 595 /** 596 * rcu_idle_enter - inform RCU that current CPU is entering idle 597 * 598 * Enter idle mode, in other words, -leave- the mode in which RCU 599 * read-side critical sections can occur. (Though RCU read-side 600 * critical sections can occur in irq handlers in idle, a possibility 601 * handled by irq_enter() and irq_exit().) 602 * 603 * If you add or remove a call to rcu_idle_enter(), be sure to test with 604 * CONFIG_RCU_EQS_DEBUG=y. 605 */ 606 void rcu_idle_enter(void) 607 { 608 lockdep_assert_irqs_disabled(); 609 rcu_eqs_enter(false); 610 } 611 612 #ifdef CONFIG_NO_HZ_FULL 613 /** 614 * rcu_user_enter - inform RCU that we are resuming userspace. 615 * 616 * Enter RCU idle mode right before resuming userspace. No use of RCU 617 * is permitted between this call and rcu_user_exit(). This way the 618 * CPU doesn't need to maintain the tick for RCU maintenance purposes 619 * when the CPU runs in userspace. 620 * 621 * If you add or remove a call to rcu_user_enter(), be sure to test with 622 * CONFIG_RCU_EQS_DEBUG=y. 623 */ 624 void rcu_user_enter(void) 625 { 626 lockdep_assert_irqs_disabled(); 627 rcu_eqs_enter(true); 628 } 629 #endif /* CONFIG_NO_HZ_FULL */ 630 631 /* 632 * If we are returning from the outermost NMI handler that interrupted an 633 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 634 * to let the RCU grace-period handling know that the CPU is back to 635 * being RCU-idle. 636 * 637 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 638 * with CONFIG_RCU_EQS_DEBUG=y. 639 */ 640 static __always_inline void rcu_nmi_exit_common(bool irq) 641 { 642 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 643 644 /* 645 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 646 * (We are exiting an NMI handler, so RCU better be paying attention 647 * to us!) 648 */ 649 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 650 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 651 652 /* 653 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 654 * leave it in non-RCU-idle state. 655 */ 656 if (rdp->dynticks_nmi_nesting != 1) { 657 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 658 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 659 rdp->dynticks_nmi_nesting - 2); 660 return; 661 } 662 663 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 664 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 665 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 666 667 if (irq) 668 rcu_prepare_for_idle(); 669 670 rcu_dynticks_eqs_enter(); 671 672 if (irq) 673 rcu_dynticks_task_enter(); 674 } 675 676 /** 677 * rcu_nmi_exit - inform RCU of exit from NMI context 678 * @irq: Is this call from rcu_irq_exit? 679 * 680 * If you add or remove a call to rcu_nmi_exit(), be sure to test 681 * with CONFIG_RCU_EQS_DEBUG=y. 682 */ 683 void rcu_nmi_exit(void) 684 { 685 rcu_nmi_exit_common(false); 686 } 687 688 /** 689 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 690 * 691 * Exit from an interrupt handler, which might possibly result in entering 692 * idle mode, in other words, leaving the mode in which read-side critical 693 * sections can occur. The caller must have disabled interrupts. 694 * 695 * This code assumes that the idle loop never does anything that might 696 * result in unbalanced calls to irq_enter() and irq_exit(). If your 697 * architecture's idle loop violates this assumption, RCU will give you what 698 * you deserve, good and hard. But very infrequently and irreproducibly. 699 * 700 * Use things like work queues to work around this limitation. 701 * 702 * You have been warned. 703 * 704 * If you add or remove a call to rcu_irq_exit(), be sure to test with 705 * CONFIG_RCU_EQS_DEBUG=y. 706 */ 707 void rcu_irq_exit(void) 708 { 709 lockdep_assert_irqs_disabled(); 710 rcu_nmi_exit_common(true); 711 } 712 713 /* 714 * Wrapper for rcu_irq_exit() where interrupts are enabled. 715 * 716 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 717 * with CONFIG_RCU_EQS_DEBUG=y. 718 */ 719 void rcu_irq_exit_irqson(void) 720 { 721 unsigned long flags; 722 723 local_irq_save(flags); 724 rcu_irq_exit(); 725 local_irq_restore(flags); 726 } 727 728 /* 729 * Exit an RCU extended quiescent state, which can be either the 730 * idle loop or adaptive-tickless usermode execution. 731 * 732 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 733 * allow for the possibility of usermode upcalls messing up our count of 734 * interrupt nesting level during the busy period that is just now starting. 735 */ 736 static void rcu_eqs_exit(bool user) 737 { 738 struct rcu_data *rdp; 739 long oldval; 740 741 lockdep_assert_irqs_disabled(); 742 rdp = this_cpu_ptr(&rcu_data); 743 oldval = rdp->dynticks_nesting; 744 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 745 if (oldval) { 746 rdp->dynticks_nesting++; 747 return; 748 } 749 rcu_dynticks_task_exit(); 750 rcu_dynticks_eqs_exit(); 751 rcu_cleanup_after_idle(); 752 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 753 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 754 WRITE_ONCE(rdp->dynticks_nesting, 1); 755 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 756 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 757 } 758 759 /** 760 * rcu_idle_exit - inform RCU that current CPU is leaving idle 761 * 762 * Exit idle mode, in other words, -enter- the mode in which RCU 763 * read-side critical sections can occur. 764 * 765 * If you add or remove a call to rcu_idle_exit(), be sure to test with 766 * CONFIG_RCU_EQS_DEBUG=y. 767 */ 768 void rcu_idle_exit(void) 769 { 770 unsigned long flags; 771 772 local_irq_save(flags); 773 rcu_eqs_exit(false); 774 local_irq_restore(flags); 775 } 776 777 #ifdef CONFIG_NO_HZ_FULL 778 /** 779 * rcu_user_exit - inform RCU that we are exiting userspace. 780 * 781 * Exit RCU idle mode while entering the kernel because it can 782 * run a RCU read side critical section anytime. 783 * 784 * If you add or remove a call to rcu_user_exit(), be sure to test with 785 * CONFIG_RCU_EQS_DEBUG=y. 786 */ 787 void rcu_user_exit(void) 788 { 789 rcu_eqs_exit(1); 790 } 791 #endif /* CONFIG_NO_HZ_FULL */ 792 793 /** 794 * rcu_nmi_enter_common - inform RCU of entry to NMI context 795 * @irq: Is this call from rcu_irq_enter? 796 * 797 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 798 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 799 * that the CPU is active. This implementation permits nested NMIs, as 800 * long as the nesting level does not overflow an int. (You will probably 801 * run out of stack space first.) 802 * 803 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 804 * with CONFIG_RCU_EQS_DEBUG=y. 805 */ 806 static __always_inline void rcu_nmi_enter_common(bool irq) 807 { 808 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 809 long incby = 2; 810 811 /* Complain about underflow. */ 812 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 813 814 /* 815 * If idle from RCU viewpoint, atomically increment ->dynticks 816 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 817 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 818 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 819 * to be in the outermost NMI handler that interrupted an RCU-idle 820 * period (observation due to Andy Lutomirski). 821 */ 822 if (rcu_dynticks_curr_cpu_in_eqs()) { 823 824 if (irq) 825 rcu_dynticks_task_exit(); 826 827 rcu_dynticks_eqs_exit(); 828 829 if (irq) 830 rcu_cleanup_after_idle(); 831 832 incby = 1; 833 } 834 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 835 rdp->dynticks_nmi_nesting, 836 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 837 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 838 rdp->dynticks_nmi_nesting + incby); 839 barrier(); 840 } 841 842 /** 843 * rcu_nmi_enter - inform RCU of entry to NMI context 844 */ 845 void rcu_nmi_enter(void) 846 { 847 rcu_nmi_enter_common(false); 848 } 849 850 /** 851 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 852 * 853 * Enter an interrupt handler, which might possibly result in exiting 854 * idle mode, in other words, entering the mode in which read-side critical 855 * sections can occur. The caller must have disabled interrupts. 856 * 857 * Note that the Linux kernel is fully capable of entering an interrupt 858 * handler that it never exits, for example when doing upcalls to user mode! 859 * This code assumes that the idle loop never does upcalls to user mode. 860 * If your architecture's idle loop does do upcalls to user mode (or does 861 * anything else that results in unbalanced calls to the irq_enter() and 862 * irq_exit() functions), RCU will give you what you deserve, good and hard. 863 * But very infrequently and irreproducibly. 864 * 865 * Use things like work queues to work around this limitation. 866 * 867 * You have been warned. 868 * 869 * If you add or remove a call to rcu_irq_enter(), be sure to test with 870 * CONFIG_RCU_EQS_DEBUG=y. 871 */ 872 void rcu_irq_enter(void) 873 { 874 lockdep_assert_irqs_disabled(); 875 rcu_nmi_enter_common(true); 876 } 877 878 /* 879 * Wrapper for rcu_irq_enter() where interrupts are enabled. 880 * 881 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 882 * with CONFIG_RCU_EQS_DEBUG=y. 883 */ 884 void rcu_irq_enter_irqson(void) 885 { 886 unsigned long flags; 887 888 local_irq_save(flags); 889 rcu_irq_enter(); 890 local_irq_restore(flags); 891 } 892 893 /** 894 * rcu_is_watching - see if RCU thinks that the current CPU is idle 895 * 896 * Return true if RCU is watching the running CPU, which means that this 897 * CPU can safely enter RCU read-side critical sections. In other words, 898 * if the current CPU is in its idle loop and is neither in an interrupt 899 * or NMI handler, return true. 900 */ 901 bool notrace rcu_is_watching(void) 902 { 903 bool ret; 904 905 preempt_disable_notrace(); 906 ret = !rcu_dynticks_curr_cpu_in_eqs(); 907 preempt_enable_notrace(); 908 return ret; 909 } 910 EXPORT_SYMBOL_GPL(rcu_is_watching); 911 912 /* 913 * If a holdout task is actually running, request an urgent quiescent 914 * state from its CPU. This is unsynchronized, so migrations can cause 915 * the request to go to the wrong CPU. Which is OK, all that will happen 916 * is that the CPU's next context switch will be a bit slower and next 917 * time around this task will generate another request. 918 */ 919 void rcu_request_urgent_qs_task(struct task_struct *t) 920 { 921 int cpu; 922 923 barrier(); 924 cpu = task_cpu(t); 925 if (!task_curr(t)) 926 return; /* This task is not running on that CPU. */ 927 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 928 } 929 930 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 931 932 /* 933 * Is the current CPU online as far as RCU is concerned? 934 * 935 * Disable preemption to avoid false positives that could otherwise 936 * happen due to the current CPU number being sampled, this task being 937 * preempted, its old CPU being taken offline, resuming on some other CPU, 938 * then determining that its old CPU is now offline. 939 * 940 * Disable checking if in an NMI handler because we cannot safely 941 * report errors from NMI handlers anyway. In addition, it is OK to use 942 * RCU on an offline processor during initial boot, hence the check for 943 * rcu_scheduler_fully_active. 944 */ 945 bool rcu_lockdep_current_cpu_online(void) 946 { 947 struct rcu_data *rdp; 948 struct rcu_node *rnp; 949 bool ret = false; 950 951 if (in_nmi() || !rcu_scheduler_fully_active) 952 return true; 953 preempt_disable(); 954 rdp = this_cpu_ptr(&rcu_data); 955 rnp = rdp->mynode; 956 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 957 ret = true; 958 preempt_enable(); 959 return ret; 960 } 961 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 962 963 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 964 965 /* 966 * We are reporting a quiescent state on behalf of some other CPU, so 967 * it is our responsibility to check for and handle potential overflow 968 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 969 * After all, the CPU might be in deep idle state, and thus executing no 970 * code whatsoever. 971 */ 972 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 973 { 974 raw_lockdep_assert_held_rcu_node(rnp); 975 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 976 rnp->gp_seq)) 977 WRITE_ONCE(rdp->gpwrap, true); 978 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 979 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 980 } 981 982 /* 983 * Snapshot the specified CPU's dynticks counter so that we can later 984 * credit them with an implicit quiescent state. Return 1 if this CPU 985 * is in dynticks idle mode, which is an extended quiescent state. 986 */ 987 static int dyntick_save_progress_counter(struct rcu_data *rdp) 988 { 989 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 990 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 991 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 992 rcu_gpnum_ovf(rdp->mynode, rdp); 993 return 1; 994 } 995 return 0; 996 } 997 998 /* 999 * Handler for the irq_work request posted when a grace period has 1000 * gone on for too long, but not yet long enough for an RCU CPU 1001 * stall warning. Set state appropriately, but just complain if 1002 * there is unexpected state on entry. 1003 */ 1004 static void rcu_iw_handler(struct irq_work *iwp) 1005 { 1006 struct rcu_data *rdp; 1007 struct rcu_node *rnp; 1008 1009 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1010 rnp = rdp->mynode; 1011 raw_spin_lock_rcu_node(rnp); 1012 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1013 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1014 rdp->rcu_iw_pending = false; 1015 } 1016 raw_spin_unlock_rcu_node(rnp); 1017 } 1018 1019 /* 1020 * Return true if the specified CPU has passed through a quiescent 1021 * state by virtue of being in or having passed through an dynticks 1022 * idle state since the last call to dyntick_save_progress_counter() 1023 * for this same CPU, or by virtue of having been offline. 