1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 73 74 /* 75 * In order to export the rcu_state name to the tracing tools, it 76 * needs to be added in the __tracepoint_string section. 77 * This requires defining a separate variable tp_<sname>_varname 78 * that points to the string being used, and this will allow 79 * the tracing userspace tools to be able to decipher the string 80 * address to the matching string. 81 */ 82 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 83 static char sname##_varname[] = #sname; \ 84 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ 85 struct rcu_state sname##_state = { \ 86 .level = { &sname##_state.node[0] }, \ 87 .call = cr, \ 88 .fqs_state = RCU_GP_IDLE, \ 89 .gpnum = 0UL - 300UL, \ 90 .completed = 0UL - 300UL, \ 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 93 .orphan_donetail = &sname##_state.orphan_donelist, \ 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ 96 .name = sname##_varname, \ 97 .abbr = sabbr, \ 98 }; \ 99 DEFINE_PER_CPU(struct rcu_data, sname##_data) 100 101 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 102 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 103 104 static struct rcu_state *rcu_state_p; 105 LIST_HEAD(rcu_struct_flavors); 106 107 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 108 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 109 module_param(rcu_fanout_leaf, int, 0444); 110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 111 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 112 NUM_RCU_LVL_0, 113 NUM_RCU_LVL_1, 114 NUM_RCU_LVL_2, 115 NUM_RCU_LVL_3, 116 NUM_RCU_LVL_4, 117 }; 118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 119 120 /* 121 * The rcu_scheduler_active variable transitions from zero to one just 122 * before the first task is spawned. So when this variable is zero, RCU 123 * can assume that there is but one task, allowing RCU to (for example) 124 * optimize synchronize_sched() to a simple barrier(). When this variable 125 * is one, RCU must actually do all the hard work required to detect real 126 * grace periods. This variable is also used to suppress boot-time false 127 * positives from lockdep-RCU error checking. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 #ifdef CONFIG_RCU_BOOST 147 148 /* 149 * Control variables for per-CPU and per-rcu_node kthreads. These 150 * handle all flavors of RCU. 151 */ 152 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 153 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 154 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 155 DEFINE_PER_CPU(char, rcu_cpu_has_work); 156 157 #endif /* #ifdef CONFIG_RCU_BOOST */ 158 159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 160 static void invoke_rcu_core(void); 161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 162 163 /* 164 * Track the rcutorture test sequence number and the update version 165 * number within a given test. The rcutorture_testseq is incremented 166 * on every rcutorture module load and unload, so has an odd value 167 * when a test is running. The rcutorture_vernum is set to zero 168 * when rcutorture starts and is incremented on each rcutorture update. 169 * These variables enable correlating rcutorture output with the 170 * RCU tracing information. 171 */ 172 unsigned long rcutorture_testseq; 173 unsigned long rcutorture_vernum; 174 175 /* 176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 177 * permit this function to be invoked without holding the root rcu_node 178 * structure's ->lock, but of course results can be subject to change. 179 */ 180 static int rcu_gp_in_progress(struct rcu_state *rsp) 181 { 182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 183 } 184 185 /* 186 * Note a quiescent state. Because we do not need to know 187 * how many quiescent states passed, just if there was at least 188 * one since the start of the grace period, this just sets a flag. 189 * The caller must have disabled preemption. 190 */ 191 void rcu_sched_qs(int cpu) 192 { 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); 194 195 if (rdp->passed_quiesce == 0) 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); 197 rdp->passed_quiesce = 1; 198 } 199 200 void rcu_bh_qs(int cpu) 201 { 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 203 204 if (rdp->passed_quiesce == 0) 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); 206 rdp->passed_quiesce = 1; 207 } 208 209 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 210 211 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 212 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 213 .dynticks = ATOMIC_INIT(1), 214 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 215 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 216 .dynticks_idle = ATOMIC_INIT(1), 217 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 218 }; 219 220 /* 221 * Let the RCU core know that this CPU has gone through the scheduler, 222 * which is a quiescent state. This is called when the need for a 223 * quiescent state is urgent, so we burn an atomic operation and full 224 * memory barriers to let the RCU core know about it, regardless of what 225 * this CPU might (or might not) do in the near future. 226 * 227 * We inform the RCU core by emulating a zero-duration dyntick-idle 228 * period, which we in turn do by incrementing the ->dynticks counter 229 * by two. 230 */ 231 static void rcu_momentary_dyntick_idle(void) 232 { 233 unsigned long flags; 234 struct rcu_data *rdp; 235 struct rcu_dynticks *rdtp; 236 int resched_mask; 237 struct rcu_state *rsp; 238 239 local_irq_save(flags); 240 241 /* 242 * Yes, we can lose flag-setting operations. This is OK, because 243 * the flag will be set again after some delay. 244 */ 245 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 246 raw_cpu_write(rcu_sched_qs_mask, 0); 247 248 /* Find the flavor that needs a quiescent state. */ 249 for_each_rcu_flavor(rsp) { 250 rdp = raw_cpu_ptr(rsp->rda); 251 if (!(resched_mask & rsp->flavor_mask)) 252 continue; 253 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 254 if (ACCESS_ONCE(rdp->mynode->completed) != 255 ACCESS_ONCE(rdp->cond_resched_completed)) 256 continue; 257 258 /* 259 * Pretend to be momentarily idle for the quiescent state. 260 * This allows the grace-period kthread to record the 261 * quiescent state, with no need for this CPU to do anything 262 * further. 263 */ 264 rdtp = this_cpu_ptr(&rcu_dynticks); 265 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 266 atomic_add(2, &rdtp->dynticks); /* QS. */ 267 smp_mb__after_atomic(); /* Later stuff after QS. */ 268 break; 269 } 270 local_irq_restore(flags); 271 } 272 273 /* 274 * Note a context switch. This is a quiescent state for RCU-sched, 275 * and requires special handling for preemptible RCU. 276 * The caller must have disabled preemption. 277 */ 278 void rcu_note_context_switch(int cpu) 279 { 280 trace_rcu_utilization(TPS("Start context switch")); 281 rcu_sched_qs(cpu); 282 rcu_preempt_note_context_switch(cpu); 283 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 284 rcu_momentary_dyntick_idle(); 285 trace_rcu_utilization(TPS("End context switch")); 286 } 287 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 288 289 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 290 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 291 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 292 293 module_param(blimit, long, 0444); 294 module_param(qhimark, long, 0444); 295 module_param(qlowmark, long, 0444); 296 297 static ulong jiffies_till_first_fqs = ULONG_MAX; 298 static ulong jiffies_till_next_fqs = ULONG_MAX; 299 300 module_param(jiffies_till_first_fqs, ulong, 0644); 301 module_param(jiffies_till_next_fqs, ulong, 0644); 302 303 /* 304 * How long the grace period must be before we start recruiting 305 * quiescent-state help from rcu_note_context_switch(). 306 */ 307 static ulong jiffies_till_sched_qs = HZ / 20; 308 module_param(jiffies_till_sched_qs, ulong, 0644); 309 310 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 311 struct rcu_data *rdp); 312 static void force_qs_rnp(struct rcu_state *rsp, 313 int (*f)(struct rcu_data *rsp, bool *isidle, 314 unsigned long *maxj), 315 bool *isidle, unsigned long *maxj); 316 static void force_quiescent_state(struct rcu_state *rsp); 317 static int rcu_pending(int cpu); 318 319 /* 320 * Return the number of RCU-sched batches processed thus far for debug & stats. 321 */ 322 long rcu_batches_completed_sched(void) 323 { 324 return rcu_sched_state.completed; 325 } 326 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 327 328 /* 329 * Return the number of RCU BH batches processed thus far for debug & stats. 330 */ 331 long rcu_batches_completed_bh(void) 332 { 333 return rcu_bh_state.completed; 334 } 335 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 336 337 /* 338 * Force a quiescent state. 339 */ 340 void rcu_force_quiescent_state(void) 341 { 342 force_quiescent_state(rcu_state_p); 343 } 344 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 345 346 /* 347 * Force a quiescent state for RCU BH. 348 */ 349 void rcu_bh_force_quiescent_state(void) 350 { 351 force_quiescent_state(&rcu_bh_state); 352 } 353 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 354 355 /* 356 * Show the state of the grace-period kthreads. 357 */ 358 void show_rcu_gp_kthreads(void) 359 { 360 struct rcu_state *rsp; 361 362 for_each_rcu_flavor(rsp) { 363 pr_info("%s: wait state: %d ->state: %#lx\n", 364 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 365 /* sched_show_task(rsp->gp_kthread); */ 366 } 367 } 368 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 369 370 /* 371 * Record the number of times rcutorture tests have been initiated and 372 * terminated. This information allows the debugfs tracing stats to be 373 * correlated to the rcutorture messages, even when the rcutorture module 374 * is being repeatedly loaded and unloaded. In other words, we cannot 375 * store this state in rcutorture itself. 376 */ 377 void rcutorture_record_test_transition(void) 378 { 379 rcutorture_testseq++; 380 rcutorture_vernum = 0; 381 } 382 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 383 384 /* 385 * Send along grace-period-related data for rcutorture diagnostics. 386 */ 387 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 388 unsigned long *gpnum, unsigned long *completed) 389 { 390 struct rcu_state *rsp = NULL; 391 392 switch (test_type) { 393 case RCU_FLAVOR: 394 rsp = rcu_state_p; 395 break; 396 case RCU_BH_FLAVOR: 397 rsp = &rcu_bh_state; 398 break; 399 case RCU_SCHED_FLAVOR: 400 rsp = &rcu_sched_state; 401 break; 402 default: 403 break; 404 } 405 if (rsp != NULL) { 406 *flags = ACCESS_ONCE(rsp->gp_flags); 407 *gpnum = ACCESS_ONCE(rsp->gpnum); 408 *completed = ACCESS_ONCE(rsp->completed); 409 return; 410 } 411 *flags = 0; 412 *gpnum = 0; 413 *completed = 0; 414 } 415 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 416 417 /* 418 * Record the number of writer passes through the current rcutorture test. 419 * This is also used to correlate debugfs tracing stats with the rcutorture 420 * messages. 421 */ 422 void rcutorture_record_progress(unsigned long vernum) 423 { 424 rcutorture_vernum++; 425 } 426 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 427 428 /* 429 * Force a quiescent state for RCU-sched. 430 */ 431 void rcu_sched_force_quiescent_state(void) 432 { 433 force_quiescent_state(&rcu_sched_state); 434 } 435 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 436 437 /* 438 * Does the CPU have callbacks ready to be invoked? 439 */ 440 static int 441 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 442 { 443 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 444 rdp->nxttail[RCU_DONE_TAIL] != NULL; 445 } 446 447 /* 448 * Return the root node of the specified rcu_state structure. 449 */ 450 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 451 { 452 return &rsp->node[0]; 453 } 454 455 /* 456 * Is there any need for future grace periods? 457 * Interrupts must be disabled. If the caller does not hold the root 458 * rnp_node structure's ->lock, the results are advisory only. 459 */ 460 static int rcu_future_needs_gp(struct rcu_state *rsp) 461 { 462 struct rcu_node *rnp = rcu_get_root(rsp); 463 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1; 464 int *fp = &rnp->need_future_gp[idx]; 465 466 return ACCESS_ONCE(*fp); 467 } 468 469 /* 470 * Does the current CPU require a not-yet-started grace period? 471 * The caller must have disabled interrupts to prevent races with 472 * normal callback registry. 473 */ 474 static int 475 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 476 { 477 int i; 478 479 if (rcu_gp_in_progress(rsp)) 480 return 0; /* No, a grace period is already in progress. */ 481 if (rcu_future_needs_gp(rsp)) 482 return 1; /* Yes, a no-CBs CPU needs one. */ 483 if (!rdp->nxttail[RCU_NEXT_TAIL]) 484 return 0; /* No, this is a no-CBs (or offline) CPU. */ 485 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 486 return 1; /* Yes, this CPU has newly registered callbacks. */ 487 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 488 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 489 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 490 rdp->nxtcompleted[i])) 491 return 1; /* Yes, CBs for future grace period. */ 492 return 0; /* No grace period needed. */ 493 } 494 495 /* 496 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 497 * 498 * If the new value of the ->dynticks_nesting counter now is zero, 499 * we really have entered idle, and must do the appropriate accounting. 500 * The caller must have disabled interrupts. 501 */ 502 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, 503 bool user) 504 { 505 struct rcu_state *rsp; 506 struct rcu_data *rdp; 507 508 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 509 if (!user && !is_idle_task(current)) { 510 struct task_struct *idle __maybe_unused = 511 idle_task(smp_processor_id()); 512 513 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 514 ftrace_dump(DUMP_ORIG); 515 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 516 current->pid, current->comm, 517 idle->pid, idle->comm); /* must be idle task! */ 518 } 519 for_each_rcu_flavor(rsp) { 520 rdp = this_cpu_ptr(rsp->rda); 521 do_nocb_deferred_wakeup(rdp); 522 } 523 rcu_prepare_for_idle(smp_processor_id()); 524 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 525 smp_mb__before_atomic(); /* See above. */ 526 atomic_inc(&rdtp->dynticks); 527 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 528 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 529 530 /* 531 * It is illegal to enter an extended quiescent state while 532 * in an RCU read-side critical section. 533 */ 534 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 535 "Illegal idle entry in RCU read-side critical section."); 536 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 537 "Illegal idle entry in RCU-bh read-side critical section."); 538 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 539 "Illegal idle entry in RCU-sched read-side critical section."); 540 } 541 542 /* 543 * Enter an RCU extended quiescent state, which can be either the 544 * idle loop or adaptive-tickless usermode execution. 545 */ 546 static void rcu_eqs_enter(bool user) 547 { 548 long long oldval; 549 struct rcu_dynticks *rdtp; 550 551 rdtp = this_cpu_ptr(&rcu_dynticks); 552 oldval = rdtp->dynticks_nesting; 553 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 554 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 555 rdtp->dynticks_nesting = 0; 556 rcu_eqs_enter_common(rdtp, oldval, user); 557 } else { 558 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 559 } 560 } 561 562 /** 563 * rcu_idle_enter - inform RCU that current CPU is entering idle 564 * 565 * Enter idle mode, in other words, -leave- the mode in which RCU 566 * read-side critical sections can occur. (Though RCU read-side 567 * critical sections can occur in irq handlers in idle, a possibility 568 * handled by irq_enter() and irq_exit().) 