1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/random.h> 47 #include <linux/trace_events.h> 48 #include <linux/suspend.h> 49 #include <linux/ftrace.h> 50 #include <linux/tick.h> 51 #include <linux/sysrq.h> 52 #include <linux/kprobes.h> 53 #include <linux/gfp.h> 54 #include <linux/oom.h> 55 #include <linux/smpboot.h> 56 #include <linux/jiffies.h> 57 #include <linux/slab.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/sched/clock.h> 60 #include "../time/tick-internal.h" 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * Steal a bit from the bottom of ->dynticks for idle entry/exit 74 * control. Initially this is for TLB flushing. 75 */ 76 #define RCU_DYNTICK_CTRL_MASK 0x1 77 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 78 #ifndef rcu_eqs_special_exit 79 #define rcu_eqs_special_exit() do { } while (0) 80 #endif 81 82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 83 .dynticks_nesting = 1, 84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 86 }; 87 static struct rcu_state rcu_state = { 88 .level = { &rcu_state.node[0] }, 89 .gp_state = RCU_GP_IDLE, 90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 92 .name = RCU_NAME, 93 .abbr = RCU_ABBR, 94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 97 }; 98 99 /* Dump rcu_node combining tree at boot to verify correct setup. */ 100 static bool dump_tree; 101 module_param(dump_tree, bool, 0444); 102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 103 static bool use_softirq = 1; 104 module_param(use_softirq, bool, 0444); 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 154 155 /* rcuc/rcub kthread realtime priority */ 156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 157 module_param(kthread_prio, int, 0444); 158 159 /* Delay in jiffies for grace-period initialization delays, debug only. */ 160 161 static int gp_preinit_delay; 162 module_param(gp_preinit_delay, int, 0444); 163 static int gp_init_delay; 164 module_param(gp_init_delay, int, 0444); 165 static int gp_cleanup_delay; 166 module_param(gp_cleanup_delay, int, 0444); 167 168 /* Retrieve RCU kthreads priority for rcutorture */ 169 int rcu_get_gp_kthreads_prio(void) 170 { 171 return kthread_prio; 172 } 173 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 174 175 /* 176 * Number of grace periods between delays, normalized by the duration of 177 * the delay. The longer the delay, the more the grace periods between 178 * each delay. The reason for this normalization is that it means that, 179 * for non-zero delays, the overall slowdown of grace periods is constant 180 * regardless of the duration of the delay. This arrangement balances 181 * the need for long delays to increase some race probabilities with the 182 * need for fast grace periods to increase other race probabilities. 183 */ 184 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 185 186 /* 187 * Compute the mask of online CPUs for the specified rcu_node structure. 188 * This will not be stable unless the rcu_node structure's ->lock is 189 * held, but the bit corresponding to the current CPU will be stable 190 * in most contexts. 191 */ 192 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 193 { 194 return READ_ONCE(rnp->qsmaskinitnext); 195 } 196 197 /* 198 * Return true if an RCU grace period is in progress. The READ_ONCE()s 199 * permit this function to be invoked without holding the root rcu_node 200 * structure's ->lock, but of course results can be subject to change. 201 */ 202 static int rcu_gp_in_progress(void) 203 { 204 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 205 } 206 207 /* 208 * Return the number of callbacks queued on the specified CPU. 209 * Handles both the nocbs and normal cases. 210 */ 211 static long rcu_get_n_cbs_cpu(int cpu) 212 { 213 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 214 215 if (rcu_segcblist_is_enabled(&rdp->cblist)) 216 return rcu_segcblist_n_cbs(&rdp->cblist); 217 return 0; 218 } 219 220 void rcu_softirq_qs(void) 221 { 222 rcu_qs(); 223 rcu_preempt_deferred_qs(current); 224 } 225 226 /* 227 * Record entry into an extended quiescent state. This is only to be 228 * called when not already in an extended quiescent state. 229 */ 230 static void rcu_dynticks_eqs_enter(void) 231 { 232 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 233 int seq; 234 235 /* 236 * CPUs seeing atomic_add_return() must see prior RCU read-side 237 * critical sections, and we also must force ordering with the 238 * next idle sojourn. 239 */ 240 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 241 /* Better be in an extended quiescent state! */ 242 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 243 (seq & RCU_DYNTICK_CTRL_CTR)); 244 /* Better not have special action (TLB flush) pending! */ 245 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 246 (seq & RCU_DYNTICK_CTRL_MASK)); 247 } 248 249 /* 250 * Record exit from an extended quiescent state. This is only to be 251 * called from an extended quiescent state. 252 */ 253 static void rcu_dynticks_eqs_exit(void) 254 { 255 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 256 int seq; 257 258 /* 259 * CPUs seeing atomic_add_return() must see prior idle sojourns, 260 * and we also must force ordering with the next RCU read-side 261 * critical section. 262 */ 263 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 264 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 265 !(seq & RCU_DYNTICK_CTRL_CTR)); 266 if (seq & RCU_DYNTICK_CTRL_MASK) { 267 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 268 smp_mb__after_atomic(); /* _exit after clearing mask. */ 269 /* Prefer duplicate flushes to losing a flush. */ 270 rcu_eqs_special_exit(); 271 } 272 } 273 274 /* 275 * Reset the current CPU's ->dynticks counter to indicate that the 276 * newly onlined CPU is no longer in an extended quiescent state. 277 * This will either leave the counter unchanged, or increment it 278 * to the next non-quiescent value. 279 * 280 * The non-atomic test/increment sequence works because the upper bits 281 * of the ->dynticks counter are manipulated only by the corresponding CPU, 282 * or when the corresponding CPU is offline. 283 */ 284 static void rcu_dynticks_eqs_online(void) 285 { 286 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 287 288 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 289 return; 290 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 291 } 292 293 /* 294 * Is the current CPU in an extended quiescent state? 295 * 296 * No ordering, as we are sampling CPU-local information. 297 */ 298 static bool rcu_dynticks_curr_cpu_in_eqs(void) 299 { 300 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 301 302 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 303 } 304 305 /* 306 * Snapshot the ->dynticks counter with full ordering so as to allow 307 * stable comparison of this counter with past and future snapshots. 308 */ 309 static int rcu_dynticks_snap(struct rcu_data *rdp) 310 { 311 int snap = atomic_add_return(0, &rdp->dynticks); 312 313 return snap & ~RCU_DYNTICK_CTRL_MASK; 314 } 315 316 /* 317 * Return true if the snapshot returned from rcu_dynticks_snap() 318 * indicates that RCU is in an extended quiescent state. 319 */ 320 static bool rcu_dynticks_in_eqs(int snap) 321 { 322 return !(snap & RCU_DYNTICK_CTRL_CTR); 323 } 324 325 /* 326 * Return true if the CPU corresponding to the specified rcu_data 327 * structure has spent some time in an extended quiescent state since 328 * rcu_dynticks_snap() returned the specified snapshot. 329 */ 330 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 331 { 332 return snap != rcu_dynticks_snap(rdp); 333 } 334 335 /* 336 * Set the special (bottom) bit of the specified CPU so that it 337 * will take special action (such as flushing its TLB) on the 338 * next exit from an extended quiescent state. Returns true if 339 * the bit was successfully set, or false if the CPU was not in 340 * an extended quiescent state. 341 */ 342 bool rcu_eqs_special_set(int cpu) 343 { 344 int old; 345 int new; 346 int new_old; 347 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 348 349 new_old = atomic_read(&rdp->dynticks); 350 do { 351 old = new_old; 352 if (old & RCU_DYNTICK_CTRL_CTR) 353 return false; 354 new = old | RCU_DYNTICK_CTRL_MASK; 355 new_old = atomic_cmpxchg(&rdp->dynticks, old, new); 356 } while (new_old != old); 357 return true; 358 } 359 360 /* 361 * Let the RCU core know that this CPU has gone through the scheduler, 362 * which is a quiescent state. This is called when the need for a 363 * quiescent state is urgent, so we burn an atomic operation and full 364 * memory barriers to let the RCU core know about it, regardless of what 365 * this CPU might (or might not) do in the near future. 366 * 367 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 368 * 369 * The caller must have disabled interrupts and must not be idle. 370 */ 371 void rcu_momentary_dyntick_idle(void) 372 { 373 int special; 374 375 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 376 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 377 &this_cpu_ptr(&rcu_data)->dynticks); 378 /* It is illegal to call this from idle state. */ 379 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 380 rcu_preempt_deferred_qs(current); 381 } 382 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 383 384 /** 385 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle 386 * 387 * If the current CPU is idle and running at a first-level (not nested) 388 * interrupt from idle, return true. The caller must have at least 389 * disabled preemption. 390 */ 391 static int rcu_is_cpu_rrupt_from_idle(void) 392 { 393 /* Called only from within the scheduling-clock interrupt */ 394 lockdep_assert_in_irq(); 395 396 /* Check for counter underflows */ 397 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 398 "RCU dynticks_nesting counter underflow!"); 399 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 400 "RCU dynticks_nmi_nesting counter underflow/zero!"); 401 402 /* Are we at first interrupt nesting level? */ 403 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1) 404 return false; 405 406 /* Does CPU appear to be idle from an RCU standpoint? */ 407 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 408 } 409 410 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */ 411 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */ 412 static long blimit = DEFAULT_RCU_BLIMIT; 413 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 414 static long qhimark = DEFAULT_RCU_QHIMARK; 415 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 416 static long qlowmark = DEFAULT_RCU_QLOMARK; 417 #define DEFAULT_RCU_QOVLD_MULT 2 418 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 419 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */ 420 static long qovld_calc = -1; /* No pre-initialization lock acquisitions! */ 421 422 module_param(blimit, long, 0444); 423 module_param(qhimark, long, 0444); 424 module_param(qlowmark, long, 0444); 425 module_param(qovld, long, 0444); 426 427 static ulong jiffies_till_first_fqs = ULONG_MAX; 428 static ulong jiffies_till_next_fqs = ULONG_MAX; 429 static bool rcu_kick_kthreads; 430 static int rcu_divisor = 7; 431 module_param(rcu_divisor, int, 0644); 432 433 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 434 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 435 module_param(rcu_resched_ns, long, 0644); 436 437 /* 438 * How long the grace period must be before we start recruiting 439 * quiescent-state help from rcu_note_context_switch(). 440 */ 441 static ulong jiffies_till_sched_qs = ULONG_MAX; 442 module_param(jiffies_till_sched_qs, ulong, 0444); 443 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 444 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 445 446 /* 447 * Make sure that we give the grace-period kthread time to detect any 448 * idle CPUs before taking active measures to force quiescent states. 449 * However, don't go below 100 milliseconds, adjusted upwards for really 450 * large systems. 451 */ 452 static void adjust_jiffies_till_sched_qs(void) 453 { 454 unsigned long j; 455 456 /* If jiffies_till_sched_qs was specified, respect the request. */ 457 if (jiffies_till_sched_qs != ULONG_MAX) { 458 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 459 return; 460 } 461 /* Otherwise, set to third fqs scan, but bound below on large system. */ 462 j = READ_ONCE(jiffies_till_first_fqs) + 463 2 * READ_ONCE(jiffies_till_next_fqs); 464 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 465 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 466 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 467 WRITE_ONCE(jiffies_to_sched_qs, j); 468 } 469 470 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 471 { 472 ulong j; 473 int ret = kstrtoul(val, 0, &j); 474 475 if (!ret) { 476 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 477 adjust_jiffies_till_sched_qs(); 478 } 479 return ret; 480 } 481 482 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 483 { 484 ulong j; 485 int ret = kstrtoul(val, 0, &j); 486 487 if (!ret) { 488 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 489 adjust_jiffies_till_sched_qs(); 490 } 491 return ret; 492 } 493 494 static struct kernel_param_ops first_fqs_jiffies_ops = { 495 .set = param_set_first_fqs_jiffies, 496 .get = param_get_ulong, 497 }; 498 499 static struct kernel_param_ops next_fqs_jiffies_ops = { 500 .set = param_set_next_fqs_jiffies, 501 .get = param_get_ulong, 502 }; 503 504 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 505 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 506 module_param(rcu_kick_kthreads, bool, 0644); 507 508 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 509 static int rcu_pending(int user); 510 511 /* 512 * Return the number of RCU GPs completed thus far for debug & stats. 513 */ 514 unsigned long rcu_get_gp_seq(void) 515 { 516 return READ_ONCE(rcu_state.gp_seq); 517 } 518 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 519 520 /* 521 * Return the number of RCU expedited batches completed thus far for 522 * debug & stats. Odd numbers mean that a batch is in progress, even 523 * numbers mean idle. The value returned will thus be roughly double 524 * the cumulative batches since boot. 525 */ 526 unsigned long rcu_exp_batches_completed(void) 527 { 528 return rcu_state.expedited_sequence; 529 } 530 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 531 532 /* 533 * Return the root node of the rcu_state structure. 534 */ 535 static struct rcu_node *rcu_get_root(void) 536 { 537 return &rcu_state.node[0]; 538 } 539 540 /* 541 * Send along grace-period-related data for rcutorture diagnostics. 542 */ 543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 544 unsigned long *gp_seq) 545 { 546 switch (test_type) { 547 case RCU_FLAVOR: 548 *flags = READ_ONCE(rcu_state.gp_flags); 549 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 550 break; 551 default: 552 break; 553 } 554 } 555 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 556 557 /* 558 * Enter an RCU extended quiescent state, which can be either the 559 * idle loop or adaptive-tickless usermode execution. 560 * 561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 562 * the possibility of usermode upcalls having messed up our count 563 * of interrupt nesting level during the prior busy period. 564 */ 565 static void rcu_eqs_enter(bool user) 566 { 567 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 568 569 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 570 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 571 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 572 rdp->dynticks_nesting == 0); 573 if (rdp->dynticks_nesting != 1) { 574 rdp->dynticks_nesting--; 575 return; 576 } 577 578 lockdep_assert_irqs_disabled(); 579 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 580 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 581 rdp = this_cpu_ptr(&rcu_data); 582 do_nocb_deferred_wakeup(rdp); 583 rcu_prepare_for_idle(); 584 rcu_preempt_deferred_qs(current); 585 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 586 rcu_dynticks_eqs_enter(); 587 rcu_dynticks_task_enter(); 588 } 589 590 /** 591 * rcu_idle_enter - inform RCU that current CPU is entering idle 592 * 593 * Enter idle mode, in other words, -leave- the mode in which RCU 594 * read-side critical sections can occur. (Though RCU read-side 595 * critical sections can occur in irq handlers in idle, a possibility 596 * handled by irq_enter() and irq_exit().) 597 * 598 * If you add or remove a call to rcu_idle_enter(), be sure to test with 599 * CONFIG_RCU_EQS_DEBUG=y. 600 */ 601 void rcu_idle_enter(void) 602 { 603 lockdep_assert_irqs_disabled(); 604 rcu_eqs_enter(false); 605 } 606 607 #ifdef CONFIG_NO_HZ_FULL 608 /** 609 * rcu_user_enter - inform RCU that we are resuming userspace. 