xref: /openbmc/linux/kernel/rcu/tree.c (revision cf26e043)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include <linux/context_tracking.h>
66 #include "../time/tick-internal.h"
67 
68 #include "tree.h"
69 #include "rcu.h"
70 
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
73 #endif
74 #define MODULE_PARAM_PREFIX "rcutree."
75 
76 /* Data structures. */
77 
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
79 	.gpwrap = true,
80 #ifdef CONFIG_RCU_NOCB_CPU
81 	.cblist.flags = SEGCBLIST_RCU_CORE,
82 #endif
83 };
84 static struct rcu_state rcu_state = {
85 	.level = { &rcu_state.node[0] },
86 	.gp_state = RCU_GP_IDLE,
87 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
88 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
89 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
90 	.name = RCU_NAME,
91 	.abbr = RCU_ABBR,
92 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
95 };
96 
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
104 #endif
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
155 
156 /*
157  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
158  * real-time priority(enabling/disabling) is controlled by
159  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
160  */
161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
162 module_param(kthread_prio, int, 0444);
163 
164 /* Delay in jiffies for grace-period initialization delays, debug only. */
165 
166 static int gp_preinit_delay;
167 module_param(gp_preinit_delay, int, 0444);
168 static int gp_init_delay;
169 module_param(gp_init_delay, int, 0444);
170 static int gp_cleanup_delay;
171 module_param(gp_cleanup_delay, int, 0444);
172 
173 // Add delay to rcu_read_unlock() for strict grace periods.
174 static int rcu_unlock_delay;
175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
176 module_param(rcu_unlock_delay, int, 0444);
177 #endif
178 
179 /*
180  * This rcu parameter is runtime-read-only. It reflects
181  * a minimum allowed number of objects which can be cached
182  * per-CPU. Object size is equal to one page. This value
183  * can be changed at boot time.
184  */
185 static int rcu_min_cached_objs = 5;
186 module_param(rcu_min_cached_objs, int, 0444);
187 
188 // A page shrinker can ask for pages to be freed to make them
189 // available for other parts of the system. This usually happens
190 // under low memory conditions, and in that case we should also
191 // defer page-cache filling for a short time period.
192 //
193 // The default value is 5 seconds, which is long enough to reduce
194 // interference with the shrinker while it asks other systems to
195 // drain their caches.
196 static int rcu_delay_page_cache_fill_msec = 5000;
197 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
198 
199 /* Retrieve RCU kthreads priority for rcutorture */
200 int rcu_get_gp_kthreads_prio(void)
201 {
202 	return kthread_prio;
203 }
204 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
205 
206 /*
207  * Number of grace periods between delays, normalized by the duration of
208  * the delay.  The longer the delay, the more the grace periods between
209  * each delay.  The reason for this normalization is that it means that,
210  * for non-zero delays, the overall slowdown of grace periods is constant
211  * regardless of the duration of the delay.  This arrangement balances
212  * the need for long delays to increase some race probabilities with the
213  * need for fast grace periods to increase other race probabilities.
214  */
215 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
216 
217 /*
218  * Compute the mask of online CPUs for the specified rcu_node structure.
219  * This will not be stable unless the rcu_node structure's ->lock is
220  * held, but the bit corresponding to the current CPU will be stable
221  * in most contexts.
222  */
223 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 {
225 	return READ_ONCE(rnp->qsmaskinitnext);
226 }
227 
228 /*
229  * Is the CPU corresponding to the specified rcu_data structure online
230  * from RCU's perspective?  This perspective is given by that structure's
231  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
232  */
233 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
234 {
235 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
236 }
237 
238 /*
239  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
240  * permit this function to be invoked without holding the root rcu_node
241  * structure's ->lock, but of course results can be subject to change.
242  */
243 static int rcu_gp_in_progress(void)
244 {
245 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
246 }
247 
248 /*
249  * Return the number of callbacks queued on the specified CPU.
250  * Handles both the nocbs and normal cases.
251  */
252 static long rcu_get_n_cbs_cpu(int cpu)
253 {
254 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
255 
256 	if (rcu_segcblist_is_enabled(&rdp->cblist))
257 		return rcu_segcblist_n_cbs(&rdp->cblist);
258 	return 0;
259 }
260 
261 void rcu_softirq_qs(void)
262 {
263 	rcu_qs();
264 	rcu_preempt_deferred_qs(current);
265 	rcu_tasks_qs(current, false);
266 }
267 
268 /*
269  * Reset the current CPU's ->dynticks counter to indicate that the
270  * newly onlined CPU is no longer in an extended quiescent state.
271  * This will either leave the counter unchanged, or increment it
272  * to the next non-quiescent value.
273  *
274  * The non-atomic test/increment sequence works because the upper bits
275  * of the ->dynticks counter are manipulated only by the corresponding CPU,
276  * or when the corresponding CPU is offline.
277  */
278 static void rcu_dynticks_eqs_online(void)
279 {
280 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
281 		return;
282 	ct_state_inc(RCU_DYNTICKS_IDX);
283 }
284 
285 /*
286  * Snapshot the ->dynticks counter with full ordering so as to allow
287  * stable comparison of this counter with past and future snapshots.
288  */
289 static int rcu_dynticks_snap(int cpu)
290 {
291 	smp_mb();  // Fundamental RCU ordering guarantee.
292 	return ct_dynticks_cpu_acquire(cpu);
293 }
294 
295 /*
296  * Return true if the snapshot returned from rcu_dynticks_snap()
297  * indicates that RCU is in an extended quiescent state.
298  */
299 static bool rcu_dynticks_in_eqs(int snap)
300 {
301 	return !(snap & RCU_DYNTICKS_IDX);
302 }
303 
304 /*
305  * Return true if the CPU corresponding to the specified rcu_data
306  * structure has spent some time in an extended quiescent state since
307  * rcu_dynticks_snap() returned the specified snapshot.
308  */
309 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
310 {
311 	return snap != rcu_dynticks_snap(rdp->cpu);
312 }
313 
314 /*
315  * Return true if the referenced integer is zero while the specified
316  * CPU remains within a single extended quiescent state.
317  */
318 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
319 {
320 	int snap;
321 
322 	// If not quiescent, force back to earlier extended quiescent state.
323 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
324 	smp_rmb(); // Order ->dynticks and *vp reads.
325 	if (READ_ONCE(*vp))
326 		return false;  // Non-zero, so report failure;
327 	smp_rmb(); // Order *vp read and ->dynticks re-read.
328 
329 	// If still in the same extended quiescent state, we are good!
330 	return snap == ct_dynticks_cpu(cpu);
331 }
332 
333 /*
334  * Let the RCU core know that this CPU has gone through the scheduler,
335  * which is a quiescent state.  This is called when the need for a
336  * quiescent state is urgent, so we burn an atomic operation and full
337  * memory barriers to let the RCU core know about it, regardless of what
338  * this CPU might (or might not) do in the near future.
339  *
340  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
341  *
342  * The caller must have disabled interrupts and must not be idle.
343  */
344 notrace void rcu_momentary_dyntick_idle(void)
345 {
346 	int seq;
347 
348 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
349 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
350 	/* It is illegal to call this from idle state. */
351 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
352 	rcu_preempt_deferred_qs(current);
353 }
354 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
355 
356 /**
357  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
358  *
359  * If the current CPU is idle and running at a first-level (not nested)
360  * interrupt, or directly, from idle, return true.
361  *
362  * The caller must have at least disabled IRQs.
363  */
364 static int rcu_is_cpu_rrupt_from_idle(void)
365 {
366 	long nesting;
367 
368 	/*
369 	 * Usually called from the tick; but also used from smp_function_call()
370 	 * for expedited grace periods. This latter can result in running from
371 	 * the idle task, instead of an actual IPI.
372 	 */
373 	lockdep_assert_irqs_disabled();
374 
375 	/* Check for counter underflows */
376 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
377 			 "RCU dynticks_nesting counter underflow!");
378 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
379 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
380 
381 	/* Are we at first interrupt nesting level? */
382 	nesting = ct_dynticks_nmi_nesting();
383 	if (nesting > 1)
384 		return false;
385 
386 	/*
387 	 * If we're not in an interrupt, we must be in the idle task!
388 	 */
389 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
390 
391 	/* Does CPU appear to be idle from an RCU standpoint? */
392 	return ct_dynticks_nesting() == 0;
393 }
394 
395 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
396 				// Maximum callbacks per rcu_do_batch ...
397 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
398 static long blimit = DEFAULT_RCU_BLIMIT;
399 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
400 static long qhimark = DEFAULT_RCU_QHIMARK;
401 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
402 static long qlowmark = DEFAULT_RCU_QLOMARK;
403 #define DEFAULT_RCU_QOVLD_MULT 2
404 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
405 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
406 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
407 
408 module_param(blimit, long, 0444);
409 module_param(qhimark, long, 0444);
410 module_param(qlowmark, long, 0444);
411 module_param(qovld, long, 0444);
412 
413 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
414 static ulong jiffies_till_next_fqs = ULONG_MAX;
415 static bool rcu_kick_kthreads;
416 static int rcu_divisor = 7;
417 module_param(rcu_divisor, int, 0644);
418 
419 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
420 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
421 module_param(rcu_resched_ns, long, 0644);
422 
423 /*
424  * How long the grace period must be before we start recruiting
425  * quiescent-state help from rcu_note_context_switch().
426  */
427 static ulong jiffies_till_sched_qs = ULONG_MAX;
428 module_param(jiffies_till_sched_qs, ulong, 0444);
429 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
430 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
431 
432 /*
433  * Make sure that we give the grace-period kthread time to detect any
434  * idle CPUs before taking active measures to force quiescent states.
435  * However, don't go below 100 milliseconds, adjusted upwards for really
436  * large systems.
437  */
438 static void adjust_jiffies_till_sched_qs(void)
439 {
440 	unsigned long j;
441 
442 	/* If jiffies_till_sched_qs was specified, respect the request. */
443 	if (jiffies_till_sched_qs != ULONG_MAX) {
444 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
445 		return;
446 	}
447 	/* Otherwise, set to third fqs scan, but bound below on large system. */
448 	j = READ_ONCE(jiffies_till_first_fqs) +
449 		      2 * READ_ONCE(jiffies_till_next_fqs);
450 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
451 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
452 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
453 	WRITE_ONCE(jiffies_to_sched_qs, j);
454 }
455 
456 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
457 {
458 	ulong j;
459 	int ret = kstrtoul(val, 0, &j);
460 
461 	if (!ret) {
462 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
463 		adjust_jiffies_till_sched_qs();
464 	}
465 	return ret;
466 }
467 
468 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
469 {
470 	ulong j;
471 	int ret = kstrtoul(val, 0, &j);
472 
473 	if (!ret) {
474 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
475 		adjust_jiffies_till_sched_qs();
476 	}
477 	return ret;
478 }
479 
480 static const struct kernel_param_ops first_fqs_jiffies_ops = {
481 	.set = param_set_first_fqs_jiffies,
482 	.get = param_get_ulong,
483 };
484 
485 static const struct kernel_param_ops next_fqs_jiffies_ops = {
486 	.set = param_set_next_fqs_jiffies,
487 	.get = param_get_ulong,
488 };
489 
490 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
491 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
492 module_param(rcu_kick_kthreads, bool, 0644);
493 
494 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
495 static int rcu_pending(int user);
496 
497 /*
498  * Return the number of RCU GPs completed thus far for debug & stats.
499  */
500 unsigned long rcu_get_gp_seq(void)
501 {
502 	return READ_ONCE(rcu_state.gp_seq);
503 }
504 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
505 
506 /*
507  * Return the number of RCU expedited batches completed thus far for
508  * debug & stats.  Odd numbers mean that a batch is in progress, even
509  * numbers mean idle.  The value returned will thus be roughly double
510  * the cumulative batches since boot.
511  */
512 unsigned long rcu_exp_batches_completed(void)
513 {
514 	return rcu_state.expedited_sequence;
515 }
516 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
517 
518 /*
519  * Return the root node of the rcu_state structure.
520  */
521 static struct rcu_node *rcu_get_root(void)
522 {
523 	return &rcu_state.node[0];
524 }
525 
526 /*
527  * Send along grace-period-related data for rcutorture diagnostics.
528  */
529 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
530 			    unsigned long *gp_seq)
531 {
532 	switch (test_type) {
533 	case RCU_FLAVOR:
534 		*flags = READ_ONCE(rcu_state.gp_flags);
535 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
536 		break;
537 	default:
538 		break;
539 	}
540 }
541 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
542 
543 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
544 /*
545  * An empty function that will trigger a reschedule on
546  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
547  */
548 static void late_wakeup_func(struct irq_work *work)
549 {
550 }
551 
552 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
553 	IRQ_WORK_INIT(late_wakeup_func);
554 
555 /*
556  * If either:
557  *
558  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
559  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
560  *
561  * In these cases the late RCU wake ups aren't supported in the resched loops and our
562  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
563  * get re-enabled again.
564  */
565 noinstr void rcu_irq_work_resched(void)
566 {
567 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
568 
569 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
570 		return;
571 
572 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
573 		return;
574 
575 	instrumentation_begin();
576 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
577 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
578 	}
579 	instrumentation_end();
580 }
581 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
582 
583 #ifdef CONFIG_PROVE_RCU
584 /**
585  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
586  */
587 void rcu_irq_exit_check_preempt(void)
588 {
589 	lockdep_assert_irqs_disabled();
590 
591 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
592 			 "RCU dynticks_nesting counter underflow/zero!");
593 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
594 			 DYNTICK_IRQ_NONIDLE,
595 			 "Bad RCU  dynticks_nmi_nesting counter\n");
596 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
597 			 "RCU in extended quiescent state!");
598 }
599 #endif /* #ifdef CONFIG_PROVE_RCU */
600 
601 #ifdef CONFIG_NO_HZ_FULL
602 /**
603  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
604  *
605  * The scheduler tick is not normally enabled when CPUs enter the kernel
606  * from nohz_full userspace execution.  After all, nohz_full userspace
607  * execution is an RCU quiescent state and the time executing in the kernel
608  * is quite short.  Except of course when it isn't.  And it is not hard to
609  * cause a large system to spend tens of seconds or even minutes looping
610  * in the kernel, which can cause a number of problems, include RCU CPU
611  * stall warnings.
612  *
613  * Therefore, if a nohz_full CPU fails to report a quiescent state
614  * in a timely manner, the RCU grace-period kthread sets that CPU's
615  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
616  * exception will invoke this function, which will turn on the scheduler
617  * tick, which will enable RCU to detect that CPU's quiescent states,
618  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
619  * The tick will be disabled once a quiescent state is reported for
620  * this CPU.
621  *
622  * Of course, in carefully tuned systems, there might never be an
623  * interrupt or exception.  In that case, the RCU grace-period kthread
624  * will eventually cause one to happen.  However, in less carefully
625  * controlled environments, this function allows RCU to get what it
626  * needs without creating otherwise useless interruptions.
627  */
628 void __rcu_irq_enter_check_tick(void)
629 {
630 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
631 
632 	// If we're here from NMI there's nothing to do.
633 	if (in_nmi())
634 		return;
635 
636 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
637 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
638 
639 	if (!tick_nohz_full_cpu(rdp->cpu) ||
640 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
641 	    READ_ONCE(rdp->rcu_forced_tick)) {
642 		// RCU doesn't need nohz_full help from this CPU, or it is
643 		// already getting that help.
644 		return;
645 	}
646 
647 	// We get here only when not in an extended quiescent state and
648 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
649 	// already watching and (2) The fact that we are in an interrupt
650 	// handler and that the rcu_node lock is an irq-disabled lock
651 	// prevents self-deadlock.  So we can safely recheck under the lock.
652 	// Note that the nohz_full state currently cannot change.
653 	raw_spin_lock_rcu_node(rdp->mynode);
654 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
655 		// A nohz_full CPU is in the kernel and RCU needs a
656 		// quiescent state.  Turn on the tick!
657 		WRITE_ONCE(rdp->rcu_forced_tick, true);
658 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
659 	}
660 	raw_spin_unlock_rcu_node(rdp->mynode);
661 }
662 #endif /* CONFIG_NO_HZ_FULL */
663 
664 /*
665  * Check to see if any future non-offloaded RCU-related work will need
666  * to be done by the current CPU, even if none need be done immediately,
667  * returning 1 if so.  This function is part of the RCU implementation;
668  * it is -not- an exported member of the RCU API.  This is used by
669  * the idle-entry code to figure out whether it is safe to disable the
670  * scheduler-clock interrupt.
671  *
672  * Just check whether or not this CPU has non-offloaded RCU callbacks
673  * queued.
674  */
675 int rcu_needs_cpu(void)
676 {
677 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
678 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
679 }
680 
681 /*
682  * If any sort of urgency was applied to the current CPU (for example,
683  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
684  * to get to a quiescent state, disable it.
685  */
686 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
687 {
688 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
689 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
690 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
691 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
692 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
693 		WRITE_ONCE(rdp->rcu_forced_tick, false);
694 	}
695 }
696 
697 /**
698  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
699  *
700  * Return true if RCU is watching the running CPU, which means that this
701  * CPU can safely enter RCU read-side critical sections.  In other words,
702  * if the current CPU is not in its idle loop or is in an interrupt or
703  * NMI handler, return true.
704  *
705  * Make notrace because it can be called by the internal functions of
706  * ftrace, and making this notrace removes unnecessary recursion calls.
707  */
708 notrace bool rcu_is_watching(void)
709 {
710 	bool ret;
711 
712 	preempt_disable_notrace();
713 	ret = !rcu_dynticks_curr_cpu_in_eqs();
714 	preempt_enable_notrace();
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(rcu_is_watching);
718 
719 /*
720  * If a holdout task is actually running, request an urgent quiescent
721  * state from its CPU.  This is unsynchronized, so migrations can cause
722  * the request to go to the wrong CPU.  Which is OK, all that will happen
723  * is that the CPU's next context switch will be a bit slower and next
724  * time around this task will generate another request.
725  */
726 void rcu_request_urgent_qs_task(struct task_struct *t)
727 {
728 	int cpu;
729 
730 	barrier();
731 	cpu = task_cpu(t);
732 	if (!task_curr(t))
733 		return; /* This task is not running on that CPU. */
734 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
735 }
736 
737 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
738 
739 /*
740  * Is the current CPU online as far as RCU is concerned?
741  *
742  * Disable preemption to avoid false positives that could otherwise
743  * happen due to the current CPU number being sampled, this task being
744  * preempted, its old CPU being taken offline, resuming on some other CPU,
745  * then determining that its old CPU is now offline.