569 * 570 * We crowbar the ->dynticks_nesting field to zero to allow for 571 * the possibility of usermode upcalls having messed up our count 572 * of interrupt nesting level during the prior busy period. 573 */ 574 void rcu_idle_enter(void) 575 { 576 unsigned long flags; 577 578 local_irq_save(flags); 579 rcu_eqs_enter(false); 580 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); 581 local_irq_restore(flags); 582 } 583 EXPORT_SYMBOL_GPL(rcu_idle_enter); 584 585 #ifdef CONFIG_RCU_USER_QS 586 /** 587 * rcu_user_enter - inform RCU that we are resuming userspace. 588 * 589 * Enter RCU idle mode right before resuming userspace. No use of RCU 590 * is permitted between this call and rcu_user_exit(). This way the 591 * CPU doesn't need to maintain the tick for RCU maintenance purposes 592 * when the CPU runs in userspace. 593 */ 594 void rcu_user_enter(void) 595 { 596 rcu_eqs_enter(1); 597 } 598 #endif /* CONFIG_RCU_USER_QS */ 599 600 /** 601 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 602 * 603 * Exit from an interrupt handler, which might possibly result in entering 604 * idle mode, in other words, leaving the mode in which read-side critical 605 * sections can occur. 606 * 607 * This code assumes that the idle loop never does anything that might 608 * result in unbalanced calls to irq_enter() and irq_exit(). If your 609 * architecture violates this assumption, RCU will give you what you 610 * deserve, good and hard. But very infrequently and irreproducibly. 611 * 612 * Use things like work queues to work around this limitation. 613 * 614 * You have been warned. 615 */ 616 void rcu_irq_exit(void) 617 { 618 unsigned long flags; 619 long long oldval; 620 struct rcu_dynticks *rdtp; 621 622 local_irq_save(flags); 623 rdtp = this_cpu_ptr(&rcu_dynticks); 624 oldval = rdtp->dynticks_nesting; 625 rdtp->dynticks_nesting--; 626 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 627 if (rdtp->dynticks_nesting) 628 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 629 else 630 rcu_eqs_enter_common(rdtp, oldval, true); 631 rcu_sysidle_enter(rdtp, 1); 632 local_irq_restore(flags); 633 } 634 635 /* 636 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 637 * 638 * If the new value of the ->dynticks_nesting counter was previously zero, 639 * we really have exited idle, and must do the appropriate accounting. 640 * The caller must have disabled interrupts. 641 */ 642 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, 643 int user) 644 { 645 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 646 atomic_inc(&rdtp->dynticks); 647 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 648 smp_mb__after_atomic(); /* See above. */ 649 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 650 rcu_cleanup_after_idle(smp_processor_id()); 651 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 652 if (!user && !is_idle_task(current)) { 653 struct task_struct *idle __maybe_unused = 654 idle_task(smp_processor_id()); 655 656 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 657 oldval, rdtp->dynticks_nesting); 658 ftrace_dump(DUMP_ORIG); 659 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 660 current->pid, current->comm, 661 idle->pid, idle->comm); /* must be idle task! */ 662 } 663 } 664 665 /* 666 * Exit an RCU extended quiescent state, which can be either the 667 * idle loop or adaptive-tickless usermode execution. 668 */ 669 static void rcu_eqs_exit(bool user) 670 { 671 struct rcu_dynticks *rdtp; 672 long long oldval; 673 674 rdtp = this_cpu_ptr(&rcu_dynticks); 675 oldval = rdtp->dynticks_nesting; 676 WARN_ON_ONCE(oldval < 0); 677 if (oldval & DYNTICK_TASK_NEST_MASK) { 678 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 679 } else { 680 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 681 rcu_eqs_exit_common(rdtp, oldval, user); 682 } 683 } 684 685 /** 686 * rcu_idle_exit - inform RCU that current CPU is leaving idle 687 * 688 * Exit idle mode, in other words, -enter- the mode in which RCU 689 * read-side critical sections can occur. 690 * 691 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 692 * allow for the possibility of usermode upcalls messing up our count 693 * of interrupt nesting level during the busy period that is just 694 * now starting. 695 */ 696 void rcu_idle_exit(void) 697 { 698 unsigned long flags; 699 700 local_irq_save(flags); 701 rcu_eqs_exit(false); 702 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); 703 local_irq_restore(flags); 704 } 705 EXPORT_SYMBOL_GPL(rcu_idle_exit); 706 707 #ifdef CONFIG_RCU_USER_QS 708 /** 709 * rcu_user_exit - inform RCU that we are exiting userspace. 710 * 711 * Exit RCU idle mode while entering the kernel because it can 712 * run a RCU read side critical section anytime. 713 */ 714 void rcu_user_exit(void) 715 { 716 rcu_eqs_exit(1); 717 } 718 #endif /* CONFIG_RCU_USER_QS */ 719 720 /** 721 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 722 * 723 * Enter an interrupt handler, which might possibly result in exiting 724 * idle mode, in other words, entering the mode in which read-side critical 725 * sections can occur. 726 * 727 * Note that the Linux kernel is fully capable of entering an interrupt 728 * handler that it never exits, for example when doing upcalls to 729 * user mode! This code assumes that the idle loop never does upcalls to 730 * user mode. If your architecture does do upcalls from the idle loop (or 731 * does anything else that results in unbalanced calls to the irq_enter() 732 * and irq_exit() functions), RCU will give you what you deserve, good 733 * and hard. But very infrequently and irreproducibly. 734 * 735 * Use things like work queues to work around this limitation. 736 * 737 * You have been warned. 738 */ 739 void rcu_irq_enter(void) 740 { 741 unsigned long flags; 742 struct rcu_dynticks *rdtp; 743 long long oldval; 744 745 local_irq_save(flags); 746 rdtp = this_cpu_ptr(&rcu_dynticks); 747 oldval = rdtp->dynticks_nesting; 748 rdtp->dynticks_nesting++; 749 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 750 if (oldval) 751 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 752 else 753 rcu_eqs_exit_common(rdtp, oldval, true); 754 rcu_sysidle_exit(rdtp, 1); 755 local_irq_restore(flags); 756 } 757 758 /** 759 * rcu_nmi_enter - inform RCU of entry to NMI context 760 * 761 * If the CPU was idle with dynamic ticks active, and there is no 762 * irq handler running, this updates rdtp->dynticks_nmi to let the 763 * RCU grace-period handling know that the CPU is active. 764 */ 765 void rcu_nmi_enter(void) 766 { 767 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 768 769 if (rdtp->dynticks_nmi_nesting == 0 && 770 (atomic_read(&rdtp->dynticks) & 0x1)) 771 return; 772 rdtp->dynticks_nmi_nesting++; 773 smp_mb__before_atomic(); /* Force delay from prior write. */ 774 atomic_inc(&rdtp->dynticks); 775 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 776 smp_mb__after_atomic(); /* See above. */ 777 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 778 } 779 780 /** 781 * rcu_nmi_exit - inform RCU of exit from NMI context 782 * 783 * If the CPU was idle with dynamic ticks active, and there is no 784 * irq handler running, this updates rdtp->dynticks_nmi to let the 785 * RCU grace-period handling know that the CPU is no longer active. 786 */ 787 void rcu_nmi_exit(void) 788 { 789 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 790 791 if (rdtp->dynticks_nmi_nesting == 0 || 792 --rdtp->dynticks_nmi_nesting != 0) 793 return; 794 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 795 smp_mb__before_atomic(); /* See above. */ 796 atomic_inc(&rdtp->dynticks); 797 smp_mb__after_atomic(); /* Force delay to next write. */ 798 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 799 } 800 801 /** 802 * __rcu_is_watching - are RCU read-side critical sections safe? 803 * 804 * Return true if RCU is watching the running CPU, which means that 805 * this CPU can safely enter RCU read-side critical sections. Unlike 806 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 807 * least disabled preemption. 808 */ 809 bool notrace __rcu_is_watching(void) 810 { 811 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 812 } 813 814 /** 815 * rcu_is_watching - see if RCU thinks that the current CPU is idle 816 * 817 * If the current CPU is in its idle loop and is neither in an interrupt 818 * or NMI handler, return true. 819 */ 820 bool notrace rcu_is_watching(void) 821 { 822 int ret; 823 824 preempt_disable(); 825 ret = __rcu_is_watching(); 826 preempt_enable(); 827 return ret; 828 } 829 EXPORT_SYMBOL_GPL(rcu_is_watching); 830 831 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 832 833 /* 834 * Is the current CPU online? Disable preemption to avoid false positives 835 * that could otherwise happen due to the current CPU number being sampled, 836 * this task being preempted, its old CPU being taken offline, resuming 837 * on some other CPU, then determining that its old CPU is now offline. 838 * It is OK to use RCU on an offline processor during initial boot, hence 839 * the check for rcu_scheduler_fully_active. Note also that it is OK 840 * for a CPU coming online to use RCU for one jiffy prior to marking itself 841 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 842 * offline to continue to use RCU for one jiffy after marking itself 843 * offline in the cpu_online_mask. This leniency is necessary given the 844 * non-atomic nature of the online and offline processing, for example, 845 * the fact that a CPU enters the scheduler after completing the CPU_DYING 846 * notifiers. 847 * 848 * This is also why RCU internally marks CPUs online during the 849 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 850 * 851 * Disable checking if in an NMI handler because we cannot safely report 852 * errors from NMI handlers anyway. 853 */ 854 bool rcu_lockdep_current_cpu_online(void) 855 { 856 struct rcu_data *rdp; 857 struct rcu_node *rnp; 858 bool ret; 859 860 if (in_nmi()) 861 return true; 862 preempt_disable(); 863 rdp = this_cpu_ptr(&rcu_sched_data); 864 rnp = rdp->mynode; 865 ret = (rdp->grpmask & rnp->qsmaskinit) || 866 !rcu_scheduler_fully_active; 867 preempt_enable(); 868 return ret; 869 } 870 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 871 872 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 873 874 /** 875 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 876 * 877 * If the current CPU is idle or running at a first-level (not nested) 878 * interrupt from idle, return true. The caller must have at least 879 * disabled preemption. 880 */ 881 static int rcu_is_cpu_rrupt_from_idle(void) 882 { 883 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 884 } 885 886 /* 887 * Snapshot the specified CPU's dynticks counter so that we can later 888 * credit them with an implicit quiescent state. Return 1 if this CPU 889 * is in dynticks idle mode, which is an extended quiescent state. 890 */ 891 static int dyntick_save_progress_counter(struct rcu_data *rdp, 892 bool *isidle, unsigned long *maxj) 893 { 894 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 895 rcu_sysidle_check_cpu(rdp, isidle, maxj); 896 if ((rdp->dynticks_snap & 0x1) == 0) { 897 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 898 return 1; 899 } else { 900 return 0; 901 } 902 } 903 904 /* 905 * This function really isn't for public consumption, but RCU is special in 906 * that context switches can allow the state machine to make progress. 907 */ 908 extern void resched_cpu(int cpu); 909 910 /* 911 * Return true if the specified CPU has passed through a quiescent 912 * state by virtue of being in or having passed through an dynticks 913 * idle state since the last call to dyntick_save_progress_counter() 914 * for this same CPU, or by virtue of having been offline. 915 */ 916 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 917 bool *isidle, unsigned long *maxj) 918 { 919 unsigned int curr; 920 int *rcrmp; 921 unsigned int snap; 922 923 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 924 snap = (unsigned int)rdp->dynticks_snap; 925 926 /* 927 * If the CPU passed through or entered a dynticks idle phase with 928 * no active irq/NMI handlers, then we can safely pretend that the CPU 929 * already acknowledged the request to pass through a quiescent 930 * state. Either way, that CPU cannot possibly be in an RCU 931 * read-side critical section that started before the beginning 932 * of the current RCU grace period. 933 */ 934 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 935 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 936 rdp->dynticks_fqs++; 937 return 1; 938 } 939 940 /* 941 * Check for the CPU being offline, but only if the grace period 942 * is old enough. We don't need to worry about the CPU changing 943 * state: If we see it offline even once, it has been through a 944 * quiescent state. 945 * 946 * The reason for insisting that the grace period be at least 947 * one jiffy old is that CPUs that are not quite online and that 948 * have just gone offline can still execute RCU read-side critical 949 * sections. 950 */ 951 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 952 return 0; /* Grace period is not old enough. */ 953 barrier(); 954 if (cpu_is_offline(rdp->cpu)) { 955 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 956 rdp->offline_fqs++; 957 return 1; 958 } 959 960 /* 961 * A CPU running for an extended time within the kernel can 962 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 963 * even context-switching back and forth between a pair of 964 * in-kernel CPU-bound tasks cannot advance grace periods. 965 * So if the grace period is old enough, make the CPU pay attention. 966 * Note that the unsynchronized assignments to the per-CPU 967 * rcu_sched_qs_mask variable are safe. Yes, setting of 968 * bits can be lost, but they will be set again on the next 969 * force-quiescent-state pass. So lost bit sets do not result 970 * in incorrect behavior, merely in a grace period lasting 971 * a few jiffies longer than it might otherwise. Because 972 * there are at most four threads involved, and because the 973 * updates are only once every few jiffies, the probability of 974 * lossage (and thus of slight grace-period extension) is 975 * quite low. 976 * 977 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 978 * is set too high, we override with half of the RCU CPU stall 979 * warning delay. 980 */ 981 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 982 if (ULONG_CMP_GE(jiffies, 983 rdp->rsp->gp_start + jiffies_till_sched_qs) || 984 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 985 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 986 ACCESS_ONCE(rdp->cond_resched_completed) = 987 ACCESS_ONCE(rdp->mynode->completed); 988 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 989 ACCESS_ONCE(*rcrmp) = 990 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask; 991 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 992 rdp->rsp->jiffies_resched += 5; /* Enable beating. */ 993 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 994 /* Time to beat on that CPU again! */ 995 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 996 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 997 } 998 } 999 1000 return 0; 1001 } 1002 1003 static void record_gp_stall_check_time(struct rcu_state *rsp) 1004 { 1005 unsigned long j = jiffies; 1006 unsigned long j1; 1007 1008 rsp->gp_start = j; 1009 smp_wmb(); /* Record start time before stall time. */ 1010 j1 = rcu_jiffies_till_stall_check(); 1011 ACCESS_ONCE(rsp->jiffies_stall) = j + j1; 1012 rsp->jiffies_resched = j + j1 / 2; 1013 } 1014 1015 /* 1016 * Dump stacks of all tasks running on stalled CPUs. This is a fallback 1017 * for architectures that do not implement trigger_all_cpu_backtrace(). 