610 * 611 * Enter RCU idle mode right before resuming userspace. No use of RCU 612 * is permitted between this call and rcu_user_exit(). This way the 613 * CPU doesn't need to maintain the tick for RCU maintenance purposes 614 * when the CPU runs in userspace. 615 * 616 * If you add or remove a call to rcu_user_enter(), be sure to test with 617 * CONFIG_RCU_EQS_DEBUG=y. 618 */ 619 void rcu_user_enter(void) 620 { 621 lockdep_assert_irqs_disabled(); 622 rcu_eqs_enter(true); 623 } 624 #endif /* CONFIG_NO_HZ_FULL */ 625 626 /* 627 * If we are returning from the outermost NMI handler that interrupted an 628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 629 * to let the RCU grace-period handling know that the CPU is back to 630 * being RCU-idle. 631 * 632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 633 * with CONFIG_RCU_EQS_DEBUG=y. 634 */ 635 static __always_inline void rcu_nmi_exit_common(bool irq) 636 { 637 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 638 639 /* 640 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 641 * (We are exiting an NMI handler, so RCU better be paying attention 642 * to us!) 643 */ 644 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 645 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 646 647 /* 648 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 649 * leave it in non-RCU-idle state. 650 */ 651 if (rdp->dynticks_nmi_nesting != 1) { 652 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 653 atomic_read(&rdp->dynticks)); 654 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 655 rdp->dynticks_nmi_nesting - 2); 656 return; 657 } 658 659 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 660 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 661 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 662 663 if (irq) 664 rcu_prepare_for_idle(); 665 666 rcu_dynticks_eqs_enter(); 667 668 if (irq) 669 rcu_dynticks_task_enter(); 670 } 671 672 /** 673 * rcu_nmi_exit - inform RCU of exit from NMI context 674 * 675 * If you add or remove a call to rcu_nmi_exit(), be sure to test 676 * with CONFIG_RCU_EQS_DEBUG=y. 677 */ 678 void rcu_nmi_exit(void) 679 { 680 rcu_nmi_exit_common(false); 681 } 682 683 /** 684 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 685 * 686 * Exit from an interrupt handler, which might possibly result in entering 687 * idle mode, in other words, leaving the mode in which read-side critical 688 * sections can occur. The caller must have disabled interrupts. 689 * 690 * This code assumes that the idle loop never does anything that might 691 * result in unbalanced calls to irq_enter() and irq_exit(). If your 692 * architecture's idle loop violates this assumption, RCU will give you what 693 * you deserve, good and hard. But very infrequently and irreproducibly. 694 * 695 * Use things like work queues to work around this limitation. 696 * 697 * You have been warned. 698 * 699 * If you add or remove a call to rcu_irq_exit(), be sure to test with 700 * CONFIG_RCU_EQS_DEBUG=y. 701 */ 702 void rcu_irq_exit(void) 703 { 704 lockdep_assert_irqs_disabled(); 705 rcu_nmi_exit_common(true); 706 } 707 708 /* 709 * Wrapper for rcu_irq_exit() where interrupts are enabled. 710 * 711 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 712 * with CONFIG_RCU_EQS_DEBUG=y. 713 */ 714 void rcu_irq_exit_irqson(void) 715 { 716 unsigned long flags; 717 718 local_irq_save(flags); 719 rcu_irq_exit(); 720 local_irq_restore(flags); 721 } 722 723 /* 724 * Exit an RCU extended quiescent state, which can be either the 725 * idle loop or adaptive-tickless usermode execution. 726 * 727 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 728 * allow for the possibility of usermode upcalls messing up our count of 729 * interrupt nesting level during the busy period that is just now starting. 730 */ 731 static void rcu_eqs_exit(bool user) 732 { 733 struct rcu_data *rdp; 734 long oldval; 735 736 lockdep_assert_irqs_disabled(); 737 rdp = this_cpu_ptr(&rcu_data); 738 oldval = rdp->dynticks_nesting; 739 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 740 if (oldval) { 741 rdp->dynticks_nesting++; 742 return; 743 } 744 rcu_dynticks_task_exit(); 745 rcu_dynticks_eqs_exit(); 746 rcu_cleanup_after_idle(); 747 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 748 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 749 WRITE_ONCE(rdp->dynticks_nesting, 1); 750 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 751 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 752 } 753 754 /** 755 * rcu_idle_exit - inform RCU that current CPU is leaving idle 756 * 757 * Exit idle mode, in other words, -enter- the mode in which RCU 758 * read-side critical sections can occur. 759 * 760 * If you add or remove a call to rcu_idle_exit(), be sure to test with 761 * CONFIG_RCU_EQS_DEBUG=y. 762 */ 763 void rcu_idle_exit(void) 764 { 765 unsigned long flags; 766 767 local_irq_save(flags); 768 rcu_eqs_exit(false); 769 local_irq_restore(flags); 770 } 771 772 #ifdef CONFIG_NO_HZ_FULL 773 /** 774 * rcu_user_exit - inform RCU that we are exiting userspace. 775 * 776 * Exit RCU idle mode while entering the kernel because it can 777 * run a RCU read side critical section anytime. 778 * 779 * If you add or remove a call to rcu_user_exit(), be sure to test with 780 * CONFIG_RCU_EQS_DEBUG=y. 781 */ 782 void rcu_user_exit(void) 783 { 784 rcu_eqs_exit(1); 785 } 786 #endif /* CONFIG_NO_HZ_FULL */ 787 788 /** 789 * rcu_nmi_enter_common - inform RCU of entry to NMI context 790 * @irq: Is this call from rcu_irq_enter? 791 * 792 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 793 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 794 * that the CPU is active. This implementation permits nested NMIs, as 795 * long as the nesting level does not overflow an int. (You will probably 796 * run out of stack space first.) 797 * 798 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 799 * with CONFIG_RCU_EQS_DEBUG=y. 800 */ 801 static __always_inline void rcu_nmi_enter_common(bool irq) 802 { 803 long incby = 2; 804 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 805 806 /* Complain about underflow. */ 807 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 808 809 /* 810 * If idle from RCU viewpoint, atomically increment ->dynticks 811 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 812 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 813 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 814 * to be in the outermost NMI handler that interrupted an RCU-idle 815 * period (observation due to Andy Lutomirski). 816 */ 817 if (rcu_dynticks_curr_cpu_in_eqs()) { 818 819 if (irq) 820 rcu_dynticks_task_exit(); 821 822 rcu_dynticks_eqs_exit(); 823 824 if (irq) 825 rcu_cleanup_after_idle(); 826 827 incby = 1; 828 } else if (tick_nohz_full_cpu(rdp->cpu) && 829 rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE && 830 READ_ONCE(rdp->rcu_urgent_qs) && 831 !READ_ONCE(rdp->rcu_forced_tick)) { 832 raw_spin_lock_rcu_node(rdp->mynode); 833 // Recheck under lock. 834 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 835 WRITE_ONCE(rdp->rcu_forced_tick, true); 836 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 837 } 838 raw_spin_unlock_rcu_node(rdp->mynode); 839 } 840 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 841 rdp->dynticks_nmi_nesting, 842 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 843 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 844 rdp->dynticks_nmi_nesting + incby); 845 barrier(); 846 } 847 848 /** 849 * rcu_nmi_enter - inform RCU of entry to NMI context 850 */ 851 void rcu_nmi_enter(void) 852 { 853 rcu_nmi_enter_common(false); 854 } 855 NOKPROBE_SYMBOL(rcu_nmi_enter); 856 857 /** 858 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 859 * 860 * Enter an interrupt handler, which might possibly result in exiting 861 * idle mode, in other words, entering the mode in which read-side critical 862 * sections can occur. The caller must have disabled interrupts. 863 * 864 * Note that the Linux kernel is fully capable of entering an interrupt 865 * handler that it never exits, for example when doing upcalls to user mode! 866 * This code assumes that the idle loop never does upcalls to user mode. 867 * If your architecture's idle loop does do upcalls to user mode (or does 868 * anything else that results in unbalanced calls to the irq_enter() and 869 * irq_exit() functions), RCU will give you what you deserve, good and hard. 870 * But very infrequently and irreproducibly. 871 * 872 * Use things like work queues to work around this limitation. 873 * 874 * You have been warned. 875 * 876 * If you add or remove a call to rcu_irq_enter(), be sure to test with 877 * CONFIG_RCU_EQS_DEBUG=y. 878 */ 879 void rcu_irq_enter(void) 880 { 881 lockdep_assert_irqs_disabled(); 882 rcu_nmi_enter_common(true); 883 } 884 885 /* 886 * Wrapper for rcu_irq_enter() where interrupts are enabled. 887 * 888 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 889 * with CONFIG_RCU_EQS_DEBUG=y. 890 */ 891 void rcu_irq_enter_irqson(void) 892 { 893 unsigned long flags; 894 895 local_irq_save(flags); 896 rcu_irq_enter(); 897 local_irq_restore(flags); 898 } 899 900 /* 901 * If any sort of urgency was applied to the current CPU (for example, 902 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 903 * to get to a quiescent state, disable it. 904 */ 905 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 906 { 907 raw_lockdep_assert_held_rcu_node(rdp->mynode); 908 WRITE_ONCE(rdp->rcu_urgent_qs, false); 909 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 910 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 911 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 912 WRITE_ONCE(rdp->rcu_forced_tick, false); 913 } 914 } 915 916 /** 917 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 918 * 919 * Return true if RCU is watching the running CPU, which means that this 920 * CPU can safely enter RCU read-side critical sections. In other words, 921 * if the current CPU is not in its idle loop or is in an interrupt or 922 * NMI handler, return true. 923 */ 924 bool notrace rcu_is_watching(void) 925 { 926 bool ret; 927 928 preempt_disable_notrace(); 929 ret = !rcu_dynticks_curr_cpu_in_eqs(); 930 preempt_enable_notrace(); 931 return ret; 932 } 933 EXPORT_SYMBOL_GPL(rcu_is_watching); 934 935 /* 936 * If a holdout task is actually running, request an urgent quiescent 937 * state from its CPU. This is unsynchronized, so migrations can cause 938 * the request to go to the wrong CPU. Which is OK, all that will happen 939 * is that the CPU's next context switch will be a bit slower and next 940 * time around this task will generate another request. 941 */ 942 void rcu_request_urgent_qs_task(struct task_struct *t) 943 { 944 int cpu; 945 946 barrier(); 947 cpu = task_cpu(t); 948 if (!task_curr(t)) 949 return; /* This task is not running on that CPU. */ 950 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 951 } 952 953 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 954 955 /* 956 * Is the current CPU online as far as RCU is concerned? 957 * 958 * Disable preemption to avoid false positives that could otherwise 959 * happen due to the current CPU number being sampled, this task being 960 * preempted, its old CPU being taken offline, resuming on some other CPU, 961 * then determining that its old CPU is now offline. 962 * 963 * Disable checking if in an NMI handler because we cannot safely 964 * report errors from NMI handlers anyway. In addition, it is OK to use 965 * RCU on an offline processor during initial boot, hence the check for 966 * rcu_scheduler_fully_active. 967 */ 968 bool rcu_lockdep_current_cpu_online(void) 969 { 970 struct rcu_data *rdp; 971 struct rcu_node *rnp; 972 bool ret = false; 973 974 if (in_nmi() || !rcu_scheduler_fully_active) 975 return true; 976 preempt_disable(); 977 rdp = this_cpu_ptr(&rcu_data); 978 rnp = rdp->mynode; 979 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 980 ret = true; 981 preempt_enable(); 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 985 986 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 987 988 /* 989 * We are reporting a quiescent state on behalf of some other CPU, so 990 * it is our responsibility to check for and handle potential overflow 991 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 992 * After all, the CPU might be in deep idle state, and thus executing no 993 * code whatsoever. 994 */ 995 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 996 { 997 raw_lockdep_assert_held_rcu_node(rnp); 998 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 999 rnp->gp_seq)) 1000 WRITE_ONCE(rdp->gpwrap, true); 1001 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1002 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1003 } 1004 1005 /* 1006 * Snapshot the specified CPU's dynticks counter so that we can later 1007 * credit them with an implicit quiescent state. Return 1 if this CPU 1008 * is in dynticks idle mode, which is an extended quiescent state. 1009 */ 1010 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1011 { 1012 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1013 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1014 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1015 rcu_gpnum_ovf(rdp->mynode, rdp); 1016 return 1; 1017 } 1018 return 0; 1019 } 1020 1021 /* 1022 * Return true if the specified CPU has passed through a quiescent 1023 * state by virtue of being in or having passed through an dynticks 1024 * idle state since the last call to dyntick_save_progress_counter() 1025 * for this same CPU, or by virtue of having been offline. 1026 */ 1027 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1028 { 1029 unsigned long jtsq; 1030 bool *rnhqp; 1031 bool *ruqp; 1032 struct rcu_node *rnp = rdp->mynode; 1033 1034 /* 1035 * If the CPU passed through or entered a dynticks idle phase with 1036 * no active irq/NMI handlers, then we can safely pretend that the CPU 1037 * already acknowledged the request to pass through a quiescent 1038 * state. Either way, that CPU cannot possibly be in an RCU 1039 * read-side critical section that started before the beginning 1040 * of the current RCU grace period. 1041 */ 1042 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1043 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1044 rcu_gpnum_ovf(rnp, rdp); 1045 return 1; 1046 } 1047 1048 /* If waiting too long on an offline CPU, complain. */ 1049 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1050 time_after(jiffies, rcu_state.gp_start + HZ)) { 1051 bool onl; 1052 struct rcu_node *rnp1; 1053 1054 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1055 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1056 __func__, rnp->grplo, rnp->grphi, rnp->level, 1057 (long)rnp->gp_seq, (long)rnp->completedqs); 1058 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1059 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1060 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1061 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1062 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1063 __func__, rdp->cpu, ".o"[onl], 1064 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1065 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1066 return 1; /* Break things loose after complaining. */ 1067 } 1068 1069 /* 1070 * A CPU running for an extended time within the kernel can 1071 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1072 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1073 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1074 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1075 * variable are safe because the assignments are repeated if this 1076 * CPU failed to pass through a quiescent state. This code 1077 * also checks .jiffies_resched in case jiffies_to_sched_qs 1078 * is set way high. 1079 */ 1080 jtsq = READ_ONCE(jiffies_to_sched_qs); 1081 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1082 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1083 if (!READ_ONCE(*rnhqp) && 1084 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1085 time_after(jiffies, rcu_state.jiffies_resched) || 1086 rcu_state.cbovld)) { 1087 WRITE_ONCE(*rnhqp, true); 1088 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1089 smp_store_release(ruqp, true); 1090 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1091 WRITE_ONCE(*ruqp, true); 1092 } 1093 1094 /* 1095 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1096 * The above code handles this, but only for straight cond_resched(). 