1024 */ 1025 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1026 { 1027 unsigned long jtsq; 1028 bool *rnhqp; 1029 bool *ruqp; 1030 struct rcu_node *rnp = rdp->mynode; 1031 1032 /* 1033 * If the CPU passed through or entered a dynticks idle phase with 1034 * no active irq/NMI handlers, then we can safely pretend that the CPU 1035 * already acknowledged the request to pass through a quiescent 1036 * state. Either way, that CPU cannot possibly be in an RCU 1037 * read-side critical section that started before the beginning 1038 * of the current RCU grace period. 1039 */ 1040 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1041 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1042 rcu_gpnum_ovf(rnp, rdp); 1043 return 1; 1044 } 1045 1046 /* If waiting too long on an offline CPU, complain. */ 1047 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1048 time_after(jiffies, rcu_state.gp_start + HZ)) { 1049 bool onl; 1050 struct rcu_node *rnp1; 1051 1052 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1053 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1054 __func__, rnp->grplo, rnp->grphi, rnp->level, 1055 (long)rnp->gp_seq, (long)rnp->completedqs); 1056 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1057 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1058 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1059 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1060 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1061 __func__, rdp->cpu, ".o"[onl], 1062 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1063 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1064 return 1; /* Break things loose after complaining. */ 1065 } 1066 1067 /* 1068 * A CPU running for an extended time within the kernel can 1069 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1070 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1071 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1072 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1073 * variable are safe because the assignments are repeated if this 1074 * CPU failed to pass through a quiescent state. This code 1075 * also checks .jiffies_resched in case jiffies_to_sched_qs 1076 * is set way high. 1077 */ 1078 jtsq = READ_ONCE(jiffies_to_sched_qs); 1079 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1080 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1081 if (!READ_ONCE(*rnhqp) && 1082 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1083 time_after(jiffies, rcu_state.jiffies_resched))) { 1084 WRITE_ONCE(*rnhqp, true); 1085 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1086 smp_store_release(ruqp, true); 1087 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1088 WRITE_ONCE(*ruqp, true); 1089 } 1090 1091 /* 1092 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks! 1093 * The above code handles this, but only for straight cond_resched(). 1094 * And some in-kernel loops check need_resched() before calling 1095 * cond_resched(), which defeats the above code for CPUs that are 1096 * running in-kernel with scheduling-clock interrupts disabled. 1097 * So hit them over the head with the resched_cpu() hammer! 1098 */ 1099 if (tick_nohz_full_cpu(rdp->cpu) && 1100 time_after(jiffies, 1101 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1102 resched_cpu(rdp->cpu); 1103 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1104 } 1105 1106 /* 1107 * If more than halfway to RCU CPU stall-warning time, invoke 1108 * resched_cpu() more frequently to try to loosen things up a bit. 1109 * Also check to see if the CPU is getting hammered with interrupts, 1110 * but only once per grace period, just to keep the IPIs down to 1111 * a dull roar. 1112 */ 1113 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1114 if (time_after(jiffies, 1115 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1116 resched_cpu(rdp->cpu); 1117 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1118 } 1119 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1120 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1121 (rnp->ffmask & rdp->grpmask)) { 1122 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1123 rdp->rcu_iw_pending = true; 1124 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1125 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1126 } 1127 } 1128 1129 return 0; 1130 } 1131 1132 static void record_gp_stall_check_time(void) 1133 { 1134 unsigned long j = jiffies; 1135 unsigned long j1; 1136 1137 rcu_state.gp_start = j; 1138 j1 = rcu_jiffies_till_stall_check(); 1139 /* Record ->gp_start before ->jiffies_stall. */ 1140 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */ 1141 rcu_state.jiffies_resched = j + j1 / 2; 1142 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs); 1143 } 1144 1145 /* 1146 * Convert a ->gp_state value to a character string. 1147 */ 1148 static const char *gp_state_getname(short gs) 1149 { 1150 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1151 return "???"; 1152 return gp_state_names[gs]; 1153 } 1154 1155 /* 1156 * Complain about starvation of grace-period kthread. 1157 */ 1158 static void rcu_check_gp_kthread_starvation(void) 1159 { 1160 struct task_struct *gpk = rcu_state.gp_kthread; 1161 unsigned long j; 1162 1163 j = jiffies - READ_ONCE(rcu_state.gp_activity); 1164 if (j > 2 * HZ) { 1165 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1166 rcu_state.name, j, 1167 (long)rcu_seq_current(&rcu_state.gp_seq), 1168 rcu_state.gp_flags, 1169 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state, 1170 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1); 1171 if (gpk) { 1172 pr_err("RCU grace-period kthread stack dump:\n"); 1173 sched_show_task(gpk); 1174 wake_up_process(gpk); 1175 } 1176 } 1177 } 1178 1179 /* 1180 * Dump stacks of all tasks running on stalled CPUs. First try using 1181 * NMIs, but fall back to manual remote stack tracing on architectures 1182 * that don't support NMI-based stack dumps. The NMI-triggered stack 1183 * traces are more accurate because they are printed by the target CPU. 1184 */ 1185 static void rcu_dump_cpu_stacks(void) 1186 { 1187 int cpu; 1188 unsigned long flags; 1189 struct rcu_node *rnp; 1190 1191 rcu_for_each_leaf_node(rnp) { 1192 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1193 for_each_leaf_node_possible_cpu(rnp, cpu) 1194 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1195 if (!trigger_single_cpu_backtrace(cpu)) 1196 dump_cpu_task(cpu); 1197 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1198 } 1199 } 1200 1201 /* 1202 * If too much time has passed in the current grace period, and if 1203 * so configured, go kick the relevant kthreads. 1204 */ 1205 static void rcu_stall_kick_kthreads(void) 1206 { 1207 unsigned long j; 1208 1209 if (!rcu_kick_kthreads) 1210 return; 1211 j = READ_ONCE(rcu_state.jiffies_kick_kthreads); 1212 if (time_after(jiffies, j) && rcu_state.gp_kthread && 1213 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) { 1214 WARN_ONCE(1, "Kicking %s grace-period kthread\n", 1215 rcu_state.name); 1216 rcu_ftrace_dump(DUMP_ALL); 1217 wake_up_process(rcu_state.gp_kthread); 1218 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ); 1219 } 1220 } 1221 1222 static void panic_on_rcu_stall(void) 1223 { 1224 if (sysctl_panic_on_rcu_stall) 1225 panic("RCU Stall\n"); 1226 } 1227 1228 static void print_other_cpu_stall(unsigned long gp_seq) 1229 { 1230 int cpu; 1231 unsigned long flags; 1232 unsigned long gpa; 1233 unsigned long j; 1234 int ndetected = 0; 1235 struct rcu_node *rnp = rcu_get_root(); 1236 long totqlen = 0; 1237 1238 /* Kick and suppress, if so configured. */ 1239 rcu_stall_kick_kthreads(); 1240 if (rcu_cpu_stall_suppress) 1241 return; 1242 1243 /* 1244 * OK, time to rat on our buddy... 1245 * See Documentation/RCU/stallwarn.txt for info on how to debug 1246 * RCU CPU stall warnings. 1247 */ 1248 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name); 1249 print_cpu_stall_info_begin(); 1250 rcu_for_each_leaf_node(rnp) { 1251 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1252 ndetected += rcu_print_task_stall(rnp); 1253 if (rnp->qsmask != 0) { 1254 for_each_leaf_node_possible_cpu(rnp, cpu) 1255 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1256 print_cpu_stall_info(cpu); 1257 ndetected++; 1258 } 1259 } 1260 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1261 } 1262 1263 print_cpu_stall_info_end(); 1264 for_each_possible_cpu(cpu) 1265 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data, 1266 cpu)->cblist); 1267 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1268 smp_processor_id(), (long)(jiffies - rcu_state.gp_start), 1269 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1270 if (ndetected) { 1271 rcu_dump_cpu_stacks(); 1272 1273 /* Complain about tasks blocking the grace period. */ 1274 rcu_print_detail_task_stall(); 1275 } else { 1276 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) { 1277 pr_err("INFO: Stall ended before state dump start\n"); 1278 } else { 1279 j = jiffies; 1280 gpa = READ_ONCE(rcu_state.gp_activity); 1281 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1282 rcu_state.name, j - gpa, j, gpa, 1283 READ_ONCE(jiffies_till_next_fqs), 1284 rcu_get_root()->qsmask); 1285 /* In this case, the current CPU might be at fault. */ 1286 sched_show_task(current); 1287 } 1288 } 1289 /* Rewrite if needed in case of slow consoles. */ 1290 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1291 WRITE_ONCE(rcu_state.jiffies_stall, 1292 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1293 1294 rcu_check_gp_kthread_starvation(); 1295 1296 panic_on_rcu_stall(); 1297 1298 force_quiescent_state(); /* Kick them all. */ 1299 } 1300 1301 static void print_cpu_stall(void) 1302 { 1303 int cpu; 1304 unsigned long flags; 1305 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1306 struct rcu_node *rnp = rcu_get_root(); 1307 long totqlen = 0; 1308 1309 /* Kick and suppress, if so configured. */ 1310 rcu_stall_kick_kthreads(); 1311 if (rcu_cpu_stall_suppress) 1312 return; 1313 1314 /* 1315 * OK, time to rat on ourselves... 1316 * See Documentation/RCU/stallwarn.txt for info on how to debug 1317 * RCU CPU stall warnings. 1318 */ 1319 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name); 1320 print_cpu_stall_info_begin(); 1321 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1322 print_cpu_stall_info(smp_processor_id()); 1323 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1324 print_cpu_stall_info_end(); 1325 for_each_possible_cpu(cpu) 1326 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data, 1327 cpu)->cblist); 1328 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1329 jiffies - rcu_state.gp_start, 1330 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1331 1332 rcu_check_gp_kthread_starvation(); 1333 1334 rcu_dump_cpu_stacks(); 1335 1336 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1337 /* Rewrite if needed in case of slow consoles. */ 1338 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1339 WRITE_ONCE(rcu_state.jiffies_stall, 1340 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1341 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1342 1343 panic_on_rcu_stall(); 1344 1345 /* 1346 * Attempt to revive the RCU machinery by forcing a context switch. 1347 * 1348 * A context switch would normally allow the RCU state machine to make 1349 * progress and it could be we're stuck in kernel space without context 1350 * switches for an entirely unreasonable amount of time. 1351 */ 1352 set_tsk_need_resched(current); 1353 set_preempt_need_resched(); 1354 } 1355 1356 static void check_cpu_stall(struct rcu_data *rdp) 1357 { 1358 unsigned long gs1; 1359 unsigned long gs2; 1360 unsigned long gps; 1361 unsigned long j; 1362 unsigned long jn; 1363 unsigned long js; 1364 struct rcu_node *rnp; 1365 1366 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1367 !rcu_gp_in_progress()) 1368 return; 1369 rcu_stall_kick_kthreads(); 1370 j = jiffies; 1371 1372 /* 1373 * Lots of memory barriers to reject false positives. 1374 * 1375 * The idea is to pick up rcu_state.gp_seq, then 1376 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally 1377 * another copy of rcu_state.gp_seq. These values are updated in 1378 * the opposite order with memory barriers (or equivalent) during 1379 * grace-period initialization and cleanup. Now, a false positive 1380 * can occur if we get an new value of rcu_state.gp_start and a old 1381 * value of rcu_state.jiffies_stall. But given the memory barriers, 1382 * the only way that this can happen is if one grace period ends 1383 * and another starts between these two fetches. This is detected 1384 * by comparing the second fetch of rcu_state.gp_seq with the 1385 * previous fetch from rcu_state.gp_seq. 1386 * 1387 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall, 1388 * and rcu_state.gp_start suffice to forestall false positives. 