1018 * The NMI-triggered stack traces are more accurate because they are 1019 * printed by the target CPU. 1020 */ 1021 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1022 { 1023 int cpu; 1024 unsigned long flags; 1025 struct rcu_node *rnp; 1026 1027 rcu_for_each_leaf_node(rsp, rnp) { 1028 raw_spin_lock_irqsave(&rnp->lock, flags); 1029 if (rnp->qsmask != 0) { 1030 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1031 if (rnp->qsmask & (1UL << cpu)) 1032 dump_cpu_task(rnp->grplo + cpu); 1033 } 1034 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1035 } 1036 } 1037 1038 static void print_other_cpu_stall(struct rcu_state *rsp) 1039 { 1040 int cpu; 1041 long delta; 1042 unsigned long flags; 1043 int ndetected = 0; 1044 struct rcu_node *rnp = rcu_get_root(rsp); 1045 long totqlen = 0; 1046 1047 /* Only let one CPU complain about others per time interval. */ 1048 1049 raw_spin_lock_irqsave(&rnp->lock, flags); 1050 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall); 1051 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1052 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1053 return; 1054 } 1055 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1056 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1057 1058 /* 1059 * OK, time to rat on our buddy... 1060 * See Documentation/RCU/stallwarn.txt for info on how to debug 1061 * RCU CPU stall warnings. 1062 */ 1063 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1064 rsp->name); 1065 print_cpu_stall_info_begin(); 1066 rcu_for_each_leaf_node(rsp, rnp) { 1067 raw_spin_lock_irqsave(&rnp->lock, flags); 1068 ndetected += rcu_print_task_stall(rnp); 1069 if (rnp->qsmask != 0) { 1070 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1071 if (rnp->qsmask & (1UL << cpu)) { 1072 print_cpu_stall_info(rsp, 1073 rnp->grplo + cpu); 1074 ndetected++; 1075 } 1076 } 1077 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1078 } 1079 1080 /* 1081 * Now rat on any tasks that got kicked up to the root rcu_node 1082 * due to CPU offlining. 1083 */ 1084 rnp = rcu_get_root(rsp); 1085 raw_spin_lock_irqsave(&rnp->lock, flags); 1086 ndetected += rcu_print_task_stall(rnp); 1087 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1088 1089 print_cpu_stall_info_end(); 1090 for_each_possible_cpu(cpu) 1091 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1092 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1093 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1094 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1095 if (ndetected == 0) 1096 pr_err("INFO: Stall ended before state dump start\n"); 1097 else if (!trigger_all_cpu_backtrace()) 1098 rcu_dump_cpu_stacks(rsp); 1099 1100 /* Complain about tasks blocking the grace period. */ 1101 1102 rcu_print_detail_task_stall(rsp); 1103 1104 force_quiescent_state(rsp); /* Kick them all. */ 1105 } 1106 1107 static void print_cpu_stall(struct rcu_state *rsp) 1108 { 1109 int cpu; 1110 unsigned long flags; 1111 struct rcu_node *rnp = rcu_get_root(rsp); 1112 long totqlen = 0; 1113 1114 /* 1115 * OK, time to rat on ourselves... 1116 * See Documentation/RCU/stallwarn.txt for info on how to debug 1117 * RCU CPU stall warnings. 1118 */ 1119 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1120 print_cpu_stall_info_begin(); 1121 print_cpu_stall_info(rsp, smp_processor_id()); 1122 print_cpu_stall_info_end(); 1123 for_each_possible_cpu(cpu) 1124 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1125 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1126 jiffies - rsp->gp_start, 1127 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1128 if (!trigger_all_cpu_backtrace()) 1129 dump_stack(); 1130 1131 raw_spin_lock_irqsave(&rnp->lock, flags); 1132 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall))) 1133 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 1134 3 * rcu_jiffies_till_stall_check() + 3; 1135 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1136 1137 /* 1138 * Attempt to revive the RCU machinery by forcing a context switch. 1139 * 1140 * A context switch would normally allow the RCU state machine to make 1141 * progress and it could be we're stuck in kernel space without context 1142 * switches for an entirely unreasonable amount of time. 1143 */ 1144 resched_cpu(smp_processor_id()); 1145 } 1146 1147 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1148 { 1149 unsigned long completed; 1150 unsigned long gpnum; 1151 unsigned long gps; 1152 unsigned long j; 1153 unsigned long js; 1154 struct rcu_node *rnp; 1155 1156 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1157 return; 1158 j = jiffies; 1159 1160 /* 1161 * Lots of memory barriers to reject false positives. 1162 * 1163 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1164 * then rsp->gp_start, and finally rsp->completed. These values 1165 * are updated in the opposite order with memory barriers (or 1166 * equivalent) during grace-period initialization and cleanup. 1167 * Now, a false positive can occur if we get an new value of 1168 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1169 * the memory barriers, the only way that this can happen is if one 1170 * grace period ends and another starts between these two fetches. 1171 * Detect this by comparing rsp->completed with the previous fetch 1172 * from rsp->gpnum. 1173 * 1174 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1175 * and rsp->gp_start suffice to forestall false positives. 1176 */ 1177 gpnum = ACCESS_ONCE(rsp->gpnum); 1178 smp_rmb(); /* Pick up ->gpnum first... */ 1179 js = ACCESS_ONCE(rsp->jiffies_stall); 1180 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1181 gps = ACCESS_ONCE(rsp->gp_start); 1182 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1183 completed = ACCESS_ONCE(rsp->completed); 1184 if (ULONG_CMP_GE(completed, gpnum) || 1185 ULONG_CMP_LT(j, js) || 1186 ULONG_CMP_GE(gps, js)) 1187 return; /* No stall or GP completed since entering function. */ 1188 rnp = rdp->mynode; 1189 if (rcu_gp_in_progress(rsp) && 1190 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1191 1192 /* We haven't checked in, so go dump stack. */ 1193 print_cpu_stall(rsp); 1194 1195 } else if (rcu_gp_in_progress(rsp) && 1196 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1197 1198 /* They had a few time units to dump stack, so complain. */ 1199 print_other_cpu_stall(rsp); 1200 } 1201 } 1202 1203 /** 1204 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1205 * 1206 * Set the stall-warning timeout way off into the future, thus preventing 1207 * any RCU CPU stall-warning messages from appearing in the current set of 1208 * RCU grace periods. 1209 * 1210 * The caller must disable hard irqs. 1211 */ 1212 void rcu_cpu_stall_reset(void) 1213 { 1214 struct rcu_state *rsp; 1215 1216 for_each_rcu_flavor(rsp) 1217 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2; 1218 } 1219 1220 /* 1221 * Initialize the specified rcu_data structure's callback list to empty. 1222 */ 1223 static void init_callback_list(struct rcu_data *rdp) 1224 { 1225 int i; 1226 1227 if (init_nocb_callback_list(rdp)) 1228 return; 1229 rdp->nxtlist = NULL; 1230 for (i = 0; i < RCU_NEXT_SIZE; i++) 1231 rdp->nxttail[i] = &rdp->nxtlist; 1232 } 1233 1234 /* 1235 * Determine the value that ->completed will have at the end of the 1236 * next subsequent grace period. This is used to tag callbacks so that 1237 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1238 * been dyntick-idle for an extended period with callbacks under the 1239 * influence of RCU_FAST_NO_HZ. 1240 * 1241 * The caller must hold rnp->lock with interrupts disabled. 1242 */ 1243 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1244 struct rcu_node *rnp) 1245 { 1246 /* 1247 * If RCU is idle, we just wait for the next grace period. 1248 * But we can only be sure that RCU is idle if we are looking 1249 * at the root rcu_node structure -- otherwise, a new grace 1250 * period might have started, but just not yet gotten around 1251 * to initializing the current non-root rcu_node structure. 1252 */ 1253 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1254 return rnp->completed + 1; 1255 1256 /* 1257 * Otherwise, wait for a possible partial grace period and 1258 * then the subsequent full grace period. 1259 */ 1260 return rnp->completed + 2; 1261 } 1262 1263 /* 1264 * Trace-event helper function for rcu_start_future_gp() and 1265 * rcu_nocb_wait_gp(). 1266 */ 1267 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1268 unsigned long c, const char *s) 1269 { 1270 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1271 rnp->completed, c, rnp->level, 1272 rnp->grplo, rnp->grphi, s); 1273 } 1274 1275 /* 1276 * Start some future grace period, as needed to handle newly arrived 1277 * callbacks. The required future grace periods are recorded in each 1278 * rcu_node structure's ->need_future_gp field. Returns true if there 1279 * is reason to awaken the grace-period kthread. 1280 * 1281 * The caller must hold the specified rcu_node structure's ->lock. 1282 */ 1283 static bool __maybe_unused 1284 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1285 unsigned long *c_out) 1286 { 1287 unsigned long c; 1288 int i; 1289 bool ret = false; 1290 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1291 1292 /* 1293 * Pick up grace-period number for new callbacks. If this 1294 * grace period is already marked as needed, return to the caller. 1295 */ 1296 c = rcu_cbs_completed(rdp->rsp, rnp); 1297 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1298 if (rnp->need_future_gp[c & 0x1]) { 1299 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1300 goto out; 1301 } 1302 1303 /* 1304 * If either this rcu_node structure or the root rcu_node structure 1305 * believe that a grace period is in progress, then we must wait 1306 * for the one following, which is in "c". Because our request 1307 * will be noticed at the end of the current grace period, we don't 1308 * need to explicitly start one. 1309 */ 1310 if (rnp->gpnum != rnp->completed || 1311 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) { 1312 rnp->need_future_gp[c & 0x1]++; 1313 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1314 goto out; 1315 } 1316 1317 /* 1318 * There might be no grace period in progress. If we don't already 1319 * hold it, acquire the root rcu_node structure's lock in order to 1320 * start one (if needed). 1321 */ 1322 if (rnp != rnp_root) { 1323 raw_spin_lock(&rnp_root->lock); 1324 smp_mb__after_unlock_lock(); 1325 } 1326 1327 /* 1328 * Get a new grace-period number. If there really is no grace 1329 * period in progress, it will be smaller than the one we obtained 1330 * earlier. Adjust callbacks as needed. Note that even no-CBs 1331 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1332 */ 1333 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1334 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1335 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1336 rdp->nxtcompleted[i] = c; 1337 1338 /* 1339 * If the needed for the required grace period is already 1340 * recorded, trace and leave. 1341 */ 1342 if (rnp_root->need_future_gp[c & 0x1]) { 1343 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1344 goto unlock_out; 1345 } 1346 1347 /* Record the need for the future grace period. */ 1348 rnp_root->need_future_gp[c & 0x1]++; 1349 1350 /* If a grace period is not already in progress, start one. */ 1351 if (rnp_root->gpnum != rnp_root->completed) { 1352 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1353 } else { 1354 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1355 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1356 } 1357 unlock_out: 1358 if (rnp != rnp_root) 1359 raw_spin_unlock(&rnp_root->lock); 1360 out: 1361 if (c_out != NULL) 1362 *c_out = c; 1363 return ret; 1364 } 1365 1366 /* 1367 * Clean up any old requests for the just-ended grace period. Also return 1368 * whether any additional grace periods have been requested. Also invoke 1369 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1370 * waiting for this grace period to complete. 1371 */ 1372 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1373 { 1374 int c = rnp->completed; 1375 int needmore; 1376 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1377 1378 rcu_nocb_gp_cleanup(rsp, rnp); 1379 rnp->need_future_gp[c & 0x1] = 0; 1380 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1381 trace_rcu_future_gp(rnp, rdp, c, 1382 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1383 return needmore; 1384 } 1385 1386 /* 1387 * Awaken the grace-period kthread for the specified flavor of RCU. 1388 * Don't do a self-awaken, and don't bother awakening when there is 1389 * nothing for the grace-period kthread to do (as in several CPUs 1390 * raced to awaken, and we lost), and finally don't try to awaken 1391 * a kthread that has not yet been created. 1392 */ 1393 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1394 { 1395 if (current == rsp->gp_kthread || 1396 !ACCESS_ONCE(rsp->gp_flags) || 1397 !rsp->gp_kthread) 1398 return; 1399 wake_up(&rsp->gp_wq); 1400 } 1401 1402 /* 1403 * If there is room, assign a ->completed number to any callbacks on 1404 * this CPU that have not already been assigned. Also accelerate any 1405 * callbacks that were previously assigned a ->completed number that has 1406 * since proven to be too conservative, which can happen if callbacks get 1407 * assigned a ->completed number while RCU is idle, but with reference to 1408 * a non-root rcu_node structure. This function is idempotent, so it does 1409 * not hurt to call it repeatedly. Returns an flag saying that we should 1410 * awaken the RCU grace-period kthread. 1411 * 1412 * The caller must hold rnp->lock with interrupts disabled. 1413 */ 1414 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1415 struct rcu_data *rdp) 1416 { 1417 unsigned long c; 1418 int i; 1419 bool ret; 1420 1421 /* If the CPU has no callbacks, nothing to do. */ 1422 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1423 return false; 1424 1425 /* 1426 * Starting from the sublist containing the callbacks most 1427 * recently assigned a ->completed number and working down, find the 1428 * first sublist that is not assignable to an upcoming grace period. 1429 * Such a sublist has something in it (first two tests) and has 1430 * a ->completed number assigned that will complete sooner than 1431 * the ->completed number for newly arrived callbacks (last test). 1432 * 1433 * The key point is that any later sublist can be assigned the 1434 * same ->completed number as the newly arrived callbacks, which 1435 * means that the callbacks in any of these later sublist can be 1436 * grouped into a single sublist, whether or not they have already 1437 * been assigned a ->completed number. 1438 */ 1439 c = rcu_cbs_completed(rsp, rnp); 1440 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1441 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1442 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1443 break; 1444 1445 /* 1446 * If there are no sublist for unassigned callbacks, leave. 