1097 * And some in-kernel loops check need_resched() before calling 1098 * cond_resched(), which defeats the above code for CPUs that are 1099 * running in-kernel with scheduling-clock interrupts disabled. 1100 * So hit them over the head with the resched_cpu() hammer! 1101 */ 1102 if (tick_nohz_full_cpu(rdp->cpu) && 1103 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1104 rcu_state.cbovld)) { 1105 WRITE_ONCE(*ruqp, true); 1106 resched_cpu(rdp->cpu); 1107 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1108 } 1109 1110 /* 1111 * If more than halfway to RCU CPU stall-warning time, invoke 1112 * resched_cpu() more frequently to try to loosen things up a bit. 1113 * Also check to see if the CPU is getting hammered with interrupts, 1114 * but only once per grace period, just to keep the IPIs down to 1115 * a dull roar. 1116 */ 1117 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1118 if (time_after(jiffies, 1119 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1120 resched_cpu(rdp->cpu); 1121 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1122 } 1123 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1124 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1125 (rnp->ffmask & rdp->grpmask)) { 1126 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1127 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ); 1128 rdp->rcu_iw_pending = true; 1129 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1130 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1131 } 1132 } 1133 1134 return 0; 1135 } 1136 1137 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1138 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1139 unsigned long gp_seq_req, const char *s) 1140 { 1141 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1142 gp_seq_req, rnp->level, 1143 rnp->grplo, rnp->grphi, s); 1144 } 1145 1146 /* 1147 * rcu_start_this_gp - Request the start of a particular grace period 1148 * @rnp_start: The leaf node of the CPU from which to start. 1149 * @rdp: The rcu_data corresponding to the CPU from which to start. 1150 * @gp_seq_req: The gp_seq of the grace period to start. 1151 * 1152 * Start the specified grace period, as needed to handle newly arrived 1153 * callbacks. The required future grace periods are recorded in each 1154 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1155 * is reason to awaken the grace-period kthread. 1156 * 1157 * The caller must hold the specified rcu_node structure's ->lock, which 1158 * is why the caller is responsible for waking the grace-period kthread. 1159 * 1160 * Returns true if the GP thread needs to be awakened else false. 1161 */ 1162 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1163 unsigned long gp_seq_req) 1164 { 1165 bool ret = false; 1166 struct rcu_node *rnp; 1167 1168 /* 1169 * Use funnel locking to either acquire the root rcu_node 1170 * structure's lock or bail out if the need for this grace period 1171 * has already been recorded -- or if that grace period has in 1172 * fact already started. If there is already a grace period in 1173 * progress in a non-leaf node, no recording is needed because the 1174 * end of the grace period will scan the leaf rcu_node structures. 1175 * Note that rnp_start->lock must not be released. 1176 */ 1177 raw_lockdep_assert_held_rcu_node(rnp_start); 1178 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1179 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1180 if (rnp != rnp_start) 1181 raw_spin_lock_rcu_node(rnp); 1182 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1183 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1184 (rnp != rnp_start && 1185 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1186 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1187 TPS("Prestarted")); 1188 goto unlock_out; 1189 } 1190 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1191 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1192 /* 1193 * We just marked the leaf or internal node, and a 1194 * grace period is in progress, which means that 1195 * rcu_gp_cleanup() will see the marking. Bail to 1196 * reduce contention. 1197 */ 1198 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1199 TPS("Startedleaf")); 1200 goto unlock_out; 1201 } 1202 if (rnp != rnp_start && rnp->parent != NULL) 1203 raw_spin_unlock_rcu_node(rnp); 1204 if (!rnp->parent) 1205 break; /* At root, and perhaps also leaf. */ 1206 } 1207 1208 /* If GP already in progress, just leave, otherwise start one. */ 1209 if (rcu_gp_in_progress()) { 1210 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1211 goto unlock_out; 1212 } 1213 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1214 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1215 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1216 if (!READ_ONCE(rcu_state.gp_kthread)) { 1217 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1218 goto unlock_out; 1219 } 1220 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1221 ret = true; /* Caller must wake GP kthread. */ 1222 unlock_out: 1223 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1224 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1225 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1226 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1227 } 1228 if (rnp != rnp_start) 1229 raw_spin_unlock_rcu_node(rnp); 1230 return ret; 1231 } 1232 1233 /* 1234 * Clean up any old requests for the just-ended grace period. Also return 1235 * whether any additional grace periods have been requested. 1236 */ 1237 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1238 { 1239 bool needmore; 1240 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1241 1242 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1243 if (!needmore) 1244 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1245 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1246 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1247 return needmore; 1248 } 1249 1250 /* 1251 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1252 * interrupt or softirq handler, in which case we just might immediately 1253 * sleep upon return, resulting in a grace-period hang), and don't bother 1254 * awakening when there is nothing for the grace-period kthread to do 1255 * (as in several CPUs raced to awaken, we lost), and finally don't try 1256 * to awaken a kthread that has not yet been created. If all those checks 1257 * are passed, track some debug information and awaken. 1258 * 1259 * So why do the self-wakeup when in an interrupt or softirq handler 1260 * in the grace-period kthread's context? Because the kthread might have 1261 * been interrupted just as it was going to sleep, and just after the final 1262 * pre-sleep check of the awaken condition. In this case, a wakeup really 1263 * is required, and is therefore supplied. 1264 */ 1265 static void rcu_gp_kthread_wake(void) 1266 { 1267 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1268 1269 if ((current == t && !in_irq() && !in_serving_softirq()) || 1270 !READ_ONCE(rcu_state.gp_flags) || !t) 1271 return; 1272 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1273 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1274 swake_up_one(&rcu_state.gp_wq); 1275 } 1276 1277 /* 1278 * If there is room, assign a ->gp_seq number to any callbacks on this 1279 * CPU that have not already been assigned. Also accelerate any callbacks 1280 * that were previously assigned a ->gp_seq number that has since proven 1281 * to be too conservative, which can happen if callbacks get assigned a 1282 * ->gp_seq number while RCU is idle, but with reference to a non-root 1283 * rcu_node structure. This function is idempotent, so it does not hurt 1284 * to call it repeatedly. Returns an flag saying that we should awaken 1285 * the RCU grace-period kthread. 1286 * 1287 * The caller must hold rnp->lock with interrupts disabled. 1288 */ 1289 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1290 { 1291 unsigned long gp_seq_req; 1292 bool ret = false; 1293 1294 rcu_lockdep_assert_cblist_protected(rdp); 1295 raw_lockdep_assert_held_rcu_node(rnp); 1296 1297 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1298 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1299 return false; 1300 1301 /* 1302 * Callbacks are often registered with incomplete grace-period 1303 * information. Something about the fact that getting exact 1304 * information requires acquiring a global lock... RCU therefore 1305 * makes a conservative estimate of the grace period number at which 1306 * a given callback will become ready to invoke. The following 1307 * code checks this estimate and improves it when possible, thus 1308 * accelerating callback invocation to an earlier grace-period 1309 * number. 1310 */ 1311 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1312 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1313 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1314 1315 /* Trace depending on how much we were able to accelerate. */ 1316 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1317 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1318 else 1319 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1320 return ret; 1321 } 1322 1323 /* 1324 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1325 * rcu_node structure's ->lock be held. It consults the cached value 1326 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1327 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1328 * while holding the leaf rcu_node structure's ->lock. 1329 */ 1330 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1331 struct rcu_data *rdp) 1332 { 1333 unsigned long c; 1334 bool needwake; 1335 1336 rcu_lockdep_assert_cblist_protected(rdp); 1337 c = rcu_seq_snap(&rcu_state.gp_seq); 1338 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1339 /* Old request still live, so mark recent callbacks. */ 1340 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1341 return; 1342 } 1343 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1344 needwake = rcu_accelerate_cbs(rnp, rdp); 1345 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1346 if (needwake) 1347 rcu_gp_kthread_wake(); 1348 } 1349 1350 /* 1351 * Move any callbacks whose grace period has completed to the 1352 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1353 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1354 * sublist. This function is idempotent, so it does not hurt to 1355 * invoke it repeatedly. As long as it is not invoked -too- often... 1356 * Returns true if the RCU grace-period kthread needs to be awakened. 1357 * 1358 * The caller must hold rnp->lock with interrupts disabled. 1359 */ 1360 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1361 { 1362 rcu_lockdep_assert_cblist_protected(rdp); 1363 raw_lockdep_assert_held_rcu_node(rnp); 1364 1365 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1366 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1367 return false; 1368 1369 /* 1370 * Find all callbacks whose ->gp_seq numbers indicate that they 1371 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1372 */ 1373 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1374 1375 /* Classify any remaining callbacks. */ 1376 return rcu_accelerate_cbs(rnp, rdp); 1377 } 1378 1379 /* 1380 * Move and classify callbacks, but only if doing so won't require 1381 * that the RCU grace-period kthread be awakened. 1382 */ 1383 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1384 struct rcu_data *rdp) 1385 { 1386 rcu_lockdep_assert_cblist_protected(rdp); 1387 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1388 !raw_spin_trylock_rcu_node(rnp)) 1389 return; 1390 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1391 raw_spin_unlock_rcu_node(rnp); 1392 } 1393 1394 /* 1395 * Update CPU-local rcu_data state to record the beginnings and ends of 1396 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1397 * structure corresponding to the current CPU, and must have irqs disabled. 1398 * Returns true if the grace-period kthread needs to be awakened. 1399 */ 1400 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1401 { 1402 bool ret = false; 1403 bool need_qs; 1404 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1405 rcu_segcblist_is_offloaded(&rdp->cblist); 1406 1407 raw_lockdep_assert_held_rcu_node(rnp); 1408 1409 if (rdp->gp_seq == rnp->gp_seq) 1410 return false; /* Nothing to do. */ 1411 1412 /* Handle the ends of any preceding grace periods first. */ 1413 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1414 unlikely(READ_ONCE(rdp->gpwrap))) { 1415 if (!offloaded) 1416 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1417 rdp->core_needs_qs = false; 1418 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1419 } else { 1420 if (!offloaded) 1421 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1422 if (rdp->core_needs_qs) 1423 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1424 } 1425 1426 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1427 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1428 unlikely(READ_ONCE(rdp->gpwrap))) { 1429 /* 1430 * If the current grace period is waiting for this CPU, 1431 * set up to detect a quiescent state, otherwise don't 1432 * go looking for one. 1433 */ 1434 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1435 need_qs = !!(rnp->qsmask & rdp->grpmask); 1436 rdp->cpu_no_qs.b.norm = need_qs; 1437 rdp->core_needs_qs = need_qs; 1438 zero_cpu_stall_ticks(rdp); 1439 } 1440 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1441 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1442 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1443 WRITE_ONCE(rdp->gpwrap, false); 1444 rcu_gpnum_ovf(rnp, rdp); 1445 return ret; 1446 } 1447 1448 static void note_gp_changes(struct rcu_data *rdp) 1449 { 1450 unsigned long flags; 1451 bool needwake; 1452 struct rcu_node *rnp; 1453 1454 local_irq_save(flags); 1455 rnp = rdp->mynode; 1456 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1457 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1458 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1459 local_irq_restore(flags); 1460 return; 1461 } 1462 needwake = __note_gp_changes(rnp, rdp); 1463 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1464 if (needwake) 1465 rcu_gp_kthread_wake(); 1466 } 1467 1468 static void rcu_gp_slow(int delay) 1469 { 1470 if (delay > 0 && 1471 !(rcu_seq_ctr(rcu_state.gp_seq) % 1472 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1473 schedule_timeout_uninterruptible(delay); 1474 } 1475 1476 /* 1477 * Initialize a new grace period. Return false if no grace period required. 1478 */ 1479 static bool rcu_gp_init(void) 1480 { 1481 unsigned long flags; 1482 unsigned long oldmask; 1483 unsigned long mask; 1484 struct rcu_data *rdp; 1485 struct rcu_node *rnp = rcu_get_root(); 1486 1487 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1488 raw_spin_lock_irq_rcu_node(rnp); 1489 if (!READ_ONCE(rcu_state.gp_flags)) { 1490 /* Spurious wakeup, tell caller to go back to sleep. */ 1491 raw_spin_unlock_irq_rcu_node(rnp); 1492 return false; 1493 } 1494 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1495 1496 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1497 /* 1498 * Grace period already in progress, don't start another. 1499 * Not supposed to be able to happen. 1500 */ 1501 raw_spin_unlock_irq_rcu_node(rnp); 1502 return false; 1503 } 1504 1505 /* Advance to a new grace period and initialize state. */ 1506 record_gp_stall_check_time(); 1507 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1508 rcu_seq_start(&rcu_state.gp_seq); 1509 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1510 raw_spin_unlock_irq_rcu_node(rnp); 1511 1512 /* 1513 * Apply per-leaf buffered online and offline operations to the 1514 * rcu_node tree. Note that this new grace period need not wait 1515 * for subsequent online CPUs, and that quiescent-state forcing 1516 * will handle subsequent offline CPUs. 1517 */ 1518 rcu_state.gp_state = RCU_GP_ONOFF; 1519 rcu_for_each_leaf_node(rnp) { 1520 raw_spin_lock(&rcu_state.ofl_lock); 1521 raw_spin_lock_irq_rcu_node(rnp); 1522 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1523 !rnp->wait_blkd_tasks) { 1524 /* Nothing to do on this leaf rcu_node structure. */ 1525 raw_spin_unlock_irq_rcu_node(rnp); 1526 raw_spin_unlock(&rcu_state.ofl_lock); 1527 continue; 1528 } 1529 1530 /* Record old state, apply changes to ->qsmaskinit field. */ 1531 oldmask = rnp->qsmaskinit; 1532 rnp->qsmaskinit = rnp->qsmaskinitnext; 1533 1534 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1535 if (!oldmask != !rnp->qsmaskinit) { 1536 if (!oldmask) { /* First online CPU for rcu_node. */ 1537 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1538 rcu_init_new_rnp(rnp); 1539 } else if (rcu_preempt_has_tasks(rnp)) { 1540 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1541 } else { /* Last offline CPU and can propagate. */ 1542 rcu_cleanup_dead_rnp(rnp); 1543 } 1544 } 1545 1546 /* 1547 * If all waited-on tasks from prior grace period are 1548 * done, and if all this rcu_node structure's CPUs are 1549 * still offline, propagate up the rcu_node tree and 1550 * clear ->wait_blkd_tasks. Otherwise, if one of this 1551 * rcu_node structure's CPUs has since come back online, 1552 * simply clear ->wait_blkd_tasks. 