1389 */ 1390 gs1 = READ_ONCE(rcu_state.gp_seq); 1391 smp_rmb(); /* Pick up ->gp_seq first... */ 1392 js = READ_ONCE(rcu_state.jiffies_stall); 1393 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1394 gps = READ_ONCE(rcu_state.gp_start); 1395 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1396 gs2 = READ_ONCE(rcu_state.gp_seq); 1397 if (gs1 != gs2 || 1398 ULONG_CMP_LT(j, js) || 1399 ULONG_CMP_GE(gps, js)) 1400 return; /* No stall or GP completed since entering function. */ 1401 rnp = rdp->mynode; 1402 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1403 if (rcu_gp_in_progress() && 1404 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1405 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1406 1407 /* We haven't checked in, so go dump stack. */ 1408 print_cpu_stall(); 1409 1410 } else if (rcu_gp_in_progress() && 1411 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1412 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1413 1414 /* They had a few time units to dump stack, so complain. */ 1415 print_other_cpu_stall(gs2); 1416 } 1417 } 1418 1419 /** 1420 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1421 * 1422 * Set the stall-warning timeout way off into the future, thus preventing 1423 * any RCU CPU stall-warning messages from appearing in the current set of 1424 * RCU grace periods. 1425 * 1426 * The caller must disable hard irqs. 1427 */ 1428 void rcu_cpu_stall_reset(void) 1429 { 1430 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2); 1431 } 1432 1433 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1434 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1435 unsigned long gp_seq_req, const char *s) 1436 { 1437 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1438 rnp->level, rnp->grplo, rnp->grphi, s); 1439 } 1440 1441 /* 1442 * rcu_start_this_gp - Request the start of a particular grace period 1443 * @rnp_start: The leaf node of the CPU from which to start. 1444 * @rdp: The rcu_data corresponding to the CPU from which to start. 1445 * @gp_seq_req: The gp_seq of the grace period to start. 1446 * 1447 * Start the specified grace period, as needed to handle newly arrived 1448 * callbacks. The required future grace periods are recorded in each 1449 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1450 * is reason to awaken the grace-period kthread. 1451 * 1452 * The caller must hold the specified rcu_node structure's ->lock, which 1453 * is why the caller is responsible for waking the grace-period kthread. 1454 * 1455 * Returns true if the GP thread needs to be awakened else false. 1456 */ 1457 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1458 unsigned long gp_seq_req) 1459 { 1460 bool ret = false; 1461 struct rcu_node *rnp; 1462 1463 /* 1464 * Use funnel locking to either acquire the root rcu_node 1465 * structure's lock or bail out if the need for this grace period 1466 * has already been recorded -- or if that grace period has in 1467 * fact already started. If there is already a grace period in 1468 * progress in a non-leaf node, no recording is needed because the 1469 * end of the grace period will scan the leaf rcu_node structures. 1470 * Note that rnp_start->lock must not be released. 1471 */ 1472 raw_lockdep_assert_held_rcu_node(rnp_start); 1473 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1474 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1475 if (rnp != rnp_start) 1476 raw_spin_lock_rcu_node(rnp); 1477 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1478 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1479 (rnp != rnp_start && 1480 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1481 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1482 TPS("Prestarted")); 1483 goto unlock_out; 1484 } 1485 rnp->gp_seq_needed = gp_seq_req; 1486 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1487 /* 1488 * We just marked the leaf or internal node, and a 1489 * grace period is in progress, which means that 1490 * rcu_gp_cleanup() will see the marking. Bail to 1491 * reduce contention. 1492 */ 1493 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1494 TPS("Startedleaf")); 1495 goto unlock_out; 1496 } 1497 if (rnp != rnp_start && rnp->parent != NULL) 1498 raw_spin_unlock_rcu_node(rnp); 1499 if (!rnp->parent) 1500 break; /* At root, and perhaps also leaf. */ 1501 } 1502 1503 /* If GP already in progress, just leave, otherwise start one. */ 1504 if (rcu_gp_in_progress()) { 1505 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1506 goto unlock_out; 1507 } 1508 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1509 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1510 rcu_state.gp_req_activity = jiffies; 1511 if (!rcu_state.gp_kthread) { 1512 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1513 goto unlock_out; 1514 } 1515 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1516 ret = true; /* Caller must wake GP kthread. */ 1517 unlock_out: 1518 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1519 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1520 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1521 rdp->gp_seq_needed = rnp->gp_seq_needed; 1522 } 1523 if (rnp != rnp_start) 1524 raw_spin_unlock_rcu_node(rnp); 1525 return ret; 1526 } 1527 1528 /* 1529 * Clean up any old requests for the just-ended grace period. Also return 1530 * whether any additional grace periods have been requested. 1531 */ 1532 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1533 { 1534 bool needmore; 1535 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1536 1537 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1538 if (!needmore) 1539 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1540 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1541 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1542 return needmore; 1543 } 1544 1545 /* 1546 * Awaken the grace-period kthread. Don't do a self-awaken, and don't 1547 * bother awakening when there is nothing for the grace-period kthread 1548 * to do (as in several CPUs raced to awaken, and we lost), and finally 1549 * don't try to awaken a kthread that has not yet been created. 1550 */ 1551 static void rcu_gp_kthread_wake(void) 1552 { 1553 if (current == rcu_state.gp_kthread || 1554 !READ_ONCE(rcu_state.gp_flags) || 1555 !rcu_state.gp_kthread) 1556 return; 1557 swake_up_one(&rcu_state.gp_wq); 1558 } 1559 1560 /* 1561 * If there is room, assign a ->gp_seq number to any callbacks on this 1562 * CPU that have not already been assigned. Also accelerate any callbacks 1563 * that were previously assigned a ->gp_seq number that has since proven 1564 * to be too conservative, which can happen if callbacks get assigned a 1565 * ->gp_seq number while RCU is idle, but with reference to a non-root 1566 * rcu_node structure. This function is idempotent, so it does not hurt 1567 * to call it repeatedly. Returns an flag saying that we should awaken 1568 * the RCU grace-period kthread. 1569 * 1570 * The caller must hold rnp->lock with interrupts disabled. 1571 */ 1572 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1573 { 1574 unsigned long gp_seq_req; 1575 bool ret = false; 1576 1577 raw_lockdep_assert_held_rcu_node(rnp); 1578 1579 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1580 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1581 return false; 1582 1583 /* 1584 * Callbacks are often registered with incomplete grace-period 1585 * information. Something about the fact that getting exact 1586 * information requires acquiring a global lock... RCU therefore 1587 * makes a conservative estimate of the grace period number at which 1588 * a given callback will become ready to invoke. The following 1589 * code checks this estimate and improves it when possible, thus 1590 * accelerating callback invocation to an earlier grace-period 1591 * number. 1592 */ 1593 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1594 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1595 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1596 1597 /* Trace depending on how much we were able to accelerate. */ 1598 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1599 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1600 else 1601 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1602 return ret; 1603 } 1604 1605 /* 1606 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1607 * rcu_node structure's ->lock be held. It consults the cached value 1608 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1609 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1610 * while holding the leaf rcu_node structure's ->lock. 1611 */ 1612 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1613 struct rcu_data *rdp) 1614 { 1615 unsigned long c; 1616 bool needwake; 1617 1618 lockdep_assert_irqs_disabled(); 1619 c = rcu_seq_snap(&rcu_state.gp_seq); 1620 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1621 /* Old request still live, so mark recent callbacks. */ 1622 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1623 return; 1624 } 1625 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1626 needwake = rcu_accelerate_cbs(rnp, rdp); 1627 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1628 if (needwake) 1629 rcu_gp_kthread_wake(); 1630 } 1631 1632 /* 1633 * Move any callbacks whose grace period has completed to the 1634 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1635 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1636 * sublist. This function is idempotent, so it does not hurt to 1637 * invoke it repeatedly. As long as it is not invoked -too- often... 1638 * Returns true if the RCU grace-period kthread needs to be awakened. 1639 * 1640 * The caller must hold rnp->lock with interrupts disabled. 1641 */ 1642 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1643 { 1644 raw_lockdep_assert_held_rcu_node(rnp); 1645 1646 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1647 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1648 return false; 1649 1650 /* 1651 * Find all callbacks whose ->gp_seq numbers indicate that they 1652 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1653 */ 1654 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1655 1656 /* Classify any remaining callbacks. */ 1657 return rcu_accelerate_cbs(rnp, rdp); 1658 } 1659 1660 /* 1661 * Update CPU-local rcu_data state to record the beginnings and ends of 1662 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1663 * structure corresponding to the current CPU, and must have irqs disabled. 1664 * Returns true if the grace-period kthread needs to be awakened. 1665 */ 1666 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1667 { 1668 bool ret; 1669 bool need_gp; 1670 1671 raw_lockdep_assert_held_rcu_node(rnp); 1672 1673 if (rdp->gp_seq == rnp->gp_seq) 1674 return false; /* Nothing to do. */ 1675 1676 /* Handle the ends of any preceding grace periods first. */ 1677 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1678 unlikely(READ_ONCE(rdp->gpwrap))) { 1679 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1680 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1681 } else { 1682 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1683 } 1684 1685 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1686 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1687 unlikely(READ_ONCE(rdp->gpwrap))) { 1688 /* 1689 * If the current grace period is waiting for this CPU, 1690 * set up to detect a quiescent state, otherwise don't 1691 * go looking for one. 1692 */ 1693 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1694 need_gp = !!(rnp->qsmask & rdp->grpmask); 1695 rdp->cpu_no_qs.b.norm = need_gp; 1696 rdp->core_needs_qs = need_gp; 1697 zero_cpu_stall_ticks(rdp); 1698 } 1699 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1700 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) 1701 rdp->gp_seq_needed = rnp->gp_seq_needed; 1702 WRITE_ONCE(rdp->gpwrap, false); 1703 rcu_gpnum_ovf(rnp, rdp); 1704 return ret; 1705 } 1706 1707 static void note_gp_changes(struct rcu_data *rdp) 1708 { 1709 unsigned long flags; 1710 bool needwake; 1711 struct rcu_node *rnp; 1712 1713 local_irq_save(flags); 1714 rnp = rdp->mynode; 1715 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1716 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1717 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1718 local_irq_restore(flags); 1719 return; 1720 } 1721 needwake = __note_gp_changes(rnp, rdp); 1722 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1723 if (needwake) 1724 rcu_gp_kthread_wake(); 1725 } 1726 1727 static void rcu_gp_slow(int delay) 1728 { 1729 if (delay > 0 && 1730 !(rcu_seq_ctr(rcu_state.gp_seq) % 1731 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1732 schedule_timeout_uninterruptible(delay); 1733 } 1734 1735 /* 1736 * Initialize a new grace period. Return false if no grace period required. 1737 */ 1738 static bool rcu_gp_init(void) 1739 { 1740 unsigned long flags; 1741 unsigned long oldmask; 1742 unsigned long mask; 1743 struct rcu_data *rdp; 1744 struct rcu_node *rnp = rcu_get_root(); 1745 1746 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1747 raw_spin_lock_irq_rcu_node(rnp); 1748 if (!READ_ONCE(rcu_state.gp_flags)) { 1749 /* Spurious wakeup, tell caller to go back to sleep. */ 1750 raw_spin_unlock_irq_rcu_node(rnp); 1751 return false; 1752 } 1753 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1754 1755 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1756 /* 1757 * Grace period already in progress, don't start another. 1758 * Not supposed to be able to happen. 