1447 * At the same time, advance "i" one sublist, so that "i" will 1448 * index into the sublist where all the remaining callbacks should 1449 * be grouped into. 1450 */ 1451 if (++i >= RCU_NEXT_TAIL) 1452 return false; 1453 1454 /* 1455 * Assign all subsequent callbacks' ->completed number to the next 1456 * full grace period and group them all in the sublist initially 1457 * indexed by "i". 1458 */ 1459 for (; i <= RCU_NEXT_TAIL; i++) { 1460 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1461 rdp->nxtcompleted[i] = c; 1462 } 1463 /* Record any needed additional grace periods. */ 1464 ret = rcu_start_future_gp(rnp, rdp, NULL); 1465 1466 /* Trace depending on how much we were able to accelerate. */ 1467 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1468 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1469 else 1470 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1471 return ret; 1472 } 1473 1474 /* 1475 * Move any callbacks whose grace period has completed to the 1476 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1477 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1478 * sublist. This function is idempotent, so it does not hurt to 1479 * invoke it repeatedly. As long as it is not invoked -too- often... 1480 * Returns true if the RCU grace-period kthread needs to be awakened. 1481 * 1482 * The caller must hold rnp->lock with interrupts disabled. 1483 */ 1484 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1485 struct rcu_data *rdp) 1486 { 1487 int i, j; 1488 1489 /* If the CPU has no callbacks, nothing to do. */ 1490 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1491 return false; 1492 1493 /* 1494 * Find all callbacks whose ->completed numbers indicate that they 1495 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1496 */ 1497 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1498 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1499 break; 1500 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1501 } 1502 /* Clean up any sublist tail pointers that were misordered above. */ 1503 for (j = RCU_WAIT_TAIL; j < i; j++) 1504 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1505 1506 /* Copy down callbacks to fill in empty sublists. */ 1507 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1508 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1509 break; 1510 rdp->nxttail[j] = rdp->nxttail[i]; 1511 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1512 } 1513 1514 /* Classify any remaining callbacks. */ 1515 return rcu_accelerate_cbs(rsp, rnp, rdp); 1516 } 1517 1518 /* 1519 * Update CPU-local rcu_data state to record the beginnings and ends of 1520 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1521 * structure corresponding to the current CPU, and must have irqs disabled. 1522 * Returns true if the grace-period kthread needs to be awakened. 1523 */ 1524 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1525 struct rcu_data *rdp) 1526 { 1527 bool ret; 1528 1529 /* Handle the ends of any preceding grace periods first. */ 1530 if (rdp->completed == rnp->completed) { 1531 1532 /* No grace period end, so just accelerate recent callbacks. */ 1533 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1534 1535 } else { 1536 1537 /* Advance callbacks. */ 1538 ret = rcu_advance_cbs(rsp, rnp, rdp); 1539 1540 /* Remember that we saw this grace-period completion. */ 1541 rdp->completed = rnp->completed; 1542 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1543 } 1544 1545 if (rdp->gpnum != rnp->gpnum) { 1546 /* 1547 * If the current grace period is waiting for this CPU, 1548 * set up to detect a quiescent state, otherwise don't 1549 * go looking for one. 1550 */ 1551 rdp->gpnum = rnp->gpnum; 1552 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1553 rdp->passed_quiesce = 0; 1554 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1555 zero_cpu_stall_ticks(rdp); 1556 } 1557 return ret; 1558 } 1559 1560 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1561 { 1562 unsigned long flags; 1563 bool needwake; 1564 struct rcu_node *rnp; 1565 1566 local_irq_save(flags); 1567 rnp = rdp->mynode; 1568 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1569 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ 1570 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1571 local_irq_restore(flags); 1572 return; 1573 } 1574 smp_mb__after_unlock_lock(); 1575 needwake = __note_gp_changes(rsp, rnp, rdp); 1576 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1577 if (needwake) 1578 rcu_gp_kthread_wake(rsp); 1579 } 1580 1581 /* 1582 * Initialize a new grace period. Return 0 if no grace period required. 1583 */ 1584 static int rcu_gp_init(struct rcu_state *rsp) 1585 { 1586 struct rcu_data *rdp; 1587 struct rcu_node *rnp = rcu_get_root(rsp); 1588 1589 rcu_bind_gp_kthread(); 1590 raw_spin_lock_irq(&rnp->lock); 1591 smp_mb__after_unlock_lock(); 1592 if (!ACCESS_ONCE(rsp->gp_flags)) { 1593 /* Spurious wakeup, tell caller to go back to sleep. */ 1594 raw_spin_unlock_irq(&rnp->lock); 1595 return 0; 1596 } 1597 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */ 1598 1599 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1600 /* 1601 * Grace period already in progress, don't start another. 1602 * Not supposed to be able to happen. 1603 */ 1604 raw_spin_unlock_irq(&rnp->lock); 1605 return 0; 1606 } 1607 1608 /* Advance to a new grace period and initialize state. */ 1609 record_gp_stall_check_time(rsp); 1610 /* Record GP times before starting GP, hence smp_store_release(). */ 1611 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1612 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1613 raw_spin_unlock_irq(&rnp->lock); 1614 1615 /* Exclude any concurrent CPU-hotplug operations. */ 1616 mutex_lock(&rsp->onoff_mutex); 1617 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */ 1618 1619 /* 1620 * Set the quiescent-state-needed bits in all the rcu_node 1621 * structures for all currently online CPUs in breadth-first order, 1622 * starting from the root rcu_node structure, relying on the layout 1623 * of the tree within the rsp->node[] array. Note that other CPUs 1624 * will access only the leaves of the hierarchy, thus seeing that no 1625 * grace period is in progress, at least until the corresponding 1626 * leaf node has been initialized. In addition, we have excluded 1627 * CPU-hotplug operations. 1628 * 1629 * The grace period cannot complete until the initialization 1630 * process finishes, because this kthread handles both. 1631 */ 1632 rcu_for_each_node_breadth_first(rsp, rnp) { 1633 raw_spin_lock_irq(&rnp->lock); 1634 smp_mb__after_unlock_lock(); 1635 rdp = this_cpu_ptr(rsp->rda); 1636 rcu_preempt_check_blocked_tasks(rnp); 1637 rnp->qsmask = rnp->qsmaskinit; 1638 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1639 WARN_ON_ONCE(rnp->completed != rsp->completed); 1640 ACCESS_ONCE(rnp->completed) = rsp->completed; 1641 if (rnp == rdp->mynode) 1642 (void)__note_gp_changes(rsp, rnp, rdp); 1643 rcu_preempt_boost_start_gp(rnp); 1644 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1645 rnp->level, rnp->grplo, 1646 rnp->grphi, rnp->qsmask); 1647 raw_spin_unlock_irq(&rnp->lock); 1648 #ifdef CONFIG_PROVE_RCU_DELAY 1649 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 && 1650 system_state == SYSTEM_RUNNING) 1651 udelay(200); 1652 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ 1653 cond_resched(); 1654 } 1655 1656 mutex_unlock(&rsp->onoff_mutex); 1657 return 1; 1658 } 1659 1660 /* 1661 * Do one round of quiescent-state forcing. 1662 */ 1663 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1664 { 1665 int fqs_state = fqs_state_in; 1666 bool isidle = false; 1667 unsigned long maxj; 1668 struct rcu_node *rnp = rcu_get_root(rsp); 1669 1670 rsp->n_force_qs++; 1671 if (fqs_state == RCU_SAVE_DYNTICK) { 1672 /* Collect dyntick-idle snapshots. */ 1673 if (is_sysidle_rcu_state(rsp)) { 1674 isidle = 1; 1675 maxj = jiffies - ULONG_MAX / 4; 1676 } 1677 force_qs_rnp(rsp, dyntick_save_progress_counter, 1678 &isidle, &maxj); 1679 rcu_sysidle_report_gp(rsp, isidle, maxj); 1680 fqs_state = RCU_FORCE_QS; 1681 } else { 1682 /* Handle dyntick-idle and offline CPUs. */ 1683 isidle = 0; 1684 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1685 } 1686 /* Clear flag to prevent immediate re-entry. */ 1687 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1688 raw_spin_lock_irq(&rnp->lock); 1689 smp_mb__after_unlock_lock(); 1690 ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS; 1691 raw_spin_unlock_irq(&rnp->lock); 1692 } 1693 return fqs_state; 1694 } 1695 1696 /* 1697 * Clean up after the old grace period. 1698 */ 1699 static void rcu_gp_cleanup(struct rcu_state *rsp) 1700 { 1701 unsigned long gp_duration; 1702 bool needgp = false; 1703 int nocb = 0; 1704 struct rcu_data *rdp; 1705 struct rcu_node *rnp = rcu_get_root(rsp); 1706 1707 raw_spin_lock_irq(&rnp->lock); 1708 smp_mb__after_unlock_lock(); 1709 gp_duration = jiffies - rsp->gp_start; 1710 if (gp_duration > rsp->gp_max) 1711 rsp->gp_max = gp_duration; 1712 1713 /* 1714 * We know the grace period is complete, but to everyone else 1715 * it appears to still be ongoing. But it is also the case 1716 * that to everyone else it looks like there is nothing that 1717 * they can do to advance the grace period. It is therefore 1718 * safe for us to drop the lock in order to mark the grace 1719 * period as completed in all of the rcu_node structures. 1720 */ 1721 raw_spin_unlock_irq(&rnp->lock); 1722 1723 /* 1724 * Propagate new ->completed value to rcu_node structures so 1725 * that other CPUs don't have to wait until the start of the next 1726 * grace period to process their callbacks. This also avoids 1727 * some nasty RCU grace-period initialization races by forcing 1728 * the end of the current grace period to be completely recorded in 1729 * all of the rcu_node structures before the beginning of the next 1730 * grace period is recorded in any of the rcu_node structures. 1731 */ 1732 rcu_for_each_node_breadth_first(rsp, rnp) { 1733 raw_spin_lock_irq(&rnp->lock); 1734 smp_mb__after_unlock_lock(); 1735 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1736 rdp = this_cpu_ptr(rsp->rda); 1737 if (rnp == rdp->mynode) 1738 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 1739 /* smp_mb() provided by prior unlock-lock pair. */ 1740 nocb += rcu_future_gp_cleanup(rsp, rnp); 1741 raw_spin_unlock_irq(&rnp->lock); 1742 cond_resched(); 1743 } 1744 rnp = rcu_get_root(rsp); 1745 raw_spin_lock_irq(&rnp->lock); 1746 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */ 1747 rcu_nocb_gp_set(rnp, nocb); 1748 1749 /* Declare grace period done. */ 1750 ACCESS_ONCE(rsp->completed) = rsp->gpnum; 1751 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1752 rsp->fqs_state = RCU_GP_IDLE; 1753 rdp = this_cpu_ptr(rsp->rda); 1754 /* Advance CBs to reduce false positives below. */ 1755 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 1756 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 1757 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 1758 trace_rcu_grace_period(rsp->name, 1759 ACCESS_ONCE(rsp->gpnum), 1760 TPS("newreq")); 1761 } 1762 raw_spin_unlock_irq(&rnp->lock); 1763 } 1764 1765 /* 1766 * Body of kthread that handles grace periods. 1767 */ 1768 static int __noreturn rcu_gp_kthread(void *arg) 1769 { 1770 int fqs_state; 1771 int gf; 1772 unsigned long j; 1773 int ret; 1774 struct rcu_state *rsp = arg; 1775 struct rcu_node *rnp = rcu_get_root(rsp); 1776 1777 for (;;) { 1778 1779 /* Handle grace-period start. */ 1780 for (;;) { 1781 trace_rcu_grace_period(rsp->name, 1782 ACCESS_ONCE(rsp->gpnum), 1783 TPS("reqwait")); 1784 rsp->gp_state = RCU_GP_WAIT_GPS; 1785 wait_event_interruptible(rsp->gp_wq, 1786 ACCESS_ONCE(rsp->gp_flags) & 1787 RCU_GP_FLAG_INIT); 1788 /* Locking provides needed memory barrier. */ 1789 if (rcu_gp_init(rsp)) 1790 break; 1791 cond_resched(); 1792 flush_signals(current); 1793 trace_rcu_grace_period(rsp->name, 1794 ACCESS_ONCE(rsp->gpnum), 1795 TPS("reqwaitsig")); 1796 } 1797 1798 /* Handle quiescent-state forcing. */ 1799 fqs_state = RCU_SAVE_DYNTICK; 1800 j = jiffies_till_first_fqs; 1801 if (j > HZ) { 1802 j = HZ; 1803 jiffies_till_first_fqs = HZ; 1804 } 1805 ret = 0; 1806 for (;;) { 1807 if (!ret) 1808 rsp->jiffies_force_qs = jiffies + j; 1809 trace_rcu_grace_period(rsp->name, 1810 ACCESS_ONCE(rsp->gpnum), 1811 TPS("fqswait")); 1812 rsp->gp_state = RCU_GP_WAIT_FQS; 1813 ret = wait_event_interruptible_timeout(rsp->gp_wq, 1814 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 1815 RCU_GP_FLAG_FQS) || 1816 (!ACCESS_ONCE(rnp->qsmask) && 1817 !rcu_preempt_blocked_readers_cgp(rnp)), 1818 j); 1819 /* Locking provides needed memory barriers. */ 1820 /* If grace period done, leave loop. */ 1821 if (!ACCESS_ONCE(rnp->qsmask) && 1822 !rcu_preempt_blocked_readers_cgp(rnp)) 1823 break; 1824 /* If time for quiescent-state forcing, do it. */ 1825 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 1826 (gf & RCU_GP_FLAG_FQS)) { 1827 trace_rcu_grace_period(rsp->name, 1828 ACCESS_ONCE(rsp->gpnum), 1829 TPS("fqsstart")); 1830 fqs_state = rcu_gp_fqs(rsp, fqs_state); 1831 trace_rcu_grace_period(rsp->name, 1832 ACCESS_ONCE(rsp->gpnum), 1833 TPS("fqsend")); 1834 cond_resched(); 1835 } else { 1836 /* Deal with stray signal. */ 1837 cond_resched(); 1838 flush_signals(current); 1839 trace_rcu_grace_period(rsp->name, 1840 ACCESS_ONCE(rsp->gpnum), 1841 TPS("fqswaitsig")); 1842 } 1843 j = jiffies_till_next_fqs; 1844 if (j > HZ) { 1845 j = HZ; 1846 jiffies_till_next_fqs = HZ; 1847 } else if (j < 1) { 1848 j = 1; 1849 jiffies_till_next_fqs = 1; 1850 } 1851 } 1852 1853 /* Handle grace-period end. */ 1854 rcu_gp_cleanup(rsp); 1855 } 1856 } 1857 1858 /* 1859 * Start a new RCU grace period if warranted, re-initializing the hierarchy 1860 * in preparation for detecting the next grace period. The caller must hold 1861 * the root node's ->lock and hard irqs must be disabled. 1862 * 1863 * Note that it is legal for a dying CPU (which is marked as offline) to 1864 * invoke this function. This can happen when the dying CPU reports its 1865 * quiescent state. 1866 * 1867 * Returns true if the grace-period kthread must be awakened. 1868 */ 1869 static bool 1870 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 1871 struct rcu_data *rdp) 1872 { 1873 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 1874 /* 1875 * Either we have not yet spawned the grace-period 1876 * task, this CPU does not need another grace period, 1877 * or a grace period is already in progress. 1878 * Either way, don't start a new grace period. 1879 */ 1880 return false; 1881 } 1882 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 1883 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 1884 TPS("newreq")); 1885 1886 /* 1887 * We can't do wakeups while holding the rnp->lock, as that 1888 * could cause possible deadlocks with the rq->lock. Defer 1889 * the wakeup to our caller. 1890 */ 1891 return true; 1892 } 1893 1894 /* 1895 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 1896 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 1897 * is invoked indirectly from rcu_advance_cbs(), which would result in 1898 * endless recursion -- or would do so if it wasn't for the self-deadlock 1899 * that is encountered beforehand. 1900 * 1901 * Returns true if the grace-period kthread needs to be awakened. 1902 */ 1903 static bool rcu_start_gp(struct rcu_state *rsp) 1904 { 1905 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1906 struct rcu_node *rnp = rcu_get_root(rsp); 1907 bool ret = false; 1908 1909 /* 1910 * If there is no grace period in progress right now, any 1911 * callbacks we have up to this point will be satisfied by the 1912 * next grace period. Also, advancing the callbacks reduces the 1913 * probability of false positives from cpu_needs_another_gp() 1914 * resulting in pointless grace periods. So, advance callbacks 1915 * then start the grace period! 