1553 */ 1554 if (rnp->wait_blkd_tasks && 1555 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1556 rnp->wait_blkd_tasks = false; 1557 if (!rnp->qsmaskinit) 1558 rcu_cleanup_dead_rnp(rnp); 1559 } 1560 1561 raw_spin_unlock_irq_rcu_node(rnp); 1562 raw_spin_unlock(&rcu_state.ofl_lock); 1563 } 1564 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1565 1566 /* 1567 * Set the quiescent-state-needed bits in all the rcu_node 1568 * structures for all currently online CPUs in breadth-first 1569 * order, starting from the root rcu_node structure, relying on the 1570 * layout of the tree within the rcu_state.node[] array. Note that 1571 * other CPUs will access only the leaves of the hierarchy, thus 1572 * seeing that no grace period is in progress, at least until the 1573 * corresponding leaf node has been initialized. 1574 * 1575 * The grace period cannot complete until the initialization 1576 * process finishes, because this kthread handles both. 1577 */ 1578 rcu_state.gp_state = RCU_GP_INIT; 1579 rcu_for_each_node_breadth_first(rnp) { 1580 rcu_gp_slow(gp_init_delay); 1581 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1582 rdp = this_cpu_ptr(&rcu_data); 1583 rcu_preempt_check_blocked_tasks(rnp); 1584 rnp->qsmask = rnp->qsmaskinit; 1585 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1586 if (rnp == rdp->mynode) 1587 (void)__note_gp_changes(rnp, rdp); 1588 rcu_preempt_boost_start_gp(rnp); 1589 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1590 rnp->level, rnp->grplo, 1591 rnp->grphi, rnp->qsmask); 1592 /* Quiescent states for tasks on any now-offline CPUs. */ 1593 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1594 rnp->rcu_gp_init_mask = mask; 1595 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1596 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1597 else 1598 raw_spin_unlock_irq_rcu_node(rnp); 1599 cond_resched_tasks_rcu_qs(); 1600 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1601 } 1602 1603 return true; 1604 } 1605 1606 /* 1607 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1608 * time. 1609 */ 1610 static bool rcu_gp_fqs_check_wake(int *gfp) 1611 { 1612 struct rcu_node *rnp = rcu_get_root(); 1613 1614 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1615 *gfp = READ_ONCE(rcu_state.gp_flags); 1616 if (*gfp & RCU_GP_FLAG_FQS) 1617 return true; 1618 1619 /* The current grace period has completed. */ 1620 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1621 return true; 1622 1623 return false; 1624 } 1625 1626 /* 1627 * Do one round of quiescent-state forcing. 1628 */ 1629 static void rcu_gp_fqs(bool first_time) 1630 { 1631 struct rcu_node *rnp = rcu_get_root(); 1632 1633 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1634 rcu_state.n_force_qs++; 1635 if (first_time) { 1636 /* Collect dyntick-idle snapshots. */ 1637 force_qs_rnp(dyntick_save_progress_counter); 1638 } else { 1639 /* Handle dyntick-idle and offline CPUs. */ 1640 force_qs_rnp(rcu_implicit_dynticks_qs); 1641 } 1642 /* Clear flag to prevent immediate re-entry. */ 1643 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1644 raw_spin_lock_irq_rcu_node(rnp); 1645 WRITE_ONCE(rcu_state.gp_flags, 1646 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1647 raw_spin_unlock_irq_rcu_node(rnp); 1648 } 1649 } 1650 1651 /* 1652 * Loop doing repeated quiescent-state forcing until the grace period ends. 1653 */ 1654 static void rcu_gp_fqs_loop(void) 1655 { 1656 bool first_gp_fqs; 1657 int gf; 1658 unsigned long j; 1659 int ret; 1660 struct rcu_node *rnp = rcu_get_root(); 1661 1662 first_gp_fqs = true; 1663 j = READ_ONCE(jiffies_till_first_fqs); 1664 ret = 0; 1665 for (;;) { 1666 if (!ret) { 1667 rcu_state.jiffies_force_qs = jiffies + j; 1668 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1669 jiffies + (j ? 3 * j : 2)); 1670 } 1671 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1672 TPS("fqswait")); 1673 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1674 ret = swait_event_idle_timeout_exclusive( 1675 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1676 rcu_state.gp_state = RCU_GP_DOING_FQS; 1677 /* Locking provides needed memory barriers. */ 1678 /* If grace period done, leave loop. */ 1679 if (!READ_ONCE(rnp->qsmask) && 1680 !rcu_preempt_blocked_readers_cgp(rnp)) 1681 break; 1682 /* If time for quiescent-state forcing, do it. */ 1683 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1684 (gf & RCU_GP_FLAG_FQS)) { 1685 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1686 TPS("fqsstart")); 1687 rcu_gp_fqs(first_gp_fqs); 1688 first_gp_fqs = false; 1689 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1690 TPS("fqsend")); 1691 cond_resched_tasks_rcu_qs(); 1692 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1693 ret = 0; /* Force full wait till next FQS. */ 1694 j = READ_ONCE(jiffies_till_next_fqs); 1695 } else { 1696 /* Deal with stray signal. */ 1697 cond_resched_tasks_rcu_qs(); 1698 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1699 WARN_ON(signal_pending(current)); 1700 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1701 TPS("fqswaitsig")); 1702 ret = 1; /* Keep old FQS timing. */ 1703 j = jiffies; 1704 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1705 j = 1; 1706 else 1707 j = rcu_state.jiffies_force_qs - j; 1708 } 1709 } 1710 } 1711 1712 /* 1713 * Clean up after the old grace period. 1714 */ 1715 static void rcu_gp_cleanup(void) 1716 { 1717 int cpu; 1718 bool needgp = false; 1719 unsigned long gp_duration; 1720 unsigned long new_gp_seq; 1721 bool offloaded; 1722 struct rcu_data *rdp; 1723 struct rcu_node *rnp = rcu_get_root(); 1724 struct swait_queue_head *sq; 1725 1726 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1727 raw_spin_lock_irq_rcu_node(rnp); 1728 rcu_state.gp_end = jiffies; 1729 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1730 if (gp_duration > rcu_state.gp_max) 1731 rcu_state.gp_max = gp_duration; 1732 1733 /* 1734 * We know the grace period is complete, but to everyone else 1735 * it appears to still be ongoing. But it is also the case 1736 * that to everyone else it looks like there is nothing that 1737 * they can do to advance the grace period. It is therefore 1738 * safe for us to drop the lock in order to mark the grace 1739 * period as completed in all of the rcu_node structures. 1740 */ 1741 raw_spin_unlock_irq_rcu_node(rnp); 1742 1743 /* 1744 * Propagate new ->gp_seq value to rcu_node structures so that 1745 * other CPUs don't have to wait until the start of the next grace 1746 * period to process their callbacks. This also avoids some nasty 1747 * RCU grace-period initialization races by forcing the end of 1748 * the current grace period to be completely recorded in all of 1749 * the rcu_node structures before the beginning of the next grace 1750 * period is recorded in any of the rcu_node structures. 1751 */ 1752 new_gp_seq = rcu_state.gp_seq; 1753 rcu_seq_end(&new_gp_seq); 1754 rcu_for_each_node_breadth_first(rnp) { 1755 raw_spin_lock_irq_rcu_node(rnp); 1756 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1757 dump_blkd_tasks(rnp, 10); 1758 WARN_ON_ONCE(rnp->qsmask); 1759 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1760 rdp = this_cpu_ptr(&rcu_data); 1761 if (rnp == rdp->mynode) 1762 needgp = __note_gp_changes(rnp, rdp) || needgp; 1763 /* smp_mb() provided by prior unlock-lock pair. */ 1764 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1765 // Reset overload indication for CPUs no longer overloaded 1766 if (rcu_is_leaf_node(rnp)) 1767 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1768 rdp = per_cpu_ptr(&rcu_data, cpu); 1769 check_cb_ovld_locked(rdp, rnp); 1770 } 1771 sq = rcu_nocb_gp_get(rnp); 1772 raw_spin_unlock_irq_rcu_node(rnp); 1773 rcu_nocb_gp_cleanup(sq); 1774 cond_resched_tasks_rcu_qs(); 1775 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1776 rcu_gp_slow(gp_cleanup_delay); 1777 } 1778 rnp = rcu_get_root(); 1779 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1780 1781 /* Declare grace period done, trace first to use old GP number. */ 1782 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1783 rcu_seq_end(&rcu_state.gp_seq); 1784 rcu_state.gp_state = RCU_GP_IDLE; 1785 /* Check for GP requests since above loop. */ 1786 rdp = this_cpu_ptr(&rcu_data); 1787 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1788 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1789 TPS("CleanupMore")); 1790 needgp = true; 1791 } 1792 /* Advance CBs to reduce false positives below. */ 1793 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1794 rcu_segcblist_is_offloaded(&rdp->cblist); 1795 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1796 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1797 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1798 trace_rcu_grace_period(rcu_state.name, 1799 rcu_state.gp_seq, 1800 TPS("newreq")); 1801 } else { 1802 WRITE_ONCE(rcu_state.gp_flags, 1803 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1804 } 1805 raw_spin_unlock_irq_rcu_node(rnp); 1806 } 1807 1808 /* 1809 * Body of kthread that handles grace periods. 1810 */ 1811 static int __noreturn rcu_gp_kthread(void *unused) 1812 { 1813 rcu_bind_gp_kthread(); 1814 for (;;) { 1815 1816 /* Handle grace-period start. */ 1817 for (;;) { 1818 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1819 TPS("reqwait")); 1820 rcu_state.gp_state = RCU_GP_WAIT_GPS; 1821 swait_event_idle_exclusive(rcu_state.gp_wq, 1822 READ_ONCE(rcu_state.gp_flags) & 1823 RCU_GP_FLAG_INIT); 1824 rcu_state.gp_state = RCU_GP_DONE_GPS; 1825 /* Locking provides needed memory barrier. */ 1826 if (rcu_gp_init()) 1827 break; 1828 cond_resched_tasks_rcu_qs(); 1829 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1830 WARN_ON(signal_pending(current)); 1831 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1832 TPS("reqwaitsig")); 1833 } 1834 1835 /* Handle quiescent-state forcing. */ 1836 rcu_gp_fqs_loop(); 1837 1838 /* Handle grace-period end. */ 1839 rcu_state.gp_state = RCU_GP_CLEANUP; 1840 rcu_gp_cleanup(); 1841 rcu_state.gp_state = RCU_GP_CLEANED; 1842 } 1843 } 1844 1845 /* 1846 * Report a full set of quiescent states to the rcu_state data structure. 1847 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1848 * another grace period is required. Whether we wake the grace-period 1849 * kthread or it awakens itself for the next round of quiescent-state 1850 * forcing, that kthread will clean up after the just-completed grace 1851 * period. Note that the caller must hold rnp->lock, which is released 1852 * before return. 1853 */ 1854 static void rcu_report_qs_rsp(unsigned long flags) 1855 __releases(rcu_get_root()->lock) 1856 { 1857 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1858 WARN_ON_ONCE(!rcu_gp_in_progress()); 1859 WRITE_ONCE(rcu_state.gp_flags, 1860 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1861 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1862 rcu_gp_kthread_wake(); 1863 } 1864 1865 /* 1866 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1867 * Allows quiescent states for a group of CPUs to be reported at one go 1868 * to the specified rcu_node structure, though all the CPUs in the group 1869 * must be represented by the same rcu_node structure (which need not be a 1870 * leaf rcu_node structure, though it often will be). The gps parameter 1871 * is the grace-period snapshot, which means that the quiescent states 1872 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1873 * must be held upon entry, and it is released before return. 1874 * 1875 * As a special case, if mask is zero, the bit-already-cleared check is 1876 * disabled. This allows propagating quiescent state due to resumed tasks 1877 * during grace-period initialization. 1878 */ 1879 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1880 unsigned long gps, unsigned long flags) 1881 __releases(rnp->lock) 1882 { 1883 unsigned long oldmask = 0; 1884 struct rcu_node *rnp_c; 1885 1886 raw_lockdep_assert_held_rcu_node(rnp); 1887 1888 /* Walk up the rcu_node hierarchy. */ 1889 for (;;) { 1890 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1891 1892 /* 1893 * Our bit has already been cleared, or the 1894 * relevant grace period is already over, so done. 1895 */ 1896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1897 return; 1898 } 1899 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1900 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1901 rcu_preempt_blocked_readers_cgp(rnp)); 1902 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1903 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1904 mask, rnp->qsmask, rnp->level, 1905 rnp->grplo, rnp->grphi, 1906 !!rnp->gp_tasks); 1907 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1908 1909 /* Other bits still set at this level, so done. */ 1910 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1911 return; 1912 } 1913 rnp->completedqs = rnp->gp_seq; 1914 mask = rnp->grpmask; 1915 if (rnp->parent == NULL) { 1916 1917 /* No more levels. Exit loop holding root lock. */ 1918 1919 break; 1920 } 1921 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1922 rnp_c = rnp; 1923 rnp = rnp->parent; 1924 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1925 oldmask = READ_ONCE(rnp_c->qsmask); 1926 } 1927 1928 /* 1929 * Get here if we are the last CPU to pass through a quiescent 1930 * state for this grace period. Invoke rcu_report_qs_rsp() 1931 * to clean up and start the next grace period if one is needed. 1932 */ 1933 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1934 } 1935 1936 /* 1937 * Record a quiescent state for all tasks that were previously queued 1938 * on the specified rcu_node structure and that were blocking the current 1939 * RCU grace period. The caller must hold the corresponding rnp->lock with 1940 * irqs disabled, and this lock is released upon return, but irqs remain 1941 * disabled. 1942 */ 1943 static void __maybe_unused 1944 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1945 __releases(rnp->lock) 1946 { 1947 unsigned long gps; 1948 unsigned long mask; 1949 struct rcu_node *rnp_p; 1950 1951 raw_lockdep_assert_held_rcu_node(rnp); 1952 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1953 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1954 rnp->qsmask != 0) { 1955 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1956 return; /* Still need more quiescent states! */ 1957 } 1958 1959 rnp->completedqs = rnp->gp_seq; 1960 rnp_p = rnp->parent; 1961 if (rnp_p == NULL) { 1962 /* 1963 * Only one rcu_node structure in the tree, so don't 1964 * try to report up to its nonexistent parent! 1965 */ 1966 rcu_report_qs_rsp(flags); 1967 return; 1968 } 1969 1970 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1971 gps = rnp->gp_seq; 1972 mask = rnp->grpmask; 1973 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1974 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1975 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1976 } 1977 1978 /* 1979 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1980 * structure. This must be called from the specified CPU. 1981 */ 1982 static void 1983 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 1984 { 1985 unsigned long flags; 1986 unsigned long mask; 1987 bool needwake = false; 1988 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1989 rcu_segcblist_is_offloaded(&rdp->cblist); 1990 struct rcu_node *rnp; 1991 1992 rnp = rdp->mynode; 1993 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1994 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1995 rdp->gpwrap) { 1996 1997 /* 1998 * The grace period in which this quiescent state was 1999 * recorded has ended, so don't report it upwards. 2000 * We will instead need a new quiescent state that lies 2001 * within the current grace period. 