746  *
747  * Disable checking if in an NMI handler because we cannot safely
748  * report errors from NMI handlers anyway.  In addition, it is OK to use
749  * RCU on an offline processor during initial boot, hence the check for
750  * rcu_scheduler_fully_active.
751  */
752 bool rcu_lockdep_current_cpu_online(void)
753 {
754 	struct rcu_data *rdp;
755 	bool ret = false;
756 
757 	if (in_nmi() || !rcu_scheduler_fully_active)
758 		return true;
759 	preempt_disable_notrace();
760 	rdp = this_cpu_ptr(&rcu_data);
761 	/*
762 	 * Strictly, we care here about the case where the current CPU is
763 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
764 	 * not being up to date. So arch_spin_is_locked() might have a
765 	 * false positive if it's held by some *other* CPU, but that's
766 	 * OK because that just means a false *negative* on the warning.
767 	 */
768 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
769 		ret = true;
770 	preempt_enable_notrace();
771 	return ret;
772 }
773 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
774 
775 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
776 
777 /*
778  * When trying to report a quiescent state on behalf of some other CPU,
779  * it is our responsibility to check for and handle potential overflow
780  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
781  * After all, the CPU might be in deep idle state, and thus executing no
782  * code whatsoever.
783  */
784 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
785 {
786 	raw_lockdep_assert_held_rcu_node(rnp);
787 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
788 			 rnp->gp_seq))
789 		WRITE_ONCE(rdp->gpwrap, true);
790 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
791 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
792 }
793 
794 /*
795  * Snapshot the specified CPU's dynticks counter so that we can later
796  * credit them with an implicit quiescent state.  Return 1 if this CPU
797  * is in dynticks idle mode, which is an extended quiescent state.
798  */
799 static int dyntick_save_progress_counter(struct rcu_data *rdp)
800 {
801 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
802 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
803 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
804 		rcu_gpnum_ovf(rdp->mynode, rdp);
805 		return 1;
806 	}
807 	return 0;
808 }
809 
810 /*
811  * Return true if the specified CPU has passed through a quiescent
812  * state by virtue of being in or having passed through an dynticks
813  * idle state since the last call to dyntick_save_progress_counter()
814  * for this same CPU, or by virtue of having been offline.
815  */
816 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
817 {
818 	unsigned long jtsq;
819 	struct rcu_node *rnp = rdp->mynode;
820 
821 	/*
822 	 * If the CPU passed through or entered a dynticks idle phase with
823 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
824 	 * already acknowledged the request to pass through a quiescent
825 	 * state.  Either way, that CPU cannot possibly be in an RCU
826 	 * read-side critical section that started before the beginning
827 	 * of the current RCU grace period.
828 	 */
829 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
830 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
831 		rcu_gpnum_ovf(rnp, rdp);
832 		return 1;
833 	}
834 
835 	/*
836 	 * Complain if a CPU that is considered to be offline from RCU's
837 	 * perspective has not yet reported a quiescent state.  After all,
838 	 * the offline CPU should have reported a quiescent state during
839 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
840 	 * if it ran concurrently with either the CPU going offline or the
841 	 * last task on a leaf rcu_node structure exiting its RCU read-side
842 	 * critical section while all CPUs corresponding to that structure
843 	 * are offline.  This added warning detects bugs in any of these
844 	 * code paths.
845 	 *
846 	 * The rcu_node structure's ->lock is held here, which excludes
847 	 * the relevant portions the CPU-hotplug code, the grace-period
848 	 * initialization code, and the rcu_read_unlock() code paths.
849 	 *
850 	 * For more detail, please refer to the "Hotplug CPU" section
851 	 * of RCU's Requirements documentation.
852 	 */
853 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
854 		struct rcu_node *rnp1;
855 
856 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
857 			__func__, rnp->grplo, rnp->grphi, rnp->level,
858 			(long)rnp->gp_seq, (long)rnp->completedqs);
859 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
860 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
861 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
862 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
863 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
864 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
865 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
866 		return 1; /* Break things loose after complaining. */
867 	}
868 
869 	/*
870 	 * A CPU running for an extended time within the kernel can
871 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
872 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
873 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
874 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
875 	 * variable are safe because the assignments are repeated if this
876 	 * CPU failed to pass through a quiescent state.  This code
877 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
878 	 * is set way high.
879 	 */
880 	jtsq = READ_ONCE(jiffies_to_sched_qs);
881 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
882 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
883 	     time_after(jiffies, rcu_state.jiffies_resched) ||
884 	     rcu_state.cbovld)) {
885 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
886 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
887 		smp_store_release(&rdp->rcu_urgent_qs, true);
888 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
889 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
890 	}
891 
892 	/*
893 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
894 	 * The above code handles this, but only for straight cond_resched().
895 	 * And some in-kernel loops check need_resched() before calling
896 	 * cond_resched(), which defeats the above code for CPUs that are
897 	 * running in-kernel with scheduling-clock interrupts disabled.
898 	 * So hit them over the head with the resched_cpu() hammer!
899 	 */
900 	if (tick_nohz_full_cpu(rdp->cpu) &&
901 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
902 	     rcu_state.cbovld)) {
903 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
904 		resched_cpu(rdp->cpu);
905 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
906 	}
907 
908 	/*
909 	 * If more than halfway to RCU CPU stall-warning time, invoke
910 	 * resched_cpu() more frequently to try to loosen things up a bit.
911 	 * Also check to see if the CPU is getting hammered with interrupts,
912 	 * but only once per grace period, just to keep the IPIs down to
913 	 * a dull roar.
914 	 */
915 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
916 		if (time_after(jiffies,
917 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
918 			resched_cpu(rdp->cpu);
919 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
920 		}
921 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
922 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
923 		    (rnp->ffmask & rdp->grpmask)) {
924 			rdp->rcu_iw_pending = true;
925 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
926 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
934 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
935 			      unsigned long gp_seq_req, const char *s)
936 {
937 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
938 				      gp_seq_req, rnp->level,
939 				      rnp->grplo, rnp->grphi, s);
940 }
941 
942 /*
943  * rcu_start_this_gp - Request the start of a particular grace period
944  * @rnp_start: The leaf node of the CPU from which to start.
945  * @rdp: The rcu_data corresponding to the CPU from which to start.
946  * @gp_seq_req: The gp_seq of the grace period to start.
947  *
948  * Start the specified grace period, as needed to handle newly arrived
949  * callbacks.  The required future grace periods are recorded in each
950  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
951  * is reason to awaken the grace-period kthread.
952  *
953  * The caller must hold the specified rcu_node structure's ->lock, which
954  * is why the caller is responsible for waking the grace-period kthread.
955  *
956  * Returns true if the GP thread needs to be awakened else false.
957  */
958 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
959 			      unsigned long gp_seq_req)
960 {
961 	bool ret = false;
962 	struct rcu_node *rnp;
963 
964 	/*
965 	 * Use funnel locking to either acquire the root rcu_node
966 	 * structure's lock or bail out if the need for this grace period
967 	 * has already been recorded -- or if that grace period has in
968 	 * fact already started.  If there is already a grace period in
969 	 * progress in a non-leaf node, no recording is needed because the
970 	 * end of the grace period will scan the leaf rcu_node structures.
971 	 * Note that rnp_start->lock must not be released.
972 	 */
973 	raw_lockdep_assert_held_rcu_node(rnp_start);
974 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
975 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
976 		if (rnp != rnp_start)
977 			raw_spin_lock_rcu_node(rnp);
978 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
979 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
980 		    (rnp != rnp_start &&
981 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
982 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
983 					  TPS("Prestarted"));
984 			goto unlock_out;
985 		}
986 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
987 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
988 			/*
989 			 * We just marked the leaf or internal node, and a
990 			 * grace period is in progress, which means that
991 			 * rcu_gp_cleanup() will see the marking.  Bail to
992 			 * reduce contention.
993 			 */
994 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
995 					  TPS("Startedleaf"));
996 			goto unlock_out;
997 		}
998 		if (rnp != rnp_start && rnp->parent != NULL)
999 			raw_spin_unlock_rcu_node(rnp);
1000 		if (!rnp->parent)
1001 			break;  /* At root, and perhaps also leaf. */
1002 	}
1003 
1004 	/* If GP already in progress, just leave, otherwise start one. */
1005 	if (rcu_gp_in_progress()) {
1006 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1007 		goto unlock_out;
1008 	}
1009 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1010 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1011 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1012 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1013 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1014 		goto unlock_out;
1015 	}
1016 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1017 	ret = true;  /* Caller must wake GP kthread. */
1018 unlock_out:
1019 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1020 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1021 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1022 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1023 	}
1024 	if (rnp != rnp_start)
1025 		raw_spin_unlock_rcu_node(rnp);
1026 	return ret;
1027 }
1028 
1029 /*
1030  * Clean up any old requests for the just-ended grace period.  Also return
1031  * whether any additional grace periods have been requested.
1032  */
1033 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1034 {
1035 	bool needmore;
1036 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1037 
1038 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1039 	if (!needmore)
1040 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1041 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1042 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1043 	return needmore;
1044 }
1045 
1046 /*
1047  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1048  * interrupt or softirq handler, in which case we just might immediately
1049  * sleep upon return, resulting in a grace-period hang), and don't bother
1050  * awakening when there is nothing for the grace-period kthread to do
1051  * (as in several CPUs raced to awaken, we lost), and finally don't try
1052  * to awaken a kthread that has not yet been created.  If all those checks
1053  * are passed, track some debug information and awaken.
1054  *
1055  * So why do the self-wakeup when in an interrupt or softirq handler
1056  * in the grace-period kthread's context?  Because the kthread might have
1057  * been interrupted just as it was going to sleep, and just after the final
1058  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1059  * is required, and is therefore supplied.
1060  */
1061 static void rcu_gp_kthread_wake(void)
1062 {
1063 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1064 
1065 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1066 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1067 		return;
1068 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1069 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1070 	swake_up_one(&rcu_state.gp_wq);
1071 }
1072 
1073 /*
1074  * If there is room, assign a ->gp_seq number to any callbacks on this
1075  * CPU that have not already been assigned.  Also accelerate any callbacks
1076  * that were previously assigned a ->gp_seq number that has since proven
1077  * to be too conservative, which can happen if callbacks get assigned a
1078  * ->gp_seq number while RCU is idle, but with reference to a non-root
1079  * rcu_node structure.  This function is idempotent, so it does not hurt
1080  * to call it repeatedly.  Returns an flag saying that we should awaken
1081  * the RCU grace-period kthread.
1082  *
1083  * The caller must hold rnp->lock with interrupts disabled.
1084  */
1085 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1086 {
1087 	unsigned long gp_seq_req;
1088 	bool ret = false;
1089 
1090 	rcu_lockdep_assert_cblist_protected(rdp);
1091 	raw_lockdep_assert_held_rcu_node(rnp);
1092 
1093 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1094 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1095 		return false;
1096 
1097 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1098 
1099 	/*
1100 	 * Callbacks are often registered with incomplete grace-period
1101 	 * information.  Something about the fact that getting exact
1102 	 * information requires acquiring a global lock...  RCU therefore
1103 	 * makes a conservative estimate of the grace period number at which
1104 	 * a given callback will become ready to invoke.	The following
1105 	 * code checks this estimate and improves it when possible, thus
1106 	 * accelerating callback invocation to an earlier grace-period
1107 	 * number.
1108 	 */
1109 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1110 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1111 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1112 
1113 	/* Trace depending on how much we were able to accelerate. */
1114 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1115 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1116 	else
1117 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1118 
1119 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1120 
1121 	return ret;
1122 }
1123 
1124 /*
1125  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1126  * rcu_node structure's ->lock be held.  It consults the cached value
1127  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1128  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1129  * while holding the leaf rcu_node structure's ->lock.
1130  */
1131 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1132 					struct rcu_data *rdp)
1133 {
1134 	unsigned long c;
1135 	bool needwake;
1136 
1137 	rcu_lockdep_assert_cblist_protected(rdp);
1138 	c = rcu_seq_snap(&rcu_state.gp_seq);
1139 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1140 		/* Old request still live, so mark recent callbacks. */
1141 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1142 		return;
1143 	}
1144 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1145 	needwake = rcu_accelerate_cbs(rnp, rdp);
1146 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1147 	if (needwake)
1148 		rcu_gp_kthread_wake();
1149 }
1150 
1151 /*
1152  * Move any callbacks whose grace period has completed to the
1153  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1154  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1155  * sublist.  This function is idempotent, so it does not hurt to
1156  * invoke it repeatedly.  As long as it is not invoked -too- often...
1157  * Returns true if the RCU grace-period kthread needs to be awakened.
1158  *
1159  * The caller must hold rnp->lock with interrupts disabled.
1160  */
1161 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1162 {
1163 	rcu_lockdep_assert_cblist_protected(rdp);
1164 	raw_lockdep_assert_held_rcu_node(rnp);
1165 
1166 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1167 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1168 		return false;
1169 
1170 	/*
1171 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1172 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1173 	 */
1174 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1175 
1176 	/* Classify any remaining callbacks. */
1177 	return rcu_accelerate_cbs(rnp, rdp);
1178 }
1179 
1180 /*
1181  * Move and classify callbacks, but only if doing so won't require
1182  * that the RCU grace-period kthread be awakened.
1183  */
1184 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1185 						  struct rcu_data *rdp)
1186 {
1187 	rcu_lockdep_assert_cblist_protected(rdp);
1188 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1189 		return;
1190 	// The grace period cannot end while we hold the rcu_node lock.
1191 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1192 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1193 	raw_spin_unlock_rcu_node(rnp);
1194 }
1195 
1196 /*
1197  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1198  * quiescent state.  This is intended to be invoked when the CPU notices
1199  * a new grace period.
1200  */
1201 static void rcu_strict_gp_check_qs(void)
1202 {
1203 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1204 		rcu_read_lock();
1205 		rcu_read_unlock();
1206 	}
1207 }
1208 
1209 /*
1210  * Update CPU-local rcu_data state to record the beginnings and ends of
1211  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1212  * structure corresponding to the current CPU, and must have irqs disabled.
1213  * Returns true if the grace-period kthread needs to be awakened.
1214  */
1215 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1216 {
1217 	bool ret = false;
1218 	bool need_qs;
1219 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1220 
1221 	raw_lockdep_assert_held_rcu_node(rnp);
1222 
1223 	if (rdp->gp_seq == rnp->gp_seq)
1224 		return false; /* Nothing to do. */
1225 
1226 	/* Handle the ends of any preceding grace periods first. */
1227 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1228 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1229 		if (!offloaded)
1230 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1231 		rdp->core_needs_qs = false;
1232 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1233 	} else {
1234 		if (!offloaded)
1235 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1236 		if (rdp->core_needs_qs)
1237 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1238 	}
1239 
1240 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1241 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1242 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1243 		/*
1244 		 * If the current grace period is waiting for this CPU,
1245 		 * set up to detect a quiescent state, otherwise don't
1246 		 * go looking for one.
1247 		 */
1248 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1249 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1250 		rdp->cpu_no_qs.b.norm = need_qs;
1251 		rdp->core_needs_qs = need_qs;
1252 		zero_cpu_stall_ticks(rdp);
1253 	}
1254 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1255 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1256 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1257 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1258 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1259 	WRITE_ONCE(rdp->gpwrap, false);
1260 	rcu_gpnum_ovf(rnp, rdp);
1261 	return ret;
1262 }
1263 
1264 static void note_gp_changes(struct rcu_data *rdp)
1265 {
1266 	unsigned long flags;
1267 	bool needwake;
1268 	struct rcu_node *rnp;
1269 
1270 	local_irq_save(flags);
1271 	rnp = rdp->mynode;
1272 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1273 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1274 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1275 		local_irq_restore(flags);
1276 		return;
1277 	}
1278 	needwake = __note_gp_changes(rnp, rdp);
1279 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1280 	rcu_strict_gp_check_qs();
1281 	if (needwake)
1282 		rcu_gp_kthread_wake();
1283 }
1284 
1285 static atomic_t *rcu_gp_slow_suppress;
1286 
1287 /* Register a counter to suppress debugging grace-period delays. */
1288 void rcu_gp_slow_register(atomic_t *rgssp)
1289 {
1290 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1291 
1292 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1293 }
1294 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1295 
1296 /* Unregister a counter, with NULL for not caring which. */
1297 void rcu_gp_slow_unregister(atomic_t *rgssp)
1298 {
1299 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1300 
1301 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1304 
1305 static bool rcu_gp_slow_is_suppressed(void)
1306 {
1307 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1308 
1309 	return rgssp && atomic_read(rgssp);
1310 }
1311 
1312 static void rcu_gp_slow(int delay)
1313 {
1314 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1315 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1316 		schedule_timeout_idle(delay);
1317 }
1318 
1319 static unsigned long sleep_duration;
1320 
1321 /* Allow rcutorture to stall the grace-period kthread. */
1322 void rcu_gp_set_torture_wait(int duration)
1323 {
1324 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1325 		WRITE_ONCE(sleep_duration, duration);
1326 }
1327 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1328 
1329 /* Actually implement the aforementioned wait. */
1330 static void rcu_gp_torture_wait(void)
1331 {
1332 	unsigned long duration;
1333 
1334 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1335 		return;
1336 	duration = xchg(&sleep_duration, 0UL);
1337 	if (duration > 0) {
1338 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1339 		schedule_timeout_idle(duration);
1340 		pr_alert("%s: Wait complete\n", __func__);
1341 	}
1342 }
1343 
1344 /*
1345  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1346  * processing.
1347  */
1348 static void rcu_strict_gp_boundary(void *unused)
1349 {
1350 	invoke_rcu_core();
1351 }
1352 
1353 // Has rcu_init() been invoked?  This is used (for example) to determine
1354 // whether spinlocks may be acquired safely.
1355 static bool rcu_init_invoked(void)
1356 {
1357 	return !!rcu_state.n_online_cpus;
1358 }
1359 
1360 // Make the polled API aware of the beginning of a grace period.
1361 static void rcu_poll_gp_seq_start(unsigned long *snap)
1362 {
1363 	struct rcu_node *rnp = rcu_get_root();
1364 
1365 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1366 		raw_lockdep_assert_held_rcu_node(rnp);
1367 
1368 	// If RCU was idle, note beginning of GP.
1369 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1370 		rcu_seq_start(&rcu_state.gp_seq_polled);
1371 
1372 	// Either way, record current state.
1373 	*snap = rcu_state.gp_seq_polled;
1374 }
1375 
1376 // Make the polled API aware of the end of a grace period.