1916 */ 1917 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 1918 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 1919 return ret; 1920 } 1921 1922 /* 1923 * Report a full set of quiescent states to the specified rcu_state 1924 * data structure. This involves cleaning up after the prior grace 1925 * period and letting rcu_start_gp() start up the next grace period 1926 * if one is needed. Note that the caller must hold rnp->lock, which 1927 * is released before return. 1928 */ 1929 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 1930 __releases(rcu_get_root(rsp)->lock) 1931 { 1932 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 1933 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 1934 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 1935 } 1936 1937 /* 1938 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1939 * Allows quiescent states for a group of CPUs to be reported at one go 1940 * to the specified rcu_node structure, though all the CPUs in the group 1941 * must be represented by the same rcu_node structure (which need not be 1942 * a leaf rcu_node structure, though it often will be). That structure's 1943 * lock must be held upon entry, and it is released before return. 1944 */ 1945 static void 1946 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 1947 struct rcu_node *rnp, unsigned long flags) 1948 __releases(rnp->lock) 1949 { 1950 struct rcu_node *rnp_c; 1951 1952 /* Walk up the rcu_node hierarchy. */ 1953 for (;;) { 1954 if (!(rnp->qsmask & mask)) { 1955 1956 /* Our bit has already been cleared, so done. */ 1957 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1958 return; 1959 } 1960 rnp->qsmask &= ~mask; 1961 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 1962 mask, rnp->qsmask, rnp->level, 1963 rnp->grplo, rnp->grphi, 1964 !!rnp->gp_tasks); 1965 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1966 1967 /* Other bits still set at this level, so done. */ 1968 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1969 return; 1970 } 1971 mask = rnp->grpmask; 1972 if (rnp->parent == NULL) { 1973 1974 /* No more levels. Exit loop holding root lock. */ 1975 1976 break; 1977 } 1978 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1979 rnp_c = rnp; 1980 rnp = rnp->parent; 1981 raw_spin_lock_irqsave(&rnp->lock, flags); 1982 smp_mb__after_unlock_lock(); 1983 WARN_ON_ONCE(rnp_c->qsmask); 1984 } 1985 1986 /* 1987 * Get here if we are the last CPU to pass through a quiescent 1988 * state for this grace period. Invoke rcu_report_qs_rsp() 1989 * to clean up and start the next grace period if one is needed. 1990 */ 1991 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 1992 } 1993 1994 /* 1995 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1996 * structure. This must be either called from the specified CPU, or 1997 * called when the specified CPU is known to be offline (and when it is 1998 * also known that no other CPU is concurrently trying to help the offline 1999 * CPU). The lastcomp argument is used to make sure we are still in the 2000 * grace period of interest. We don't want to end the current grace period 2001 * based on quiescent states detected in an earlier grace period! 2002 */ 2003 static void 2004 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2005 { 2006 unsigned long flags; 2007 unsigned long mask; 2008 bool needwake; 2009 struct rcu_node *rnp; 2010 2011 rnp = rdp->mynode; 2012 raw_spin_lock_irqsave(&rnp->lock, flags); 2013 smp_mb__after_unlock_lock(); 2014 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || 2015 rnp->completed == rnp->gpnum) { 2016 2017 /* 2018 * The grace period in which this quiescent state was 2019 * recorded has ended, so don't report it upwards. 2020 * We will instead need a new quiescent state that lies 2021 * within the current grace period. 2022 */ 2023 rdp->passed_quiesce = 0; /* need qs for new gp. */ 2024 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2025 return; 2026 } 2027 mask = rdp->grpmask; 2028 if ((rnp->qsmask & mask) == 0) { 2029 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2030 } else { 2031 rdp->qs_pending = 0; 2032 2033 /* 2034 * This GP can't end until cpu checks in, so all of our 2035 * callbacks can be processed during the next GP. 2036 */ 2037 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2038 2039 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 2040 if (needwake) 2041 rcu_gp_kthread_wake(rsp); 2042 } 2043 } 2044 2045 /* 2046 * Check to see if there is a new grace period of which this CPU 2047 * is not yet aware, and if so, set up local rcu_data state for it. 2048 * Otherwise, see if this CPU has just passed through its first 2049 * quiescent state for this grace period, and record that fact if so. 2050 */ 2051 static void 2052 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2053 { 2054 /* Check for grace-period ends and beginnings. */ 2055 note_gp_changes(rsp, rdp); 2056 2057 /* 2058 * Does this CPU still need to do its part for current grace period? 2059 * If no, return and let the other CPUs do their part as well. 2060 */ 2061 if (!rdp->qs_pending) 2062 return; 2063 2064 /* 2065 * Was there a quiescent state since the beginning of the grace 2066 * period? If no, then exit and wait for the next call. 2067 */ 2068 if (!rdp->passed_quiesce) 2069 return; 2070 2071 /* 2072 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2073 * judge of that). 2074 */ 2075 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2076 } 2077 2078 #ifdef CONFIG_HOTPLUG_CPU 2079 2080 /* 2081 * Send the specified CPU's RCU callbacks to the orphanage. The 2082 * specified CPU must be offline, and the caller must hold the 2083 * ->orphan_lock. 2084 */ 2085 static void 2086 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2087 struct rcu_node *rnp, struct rcu_data *rdp) 2088 { 2089 /* No-CBs CPUs do not have orphanable callbacks. */ 2090 if (rcu_is_nocb_cpu(rdp->cpu)) 2091 return; 2092 2093 /* 2094 * Orphan the callbacks. First adjust the counts. This is safe 2095 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2096 * cannot be running now. Thus no memory barrier is required. 2097 */ 2098 if (rdp->nxtlist != NULL) { 2099 rsp->qlen_lazy += rdp->qlen_lazy; 2100 rsp->qlen += rdp->qlen; 2101 rdp->n_cbs_orphaned += rdp->qlen; 2102 rdp->qlen_lazy = 0; 2103 ACCESS_ONCE(rdp->qlen) = 0; 2104 } 2105 2106 /* 2107 * Next, move those callbacks still needing a grace period to 2108 * the orphanage, where some other CPU will pick them up. 2109 * Some of the callbacks might have gone partway through a grace 2110 * period, but that is too bad. They get to start over because we 2111 * cannot assume that grace periods are synchronized across CPUs. 2112 * We don't bother updating the ->nxttail[] array yet, instead 2113 * we just reset the whole thing later on. 2114 */ 2115 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2116 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2117 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2118 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2119 } 2120 2121 /* 2122 * Then move the ready-to-invoke callbacks to the orphanage, 2123 * where some other CPU will pick them up. These will not be 2124 * required to pass though another grace period: They are done. 2125 */ 2126 if (rdp->nxtlist != NULL) { 2127 *rsp->orphan_donetail = rdp->nxtlist; 2128 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2129 } 2130 2131 /* Finally, initialize the rcu_data structure's list to empty. */ 2132 init_callback_list(rdp); 2133 } 2134 2135 /* 2136 * Adopt the RCU callbacks from the specified rcu_state structure's 2137 * orphanage. The caller must hold the ->orphan_lock. 2138 */ 2139 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2140 { 2141 int i; 2142 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2143 2144 /* No-CBs CPUs are handled specially. */ 2145 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2146 return; 2147 2148 /* Do the accounting first. */ 2149 rdp->qlen_lazy += rsp->qlen_lazy; 2150 rdp->qlen += rsp->qlen; 2151 rdp->n_cbs_adopted += rsp->qlen; 2152 if (rsp->qlen_lazy != rsp->qlen) 2153 rcu_idle_count_callbacks_posted(); 2154 rsp->qlen_lazy = 0; 2155 rsp->qlen = 0; 2156 2157 /* 2158 * We do not need a memory barrier here because the only way we 2159 * can get here if there is an rcu_barrier() in flight is if 2160 * we are the task doing the rcu_barrier(). 2161 */ 2162 2163 /* First adopt the ready-to-invoke callbacks. */ 2164 if (rsp->orphan_donelist != NULL) { 2165 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2166 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2167 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2168 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2169 rdp->nxttail[i] = rsp->orphan_donetail; 2170 rsp->orphan_donelist = NULL; 2171 rsp->orphan_donetail = &rsp->orphan_donelist; 2172 } 2173 2174 /* And then adopt the callbacks that still need a grace period. */ 2175 if (rsp->orphan_nxtlist != NULL) { 2176 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2177 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2178 rsp->orphan_nxtlist = NULL; 2179 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2180 } 2181 } 2182 2183 /* 2184 * Trace the fact that this CPU is going offline. 2185 */ 2186 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2187 { 2188 RCU_TRACE(unsigned long mask); 2189 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2190 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2191 2192 RCU_TRACE(mask = rdp->grpmask); 2193 trace_rcu_grace_period(rsp->name, 2194 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2195 TPS("cpuofl")); 2196 } 2197 2198 /* 2199 * The CPU has been completely removed, and some other CPU is reporting 2200 * this fact from process context. Do the remainder of the cleanup, 2201 * including orphaning the outgoing CPU's RCU callbacks, and also 2202 * adopting them. There can only be one CPU hotplug operation at a time, 2203 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2204 */ 2205 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2206 { 2207 unsigned long flags; 2208 unsigned long mask; 2209 int need_report = 0; 2210 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2211 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2212 2213 /* Adjust any no-longer-needed kthreads. */ 2214 rcu_boost_kthread_setaffinity(rnp, -1); 2215 2216 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ 2217 2218 /* Exclude any attempts to start a new grace period. */ 2219 mutex_lock(&rsp->onoff_mutex); 2220 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2221 2222 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2223 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2224 rcu_adopt_orphan_cbs(rsp, flags); 2225 2226 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 2227 mask = rdp->grpmask; /* rnp->grplo is constant. */ 2228 do { 2229 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2230 smp_mb__after_unlock_lock(); 2231 rnp->qsmaskinit &= ~mask; 2232 if (rnp->qsmaskinit != 0) { 2233 if (rnp != rdp->mynode) 2234 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2235 break; 2236 } 2237 if (rnp == rdp->mynode) 2238 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 2239 else 2240 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2241 mask = rnp->grpmask; 2242 rnp = rnp->parent; 2243 } while (rnp != NULL); 2244 2245 /* 2246 * We still hold the leaf rcu_node structure lock here, and 2247 * irqs are still disabled. The reason for this subterfuge is 2248 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock 2249 * held leads to deadlock. 2250 */ 2251 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ 2252 rnp = rdp->mynode; 2253 if (need_report & RCU_OFL_TASKS_NORM_GP) 2254 rcu_report_unblock_qs_rnp(rnp, flags); 2255 else 2256 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2257 if (need_report & RCU_OFL_TASKS_EXP_GP) 2258 rcu_report_exp_rnp(rsp, rnp, true); 2259 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2260 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2261 cpu, rdp->qlen, rdp->nxtlist); 2262 init_callback_list(rdp); 2263 /* Disallow further callbacks on this CPU. */ 2264 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2265 mutex_unlock(&rsp->onoff_mutex); 2266 } 2267 2268 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2269 2270 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2271 { 2272 } 2273 2274 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2275 { 2276 } 2277 2278 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2279 2280 /* 2281 * Invoke any RCU callbacks that have made it to the end of their grace 2282 * period. Thottle as specified by rdp->blimit. 2283 */ 2284 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2285 { 2286 unsigned long flags; 2287 struct rcu_head *next, *list, **tail; 2288 long bl, count, count_lazy; 2289 int i; 2290 2291 /* If no callbacks are ready, just return. */ 2292 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2293 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2294 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2295 need_resched(), is_idle_task(current), 2296 rcu_is_callbacks_kthread()); 2297 return; 2298 } 2299 2300 /* 2301 * Extract the list of ready callbacks, disabling to prevent 2302 * races with call_rcu() from interrupt handlers. 2303 */ 2304 local_irq_save(flags); 2305 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2306 bl = rdp->blimit; 2307 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2308 list = rdp->nxtlist; 2309 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2310 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2311 tail = rdp->nxttail[RCU_DONE_TAIL]; 2312 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2313 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2314 rdp->nxttail[i] = &rdp->nxtlist; 2315 local_irq_restore(flags); 2316 2317 /* Invoke callbacks. */ 2318 count = count_lazy = 0; 2319 while (list) { 2320 next = list->next; 2321 prefetch(next); 2322 debug_rcu_head_unqueue(list); 2323 if (__rcu_reclaim(rsp->name, list)) 2324 count_lazy++; 2325 list = next; 2326 /* Stop only if limit reached and CPU has something to do. */ 2327 if (++count >= bl && 2328 (need_resched() || 2329 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2330 break; 2331 } 2332 2333 local_irq_save(flags); 2334 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2335 is_idle_task(current), 2336 rcu_is_callbacks_kthread()); 2337 2338 /* Update count, and requeue any remaining callbacks. */ 2339 if (list != NULL) { 2340 *tail = rdp->nxtlist; 2341 rdp->nxtlist = list; 2342 for (i = 0; i < RCU_NEXT_SIZE; i++) 2343 if (&rdp->nxtlist == rdp->nxttail[i]) 2344 rdp->nxttail[i] = tail; 2345 else 2346 break; 2347 } 2348 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2349 rdp->qlen_lazy -= count_lazy; 2350 ACCESS_ONCE(rdp->qlen) -= count; 2351 rdp->n_cbs_invoked += count; 2352 2353 /* Reinstate batch limit if we have worked down the excess. */ 2354 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2355 rdp->blimit = blimit; 2356 2357 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2358 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2359 rdp->qlen_last_fqs_check = 0; 2360 rdp->n_force_qs_snap = rsp->n_force_qs; 2361 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2362 rdp->qlen_last_fqs_check = rdp->qlen; 2363 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2364 2365 local_irq_restore(flags); 2366 2367 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2368 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2369 invoke_rcu_core(); 2370 } 2371 2372 /* 2373 * Check to see if this CPU is in a non-context-switch quiescent state 2374 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2375 * Also schedule RCU core processing. 