2002 */ 2003 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2004 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2005 return; 2006 } 2007 mask = rdp->grpmask; 2008 if (rdp->cpu == smp_processor_id()) 2009 rdp->core_needs_qs = false; 2010 if ((rnp->qsmask & mask) == 0) { 2011 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2012 } else { 2013 /* 2014 * This GP can't end until cpu checks in, so all of our 2015 * callbacks can be processed during the next GP. 2016 */ 2017 if (!offloaded) 2018 needwake = rcu_accelerate_cbs(rnp, rdp); 2019 2020 rcu_disable_urgency_upon_qs(rdp); 2021 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2022 /* ^^^ Released rnp->lock */ 2023 if (needwake) 2024 rcu_gp_kthread_wake(); 2025 } 2026 } 2027 2028 /* 2029 * Check to see if there is a new grace period of which this CPU 2030 * is not yet aware, and if so, set up local rcu_data state for it. 2031 * Otherwise, see if this CPU has just passed through its first 2032 * quiescent state for this grace period, and record that fact if so. 2033 */ 2034 static void 2035 rcu_check_quiescent_state(struct rcu_data *rdp) 2036 { 2037 /* Check for grace-period ends and beginnings. */ 2038 note_gp_changes(rdp); 2039 2040 /* 2041 * Does this CPU still need to do its part for current grace period? 2042 * If no, return and let the other CPUs do their part as well. 2043 */ 2044 if (!rdp->core_needs_qs) 2045 return; 2046 2047 /* 2048 * Was there a quiescent state since the beginning of the grace 2049 * period? If no, then exit and wait for the next call. 2050 */ 2051 if (rdp->cpu_no_qs.b.norm) 2052 return; 2053 2054 /* 2055 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2056 * judge of that). 2057 */ 2058 rcu_report_qs_rdp(rdp->cpu, rdp); 2059 } 2060 2061 /* 2062 * Near the end of the offline process. Trace the fact that this CPU 2063 * is going offline. 2064 */ 2065 int rcutree_dying_cpu(unsigned int cpu) 2066 { 2067 bool blkd; 2068 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2069 struct rcu_node *rnp = rdp->mynode; 2070 2071 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2072 return 0; 2073 2074 blkd = !!(rnp->qsmask & rdp->grpmask); 2075 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2076 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2077 return 0; 2078 } 2079 2080 /* 2081 * All CPUs for the specified rcu_node structure have gone offline, 2082 * and all tasks that were preempted within an RCU read-side critical 2083 * section while running on one of those CPUs have since exited their RCU 2084 * read-side critical section. Some other CPU is reporting this fact with 2085 * the specified rcu_node structure's ->lock held and interrupts disabled. 2086 * This function therefore goes up the tree of rcu_node structures, 2087 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2088 * the leaf rcu_node structure's ->qsmaskinit field has already been 2089 * updated. 2090 * 2091 * This function does check that the specified rcu_node structure has 2092 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2093 * prematurely. That said, invoking it after the fact will cost you 2094 * a needless lock acquisition. So once it has done its work, don't 2095 * invoke it again. 2096 */ 2097 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2098 { 2099 long mask; 2100 struct rcu_node *rnp = rnp_leaf; 2101 2102 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2103 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2104 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2105 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2106 return; 2107 for (;;) { 2108 mask = rnp->grpmask; 2109 rnp = rnp->parent; 2110 if (!rnp) 2111 break; 2112 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2113 rnp->qsmaskinit &= ~mask; 2114 /* Between grace periods, so better already be zero! */ 2115 WARN_ON_ONCE(rnp->qsmask); 2116 if (rnp->qsmaskinit) { 2117 raw_spin_unlock_rcu_node(rnp); 2118 /* irqs remain disabled. */ 2119 return; 2120 } 2121 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2122 } 2123 } 2124 2125 /* 2126 * The CPU has been completely removed, and some other CPU is reporting 2127 * this fact from process context. Do the remainder of the cleanup. 2128 * There can only be one CPU hotplug operation at a time, so no need for 2129 * explicit locking. 2130 */ 2131 int rcutree_dead_cpu(unsigned int cpu) 2132 { 2133 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2134 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2135 2136 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2137 return 0; 2138 2139 /* Adjust any no-longer-needed kthreads. */ 2140 rcu_boost_kthread_setaffinity(rnp, -1); 2141 /* Do any needed no-CB deferred wakeups from this CPU. */ 2142 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2143 2144 // Stop-machine done, so allow nohz_full to disable tick. 2145 tick_dep_clear(TICK_DEP_BIT_RCU); 2146 return 0; 2147 } 2148 2149 /* 2150 * Invoke any RCU callbacks that have made it to the end of their grace 2151 * period. Thottle as specified by rdp->blimit. 2152 */ 2153 static void rcu_do_batch(struct rcu_data *rdp) 2154 { 2155 unsigned long flags; 2156 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2157 rcu_segcblist_is_offloaded(&rdp->cblist); 2158 struct rcu_head *rhp; 2159 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2160 long bl, count; 2161 long pending, tlimit = 0; 2162 2163 /* If no callbacks are ready, just return. */ 2164 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2165 trace_rcu_batch_start(rcu_state.name, 2166 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2167 trace_rcu_batch_end(rcu_state.name, 0, 2168 !rcu_segcblist_empty(&rdp->cblist), 2169 need_resched(), is_idle_task(current), 2170 rcu_is_callbacks_kthread()); 2171 return; 2172 } 2173 2174 /* 2175 * Extract the list of ready callbacks, disabling to prevent 2176 * races with call_rcu() from interrupt handlers. Leave the 2177 * callback counts, as rcu_barrier() needs to be conservative. 2178 */ 2179 local_irq_save(flags); 2180 rcu_nocb_lock(rdp); 2181 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2182 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2183 bl = max(rdp->blimit, pending >> rcu_divisor); 2184 if (unlikely(bl > 100)) 2185 tlimit = local_clock() + rcu_resched_ns; 2186 trace_rcu_batch_start(rcu_state.name, 2187 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2188 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2189 if (offloaded) 2190 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2191 rcu_nocb_unlock_irqrestore(rdp, flags); 2192 2193 /* Invoke callbacks. */ 2194 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2195 rhp = rcu_cblist_dequeue(&rcl); 2196 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2197 rcu_callback_t f; 2198 2199 debug_rcu_head_unqueue(rhp); 2200 2201 rcu_lock_acquire(&rcu_callback_map); 2202 trace_rcu_invoke_callback(rcu_state.name, rhp); 2203 2204 f = rhp->func; 2205 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2206 f(rhp); 2207 2208 rcu_lock_release(&rcu_callback_map); 2209 2210 /* 2211 * Stop only if limit reached and CPU has something to do. 2212 * Note: The rcl structure counts down from zero. 2213 */ 2214 if (-rcl.len >= bl && !offloaded && 2215 (need_resched() || 2216 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2217 break; 2218 if (unlikely(tlimit)) { 2219 /* only call local_clock() every 32 callbacks */ 2220 if (likely((-rcl.len & 31) || local_clock() < tlimit)) 2221 continue; 2222 /* Exceeded the time limit, so leave. */ 2223 break; 2224 } 2225 if (offloaded) { 2226 WARN_ON_ONCE(in_serving_softirq()); 2227 local_bh_enable(); 2228 lockdep_assert_irqs_enabled(); 2229 cond_resched_tasks_rcu_qs(); 2230 lockdep_assert_irqs_enabled(); 2231 local_bh_disable(); 2232 } 2233 } 2234 2235 local_irq_save(flags); 2236 rcu_nocb_lock(rdp); 2237 count = -rcl.len; 2238 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2239 is_idle_task(current), rcu_is_callbacks_kthread()); 2240 2241 /* Update counts and requeue any remaining callbacks. */ 2242 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2243 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2244 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2245 2246 /* Reinstate batch limit if we have worked down the excess. */ 2247 count = rcu_segcblist_n_cbs(&rdp->cblist); 2248 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2249 rdp->blimit = blimit; 2250 2251 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2252 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2253 rdp->qlen_last_fqs_check = 0; 2254 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2255 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2256 rdp->qlen_last_fqs_check = count; 2257 2258 /* 2259 * The following usually indicates a double call_rcu(). To track 2260 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2261 */ 2262 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist)); 2263 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2264 count != 0 && rcu_segcblist_empty(&rdp->cblist)); 2265 2266 rcu_nocb_unlock_irqrestore(rdp, flags); 2267 2268 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2269 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2270 invoke_rcu_core(); 2271 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2272 } 2273 2274 /* 2275 * This function is invoked from each scheduling-clock interrupt, 2276 * and checks to see if this CPU is in a non-context-switch quiescent 2277 * state, for example, user mode or idle loop. It also schedules RCU 2278 * core processing. If the current grace period has gone on too long, 2279 * it will ask the scheduler to manufacture a context switch for the sole 2280 * purpose of providing a providing the needed quiescent state. 2281 */ 2282 void rcu_sched_clock_irq(int user) 2283 { 2284 trace_rcu_utilization(TPS("Start scheduler-tick")); 2285 raw_cpu_inc(rcu_data.ticks_this_gp); 2286 /* The load-acquire pairs with the store-release setting to true. */ 2287 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2288 /* Idle and userspace execution already are quiescent states. */ 2289 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2290 set_tsk_need_resched(current); 2291 set_preempt_need_resched(); 2292 } 2293 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2294 } 2295 rcu_flavor_sched_clock_irq(user); 2296 if (rcu_pending(user)) 2297 invoke_rcu_core(); 2298 2299 trace_rcu_utilization(TPS("End scheduler-tick")); 2300 } 2301 2302 /* 2303 * Scan the leaf rcu_node structures. For each structure on which all 2304 * CPUs have reported a quiescent state and on which there are tasks 2305 * blocking the current grace period, initiate RCU priority boosting. 2306 * Otherwise, invoke the specified function to check dyntick state for 2307 * each CPU that has not yet reported a quiescent state. 2308 */ 2309 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2310 { 2311 int cpu; 2312 unsigned long flags; 2313 unsigned long mask; 2314 struct rcu_data *rdp; 2315 struct rcu_node *rnp; 2316 2317 rcu_state.cbovld = rcu_state.cbovldnext; 2318 rcu_state.cbovldnext = false; 2319 rcu_for_each_leaf_node(rnp) { 2320 cond_resched_tasks_rcu_qs(); 2321 mask = 0; 2322 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2323 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2324 if (rnp->qsmask == 0) { 2325 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) || 2326 rcu_preempt_blocked_readers_cgp(rnp)) { 2327 /* 2328 * No point in scanning bits because they 2329 * are all zero. But we might need to 2330 * priority-boost blocked readers. 2331 */ 2332 rcu_initiate_boost(rnp, flags); 2333 /* rcu_initiate_boost() releases rnp->lock */ 2334 continue; 2335 } 2336 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2337 continue; 2338 } 2339 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2340 rdp = per_cpu_ptr(&rcu_data, cpu); 2341 if (f(rdp)) { 2342 mask |= rdp->grpmask; 2343 rcu_disable_urgency_upon_qs(rdp); 2344 } 2345 } 2346 if (mask != 0) { 2347 /* Idle/offline CPUs, report (releases rnp->lock). */ 2348 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2349 } else { 2350 /* Nothing to do here, so just drop the lock. */ 2351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2352 } 2353 } 2354 } 2355 2356 /* 2357 * Force quiescent states on reluctant CPUs, and also detect which 2358 * CPUs are in dyntick-idle mode. 2359 */ 2360 void rcu_force_quiescent_state(void) 2361 { 2362 unsigned long flags; 2363 bool ret; 2364 struct rcu_node *rnp; 2365 struct rcu_node *rnp_old = NULL; 2366 2367 /* Funnel through hierarchy to reduce memory contention. */ 2368 rnp = __this_cpu_read(rcu_data.mynode); 2369 for (; rnp != NULL; rnp = rnp->parent) { 2370 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2371 !raw_spin_trylock(&rnp->fqslock); 2372 if (rnp_old != NULL) 2373 raw_spin_unlock(&rnp_old->fqslock); 2374 if (ret) 2375 return; 2376 rnp_old = rnp; 2377 } 2378 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2379 2380 /* Reached the root of the rcu_node tree, acquire lock. */ 2381 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2382 raw_spin_unlock(&rnp_old->fqslock); 2383 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2384 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2385 return; /* Someone beat us to it. */ 2386 } 2387 WRITE_ONCE(rcu_state.gp_flags, 2388 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2389 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2390 rcu_gp_kthread_wake(); 2391 } 2392 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2393 2394 /* Perform RCU core processing work for the current CPU. */ 2395 static __latent_entropy void rcu_core(void) 2396 { 2397 unsigned long flags; 2398 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2399 struct rcu_node *rnp = rdp->mynode; 2400 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2401 rcu_segcblist_is_offloaded(&rdp->cblist); 2402 2403 if (cpu_is_offline(smp_processor_id())) 2404 return; 2405 trace_rcu_utilization(TPS("Start RCU core")); 2406 WARN_ON_ONCE(!rdp->beenonline); 2407 2408 /* Report any deferred quiescent states if preemption enabled. */ 2409 if (!(preempt_count() & PREEMPT_MASK)) { 2410 rcu_preempt_deferred_qs(current); 2411 } else if (rcu_preempt_need_deferred_qs(current)) { 2412 set_tsk_need_resched(current); 2413 set_preempt_need_resched(); 2414 } 2415 2416 /* Update RCU state based on any recent quiescent states. */ 2417 rcu_check_quiescent_state(rdp); 2418 2419 /* No grace period and unregistered callbacks? */ 2420 if (!rcu_gp_in_progress() && 2421 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) { 2422 local_irq_save(flags); 2423 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2424 rcu_accelerate_cbs_unlocked(rnp, rdp); 2425 local_irq_restore(flags); 2426 } 2427 2428 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2429 2430 /* If there are callbacks ready, invoke them. */ 2431 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) && 2432 likely(READ_ONCE(rcu_scheduler_fully_active))) 2433 rcu_do_batch(rdp); 2434 2435 /* Do any needed deferred wakeups of rcuo kthreads. */ 2436 do_nocb_deferred_wakeup(rdp); 2437 trace_rcu_utilization(TPS("End RCU core")); 2438 } 2439 2440 static void rcu_core_si(struct softirq_action *h) 2441 { 2442 rcu_core(); 2443 } 2444 2445 static void rcu_wake_cond(struct task_struct *t, int status) 2446 { 2447 /* 2448 * If the thread is yielding, only wake it when this 2449 * is invoked from idle 2450 */ 2451 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2452 wake_up_process(t); 2453 } 2454 2455 static void invoke_rcu_core_kthread(void) 2456 { 2457 struct task_struct *t; 2458 unsigned long flags; 2459 2460 local_irq_save(flags); 2461 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2462 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2463 if (t != NULL && t != current) 2464 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2465 local_irq_restore(flags); 2466 } 2467 2468 /* 2469 * Wake up this CPU's rcuc kthread to do RCU core processing. 2470 */ 2471 static void invoke_rcu_core(void) 2472 { 2473 if (!cpu_online(smp_processor_id())) 2474 return; 2475 if (use_softirq) 2476 raise_softirq(RCU_SOFTIRQ); 2477 else 2478 invoke_rcu_core_kthread(); 2479 } 2480 2481 static void rcu_cpu_kthread_park(unsigned int cpu) 2482 { 2483 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2484 } 2485 2486 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2487 { 2488 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2489 } 2490 2491 /* 2492 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2493 * the RCU softirq used in configurations of RCU that do not support RCU 2494 * priority boosting. 