1759 */ 1760 raw_spin_unlock_irq_rcu_node(rnp); 1761 return false; 1762 } 1763 1764 /* Advance to a new grace period and initialize state. */ 1765 record_gp_stall_check_time(); 1766 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1767 rcu_seq_start(&rcu_state.gp_seq); 1768 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1769 raw_spin_unlock_irq_rcu_node(rnp); 1770 1771 /* 1772 * Apply per-leaf buffered online and offline operations to the 1773 * rcu_node tree. Note that this new grace period need not wait 1774 * for subsequent online CPUs, and that quiescent-state forcing 1775 * will handle subsequent offline CPUs. 1776 */ 1777 rcu_state.gp_state = RCU_GP_ONOFF; 1778 rcu_for_each_leaf_node(rnp) { 1779 raw_spin_lock(&rcu_state.ofl_lock); 1780 raw_spin_lock_irq_rcu_node(rnp); 1781 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1782 !rnp->wait_blkd_tasks) { 1783 /* Nothing to do on this leaf rcu_node structure. */ 1784 raw_spin_unlock_irq_rcu_node(rnp); 1785 raw_spin_unlock(&rcu_state.ofl_lock); 1786 continue; 1787 } 1788 1789 /* Record old state, apply changes to ->qsmaskinit field. */ 1790 oldmask = rnp->qsmaskinit; 1791 rnp->qsmaskinit = rnp->qsmaskinitnext; 1792 1793 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1794 if (!oldmask != !rnp->qsmaskinit) { 1795 if (!oldmask) { /* First online CPU for rcu_node. */ 1796 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1797 rcu_init_new_rnp(rnp); 1798 } else if (rcu_preempt_has_tasks(rnp)) { 1799 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1800 } else { /* Last offline CPU and can propagate. */ 1801 rcu_cleanup_dead_rnp(rnp); 1802 } 1803 } 1804 1805 /* 1806 * If all waited-on tasks from prior grace period are 1807 * done, and if all this rcu_node structure's CPUs are 1808 * still offline, propagate up the rcu_node tree and 1809 * clear ->wait_blkd_tasks. Otherwise, if one of this 1810 * rcu_node structure's CPUs has since come back online, 1811 * simply clear ->wait_blkd_tasks. 1812 */ 1813 if (rnp->wait_blkd_tasks && 1814 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1815 rnp->wait_blkd_tasks = false; 1816 if (!rnp->qsmaskinit) 1817 rcu_cleanup_dead_rnp(rnp); 1818 } 1819 1820 raw_spin_unlock_irq_rcu_node(rnp); 1821 raw_spin_unlock(&rcu_state.ofl_lock); 1822 } 1823 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1824 1825 /* 1826 * Set the quiescent-state-needed bits in all the rcu_node 1827 * structures for all currently online CPUs in breadth-first 1828 * order, starting from the root rcu_node structure, relying on the 1829 * layout of the tree within the rcu_state.node[] array. Note that 1830 * other CPUs will access only the leaves of the hierarchy, thus 1831 * seeing that no grace period is in progress, at least until the 1832 * corresponding leaf node has been initialized. 1833 * 1834 * The grace period cannot complete until the initialization 1835 * process finishes, because this kthread handles both. 1836 */ 1837 rcu_state.gp_state = RCU_GP_INIT; 1838 rcu_for_each_node_breadth_first(rnp) { 1839 rcu_gp_slow(gp_init_delay); 1840 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1841 rdp = this_cpu_ptr(&rcu_data); 1842 rcu_preempt_check_blocked_tasks(rnp); 1843 rnp->qsmask = rnp->qsmaskinit; 1844 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1845 if (rnp == rdp->mynode) 1846 (void)__note_gp_changes(rnp, rdp); 1847 rcu_preempt_boost_start_gp(rnp); 1848 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1849 rnp->level, rnp->grplo, 1850 rnp->grphi, rnp->qsmask); 1851 /* Quiescent states for tasks on any now-offline CPUs. */ 1852 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1853 rnp->rcu_gp_init_mask = mask; 1854 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1855 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1856 else 1857 raw_spin_unlock_irq_rcu_node(rnp); 1858 cond_resched_tasks_rcu_qs(); 1859 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1860 } 1861 1862 return true; 1863 } 1864 1865 /* 1866 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1867 * time. 1868 */ 1869 static bool rcu_gp_fqs_check_wake(int *gfp) 1870 { 1871 struct rcu_node *rnp = rcu_get_root(); 1872 1873 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1874 *gfp = READ_ONCE(rcu_state.gp_flags); 1875 if (*gfp & RCU_GP_FLAG_FQS) 1876 return true; 1877 1878 /* The current grace period has completed. */ 1879 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1880 return true; 1881 1882 return false; 1883 } 1884 1885 /* 1886 * Do one round of quiescent-state forcing. 1887 */ 1888 static void rcu_gp_fqs(bool first_time) 1889 { 1890 struct rcu_node *rnp = rcu_get_root(); 1891 1892 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1893 rcu_state.n_force_qs++; 1894 if (first_time) { 1895 /* Collect dyntick-idle snapshots. */ 1896 force_qs_rnp(dyntick_save_progress_counter); 1897 } else { 1898 /* Handle dyntick-idle and offline CPUs. */ 1899 force_qs_rnp(rcu_implicit_dynticks_qs); 1900 } 1901 /* Clear flag to prevent immediate re-entry. */ 1902 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1903 raw_spin_lock_irq_rcu_node(rnp); 1904 WRITE_ONCE(rcu_state.gp_flags, 1905 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1906 raw_spin_unlock_irq_rcu_node(rnp); 1907 } 1908 } 1909 1910 /* 1911 * Loop doing repeated quiescent-state forcing until the grace period ends. 1912 */ 1913 static void rcu_gp_fqs_loop(void) 1914 { 1915 bool first_gp_fqs; 1916 int gf; 1917 unsigned long j; 1918 int ret; 1919 struct rcu_node *rnp = rcu_get_root(); 1920 1921 first_gp_fqs = true; 1922 j = READ_ONCE(jiffies_till_first_fqs); 1923 ret = 0; 1924 for (;;) { 1925 if (!ret) { 1926 rcu_state.jiffies_force_qs = jiffies + j; 1927 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1928 jiffies + 3 * j); 1929 } 1930 trace_rcu_grace_period(rcu_state.name, 1931 READ_ONCE(rcu_state.gp_seq), 1932 TPS("fqswait")); 1933 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1934 ret = swait_event_idle_timeout_exclusive( 1935 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1936 rcu_state.gp_state = RCU_GP_DOING_FQS; 1937 /* Locking provides needed memory barriers. */ 1938 /* If grace period done, leave loop. */ 1939 if (!READ_ONCE(rnp->qsmask) && 1940 !rcu_preempt_blocked_readers_cgp(rnp)) 1941 break; 1942 /* If time for quiescent-state forcing, do it. */ 1943 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1944 (gf & RCU_GP_FLAG_FQS)) { 1945 trace_rcu_grace_period(rcu_state.name, 1946 READ_ONCE(rcu_state.gp_seq), 1947 TPS("fqsstart")); 1948 rcu_gp_fqs(first_gp_fqs); 1949 first_gp_fqs = false; 1950 trace_rcu_grace_period(rcu_state.name, 1951 READ_ONCE(rcu_state.gp_seq), 1952 TPS("fqsend")); 1953 cond_resched_tasks_rcu_qs(); 1954 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1955 ret = 0; /* Force full wait till next FQS. */ 1956 j = READ_ONCE(jiffies_till_next_fqs); 1957 } else { 1958 /* Deal with stray signal. */ 1959 cond_resched_tasks_rcu_qs(); 1960 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1961 WARN_ON(signal_pending(current)); 1962 trace_rcu_grace_period(rcu_state.name, 1963 READ_ONCE(rcu_state.gp_seq), 1964 TPS("fqswaitsig")); 1965 ret = 1; /* Keep old FQS timing. */ 1966 j = jiffies; 1967 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1968 j = 1; 1969 else 1970 j = rcu_state.jiffies_force_qs - j; 1971 } 1972 } 1973 } 1974 1975 /* 1976 * Clean up after the old grace period. 1977 */ 1978 static void rcu_gp_cleanup(void) 1979 { 1980 unsigned long gp_duration; 1981 bool needgp = false; 1982 unsigned long new_gp_seq; 1983 struct rcu_data *rdp; 1984 struct rcu_node *rnp = rcu_get_root(); 1985 struct swait_queue_head *sq; 1986 1987 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1988 raw_spin_lock_irq_rcu_node(rnp); 1989 gp_duration = jiffies - rcu_state.gp_start; 1990 if (gp_duration > rcu_state.gp_max) 1991 rcu_state.gp_max = gp_duration; 1992 1993 /* 1994 * We know the grace period is complete, but to everyone else 1995 * it appears to still be ongoing. But it is also the case 1996 * that to everyone else it looks like there is nothing that 1997 * they can do to advance the grace period. It is therefore 1998 * safe for us to drop the lock in order to mark the grace 1999 * period as completed in all of the rcu_node structures. 2000 */ 2001 raw_spin_unlock_irq_rcu_node(rnp); 2002 2003 /* 2004 * Propagate new ->gp_seq value to rcu_node structures so that 2005 * other CPUs don't have to wait until the start of the next grace 2006 * period to process their callbacks. This also avoids some nasty 2007 * RCU grace-period initialization races by forcing the end of 2008 * the current grace period to be completely recorded in all of 2009 * the rcu_node structures before the beginning of the next grace 2010 * period is recorded in any of the rcu_node structures. 2011 */ 2012 new_gp_seq = rcu_state.gp_seq; 2013 rcu_seq_end(&new_gp_seq); 2014 rcu_for_each_node_breadth_first(rnp) { 2015 raw_spin_lock_irq_rcu_node(rnp); 2016 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2017 dump_blkd_tasks(rnp, 10); 2018 WARN_ON_ONCE(rnp->qsmask); 2019 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2020 rdp = this_cpu_ptr(&rcu_data); 2021 if (rnp == rdp->mynode) 2022 needgp = __note_gp_changes(rnp, rdp) || needgp; 2023 /* smp_mb() provided by prior unlock-lock pair. */ 2024 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2025 sq = rcu_nocb_gp_get(rnp); 2026 raw_spin_unlock_irq_rcu_node(rnp); 2027 rcu_nocb_gp_cleanup(sq); 2028 cond_resched_tasks_rcu_qs(); 2029 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2030 rcu_gp_slow(gp_cleanup_delay); 2031 } 2032 rnp = rcu_get_root(); 2033 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2034 2035 /* Declare grace period done. */ 2036 rcu_seq_end(&rcu_state.gp_seq); 2037 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2038 rcu_state.gp_state = RCU_GP_IDLE; 2039 /* Check for GP requests since above loop. */ 2040 rdp = this_cpu_ptr(&rcu_data); 2041 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2042 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2043 TPS("CleanupMore")); 2044 needgp = true; 2045 } 2046 /* Advance CBs to reduce false positives below. */ 2047 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 2048 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2049 rcu_state.gp_req_activity = jiffies; 2050 trace_rcu_grace_period(rcu_state.name, 2051 READ_ONCE(rcu_state.gp_seq), 2052 TPS("newreq")); 2053 } else { 2054 WRITE_ONCE(rcu_state.gp_flags, 2055 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2056 } 2057 raw_spin_unlock_irq_rcu_node(rnp); 2058 } 2059 2060 /* 2061 * Body of kthread that handles grace periods. 2062 */ 2063 static int __noreturn rcu_gp_kthread(void *unused) 2064 { 2065 rcu_bind_gp_kthread(); 2066 for (;;) { 2067 2068 /* Handle grace-period start. */ 2069 for (;;) { 2070 trace_rcu_grace_period(rcu_state.name, 2071 READ_ONCE(rcu_state.gp_seq), 2072 TPS("reqwait")); 2073 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2074 swait_event_idle_exclusive(rcu_state.gp_wq, 2075 READ_ONCE(rcu_state.gp_flags) & 2076 RCU_GP_FLAG_INIT); 2077 rcu_state.gp_state = RCU_GP_DONE_GPS; 2078 /* Locking provides needed memory barrier. */ 2079 if (rcu_gp_init()) 2080 break; 2081 cond_resched_tasks_rcu_qs(); 2082 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2083 WARN_ON(signal_pending(current)); 2084 trace_rcu_grace_period(rcu_state.name, 2085 READ_ONCE(rcu_state.gp_seq), 2086 TPS("reqwaitsig")); 2087 } 2088 2089 /* Handle quiescent-state forcing. */ 2090 rcu_gp_fqs_loop(); 2091 2092 /* Handle grace-period end. */ 2093 rcu_state.gp_state = RCU_GP_CLEANUP; 2094 rcu_gp_cleanup(); 2095 rcu_state.gp_state = RCU_GP_CLEANED; 2096 } 2097 } 2098 2099 /* 2100 * Report a full set of quiescent states to the rcu_state data structure. 2101 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2102 * another grace period is required. Whether we wake the grace-period 2103 * kthread or it awakens itself for the next round of quiescent-state 2104 * forcing, that kthread will clean up after the just-completed grace 2105 * period. Note that the caller must hold rnp->lock, which is released 2106 * before return. 2107 */ 2108 static void rcu_report_qs_rsp(unsigned long flags) 2109 __releases(rcu_get_root()->lock) 2110 { 2111 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2112 WARN_ON_ONCE(!rcu_gp_in_progress()); 2113 WRITE_ONCE(rcu_state.gp_flags, 2114 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2115 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2116 rcu_gp_kthread_wake(); 2117 } 2118 2119 /* 2120 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2121 * Allows quiescent states for a group of CPUs to be reported at one go 2122 * to the specified rcu_node structure, though all the CPUs in the group 2123 * must be represented by the same rcu_node structure (which need not be a 2124 * leaf rcu_node structure, though it often will be). The gps parameter 2125 * is the grace-period snapshot, which means that the quiescent states 2126 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2127 * must be held upon entry, and it is released before return. 2128 * 2129 * As a special case, if mask is zero, the bit-already-cleared check is 2130 * disabled. This allows propagating quiescent state due to resumed tasks 2131 * during grace-period initialization. 2132 */ 2133 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2134 unsigned long gps, unsigned long flags) 2135 __releases(rnp->lock) 2136 { 2137 unsigned long oldmask = 0; 2138 struct rcu_node *rnp_c; 2139 2140 raw_lockdep_assert_held_rcu_node(rnp); 2141 2142 /* Walk up the rcu_node hierarchy. */ 2143 for (;;) { 2144 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2145 2146 /* 2147 * Our bit has already been cleared, or the 2148 * relevant grace period is already over, so done. 2149 */ 2150 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2151 return; 2152 } 2153 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2154 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2155 rcu_preempt_blocked_readers_cgp(rnp)); 2156 rnp->qsmask &= ~mask; 2157 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2158 mask, rnp->qsmask, rnp->level, 2159 rnp->grplo, rnp->grphi, 2160 !!rnp->gp_tasks); 2161 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2162 2163 /* Other bits still set at this level, so done. */ 2164 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2165 return; 2166 } 2167 rnp->completedqs = rnp->gp_seq; 2168 mask = rnp->grpmask; 2169 if (rnp->parent == NULL) { 2170 2171 /* No more levels. Exit loop holding root lock. */ 2172 2173 break; 2174 } 2175 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2176 rnp_c = rnp; 2177 rnp = rnp->parent; 2178 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2179 oldmask = rnp_c->qsmask; 2180 } 2181 2182 /* 2183 * Get here if we are the last CPU to pass through a quiescent 2184 * state for this grace period. Invoke rcu_report_qs_rsp() 2185 * to clean up and start the next grace period if one is needed. 