2376 * 2377 * This function must be called from hardirq context. It is normally 2378 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2379 * false, there is no point in invoking rcu_check_callbacks(). 2380 */ 2381 void rcu_check_callbacks(int cpu, int user) 2382 { 2383 trace_rcu_utilization(TPS("Start scheduler-tick")); 2384 increment_cpu_stall_ticks(); 2385 if (user || rcu_is_cpu_rrupt_from_idle()) { 2386 2387 /* 2388 * Get here if this CPU took its interrupt from user 2389 * mode or from the idle loop, and if this is not a 2390 * nested interrupt. In this case, the CPU is in 2391 * a quiescent state, so note it. 2392 * 2393 * No memory barrier is required here because both 2394 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2395 * variables that other CPUs neither access nor modify, 2396 * at least not while the corresponding CPU is online. 2397 */ 2398 2399 rcu_sched_qs(cpu); 2400 rcu_bh_qs(cpu); 2401 2402 } else if (!in_softirq()) { 2403 2404 /* 2405 * Get here if this CPU did not take its interrupt from 2406 * softirq, in other words, if it is not interrupting 2407 * a rcu_bh read-side critical section. This is an _bh 2408 * critical section, so note it. 2409 */ 2410 2411 rcu_bh_qs(cpu); 2412 } 2413 rcu_preempt_check_callbacks(cpu); 2414 if (rcu_pending(cpu)) 2415 invoke_rcu_core(); 2416 trace_rcu_utilization(TPS("End scheduler-tick")); 2417 } 2418 2419 /* 2420 * Scan the leaf rcu_node structures, processing dyntick state for any that 2421 * have not yet encountered a quiescent state, using the function specified. 2422 * Also initiate boosting for any threads blocked on the root rcu_node. 2423 * 2424 * The caller must have suppressed start of new grace periods. 2425 */ 2426 static void force_qs_rnp(struct rcu_state *rsp, 2427 int (*f)(struct rcu_data *rsp, bool *isidle, 2428 unsigned long *maxj), 2429 bool *isidle, unsigned long *maxj) 2430 { 2431 unsigned long bit; 2432 int cpu; 2433 unsigned long flags; 2434 unsigned long mask; 2435 struct rcu_node *rnp; 2436 2437 rcu_for_each_leaf_node(rsp, rnp) { 2438 cond_resched(); 2439 mask = 0; 2440 raw_spin_lock_irqsave(&rnp->lock, flags); 2441 smp_mb__after_unlock_lock(); 2442 if (!rcu_gp_in_progress(rsp)) { 2443 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2444 return; 2445 } 2446 if (rnp->qsmask == 0) { 2447 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 2448 continue; 2449 } 2450 cpu = rnp->grplo; 2451 bit = 1; 2452 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2453 if ((rnp->qsmask & bit) != 0) { 2454 if ((rnp->qsmaskinit & bit) != 0) 2455 *isidle = 0; 2456 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2457 mask |= bit; 2458 } 2459 } 2460 if (mask != 0) { 2461 2462 /* rcu_report_qs_rnp() releases rnp->lock. */ 2463 rcu_report_qs_rnp(mask, rsp, rnp, flags); 2464 continue; 2465 } 2466 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2467 } 2468 rnp = rcu_get_root(rsp); 2469 if (rnp->qsmask == 0) { 2470 raw_spin_lock_irqsave(&rnp->lock, flags); 2471 smp_mb__after_unlock_lock(); 2472 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ 2473 } 2474 } 2475 2476 /* 2477 * Force quiescent states on reluctant CPUs, and also detect which 2478 * CPUs are in dyntick-idle mode. 2479 */ 2480 static void force_quiescent_state(struct rcu_state *rsp) 2481 { 2482 unsigned long flags; 2483 bool ret; 2484 struct rcu_node *rnp; 2485 struct rcu_node *rnp_old = NULL; 2486 2487 /* Funnel through hierarchy to reduce memory contention. */ 2488 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; 2489 for (; rnp != NULL; rnp = rnp->parent) { 2490 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2491 !raw_spin_trylock(&rnp->fqslock); 2492 if (rnp_old != NULL) 2493 raw_spin_unlock(&rnp_old->fqslock); 2494 if (ret) { 2495 ACCESS_ONCE(rsp->n_force_qs_lh)++; 2496 return; 2497 } 2498 rnp_old = rnp; 2499 } 2500 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2501 2502 /* Reached the root of the rcu_node tree, acquire lock. */ 2503 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2504 smp_mb__after_unlock_lock(); 2505 raw_spin_unlock(&rnp_old->fqslock); 2506 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2507 ACCESS_ONCE(rsp->n_force_qs_lh)++; 2508 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2509 return; /* Someone beat us to it. */ 2510 } 2511 ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS; 2512 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2513 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 2514 } 2515 2516 /* 2517 * This does the RCU core processing work for the specified rcu_state 2518 * and rcu_data structures. This may be called only from the CPU to 2519 * whom the rdp belongs. 2520 */ 2521 static void 2522 __rcu_process_callbacks(struct rcu_state *rsp) 2523 { 2524 unsigned long flags; 2525 bool needwake; 2526 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2527 2528 WARN_ON_ONCE(rdp->beenonline == 0); 2529 2530 /* Update RCU state based on any recent quiescent states. */ 2531 rcu_check_quiescent_state(rsp, rdp); 2532 2533 /* Does this CPU require a not-yet-started grace period? */ 2534 local_irq_save(flags); 2535 if (cpu_needs_another_gp(rsp, rdp)) { 2536 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2537 needwake = rcu_start_gp(rsp); 2538 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2539 if (needwake) 2540 rcu_gp_kthread_wake(rsp); 2541 } else { 2542 local_irq_restore(flags); 2543 } 2544 2545 /* If there are callbacks ready, invoke them. */ 2546 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2547 invoke_rcu_callbacks(rsp, rdp); 2548 2549 /* Do any needed deferred wakeups of rcuo kthreads. */ 2550 do_nocb_deferred_wakeup(rdp); 2551 } 2552 2553 /* 2554 * Do RCU core processing for the current CPU. 2555 */ 2556 static void rcu_process_callbacks(struct softirq_action *unused) 2557 { 2558 struct rcu_state *rsp; 2559 2560 if (cpu_is_offline(smp_processor_id())) 2561 return; 2562 trace_rcu_utilization(TPS("Start RCU core")); 2563 for_each_rcu_flavor(rsp) 2564 __rcu_process_callbacks(rsp); 2565 trace_rcu_utilization(TPS("End RCU core")); 2566 } 2567 2568 /* 2569 * Schedule RCU callback invocation. If the specified type of RCU 2570 * does not support RCU priority boosting, just do a direct call, 2571 * otherwise wake up the per-CPU kernel kthread. Note that because we 2572 * are running on the current CPU with interrupts disabled, the 2573 * rcu_cpu_kthread_task cannot disappear out from under us. 2574 */ 2575 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2576 { 2577 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2578 return; 2579 if (likely(!rsp->boost)) { 2580 rcu_do_batch(rsp, rdp); 2581 return; 2582 } 2583 invoke_rcu_callbacks_kthread(); 2584 } 2585 2586 static void invoke_rcu_core(void) 2587 { 2588 if (cpu_online(smp_processor_id())) 2589 raise_softirq(RCU_SOFTIRQ); 2590 } 2591 2592 /* 2593 * Handle any core-RCU processing required by a call_rcu() invocation. 2594 */ 2595 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2596 struct rcu_head *head, unsigned long flags) 2597 { 2598 bool needwake; 2599 2600 /* 2601 * If called from an extended quiescent state, invoke the RCU 2602 * core in order to force a re-evaluation of RCU's idleness. 2603 */ 2604 if (!rcu_is_watching() && cpu_online(smp_processor_id())) 2605 invoke_rcu_core(); 2606 2607 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2608 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2609 return; 2610 2611 /* 2612 * Force the grace period if too many callbacks or too long waiting. 2613 * Enforce hysteresis, and don't invoke force_quiescent_state() 2614 * if some other CPU has recently done so. Also, don't bother 2615 * invoking force_quiescent_state() if the newly enqueued callback 2616 * is the only one waiting for a grace period to complete. 2617 */ 2618 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2619 2620 /* Are we ignoring a completed grace period? */ 2621 note_gp_changes(rsp, rdp); 2622 2623 /* Start a new grace period if one not already started. */ 2624 if (!rcu_gp_in_progress(rsp)) { 2625 struct rcu_node *rnp_root = rcu_get_root(rsp); 2626 2627 raw_spin_lock(&rnp_root->lock); 2628 smp_mb__after_unlock_lock(); 2629 needwake = rcu_start_gp(rsp); 2630 raw_spin_unlock(&rnp_root->lock); 2631 if (needwake) 2632 rcu_gp_kthread_wake(rsp); 2633 } else { 2634 /* Give the grace period a kick. */ 2635 rdp->blimit = LONG_MAX; 2636 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2637 *rdp->nxttail[RCU_DONE_TAIL] != head) 2638 force_quiescent_state(rsp); 2639 rdp->n_force_qs_snap = rsp->n_force_qs; 2640 rdp->qlen_last_fqs_check = rdp->qlen; 2641 } 2642 } 2643 } 2644 2645 /* 2646 * RCU callback function to leak a callback. 2647 */ 2648 static void rcu_leak_callback(struct rcu_head *rhp) 2649 { 2650 } 2651 2652 /* 2653 * Helper function for call_rcu() and friends. The cpu argument will 2654 * normally be -1, indicating "currently running CPU". It may specify 2655 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2656 * is expected to specify a CPU. 2657 */ 2658 static void 2659 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2660 struct rcu_state *rsp, int cpu, bool lazy) 2661 { 2662 unsigned long flags; 2663 struct rcu_data *rdp; 2664 2665 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ 2666 if (debug_rcu_head_queue(head)) { 2667 /* Probable double call_rcu(), so leak the callback. */ 2668 ACCESS_ONCE(head->func) = rcu_leak_callback; 2669 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2670 return; 2671 } 2672 head->func = func; 2673 head->next = NULL; 2674 2675 /* 2676 * Opportunistically note grace-period endings and beginnings. 2677 * Note that we might see a beginning right after we see an 2678 * end, but never vice versa, since this CPU has to pass through 2679 * a quiescent state betweentimes. 2680 */ 2681 local_irq_save(flags); 2682 rdp = this_cpu_ptr(rsp->rda); 2683 2684 /* Add the callback to our list. */ 2685 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2686 int offline; 2687 2688 if (cpu != -1) 2689 rdp = per_cpu_ptr(rsp->rda, cpu); 2690 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2691 WARN_ON_ONCE(offline); 2692 /* _call_rcu() is illegal on offline CPU; leak the callback. */ 2693 local_irq_restore(flags); 2694 return; 2695 } 2696 ACCESS_ONCE(rdp->qlen)++; 2697 if (lazy) 2698 rdp->qlen_lazy++; 2699 else 2700 rcu_idle_count_callbacks_posted(); 2701 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 2702 *rdp->nxttail[RCU_NEXT_TAIL] = head; 2703 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 2704 2705 if (__is_kfree_rcu_offset((unsigned long)func)) 2706 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2707 rdp->qlen_lazy, rdp->qlen); 2708 else 2709 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 2710 2711 /* Go handle any RCU core processing required. */ 2712 __call_rcu_core(rsp, rdp, head, flags); 2713 local_irq_restore(flags); 2714 } 2715 2716 /* 2717 * Queue an RCU-sched callback for invocation after a grace period. 2718 */ 2719 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2720 { 2721 __call_rcu(head, func, &rcu_sched_state, -1, 0); 2722 } 2723 EXPORT_SYMBOL_GPL(call_rcu_sched); 2724 2725 /* 2726 * Queue an RCU callback for invocation after a quicker grace period. 2727 */ 2728 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2729 { 2730 __call_rcu(head, func, &rcu_bh_state, -1, 0); 2731 } 2732 EXPORT_SYMBOL_GPL(call_rcu_bh); 2733 2734 /* 2735 * Queue an RCU callback for lazy invocation after a grace period. 2736 * This will likely be later named something like "call_rcu_lazy()", 2737 * but this change will require some way of tagging the lazy RCU 2738 * callbacks in the list of pending callbacks. Until then, this 2739 * function may only be called from __kfree_rcu(). 2740 */ 2741 void kfree_call_rcu(struct rcu_head *head, 2742 void (*func)(struct rcu_head *rcu)) 2743 { 2744 __call_rcu(head, func, rcu_state_p, -1, 1); 2745 } 2746 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2747 2748 /* 2749 * Because a context switch is a grace period for RCU-sched and RCU-bh, 2750 * any blocking grace-period wait automatically implies a grace period 2751 * if there is only one CPU online at any point time during execution 2752 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 2753 * occasionally incorrectly indicate that there are multiple CPUs online 2754 * when there was in fact only one the whole time, as this just adds 2755 * some overhead: RCU still operates correctly. 2756 */ 2757 static inline int rcu_blocking_is_gp(void) 2758 { 2759 int ret; 2760 2761 might_sleep(); /* Check for RCU read-side critical section. */ 2762 preempt_disable(); 2763 ret = num_online_cpus() <= 1; 2764 preempt_enable(); 2765 return ret; 2766 } 2767 2768 /** 2769 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 2770 * 2771 * Control will return to the caller some time after a full rcu-sched 2772 * grace period has elapsed, in other words after all currently executing 2773 * rcu-sched read-side critical sections have completed. These read-side 2774 * critical sections are delimited by rcu_read_lock_sched() and 2775 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 2776 * local_irq_disable(), and so on may be used in place of 2777 * rcu_read_lock_sched(). 2778 * 2779 * This means that all preempt_disable code sequences, including NMI and 2780 * non-threaded hardware-interrupt handlers, in progress on entry will 2781 * have completed before this primitive returns. However, this does not 2782 * guarantee that softirq handlers will have completed, since in some 2783 * kernels, these handlers can run in process context, and can block. 2784 * 2785 * Note that this guarantee implies further memory-ordering guarantees. 2786 * On systems with more than one CPU, when synchronize_sched() returns, 2787 * each CPU is guaranteed to have executed a full memory barrier since the 2788 * end of its last RCU-sched read-side critical section whose beginning 2789 * preceded the call to synchronize_sched(). In addition, each CPU having 2790 * an RCU read-side critical section that extends beyond the return from 2791 * synchronize_sched() is guaranteed to have executed a full memory barrier 2792 * after the beginning of synchronize_sched() and before the beginning of 2793 * that RCU read-side critical section. Note that these guarantees include 2794 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2795 * that are executing in the kernel. 2796 * 2797 * Furthermore, if CPU A invoked synchronize_sched(), which returned 2798 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2799 * to have executed a full memory barrier during the execution of 2800 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 2801 * again only if the system has more than one CPU). 2802 * 2803 * This primitive provides the guarantees made by the (now removed) 2804 * synchronize_kernel() API. In contrast, synchronize_rcu() only 2805 * guarantees that rcu_read_lock() sections will have completed. 2806 * In "classic RCU", these two guarantees happen to be one and 2807 * the same, but can differ in realtime RCU implementations. 