2495 */ 2496 static void rcu_cpu_kthread(unsigned int cpu) 2497 { 2498 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2499 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2500 int spincnt; 2501 2502 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2503 for (spincnt = 0; spincnt < 10; spincnt++) { 2504 local_bh_disable(); 2505 *statusp = RCU_KTHREAD_RUNNING; 2506 local_irq_disable(); 2507 work = *workp; 2508 *workp = 0; 2509 local_irq_enable(); 2510 if (work) 2511 rcu_core(); 2512 local_bh_enable(); 2513 if (*workp == 0) { 2514 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2515 *statusp = RCU_KTHREAD_WAITING; 2516 return; 2517 } 2518 } 2519 *statusp = RCU_KTHREAD_YIELDING; 2520 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2521 schedule_timeout_interruptible(2); 2522 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2523 *statusp = RCU_KTHREAD_WAITING; 2524 } 2525 2526 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2527 .store = &rcu_data.rcu_cpu_kthread_task, 2528 .thread_should_run = rcu_cpu_kthread_should_run, 2529 .thread_fn = rcu_cpu_kthread, 2530 .thread_comm = "rcuc/%u", 2531 .setup = rcu_cpu_kthread_setup, 2532 .park = rcu_cpu_kthread_park, 2533 }; 2534 2535 /* 2536 * Spawn per-CPU RCU core processing kthreads. 2537 */ 2538 static int __init rcu_spawn_core_kthreads(void) 2539 { 2540 int cpu; 2541 2542 for_each_possible_cpu(cpu) 2543 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2544 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2545 return 0; 2546 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2547 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2548 return 0; 2549 } 2550 early_initcall(rcu_spawn_core_kthreads); 2551 2552 /* 2553 * Handle any core-RCU processing required by a call_rcu() invocation. 2554 */ 2555 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2556 unsigned long flags) 2557 { 2558 /* 2559 * If called from an extended quiescent state, invoke the RCU 2560 * core in order to force a re-evaluation of RCU's idleness. 2561 */ 2562 if (!rcu_is_watching()) 2563 invoke_rcu_core(); 2564 2565 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2566 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2567 return; 2568 2569 /* 2570 * Force the grace period if too many callbacks or too long waiting. 2571 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2572 * if some other CPU has recently done so. Also, don't bother 2573 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2574 * is the only one waiting for a grace period to complete. 2575 */ 2576 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2577 rdp->qlen_last_fqs_check + qhimark)) { 2578 2579 /* Are we ignoring a completed grace period? */ 2580 note_gp_changes(rdp); 2581 2582 /* Start a new grace period if one not already started. */ 2583 if (!rcu_gp_in_progress()) { 2584 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2585 } else { 2586 /* Give the grace period a kick. */ 2587 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2588 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2589 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2590 rcu_force_quiescent_state(); 2591 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2592 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2593 } 2594 } 2595 } 2596 2597 /* 2598 * RCU callback function to leak a callback. 2599 */ 2600 static void rcu_leak_callback(struct rcu_head *rhp) 2601 { 2602 } 2603 2604 /* 2605 * Check and if necessary update the leaf rcu_node structure's 2606 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2607 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2608 * structure's ->lock. 2609 */ 2610 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2611 { 2612 raw_lockdep_assert_held_rcu_node(rnp); 2613 if (qovld_calc <= 0) 2614 return; // Early boot and wildcard value set. 2615 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2616 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2617 else 2618 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2619 } 2620 2621 /* 2622 * Check and if necessary update the leaf rcu_node structure's 2623 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2624 * number of queued RCU callbacks. No locks need be held, but the 2625 * caller must have disabled interrupts. 2626 * 2627 * Note that this function ignores the possibility that there are a lot 2628 * of callbacks all of which have already seen the end of their respective 2629 * grace periods. This omission is due to the need for no-CBs CPUs to 2630 * be holding ->nocb_lock to do this check, which is too heavy for a 2631 * common-case operation. 2632 */ 2633 static void check_cb_ovld(struct rcu_data *rdp) 2634 { 2635 struct rcu_node *const rnp = rdp->mynode; 2636 2637 if (qovld_calc <= 0 || 2638 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2639 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2640 return; // Early boot wildcard value or already set correctly. 2641 raw_spin_lock_rcu_node(rnp); 2642 check_cb_ovld_locked(rdp, rnp); 2643 raw_spin_unlock_rcu_node(rnp); 2644 } 2645 2646 /* Helper function for call_rcu() and friends. */ 2647 static void 2648 __call_rcu(struct rcu_head *head, rcu_callback_t func) 2649 { 2650 unsigned long flags; 2651 struct rcu_data *rdp; 2652 bool was_alldone; 2653 2654 /* Misaligned rcu_head! */ 2655 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2656 2657 if (debug_rcu_head_queue(head)) { 2658 /* 2659 * Probable double call_rcu(), so leak the callback. 2660 * Use rcu:rcu_callback trace event to find the previous 2661 * time callback was passed to __call_rcu(). 2662 */ 2663 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n", 2664 head, head->func); 2665 WRITE_ONCE(head->func, rcu_leak_callback); 2666 return; 2667 } 2668 head->func = func; 2669 head->next = NULL; 2670 local_irq_save(flags); 2671 rdp = this_cpu_ptr(&rcu_data); 2672 2673 /* Add the callback to our list. */ 2674 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2675 // This can trigger due to call_rcu() from offline CPU: 2676 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2677 WARN_ON_ONCE(!rcu_is_watching()); 2678 // Very early boot, before rcu_init(). Initialize if needed 2679 // and then drop through to queue the callback. 2680 if (rcu_segcblist_empty(&rdp->cblist)) 2681 rcu_segcblist_init(&rdp->cblist); 2682 } 2683 2684 check_cb_ovld(rdp); 2685 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2686 return; // Enqueued onto ->nocb_bypass, so just leave. 2687 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2688 rcu_segcblist_enqueue(&rdp->cblist, head); 2689 if (__is_kfree_rcu_offset((unsigned long)func)) 2690 trace_rcu_kfree_callback(rcu_state.name, head, 2691 (unsigned long)func, 2692 rcu_segcblist_n_cbs(&rdp->cblist)); 2693 else 2694 trace_rcu_callback(rcu_state.name, head, 2695 rcu_segcblist_n_cbs(&rdp->cblist)); 2696 2697 /* Go handle any RCU core processing required. */ 2698 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2699 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) { 2700 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2701 } else { 2702 __call_rcu_core(rdp, head, flags); 2703 local_irq_restore(flags); 2704 } 2705 } 2706 2707 /** 2708 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2709 * @head: structure to be used for queueing the RCU updates. 2710 * @func: actual callback function to be invoked after the grace period 2711 * 2712 * The callback function will be invoked some time after a full grace 2713 * period elapses, in other words after all pre-existing RCU read-side 2714 * critical sections have completed. However, the callback function 2715 * might well execute concurrently with RCU read-side critical sections 2716 * that started after call_rcu() was invoked. RCU read-side critical 2717 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2718 * may be nested. In addition, regions of code across which interrupts, 2719 * preemption, or softirqs have been disabled also serve as RCU read-side 2720 * critical sections. This includes hardware interrupt handlers, softirq 2721 * handlers, and NMI handlers. 2722 * 2723 * Note that all CPUs must agree that the grace period extended beyond 2724 * all pre-existing RCU read-side critical section. On systems with more 2725 * than one CPU, this means that when "func()" is invoked, each CPU is 2726 * guaranteed to have executed a full memory barrier since the end of its 2727 * last RCU read-side critical section whose beginning preceded the call 2728 * to call_rcu(). It also means that each CPU executing an RCU read-side 2729 * critical section that continues beyond the start of "func()" must have 2730 * executed a memory barrier after the call_rcu() but before the beginning 2731 * of that RCU read-side critical section. Note that these guarantees 2732 * include CPUs that are offline, idle, or executing in user mode, as 2733 * well as CPUs that are executing in the kernel. 2734 * 2735 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2736 * resulting RCU callback function "func()", then both CPU A and CPU B are 2737 * guaranteed to execute a full memory barrier during the time interval 2738 * between the call to call_rcu() and the invocation of "func()" -- even 2739 * if CPU A and CPU B are the same CPU (but again only if the system has 2740 * more than one CPU). 2741 */ 2742 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2743 { 2744 __call_rcu(head, func); 2745 } 2746 EXPORT_SYMBOL_GPL(call_rcu); 2747 2748 2749 /* Maximum number of jiffies to wait before draining a batch. */ 2750 #define KFREE_DRAIN_JIFFIES (HZ / 50) 2751 #define KFREE_N_BATCHES 2 2752 2753 /* 2754 * This macro defines how many entries the "records" array 2755 * will contain. It is based on the fact that the size of 2756 * kfree_rcu_bulk_data structure becomes exactly one page. 2757 */ 2758 #define KFREE_BULK_MAX_ENTR ((PAGE_SIZE / sizeof(void *)) - 3) 2759 2760 /** 2761 * struct kfree_rcu_bulk_data - single block to store kfree_rcu() pointers 2762 * @nr_records: Number of active pointers in the array 2763 * @records: Array of the kfree_rcu() pointers 2764 * @next: Next bulk object in the block chain 2765 * @head_free_debug: For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is set 2766 */ 2767 struct kfree_rcu_bulk_data { 2768 unsigned long nr_records; 2769 void *records[KFREE_BULK_MAX_ENTR]; 2770 struct kfree_rcu_bulk_data *next; 2771 struct rcu_head *head_free_debug; 2772 }; 2773 2774 /** 2775 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2776 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2777 * @head_free: List of kfree_rcu() objects waiting for a grace period 2778 * @bhead_free: Bulk-List of kfree_rcu() objects waiting for a grace period 2779 * @krcp: Pointer to @kfree_rcu_cpu structure 2780 */ 2781 2782 struct kfree_rcu_cpu_work { 2783 struct rcu_work rcu_work; 2784 struct rcu_head *head_free; 2785 struct kfree_rcu_bulk_data *bhead_free; 2786 struct kfree_rcu_cpu *krcp; 2787 }; 2788 2789 /** 2790 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2791 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2792 * @bhead: Bulk-List of kfree_rcu() objects not yet waiting for a grace period 2793 * @bcached: Keeps at most one object for later reuse when build chain blocks 2794 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2795 * @lock: Synchronize access to this structure 2796 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2797 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 2798 * @initialized: The @lock and @rcu_work fields have been initialized 2799 * 2800 * This is a per-CPU structure. The reason that it is not included in 2801 * the rcu_data structure is to permit this code to be extracted from 2802 * the RCU files. Such extraction could allow further optimization of 2803 * the interactions with the slab allocators. 2804 */ 2805 struct kfree_rcu_cpu { 2806 struct rcu_head *head; 2807 struct kfree_rcu_bulk_data *bhead; 2808 struct kfree_rcu_bulk_data *bcached; 2809 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2810 spinlock_t lock; 2811 struct delayed_work monitor_work; 2812 bool monitor_todo; 2813 bool initialized; 2814 }; 2815 2816 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc); 2817 2818 static __always_inline void 2819 debug_rcu_head_unqueue_bulk(struct rcu_head *head) 2820 { 2821 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2822 for (; head; head = head->next) 2823 debug_rcu_head_unqueue(head); 2824 #endif 2825 } 2826 2827 /* 2828 * This function is invoked in workqueue context after a grace period. 2829 * It frees all the objects queued on ->bhead_free or ->head_free. 2830 */ 2831 static void kfree_rcu_work(struct work_struct *work) 2832 { 2833 unsigned long flags; 2834 struct rcu_head *head, *next; 2835 struct kfree_rcu_bulk_data *bhead, *bnext; 2836 struct kfree_rcu_cpu *krcp; 2837 struct kfree_rcu_cpu_work *krwp; 2838 2839 krwp = container_of(to_rcu_work(work), 2840 struct kfree_rcu_cpu_work, rcu_work); 2841 krcp = krwp->krcp; 2842 spin_lock_irqsave(&krcp->lock, flags); 2843 head = krwp->head_free; 2844 krwp->head_free = NULL; 2845 bhead = krwp->bhead_free; 2846 krwp->bhead_free = NULL; 2847 spin_unlock_irqrestore(&krcp->lock, flags); 2848 2849 /* "bhead" is now private, so traverse locklessly. */ 2850 for (; bhead; bhead = bnext) { 2851 bnext = bhead->next; 2852 2853 debug_rcu_head_unqueue_bulk(bhead->head_free_debug); 2854 2855 rcu_lock_acquire(&rcu_callback_map); 2856 trace_rcu_invoke_kfree_bulk_callback(rcu_state.name, 2857 bhead->nr_records, bhead->records); 2858 2859 kfree_bulk(bhead->nr_records, bhead->records); 2860 rcu_lock_release(&rcu_callback_map); 2861 2862 if (cmpxchg(&krcp->bcached, NULL, bhead)) 2863 free_page((unsigned long) bhead); 2864 2865 cond_resched_tasks_rcu_qs(); 2866 } 2867 2868 /* 2869 * Emergency case only. It can happen under low memory 2870 * condition when an allocation gets failed, so the "bulk" 2871 * path can not be temporary maintained. 2872 */ 2873 for (; head; head = next) { 2874 unsigned long offset = (unsigned long)head->func; 2875 2876 next = head->next; 2877 debug_rcu_head_unqueue(head); 2878 rcu_lock_acquire(&rcu_callback_map); 2879 trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset); 2880 2881 if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset))) 2882 kfree((void *)head - offset); 2883 2884 rcu_lock_release(&rcu_callback_map); 2885 cond_resched_tasks_rcu_qs(); 2886 } 2887 } 2888 2889 /* 2890 * Schedule the kfree batch RCU work to run in workqueue context after a GP. 2891 * 2892 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES 2893 * timeout has been reached. 2894 */ 2895 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp) 2896 { 2897 struct kfree_rcu_cpu_work *krwp; 2898 bool queued = false; 2899 int i; 2900 2901 lockdep_assert_held(&krcp->lock); 2902 2903 for (i = 0; i < KFREE_N_BATCHES; i++) { 2904 krwp = &(krcp->krw_arr[i]); 2905 2906 /* 2907 * Try to detach bhead or head and attach it over any 2908 * available corresponding free channel. It can be that 2909 * a previous RCU batch is in progress, it means that 2910 * immediately to queue another one is not possible so 2911 * return false to tell caller to retry. 2912 */ 2913 if ((krcp->bhead && !krwp->bhead_free) || 2914 (krcp->head && !krwp->head_free)) { 2915 /* Channel 1. */ 2916 if (!krwp->bhead_free) { 2917 krwp->bhead_free = krcp->bhead; 2918 krcp->bhead = NULL; 2919 } 2920 2921 /* Channel 2. */ 2922 if (!krwp->head_free) { 2923 krwp->head_free = krcp->head; 2924 krcp->head = NULL; 2925 } 2926 2927 /* 2928 * One work is per one batch, so there are two "free channels", 2929 * "bhead_free" and "head_free" the batch can handle. It can be 2930 * that the work is in the pending state when two channels have 2931 * been detached following each other, one by one. 2932 */ 2933 queue_rcu_work(system_wq, &krwp->rcu_work); 2934 queued = true; 2935 } 2936 } 2937 2938 return queued; 2939 } 2940 2941 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp, 2942 unsigned long flags) 2943 { 2944 // Attempt to start a new batch. 2945 krcp->monitor_todo = false; 2946 if (queue_kfree_rcu_work(krcp)) { 2947 // Success! Our job is done here. 2948 spin_unlock_irqrestore(&krcp->lock, flags); 2949 return; 2950 } 2951 2952 // Previous RCU batch still in progress, try again later. 