1377 static void rcu_poll_gp_seq_end(unsigned long *snap)
1378 {
1379 	struct rcu_node *rnp = rcu_get_root();
1380 
1381 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1382 		raw_lockdep_assert_held_rcu_node(rnp);
1383 
1384 	// If the previously noted GP is still in effect, record the
1385 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1386 	// problems.
1387 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1388 		rcu_seq_end(&rcu_state.gp_seq_polled);
1389 		rcu_state.gp_seq_polled_snap = 0;
1390 		rcu_state.gp_seq_polled_exp_snap = 0;
1391 	} else {
1392 		*snap = 0;
1393 	}
1394 }
1395 
1396 // Make the polled API aware of the beginning of a grace period, but
1397 // where caller does not hold the root rcu_node structure's lock.
1398 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1399 {
1400 	unsigned long flags;
1401 	struct rcu_node *rnp = rcu_get_root();
1402 
1403 	if (rcu_init_invoked()) {
1404 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1405 			lockdep_assert_irqs_enabled();
1406 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1407 	}
1408 	rcu_poll_gp_seq_start(snap);
1409 	if (rcu_init_invoked())
1410 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1411 }
1412 
1413 // Make the polled API aware of the end of a grace period, but where
1414 // caller does not hold the root rcu_node structure's lock.
1415 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1416 {
1417 	unsigned long flags;
1418 	struct rcu_node *rnp = rcu_get_root();
1419 
1420 	if (rcu_init_invoked()) {
1421 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1422 			lockdep_assert_irqs_enabled();
1423 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1424 	}
1425 	rcu_poll_gp_seq_end(snap);
1426 	if (rcu_init_invoked())
1427 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428 }
1429 
1430 /*
1431  * Initialize a new grace period.  Return false if no grace period required.
1432  */
1433 static noinline_for_stack bool rcu_gp_init(void)
1434 {
1435 	unsigned long flags;
1436 	unsigned long oldmask;
1437 	unsigned long mask;
1438 	struct rcu_data *rdp;
1439 	struct rcu_node *rnp = rcu_get_root();
1440 
1441 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1442 	raw_spin_lock_irq_rcu_node(rnp);
1443 	if (!READ_ONCE(rcu_state.gp_flags)) {
1444 		/* Spurious wakeup, tell caller to go back to sleep.  */
1445 		raw_spin_unlock_irq_rcu_node(rnp);
1446 		return false;
1447 	}
1448 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1449 
1450 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1451 		/*
1452 		 * Grace period already in progress, don't start another.
1453 		 * Not supposed to be able to happen.
1454 		 */
1455 		raw_spin_unlock_irq_rcu_node(rnp);
1456 		return false;
1457 	}
1458 
1459 	/* Advance to a new grace period and initialize state. */
1460 	record_gp_stall_check_time();
1461 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1462 	rcu_seq_start(&rcu_state.gp_seq);
1463 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1464 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1465 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1466 	raw_spin_unlock_irq_rcu_node(rnp);
1467 
1468 	/*
1469 	 * Apply per-leaf buffered online and offline operations to
1470 	 * the rcu_node tree. Note that this new grace period need not
1471 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1472 	 * offlining path, when combined with checks in this function,
1473 	 * will handle CPUs that are currently going offline or that will
1474 	 * go offline later.  Please also refer to "Hotplug CPU" section
1475 	 * of RCU's Requirements documentation.
1476 	 */
1477 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1478 	/* Exclude CPU hotplug operations. */
1479 	rcu_for_each_leaf_node(rnp) {
1480 		local_irq_save(flags);
1481 		arch_spin_lock(&rcu_state.ofl_lock);
1482 		raw_spin_lock_rcu_node(rnp);
1483 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1484 		    !rnp->wait_blkd_tasks) {
1485 			/* Nothing to do on this leaf rcu_node structure. */
1486 			raw_spin_unlock_rcu_node(rnp);
1487 			arch_spin_unlock(&rcu_state.ofl_lock);
1488 			local_irq_restore(flags);
1489 			continue;
1490 		}
1491 
1492 		/* Record old state, apply changes to ->qsmaskinit field. */
1493 		oldmask = rnp->qsmaskinit;
1494 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1495 
1496 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1497 		if (!oldmask != !rnp->qsmaskinit) {
1498 			if (!oldmask) { /* First online CPU for rcu_node. */
1499 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1500 					rcu_init_new_rnp(rnp);
1501 			} else if (rcu_preempt_has_tasks(rnp)) {
1502 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1503 			} else { /* Last offline CPU and can propagate. */
1504 				rcu_cleanup_dead_rnp(rnp);
1505 			}
1506 		}
1507 
1508 		/*
1509 		 * If all waited-on tasks from prior grace period are
1510 		 * done, and if all this rcu_node structure's CPUs are
1511 		 * still offline, propagate up the rcu_node tree and
1512 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1513 		 * rcu_node structure's CPUs has since come back online,
1514 		 * simply clear ->wait_blkd_tasks.
1515 		 */
1516 		if (rnp->wait_blkd_tasks &&
1517 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1518 			rnp->wait_blkd_tasks = false;
1519 			if (!rnp->qsmaskinit)
1520 				rcu_cleanup_dead_rnp(rnp);
1521 		}
1522 
1523 		raw_spin_unlock_rcu_node(rnp);
1524 		arch_spin_unlock(&rcu_state.ofl_lock);
1525 		local_irq_restore(flags);
1526 	}
1527 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1528 
1529 	/*
1530 	 * Set the quiescent-state-needed bits in all the rcu_node
1531 	 * structures for all currently online CPUs in breadth-first
1532 	 * order, starting from the root rcu_node structure, relying on the
1533 	 * layout of the tree within the rcu_state.node[] array.  Note that
1534 	 * other CPUs will access only the leaves of the hierarchy, thus
1535 	 * seeing that no grace period is in progress, at least until the
1536 	 * corresponding leaf node has been initialized.
1537 	 *
1538 	 * The grace period cannot complete until the initialization
1539 	 * process finishes, because this kthread handles both.
1540 	 */
1541 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1542 	rcu_for_each_node_breadth_first(rnp) {
1543 		rcu_gp_slow(gp_init_delay);
1544 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545 		rdp = this_cpu_ptr(&rcu_data);
1546 		rcu_preempt_check_blocked_tasks(rnp);
1547 		rnp->qsmask = rnp->qsmaskinit;
1548 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1549 		if (rnp == rdp->mynode)
1550 			(void)__note_gp_changes(rnp, rdp);
1551 		rcu_preempt_boost_start_gp(rnp);
1552 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1553 					    rnp->level, rnp->grplo,
1554 					    rnp->grphi, rnp->qsmask);
1555 		/* Quiescent states for tasks on any now-offline CPUs. */
1556 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1557 		rnp->rcu_gp_init_mask = mask;
1558 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1559 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1560 		else
1561 			raw_spin_unlock_irq_rcu_node(rnp);
1562 		cond_resched_tasks_rcu_qs();
1563 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1564 	}
1565 
1566 	// If strict, make all CPUs aware of new grace period.
1567 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1568 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1569 
1570 	return true;
1571 }
1572 
1573 /*
1574  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1575  * time.
1576  */
1577 static bool rcu_gp_fqs_check_wake(int *gfp)
1578 {
1579 	struct rcu_node *rnp = rcu_get_root();
1580 
1581 	// If under overload conditions, force an immediate FQS scan.
1582 	if (*gfp & RCU_GP_FLAG_OVLD)
1583 		return true;
1584 
1585 	// Someone like call_rcu() requested a force-quiescent-state scan.
1586 	*gfp = READ_ONCE(rcu_state.gp_flags);
1587 	if (*gfp & RCU_GP_FLAG_FQS)
1588 		return true;
1589 
1590 	// The current grace period has completed.
1591 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1592 		return true;
1593 
1594 	return false;
1595 }
1596 
1597 /*
1598  * Do one round of quiescent-state forcing.
1599  */
1600 static void rcu_gp_fqs(bool first_time)
1601 {
1602 	struct rcu_node *rnp = rcu_get_root();
1603 
1604 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1606 	if (first_time) {
1607 		/* Collect dyntick-idle snapshots. */
1608 		force_qs_rnp(dyntick_save_progress_counter);
1609 	} else {
1610 		/* Handle dyntick-idle and offline CPUs. */
1611 		force_qs_rnp(rcu_implicit_dynticks_qs);
1612 	}
1613 	/* Clear flag to prevent immediate re-entry. */
1614 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1615 		raw_spin_lock_irq_rcu_node(rnp);
1616 		WRITE_ONCE(rcu_state.gp_flags,
1617 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1618 		raw_spin_unlock_irq_rcu_node(rnp);
1619 	}
1620 }
1621 
1622 /*
1623  * Loop doing repeated quiescent-state forcing until the grace period ends.
1624  */
1625 static noinline_for_stack void rcu_gp_fqs_loop(void)
1626 {
1627 	bool first_gp_fqs = true;
1628 	int gf = 0;
1629 	unsigned long j;
1630 	int ret;
1631 	struct rcu_node *rnp = rcu_get_root();
1632 
1633 	j = READ_ONCE(jiffies_till_first_fqs);
1634 	if (rcu_state.cbovld)
1635 		gf = RCU_GP_FLAG_OVLD;
1636 	ret = 0;
1637 	for (;;) {
1638 		if (rcu_state.cbovld) {
1639 			j = (j + 2) / 3;
1640 			if (j <= 0)
1641 				j = 1;
1642 		}
1643 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1644 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1645 			/*
1646 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1647 			 * update; required for stall checks.
1648 			 */
1649 			smp_wmb();
1650 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1651 				   jiffies + (j ? 3 * j : 2));
1652 		}
1653 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1654 				       TPS("fqswait"));
1655 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1656 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1657 				 rcu_gp_fqs_check_wake(&gf), j);
1658 		rcu_gp_torture_wait();
1659 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1660 		/* Locking provides needed memory barriers. */
1661 		/*
1662 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1663 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1664 		 * is required only for single-node rcu_node trees because readers blocking
1665 		 * the current grace period are queued only on leaf rcu_node structures.
1666 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1667 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1668 		 * the corresponding leaf nodes have passed through their quiescent state.
1669 		 */
1670 		if (!READ_ONCE(rnp->qsmask) &&
1671 		    !rcu_preempt_blocked_readers_cgp(rnp))
1672 			break;
1673 		/* If time for quiescent-state forcing, do it. */
1674 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1675 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1676 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1677 					       TPS("fqsstart"));
1678 			rcu_gp_fqs(first_gp_fqs);
1679 			gf = 0;
1680 			if (first_gp_fqs) {
1681 				first_gp_fqs = false;
1682 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1683 			}
1684 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1685 					       TPS("fqsend"));
1686 			cond_resched_tasks_rcu_qs();
1687 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1688 			ret = 0; /* Force full wait till next FQS. */
1689 			j = READ_ONCE(jiffies_till_next_fqs);
1690 		} else {
1691 			/* Deal with stray signal. */
1692 			cond_resched_tasks_rcu_qs();
1693 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694 			WARN_ON(signal_pending(current));
1695 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1696 					       TPS("fqswaitsig"));
1697 			ret = 1; /* Keep old FQS timing. */
1698 			j = jiffies;
1699 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1700 				j = 1;
1701 			else
1702 				j = rcu_state.jiffies_force_qs - j;
1703 			gf = 0;
1704 		}
1705 	}
1706 }
1707 
1708 /*
1709  * Clean up after the old grace period.
1710  */
1711 static noinline void rcu_gp_cleanup(void)
1712 {
1713 	int cpu;
1714 	bool needgp = false;
1715 	unsigned long gp_duration;
1716 	unsigned long new_gp_seq;
1717 	bool offloaded;
1718 	struct rcu_data *rdp;
1719 	struct rcu_node *rnp = rcu_get_root();
1720 	struct swait_queue_head *sq;
1721 
1722 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1723 	raw_spin_lock_irq_rcu_node(rnp);
1724 	rcu_state.gp_end = jiffies;
1725 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1726 	if (gp_duration > rcu_state.gp_max)
1727 		rcu_state.gp_max = gp_duration;
1728 
1729 	/*
1730 	 * We know the grace period is complete, but to everyone else
1731 	 * it appears to still be ongoing.  But it is also the case
1732 	 * that to everyone else it looks like there is nothing that
1733 	 * they can do to advance the grace period.  It is therefore
1734 	 * safe for us to drop the lock in order to mark the grace
1735 	 * period as completed in all of the rcu_node structures.
1736 	 */
1737 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1738 	raw_spin_unlock_irq_rcu_node(rnp);
1739 
1740 	/*
1741 	 * Propagate new ->gp_seq value to rcu_node structures so that
1742 	 * other CPUs don't have to wait until the start of the next grace
1743 	 * period to process their callbacks.  This also avoids some nasty
1744 	 * RCU grace-period initialization races by forcing the end of
1745 	 * the current grace period to be completely recorded in all of
1746 	 * the rcu_node structures before the beginning of the next grace
1747 	 * period is recorded in any of the rcu_node structures.
1748 	 */
1749 	new_gp_seq = rcu_state.gp_seq;
1750 	rcu_seq_end(&new_gp_seq);
1751 	rcu_for_each_node_breadth_first(rnp) {
1752 		raw_spin_lock_irq_rcu_node(rnp);
1753 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1754 			dump_blkd_tasks(rnp, 10);
1755 		WARN_ON_ONCE(rnp->qsmask);
1756 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1757 		if (!rnp->parent)
1758 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1759 		rdp = this_cpu_ptr(&rcu_data);
1760 		if (rnp == rdp->mynode)
1761 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1762 		/* smp_mb() provided by prior unlock-lock pair. */
1763 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1764 		// Reset overload indication for CPUs no longer overloaded
1765 		if (rcu_is_leaf_node(rnp))
1766 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1767 				rdp = per_cpu_ptr(&rcu_data, cpu);
1768 				check_cb_ovld_locked(rdp, rnp);
1769 			}
1770 		sq = rcu_nocb_gp_get(rnp);
1771 		raw_spin_unlock_irq_rcu_node(rnp);
1772 		rcu_nocb_gp_cleanup(sq);
1773 		cond_resched_tasks_rcu_qs();
1774 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1775 		rcu_gp_slow(gp_cleanup_delay);
1776 	}
1777 	rnp = rcu_get_root();
1778 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1779 
1780 	/* Declare grace period done, trace first to use old GP number. */
1781 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1782 	rcu_seq_end(&rcu_state.gp_seq);
1783 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1784 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1785 	/* Check for GP requests since above loop. */
1786 	rdp = this_cpu_ptr(&rcu_data);
1787 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1788 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1789 				  TPS("CleanupMore"));
1790 		needgp = true;
1791 	}
1792 	/* Advance CBs to reduce false positives below. */
1793 	offloaded = rcu_rdp_is_offloaded(rdp);
1794 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1795 
1796 		// We get here if a grace period was needed (“needgp”)
1797 		// and the above call to rcu_accelerate_cbs() did not set
1798 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1799 		// the need for another grace period).  The purpose
1800 		// of the “offloaded” check is to avoid invoking
1801 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1802 		// hold the ->nocb_lock needed to safely access an offloaded
1803 		// ->cblist.  We do not want to acquire that lock because
1804 		// it can be heavily contended during callback floods.
1805 
1806 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1807 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1808 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1809 	} else {
1810 
1811 		// We get here either if there is no need for an
1812 		// additional grace period or if rcu_accelerate_cbs() has
1813 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1814 		// So all we need to do is to clear all of the other
1815 		// ->gp_flags bits.
1816 
1817 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1818 	}
1819 	raw_spin_unlock_irq_rcu_node(rnp);
1820 
1821 	// If strict, make all CPUs aware of the end of the old grace period.
1822 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1823 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1824 }
1825 
1826 /*
1827  * Body of kthread that handles grace periods.
1828  */
1829 static int __noreturn rcu_gp_kthread(void *unused)
1830 {
1831 	rcu_bind_gp_kthread();
1832 	for (;;) {
1833 
1834 		/* Handle grace-period start. */
1835 		for (;;) {
1836 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1837 					       TPS("reqwait"));
1838 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1839 			swait_event_idle_exclusive(rcu_state.gp_wq,
1840 					 READ_ONCE(rcu_state.gp_flags) &
1841 					 RCU_GP_FLAG_INIT);
1842 			rcu_gp_torture_wait();
1843 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1844 			/* Locking provides needed memory barrier. */
1845 			if (rcu_gp_init())
1846 				break;
1847 			cond_resched_tasks_rcu_qs();
1848 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1849 			WARN_ON(signal_pending(current));
1850 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1851 					       TPS("reqwaitsig"));
1852 		}
1853 
1854 		/* Handle quiescent-state forcing. */
1855 		rcu_gp_fqs_loop();
1856 
1857 		/* Handle grace-period end. */
1858 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1859 		rcu_gp_cleanup();
1860 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1861 	}
1862 }
1863 
1864 /*
1865  * Report a full set of quiescent states to the rcu_state data structure.
1866  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1867  * another grace period is required.  Whether we wake the grace-period
1868  * kthread or it awakens itself for the next round of quiescent-state
1869  * forcing, that kthread will clean up after the just-completed grace
1870  * period.  Note that the caller must hold rnp->lock, which is released
1871  * before return.
1872  */
1873 static void rcu_report_qs_rsp(unsigned long flags)
1874 	__releases(rcu_get_root()->lock)
1875 {
1876 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1877 	WARN_ON_ONCE(!rcu_gp_in_progress());
1878 	WRITE_ONCE(rcu_state.gp_flags,
1879 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1880 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1881 	rcu_gp_kthread_wake();
1882 }
1883 
1884 /*
1885  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1886  * Allows quiescent states for a group of CPUs to be reported at one go
1887  * to the specified rcu_node structure, though all the CPUs in the group
1888  * must be represented by the same rcu_node structure (which need not be a
1889  * leaf rcu_node structure, though it often will be).  The gps parameter
1890  * is the grace-period snapshot, which means that the quiescent states
1891  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1892  * must be held upon entry, and it is released before return.
1893  *
1894  * As a special case, if mask is zero, the bit-already-cleared check is
1895  * disabled.  This allows propagating quiescent state due to resumed tasks
1896  * during grace-period initialization.
1897  */
1898 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1899 			      unsigned long gps, unsigned long flags)
1900 	__releases(rnp->lock)
1901 {
1902 	unsigned long oldmask = 0;
1903 	struct rcu_node *rnp_c;
1904 
1905 	raw_lockdep_assert_held_rcu_node(rnp);
1906 
1907 	/* Walk up the rcu_node hierarchy. */
1908 	for (;;) {
1909 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1910 
1911 			/*
1912 			 * Our bit has already been cleared, or the
1913 			 * relevant grace period is already over, so done.