2808 */ 2809 void synchronize_sched(void) 2810 { 2811 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2812 !lock_is_held(&rcu_lock_map) && 2813 !lock_is_held(&rcu_sched_lock_map), 2814 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 2815 if (rcu_blocking_is_gp()) 2816 return; 2817 if (rcu_expedited) 2818 synchronize_sched_expedited(); 2819 else 2820 wait_rcu_gp(call_rcu_sched); 2821 } 2822 EXPORT_SYMBOL_GPL(synchronize_sched); 2823 2824 /** 2825 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 2826 * 2827 * Control will return to the caller some time after a full rcu_bh grace 2828 * period has elapsed, in other words after all currently executing rcu_bh 2829 * read-side critical sections have completed. RCU read-side critical 2830 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 2831 * and may be nested. 2832 * 2833 * See the description of synchronize_sched() for more detailed information 2834 * on memory ordering guarantees. 2835 */ 2836 void synchronize_rcu_bh(void) 2837 { 2838 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2839 !lock_is_held(&rcu_lock_map) && 2840 !lock_is_held(&rcu_sched_lock_map), 2841 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 2842 if (rcu_blocking_is_gp()) 2843 return; 2844 if (rcu_expedited) 2845 synchronize_rcu_bh_expedited(); 2846 else 2847 wait_rcu_gp(call_rcu_bh); 2848 } 2849 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 2850 2851 /** 2852 * get_state_synchronize_rcu - Snapshot current RCU state 2853 * 2854 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2855 * to determine whether or not a full grace period has elapsed in the 2856 * meantime. 2857 */ 2858 unsigned long get_state_synchronize_rcu(void) 2859 { 2860 /* 2861 * Any prior manipulation of RCU-protected data must happen 2862 * before the load from ->gpnum. 2863 */ 2864 smp_mb(); /* ^^^ */ 2865 2866 /* 2867 * Make sure this load happens before the purportedly 2868 * time-consuming work between get_state_synchronize_rcu() 2869 * and cond_synchronize_rcu(). 2870 */ 2871 return smp_load_acquire(&rcu_state_p->gpnum); 2872 } 2873 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2874 2875 /** 2876 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2877 * 2878 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2879 * 2880 * If a full RCU grace period has elapsed since the earlier call to 2881 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2882 * synchronize_rcu() to wait for a full grace period. 2883 * 2884 * Yes, this function does not take counter wrap into account. But 2885 * counter wrap is harmless. If the counter wraps, we have waited for 2886 * more than 2 billion grace periods (and way more on a 64-bit system!), 2887 * so waiting for one additional grace period should be just fine. 2888 */ 2889 void cond_synchronize_rcu(unsigned long oldstate) 2890 { 2891 unsigned long newstate; 2892 2893 /* 2894 * Ensure that this load happens before any RCU-destructive 2895 * actions the caller might carry out after we return. 2896 */ 2897 newstate = smp_load_acquire(&rcu_state_p->completed); 2898 if (ULONG_CMP_GE(oldstate, newstate)) 2899 synchronize_rcu(); 2900 } 2901 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2902 2903 static int synchronize_sched_expedited_cpu_stop(void *data) 2904 { 2905 /* 2906 * There must be a full memory barrier on each affected CPU 2907 * between the time that try_stop_cpus() is called and the 2908 * time that it returns. 2909 * 2910 * In the current initial implementation of cpu_stop, the 2911 * above condition is already met when the control reaches 2912 * this point and the following smp_mb() is not strictly 2913 * necessary. Do smp_mb() anyway for documentation and 2914 * robustness against future implementation changes. 2915 */ 2916 smp_mb(); /* See above comment block. */ 2917 return 0; 2918 } 2919 2920 /** 2921 * synchronize_sched_expedited - Brute-force RCU-sched grace period 2922 * 2923 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 2924 * approach to force the grace period to end quickly. This consumes 2925 * significant time on all CPUs and is unfriendly to real-time workloads, 2926 * so is thus not recommended for any sort of common-case code. In fact, 2927 * if you are using synchronize_sched_expedited() in a loop, please 2928 * restructure your code to batch your updates, and then use a single 2929 * synchronize_sched() instead. 2930 * 2931 * Note that it is illegal to call this function while holding any lock 2932 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 2933 * to call this function from a CPU-hotplug notifier. Failing to observe 2934 * these restriction will result in deadlock. 2935 * 2936 * This implementation can be thought of as an application of ticket 2937 * locking to RCU, with sync_sched_expedited_started and 2938 * sync_sched_expedited_done taking on the roles of the halves 2939 * of the ticket-lock word. Each task atomically increments 2940 * sync_sched_expedited_started upon entry, snapshotting the old value, 2941 * then attempts to stop all the CPUs. If this succeeds, then each 2942 * CPU will have executed a context switch, resulting in an RCU-sched 2943 * grace period. We are then done, so we use atomic_cmpxchg() to 2944 * update sync_sched_expedited_done to match our snapshot -- but 2945 * only if someone else has not already advanced past our snapshot. 2946 * 2947 * On the other hand, if try_stop_cpus() fails, we check the value 2948 * of sync_sched_expedited_done. If it has advanced past our 2949 * initial snapshot, then someone else must have forced a grace period 2950 * some time after we took our snapshot. In this case, our work is 2951 * done for us, and we can simply return. Otherwise, we try again, 2952 * but keep our initial snapshot for purposes of checking for someone 2953 * doing our work for us. 2954 * 2955 * If we fail too many times in a row, we fall back to synchronize_sched(). 2956 */ 2957 void synchronize_sched_expedited(void) 2958 { 2959 long firstsnap, s, snap; 2960 int trycount = 0; 2961 struct rcu_state *rsp = &rcu_sched_state; 2962 2963 /* 2964 * If we are in danger of counter wrap, just do synchronize_sched(). 2965 * By allowing sync_sched_expedited_started to advance no more than 2966 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 2967 * that more than 3.5 billion CPUs would be required to force a 2968 * counter wrap on a 32-bit system. Quite a few more CPUs would of 2969 * course be required on a 64-bit system. 2970 */ 2971 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 2972 (ulong)atomic_long_read(&rsp->expedited_done) + 2973 ULONG_MAX / 8)) { 2974 synchronize_sched(); 2975 atomic_long_inc(&rsp->expedited_wrap); 2976 return; 2977 } 2978 2979 /* 2980 * Take a ticket. Note that atomic_inc_return() implies a 2981 * full memory barrier. 2982 */ 2983 snap = atomic_long_inc_return(&rsp->expedited_start); 2984 firstsnap = snap; 2985 get_online_cpus(); 2986 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 2987 2988 /* 2989 * Each pass through the following loop attempts to force a 2990 * context switch on each CPU. 2991 */ 2992 while (try_stop_cpus(cpu_online_mask, 2993 synchronize_sched_expedited_cpu_stop, 2994 NULL) == -EAGAIN) { 2995 put_online_cpus(); 2996 atomic_long_inc(&rsp->expedited_tryfail); 2997 2998 /* Check to see if someone else did our work for us. */ 2999 s = atomic_long_read(&rsp->expedited_done); 3000 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3001 /* ensure test happens before caller kfree */ 3002 smp_mb__before_atomic(); /* ^^^ */ 3003 atomic_long_inc(&rsp->expedited_workdone1); 3004 return; 3005 } 3006 3007 /* No joy, try again later. Or just synchronize_sched(). */ 3008 if (trycount++ < 10) { 3009 udelay(trycount * num_online_cpus()); 3010 } else { 3011 wait_rcu_gp(call_rcu_sched); 3012 atomic_long_inc(&rsp->expedited_normal); 3013 return; 3014 } 3015 3016 /* Recheck to see if someone else did our work for us. */ 3017 s = atomic_long_read(&rsp->expedited_done); 3018 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3019 /* ensure test happens before caller kfree */ 3020 smp_mb__before_atomic(); /* ^^^ */ 3021 atomic_long_inc(&rsp->expedited_workdone2); 3022 return; 3023 } 3024 3025 /* 3026 * Refetching sync_sched_expedited_started allows later 3027 * callers to piggyback on our grace period. We retry 3028 * after they started, so our grace period works for them, 3029 * and they started after our first try, so their grace 3030 * period works for us. 3031 */ 3032 get_online_cpus(); 3033 snap = atomic_long_read(&rsp->expedited_start); 3034 smp_mb(); /* ensure read is before try_stop_cpus(). */ 3035 } 3036 atomic_long_inc(&rsp->expedited_stoppedcpus); 3037 3038 /* 3039 * Everyone up to our most recent fetch is covered by our grace 3040 * period. Update the counter, but only if our work is still 3041 * relevant -- which it won't be if someone who started later 3042 * than we did already did their update. 3043 */ 3044 do { 3045 atomic_long_inc(&rsp->expedited_done_tries); 3046 s = atomic_long_read(&rsp->expedited_done); 3047 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 3048 /* ensure test happens before caller kfree */ 3049 smp_mb__before_atomic(); /* ^^^ */ 3050 atomic_long_inc(&rsp->expedited_done_lost); 3051 break; 3052 } 3053 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 3054 atomic_long_inc(&rsp->expedited_done_exit); 3055 3056 put_online_cpus(); 3057 } 3058 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3059 3060 /* 3061 * Check to see if there is any immediate RCU-related work to be done 3062 * by the current CPU, for the specified type of RCU, returning 1 if so. 3063 * The checks are in order of increasing expense: checks that can be 3064 * carried out against CPU-local state are performed first. However, 3065 * we must check for CPU stalls first, else we might not get a chance. 3066 */ 3067 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3068 { 3069 struct rcu_node *rnp = rdp->mynode; 3070 3071 rdp->n_rcu_pending++; 3072 3073 /* Check for CPU stalls, if enabled. */ 3074 check_cpu_stall(rsp, rdp); 3075 3076 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3077 if (rcu_nohz_full_cpu(rsp)) 3078 return 0; 3079 3080 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3081 if (rcu_scheduler_fully_active && 3082 rdp->qs_pending && !rdp->passed_quiesce) { 3083 rdp->n_rp_qs_pending++; 3084 } else if (rdp->qs_pending && rdp->passed_quiesce) { 3085 rdp->n_rp_report_qs++; 3086 return 1; 3087 } 3088 3089 /* Does this CPU have callbacks ready to invoke? */ 3090 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3091 rdp->n_rp_cb_ready++; 3092 return 1; 3093 } 3094 3095 /* Has RCU gone idle with this CPU needing another grace period? */ 3096 if (cpu_needs_another_gp(rsp, rdp)) { 3097 rdp->n_rp_cpu_needs_gp++; 3098 return 1; 3099 } 3100 3101 /* Has another RCU grace period completed? */ 3102 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3103 rdp->n_rp_gp_completed++; 3104 return 1; 3105 } 3106 3107 /* Has a new RCU grace period started? */ 3108 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ 3109 rdp->n_rp_gp_started++; 3110 return 1; 3111 } 3112 3113 /* Does this CPU need a deferred NOCB wakeup? */ 3114 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3115 rdp->n_rp_nocb_defer_wakeup++; 3116 return 1; 3117 } 3118 3119 /* nothing to do */ 3120 rdp->n_rp_need_nothing++; 3121 return 0; 3122 } 3123 3124 /* 3125 * Check to see if there is any immediate RCU-related work to be done 3126 * by the current CPU, returning 1 if so. This function is part of the 3127 * RCU implementation; it is -not- an exported member of the RCU API. 3128 */ 3129 static int rcu_pending(int cpu) 3130 { 3131 struct rcu_state *rsp; 3132 3133 for_each_rcu_flavor(rsp) 3134 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) 3135 return 1; 3136 return 0; 3137 } 3138 3139 /* 3140 * Return true if the specified CPU has any callback. If all_lazy is 3141 * non-NULL, store an indication of whether all callbacks are lazy. 3142 * (If there are no callbacks, all of them are deemed to be lazy.) 3143 */ 3144 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy) 3145 { 3146 bool al = true; 3147 bool hc = false; 3148 struct rcu_data *rdp; 3149 struct rcu_state *rsp; 3150 3151 for_each_rcu_flavor(rsp) { 3152 rdp = per_cpu_ptr(rsp->rda, cpu); 3153 if (!rdp->nxtlist) 3154 continue; 3155 hc = true; 3156 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3157 al = false; 3158 break; 3159 } 3160 } 3161 if (all_lazy) 3162 *all_lazy = al; 3163 return hc; 3164 } 3165 3166 /* 3167 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3168 * the compiler is expected to optimize this away. 3169 */ 3170 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3171 int cpu, unsigned long done) 3172 { 3173 trace_rcu_barrier(rsp->name, s, cpu, 3174 atomic_read(&rsp->barrier_cpu_count), done); 3175 } 3176 3177 /* 3178 * RCU callback function for _rcu_barrier(). If we are last, wake 3179 * up the task executing _rcu_barrier(). 3180 */ 3181 static void rcu_barrier_callback(struct rcu_head *rhp) 3182 { 3183 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3184 struct rcu_state *rsp = rdp->rsp; 3185 3186 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3187 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 3188 complete(&rsp->barrier_completion); 3189 } else { 3190 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 3191 } 3192 } 3193 3194 /* 3195 * Called with preemption disabled, and from cross-cpu IRQ context. 3196 */ 3197 static void rcu_barrier_func(void *type) 3198 { 3199 struct rcu_state *rsp = type; 3200 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3201 3202 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 3203 atomic_inc(&rsp->barrier_cpu_count); 3204 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3205 } 3206 3207 /* 3208 * Orchestrate the specified type of RCU barrier, waiting for all 3209 * RCU callbacks of the specified type to complete. 3210 */ 3211 static void _rcu_barrier(struct rcu_state *rsp) 3212 { 3213 int cpu; 3214 struct rcu_data *rdp; 3215 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 3216 unsigned long snap_done; 3217 3218 _rcu_barrier_trace(rsp, "Begin", -1, snap); 3219 3220 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3221 mutex_lock(&rsp->barrier_mutex); 3222 3223 /* 3224 * Ensure that all prior references, including to ->n_barrier_done, 3225 * are ordered before the _rcu_barrier() machinery. 3226 */ 3227 smp_mb(); /* See above block comment. */ 3228 3229 /* 3230 * Recheck ->n_barrier_done to see if others did our work for us. 3231 * This means checking ->n_barrier_done for an even-to-odd-to-even 3232 * transition. The "if" expression below therefore rounds the old 3233 * value up to the next even number and adds two before comparing. 3234 */ 3235 snap_done = rsp->n_barrier_done; 3236 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 3237 3238 /* 3239 * If the value in snap is odd, we needed to wait for the current 3240 * rcu_barrier() to complete, then wait for the next one, in other 3241 * words, we need the value of snap_done to be three larger than 3242 * the value of snap. On the other hand, if the value in snap is 3243 * even, we only had to wait for the next rcu_barrier() to complete, 3244 * in other words, we need the value of snap_done to be only two 3245 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 3246 * this for us (thank you, Linus!). 3247 */ 3248 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 3249 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 3250 smp_mb(); /* caller's subsequent code after above check. */ 3251 mutex_unlock(&rsp->barrier_mutex); 3252 return; 3253 } 3254 3255 /* 3256 * Increment ->n_barrier_done to avoid duplicate work. Use 3257 * ACCESS_ONCE() to prevent the compiler from speculating 3258 * the increment to precede the early-exit check. 