2186 */ 2187 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2188 } 2189 2190 /* 2191 * Record a quiescent state for all tasks that were previously queued 2192 * on the specified rcu_node structure and that were blocking the current 2193 * RCU grace period. The caller must hold the corresponding rnp->lock with 2194 * irqs disabled, and this lock is released upon return, but irqs remain 2195 * disabled. 2196 */ 2197 static void __maybe_unused 2198 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2199 __releases(rnp->lock) 2200 { 2201 unsigned long gps; 2202 unsigned long mask; 2203 struct rcu_node *rnp_p; 2204 2205 raw_lockdep_assert_held_rcu_node(rnp); 2206 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 2207 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2208 rnp->qsmask != 0) { 2209 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2210 return; /* Still need more quiescent states! */ 2211 } 2212 2213 rnp->completedqs = rnp->gp_seq; 2214 rnp_p = rnp->parent; 2215 if (rnp_p == NULL) { 2216 /* 2217 * Only one rcu_node structure in the tree, so don't 2218 * try to report up to its nonexistent parent! 2219 */ 2220 rcu_report_qs_rsp(flags); 2221 return; 2222 } 2223 2224 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2225 gps = rnp->gp_seq; 2226 mask = rnp->grpmask; 2227 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2228 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2229 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2230 } 2231 2232 /* 2233 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2234 * structure. This must be called from the specified CPU. 2235 */ 2236 static void 2237 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2238 { 2239 unsigned long flags; 2240 unsigned long mask; 2241 bool needwake; 2242 struct rcu_node *rnp; 2243 2244 rnp = rdp->mynode; 2245 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2246 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2247 rdp->gpwrap) { 2248 2249 /* 2250 * The grace period in which this quiescent state was 2251 * recorded has ended, so don't report it upwards. 2252 * We will instead need a new quiescent state that lies 2253 * within the current grace period. 2254 */ 2255 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2256 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2257 return; 2258 } 2259 mask = rdp->grpmask; 2260 if ((rnp->qsmask & mask) == 0) { 2261 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2262 } else { 2263 rdp->core_needs_qs = false; 2264 2265 /* 2266 * This GP can't end until cpu checks in, so all of our 2267 * callbacks can be processed during the next GP. 2268 */ 2269 needwake = rcu_accelerate_cbs(rnp, rdp); 2270 2271 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2272 /* ^^^ Released rnp->lock */ 2273 if (needwake) 2274 rcu_gp_kthread_wake(); 2275 } 2276 } 2277 2278 /* 2279 * Check to see if there is a new grace period of which this CPU 2280 * is not yet aware, and if so, set up local rcu_data state for it. 2281 * Otherwise, see if this CPU has just passed through its first 2282 * quiescent state for this grace period, and record that fact if so. 2283 */ 2284 static void 2285 rcu_check_quiescent_state(struct rcu_data *rdp) 2286 { 2287 /* Check for grace-period ends and beginnings. */ 2288 note_gp_changes(rdp); 2289 2290 /* 2291 * Does this CPU still need to do its part for current grace period? 2292 * If no, return and let the other CPUs do their part as well. 2293 */ 2294 if (!rdp->core_needs_qs) 2295 return; 2296 2297 /* 2298 * Was there a quiescent state since the beginning of the grace 2299 * period? If no, then exit and wait for the next call. 2300 */ 2301 if (rdp->cpu_no_qs.b.norm) 2302 return; 2303 2304 /* 2305 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2306 * judge of that). 2307 */ 2308 rcu_report_qs_rdp(rdp->cpu, rdp); 2309 } 2310 2311 /* 2312 * Near the end of the offline process. Trace the fact that this CPU 2313 * is going offline. 2314 */ 2315 int rcutree_dying_cpu(unsigned int cpu) 2316 { 2317 RCU_TRACE(bool blkd;) 2318 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);) 2319 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2320 2321 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2322 return 0; 2323 2324 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2325 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2326 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2327 return 0; 2328 } 2329 2330 /* 2331 * All CPUs for the specified rcu_node structure have gone offline, 2332 * and all tasks that were preempted within an RCU read-side critical 2333 * section while running on one of those CPUs have since exited their RCU 2334 * read-side critical section. Some other CPU is reporting this fact with 2335 * the specified rcu_node structure's ->lock held and interrupts disabled. 2336 * This function therefore goes up the tree of rcu_node structures, 2337 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2338 * the leaf rcu_node structure's ->qsmaskinit field has already been 2339 * updated. 2340 * 2341 * This function does check that the specified rcu_node structure has 2342 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2343 * prematurely. That said, invoking it after the fact will cost you 2344 * a needless lock acquisition. So once it has done its work, don't 2345 * invoke it again. 2346 */ 2347 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2348 { 2349 long mask; 2350 struct rcu_node *rnp = rnp_leaf; 2351 2352 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2353 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2354 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2355 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2356 return; 2357 for (;;) { 2358 mask = rnp->grpmask; 2359 rnp = rnp->parent; 2360 if (!rnp) 2361 break; 2362 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2363 rnp->qsmaskinit &= ~mask; 2364 /* Between grace periods, so better already be zero! */ 2365 WARN_ON_ONCE(rnp->qsmask); 2366 if (rnp->qsmaskinit) { 2367 raw_spin_unlock_rcu_node(rnp); 2368 /* irqs remain disabled. */ 2369 return; 2370 } 2371 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2372 } 2373 } 2374 2375 /* 2376 * The CPU has been completely removed, and some other CPU is reporting 2377 * this fact from process context. Do the remainder of the cleanup. 2378 * There can only be one CPU hotplug operation at a time, so no need for 2379 * explicit locking. 2380 */ 2381 int rcutree_dead_cpu(unsigned int cpu) 2382 { 2383 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2384 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2385 2386 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2387 return 0; 2388 2389 /* Adjust any no-longer-needed kthreads. */ 2390 rcu_boost_kthread_setaffinity(rnp, -1); 2391 /* Do any needed no-CB deferred wakeups from this CPU. */ 2392 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2393 return 0; 2394 } 2395 2396 /* 2397 * Invoke any RCU callbacks that have made it to the end of their grace 2398 * period. Thottle as specified by rdp->blimit. 2399 */ 2400 static void rcu_do_batch(struct rcu_data *rdp) 2401 { 2402 unsigned long flags; 2403 struct rcu_head *rhp; 2404 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2405 long bl, count; 2406 2407 /* If no callbacks are ready, just return. */ 2408 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2409 trace_rcu_batch_start(rcu_state.name, 2410 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2411 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2412 trace_rcu_batch_end(rcu_state.name, 0, 2413 !rcu_segcblist_empty(&rdp->cblist), 2414 need_resched(), is_idle_task(current), 2415 rcu_is_callbacks_kthread()); 2416 return; 2417 } 2418 2419 /* 2420 * Extract the list of ready callbacks, disabling to prevent 2421 * races with call_rcu() from interrupt handlers. Leave the 2422 * callback counts, as rcu_barrier() needs to be conservative. 2423 */ 2424 local_irq_save(flags); 2425 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2426 bl = rdp->blimit; 2427 trace_rcu_batch_start(rcu_state.name, 2428 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2429 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2430 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2431 local_irq_restore(flags); 2432 2433 /* Invoke callbacks. */ 2434 rhp = rcu_cblist_dequeue(&rcl); 2435 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2436 debug_rcu_head_unqueue(rhp); 2437 if (__rcu_reclaim(rcu_state.name, rhp)) 2438 rcu_cblist_dequeued_lazy(&rcl); 2439 /* 2440 * Stop only if limit reached and CPU has something to do. 2441 * Note: The rcl structure counts down from zero. 2442 */ 2443 if (-rcl.len >= bl && 2444 (need_resched() || 2445 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2446 break; 2447 } 2448 2449 local_irq_save(flags); 2450 count = -rcl.len; 2451 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2452 is_idle_task(current), rcu_is_callbacks_kthread()); 2453 2454 /* Update counts and requeue any remaining callbacks. */ 2455 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2456 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2457 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2458 2459 /* Reinstate batch limit if we have worked down the excess. */ 2460 count = rcu_segcblist_n_cbs(&rdp->cblist); 2461 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2462 rdp->blimit = blimit; 2463 2464 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2465 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2466 rdp->qlen_last_fqs_check = 0; 2467 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2468 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2469 rdp->qlen_last_fqs_check = count; 2470 2471 /* 2472 * The following usually indicates a double call_rcu(). To track 2473 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2474 */ 2475 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2476 2477 local_irq_restore(flags); 2478 2479 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2480 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2481 invoke_rcu_core(); 2482 } 2483 2484 /* 2485 * Check to see if this CPU is in a non-context-switch quiescent state 2486 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2487 * Also schedule RCU core processing. 2488 * 2489 * This function must be called from hardirq context. It is normally 2490 * invoked from the scheduling-clock interrupt. 2491 */ 2492 void rcu_check_callbacks(int user) 2493 { 2494 trace_rcu_utilization(TPS("Start scheduler-tick")); 2495 raw_cpu_inc(rcu_data.ticks_this_gp); 2496 /* The load-acquire pairs with the store-release setting to true. */ 2497 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2498 /* Idle and userspace execution already are quiescent states. */ 2499 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2500 set_tsk_need_resched(current); 2501 set_preempt_need_resched(); 2502 } 2503 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2504 } 2505 rcu_flavor_check_callbacks(user); 2506 if (rcu_pending()) 2507 invoke_rcu_core(); 2508 2509 trace_rcu_utilization(TPS("End scheduler-tick")); 2510 } 2511 2512 /* 2513 * Scan the leaf rcu_node structures, processing dyntick state for any that 2514 * have not yet encountered a quiescent state, using the function specified. 2515 * Also initiate boosting for any threads blocked on the root rcu_node. 2516 * 2517 * The caller must have suppressed start of new grace periods. 2518 */ 2519 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2520 { 2521 int cpu; 2522 unsigned long flags; 2523 unsigned long mask; 2524 struct rcu_node *rnp; 2525 2526 rcu_for_each_leaf_node(rnp) { 2527 cond_resched_tasks_rcu_qs(); 2528 mask = 0; 2529 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2530 if (rnp->qsmask == 0) { 2531 if (!IS_ENABLED(CONFIG_PREEMPT) || 2532 rcu_preempt_blocked_readers_cgp(rnp)) { 2533 /* 2534 * No point in scanning bits because they 2535 * are all zero. But we might need to 2536 * priority-boost blocked readers. 