1914 			 */
1915 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916 			return;
1917 		}
1918 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1919 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1920 			     rcu_preempt_blocked_readers_cgp(rnp));
1921 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1922 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1923 						 mask, rnp->qsmask, rnp->level,
1924 						 rnp->grplo, rnp->grphi,
1925 						 !!rnp->gp_tasks);
1926 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1927 
1928 			/* Other bits still set at this level, so done. */
1929 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1930 			return;
1931 		}
1932 		rnp->completedqs = rnp->gp_seq;
1933 		mask = rnp->grpmask;
1934 		if (rnp->parent == NULL) {
1935 
1936 			/* No more levels.  Exit loop holding root lock. */
1937 
1938 			break;
1939 		}
1940 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941 		rnp_c = rnp;
1942 		rnp = rnp->parent;
1943 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1944 		oldmask = READ_ONCE(rnp_c->qsmask);
1945 	}
1946 
1947 	/*
1948 	 * Get here if we are the last CPU to pass through a quiescent
1949 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1950 	 * to clean up and start the next grace period if one is needed.
1951 	 */
1952 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1953 }
1954 
1955 /*
1956  * Record a quiescent state for all tasks that were previously queued
1957  * on the specified rcu_node structure and that were blocking the current
1958  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1959  * irqs disabled, and this lock is released upon return, but irqs remain
1960  * disabled.
1961  */
1962 static void __maybe_unused
1963 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1964 	__releases(rnp->lock)
1965 {
1966 	unsigned long gps;
1967 	unsigned long mask;
1968 	struct rcu_node *rnp_p;
1969 
1970 	raw_lockdep_assert_held_rcu_node(rnp);
1971 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1972 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1973 	    rnp->qsmask != 0) {
1974 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975 		return;  /* Still need more quiescent states! */
1976 	}
1977 
1978 	rnp->completedqs = rnp->gp_seq;
1979 	rnp_p = rnp->parent;
1980 	if (rnp_p == NULL) {
1981 		/*
1982 		 * Only one rcu_node structure in the tree, so don't
1983 		 * try to report up to its nonexistent parent!
1984 		 */
1985 		rcu_report_qs_rsp(flags);
1986 		return;
1987 	}
1988 
1989 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1990 	gps = rnp->gp_seq;
1991 	mask = rnp->grpmask;
1992 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1993 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1994 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1995 }
1996 
1997 /*
1998  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1999  * structure.  This must be called from the specified CPU.
2000  */
2001 static void
2002 rcu_report_qs_rdp(struct rcu_data *rdp)
2003 {
2004 	unsigned long flags;
2005 	unsigned long mask;
2006 	bool needwake = false;
2007 	bool needacc = false;
2008 	struct rcu_node *rnp;
2009 
2010 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2011 	rnp = rdp->mynode;
2012 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2013 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2014 	    rdp->gpwrap) {
2015 
2016 		/*
2017 		 * The grace period in which this quiescent state was
2018 		 * recorded has ended, so don't report it upwards.
2019 		 * We will instead need a new quiescent state that lies
2020 		 * within the current grace period.
2021 		 */
2022 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2023 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2024 		return;
2025 	}
2026 	mask = rdp->grpmask;
2027 	rdp->core_needs_qs = false;
2028 	if ((rnp->qsmask & mask) == 0) {
2029 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030 	} else {
2031 		/*
2032 		 * This GP can't end until cpu checks in, so all of our
2033 		 * callbacks can be processed during the next GP.
2034 		 *
2035 		 * NOCB kthreads have their own way to deal with that...
2036 		 */
2037 		if (!rcu_rdp_is_offloaded(rdp)) {
2038 			needwake = rcu_accelerate_cbs(rnp, rdp);
2039 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2040 			/*
2041 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2042 			 * if in the middle of a (de-)offloading process.
2043 			 */
2044 			needacc = true;
2045 		}
2046 
2047 		rcu_disable_urgency_upon_qs(rdp);
2048 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2049 		/* ^^^ Released rnp->lock */
2050 		if (needwake)
2051 			rcu_gp_kthread_wake();
2052 
2053 		if (needacc) {
2054 			rcu_nocb_lock_irqsave(rdp, flags);
2055 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2056 			rcu_nocb_unlock_irqrestore(rdp, flags);
2057 		}
2058 	}
2059 }
2060 
2061 /*
2062  * Check to see if there is a new grace period of which this CPU
2063  * is not yet aware, and if so, set up local rcu_data state for it.
2064  * Otherwise, see if this CPU has just passed through its first
2065  * quiescent state for this grace period, and record that fact if so.
2066  */
2067 static void
2068 rcu_check_quiescent_state(struct rcu_data *rdp)
2069 {
2070 	/* Check for grace-period ends and beginnings. */
2071 	note_gp_changes(rdp);
2072 
2073 	/*
2074 	 * Does this CPU still need to do its part for current grace period?
2075 	 * If no, return and let the other CPUs do their part as well.
2076 	 */
2077 	if (!rdp->core_needs_qs)
2078 		return;
2079 
2080 	/*
2081 	 * Was there a quiescent state since the beginning of the grace
2082 	 * period? If no, then exit and wait for the next call.
2083 	 */
2084 	if (rdp->cpu_no_qs.b.norm)
2085 		return;
2086 
2087 	/*
2088 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2089 	 * judge of that).
2090 	 */
2091 	rcu_report_qs_rdp(rdp);
2092 }
2093 
2094 /*
2095  * Near the end of the offline process.  Trace the fact that this CPU
2096  * is going offline.
2097  */
2098 int rcutree_dying_cpu(unsigned int cpu)
2099 {
2100 	bool blkd;
2101 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2102 	struct rcu_node *rnp = rdp->mynode;
2103 
2104 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2105 		return 0;
2106 
2107 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
2108 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2109 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2110 	return 0;
2111 }
2112 
2113 /*
2114  * All CPUs for the specified rcu_node structure have gone offline,
2115  * and all tasks that were preempted within an RCU read-side critical
2116  * section while running on one of those CPUs have since exited their RCU
2117  * read-side critical section.  Some other CPU is reporting this fact with
2118  * the specified rcu_node structure's ->lock held and interrupts disabled.
2119  * This function therefore goes up the tree of rcu_node structures,
2120  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2121  * the leaf rcu_node structure's ->qsmaskinit field has already been
2122  * updated.
2123  *
2124  * This function does check that the specified rcu_node structure has
2125  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2126  * prematurely.  That said, invoking it after the fact will cost you
2127  * a needless lock acquisition.  So once it has done its work, don't
2128  * invoke it again.
2129  */
2130 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2131 {
2132 	long mask;
2133 	struct rcu_node *rnp = rnp_leaf;
2134 
2135 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2136 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2137 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2138 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2139 		return;
2140 	for (;;) {
2141 		mask = rnp->grpmask;
2142 		rnp = rnp->parent;
2143 		if (!rnp)
2144 			break;
2145 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2146 		rnp->qsmaskinit &= ~mask;
2147 		/* Between grace periods, so better already be zero! */
2148 		WARN_ON_ONCE(rnp->qsmask);
2149 		if (rnp->qsmaskinit) {
2150 			raw_spin_unlock_rcu_node(rnp);
2151 			/* irqs remain disabled. */
2152 			return;
2153 		}
2154 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2155 	}
2156 }
2157 
2158 /*
2159  * The CPU has been completely removed, and some other CPU is reporting
2160  * this fact from process context.  Do the remainder of the cleanup.
2161  * There can only be one CPU hotplug operation at a time, so no need for
2162  * explicit locking.
2163  */
2164 int rcutree_dead_cpu(unsigned int cpu)
2165 {
2166 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2167 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2168 
2169 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2170 		return 0;
2171 
2172 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2173 	/* Adjust any no-longer-needed kthreads. */
2174 	rcu_boost_kthread_setaffinity(rnp, -1);
2175 	// Stop-machine done, so allow nohz_full to disable tick.
2176 	tick_dep_clear(TICK_DEP_BIT_RCU);
2177 	return 0;
2178 }
2179 
2180 /*
2181  * Invoke any RCU callbacks that have made it to the end of their grace
2182  * period.  Throttle as specified by rdp->blimit.
2183  */
2184 static void rcu_do_batch(struct rcu_data *rdp)
2185 {
2186 	int div;
2187 	bool __maybe_unused empty;
2188 	unsigned long flags;
2189 	struct rcu_head *rhp;
2190 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2191 	long bl, count = 0;
2192 	long pending, tlimit = 0;
2193 
2194 	/* If no callbacks are ready, just return. */
2195 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2196 		trace_rcu_batch_start(rcu_state.name,
2197 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2198 		trace_rcu_batch_end(rcu_state.name, 0,
2199 				    !rcu_segcblist_empty(&rdp->cblist),
2200 				    need_resched(), is_idle_task(current),
2201 				    rcu_is_callbacks_kthread(rdp));
2202 		return;
2203 	}
2204 
2205 	/*
2206 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2207 	 * races with call_rcu() from interrupt handlers.  Leave the
2208 	 * callback counts, as rcu_barrier() needs to be conservative.
2209 	 */
2210 	rcu_nocb_lock_irqsave(rdp, flags);
2211 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2212 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2213 	div = READ_ONCE(rcu_divisor);
2214 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2215 	bl = max(rdp->blimit, pending >> div);
2216 	if (in_serving_softirq() && unlikely(bl > 100)) {
2217 		long rrn = READ_ONCE(rcu_resched_ns);
2218 
2219 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2220 		tlimit = local_clock() + rrn;
2221 	}
2222 	trace_rcu_batch_start(rcu_state.name,
2223 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2224 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2225 	if (rcu_rdp_is_offloaded(rdp))
2226 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2227 
2228 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2229 	rcu_nocb_unlock_irqrestore(rdp, flags);
2230 
2231 	/* Invoke callbacks. */
2232 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2233 	rhp = rcu_cblist_dequeue(&rcl);
2234 
2235 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2236 		rcu_callback_t f;
2237 
2238 		count++;
2239 		debug_rcu_head_unqueue(rhp);
2240 
2241 		rcu_lock_acquire(&rcu_callback_map);
2242 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2243 
2244 		f = rhp->func;
2245 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2246 		f(rhp);
2247 
2248 		rcu_lock_release(&rcu_callback_map);
2249 
2250 		/*
2251 		 * Stop only if limit reached and CPU has something to do.
2252 		 */
2253 		if (in_serving_softirq()) {
2254 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2255 				break;
2256 			/*
2257 			 * Make sure we don't spend too much time here and deprive other
2258 			 * softirq vectors of CPU cycles.
2259 			 */
2260 			if (unlikely(tlimit)) {
2261 				/* only call local_clock() every 32 callbacks */
2262 				if (likely((count & 31) || local_clock() < tlimit))
2263 					continue;
2264 				/* Exceeded the time limit, so leave. */
2265 				break;
2266 			}
2267 		} else {
2268 			local_bh_enable();
2269 			lockdep_assert_irqs_enabled();
2270 			cond_resched_tasks_rcu_qs();
2271 			lockdep_assert_irqs_enabled();
2272 			local_bh_disable();
2273 		}
2274 	}
2275 
2276 	rcu_nocb_lock_irqsave(rdp, flags);
2277 	rdp->n_cbs_invoked += count;
2278 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2279 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2280 
2281 	/* Update counts and requeue any remaining callbacks. */
2282 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2283 	rcu_segcblist_add_len(&rdp->cblist, -count);
2284 
2285 	/* Reinstate batch limit if we have worked down the excess. */
2286 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2287 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2288 		rdp->blimit = blimit;
2289 
2290 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2291 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2292 		rdp->qlen_last_fqs_check = 0;
2293 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2294 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2295 		rdp->qlen_last_fqs_check = count;
2296 
2297 	/*
2298 	 * The following usually indicates a double call_rcu().  To track
2299 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2300 	 */
2301 	empty = rcu_segcblist_empty(&rdp->cblist);
2302 	WARN_ON_ONCE(count == 0 && !empty);
2303 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2304 		     count != 0 && empty);
2305 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2306 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2307 
2308 	rcu_nocb_unlock_irqrestore(rdp, flags);
2309 
2310 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2311 }
2312 
2313 /*
2314  * This function is invoked from each scheduling-clock interrupt,
2315  * and checks to see if this CPU is in a non-context-switch quiescent
2316  * state, for example, user mode or idle loop.  It also schedules RCU
2317  * core processing.  If the current grace period has gone on too long,
2318  * it will ask the scheduler to manufacture a context switch for the sole
2319  * purpose of providing the needed quiescent state.
2320  */
2321 void rcu_sched_clock_irq(int user)
2322 {
2323 	unsigned long j;
2324 
2325 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2326 		j = jiffies;
2327 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2328 		__this_cpu_write(rcu_data.last_sched_clock, j);
2329 	}
2330 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2331 	lockdep_assert_irqs_disabled();
2332 	raw_cpu_inc(rcu_data.ticks_this_gp);
2333 	/* The load-acquire pairs with the store-release setting to true. */
2334 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2335 		/* Idle and userspace execution already are quiescent states. */
2336 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2337 			set_tsk_need_resched(current);
2338 			set_preempt_need_resched();
2339 		}
2340 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2341 	}
2342 	rcu_flavor_sched_clock_irq(user);
2343 	if (rcu_pending(user))
2344 		invoke_rcu_core();
2345 	if (user || rcu_is_cpu_rrupt_from_idle())
2346 		rcu_note_voluntary_context_switch(current);
2347 	lockdep_assert_irqs_disabled();
2348 
2349 	trace_rcu_utilization(TPS("End scheduler-tick"));
2350 }
2351 
2352 /*
2353  * Scan the leaf rcu_node structures.  For each structure on which all
2354  * CPUs have reported a quiescent state and on which there are tasks
2355  * blocking the current grace period, initiate RCU priority boosting.
2356  * Otherwise, invoke the specified function to check dyntick state for
2357  * each CPU that has not yet reported a quiescent state.
2358  */
2359 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2360 {
2361 	int cpu;
2362 	unsigned long flags;
2363 	unsigned long mask;
2364 	struct rcu_data *rdp;
2365 	struct rcu_node *rnp;
2366 
2367 	rcu_state.cbovld = rcu_state.cbovldnext;
2368 	rcu_state.cbovldnext = false;
2369 	rcu_for_each_leaf_node(rnp) {
2370 		cond_resched_tasks_rcu_qs();
2371 		mask = 0;
2372 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2374 		if (rnp->qsmask == 0) {
2375 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2376 				/*
2377 				 * No point in scanning bits because they
2378 				 * are all zero.  But we might need to
2379 				 * priority-boost blocked readers.
2380 				 */
2381 				rcu_initiate_boost(rnp, flags);
2382 				/* rcu_initiate_boost() releases rnp->lock */
2383 				continue;
2384 			}
2385 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2386 			continue;
2387 		}
2388 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2389 			rdp = per_cpu_ptr(&rcu_data, cpu);
2390 			if (f(rdp)) {
2391 				mask |= rdp->grpmask;
2392 				rcu_disable_urgency_upon_qs(rdp);
2393 			}
2394 		}
2395 		if (mask != 0) {
2396 			/* Idle/offline CPUs, report (releases rnp->lock). */
2397 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2398 		} else {
2399 			/* Nothing to do here, so just drop the lock. */
2400 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2401 		}
2402 	}
2403 }
2404 
2405 /*
2406  * Force quiescent states on reluctant CPUs, and also detect which
2407  * CPUs are in dyntick-idle mode.
2408  */
2409 void rcu_force_quiescent_state(void)
2410 {
2411 	unsigned long flags;
2412 	bool ret;
2413 	struct rcu_node *rnp;
2414 	struct rcu_node *rnp_old = NULL;
2415 
2416 	/* Funnel through hierarchy to reduce memory contention. */
2417 	rnp = raw_cpu_read(rcu_data.mynode);
2418 	for (; rnp != NULL; rnp = rnp->parent) {
2419 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2420 		       !raw_spin_trylock(&rnp->fqslock);
2421 		if (rnp_old != NULL)
2422 			raw_spin_unlock(&rnp_old->fqslock);
2423 		if (ret)
2424 			return;
2425 		rnp_old = rnp;
2426 	}
2427 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2428 
2429 	/* Reached the root of the rcu_node tree, acquire lock. */
2430 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2431 	raw_spin_unlock(&rnp_old->fqslock);
2432 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2433 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2434 		return;  /* Someone beat us to it. */
2435 	}
2436 	WRITE_ONCE(rcu_state.gp_flags,
2437 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2438 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2439 	rcu_gp_kthread_wake();
2440 }
2441 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2442 
2443 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2444 // grace periods.
2445 static void strict_work_handler(struct work_struct *work)
2446 {
2447 	rcu_read_lock();
2448 	rcu_read_unlock();
2449 }
2450 
2451 /* Perform RCU core processing work for the current CPU.  */
2452 static __latent_entropy void rcu_core(void)
2453 {
2454 	unsigned long flags;
2455 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2456 	struct rcu_node *rnp = rdp->mynode;
2457 	/*
2458 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2459 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2460 	 * on this CPU and the below condition must be considered volatile.
2461 	 * However if we race with:
2462 	 *
2463 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2464 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2465 	 *                 call rcu_nocb_lock() if that happens.
2466 	 *
2467 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2468 	 *                 processing. This is fine because the early stage
2469 	 *                 of deoffloading invokes rcu_core() after setting
2470 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2471 	 *                 what could have been dismissed without the need to wait
2472 	 *                 for the next rcu_pending() check in the next jiffy.
2473 	 */
2474 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2475 
2476 	if (cpu_is_offline(smp_processor_id()))
2477 		return;
2478 	trace_rcu_utilization(TPS("Start RCU core"));
2479 	WARN_ON_ONCE(!rdp->beenonline);
2480 
2481 	/* Report any deferred quiescent states if preemption enabled. */
2482 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2483 		rcu_preempt_deferred_qs(current);
2484 	} else if (rcu_preempt_need_deferred_qs(current)) {
2485 		set_tsk_need_resched(current);
2486 		set_preempt_need_resched();
2487 	}
2488 
2489 	/* Update RCU state based on any recent quiescent states. */
2490 	rcu_check_quiescent_state(rdp);
2491 
2492 	/* No grace period and unregistered callbacks? */
2493 	if (!rcu_gp_in_progress() &&
2494 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2495 		rcu_nocb_lock_irqsave(rdp, flags);
2496 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2497 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2498 		rcu_nocb_unlock_irqrestore(rdp, flags);
2499 	}
2500 
2501 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2502 
2503 	/* If there are callbacks ready, invoke them. */
2504 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2505 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2506 		rcu_do_batch(rdp);
2507 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2508 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2509 			invoke_rcu_core();
2510 	}
2511 
2512 	/* Do any needed deferred wakeups of rcuo kthreads. */
2513 	do_nocb_deferred_wakeup(rdp);
2514 	trace_rcu_utilization(TPS("End RCU core"));
2515 
2516 	// If strict GPs, schedule an RCU reader in a clean environment.