3259 */ 3260 ACCESS_ONCE(rsp->n_barrier_done)++; 3261 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 3262 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 3263 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 3264 3265 /* 3266 * Initialize the count to one rather than to zero in order to 3267 * avoid a too-soon return to zero in case of a short grace period 3268 * (or preemption of this task). Exclude CPU-hotplug operations 3269 * to ensure that no offline CPU has callbacks queued. 3270 */ 3271 init_completion(&rsp->barrier_completion); 3272 atomic_set(&rsp->barrier_cpu_count, 1); 3273 get_online_cpus(); 3274 3275 /* 3276 * Force each CPU with callbacks to register a new callback. 3277 * When that callback is invoked, we will know that all of the 3278 * corresponding CPU's preceding callbacks have been invoked. 3279 */ 3280 for_each_possible_cpu(cpu) { 3281 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3282 continue; 3283 rdp = per_cpu_ptr(rsp->rda, cpu); 3284 if (rcu_is_nocb_cpu(cpu)) { 3285 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3286 rsp->n_barrier_done); 3287 atomic_inc(&rsp->barrier_cpu_count); 3288 __call_rcu(&rdp->barrier_head, rcu_barrier_callback, 3289 rsp, cpu, 0); 3290 } else if (ACCESS_ONCE(rdp->qlen)) { 3291 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3292 rsp->n_barrier_done); 3293 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3294 } else { 3295 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3296 rsp->n_barrier_done); 3297 } 3298 } 3299 put_online_cpus(); 3300 3301 /* 3302 * Now that we have an rcu_barrier_callback() callback on each 3303 * CPU, and thus each counted, remove the initial count. 3304 */ 3305 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3306 complete(&rsp->barrier_completion); 3307 3308 /* Increment ->n_barrier_done to prevent duplicate work. */ 3309 smp_mb(); /* Keep increment after above mechanism. */ 3310 ACCESS_ONCE(rsp->n_barrier_done)++; 3311 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 3312 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 3313 smp_mb(); /* Keep increment before caller's subsequent code. */ 3314 3315 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3316 wait_for_completion(&rsp->barrier_completion); 3317 3318 /* Other rcu_barrier() invocations can now safely proceed. */ 3319 mutex_unlock(&rsp->barrier_mutex); 3320 } 3321 3322 /** 3323 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3324 */ 3325 void rcu_barrier_bh(void) 3326 { 3327 _rcu_barrier(&rcu_bh_state); 3328 } 3329 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3330 3331 /** 3332 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3333 */ 3334 void rcu_barrier_sched(void) 3335 { 3336 _rcu_barrier(&rcu_sched_state); 3337 } 3338 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3339 3340 /* 3341 * Do boot-time initialization of a CPU's per-CPU RCU data. 3342 */ 3343 static void __init 3344 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3345 { 3346 unsigned long flags; 3347 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3348 struct rcu_node *rnp = rcu_get_root(rsp); 3349 3350 /* Set up local state, ensuring consistent view of global state. */ 3351 raw_spin_lock_irqsave(&rnp->lock, flags); 3352 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3353 init_callback_list(rdp); 3354 rdp->qlen_lazy = 0; 3355 ACCESS_ONCE(rdp->qlen) = 0; 3356 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3357 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3358 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3359 rdp->cpu = cpu; 3360 rdp->rsp = rsp; 3361 rcu_boot_init_nocb_percpu_data(rdp); 3362 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3363 } 3364 3365 /* 3366 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3367 * offline event can be happening at a given time. Note also that we 3368 * can accept some slop in the rsp->completed access due to the fact 3369 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3370 */ 3371 static void 3372 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3373 { 3374 unsigned long flags; 3375 unsigned long mask; 3376 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3377 struct rcu_node *rnp = rcu_get_root(rsp); 3378 3379 /* Exclude new grace periods. */ 3380 mutex_lock(&rsp->onoff_mutex); 3381 3382 /* Set up local state, ensuring consistent view of global state. */ 3383 raw_spin_lock_irqsave(&rnp->lock, flags); 3384 rdp->beenonline = 1; /* We have now been online. */ 3385 rdp->qlen_last_fqs_check = 0; 3386 rdp->n_force_qs_snap = rsp->n_force_qs; 3387 rdp->blimit = blimit; 3388 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3389 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3390 rcu_sysidle_init_percpu_data(rdp->dynticks); 3391 atomic_set(&rdp->dynticks->dynticks, 3392 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3393 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3394 3395 /* Add CPU to rcu_node bitmasks. */ 3396 rnp = rdp->mynode; 3397 mask = rdp->grpmask; 3398 do { 3399 /* Exclude any attempts to start a new GP on small systems. */ 3400 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3401 rnp->qsmaskinit |= mask; 3402 mask = rnp->grpmask; 3403 if (rnp == rdp->mynode) { 3404 /* 3405 * If there is a grace period in progress, we will 3406 * set up to wait for it next time we run the 3407 * RCU core code. 3408 */ 3409 rdp->gpnum = rnp->completed; 3410 rdp->completed = rnp->completed; 3411 rdp->passed_quiesce = 0; 3412 rdp->qs_pending = 0; 3413 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3414 } 3415 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 3416 rnp = rnp->parent; 3417 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 3418 local_irq_restore(flags); 3419 3420 mutex_unlock(&rsp->onoff_mutex); 3421 } 3422 3423 static void rcu_prepare_cpu(int cpu) 3424 { 3425 struct rcu_state *rsp; 3426 3427 for_each_rcu_flavor(rsp) 3428 rcu_init_percpu_data(cpu, rsp); 3429 } 3430 3431 /* 3432 * Handle CPU online/offline notification events. 3433 */ 3434 static int rcu_cpu_notify(struct notifier_block *self, 3435 unsigned long action, void *hcpu) 3436 { 3437 long cpu = (long)hcpu; 3438 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3439 struct rcu_node *rnp = rdp->mynode; 3440 struct rcu_state *rsp; 3441 3442 trace_rcu_utilization(TPS("Start CPU hotplug")); 3443 switch (action) { 3444 case CPU_UP_PREPARE: 3445 case CPU_UP_PREPARE_FROZEN: 3446 rcu_prepare_cpu(cpu); 3447 rcu_prepare_kthreads(cpu); 3448 break; 3449 case CPU_ONLINE: 3450 case CPU_DOWN_FAILED: 3451 rcu_boost_kthread_setaffinity(rnp, -1); 3452 break; 3453 case CPU_DOWN_PREPARE: 3454 rcu_boost_kthread_setaffinity(rnp, cpu); 3455 break; 3456 case CPU_DYING: 3457 case CPU_DYING_FROZEN: 3458 for_each_rcu_flavor(rsp) 3459 rcu_cleanup_dying_cpu(rsp); 3460 break; 3461 case CPU_DEAD: 3462 case CPU_DEAD_FROZEN: 3463 case CPU_UP_CANCELED: 3464 case CPU_UP_CANCELED_FROZEN: 3465 for_each_rcu_flavor(rsp) 3466 rcu_cleanup_dead_cpu(cpu, rsp); 3467 break; 3468 default: 3469 break; 3470 } 3471 trace_rcu_utilization(TPS("End CPU hotplug")); 3472 return NOTIFY_OK; 3473 } 3474 3475 static int rcu_pm_notify(struct notifier_block *self, 3476 unsigned long action, void *hcpu) 3477 { 3478 switch (action) { 3479 case PM_HIBERNATION_PREPARE: 3480 case PM_SUSPEND_PREPARE: 3481 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3482 rcu_expedited = 1; 3483 break; 3484 case PM_POST_HIBERNATION: 3485 case PM_POST_SUSPEND: 3486 rcu_expedited = 0; 3487 break; 3488 default: 3489 break; 3490 } 3491 return NOTIFY_OK; 3492 } 3493 3494 /* 3495 * Spawn the kthread that handles this RCU flavor's grace periods. 3496 */ 3497 static int __init rcu_spawn_gp_kthread(void) 3498 { 3499 unsigned long flags; 3500 struct rcu_node *rnp; 3501 struct rcu_state *rsp; 3502 struct task_struct *t; 3503 3504 for_each_rcu_flavor(rsp) { 3505 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); 3506 BUG_ON(IS_ERR(t)); 3507 rnp = rcu_get_root(rsp); 3508 raw_spin_lock_irqsave(&rnp->lock, flags); 3509 rsp->gp_kthread = t; 3510 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3511 rcu_spawn_nocb_kthreads(rsp); 3512 } 3513 return 0; 3514 } 3515 early_initcall(rcu_spawn_gp_kthread); 3516 3517 /* 3518 * This function is invoked towards the end of the scheduler's initialization 3519 * process. Before this is called, the idle task might contain 3520 * RCU read-side critical sections (during which time, this idle 3521 * task is booting the system). After this function is called, the 3522 * idle tasks are prohibited from containing RCU read-side critical 3523 * sections. This function also enables RCU lockdep checking. 3524 */ 3525 void rcu_scheduler_starting(void) 3526 { 3527 WARN_ON(num_online_cpus() != 1); 3528 WARN_ON(nr_context_switches() > 0); 3529 rcu_scheduler_active = 1; 3530 } 3531 3532 /* 3533 * Compute the per-level fanout, either using the exact fanout specified 3534 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3535 */ 3536 #ifdef CONFIG_RCU_FANOUT_EXACT 3537 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3538 { 3539 int i; 3540 3541 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3542 for (i = rcu_num_lvls - 2; i >= 0; i--) 3543 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3544 } 3545 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 3546 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3547 { 3548 int ccur; 3549 int cprv; 3550 int i; 3551 3552 cprv = nr_cpu_ids; 3553 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3554 ccur = rsp->levelcnt[i]; 3555 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3556 cprv = ccur; 3557 } 3558 } 3559 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 3560 3561 /* 3562 * Helper function for rcu_init() that initializes one rcu_state structure. 3563 */ 3564 static void __init rcu_init_one(struct rcu_state *rsp, 3565 struct rcu_data __percpu *rda) 3566 { 3567 static char *buf[] = { "rcu_node_0", 3568 "rcu_node_1", 3569 "rcu_node_2", 3570 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3571 static char *fqs[] = { "rcu_node_fqs_0", 3572 "rcu_node_fqs_1", 3573 "rcu_node_fqs_2", 3574 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3575 static u8 fl_mask = 0x1; 3576 int cpustride = 1; 3577 int i; 3578 int j; 3579 struct rcu_node *rnp; 3580 3581 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3582 3583 /* Silence gcc 4.8 warning about array index out of range. */ 3584 if (rcu_num_lvls > RCU_NUM_LVLS) 3585 panic("rcu_init_one: rcu_num_lvls overflow"); 3586 3587 /* Initialize the level-tracking arrays. */ 3588 3589 for (i = 0; i < rcu_num_lvls; i++) 3590 rsp->levelcnt[i] = num_rcu_lvl[i]; 3591 for (i = 1; i < rcu_num_lvls; i++) 3592 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3593 rcu_init_levelspread(rsp); 3594 rsp->flavor_mask = fl_mask; 3595 fl_mask <<= 1; 3596 3597 /* Initialize the elements themselves, starting from the leaves. */ 3598 3599 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3600 cpustride *= rsp->levelspread[i]; 3601 rnp = rsp->level[i]; 3602 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3603 raw_spin_lock_init(&rnp->lock); 3604 lockdep_set_class_and_name(&rnp->lock, 3605 &rcu_node_class[i], buf[i]); 3606 raw_spin_lock_init(&rnp->fqslock); 3607 lockdep_set_class_and_name(&rnp->fqslock, 3608 &rcu_fqs_class[i], fqs[i]); 3609 rnp->gpnum = rsp->gpnum; 3610 rnp->completed = rsp->completed; 3611 rnp->qsmask = 0; 3612 rnp->qsmaskinit = 0; 3613 rnp->grplo = j * cpustride; 3614 rnp->grphi = (j + 1) * cpustride - 1; 3615 if (rnp->grphi >= nr_cpu_ids) 3616 rnp->grphi = nr_cpu_ids - 1; 3617 if (i == 0) { 3618 rnp->grpnum = 0; 3619 rnp->grpmask = 0; 3620 rnp->parent = NULL; 3621 } else { 3622 rnp->grpnum = j % rsp->levelspread[i - 1]; 3623 rnp->grpmask = 1UL << rnp->grpnum; 3624 rnp->parent = rsp->level[i - 1] + 3625 j / rsp->levelspread[i - 1]; 3626 } 3627 rnp->level = i; 3628 INIT_LIST_HEAD(&rnp->blkd_tasks); 3629 rcu_init_one_nocb(rnp); 3630 } 3631 } 3632 3633 rsp->rda = rda; 3634 init_waitqueue_head(&rsp->gp_wq); 3635 rnp = rsp->level[rcu_num_lvls - 1]; 3636 for_each_possible_cpu(i) { 3637 while (i > rnp->grphi) 3638 rnp++; 3639 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3640 rcu_boot_init_percpu_data(i, rsp); 3641 } 3642 list_add(&rsp->flavors, &rcu_struct_flavors); 3643 } 3644 3645 /* 3646 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3647 * replace the definitions in tree.h because those are needed to size 3648 * the ->node array in the rcu_state structure. 3649 */ 3650 static void __init rcu_init_geometry(void) 3651 { 3652 ulong d; 3653 int i; 3654 int j; 3655 int n = nr_cpu_ids; 3656 int rcu_capacity[MAX_RCU_LVLS + 1]; 3657 3658 /* 3659 * Initialize any unspecified boot parameters. 3660 * The default values of jiffies_till_first_fqs and 3661 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3662 * value, which is a function of HZ, then adding one for each 3663 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3664 */ 3665 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3666 if (jiffies_till_first_fqs == ULONG_MAX) 3667 jiffies_till_first_fqs = d; 3668 if (jiffies_till_next_fqs == ULONG_MAX) 3669 jiffies_till_next_fqs = d; 3670 3671 /* If the compile-time values are accurate, just leave. */ 3672 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 3673 nr_cpu_ids == NR_CPUS) 3674 return; 3675 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 3676 rcu_fanout_leaf, nr_cpu_ids); 3677 3678 /* 3679 * Compute number of nodes that can be handled an rcu_node tree 3680 * with the given number of levels. Setting rcu_capacity[0] makes 3681 * some of the arithmetic easier. 3682 */ 3683 rcu_capacity[0] = 1; 3684 rcu_capacity[1] = rcu_fanout_leaf; 3685 for (i = 2; i <= MAX_RCU_LVLS; i++) 3686 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 3687 3688 /* 3689 * The boot-time rcu_fanout_leaf parameter is only permitted 3690 * to increase the leaf-level fanout, not decrease it. Of course, 3691 * the leaf-level fanout cannot exceed the number of bits in 3692 * the rcu_node masks. Finally, the tree must be able to accommodate 3693 * the configured number of CPUs. Complain and fall back to the 3694 * compile-time values if these limits are exceeded. 3695 */ 3696 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 3697 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 3698 n > rcu_capacity[MAX_RCU_LVLS]) { 3699 WARN_ON(1); 3700 return; 3701 } 3702 3703 /* Calculate the number of rcu_nodes at each level of the tree. */ 3704 for (i = 1; i <= MAX_RCU_LVLS; i++) 3705 if (n <= rcu_capacity[i]) { 3706 for (j = 0; j <= i; j++) 3707 num_rcu_lvl[j] = 3708 DIV_ROUND_UP(n, rcu_capacity[i - j]); 3709 rcu_num_lvls = i; 3710 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 3711 num_rcu_lvl[j] = 0; 3712 break; 3713 } 3714 3715 /* Calculate the total number of rcu_node structures. */ 3716 rcu_num_nodes = 0; 3717 for (i = 0; i <= MAX_RCU_LVLS; i++) 3718 rcu_num_nodes += num_rcu_lvl[i]; 3719 rcu_num_nodes -= n; 3720 } 3721 3722 void __init rcu_init(void) 3723 { 3724 int cpu; 3725 3726 rcu_bootup_announce(); 3727 rcu_init_geometry(); 3728 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 3729 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 3730 __rcu_init_preempt(); 3731 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3732 3733 /* 3734 * We don't need protection against CPU-hotplug here because 3735 * this is called early in boot, before either interrupts 3736 * or the scheduler are operational. 3737 */ 3738 cpu_notifier(rcu_cpu_notify, 0); 3739 pm_notifier(rcu_pm_notify, 0); 3740 for_each_online_cpu(cpu) 3741 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 3742 } 3743 3744 #include "tree_plugin.h" 3745