2953 krcp->monitor_todo = true; 2954 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 2955 spin_unlock_irqrestore(&krcp->lock, flags); 2956 } 2957 2958 /* 2959 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 2960 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch. 2961 */ 2962 static void kfree_rcu_monitor(struct work_struct *work) 2963 { 2964 unsigned long flags; 2965 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, 2966 monitor_work.work); 2967 2968 spin_lock_irqsave(&krcp->lock, flags); 2969 if (krcp->monitor_todo) 2970 kfree_rcu_drain_unlock(krcp, flags); 2971 else 2972 spin_unlock_irqrestore(&krcp->lock, flags); 2973 } 2974 2975 static inline bool 2976 kfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, 2977 struct rcu_head *head, rcu_callback_t func) 2978 { 2979 struct kfree_rcu_bulk_data *bnode; 2980 2981 if (unlikely(!krcp->initialized)) 2982 return false; 2983 2984 lockdep_assert_held(&krcp->lock); 2985 2986 /* Check if a new block is required. */ 2987 if (!krcp->bhead || 2988 krcp->bhead->nr_records == KFREE_BULK_MAX_ENTR) { 2989 bnode = xchg(&krcp->bcached, NULL); 2990 if (!bnode) { 2991 WARN_ON_ONCE(sizeof(struct kfree_rcu_bulk_data) > PAGE_SIZE); 2992 2993 bnode = (struct kfree_rcu_bulk_data *) 2994 __get_free_page(GFP_NOWAIT | __GFP_NOWARN); 2995 } 2996 2997 /* Switch to emergency path. */ 2998 if (unlikely(!bnode)) 2999 return false; 3000 3001 /* Initialize the new block. */ 3002 bnode->nr_records = 0; 3003 bnode->next = krcp->bhead; 3004 bnode->head_free_debug = NULL; 3005 3006 /* Attach it to the head. */ 3007 krcp->bhead = bnode; 3008 } 3009 3010 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3011 head->func = func; 3012 head->next = krcp->bhead->head_free_debug; 3013 krcp->bhead->head_free_debug = head; 3014 #endif 3015 3016 /* Finally insert. */ 3017 krcp->bhead->records[krcp->bhead->nr_records++] = 3018 (void *) head - (unsigned long) func; 3019 3020 return true; 3021 } 3022 3023 /* 3024 * Queue a request for lazy invocation of kfree_bulk()/kfree() after a grace 3025 * period. Please note there are two paths are maintained, one is the main one 3026 * that uses kfree_bulk() interface and second one is emergency one, that is 3027 * used only when the main path can not be maintained temporary, due to memory 3028 * pressure. 3029 * 3030 * Each kfree_call_rcu() request is added to a batch. The batch will be drained 3031 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3032 * be free'd in workqueue context. This allows us to: batch requests together to 3033 * reduce the number of grace periods during heavy kfree_rcu() load. 3034 */ 3035 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3036 { 3037 unsigned long flags; 3038 struct kfree_rcu_cpu *krcp; 3039 3040 local_irq_save(flags); // For safely calling this_cpu_ptr(). 3041 krcp = this_cpu_ptr(&krc); 3042 if (krcp->initialized) 3043 spin_lock(&krcp->lock); 3044 3045 // Queue the object but don't yet schedule the batch. 3046 if (debug_rcu_head_queue(head)) { 3047 // Probable double kfree_rcu(), just leak. 3048 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3049 __func__, head); 3050 goto unlock_return; 3051 } 3052 3053 /* 3054 * Under high memory pressure GFP_NOWAIT can fail, 3055 * in that case the emergency path is maintained. 3056 */ 3057 if (unlikely(!kfree_call_rcu_add_ptr_to_bulk(krcp, head, func))) { 3058 head->func = func; 3059 head->next = krcp->head; 3060 krcp->head = head; 3061 } 3062 3063 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3064 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3065 !krcp->monitor_todo) { 3066 krcp->monitor_todo = true; 3067 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3068 } 3069 3070 unlock_return: 3071 if (krcp->initialized) 3072 spin_unlock(&krcp->lock); 3073 local_irq_restore(flags); 3074 } 3075 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3076 3077 void __init kfree_rcu_scheduler_running(void) 3078 { 3079 int cpu; 3080 unsigned long flags; 3081 3082 for_each_online_cpu(cpu) { 3083 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3084 3085 spin_lock_irqsave(&krcp->lock, flags); 3086 if (!krcp->head || krcp->monitor_todo) { 3087 spin_unlock_irqrestore(&krcp->lock, flags); 3088 continue; 3089 } 3090 krcp->monitor_todo = true; 3091 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3092 KFREE_DRAIN_JIFFIES); 3093 spin_unlock_irqrestore(&krcp->lock, flags); 3094 } 3095 } 3096 3097 /* 3098 * During early boot, any blocking grace-period wait automatically 3099 * implies a grace period. Later on, this is never the case for PREEMPTION. 3100 * 3101 * Howevr, because a context switch is a grace period for !PREEMPTION, any 3102 * blocking grace-period wait automatically implies a grace period if 3103 * there is only one CPU online at any point time during execution of 3104 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3105 * occasionally incorrectly indicate that there are multiple CPUs online 3106 * when there was in fact only one the whole time, as this just adds some 3107 * overhead: RCU still operates correctly. 3108 */ 3109 static int rcu_blocking_is_gp(void) 3110 { 3111 int ret; 3112 3113 if (IS_ENABLED(CONFIG_PREEMPTION)) 3114 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3115 might_sleep(); /* Check for RCU read-side critical section. */ 3116 preempt_disable(); 3117 ret = num_online_cpus() <= 1; 3118 preempt_enable(); 3119 return ret; 3120 } 3121 3122 /** 3123 * synchronize_rcu - wait until a grace period has elapsed. 3124 * 3125 * Control will return to the caller some time after a full grace 3126 * period has elapsed, in other words after all currently executing RCU 3127 * read-side critical sections have completed. Note, however, that 3128 * upon return from synchronize_rcu(), the caller might well be executing 3129 * concurrently with new RCU read-side critical sections that began while 3130 * synchronize_rcu() was waiting. RCU read-side critical sections are 3131 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3132 * In addition, regions of code across which interrupts, preemption, or 3133 * softirqs have been disabled also serve as RCU read-side critical 3134 * sections. This includes hardware interrupt handlers, softirq handlers, 3135 * and NMI handlers. 3136 * 3137 * Note that this guarantee implies further memory-ordering guarantees. 3138 * On systems with more than one CPU, when synchronize_rcu() returns, 3139 * each CPU is guaranteed to have executed a full memory barrier since 3140 * the end of its last RCU read-side critical section whose beginning 3141 * preceded the call to synchronize_rcu(). In addition, each CPU having 3142 * an RCU read-side critical section that extends beyond the return from 3143 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3144 * after the beginning of synchronize_rcu() and before the beginning of 3145 * that RCU read-side critical section. Note that these guarantees include 3146 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3147 * that are executing in the kernel. 3148 * 3149 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3150 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3151 * to have executed a full memory barrier during the execution of 3152 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3153 * again only if the system has more than one CPU). 3154 */ 3155 void synchronize_rcu(void) 3156 { 3157 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3158 lock_is_held(&rcu_lock_map) || 3159 lock_is_held(&rcu_sched_lock_map), 3160 "Illegal synchronize_rcu() in RCU read-side critical section"); 3161 if (rcu_blocking_is_gp()) 3162 return; 3163 if (rcu_gp_is_expedited()) 3164 synchronize_rcu_expedited(); 3165 else 3166 wait_rcu_gp(call_rcu); 3167 } 3168 EXPORT_SYMBOL_GPL(synchronize_rcu); 3169 3170 /** 3171 * get_state_synchronize_rcu - Snapshot current RCU state 3172 * 3173 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3174 * to determine whether or not a full grace period has elapsed in the 3175 * meantime. 3176 */ 3177 unsigned long get_state_synchronize_rcu(void) 3178 { 3179 /* 3180 * Any prior manipulation of RCU-protected data must happen 3181 * before the load from ->gp_seq. 3182 */ 3183 smp_mb(); /* ^^^ */ 3184 return rcu_seq_snap(&rcu_state.gp_seq); 3185 } 3186 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3187 3188 /** 3189 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3190 * 3191 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3192 * 3193 * If a full RCU grace period has elapsed since the earlier call to 3194 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3195 * synchronize_rcu() to wait for a full grace period. 3196 * 3197 * Yes, this function does not take counter wrap into account. But 3198 * counter wrap is harmless. If the counter wraps, we have waited for 3199 * more than 2 billion grace periods (and way more on a 64-bit system!), 3200 * so waiting for one additional grace period should be just fine. 3201 */ 3202 void cond_synchronize_rcu(unsigned long oldstate) 3203 { 3204 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3205 synchronize_rcu(); 3206 else 3207 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3208 } 3209 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3210 3211 /* 3212 * Check to see if there is any immediate RCU-related work to be done by 3213 * the current CPU, returning 1 if so and zero otherwise. The checks are 3214 * in order of increasing expense: checks that can be carried out against 3215 * CPU-local state are performed first. However, we must check for CPU 3216 * stalls first, else we might not get a chance. 3217 */ 3218 static int rcu_pending(int user) 3219 { 3220 bool gp_in_progress; 3221 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3222 struct rcu_node *rnp = rdp->mynode; 3223 3224 /* Check for CPU stalls, if enabled. */ 3225 check_cpu_stall(rdp); 3226 3227 /* Does this CPU need a deferred NOCB wakeup? */ 3228 if (rcu_nocb_need_deferred_wakeup(rdp)) 3229 return 1; 3230 3231 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3232 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3233 return 0; 3234 3235 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3236 gp_in_progress = rcu_gp_in_progress(); 3237 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3238 return 1; 3239 3240 /* Does this CPU have callbacks ready to invoke? */ 3241 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3242 return 1; 3243 3244 /* Has RCU gone idle with this CPU needing another grace period? */ 3245 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3246 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) || 3247 !rcu_segcblist_is_offloaded(&rdp->cblist)) && 3248 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3249 return 1; 3250 3251 /* Have RCU grace period completed or started? */ 3252 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3253 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3254 return 1; 3255 3256 /* nothing to do */ 3257 return 0; 3258 } 3259 3260 /* 3261 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3262 * the compiler is expected to optimize this away. 3263 */ 3264 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3265 { 3266 trace_rcu_barrier(rcu_state.name, s, cpu, 3267 atomic_read(&rcu_state.barrier_cpu_count), done); 3268 } 3269 3270 /* 3271 * RCU callback function for rcu_barrier(). If we are last, wake 3272 * up the task executing rcu_barrier(). 3273 * 3274 * Note that the value of rcu_state.barrier_sequence must be captured 3275 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3276 * other CPUs might count the value down to zero before this CPU gets 3277 * around to invoking rcu_barrier_trace(), which might result in bogus 3278 * data from the next instance of rcu_barrier(). 3279 */ 3280 static void rcu_barrier_callback(struct rcu_head *rhp) 3281 { 3282 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3283 3284 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3285 rcu_barrier_trace(TPS("LastCB"), -1, s); 3286 complete(&rcu_state.barrier_completion); 3287 } else { 3288 rcu_barrier_trace(TPS("CB"), -1, s); 3289 } 3290 } 3291 3292 /* 3293 * Called with preemption disabled, and from cross-cpu IRQ context. 3294 */ 3295 static void rcu_barrier_func(void *cpu_in) 3296 { 3297 uintptr_t cpu = (uintptr_t)cpu_in; 3298 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3299 3300 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3301 rdp->barrier_head.func = rcu_barrier_callback; 3302 debug_rcu_head_queue(&rdp->barrier_head); 3303 rcu_nocb_lock(rdp); 3304 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3305 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3306 atomic_inc(&rcu_state.barrier_cpu_count); 3307 } else { 3308 debug_rcu_head_unqueue(&rdp->barrier_head); 3309 rcu_barrier_trace(TPS("IRQNQ"), -1, 3310 rcu_state.barrier_sequence); 3311 } 3312 rcu_nocb_unlock(rdp); 3313 } 3314 3315 /** 3316 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3317 * 3318 * Note that this primitive does not necessarily wait for an RCU grace period 3319 * to complete. For example, if there are no RCU callbacks queued anywhere 3320 * in the system, then rcu_barrier() is within its rights to return 3321 * immediately, without waiting for anything, much less an RCU grace period. 3322 */ 3323 void rcu_barrier(void) 3324 { 3325 uintptr_t cpu; 3326 struct rcu_data *rdp; 3327 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3328 3329 rcu_barrier_trace(TPS("Begin"), -1, s); 3330 3331 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3332 mutex_lock(&rcu_state.barrier_mutex); 3333 3334 /* Did someone else do our work for us? */ 3335 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3336 rcu_barrier_trace(TPS("EarlyExit"), -1, 3337 rcu_state.barrier_sequence); 3338 smp_mb(); /* caller's subsequent code after above check. */ 3339 mutex_unlock(&rcu_state.barrier_mutex); 3340 return; 3341 } 3342 3343 /* Mark the start of the barrier operation. */ 3344 rcu_seq_start(&rcu_state.barrier_sequence); 3345 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3346 3347 /* 3348 * Initialize the count to two rather than to zero in order 3349 * to avoid a too-soon return to zero in case of an immediate 3350 * invocation of the just-enqueued callback (or preemption of 3351 * this task). Exclude CPU-hotplug operations to ensure that no 3352 * offline non-offloaded CPU has callbacks queued. 3353 */ 3354 init_completion(&rcu_state.barrier_completion); 3355 atomic_set(&rcu_state.barrier_cpu_count, 2); 3356 get_online_cpus(); 3357 3358 /* 3359 * Force each CPU with callbacks to register a new callback. 3360 * When that callback is invoked, we will know that all of the 3361 * corresponding CPU's preceding callbacks have been invoked. 3362 */ 3363 for_each_possible_cpu(cpu) { 3364 rdp = per_cpu_ptr(&rcu_data, cpu); 3365 if (cpu_is_offline(cpu) && 3366 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3367 continue; 3368 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 3369 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3370 rcu_state.barrier_sequence); 3371 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 3372 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 3373 cpu_is_offline(cpu)) { 3374 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 3375 rcu_state.barrier_sequence); 3376 local_irq_disable(); 3377 rcu_barrier_func((void *)cpu); 3378 local_irq_enable(); 3379 } else if (cpu_is_offline(cpu)) { 3380 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 3381 rcu_state.barrier_sequence); 3382 } else { 3383 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3384 rcu_state.barrier_sequence); 3385 } 3386 } 3387 put_online_cpus(); 3388 3389 /* 3390 * Now that we have an rcu_barrier_callback() callback on each 3391 * CPU, and thus each counted, remove the initial count. 3392 */ 3393 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3394 complete(&rcu_state.barrier_completion); 3395 3396 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3397 wait_for_completion(&rcu_state.barrier_completion); 3398 3399 /* Mark the end of the barrier operation. */ 3400 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3401 rcu_seq_end(&rcu_state.barrier_sequence); 3402 3403 /* Other rcu_barrier() invocations can now safely proceed. */ 3404 mutex_unlock(&rcu_state.barrier_mutex); 3405 } 3406 EXPORT_SYMBOL_GPL(rcu_barrier); 3407 3408 /* 3409 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3410 * first CPU in a given leaf rcu_node structure coming online. The caller 3411 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3412 * disabled. 