2537 */ 2538 rcu_initiate_boost(rnp, flags); 2539 /* rcu_initiate_boost() releases rnp->lock */ 2540 continue; 2541 } 2542 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2543 continue; 2544 } 2545 for_each_leaf_node_possible_cpu(rnp, cpu) { 2546 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2547 if ((rnp->qsmask & bit) != 0) { 2548 if (f(per_cpu_ptr(&rcu_data, cpu))) 2549 mask |= bit; 2550 } 2551 } 2552 if (mask != 0) { 2553 /* Idle/offline CPUs, report (releases rnp->lock). */ 2554 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2555 } else { 2556 /* Nothing to do here, so just drop the lock. */ 2557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2558 } 2559 } 2560 } 2561 2562 /* 2563 * Force quiescent states on reluctant CPUs, and also detect which 2564 * CPUs are in dyntick-idle mode. 2565 */ 2566 static void force_quiescent_state(void) 2567 { 2568 unsigned long flags; 2569 bool ret; 2570 struct rcu_node *rnp; 2571 struct rcu_node *rnp_old = NULL; 2572 2573 /* Funnel through hierarchy to reduce memory contention. */ 2574 rnp = __this_cpu_read(rcu_data.mynode); 2575 for (; rnp != NULL; rnp = rnp->parent) { 2576 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2577 !raw_spin_trylock(&rnp->fqslock); 2578 if (rnp_old != NULL) 2579 raw_spin_unlock(&rnp_old->fqslock); 2580 if (ret) 2581 return; 2582 rnp_old = rnp; 2583 } 2584 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2585 2586 /* Reached the root of the rcu_node tree, acquire lock. */ 2587 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2588 raw_spin_unlock(&rnp_old->fqslock); 2589 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2590 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2591 return; /* Someone beat us to it. */ 2592 } 2593 WRITE_ONCE(rcu_state.gp_flags, 2594 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2595 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2596 rcu_gp_kthread_wake(); 2597 } 2598 2599 /* 2600 * This function checks for grace-period requests that fail to motivate 2601 * RCU to come out of its idle mode. 2602 */ 2603 static void 2604 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp) 2605 { 2606 const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ; 2607 unsigned long flags; 2608 unsigned long j; 2609 struct rcu_node *rnp_root = rcu_get_root(); 2610 static atomic_t warned = ATOMIC_INIT(0); 2611 2612 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() || 2613 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2614 return; 2615 j = jiffies; /* Expensive access, and in common case don't get here. */ 2616 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2617 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2618 atomic_read(&warned)) 2619 return; 2620 2621 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2622 j = jiffies; 2623 if (rcu_gp_in_progress() || 2624 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2625 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2626 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2627 atomic_read(&warned)) { 2628 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2629 return; 2630 } 2631 /* Hold onto the leaf lock to make others see warned==1. */ 2632 2633 if (rnp_root != rnp) 2634 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2635 j = jiffies; 2636 if (rcu_gp_in_progress() || 2637 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2638 time_before(j, rcu_state.gp_req_activity + gpssdelay) || 2639 time_before(j, rcu_state.gp_activity + gpssdelay) || 2640 atomic_xchg(&warned, 1)) { 2641 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2642 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2643 return; 2644 } 2645 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n", 2646 __func__, (long)READ_ONCE(rcu_state.gp_seq), 2647 (long)READ_ONCE(rnp_root->gp_seq_needed), 2648 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity, 2649 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name, 2650 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL); 2651 WARN_ON(1); 2652 if (rnp_root != rnp) 2653 raw_spin_unlock_rcu_node(rnp_root); 2654 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2655 } 2656 2657 /* 2658 * This does the RCU core processing work for the specified rcu_data 2659 * structures. This may be called only from the CPU to whom the rdp 2660 * belongs. 2661 */ 2662 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2663 { 2664 unsigned long flags; 2665 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2666 struct rcu_node *rnp = rdp->mynode; 2667 2668 if (cpu_is_offline(smp_processor_id())) 2669 return; 2670 trace_rcu_utilization(TPS("Start RCU core")); 2671 WARN_ON_ONCE(!rdp->beenonline); 2672 2673 /* Report any deferred quiescent states if preemption enabled. */ 2674 if (!(preempt_count() & PREEMPT_MASK)) { 2675 rcu_preempt_deferred_qs(current); 2676 } else if (rcu_preempt_need_deferred_qs(current)) { 2677 set_tsk_need_resched(current); 2678 set_preempt_need_resched(); 2679 } 2680 2681 /* Update RCU state based on any recent quiescent states. */ 2682 rcu_check_quiescent_state(rdp); 2683 2684 /* No grace period and unregistered callbacks? */ 2685 if (!rcu_gp_in_progress() && 2686 rcu_segcblist_is_enabled(&rdp->cblist)) { 2687 local_irq_save(flags); 2688 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2689 rcu_accelerate_cbs_unlocked(rnp, rdp); 2690 local_irq_restore(flags); 2691 } 2692 2693 rcu_check_gp_start_stall(rnp, rdp); 2694 2695 /* If there are callbacks ready, invoke them. */ 2696 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2697 invoke_rcu_callbacks(rdp); 2698 2699 /* Do any needed deferred wakeups of rcuo kthreads. */ 2700 do_nocb_deferred_wakeup(rdp); 2701 trace_rcu_utilization(TPS("End RCU core")); 2702 } 2703 2704 /* 2705 * Schedule RCU callback invocation. If the running implementation of RCU 2706 * does not support RCU priority boosting, just do a direct call, otherwise 2707 * wake up the per-CPU kernel kthread. Note that because we are running 2708 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task 2709 * cannot disappear out from under us. 2710 */ 2711 static void invoke_rcu_callbacks(struct rcu_data *rdp) 2712 { 2713 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2714 return; 2715 if (likely(!rcu_state.boost)) { 2716 rcu_do_batch(rdp); 2717 return; 2718 } 2719 invoke_rcu_callbacks_kthread(); 2720 } 2721 2722 static void invoke_rcu_core(void) 2723 { 2724 if (cpu_online(smp_processor_id())) 2725 raise_softirq(RCU_SOFTIRQ); 2726 } 2727 2728 /* 2729 * Handle any core-RCU processing required by a call_rcu() invocation. 2730 */ 2731 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2732 unsigned long flags) 2733 { 2734 /* 2735 * If called from an extended quiescent state, invoke the RCU 2736 * core in order to force a re-evaluation of RCU's idleness. 2737 */ 2738 if (!rcu_is_watching()) 2739 invoke_rcu_core(); 2740 2741 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2742 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2743 return; 2744 2745 /* 2746 * Force the grace period if too many callbacks or too long waiting. 2747 * Enforce hysteresis, and don't invoke force_quiescent_state() 2748 * if some other CPU has recently done so. Also, don't bother 2749 * invoking force_quiescent_state() if the newly enqueued callback 2750 * is the only one waiting for a grace period to complete. 2751 */ 2752 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2753 rdp->qlen_last_fqs_check + qhimark)) { 2754 2755 /* Are we ignoring a completed grace period? */ 2756 note_gp_changes(rdp); 2757 2758 /* Start a new grace period if one not already started. */ 2759 if (!rcu_gp_in_progress()) { 2760 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2761 } else { 2762 /* Give the grace period a kick. */ 2763 rdp->blimit = LONG_MAX; 2764 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2765 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2766 force_quiescent_state(); 2767 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2768 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2769 } 2770 } 2771 } 2772 2773 /* 2774 * RCU callback function to leak a callback. 2775 */ 2776 static void rcu_leak_callback(struct rcu_head *rhp) 2777 { 2778 } 2779 2780 /* 2781 * Helper function for call_rcu() and friends. The cpu argument will 2782 * normally be -1, indicating "currently running CPU". It may specify 2783 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2784 * is expected to specify a CPU. 2785 */ 2786 static void 2787 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2788 { 2789 unsigned long flags; 2790 struct rcu_data *rdp; 2791 2792 /* Misaligned rcu_head! */ 2793 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2794 2795 if (debug_rcu_head_queue(head)) { 2796 /* 2797 * Probable double call_rcu(), so leak the callback. 2798 * Use rcu:rcu_callback trace event to find the previous 2799 * time callback was passed to __call_rcu(). 2800 */ 2801 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2802 head, head->func); 2803 WRITE_ONCE(head->func, rcu_leak_callback); 2804 return; 2805 } 2806 head->func = func; 2807 head->next = NULL; 2808 local_irq_save(flags); 2809 rdp = this_cpu_ptr(&rcu_data); 2810 2811 /* Add the callback to our list. */ 2812 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2813 int offline; 2814 2815 if (cpu != -1) 2816 rdp = per_cpu_ptr(&rcu_data, cpu); 2817 if (likely(rdp->mynode)) { 2818 /* Post-boot, so this should be for a no-CBs CPU. */ 2819 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2820 WARN_ON_ONCE(offline); 2821 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2822 local_irq_restore(flags); 2823 return; 2824 } 2825 /* 2826 * Very early boot, before rcu_init(). Initialize if needed 2827 * and then drop through to queue the callback. 2828 */ 2829 BUG_ON(cpu != -1); 2830 WARN_ON_ONCE(!rcu_is_watching()); 2831 if (rcu_segcblist_empty(&rdp->cblist)) 2832 rcu_segcblist_init(&rdp->cblist); 2833 } 2834 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2835 if (!lazy) 2836 rcu_idle_count_callbacks_posted(); 2837 2838 if (__is_kfree_rcu_offset((unsigned long)func)) 2839 trace_rcu_kfree_callback(rcu_state.name, head, 2840 (unsigned long)func, 2841 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2842 rcu_segcblist_n_cbs(&rdp->cblist)); 2843 else 2844 trace_rcu_callback(rcu_state.name, head, 2845 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2846 rcu_segcblist_n_cbs(&rdp->cblist)); 2847 2848 /* Go handle any RCU core processing required. */ 2849 __call_rcu_core(rdp, head, flags); 2850 local_irq_restore(flags); 2851 } 2852 2853 /** 2854 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2855 * @head: structure to be used for queueing the RCU updates. 2856 * @func: actual callback function to be invoked after the grace period 2857 * 2858 * The callback function will be invoked some time after a full grace 2859 * period elapses, in other words after all pre-existing RCU read-side 2860 * critical sections have completed. However, the callback function 2861 * might well execute concurrently with RCU read-side critical sections 2862 * that started after call_rcu() was invoked. RCU read-side critical 2863 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2864 * may be nested. In addition, regions of code across which interrupts, 2865 * preemption, or softirqs have been disabled also serve as RCU read-side 2866 * critical sections. This includes hardware interrupt handlers, softirq 2867 * handlers, and NMI handlers. 2868 * 2869 * Note that all CPUs must agree that the grace period extended beyond 2870 * all pre-existing RCU read-side critical section. On systems with more 2871 * than one CPU, this means that when "func()" is invoked, each CPU is 2872 * guaranteed to have executed a full memory barrier since the end of its 2873 * last RCU read-side critical section whose beginning preceded the call 2874 * to call_rcu(). It also means that each CPU executing an RCU read-side 2875 * critical section that continues beyond the start of "func()" must have 2876 * executed a memory barrier after the call_rcu() but before the beginning 2877 * of that RCU read-side critical section. Note that these guarantees 2878 * include CPUs that are offline, idle, or executing in user mode, as 2879 * well as CPUs that are executing in the kernel. 2880 * 2881 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2882 * resulting RCU callback function "func()", then both CPU A and CPU B are 2883 * guaranteed to execute a full memory barrier during the time interval 2884 * between the call to call_rcu() and the invocation of "func()" -- even 2885 * if CPU A and CPU B are the same CPU (but again only if the system has 2886 * more than one CPU). 2887 */ 2888 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2889 { 2890 __call_rcu(head, func, -1, 0); 2891 } 2892 EXPORT_SYMBOL_GPL(call_rcu); 2893 2894 /* 2895 * Queue an RCU callback for lazy invocation after a grace period. 2896 * This will likely be later named something like "call_rcu_lazy()", 2897 * but this change will require some way of tagging the lazy RCU 2898 * callbacks in the list of pending callbacks. Until then, this 2899 * function may only be called from __kfree_rcu(). 2900 */ 2901 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2902 { 2903 __call_rcu(head, func, -1, 1); 2904 } 2905 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2906 2907 /** 2908 * get_state_synchronize_rcu - Snapshot current RCU state 2909 * 2910 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2911 * to determine whether or not a full grace period has elapsed in the 2912 * meantime. 2913 */ 2914 unsigned long get_state_synchronize_rcu(void) 2915 { 2916 /* 2917 * Any prior manipulation of RCU-protected data must happen 2918 * before the load from ->gp_seq. 2919 */ 2920 smp_mb(); /* ^^^ */ 2921 return rcu_seq_snap(&rcu_state.gp_seq); 2922 } 2923 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2924 2925 /** 2926 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2927 * 2928 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2929 * 2930 * If a full RCU grace period has elapsed since the earlier call to 2931 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2932 * synchronize_rcu() to wait for a full grace period. 