2517 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2518 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2519 }
2520 
2521 static void rcu_core_si(struct softirq_action *h)
2522 {
2523 	rcu_core();
2524 }
2525 
2526 static void rcu_wake_cond(struct task_struct *t, int status)
2527 {
2528 	/*
2529 	 * If the thread is yielding, only wake it when this
2530 	 * is invoked from idle
2531 	 */
2532 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2533 		wake_up_process(t);
2534 }
2535 
2536 static void invoke_rcu_core_kthread(void)
2537 {
2538 	struct task_struct *t;
2539 	unsigned long flags;
2540 
2541 	local_irq_save(flags);
2542 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2543 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2544 	if (t != NULL && t != current)
2545 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2546 	local_irq_restore(flags);
2547 }
2548 
2549 /*
2550  * Wake up this CPU's rcuc kthread to do RCU core processing.
2551  */
2552 static void invoke_rcu_core(void)
2553 {
2554 	if (!cpu_online(smp_processor_id()))
2555 		return;
2556 	if (use_softirq)
2557 		raise_softirq(RCU_SOFTIRQ);
2558 	else
2559 		invoke_rcu_core_kthread();
2560 }
2561 
2562 static void rcu_cpu_kthread_park(unsigned int cpu)
2563 {
2564 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2565 }
2566 
2567 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2568 {
2569 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2570 }
2571 
2572 /*
2573  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2574  * the RCU softirq used in configurations of RCU that do not support RCU
2575  * priority boosting.
2576  */
2577 static void rcu_cpu_kthread(unsigned int cpu)
2578 {
2579 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2580 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2581 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2582 	int spincnt;
2583 
2584 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2585 	for (spincnt = 0; spincnt < 10; spincnt++) {
2586 		WRITE_ONCE(*j, jiffies);
2587 		local_bh_disable();
2588 		*statusp = RCU_KTHREAD_RUNNING;
2589 		local_irq_disable();
2590 		work = *workp;
2591 		*workp = 0;
2592 		local_irq_enable();
2593 		if (work)
2594 			rcu_core();
2595 		local_bh_enable();
2596 		if (*workp == 0) {
2597 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2598 			*statusp = RCU_KTHREAD_WAITING;
2599 			return;
2600 		}
2601 	}
2602 	*statusp = RCU_KTHREAD_YIELDING;
2603 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2604 	schedule_timeout_idle(2);
2605 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2606 	*statusp = RCU_KTHREAD_WAITING;
2607 	WRITE_ONCE(*j, jiffies);
2608 }
2609 
2610 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2611 	.store			= &rcu_data.rcu_cpu_kthread_task,
2612 	.thread_should_run	= rcu_cpu_kthread_should_run,
2613 	.thread_fn		= rcu_cpu_kthread,
2614 	.thread_comm		= "rcuc/%u",
2615 	.setup			= rcu_cpu_kthread_setup,
2616 	.park			= rcu_cpu_kthread_park,
2617 };
2618 
2619 /*
2620  * Spawn per-CPU RCU core processing kthreads.
2621  */
2622 static int __init rcu_spawn_core_kthreads(void)
2623 {
2624 	int cpu;
2625 
2626 	for_each_possible_cpu(cpu)
2627 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2628 	if (use_softirq)
2629 		return 0;
2630 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2631 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2632 	return 0;
2633 }
2634 
2635 /*
2636  * Handle any core-RCU processing required by a call_rcu() invocation.
2637  */
2638 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2639 			    unsigned long flags)
2640 {
2641 	/*
2642 	 * If called from an extended quiescent state, invoke the RCU
2643 	 * core in order to force a re-evaluation of RCU's idleness.
2644 	 */
2645 	if (!rcu_is_watching())
2646 		invoke_rcu_core();
2647 
2648 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2649 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2650 		return;
2651 
2652 	/*
2653 	 * Force the grace period if too many callbacks or too long waiting.
2654 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2655 	 * if some other CPU has recently done so.  Also, don't bother
2656 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2657 	 * is the only one waiting for a grace period to complete.
2658 	 */
2659 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2660 		     rdp->qlen_last_fqs_check + qhimark)) {
2661 
2662 		/* Are we ignoring a completed grace period? */
2663 		note_gp_changes(rdp);
2664 
2665 		/* Start a new grace period if one not already started. */
2666 		if (!rcu_gp_in_progress()) {
2667 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2668 		} else {
2669 			/* Give the grace period a kick. */
2670 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2671 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2672 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2673 				rcu_force_quiescent_state();
2674 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2675 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2676 		}
2677 	}
2678 }
2679 
2680 /*
2681  * RCU callback function to leak a callback.
2682  */
2683 static void rcu_leak_callback(struct rcu_head *rhp)
2684 {
2685 }
2686 
2687 /*
2688  * Check and if necessary update the leaf rcu_node structure's
2689  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2690  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2691  * structure's ->lock.
2692  */
2693 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2694 {
2695 	raw_lockdep_assert_held_rcu_node(rnp);
2696 	if (qovld_calc <= 0)
2697 		return; // Early boot and wildcard value set.
2698 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2699 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2700 	else
2701 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2702 }
2703 
2704 /*
2705  * Check and if necessary update the leaf rcu_node structure's
2706  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2707  * number of queued RCU callbacks.  No locks need be held, but the
2708  * caller must have disabled interrupts.
2709  *
2710  * Note that this function ignores the possibility that there are a lot
2711  * of callbacks all of which have already seen the end of their respective
2712  * grace periods.  This omission is due to the need for no-CBs CPUs to
2713  * be holding ->nocb_lock to do this check, which is too heavy for a
2714  * common-case operation.
2715  */
2716 static void check_cb_ovld(struct rcu_data *rdp)
2717 {
2718 	struct rcu_node *const rnp = rdp->mynode;
2719 
2720 	if (qovld_calc <= 0 ||
2721 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2722 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2723 		return; // Early boot wildcard value or already set correctly.
2724 	raw_spin_lock_rcu_node(rnp);
2725 	check_cb_ovld_locked(rdp, rnp);
2726 	raw_spin_unlock_rcu_node(rnp);
2727 }
2728 
2729 static void
2730 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
2731 {
2732 	static atomic_t doublefrees;
2733 	unsigned long flags;
2734 	struct rcu_data *rdp;
2735 	bool was_alldone;
2736 
2737 	/* Misaligned rcu_head! */
2738 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2739 
2740 	if (debug_rcu_head_queue(head)) {
2741 		/*
2742 		 * Probable double call_rcu(), so leak the callback.
2743 		 * Use rcu:rcu_callback trace event to find the previous
2744 		 * time callback was passed to call_rcu().
2745 		 */
2746 		if (atomic_inc_return(&doublefrees) < 4) {
2747 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2748 			mem_dump_obj(head);
2749 		}
2750 		WRITE_ONCE(head->func, rcu_leak_callback);
2751 		return;
2752 	}
2753 	head->func = func;
2754 	head->next = NULL;
2755 	kasan_record_aux_stack_noalloc(head);
2756 	local_irq_save(flags);
2757 	rdp = this_cpu_ptr(&rcu_data);
2758 
2759 	/* Add the callback to our list. */
2760 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2761 		// This can trigger due to call_rcu() from offline CPU:
2762 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2763 		WARN_ON_ONCE(!rcu_is_watching());
2764 		// Very early boot, before rcu_init().  Initialize if needed
2765 		// and then drop through to queue the callback.
2766 		if (rcu_segcblist_empty(&rdp->cblist))
2767 			rcu_segcblist_init(&rdp->cblist);
2768 	}
2769 
2770 	check_cb_ovld(rdp);
2771 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2772 		return; // Enqueued onto ->nocb_bypass, so just leave.
2773 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2774 	rcu_segcblist_enqueue(&rdp->cblist, head);
2775 	if (__is_kvfree_rcu_offset((unsigned long)func))
2776 		trace_rcu_kvfree_callback(rcu_state.name, head,
2777 					 (unsigned long)func,
2778 					 rcu_segcblist_n_cbs(&rdp->cblist));
2779 	else
2780 		trace_rcu_callback(rcu_state.name, head,
2781 				   rcu_segcblist_n_cbs(&rdp->cblist));
2782 
2783 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2784 
2785 	/* Go handle any RCU core processing required. */
2786 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2787 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2788 	} else {
2789 		__call_rcu_core(rdp, head, flags);
2790 		local_irq_restore(flags);
2791 	}
2792 }
2793 
2794 #ifdef CONFIG_RCU_LAZY
2795 /**
2796  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2797  * flush all lazy callbacks (including the new one) to the main ->cblist while
2798  * doing so.
2799  *
2800  * @head: structure to be used for queueing the RCU updates.
2801  * @func: actual callback function to be invoked after the grace period
2802  *
2803  * The callback function will be invoked some time after a full grace
2804  * period elapses, in other words after all pre-existing RCU read-side
2805  * critical sections have completed.
2806  *
2807  * Use this API instead of call_rcu() if you don't want the callback to be
2808  * invoked after very long periods of time, which can happen on systems without
2809  * memory pressure and on systems which are lightly loaded or mostly idle.
2810  * This function will cause callbacks to be invoked sooner than later at the
2811  * expense of extra power. Other than that, this function is identical to, and
2812  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2813  * ordering and other functionality.
2814  */
2815 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2816 {
2817 	return __call_rcu_common(head, func, false);
2818 }
2819 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2820 #endif
2821 
2822 /**
2823  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2824  * By default the callbacks are 'lazy' and are kept hidden from the main
2825  * ->cblist to prevent starting of grace periods too soon.
2826  * If you desire grace periods to start very soon, use call_rcu_hurry().
2827  *
2828  * @head: structure to be used for queueing the RCU updates.
2829  * @func: actual callback function to be invoked after the grace period
2830  *
2831  * The callback function will be invoked some time after a full grace
2832  * period elapses, in other words after all pre-existing RCU read-side
2833  * critical sections have completed.  However, the callback function
2834  * might well execute concurrently with RCU read-side critical sections
2835  * that started after call_rcu() was invoked.
2836  *
2837  * RCU read-side critical sections are delimited by rcu_read_lock()
2838  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2839  * v5.0 and later, regions of code across which interrupts, preemption,
2840  * or softirqs have been disabled also serve as RCU read-side critical
2841  * sections.  This includes hardware interrupt handlers, softirq handlers,
2842  * and NMI handlers.
2843  *
2844  * Note that all CPUs must agree that the grace period extended beyond
2845  * all pre-existing RCU read-side critical section.  On systems with more
2846  * than one CPU, this means that when "func()" is invoked, each CPU is
2847  * guaranteed to have executed a full memory barrier since the end of its
2848  * last RCU read-side critical section whose beginning preceded the call
2849  * to call_rcu().  It also means that each CPU executing an RCU read-side
2850  * critical section that continues beyond the start of "func()" must have
2851  * executed a memory barrier after the call_rcu() but before the beginning
2852  * of that RCU read-side critical section.  Note that these guarantees
2853  * include CPUs that are offline, idle, or executing in user mode, as
2854  * well as CPUs that are executing in the kernel.
2855  *
2856  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2857  * resulting RCU callback function "func()", then both CPU A and CPU B are
2858  * guaranteed to execute a full memory barrier during the time interval
2859  * between the call to call_rcu() and the invocation of "func()" -- even
2860  * if CPU A and CPU B are the same CPU (but again only if the system has
2861  * more than one CPU).
2862  *
2863  * Implementation of these memory-ordering guarantees is described here:
2864  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2865  */
2866 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2867 {
2868 	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2869 }
2870 EXPORT_SYMBOL_GPL(call_rcu);
2871 
2872 /* Maximum number of jiffies to wait before draining a batch. */
2873 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2874 #define KFREE_N_BATCHES 2
2875 #define FREE_N_CHANNELS 2
2876 
2877 /**
2878  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2879  * @nr_records: Number of active pointers in the array
2880  * @next: Next bulk object in the block chain
2881  * @records: Array of the kvfree_rcu() pointers
2882  */
2883 struct kvfree_rcu_bulk_data {
2884 	unsigned long nr_records;
2885 	struct kvfree_rcu_bulk_data *next;
2886 	void *records[];
2887 };
2888 
2889 /*
2890  * This macro defines how many entries the "records" array
2891  * will contain. It is based on the fact that the size of
2892  * kvfree_rcu_bulk_data structure becomes exactly one page.
2893  */
2894 #define KVFREE_BULK_MAX_ENTR \
2895 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2896 
2897 /**
2898  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2899  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2900  * @head_free: List of kfree_rcu() objects waiting for a grace period
2901  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2902  * @krcp: Pointer to @kfree_rcu_cpu structure
2903  */
2904 
2905 struct kfree_rcu_cpu_work {
2906 	struct rcu_work rcu_work;
2907 	struct rcu_head *head_free;
2908 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2909 	struct kfree_rcu_cpu *krcp;
2910 };
2911 
2912 /**
2913  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2914  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2915  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2916  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2917  * @lock: Synchronize access to this structure
2918  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2919  * @initialized: The @rcu_work fields have been initialized
2920  * @count: Number of objects for which GP not started
2921  * @bkvcache:
2922  *	A simple cache list that contains objects for reuse purpose.
2923  *	In order to save some per-cpu space the list is singular.
2924  *	Even though it is lockless an access has to be protected by the
2925  *	per-cpu lock.
2926  * @page_cache_work: A work to refill the cache when it is empty
2927  * @backoff_page_cache_fill: Delay cache refills
2928  * @work_in_progress: Indicates that page_cache_work is running
2929  * @hrtimer: A hrtimer for scheduling a page_cache_work
2930  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2931  *
2932  * This is a per-CPU structure.  The reason that it is not included in
2933  * the rcu_data structure is to permit this code to be extracted from
2934  * the RCU files.  Such extraction could allow further optimization of
2935  * the interactions with the slab allocators.
2936  */
2937 struct kfree_rcu_cpu {
2938 	struct rcu_head *head;
2939 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2940 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2941 	raw_spinlock_t lock;
2942 	struct delayed_work monitor_work;
2943 	bool initialized;
2944 	int count;
2945 
2946 	struct delayed_work page_cache_work;
2947 	atomic_t backoff_page_cache_fill;
2948 	atomic_t work_in_progress;
2949 	struct hrtimer hrtimer;
2950 
2951 	struct llist_head bkvcache;
2952 	int nr_bkv_objs;
2953 };
2954 
2955 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2956 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2957 };
2958 
2959 static __always_inline void
2960 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2961 {
2962 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2963 	int i;
2964 
2965 	for (i = 0; i < bhead->nr_records; i++)
2966 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2967 #endif
2968 }
2969 
2970 static inline struct kfree_rcu_cpu *
2971 krc_this_cpu_lock(unsigned long *flags)
2972 {
2973 	struct kfree_rcu_cpu *krcp;
2974 
2975 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2976 	krcp = this_cpu_ptr(&krc);
2977 	raw_spin_lock(&krcp->lock);
2978 
2979 	return krcp;
2980 }
2981 
2982 static inline void
2983 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2984 {
2985 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2986 }
2987 
2988 static inline struct kvfree_rcu_bulk_data *
2989 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2990 {
2991 	if (!krcp->nr_bkv_objs)
2992 		return NULL;
2993 
2994 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2995 	return (struct kvfree_rcu_bulk_data *)
2996 		llist_del_first(&krcp->bkvcache);
2997 }
2998 
2999 static inline bool
3000 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3001 	struct kvfree_rcu_bulk_data *bnode)
3002 {
3003 	// Check the limit.
3004 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3005 		return false;
3006 
3007 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3008 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3009 	return true;
3010 }
3011 
3012 static int
3013 drain_page_cache(struct kfree_rcu_cpu *krcp)
3014 {
3015 	unsigned long flags;
3016 	struct llist_node *page_list, *pos, *n;
3017 	int freed = 0;
3018 
3019 	raw_spin_lock_irqsave(&krcp->lock, flags);
3020 	page_list = llist_del_all(&krcp->bkvcache);
3021 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3022 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3023 
3024 	llist_for_each_safe(pos, n, page_list) {
3025 		free_page((unsigned long)pos);
3026 		freed++;
3027 	}
3028 
3029 	return freed;
3030 }
3031 
3032 /*
3033  * This function is invoked in workqueue context after a grace period.
3034  * It frees all the objects queued on ->bkvhead_free or ->head_free.
3035  */
3036 static void kfree_rcu_work(struct work_struct *work)
3037 {
3038 	unsigned long flags;
3039 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3040 	struct rcu_head *head, *next;
3041 	struct kfree_rcu_cpu *krcp;
3042 	struct kfree_rcu_cpu_work *krwp;
3043 	int i, j;
3044 
3045 	krwp = container_of(to_rcu_work(work),
3046 			    struct kfree_rcu_cpu_work, rcu_work);
3047 	krcp = krwp->krcp;
3048 
3049 	raw_spin_lock_irqsave(&krcp->lock, flags);
3050 	// Channels 1 and 2.
3051 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3052 		bkvhead[i] = krwp->bkvhead_free[i];
3053 		krwp->bkvhead_free[i] = NULL;
3054 	}
3055 
3056 	// Channel 3.
3057 	head = krwp->head_free;
3058 	krwp->head_free = NULL;
3059 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3060 
3061 	// Handle the first two channels.
3062 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3063 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3064 			bnext = bkvhead[i]->next;
3065 			debug_rcu_bhead_unqueue(bkvhead[i]);
3066 
3067 			rcu_lock_acquire(&rcu_callback_map);
3068 			if (i == 0) { // kmalloc() / kfree().
3069 				trace_rcu_invoke_kfree_bulk_callback(
3070 					rcu_state.name, bkvhead[i]->nr_records,
3071 					bkvhead[i]->records);
3072 
3073 				kfree_bulk(bkvhead[i]->nr_records,
3074 					bkvhead[i]->records);
3075 			} else { // vmalloc() / vfree().