2933 * 2934 * Yes, this function does not take counter wrap into account. But 2935 * counter wrap is harmless. If the counter wraps, we have waited for 2936 * more than 2 billion grace periods (and way more on a 64-bit system!), 2937 * so waiting for one additional grace period should be just fine. 2938 */ 2939 void cond_synchronize_rcu(unsigned long oldstate) 2940 { 2941 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 2942 synchronize_rcu(); 2943 else 2944 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 2945 } 2946 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2947 2948 /* 2949 * Check to see if there is any immediate RCU-related work to be done by 2950 * the current CPU, returning 1 if so and zero otherwise. The checks are 2951 * in order of increasing expense: checks that can be carried out against 2952 * CPU-local state are performed first. However, we must check for CPU 2953 * stalls first, else we might not get a chance. 2954 */ 2955 static int rcu_pending(void) 2956 { 2957 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2958 struct rcu_node *rnp = rdp->mynode; 2959 2960 /* Check for CPU stalls, if enabled. */ 2961 check_cpu_stall(rdp); 2962 2963 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 2964 if (rcu_nohz_full_cpu()) 2965 return 0; 2966 2967 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2968 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 2969 return 1; 2970 2971 /* Does this CPU have callbacks ready to invoke? */ 2972 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2973 return 1; 2974 2975 /* Has RCU gone idle with this CPU needing another grace period? */ 2976 if (!rcu_gp_in_progress() && 2977 rcu_segcblist_is_enabled(&rdp->cblist) && 2978 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2979 return 1; 2980 2981 /* Have RCU grace period completed or started? */ 2982 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 2983 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 2984 return 1; 2985 2986 /* Does this CPU need a deferred NOCB wakeup? */ 2987 if (rcu_nocb_need_deferred_wakeup(rdp)) 2988 return 1; 2989 2990 /* nothing to do */ 2991 return 0; 2992 } 2993 2994 /* 2995 * Return true if the specified CPU has any callback. If all_lazy is 2996 * non-NULL, store an indication of whether all callbacks are lazy. 2997 * (If there are no callbacks, all of them are deemed to be lazy.) 2998 */ 2999 static bool rcu_cpu_has_callbacks(bool *all_lazy) 3000 { 3001 bool al = true; 3002 bool hc = false; 3003 struct rcu_data *rdp; 3004 3005 rdp = this_cpu_ptr(&rcu_data); 3006 if (!rcu_segcblist_empty(&rdp->cblist)) { 3007 hc = true; 3008 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) 3009 al = false; 3010 } 3011 if (all_lazy) 3012 *all_lazy = al; 3013 return hc; 3014 } 3015 3016 /* 3017 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3018 * the compiler is expected to optimize this away. 3019 */ 3020 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3021 { 3022 trace_rcu_barrier(rcu_state.name, s, cpu, 3023 atomic_read(&rcu_state.barrier_cpu_count), done); 3024 } 3025 3026 /* 3027 * RCU callback function for rcu_barrier(). If we are last, wake 3028 * up the task executing rcu_barrier(). 3029 */ 3030 static void rcu_barrier_callback(struct rcu_head *rhp) 3031 { 3032 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3033 rcu_barrier_trace(TPS("LastCB"), -1, 3034 rcu_state.barrier_sequence); 3035 complete(&rcu_state.barrier_completion); 3036 } else { 3037 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3038 } 3039 } 3040 3041 /* 3042 * Called with preemption disabled, and from cross-cpu IRQ context. 3043 */ 3044 static void rcu_barrier_func(void *unused) 3045 { 3046 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3047 3048 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3049 rdp->barrier_head.func = rcu_barrier_callback; 3050 debug_rcu_head_queue(&rdp->barrier_head); 3051 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3052 atomic_inc(&rcu_state.barrier_cpu_count); 3053 } else { 3054 debug_rcu_head_unqueue(&rdp->barrier_head); 3055 rcu_barrier_trace(TPS("IRQNQ"), -1, 3056 rcu_state.barrier_sequence); 3057 } 3058 } 3059 3060 /** 3061 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3062 * 3063 * Note that this primitive does not necessarily wait for an RCU grace period 3064 * to complete. For example, if there are no RCU callbacks queued anywhere 3065 * in the system, then rcu_barrier() is within its rights to return 3066 * immediately, without waiting for anything, much less an RCU grace period. 3067 */ 3068 void rcu_barrier(void) 3069 { 3070 int cpu; 3071 struct rcu_data *rdp; 3072 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3073 3074 rcu_barrier_trace(TPS("Begin"), -1, s); 3075 3076 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3077 mutex_lock(&rcu_state.barrier_mutex); 3078 3079 /* Did someone else do our work for us? */ 3080 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3081 rcu_barrier_trace(TPS("EarlyExit"), -1, 3082 rcu_state.barrier_sequence); 3083 smp_mb(); /* caller's subsequent code after above check. */ 3084 mutex_unlock(&rcu_state.barrier_mutex); 3085 return; 3086 } 3087 3088 /* Mark the start of the barrier operation. */ 3089 rcu_seq_start(&rcu_state.barrier_sequence); 3090 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3091 3092 /* 3093 * Initialize the count to one rather than to zero in order to 3094 * avoid a too-soon return to zero in case of a short grace period 3095 * (or preemption of this task). Exclude CPU-hotplug operations 3096 * to ensure that no offline CPU has callbacks queued. 3097 */ 3098 init_completion(&rcu_state.barrier_completion); 3099 atomic_set(&rcu_state.barrier_cpu_count, 1); 3100 get_online_cpus(); 3101 3102 /* 3103 * Force each CPU with callbacks to register a new callback. 3104 * When that callback is invoked, we will know that all of the 3105 * corresponding CPU's preceding callbacks have been invoked. 3106 */ 3107 for_each_possible_cpu(cpu) { 3108 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3109 continue; 3110 rdp = per_cpu_ptr(&rcu_data, cpu); 3111 if (rcu_is_nocb_cpu(cpu)) { 3112 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 3113 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 3114 rcu_state.barrier_sequence); 3115 } else { 3116 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 3117 rcu_state.barrier_sequence); 3118 smp_mb__before_atomic(); 3119 atomic_inc(&rcu_state.barrier_cpu_count); 3120 __call_rcu(&rdp->barrier_head, 3121 rcu_barrier_callback, cpu, 0); 3122 } 3123 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3124 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3125 rcu_state.barrier_sequence); 3126 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3127 } else { 3128 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3129 rcu_state.barrier_sequence); 3130 } 3131 } 3132 put_online_cpus(); 3133 3134 /* 3135 * Now that we have an rcu_barrier_callback() callback on each 3136 * CPU, and thus each counted, remove the initial count. 3137 */ 3138 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3139 complete(&rcu_state.barrier_completion); 3140 3141 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3142 wait_for_completion(&rcu_state.barrier_completion); 3143 3144 /* Mark the end of the barrier operation. */ 3145 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3146 rcu_seq_end(&rcu_state.barrier_sequence); 3147 3148 /* Other rcu_barrier() invocations can now safely proceed. */ 3149 mutex_unlock(&rcu_state.barrier_mutex); 3150 } 3151 EXPORT_SYMBOL_GPL(rcu_barrier); 3152 3153 /* 3154 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3155 * first CPU in a given leaf rcu_node structure coming online. The caller 3156 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3157 * disabled. 3158 */ 3159 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3160 { 3161 long mask; 3162 long oldmask; 3163 struct rcu_node *rnp = rnp_leaf; 3164 3165 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3166 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3167 for (;;) { 3168 mask = rnp->grpmask; 3169 rnp = rnp->parent; 3170 if (rnp == NULL) 3171 return; 3172 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3173 oldmask = rnp->qsmaskinit; 3174 rnp->qsmaskinit |= mask; 3175 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3176 if (oldmask) 3177 return; 3178 } 3179 } 3180 3181 /* 3182 * Do boot-time initialization of a CPU's per-CPU RCU data. 3183 */ 3184 static void __init 3185 rcu_boot_init_percpu_data(int cpu) 3186 { 3187 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3188 3189 /* Set up local state, ensuring consistent view of global state. */ 3190 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3191 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3192 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3193 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3194 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3195 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3196 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3197 rdp->cpu = cpu; 3198 rcu_boot_init_nocb_percpu_data(rdp); 3199 } 3200 3201 /* 3202 * Invoked early in the CPU-online process, when pretty much all services 3203 * are available. The incoming CPU is not present. 3204 * 3205 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3206 * offline event can be happening at a given time. Note also that we can 3207 * accept some slop in the rsp->gp_seq access due to the fact that this 3208 * CPU cannot possibly have any RCU callbacks in flight yet. 3209 */ 3210 int rcutree_prepare_cpu(unsigned int cpu) 3211 { 3212 unsigned long flags; 3213 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3214 struct rcu_node *rnp = rcu_get_root(); 3215 3216 /* Set up local state, ensuring consistent view of global state. */ 3217 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3218 rdp->qlen_last_fqs_check = 0; 3219 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3220 rdp->blimit = blimit; 3221 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3222 !init_nocb_callback_list(rdp)) 3223 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3224 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3225 rcu_dynticks_eqs_online(); 3226 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3227 3228 /* 3229 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3230 * propagation up the rcu_node tree will happen at the beginning 3231 * of the next grace period. 3232 */ 3233 rnp = rdp->mynode; 3234 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3235 rdp->beenonline = true; /* We have now been online. */ 3236 rdp->gp_seq = rnp->gp_seq; 3237 rdp->gp_seq_needed = rnp->gp_seq; 3238 rdp->cpu_no_qs.b.norm = true; 3239 rdp->core_needs_qs = false; 3240 rdp->rcu_iw_pending = false; 3241 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3242 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3243 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3244 rcu_prepare_kthreads(cpu); 3245 rcu_spawn_all_nocb_kthreads(cpu); 3246 3247 return 0; 3248 } 3249 3250 /* 3251 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3252 */ 3253 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3254 { 3255 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3256 3257 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3258 } 3259 3260 /* 3261 * Near the end of the CPU-online process. Pretty much all services 3262 * enabled, and the CPU is now very much alive. 3263 */ 3264 int rcutree_online_cpu(unsigned int cpu) 3265 { 3266 unsigned long flags; 3267 struct rcu_data *rdp; 3268 struct rcu_node *rnp; 3269 3270 rdp = per_cpu_ptr(&rcu_data, cpu); 3271 rnp = rdp->mynode; 3272 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3273 rnp->ffmask |= rdp->grpmask; 3274 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3275 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3276 srcu_online_cpu(cpu); 3277 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3278 return 0; /* Too early in boot for scheduler work. */ 3279 sync_sched_exp_online_cleanup(cpu); 3280 rcutree_affinity_setting(cpu, -1); 3281 return 0; 3282 } 3283 3284 /* 3285 * Near the beginning of the process. The CPU is still very much alive 3286 * with pretty much all services enabled. 3287 */ 3288 int rcutree_offline_cpu(unsigned int cpu) 3289 { 3290 unsigned long flags; 3291 struct rcu_data *rdp; 3292 struct rcu_node *rnp; 3293 3294 rdp = per_cpu_ptr(&rcu_data, cpu); 3295 rnp = rdp->mynode; 3296 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3297 rnp->ffmask &= ~rdp->grpmask; 3298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3299 3300 rcutree_affinity_setting(cpu, cpu); 3301 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3302 srcu_offline_cpu(cpu); 3303 return 0; 3304 } 3305 3306 static DEFINE_PER_CPU(int, rcu_cpu_started); 3307 3308 /* 3309 * Mark the specified CPU as being online so that subsequent grace periods 3310 * (both expedited and normal) will wait on it. Note that this means that 3311 * incoming CPUs are not allowed to use RCU read-side critical sections 3312 * until this function is called. Failing to observe this restriction 3313 * will result in lockdep splats. 3314 * 3315 * Note that this function is special in that it is invoked directly 3316 * from the incoming CPU rather than from the cpuhp_step mechanism. 3317 * This is because this function must be invoked at a precise location. 