3076 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3077 					trace_rcu_invoke_kvfree_callback(
3078 						rcu_state.name,
3079 						bkvhead[i]->records[j], 0);
3080 
3081 					vfree(bkvhead[i]->records[j]);
3082 				}
3083 			}
3084 			rcu_lock_release(&rcu_callback_map);
3085 
3086 			raw_spin_lock_irqsave(&krcp->lock, flags);
3087 			if (put_cached_bnode(krcp, bkvhead[i]))
3088 				bkvhead[i] = NULL;
3089 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3090 
3091 			if (bkvhead[i])
3092 				free_page((unsigned long) bkvhead[i]);
3093 
3094 			cond_resched_tasks_rcu_qs();
3095 		}
3096 	}
3097 
3098 	/*
3099 	 * This is used when the "bulk" path can not be used for the
3100 	 * double-argument of kvfree_rcu().  This happens when the
3101 	 * page-cache is empty, which means that objects are instead
3102 	 * queued on a linked list through their rcu_head structures.
3103 	 * This list is named "Channel 3".
3104 	 */
3105 	for (; head; head = next) {
3106 		unsigned long offset = (unsigned long)head->func;
3107 		void *ptr = (void *)head - offset;
3108 
3109 		next = head->next;
3110 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3111 		rcu_lock_acquire(&rcu_callback_map);
3112 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3113 
3114 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3115 			kvfree(ptr);
3116 
3117 		rcu_lock_release(&rcu_callback_map);
3118 		cond_resched_tasks_rcu_qs();
3119 	}
3120 }
3121 
3122 static bool
3123 need_offload_krc(struct kfree_rcu_cpu *krcp)
3124 {
3125 	int i;
3126 
3127 	for (i = 0; i < FREE_N_CHANNELS; i++)
3128 		if (krcp->bkvhead[i])
3129 			return true;
3130 
3131 	return !!krcp->head;
3132 }
3133 
3134 static void
3135 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3136 {
3137 	long delay, delay_left;
3138 
3139 	delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3140 	if (delayed_work_pending(&krcp->monitor_work)) {
3141 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3142 		if (delay < delay_left)
3143 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3144 		return;
3145 	}
3146 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3147 }
3148 
3149 /*
3150  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3151  */
3152 static void kfree_rcu_monitor(struct work_struct *work)
3153 {
3154 	struct kfree_rcu_cpu *krcp = container_of(work,
3155 		struct kfree_rcu_cpu, monitor_work.work);
3156 	unsigned long flags;
3157 	int i, j;
3158 
3159 	raw_spin_lock_irqsave(&krcp->lock, flags);
3160 
3161 	// Attempt to start a new batch.
3162 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3163 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3164 
3165 		// Try to detach bkvhead or head and attach it over any
3166 		// available corresponding free channel. It can be that
3167 		// a previous RCU batch is in progress, it means that
3168 		// immediately to queue another one is not possible so
3169 		// in that case the monitor work is rearmed.
3170 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3171 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3172 				(krcp->head && !krwp->head_free)) {
3173 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3174 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3175 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3176 				if (!krwp->bkvhead_free[j]) {
3177 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3178 					krcp->bkvhead[j] = NULL;
3179 				}
3180 			}
3181 
3182 			// Channel 3 corresponds to both SLAB and vmalloc
3183 			// objects queued on the linked list.
3184 			if (!krwp->head_free) {
3185 				krwp->head_free = krcp->head;
3186 				krcp->head = NULL;
3187 			}
3188 
3189 			WRITE_ONCE(krcp->count, 0);
3190 
3191 			// One work is per one batch, so there are three
3192 			// "free channels", the batch can handle. It can
3193 			// be that the work is in the pending state when
3194 			// channels have been detached following by each
3195 			// other.
3196 			queue_rcu_work(system_wq, &krwp->rcu_work);
3197 		}
3198 	}
3199 
3200 	// If there is nothing to detach, it means that our job is
3201 	// successfully done here. In case of having at least one
3202 	// of the channels that is still busy we should rearm the
3203 	// work to repeat an attempt. Because previous batches are
3204 	// still in progress.
3205 	if (need_offload_krc(krcp))
3206 		schedule_delayed_monitor_work(krcp);
3207 
3208 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3209 }
3210 
3211 static enum hrtimer_restart
3212 schedule_page_work_fn(struct hrtimer *t)
3213 {
3214 	struct kfree_rcu_cpu *krcp =
3215 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3216 
3217 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3218 	return HRTIMER_NORESTART;
3219 }
3220 
3221 static void fill_page_cache_func(struct work_struct *work)
3222 {
3223 	struct kvfree_rcu_bulk_data *bnode;
3224 	struct kfree_rcu_cpu *krcp =
3225 		container_of(work, struct kfree_rcu_cpu,
3226 			page_cache_work.work);
3227 	unsigned long flags;
3228 	int nr_pages;
3229 	bool pushed;
3230 	int i;
3231 
3232 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3233 		1 : rcu_min_cached_objs;
3234 
3235 	for (i = 0; i < nr_pages; i++) {
3236 		bnode = (struct kvfree_rcu_bulk_data *)
3237 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3238 
3239 		if (!bnode)
3240 			break;
3241 
3242 		raw_spin_lock_irqsave(&krcp->lock, flags);
3243 		pushed = put_cached_bnode(krcp, bnode);
3244 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3245 
3246 		if (!pushed) {
3247 			free_page((unsigned long) bnode);
3248 			break;
3249 		}
3250 	}
3251 
3252 	atomic_set(&krcp->work_in_progress, 0);
3253 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3254 }
3255 
3256 static void
3257 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3258 {
3259 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3260 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3261 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3262 			queue_delayed_work(system_wq,
3263 				&krcp->page_cache_work,
3264 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3265 		} else {
3266 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3267 			krcp->hrtimer.function = schedule_page_work_fn;
3268 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3269 		}
3270 	}
3271 }
3272 
3273 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3274 // state specified by flags.  If can_alloc is true, the caller must
3275 // be schedulable and not be holding any locks or mutexes that might be
3276 // acquired by the memory allocator or anything that it might invoke.
3277 // Returns true if ptr was successfully recorded, else the caller must
3278 // use a fallback.
3279 static inline bool
3280 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3281 	unsigned long *flags, void *ptr, bool can_alloc)
3282 {
3283 	struct kvfree_rcu_bulk_data *bnode;
3284 	int idx;
3285 
3286 	*krcp = krc_this_cpu_lock(flags);
3287 	if (unlikely(!(*krcp)->initialized))
3288 		return false;
3289 
3290 	idx = !!is_vmalloc_addr(ptr);
3291 
3292 	/* Check if a new block is required. */
3293 	if (!(*krcp)->bkvhead[idx] ||
3294 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3295 		bnode = get_cached_bnode(*krcp);
3296 		if (!bnode && can_alloc) {
3297 			krc_this_cpu_unlock(*krcp, *flags);
3298 
3299 			// __GFP_NORETRY - allows a light-weight direct reclaim
3300 			// what is OK from minimizing of fallback hitting point of
3301 			// view. Apart of that it forbids any OOM invoking what is
3302 			// also beneficial since we are about to release memory soon.
3303 			//
3304 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3305 			// memory reserves. Please note we have a fallback path.
3306 			//
3307 			// __GFP_NOWARN - it is supposed that an allocation can
3308 			// be failed under low memory or high memory pressure
3309 			// scenarios.
3310 			bnode = (struct kvfree_rcu_bulk_data *)
3311 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3312 			*krcp = krc_this_cpu_lock(flags);
3313 		}
3314 
3315 		if (!bnode)
3316 			return false;
3317 
3318 		/* Initialize the new block. */
3319 		bnode->nr_records = 0;
3320 		bnode->next = (*krcp)->bkvhead[idx];
3321 
3322 		/* Attach it to the head. */
3323 		(*krcp)->bkvhead[idx] = bnode;
3324 	}
3325 
3326 	/* Finally insert. */
3327 	(*krcp)->bkvhead[idx]->records
3328 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3329 
3330 	return true;
3331 }
3332 
3333 /*
3334  * Queue a request for lazy invocation of the appropriate free routine
3335  * after a grace period.  Please note that three paths are maintained,
3336  * two for the common case using arrays of pointers and a third one that
3337  * is used only when the main paths cannot be used, for example, due to
3338  * memory pressure.
3339  *
3340  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3341  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3342  * be free'd in workqueue context. This allows us to: batch requests together to
3343  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3344  */
3345 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3346 {
3347 	unsigned long flags;
3348 	struct kfree_rcu_cpu *krcp;
3349 	bool success;
3350 	void *ptr;
3351 
3352 	if (head) {
3353 		ptr = (void *) head - (unsigned long) func;
3354 	} else {
3355 		/*
3356 		 * Please note there is a limitation for the head-less
3357 		 * variant, that is why there is a clear rule for such
3358 		 * objects: it can be used from might_sleep() context
3359 		 * only. For other places please embed an rcu_head to
3360 		 * your data.
3361 		 */
3362 		might_sleep();
3363 		ptr = (unsigned long *) func;
3364 	}
3365 
3366 	// Queue the object but don't yet schedule the batch.
3367 	if (debug_rcu_head_queue(ptr)) {
3368 		// Probable double kfree_rcu(), just leak.
3369 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3370 			  __func__, head);
3371 
3372 		// Mark as success and leave.
3373 		return;
3374 	}
3375 
3376 	kasan_record_aux_stack_noalloc(ptr);
3377 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3378 	if (!success) {
3379 		run_page_cache_worker(krcp);
3380 
3381 		if (head == NULL)
3382 			// Inline if kvfree_rcu(one_arg) call.
3383 			goto unlock_return;
3384 
3385 		head->func = func;
3386 		head->next = krcp->head;
3387 		krcp->head = head;
3388 		success = true;
3389 	}
3390 
3391 	WRITE_ONCE(krcp->count, krcp->count + 1);
3392 
3393 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3394 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3395 		schedule_delayed_monitor_work(krcp);
3396 
3397 unlock_return:
3398 	krc_this_cpu_unlock(krcp, flags);
3399 
3400 	/*
3401 	 * Inline kvfree() after synchronize_rcu(). We can do
3402 	 * it from might_sleep() context only, so the current
3403 	 * CPU can pass the QS state.
3404 	 */
3405 	if (!success) {
3406 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3407 		synchronize_rcu();
3408 		kvfree(ptr);
3409 	}
3410 }
3411 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3412 
3413 static unsigned long
3414 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3415 {
3416 	int cpu;
3417 	unsigned long count = 0;
3418 
3419 	/* Snapshot count of all CPUs */
3420 	for_each_possible_cpu(cpu) {
3421 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3422 
3423 		count += READ_ONCE(krcp->count);
3424 		count += READ_ONCE(krcp->nr_bkv_objs);
3425 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3426 	}
3427 
3428 	return count == 0 ? SHRINK_EMPTY : count;
3429 }
3430 
3431 static unsigned long
3432 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3433 {
3434 	int cpu, freed = 0;
3435 
3436 	for_each_possible_cpu(cpu) {
3437 		int count;
3438 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3439 
3440 		count = krcp->count;
3441 		count += drain_page_cache(krcp);
3442 		kfree_rcu_monitor(&krcp->monitor_work.work);
3443 
3444 		sc->nr_to_scan -= count;
3445 		freed += count;
3446 
3447 		if (sc->nr_to_scan <= 0)
3448 			break;
3449 	}
3450 
3451 	return freed == 0 ? SHRINK_STOP : freed;
3452 }
3453 
3454 static struct shrinker kfree_rcu_shrinker = {
3455 	.count_objects = kfree_rcu_shrink_count,
3456 	.scan_objects = kfree_rcu_shrink_scan,
3457 	.batch = 0,
3458 	.seeks = DEFAULT_SEEKS,
3459 };
3460 
3461 void __init kfree_rcu_scheduler_running(void)
3462 {
3463 	int cpu;
3464 	unsigned long flags;
3465 
3466 	for_each_possible_cpu(cpu) {
3467 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3468 
3469 		raw_spin_lock_irqsave(&krcp->lock, flags);
3470 		if (need_offload_krc(krcp))
3471 			schedule_delayed_monitor_work(krcp);
3472 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473 	}
3474 }
3475 
3476 /*
3477  * During early boot, any blocking grace-period wait automatically
3478  * implies a grace period.
3479  *
3480  * Later on, this could in theory be the case for kernels built with
3481  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3482  * is not a common case.  Furthermore, this optimization would cause
3483  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3484  * grace-period optimization is ignored once the scheduler is running.
3485  */
3486 static int rcu_blocking_is_gp(void)
3487 {
3488 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3489 		return false;
3490 	might_sleep();  /* Check for RCU read-side critical section. */
3491 	return true;
3492 }
3493 
3494 /**
3495  * synchronize_rcu - wait until a grace period has elapsed.
3496  *
3497  * Control will return to the caller some time after a full grace
3498  * period has elapsed, in other words after all currently executing RCU
3499  * read-side critical sections have completed.  Note, however, that
3500  * upon return from synchronize_rcu(), the caller might well be executing
3501  * concurrently with new RCU read-side critical sections that began while
3502  * synchronize_rcu() was waiting.
3503  *
3504  * RCU read-side critical sections are delimited by rcu_read_lock()
3505  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3506  * v5.0 and later, regions of code across which interrupts, preemption,
3507  * or softirqs have been disabled also serve as RCU read-side critical
3508  * sections.  This includes hardware interrupt handlers, softirq handlers,
3509  * and NMI handlers.
3510  *
3511  * Note that this guarantee implies further memory-ordering guarantees.
3512  * On systems with more than one CPU, when synchronize_rcu() returns,
3513  * each CPU is guaranteed to have executed a full memory barrier since
3514  * the end of its last RCU read-side critical section whose beginning
3515  * preceded the call to synchronize_rcu().  In addition, each CPU having
3516  * an RCU read-side critical section that extends beyond the return from
3517  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3518  * after the beginning of synchronize_rcu() and before the beginning of
3519  * that RCU read-side critical section.  Note that these guarantees include
3520  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3521  * that are executing in the kernel.
3522  *
3523  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3524  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3525  * to have executed a full memory barrier during the execution of
3526  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3527  * again only if the system has more than one CPU).
3528  *
3529  * Implementation of these memory-ordering guarantees is described here:
3530  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3531  */
3532 void synchronize_rcu(void)
3533 {
3534 	unsigned long flags;
3535 	struct rcu_node *rnp;
3536 
3537 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3538 			 lock_is_held(&rcu_lock_map) ||
3539 			 lock_is_held(&rcu_sched_lock_map),
3540 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3541 	if (!rcu_blocking_is_gp()) {
3542 		if (rcu_gp_is_expedited())
3543 			synchronize_rcu_expedited();
3544 		else
3545 			wait_rcu_gp(call_rcu_hurry);
3546 		return;
3547 	}
3548 
3549 	// Context allows vacuous grace periods.
3550 	// Note well that this code runs with !PREEMPT && !SMP.
3551 	// In addition, all code that advances grace periods runs at
3552 	// process level.  Therefore, this normal GP overlaps with other
3553 	// normal GPs only by being fully nested within them, which allows
3554 	// reuse of ->gp_seq_polled_snap.
3555 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3556 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3557 
3558 	// Update the normal grace-period counters to record
3559 	// this grace period, but only those used by the boot CPU.
3560 	// The rcu_scheduler_starting() will take care of the rest of
3561 	// these counters.
3562 	local_irq_save(flags);
3563 	WARN_ON_ONCE(num_online_cpus() > 1);
3564 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3565 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3566 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3567 	local_irq_restore(flags);
3568 }
3569 EXPORT_SYMBOL_GPL(synchronize_rcu);
3570 
3571 /**
3572  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3573  * @rgosp: Place to put state cookie
3574  *
3575  * Stores into @rgosp a value that will always be treated by functions
3576  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3577  * has already completed.
3578  */
3579 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3580 {
3581 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3582 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3583 }
3584 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3585 
3586 /**
3587  * get_state_synchronize_rcu - Snapshot current RCU state
3588  *
3589  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3590  * or poll_state_synchronize_rcu() to determine whether or not a full
3591  * grace period has elapsed in the meantime.
3592  */
3593 unsigned long get_state_synchronize_rcu(void)
3594 {
3595 	/*
3596 	 * Any prior manipulation of RCU-protected data must happen
3597 	 * before the load from ->gp_seq.
3598 	 */
3599 	smp_mb();  /* ^^^ */
3600 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3601 }
3602 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3603 
3604 /**
3605  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3606  * @rgosp: location to place combined normal/expedited grace-period state
3607  *
3608  * Places the normal and expedited grace-period states in @rgosp.  This
3609  * state value can be passed to a later call to cond_synchronize_rcu_full()
3610  * or poll_state_synchronize_rcu_full() to determine whether or not a
3611  * grace period (whether normal or expedited) has elapsed in the meantime.
3612  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3613  * long, but is guaranteed to see all grace periods.  In contrast, the
3614  * combined state occupies less memory, but can sometimes fail to take
3615  * grace periods into account.
3616  *
3617  * This does not guarantee that the needed grace period will actually
3618  * start.
3619  */
3620 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3621 {
3622 	struct rcu_node *rnp = rcu_get_root();
3623 
3624 	/*
3625 	 * Any prior manipulation of RCU-protected data must happen
3626 	 * before the loads from ->gp_seq and ->expedited_sequence.
3627 	 */
3628 	smp_mb();  /* ^^^ */
3629 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3630 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3631 }
3632 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3633 
3634 /*
3635  * Helper function for start_poll_synchronize_rcu() and
3636  * start_poll_synchronize_rcu_full().
3637  */
3638 static void start_poll_synchronize_rcu_common(void)
3639 {
3640 	unsigned long flags;
3641 	bool needwake;
3642 	struct rcu_data *rdp;
3643 	struct rcu_node *rnp;
3644 
3645 	lockdep_assert_irqs_enabled();
3646 	local_irq_save(flags);
3647 	rdp = this_cpu_ptr(&rcu_data);
3648 	rnp = rdp->mynode;
3649 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3650 	// Note it is possible for a grace period to have elapsed between
3651 	// the above call to get_state_synchronize_rcu() and the below call
3652 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3653 	// get a grace period that no one needed.  These accesses are ordered
3654 	// by smp_mb(), and we are accessing them in the opposite order
3655 	// from which they are updated at grace-period start, as required.
3656 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3657 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3658 	if (needwake)
3659 		rcu_gp_kthread_wake();
3660 }
3661 
3662 /**
3663  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3664  *
3665  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3666  * or poll_state_synchronize_rcu() to determine whether or not a full
3667  * grace period has elapsed in the meantime.  If the needed grace period
3668  * is not already slated to start, notifies RCU core of the need for that
3669  * grace period.
3670  *
3671  * Interrupts must be enabled for the case where it is necessary to awaken
3672  * the grace-period kthread.