3318 */ 3319 void rcu_cpu_starting(unsigned int cpu) 3320 { 3321 unsigned long flags; 3322 unsigned long mask; 3323 int nbits; 3324 unsigned long oldmask; 3325 struct rcu_data *rdp; 3326 struct rcu_node *rnp; 3327 3328 if (per_cpu(rcu_cpu_started, cpu)) 3329 return; 3330 3331 per_cpu(rcu_cpu_started, cpu) = 1; 3332 3333 rdp = per_cpu_ptr(&rcu_data, cpu); 3334 rnp = rdp->mynode; 3335 mask = rdp->grpmask; 3336 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3337 rnp->qsmaskinitnext |= mask; 3338 oldmask = rnp->expmaskinitnext; 3339 rnp->expmaskinitnext |= mask; 3340 oldmask ^= rnp->expmaskinitnext; 3341 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3342 /* Allow lockless access for expedited grace periods. */ 3343 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3344 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3345 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3346 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3347 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3348 /* Report QS -after- changing ->qsmaskinitnext! */ 3349 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3350 } else { 3351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3352 } 3353 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3354 } 3355 3356 #ifdef CONFIG_HOTPLUG_CPU 3357 /* 3358 * The outgoing function has no further need of RCU, so remove it from 3359 * the rcu_node tree's ->qsmaskinitnext bit masks. 3360 * 3361 * Note that this function is special in that it is invoked directly 3362 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3363 * This is because this function must be invoked at a precise location. 3364 */ 3365 void rcu_report_dead(unsigned int cpu) 3366 { 3367 unsigned long flags; 3368 unsigned long mask; 3369 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3370 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3371 3372 /* QS for any half-done expedited grace period. */ 3373 preempt_disable(); 3374 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3375 preempt_enable(); 3376 rcu_preempt_deferred_qs(current); 3377 3378 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3379 mask = rdp->grpmask; 3380 raw_spin_lock(&rcu_state.ofl_lock); 3381 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3382 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3383 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3384 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3385 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3386 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3387 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3388 } 3389 rnp->qsmaskinitnext &= ~mask; 3390 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3391 raw_spin_unlock(&rcu_state.ofl_lock); 3392 3393 per_cpu(rcu_cpu_started, cpu) = 0; 3394 } 3395 3396 /* 3397 * The outgoing CPU has just passed through the dying-idle state, and we 3398 * are being invoked from the CPU that was IPIed to continue the offline 3399 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3400 */ 3401 void rcutree_migrate_callbacks(int cpu) 3402 { 3403 unsigned long flags; 3404 struct rcu_data *my_rdp; 3405 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3406 struct rcu_node *rnp_root = rcu_get_root(); 3407 bool needwake; 3408 3409 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3410 return; /* No callbacks to migrate. */ 3411 3412 local_irq_save(flags); 3413 my_rdp = this_cpu_ptr(&rcu_data); 3414 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3415 local_irq_restore(flags); 3416 return; 3417 } 3418 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3419 /* Leverage recent GPs and set GP for new callbacks. */ 3420 needwake = rcu_advance_cbs(rnp_root, rdp) || 3421 rcu_advance_cbs(rnp_root, my_rdp); 3422 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3423 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3424 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3425 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3426 if (needwake) 3427 rcu_gp_kthread_wake(); 3428 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3429 !rcu_segcblist_empty(&rdp->cblist), 3430 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3431 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3432 rcu_segcblist_first_cb(&rdp->cblist)); 3433 } 3434 #endif 3435 3436 /* 3437 * On non-huge systems, use expedited RCU grace periods to make suspend 3438 * and hibernation run faster. 3439 */ 3440 static int rcu_pm_notify(struct notifier_block *self, 3441 unsigned long action, void *hcpu) 3442 { 3443 switch (action) { 3444 case PM_HIBERNATION_PREPARE: 3445 case PM_SUSPEND_PREPARE: 3446 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3447 rcu_expedite_gp(); 3448 break; 3449 case PM_POST_HIBERNATION: 3450 case PM_POST_SUSPEND: 3451 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3452 rcu_unexpedite_gp(); 3453 break; 3454 default: 3455 break; 3456 } 3457 return NOTIFY_OK; 3458 } 3459 3460 /* 3461 * Spawn the kthreads that handle RCU's grace periods. 3462 */ 3463 static int __init rcu_spawn_gp_kthread(void) 3464 { 3465 unsigned long flags; 3466 int kthread_prio_in = kthread_prio; 3467 struct rcu_node *rnp; 3468 struct sched_param sp; 3469 struct task_struct *t; 3470 3471 /* Force priority into range. */ 3472 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3473 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3474 kthread_prio = 2; 3475 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3476 kthread_prio = 1; 3477 else if (kthread_prio < 0) 3478 kthread_prio = 0; 3479 else if (kthread_prio > 99) 3480 kthread_prio = 99; 3481 3482 if (kthread_prio != kthread_prio_in) 3483 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3484 kthread_prio, kthread_prio_in); 3485 3486 rcu_scheduler_fully_active = 1; 3487 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3488 BUG_ON(IS_ERR(t)); 3489 rnp = rcu_get_root(); 3490 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3491 rcu_state.gp_kthread = t; 3492 if (kthread_prio) { 3493 sp.sched_priority = kthread_prio; 3494 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3495 } 3496 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3497 wake_up_process(t); 3498 rcu_spawn_nocb_kthreads(); 3499 rcu_spawn_boost_kthreads(); 3500 return 0; 3501 } 3502 early_initcall(rcu_spawn_gp_kthread); 3503 3504 /* 3505 * This function is invoked towards the end of the scheduler's 3506 * initialization process. Before this is called, the idle task might 3507 * contain synchronous grace-period primitives (during which time, this idle 3508 * task is booting the system, and such primitives are no-ops). After this 3509 * function is called, any synchronous grace-period primitives are run as 3510 * expedited, with the requesting task driving the grace period forward. 3511 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3512 * runtime RCU functionality. 3513 */ 3514 void rcu_scheduler_starting(void) 3515 { 3516 WARN_ON(num_online_cpus() != 1); 3517 WARN_ON(nr_context_switches() > 0); 3518 rcu_test_sync_prims(); 3519 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3520 rcu_test_sync_prims(); 3521 } 3522 3523 /* 3524 * Helper function for rcu_init() that initializes the rcu_state structure. 3525 */ 3526 static void __init rcu_init_one(void) 3527 { 3528 static const char * const buf[] = RCU_NODE_NAME_INIT; 3529 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3530 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3531 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3532 3533 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3534 int cpustride = 1; 3535 int i; 3536 int j; 3537 struct rcu_node *rnp; 3538 3539 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3540 3541 /* Silence gcc 4.8 false positive about array index out of range. */ 3542 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3543 panic("rcu_init_one: rcu_num_lvls out of range"); 3544 3545 /* Initialize the level-tracking arrays. */ 3546 3547 for (i = 1; i < rcu_num_lvls; i++) 3548 rcu_state.level[i] = 3549 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3550 rcu_init_levelspread(levelspread, num_rcu_lvl); 3551 3552 /* Initialize the elements themselves, starting from the leaves. */ 3553 3554 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3555 cpustride *= levelspread[i]; 3556 rnp = rcu_state.level[i]; 3557 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3558 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3559 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3560 &rcu_node_class[i], buf[i]); 3561 raw_spin_lock_init(&rnp->fqslock); 3562 lockdep_set_class_and_name(&rnp->fqslock, 3563 &rcu_fqs_class[i], fqs[i]); 3564 rnp->gp_seq = rcu_state.gp_seq; 3565 rnp->gp_seq_needed = rcu_state.gp_seq; 3566 rnp->completedqs = rcu_state.gp_seq; 3567 rnp->qsmask = 0; 3568 rnp->qsmaskinit = 0; 3569 rnp->grplo = j * cpustride; 3570 rnp->grphi = (j + 1) * cpustride - 1; 3571 if (rnp->grphi >= nr_cpu_ids) 3572 rnp->grphi = nr_cpu_ids - 1; 3573 if (i == 0) { 3574 rnp->grpnum = 0; 3575 rnp->grpmask = 0; 3576 rnp->parent = NULL; 3577 } else { 3578 rnp->grpnum = j % levelspread[i - 1]; 3579 rnp->grpmask = BIT(rnp->grpnum); 3580 rnp->parent = rcu_state.level[i - 1] + 3581 j / levelspread[i - 1]; 3582 } 3583 rnp->level = i; 3584 INIT_LIST_HEAD(&rnp->blkd_tasks); 3585 rcu_init_one_nocb(rnp); 3586 init_waitqueue_head(&rnp->exp_wq[0]); 3587 init_waitqueue_head(&rnp->exp_wq[1]); 3588 init_waitqueue_head(&rnp->exp_wq[2]); 3589 init_waitqueue_head(&rnp->exp_wq[3]); 3590 spin_lock_init(&rnp->exp_lock); 3591 } 3592 } 3593 3594 init_swait_queue_head(&rcu_state.gp_wq); 3595 init_swait_queue_head(&rcu_state.expedited_wq); 3596 rnp = rcu_first_leaf_node(); 3597 for_each_possible_cpu(i) { 3598 while (i > rnp->grphi) 3599 rnp++; 3600 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3601 rcu_boot_init_percpu_data(i); 3602 } 3603 } 3604 3605 /* 3606 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3607 * replace the definitions in tree.h because those are needed to size 3608 * the ->node array in the rcu_state structure. 3609 */ 3610 static void __init rcu_init_geometry(void) 3611 { 3612 ulong d; 3613 int i; 3614 int rcu_capacity[RCU_NUM_LVLS]; 3615 3616 /* 3617 * Initialize any unspecified boot parameters. 3618 * The default values of jiffies_till_first_fqs and 3619 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3620 * value, which is a function of HZ, then adding one for each 3621 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3622 */ 3623 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3624 if (jiffies_till_first_fqs == ULONG_MAX) 3625 jiffies_till_first_fqs = d; 3626 if (jiffies_till_next_fqs == ULONG_MAX) 3627 jiffies_till_next_fqs = d; 3628 if (jiffies_till_sched_qs == ULONG_MAX) 3629 adjust_jiffies_till_sched_qs(); 3630 3631 /* If the compile-time values are accurate, just leave. */ 3632 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3633 nr_cpu_ids == NR_CPUS) 3634 return; 3635 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3636 rcu_fanout_leaf, nr_cpu_ids); 3637 3638 /* 3639 * The boot-time rcu_fanout_leaf parameter must be at least two 3640 * and cannot exceed the number of bits in the rcu_node masks. 3641 * Complain and fall back to the compile-time values if this 3642 * limit is exceeded. 3643 */ 3644 if (rcu_fanout_leaf < 2 || 3645 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3646 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3647 WARN_ON(1); 3648 return; 3649 } 3650 3651 /* 3652 * Compute number of nodes that can be handled an rcu_node tree 3653 * with the given number of levels. 3654 */ 3655 rcu_capacity[0] = rcu_fanout_leaf; 3656 for (i = 1; i < RCU_NUM_LVLS; i++) 3657 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3658 3659 /* 3660 * The tree must be able to accommodate the configured number of CPUs. 3661 * If this limit is exceeded, fall back to the compile-time values. 3662 */ 3663 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3664 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3665 WARN_ON(1); 3666 return; 3667 } 3668 3669 /* Calculate the number of levels in the tree. */ 3670 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3671 } 3672 rcu_num_lvls = i + 1; 3673 3674 /* Calculate the number of rcu_nodes at each level of the tree. */ 3675 for (i = 0; i < rcu_num_lvls; i++) { 3676 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3677 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3678 } 3679 3680 /* Calculate the total number of rcu_node structures. */ 3681 rcu_num_nodes = 0; 3682 for (i = 0; i < rcu_num_lvls; i++) 3683 rcu_num_nodes += num_rcu_lvl[i]; 3684 } 3685 3686 /* 3687 * Dump out the structure of the rcu_node combining tree associated 3688 * with the rcu_state structure. 3689 */ 3690 static void __init rcu_dump_rcu_node_tree(void) 3691 { 3692 int level = 0; 3693 struct rcu_node *rnp; 3694 3695 pr_info("rcu_node tree layout dump\n"); 3696 pr_info(" "); 3697 rcu_for_each_node_breadth_first(rnp) { 3698 if (rnp->level != level) { 3699 pr_cont("\n"); 3700 pr_info(" "); 3701 level = rnp->level; 3702 } 3703 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3704 } 3705 pr_cont("\n"); 3706 } 3707 3708 struct workqueue_struct *rcu_gp_wq; 3709 struct workqueue_struct *rcu_par_gp_wq; 3710 3711 void __init rcu_init(void) 3712 { 3713 int cpu; 3714 3715 rcu_early_boot_tests(); 3716 3717 rcu_bootup_announce(); 3718 rcu_init_geometry(); 3719 rcu_init_one(); 3720 if (dump_tree) 3721 rcu_dump_rcu_node_tree(); 3722 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3723 3724 /* 3725 * We don't need protection against CPU-hotplug here because 3726 * this is called early in boot, before either interrupts 3727 * or the scheduler are operational. 3728 */ 3729 pm_notifier(rcu_pm_notify, 0); 3730 for_each_online_cpu(cpu) { 3731 rcutree_prepare_cpu(cpu); 3732 rcu_cpu_starting(cpu); 3733 rcutree_online_cpu(cpu); 3734 } 3735 3736 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3737 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3738 WARN_ON(!rcu_gp_wq); 3739 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3740 WARN_ON(!rcu_par_gp_wq); 3741 srcu_init(); 3742 } 3743 3744 #include "tree_exp.h" 3745 #include "tree_plugin.h" 3746