3673  */
3674 unsigned long start_poll_synchronize_rcu(void)
3675 {
3676 	unsigned long gp_seq = get_state_synchronize_rcu();
3677 
3678 	start_poll_synchronize_rcu_common();
3679 	return gp_seq;
3680 }
3681 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3682 
3683 /**
3684  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3685  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3686  *
3687  * Places the normal and expedited grace-period states in *@rgos.  This
3688  * state value can be passed to a later call to cond_synchronize_rcu_full()
3689  * or poll_state_synchronize_rcu_full() to determine whether or not a
3690  * grace period (whether normal or expedited) has elapsed in the meantime.
3691  * If the needed grace period is not already slated to start, notifies
3692  * RCU core of the need for that grace period.
3693  *
3694  * Interrupts must be enabled for the case where it is necessary to awaken
3695  * the grace-period kthread.
3696  */
3697 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3698 {
3699 	get_state_synchronize_rcu_full(rgosp);
3700 
3701 	start_poll_synchronize_rcu_common();
3702 }
3703 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3704 
3705 /**
3706  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3707  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3708  *
3709  * If a full RCU grace period has elapsed since the earlier call from
3710  * which @oldstate was obtained, return @true, otherwise return @false.
3711  * If @false is returned, it is the caller's responsibility to invoke this
3712  * function later on until it does return @true.  Alternatively, the caller
3713  * can explicitly wait for a grace period, for example, by passing @oldstate
3714  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3715  *
3716  * Yes, this function does not take counter wrap into account.
3717  * But counter wrap is harmless.  If the counter wraps, we have waited for
3718  * more than a billion grace periods (and way more on a 64-bit system!).
3719  * Those needing to keep old state values for very long time periods
3720  * (many hours even on 32-bit systems) should check them occasionally and
3721  * either refresh them or set a flag indicating that the grace period has
3722  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3723  * to get a guaranteed-completed grace-period state.
3724  *
3725  * This function provides the same memory-ordering guarantees that
3726  * would be provided by a synchronize_rcu() that was invoked at the call
3727  * to the function that provided @oldstate, and that returned at the end
3728  * of this function.
3729  */
3730 bool poll_state_synchronize_rcu(unsigned long oldstate)
3731 {
3732 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3733 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3734 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3735 		return true;
3736 	}
3737 	return false;
3738 }
3739 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3740 
3741 /**
3742  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3743  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3744  *
3745  * If a full RCU grace period has elapsed since the earlier call from
3746  * which *rgosp was obtained, return @true, otherwise return @false.
3747  * If @false is returned, it is the caller's responsibility to invoke this
3748  * function later on until it does return @true.  Alternatively, the caller
3749  * can explicitly wait for a grace period, for example, by passing @rgosp
3750  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3751  *
3752  * Yes, this function does not take counter wrap into account.
3753  * But counter wrap is harmless.  If the counter wraps, we have waited
3754  * for more than a billion grace periods (and way more on a 64-bit
3755  * system!).  Those needing to keep rcu_gp_oldstate values for very
3756  * long time periods (many hours even on 32-bit systems) should check
3757  * them occasionally and either refresh them or set a flag indicating
3758  * that the grace period has completed.  Alternatively, they can use
3759  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3760  * grace-period state.
3761  *
3762  * This function provides the same memory-ordering guarantees that would
3763  * be provided by a synchronize_rcu() that was invoked at the call to
3764  * the function that provided @rgosp, and that returned at the end of this
3765  * function.  And this guarantee requires that the root rcu_node structure's
3766  * ->gp_seq field be checked instead of that of the rcu_state structure.
3767  * The problem is that the just-ending grace-period's callbacks can be
3768  * invoked between the time that the root rcu_node structure's ->gp_seq
3769  * field is updated and the time that the rcu_state structure's ->gp_seq
3770  * field is updated.  Therefore, if a single synchronize_rcu() is to
3771  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3772  * then the root rcu_node structure is the one that needs to be polled.
3773  */
3774 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3775 {
3776 	struct rcu_node *rnp = rcu_get_root();
3777 
3778 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3779 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3780 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3781 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3782 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3783 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3784 		return true;
3785 	}
3786 	return false;
3787 }
3788 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3789 
3790 /**
3791  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3792  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3793  *
3794  * If a full RCU grace period has elapsed since the earlier call to
3795  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3796  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3797  *
3798  * Yes, this function does not take counter wrap into account.
3799  * But counter wrap is harmless.  If the counter wraps, we have waited for
3800  * more than 2 billion grace periods (and way more on a 64-bit system!),
3801  * so waiting for a couple of additional grace periods should be just fine.
3802  *
3803  * This function provides the same memory-ordering guarantees that
3804  * would be provided by a synchronize_rcu() that was invoked at the call
3805  * to the function that provided @oldstate and that returned at the end
3806  * of this function.
3807  */
3808 void cond_synchronize_rcu(unsigned long oldstate)
3809 {
3810 	if (!poll_state_synchronize_rcu(oldstate))
3811 		synchronize_rcu();
3812 }
3813 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3814 
3815 /**
3816  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3817  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3818  *
3819  * If a full RCU grace period has elapsed since the call to
3820  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3821  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3822  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3823  * for a full grace period.
3824  *
3825  * Yes, this function does not take counter wrap into account.
3826  * But counter wrap is harmless.  If the counter wraps, we have waited for
3827  * more than 2 billion grace periods (and way more on a 64-bit system!),
3828  * so waiting for a couple of additional grace periods should be just fine.
3829  *
3830  * This function provides the same memory-ordering guarantees that
3831  * would be provided by a synchronize_rcu() that was invoked at the call
3832  * to the function that provided @rgosp and that returned at the end of
3833  * this function.
3834  */
3835 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3836 {
3837 	if (!poll_state_synchronize_rcu_full(rgosp))
3838 		synchronize_rcu();
3839 }
3840 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3841 
3842 /*
3843  * Check to see if there is any immediate RCU-related work to be done by
3844  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3845  * in order of increasing expense: checks that can be carried out against
3846  * CPU-local state are performed first.  However, we must check for CPU
3847  * stalls first, else we might not get a chance.
3848  */
3849 static int rcu_pending(int user)
3850 {
3851 	bool gp_in_progress;
3852 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3853 	struct rcu_node *rnp = rdp->mynode;
3854 
3855 	lockdep_assert_irqs_disabled();
3856 
3857 	/* Check for CPU stalls, if enabled. */
3858 	check_cpu_stall(rdp);
3859 
3860 	/* Does this CPU need a deferred NOCB wakeup? */
3861 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3862 		return 1;
3863 
3864 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3865 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3866 		return 0;
3867 
3868 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3869 	gp_in_progress = rcu_gp_in_progress();
3870 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3871 		return 1;
3872 
3873 	/* Does this CPU have callbacks ready to invoke? */
3874 	if (!rcu_rdp_is_offloaded(rdp) &&
3875 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3876 		return 1;
3877 
3878 	/* Has RCU gone idle with this CPU needing another grace period? */
3879 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3880 	    !rcu_rdp_is_offloaded(rdp) &&
3881 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3882 		return 1;
3883 
3884 	/* Have RCU grace period completed or started?  */
3885 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3886 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3887 		return 1;
3888 
3889 	/* nothing to do */
3890 	return 0;
3891 }
3892 
3893 /*
3894  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3895  * the compiler is expected to optimize this away.
3896  */
3897 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3898 {
3899 	trace_rcu_barrier(rcu_state.name, s, cpu,
3900 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3901 }
3902 
3903 /*
3904  * RCU callback function for rcu_barrier().  If we are last, wake
3905  * up the task executing rcu_barrier().
3906  *
3907  * Note that the value of rcu_state.barrier_sequence must be captured
3908  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3909  * other CPUs might count the value down to zero before this CPU gets
3910  * around to invoking rcu_barrier_trace(), which might result in bogus
3911  * data from the next instance of rcu_barrier().
3912  */
3913 static void rcu_barrier_callback(struct rcu_head *rhp)
3914 {
3915 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3916 
3917 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3918 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3919 		complete(&rcu_state.barrier_completion);
3920 	} else {
3921 		rcu_barrier_trace(TPS("CB"), -1, s);
3922 	}
3923 }
3924 
3925 /*
3926  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3927  */
3928 static void rcu_barrier_entrain(struct rcu_data *rdp)
3929 {
3930 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3931 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3932 	bool wake_nocb = false;
3933 	bool was_alldone = false;
3934 
3935 	lockdep_assert_held(&rcu_state.barrier_lock);
3936 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3937 		return;
3938 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3939 	rdp->barrier_head.func = rcu_barrier_callback;
3940 	debug_rcu_head_queue(&rdp->barrier_head);
3941 	rcu_nocb_lock(rdp);
3942 	/*
3943 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3944 	 * queue. This way we don't wait for bypass timer that can reach seconds
3945 	 * if it's fully lazy.
3946 	 */
3947 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3948 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3949 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3950 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3951 		atomic_inc(&rcu_state.barrier_cpu_count);
3952 	} else {
3953 		debug_rcu_head_unqueue(&rdp->barrier_head);
3954 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3955 	}
3956 	rcu_nocb_unlock(rdp);
3957 	if (wake_nocb)
3958 		wake_nocb_gp(rdp, false);
3959 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3960 }
3961 
3962 /*
3963  * Called with preemption disabled, and from cross-cpu IRQ context.
3964  */
3965 static void rcu_barrier_handler(void *cpu_in)
3966 {
3967 	uintptr_t cpu = (uintptr_t)cpu_in;
3968 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3969 
3970 	lockdep_assert_irqs_disabled();
3971 	WARN_ON_ONCE(cpu != rdp->cpu);
3972 	WARN_ON_ONCE(cpu != smp_processor_id());
3973 	raw_spin_lock(&rcu_state.barrier_lock);
3974 	rcu_barrier_entrain(rdp);
3975 	raw_spin_unlock(&rcu_state.barrier_lock);
3976 }
3977 
3978 /**
3979  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3980  *
3981  * Note that this primitive does not necessarily wait for an RCU grace period
3982  * to complete.  For example, if there are no RCU callbacks queued anywhere
3983  * in the system, then rcu_barrier() is within its rights to return
3984  * immediately, without waiting for anything, much less an RCU grace period.
3985  */
3986 void rcu_barrier(void)
3987 {
3988 	uintptr_t cpu;
3989 	unsigned long flags;
3990 	unsigned long gseq;
3991 	struct rcu_data *rdp;
3992 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3993 
3994 	rcu_barrier_trace(TPS("Begin"), -1, s);
3995 
3996 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3997 	mutex_lock(&rcu_state.barrier_mutex);
3998 
3999 	/* Did someone else do our work for us? */
4000 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4001 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4002 		smp_mb(); /* caller's subsequent code after above check. */
4003 		mutex_unlock(&rcu_state.barrier_mutex);
4004 		return;
4005 	}
4006 
4007 	/* Mark the start of the barrier operation. */
4008 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4009 	rcu_seq_start(&rcu_state.barrier_sequence);
4010 	gseq = rcu_state.barrier_sequence;
4011 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4012 
4013 	/*
4014 	 * Initialize the count to two rather than to zero in order
4015 	 * to avoid a too-soon return to zero in case of an immediate
4016 	 * invocation of the just-enqueued callback (or preemption of
4017 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4018 	 * offline non-offloaded CPU has callbacks queued.
4019 	 */
4020 	init_completion(&rcu_state.barrier_completion);
4021 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4022 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4023 
4024 	/*
4025 	 * Force each CPU with callbacks to register a new callback.
4026 	 * When that callback is invoked, we will know that all of the
4027 	 * corresponding CPU's preceding callbacks have been invoked.
4028 	 */
4029 	for_each_possible_cpu(cpu) {
4030 		rdp = per_cpu_ptr(&rcu_data, cpu);
4031 retry:
4032 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4033 			continue;
4034 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4035 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4036 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4037 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4038 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4039 			continue;
4040 		}
4041 		if (!rcu_rdp_cpu_online(rdp)) {
4042 			rcu_barrier_entrain(rdp);
4043 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4044 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4045 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4046 			continue;
4047 		}
4048 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4049 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4050 			schedule_timeout_uninterruptible(1);
4051 			goto retry;
4052 		}
4053 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4054 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4055 	}
4056 
4057 	/*
4058 	 * Now that we have an rcu_barrier_callback() callback on each
4059 	 * CPU, and thus each counted, remove the initial count.
4060 	 */
4061 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4062 		complete(&rcu_state.barrier_completion);
4063 
4064 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4065 	wait_for_completion(&rcu_state.barrier_completion);
4066 
4067 	/* Mark the end of the barrier operation. */
4068 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4069 	rcu_seq_end(&rcu_state.barrier_sequence);
4070 	gseq = rcu_state.barrier_sequence;
4071 	for_each_possible_cpu(cpu) {
4072 		rdp = per_cpu_ptr(&rcu_data, cpu);
4073 
4074 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4075 	}
4076 
4077 	/* Other rcu_barrier() invocations can now safely proceed. */
4078 	mutex_unlock(&rcu_state.barrier_mutex);
4079 }
4080 EXPORT_SYMBOL_GPL(rcu_barrier);
4081 
4082 /*
4083  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4084  * first CPU in a given leaf rcu_node structure coming online.  The caller
4085  * must hold the corresponding leaf rcu_node ->lock with interrupts
4086  * disabled.
4087  */
4088 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4089 {
4090 	long mask;
4091 	long oldmask;
4092 	struct rcu_node *rnp = rnp_leaf;
4093 
4094 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4095 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4096 	for (;;) {
4097 		mask = rnp->grpmask;
4098 		rnp = rnp->parent;
4099 		if (rnp == NULL)
4100 			return;
4101 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4102 		oldmask = rnp->qsmaskinit;
4103 		rnp->qsmaskinit |= mask;
4104 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4105 		if (oldmask)
4106 			return;
4107 	}
4108 }
4109 
4110 /*
4111  * Do boot-time initialization of a CPU's per-CPU RCU data.
4112  */
4113 static void __init
4114 rcu_boot_init_percpu_data(int cpu)
4115 {
4116 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4117 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4118 
4119 	/* Set up local state, ensuring consistent view of global state. */
4120 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4121 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4122 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4123 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4124 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4125 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4126 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4127 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4128 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4129 	rdp->last_sched_clock = jiffies;
4130 	rdp->cpu = cpu;
4131 	rcu_boot_init_nocb_percpu_data(rdp);
4132 }
4133 
4134 /*
4135  * Invoked early in the CPU-online process, when pretty much all services
4136  * are available.  The incoming CPU is not present.
4137  *
4138  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4139  * offline event can be happening at a given time.  Note also that we can
4140  * accept some slop in the rsp->gp_seq access due to the fact that this
4141  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4142  * And any offloaded callbacks are being numbered elsewhere.
4143  */
4144 int rcutree_prepare_cpu(unsigned int cpu)
4145 {
4146 	unsigned long flags;
4147 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4148 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4149 	struct rcu_node *rnp = rcu_get_root();
4150 
4151 	/* Set up local state, ensuring consistent view of global state. */
4152 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4153 	rdp->qlen_last_fqs_check = 0;
4154 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4155 	rdp->blimit = blimit;
4156 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4157 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4158 
4159 	/*
4160 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4161 	 * (re-)initialized.
4162 	 */
4163 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4164 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4165 
4166 	/*
4167 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4168 	 * propagation up the rcu_node tree will happen at the beginning
4169 	 * of the next grace period.
4170 	 */
4171 	rnp = rdp->mynode;
4172 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4173 	rdp->beenonline = true;	 /* We have now been online. */
4174 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4175 	rdp->gp_seq_needed = rdp->gp_seq;
4176 	rdp->cpu_no_qs.b.norm = true;
4177 	rdp->core_needs_qs = false;
4178 	rdp->rcu_iw_pending = false;
4179 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4180 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4181 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4182 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4183 	rcu_spawn_one_boost_kthread(rnp);
4184 	rcu_spawn_cpu_nocb_kthread(cpu);
4185 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4186 
4187 	return 0;
4188 }
4189 
4190 /*
4191  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4192  */
4193 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4194 {
4195 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4196 
4197 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4198 }
4199 
4200 /*
4201  * Near the end of the CPU-online process.  Pretty much all services
4202  * enabled, and the CPU is now very much alive.
4203  */
4204 int rcutree_online_cpu(unsigned int cpu)
4205 {
4206 	unsigned long flags;
4207 	struct rcu_data *rdp;
4208 	struct rcu_node *rnp;
4209 
4210 	rdp = per_cpu_ptr(&rcu_data, cpu);
4211 	rnp = rdp->mynode;
4212 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4213 	rnp->ffmask |= rdp->grpmask;
4214 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4215 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4216 		return 0; /* Too early in boot for scheduler work. */
4217 	sync_sched_exp_online_cleanup(cpu);
4218 	rcutree_affinity_setting(cpu, -1);
4219 
4220 	// Stop-machine done, so allow nohz_full to disable tick.
4221 	tick_dep_clear(TICK_DEP_BIT_RCU);
4222 	return 0;
4223 }
4224 
4225 /*
4226  * Near the beginning of the process.  The CPU is still very much alive
4227  * with pretty much all services enabled.
4228  */
4229 int rcutree_offline_cpu(unsigned int cpu)
4230 {
4231 	unsigned long flags;
4232 	struct rcu_data *rdp;
4233 	struct rcu_node *rnp;
4234 
4235 	rdp = per_cpu_ptr(&rcu_data, cpu);
4236 	rnp = rdp->mynode;
4237 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4238 	rnp->ffmask &= ~rdp->grpmask;
4239 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4240 
4241 	rcutree_affinity_setting(cpu, cpu);
4242 
4243 	// nohz_full CPUs need the tick for stop-machine to work quickly
4244 	tick_dep_set(TICK_DEP_BIT_RCU);
4245 	return 0;
4246 }
4247 
4248 /*
4249  * Mark the specified CPU as being online so that subsequent grace periods
4250  * (both expedited and normal) will wait on it.  Note that this means that
4251  * incoming CPUs are not allowed to use RCU read-side critical sections
4252  * until this function is called.  Failing to observe this restriction
4253  * will result in lockdep splats.
4254  *
4255  * Note that this function is special in that it is invoked directly
4256  * from the incoming CPU rather than from the cpuhp_step mechanism.
4257  * This is because this function must be invoked at a precise location.
4258  */
4259 void rcu_cpu_starting(unsigned int cpu)
4260 {
4261 	unsigned long flags;
4262 	unsigned long mask;
4263 	struct rcu_data *rdp;
4264 	struct rcu_node *rnp;
4265 	bool newcpu;
4266 
4267 	rdp = per_cpu_ptr(&rcu_data, cpu);
4268 	if (rdp->cpu_started)
4269 		return;
4270 	rdp->cpu_started = true;
4271 
4272 	rnp = rdp->mynode;
4273 	mask = rdp->grpmask;
4274 	local_irq_save(flags);
4275 	arch_spin_lock(&rcu_state.ofl_lock);
4276 	rcu_dynticks_eqs_online();
4277 	raw_spin_lock(&rcu_state.barrier_lock);
4278 	raw_spin_lock_rcu_node(rnp);
4279 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4280 	raw_spin_unlock(&rcu_state.barrier_lock);
4281 	newcpu = !(rnp->expmaskinitnext & mask);
4282 	rnp->expmaskinitnext |= mask;
4283 	/* Allow lockless access for expedited grace periods. */
4284 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4285 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4286 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4287 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4288 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4289 
4290 	/* An incoming CPU should never be blocking a grace period. */
4291 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4292 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4293 		unsigned long flags2;
4294 
4295 		local_irq_save(flags2);
4296 		rcu_disable_urgency_upon_qs(rdp);
4297 		/* Report QS -after- changing ->qsmaskinitnext! */
4298 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4299 	} else {
4300 		raw_spin_unlock_rcu_node(rnp);
4301 	}
4302 	arch_spin_unlock(&rcu_state.ofl_lock);
4303 	local_irq_restore(flags);
4304 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4305 }
4306 
4307 /*
4308  * The outgoing function has no further need of RCU, so remove it from
4309  * the rcu_node tree's ->qsmaskinitnext bit masks.
4310  *
4311  * Note that this function is special in that it is invoked directly
4312  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4313  * This is because this function must be invoked at a precise location.
4314  */
4315 void rcu_report_dead(unsigned int cpu)
4316 {
4317 	unsigned long flags, seq_flags;
4318 	unsigned long mask;
4319 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4320 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4321 
4322 	// Do any dangling deferred wakeups.
4323 	do_nocb_deferred_wakeup(rdp);
4324 
4325 	rcu_preempt_deferred_qs(current);
4326 
4327 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4328 	mask = rdp->grpmask;
4329 	local_irq_save(seq_flags);
4330 	arch_spin_lock(&rcu_state.ofl_lock);
4331 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4332 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4333 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4334 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4335 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4336 		rcu_disable_urgency_upon_qs(rdp);
4337 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4338 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4339 	}
4340 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4341 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4342 	arch_spin_unlock(&rcu_state.ofl_lock);
4343 	local_irq_restore(seq_flags);
4344 
4345 	rdp->cpu_started = false;
4346 }
4347 
4348 #ifdef CONFIG_HOTPLUG_CPU
4349 /*
4350  * The outgoing CPU has just passed through the dying-idle state, and we
4351  * are being invoked from the CPU that was IPIed to continue the offline
4352  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4353  */
4354 void rcutree_migrate_callbacks(int cpu)
4355 {
4356 	unsigned long flags;
4357 	struct rcu_data *my_rdp;
4358 	struct rcu_node *my_rnp;
4359 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4360 	bool needwake;
4361 
4362 	if (rcu_rdp_is_offloaded(rdp) ||
4363 	    rcu_segcblist_empty(&rdp->cblist))
4364 		return;  /* No callbacks to migrate. */
4365 
4366 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4367 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4368 	rcu_barrier_entrain(rdp);
4369 	my_rdp = this_cpu_ptr(&rcu_data);
4370 	my_rnp = my_rdp->mynode;
4371 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4372 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4373 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4374 	/* Leverage recent GPs and set GP for new callbacks. */
4375 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4376 		   rcu_advance_cbs(my_rnp, my_rdp);
4377 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4378 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4379 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4380 	rcu_segcblist_disable(&rdp->cblist);
4381 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4382 	check_cb_ovld_locked(my_rdp, my_rnp);
4383 	if (rcu_rdp_is_offloaded(my_rdp)) {
4384 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4385 		__call_rcu_nocb_wake(my_rdp, true, flags);
4386 	} else {
4387 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4388 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4389 	}
4390 	if (needwake)
4391 		rcu_gp_kthread_wake();
4392 	lockdep_assert_irqs_enabled();
4393 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4394 		  !rcu_segcblist_empty(&rdp->cblist),
4395 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4396 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4397 		  rcu_segcblist_first_cb(&rdp->cblist));
4398 }
4399 #endif
4400 
4401 /*
4402  * On non-huge systems, use expedited RCU grace periods to make suspend
4403  * and hibernation run faster.
4404  */
4405 static int rcu_pm_notify(struct notifier_block *self,
4406 			 unsigned long action, void *hcpu)
4407 {
4408 	switch (action) {
4409 	case PM_HIBERNATION_PREPARE:
4410 	case PM_SUSPEND_PREPARE:
4411 		rcu_expedite_gp();
4412 		break;
4413 	case PM_POST_HIBERNATION:
4414 	case PM_POST_SUSPEND:
4415 		rcu_unexpedite_gp();
4416 		break;
4417 	default:
4418 		break;
4419 	}
4420 	return NOTIFY_OK;
4421 }
4422 
4423 #ifdef CONFIG_RCU_EXP_KTHREAD
4424 struct kthread_worker *rcu_exp_gp_kworker;
4425 struct kthread_worker *rcu_exp_par_gp_kworker;
4426 
4427 static void __init rcu_start_exp_gp_kworkers(void)
4428 {
4429 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4430 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4431 	struct sched_param param = { .sched_priority = kthread_prio };
4432 
4433 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4434 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4435 		pr_err("Failed to create %s!\n", gp_kworker_name);
4436 		return;
4437 	}
4438 
4439 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4440 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4441 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4442 		kthread_destroy_worker(rcu_exp_gp_kworker);
4443 		return;
4444 	}
4445 
4446 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4447 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4448 				   &param);
4449 }
4450 
4451 static inline void rcu_alloc_par_gp_wq(void)
4452 {
4453 }
4454 #else /* !CONFIG_RCU_EXP_KTHREAD */
4455 struct workqueue_struct *rcu_par_gp_wq;
4456 
4457 static void __init rcu_start_exp_gp_kworkers(void)
4458 {
4459 }
4460 
4461 static inline void rcu_alloc_par_gp_wq(void)
4462 {
4463 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4464 	WARN_ON(!rcu_par_gp_wq);
4465 }
4466 #endif /* CONFIG_RCU_EXP_KTHREAD */
4467 
4468 /*
4469  * Spawn the kthreads that handle RCU's grace periods.
4470  */
4471 static int __init rcu_spawn_gp_kthread(void)
4472 {
4473 	unsigned long flags;
4474 	struct rcu_node *rnp;
4475 	struct sched_param sp;
4476 	struct task_struct *t;
4477 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4478 
4479 	rcu_scheduler_fully_active = 1;
4480 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4481 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4482 		return 0;
4483 	if (kthread_prio) {
4484 		sp.sched_priority = kthread_prio;
4485 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4486 	}
4487 	rnp = rcu_get_root();
4488 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4489 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4490 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4491 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4492 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4493 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4494 	wake_up_process(t);
4495 	/* This is a pre-SMP initcall, we expect a single CPU */
4496 	WARN_ON(num_online_cpus() > 1);
4497 	/*
4498 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4499 	 * due to rcu_scheduler_fully_active.
4500 	 */
4501 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4502 	rcu_spawn_one_boost_kthread(rdp->mynode);
4503 	rcu_spawn_core_kthreads();
4504 	/* Create kthread worker for expedited GPs */
4505 	rcu_start_exp_gp_kworkers();
4506 	return 0;
4507 }
4508 early_initcall(rcu_spawn_gp_kthread);
4509 
4510 /*
4511  * This function is invoked towards the end of the scheduler's
4512  * initialization process.  Before this is called, the idle task might
4513  * contain synchronous grace-period primitives (during which time, this idle
4514  * task is booting the system, and such primitives are no-ops).  After this
4515  * function is called, any synchronous grace-period primitives are run as
4516  * expedited, with the requesting task driving the grace period forward.
4517  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4518  * runtime RCU functionality.
4519  */
4520 void rcu_scheduler_starting(void)
4521 {
4522 	unsigned long flags;
4523 	struct rcu_node *rnp;
4524 
4525 	WARN_ON(num_online_cpus() != 1);
4526 	WARN_ON(nr_context_switches() > 0);
4527 	rcu_test_sync_prims();
4528 
4529 	// Fix up the ->gp_seq counters.
4530 	local_irq_save(flags);
4531 	rcu_for_each_node_breadth_first(rnp)
4532 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4533 	local_irq_restore(flags);
4534 
4535 	// Switch out of early boot mode.
4536 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4537 	rcu_test_sync_prims();
4538 }
4539 
4540 /*
4541  * Helper function for rcu_init() that initializes the rcu_state structure.
4542  */
4543 static void __init rcu_init_one(void)
4544 {
4545 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4546 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4547 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4548 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4549 
4550 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4551 	int cpustride = 1;
4552 	int i;
4553 	int j;
4554 	struct rcu_node *rnp;
4555 
4556 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4557 
4558 	/* Silence gcc 4.8 false positive about array index out of range. */
4559 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4560 		panic("rcu_init_one: rcu_num_lvls out of range");
4561 
4562 	/* Initialize the level-tracking arrays. */
4563 
4564 	for (i = 1; i < rcu_num_lvls; i++)
4565 		rcu_state.level[i] =
4566 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4567 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4568 
4569 	/* Initialize the elements themselves, starting from the leaves. */
4570 
4571 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4572 		cpustride *= levelspread[i];
4573 		rnp = rcu_state.level[i];
4574 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4575 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4576 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4577 						   &rcu_node_class[i], buf[i]);
4578 			raw_spin_lock_init(&rnp->fqslock);
4579 			lockdep_set_class_and_name(&rnp->fqslock,
4580 						   &rcu_fqs_class[i], fqs[i]);
4581 			rnp->gp_seq = rcu_state.gp_seq;
4582 			rnp->gp_seq_needed = rcu_state.gp_seq;
4583 			rnp->completedqs = rcu_state.gp_seq;
4584 			rnp->qsmask = 0;
4585 			rnp->qsmaskinit = 0;
4586 			rnp->grplo = j * cpustride;
4587 			rnp->grphi = (j + 1) * cpustride - 1;
4588 			if (rnp->grphi >= nr_cpu_ids)
4589 				rnp->grphi = nr_cpu_ids - 1;
4590 			if (i == 0) {
4591 				rnp->grpnum = 0;
4592 				rnp->grpmask = 0;
4593 				rnp->parent = NULL;
4594 			} else {
4595 				rnp->grpnum = j % levelspread[i - 1];
4596 				rnp->grpmask = BIT(rnp->grpnum);
4597 				rnp->parent = rcu_state.level[i - 1] +
4598 					      j / levelspread[i - 1];
4599 			}
4600 			rnp->level = i;
4601 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4602 			rcu_init_one_nocb(rnp);
4603 			init_waitqueue_head(&rnp->exp_wq[0]);
4604 			init_waitqueue_head(&rnp->exp_wq[1]);
4605 			init_waitqueue_head(&rnp->exp_wq[2]);
4606 			init_waitqueue_head(&rnp->exp_wq[3]);
4607 			spin_lock_init(&rnp->exp_lock);
4608 			mutex_init(&rnp->boost_kthread_mutex);
4609 			raw_spin_lock_init(&rnp->exp_poll_lock);
4610 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4611 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4612 		}
4613 	}
4614 
4615 	init_swait_queue_head(&rcu_state.gp_wq);
4616 	init_swait_queue_head(&rcu_state.expedited_wq);
4617 	rnp = rcu_first_leaf_node();
4618 	for_each_possible_cpu(i) {
4619 		while (i > rnp->grphi)
4620 			rnp++;
4621 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4622 		rcu_boot_init_percpu_data(i);
4623 	}
4624 }
4625 
4626 /*
4627  * Force priority from the kernel command-line into range.
4628  */
4629 static void __init sanitize_kthread_prio(void)
4630 {
4631 	int kthread_prio_in = kthread_prio;
4632 
4633 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4634 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4635 		kthread_prio = 2;
4636 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4637 		kthread_prio = 1;
4638 	else if (kthread_prio < 0)
4639 		kthread_prio = 0;
4640 	else if (kthread_prio > 99)
4641 		kthread_prio = 99;
4642 
4643 	if (kthread_prio != kthread_prio_in)
4644 		pr_alert("%s: Limited prio to %d from %d\n",
4645 			 __func__, kthread_prio, kthread_prio_in);
4646 }
4647 
4648 /*
4649  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4650  * replace the definitions in tree.h because those are needed to size
4651  * the ->node array in the rcu_state structure.
4652  */
4653 void rcu_init_geometry(void)
4654 {
4655 	ulong d;
4656 	int i;
4657 	static unsigned long old_nr_cpu_ids;
4658 	int rcu_capacity[RCU_NUM_LVLS];
4659 	static bool initialized;
4660 
4661 	if (initialized) {
4662 		/*
4663 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4664 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4665 		 */
4666 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4667 		return;
4668 	}
4669 
4670 	old_nr_cpu_ids = nr_cpu_ids;
4671 	initialized = true;
4672 
4673 	/*
4674 	 * Initialize any unspecified boot parameters.
4675 	 * The default values of jiffies_till_first_fqs and
4676 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4677 	 * value, which is a function of HZ, then adding one for each
4678 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4679 	 */
4680 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4681 	if (jiffies_till_first_fqs == ULONG_MAX)
4682 		jiffies_till_first_fqs = d;
4683 	if (jiffies_till_next_fqs == ULONG_MAX)
4684 		jiffies_till_next_fqs = d;
4685 	adjust_jiffies_till_sched_qs();
4686 
4687 	/* If the compile-time values are accurate, just leave. */
4688 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4689 	    nr_cpu_ids == NR_CPUS)
4690 		return;
4691 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4692 		rcu_fanout_leaf, nr_cpu_ids);
4693 
4694 	/*
4695 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4696 	 * and cannot exceed the number of bits in the rcu_node masks.
4697 	 * Complain and fall back to the compile-time values if this
4698 	 * limit is exceeded.
4699 	 */
4700 	if (rcu_fanout_leaf < 2 ||
4701 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4702 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4703 		WARN_ON(1);
4704 		return;
4705 	}
4706 
4707 	/*
4708 	 * Compute number of nodes that can be handled an rcu_node tree
4709 	 * with the given number of levels.
4710 	 */
4711 	rcu_capacity[0] = rcu_fanout_leaf;
4712 	for (i = 1; i < RCU_NUM_LVLS; i++)
4713 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4714 
4715 	/*
4716 	 * The tree must be able to accommodate the configured number of CPUs.
4717 	 * If this limit is exceeded, fall back to the compile-time values.
4718 	 */
4719 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4720 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4721 		WARN_ON(1);
4722 		return;
4723 	}
4724 
4725 	/* Calculate the number of levels in the tree. */
4726 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4727 	}
4728 	rcu_num_lvls = i + 1;
4729 
4730 	/* Calculate the number of rcu_nodes at each level of the tree. */
4731 	for (i = 0; i < rcu_num_lvls; i++) {
4732 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4733 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4734 	}
4735 
4736 	/* Calculate the total number of rcu_node structures. */
4737 	rcu_num_nodes = 0;
4738 	for (i = 0; i < rcu_num_lvls; i++)
4739 		rcu_num_nodes += num_rcu_lvl[i];
4740 }
4741 
4742 /*
4743  * Dump out the structure of the rcu_node combining tree associated
4744  * with the rcu_state structure.
4745  */
4746 static void __init rcu_dump_rcu_node_tree(void)
4747 {
4748 	int level = 0;
4749 	struct rcu_node *rnp;
4750 
4751 	pr_info("rcu_node tree layout dump\n");
4752 	pr_info(" ");
4753 	rcu_for_each_node_breadth_first(rnp) {
4754 		if (rnp->level != level) {
4755 			pr_cont("\n");
4756 			pr_info(" ");
4757 			level = rnp->level;
4758 		}
4759 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4760 	}
4761 	pr_cont("\n");
4762 }
4763 
4764 struct workqueue_struct *rcu_gp_wq;
4765 
4766 static void __init kfree_rcu_batch_init(void)
4767 {
4768 	int cpu;
4769 	int i;
4770 
4771 	/* Clamp it to [0:100] seconds interval. */
4772 	if (rcu_delay_page_cache_fill_msec < 0 ||
4773 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4774 
4775 		rcu_delay_page_cache_fill_msec =
4776 			clamp(rcu_delay_page_cache_fill_msec, 0,
4777 				(int) (100 * MSEC_PER_SEC));
4778 
4779 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4780 			rcu_delay_page_cache_fill_msec);
4781 	}
4782 
4783 	for_each_possible_cpu(cpu) {
4784 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4785 
4786 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4787 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4788 			krcp->krw_arr[i].krcp = krcp;
4789 		}
4790 
4791 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4792 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4793 		krcp->initialized = true;
4794 	}
4795 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4796 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4797 }
4798 
4799 void __init rcu_init(void)
4800 {
4801 	int cpu = smp_processor_id();
4802 
4803 	rcu_early_boot_tests();
4804 
4805 	kfree_rcu_batch_init();
4806 	rcu_bootup_announce();
4807 	sanitize_kthread_prio();
4808 	rcu_init_geometry();
4809 	rcu_init_one();
4810 	if (dump_tree)
4811 		rcu_dump_rcu_node_tree();
4812 	if (use_softirq)
4813 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4814 
4815 	/*
4816 	 * We don't need protection against CPU-hotplug here because
4817 	 * this is called early in boot, before either interrupts
4818 	 * or the scheduler are operational.
4819 	 */
4820 	pm_notifier(rcu_pm_notify, 0);
4821 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4822 	rcutree_prepare_cpu(cpu);
4823 	rcu_cpu_starting(cpu);
4824 	rcutree_online_cpu(cpu);
4825 
4826 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4827 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4828 	WARN_ON(!rcu_gp_wq);
4829 	rcu_alloc_par_gp_wq();
4830 
4831 	/* Fill in default value for rcutree.qovld boot parameter. */
4832 	/* -After- the rcu_node ->lock fields are initialized! */
4833 	if (qovld < 0)
4834 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4835 	else
4836 		qovld_calc = qovld;
4837 
4838 	// Kick-start any polled grace periods that started early.
4839 	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4840 		(void)start_poll_synchronize_rcu_expedited();
4841 }
4842 
4843 #include "tree_stall.h"
4844 #include "tree_exp.h"
4845 #include "tree_nocb.h"
4846 #include "tree_plugin.h"
4847