3413 */ 3414 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3415 { 3416 long mask; 3417 long oldmask; 3418 struct rcu_node *rnp = rnp_leaf; 3419 3420 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3421 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3422 for (;;) { 3423 mask = rnp->grpmask; 3424 rnp = rnp->parent; 3425 if (rnp == NULL) 3426 return; 3427 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3428 oldmask = rnp->qsmaskinit; 3429 rnp->qsmaskinit |= mask; 3430 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3431 if (oldmask) 3432 return; 3433 } 3434 } 3435 3436 /* 3437 * Do boot-time initialization of a CPU's per-CPU RCU data. 3438 */ 3439 static void __init 3440 rcu_boot_init_percpu_data(int cpu) 3441 { 3442 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3443 3444 /* Set up local state, ensuring consistent view of global state. */ 3445 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3446 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3447 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3448 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3449 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3450 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3451 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3452 rdp->cpu = cpu; 3453 rcu_boot_init_nocb_percpu_data(rdp); 3454 } 3455 3456 /* 3457 * Invoked early in the CPU-online process, when pretty much all services 3458 * are available. The incoming CPU is not present. 3459 * 3460 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3461 * offline event can be happening at a given time. Note also that we can 3462 * accept some slop in the rsp->gp_seq access due to the fact that this 3463 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 3464 * And any offloaded callbacks are being numbered elsewhere. 3465 */ 3466 int rcutree_prepare_cpu(unsigned int cpu) 3467 { 3468 unsigned long flags; 3469 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3470 struct rcu_node *rnp = rcu_get_root(); 3471 3472 /* Set up local state, ensuring consistent view of global state. */ 3473 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3474 rdp->qlen_last_fqs_check = 0; 3475 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3476 rdp->blimit = blimit; 3477 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3478 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3479 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3480 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3481 rcu_dynticks_eqs_online(); 3482 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3483 3484 /* 3485 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3486 * propagation up the rcu_node tree will happen at the beginning 3487 * of the next grace period. 3488 */ 3489 rnp = rdp->mynode; 3490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3491 rdp->beenonline = true; /* We have now been online. */ 3492 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 3493 rdp->gp_seq_needed = rdp->gp_seq; 3494 rdp->cpu_no_qs.b.norm = true; 3495 rdp->core_needs_qs = false; 3496 rdp->rcu_iw_pending = false; 3497 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 3498 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3499 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3500 rcu_prepare_kthreads(cpu); 3501 rcu_spawn_cpu_nocb_kthread(cpu); 3502 3503 return 0; 3504 } 3505 3506 /* 3507 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3508 */ 3509 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3510 { 3511 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3512 3513 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3514 } 3515 3516 /* 3517 * Near the end of the CPU-online process. Pretty much all services 3518 * enabled, and the CPU is now very much alive. 3519 */ 3520 int rcutree_online_cpu(unsigned int cpu) 3521 { 3522 unsigned long flags; 3523 struct rcu_data *rdp; 3524 struct rcu_node *rnp; 3525 3526 rdp = per_cpu_ptr(&rcu_data, cpu); 3527 rnp = rdp->mynode; 3528 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3529 rnp->ffmask |= rdp->grpmask; 3530 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3531 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3532 return 0; /* Too early in boot for scheduler work. */ 3533 sync_sched_exp_online_cleanup(cpu); 3534 rcutree_affinity_setting(cpu, -1); 3535 3536 // Stop-machine done, so allow nohz_full to disable tick. 3537 tick_dep_clear(TICK_DEP_BIT_RCU); 3538 return 0; 3539 } 3540 3541 /* 3542 * Near the beginning of the process. The CPU is still very much alive 3543 * with pretty much all services enabled. 3544 */ 3545 int rcutree_offline_cpu(unsigned int cpu) 3546 { 3547 unsigned long flags; 3548 struct rcu_data *rdp; 3549 struct rcu_node *rnp; 3550 3551 rdp = per_cpu_ptr(&rcu_data, cpu); 3552 rnp = rdp->mynode; 3553 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3554 rnp->ffmask &= ~rdp->grpmask; 3555 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3556 3557 rcutree_affinity_setting(cpu, cpu); 3558 3559 // nohz_full CPUs need the tick for stop-machine to work quickly 3560 tick_dep_set(TICK_DEP_BIT_RCU); 3561 return 0; 3562 } 3563 3564 static DEFINE_PER_CPU(int, rcu_cpu_started); 3565 3566 /* 3567 * Mark the specified CPU as being online so that subsequent grace periods 3568 * (both expedited and normal) will wait on it. Note that this means that 3569 * incoming CPUs are not allowed to use RCU read-side critical sections 3570 * until this function is called. Failing to observe this restriction 3571 * will result in lockdep splats. 3572 * 3573 * Note that this function is special in that it is invoked directly 3574 * from the incoming CPU rather than from the cpuhp_step mechanism. 3575 * This is because this function must be invoked at a precise location. 3576 */ 3577 void rcu_cpu_starting(unsigned int cpu) 3578 { 3579 unsigned long flags; 3580 unsigned long mask; 3581 int nbits; 3582 unsigned long oldmask; 3583 struct rcu_data *rdp; 3584 struct rcu_node *rnp; 3585 3586 if (per_cpu(rcu_cpu_started, cpu)) 3587 return; 3588 3589 per_cpu(rcu_cpu_started, cpu) = 1; 3590 3591 rdp = per_cpu_ptr(&rcu_data, cpu); 3592 rnp = rdp->mynode; 3593 mask = rdp->grpmask; 3594 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3595 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 3596 oldmask = rnp->expmaskinitnext; 3597 rnp->expmaskinitnext |= mask; 3598 oldmask ^= rnp->expmaskinitnext; 3599 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3600 /* Allow lockless access for expedited grace periods. */ 3601 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3602 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3603 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3604 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3605 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3606 rcu_disable_urgency_upon_qs(rdp); 3607 /* Report QS -after- changing ->qsmaskinitnext! */ 3608 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3609 } else { 3610 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3611 } 3612 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3613 } 3614 3615 #ifdef CONFIG_HOTPLUG_CPU 3616 /* 3617 * The outgoing function has no further need of RCU, so remove it from 3618 * the rcu_node tree's ->qsmaskinitnext bit masks. 3619 * 3620 * Note that this function is special in that it is invoked directly 3621 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3622 * This is because this function must be invoked at a precise location. 3623 */ 3624 void rcu_report_dead(unsigned int cpu) 3625 { 3626 unsigned long flags; 3627 unsigned long mask; 3628 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3629 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3630 3631 /* QS for any half-done expedited grace period. */ 3632 preempt_disable(); 3633 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3634 preempt_enable(); 3635 rcu_preempt_deferred_qs(current); 3636 3637 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3638 mask = rdp->grpmask; 3639 raw_spin_lock(&rcu_state.ofl_lock); 3640 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3641 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3642 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3643 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3644 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3645 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3646 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3647 } 3648 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 3649 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3650 raw_spin_unlock(&rcu_state.ofl_lock); 3651 3652 per_cpu(rcu_cpu_started, cpu) = 0; 3653 } 3654 3655 /* 3656 * The outgoing CPU has just passed through the dying-idle state, and we 3657 * are being invoked from the CPU that was IPIed to continue the offline 3658 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3659 */ 3660 void rcutree_migrate_callbacks(int cpu) 3661 { 3662 unsigned long flags; 3663 struct rcu_data *my_rdp; 3664 struct rcu_node *my_rnp; 3665 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3666 bool needwake; 3667 3668 if (rcu_segcblist_is_offloaded(&rdp->cblist) || 3669 rcu_segcblist_empty(&rdp->cblist)) 3670 return; /* No callbacks to migrate. */ 3671 3672 local_irq_save(flags); 3673 my_rdp = this_cpu_ptr(&rcu_data); 3674 my_rnp = my_rdp->mynode; 3675 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 3676 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 3677 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 3678 /* Leverage recent GPs and set GP for new callbacks. */ 3679 needwake = rcu_advance_cbs(my_rnp, rdp) || 3680 rcu_advance_cbs(my_rnp, my_rdp); 3681 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3682 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 3683 rcu_segcblist_disable(&rdp->cblist); 3684 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3685 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3686 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) { 3687 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 3688 __call_rcu_nocb_wake(my_rdp, true, flags); 3689 } else { 3690 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 3691 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 3692 } 3693 if (needwake) 3694 rcu_gp_kthread_wake(); 3695 lockdep_assert_irqs_enabled(); 3696 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3697 !rcu_segcblist_empty(&rdp->cblist), 3698 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3699 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3700 rcu_segcblist_first_cb(&rdp->cblist)); 3701 } 3702 #endif 3703 3704 /* 3705 * On non-huge systems, use expedited RCU grace periods to make suspend 3706 * and hibernation run faster. 3707 */ 3708 static int rcu_pm_notify(struct notifier_block *self, 3709 unsigned long action, void *hcpu) 3710 { 3711 switch (action) { 3712 case PM_HIBERNATION_PREPARE: 3713 case PM_SUSPEND_PREPARE: 3714 rcu_expedite_gp(); 3715 break; 3716 case PM_POST_HIBERNATION: 3717 case PM_POST_SUSPEND: 3718 rcu_unexpedite_gp(); 3719 break; 3720 default: 3721 break; 3722 } 3723 return NOTIFY_OK; 3724 } 3725 3726 /* 3727 * Spawn the kthreads that handle RCU's grace periods. 3728 */ 3729 static int __init rcu_spawn_gp_kthread(void) 3730 { 3731 unsigned long flags; 3732 int kthread_prio_in = kthread_prio; 3733 struct rcu_node *rnp; 3734 struct sched_param sp; 3735 struct task_struct *t; 3736 3737 /* Force priority into range. */ 3738 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3739 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3740 kthread_prio = 2; 3741 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3742 kthread_prio = 1; 3743 else if (kthread_prio < 0) 3744 kthread_prio = 0; 3745 else if (kthread_prio > 99) 3746 kthread_prio = 99; 3747 3748 if (kthread_prio != kthread_prio_in) 3749 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3750 kthread_prio, kthread_prio_in); 3751 3752 rcu_scheduler_fully_active = 1; 3753 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3754 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3755 return 0; 3756 if (kthread_prio) { 3757 sp.sched_priority = kthread_prio; 3758 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3759 } 3760 rnp = rcu_get_root(); 3761 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3762 WRITE_ONCE(rcu_state.gp_activity, jiffies); 3763 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 3764 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 3765 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 3766 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3767 wake_up_process(t); 3768 rcu_spawn_nocb_kthreads(); 3769 rcu_spawn_boost_kthreads(); 3770 return 0; 3771 } 3772 early_initcall(rcu_spawn_gp_kthread); 3773 3774 /* 3775 * This function is invoked towards the end of the scheduler's 3776 * initialization process. Before this is called, the idle task might 3777 * contain synchronous grace-period primitives (during which time, this idle 3778 * task is booting the system, and such primitives are no-ops). After this 3779 * function is called, any synchronous grace-period primitives are run as 3780 * expedited, with the requesting task driving the grace period forward. 3781 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3782 * runtime RCU functionality. 3783 */ 3784 void rcu_scheduler_starting(void) 3785 { 3786 WARN_ON(num_online_cpus() != 1); 3787 WARN_ON(nr_context_switches() > 0); 3788 rcu_test_sync_prims(); 3789 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3790 rcu_test_sync_prims(); 3791 } 3792 3793 /* 3794 * Helper function for rcu_init() that initializes the rcu_state structure. 3795 */ 3796 static void __init rcu_init_one(void) 3797 { 3798 static const char * const buf[] = RCU_NODE_NAME_INIT; 3799 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3800 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3801 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3802 3803 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3804 int cpustride = 1; 3805 int i; 3806 int j; 3807 struct rcu_node *rnp; 3808 3809 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3810 3811 /* Silence gcc 4.8 false positive about array index out of range. */ 3812 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3813 panic("rcu_init_one: rcu_num_lvls out of range"); 3814 3815 /* Initialize the level-tracking arrays. */ 3816 3817 for (i = 1; i < rcu_num_lvls; i++) 3818 rcu_state.level[i] = 3819 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3820 rcu_init_levelspread(levelspread, num_rcu_lvl); 3821 3822 /* Initialize the elements themselves, starting from the leaves. */ 3823 3824 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3825 cpustride *= levelspread[i]; 3826 rnp = rcu_state.level[i]; 3827 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3828 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3829 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3830 &rcu_node_class[i], buf[i]); 3831 raw_spin_lock_init(&rnp->fqslock); 3832 lockdep_set_class_and_name(&rnp->fqslock, 3833 &rcu_fqs_class[i], fqs[i]); 3834 rnp->gp_seq = rcu_state.gp_seq; 3835 rnp->gp_seq_needed = rcu_state.gp_seq; 3836 rnp->completedqs = rcu_state.gp_seq; 3837 rnp->qsmask = 0; 3838 rnp->qsmaskinit = 0; 3839 rnp->grplo = j * cpustride; 3840 rnp->grphi = (j + 1) * cpustride - 1; 3841 if (rnp->grphi >= nr_cpu_ids) 3842 rnp->grphi = nr_cpu_ids - 1; 3843 if (i == 0) { 3844 rnp->grpnum = 0; 3845 rnp->grpmask = 0; 3846 rnp->parent = NULL; 3847 } else { 3848 rnp->grpnum = j % levelspread[i - 1]; 3849 rnp->grpmask = BIT(rnp->grpnum); 3850 rnp->parent = rcu_state.level[i - 1] + 3851 j / levelspread[i - 1]; 3852 } 3853 rnp->level = i; 3854 INIT_LIST_HEAD(&rnp->blkd_tasks); 3855 rcu_init_one_nocb(rnp); 3856 init_waitqueue_head(&rnp->exp_wq[0]); 3857 init_waitqueue_head(&rnp->exp_wq[1]); 3858 init_waitqueue_head(&rnp->exp_wq[2]); 3859 init_waitqueue_head(&rnp->exp_wq[3]); 3860 spin_lock_init(&rnp->exp_lock); 3861 } 3862 } 3863 3864 init_swait_queue_head(&rcu_state.gp_wq); 3865 init_swait_queue_head(&rcu_state.expedited_wq); 3866 rnp = rcu_first_leaf_node(); 3867 for_each_possible_cpu(i) { 3868 while (i > rnp->grphi) 3869 rnp++; 3870 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3871 rcu_boot_init_percpu_data(i); 3872 } 3873 } 3874 3875 /* 3876 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3877 * replace the definitions in tree.h because those are needed to size 3878 * the ->node array in the rcu_state structure. 3879 */ 3880 static void __init rcu_init_geometry(void) 3881 { 3882 ulong d; 3883 int i; 3884 int rcu_capacity[RCU_NUM_LVLS]; 3885 3886 /* 3887 * Initialize any unspecified boot parameters. 3888 * The default values of jiffies_till_first_fqs and 3889 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3890 * value, which is a function of HZ, then adding one for each 3891 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3892 */ 3893 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3894 if (jiffies_till_first_fqs == ULONG_MAX) 3895 jiffies_till_first_fqs = d; 3896 if (jiffies_till_next_fqs == ULONG_MAX) 3897 jiffies_till_next_fqs = d; 3898 adjust_jiffies_till_sched_qs(); 3899 3900 /* If the compile-time values are accurate, just leave. */ 3901 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3902 nr_cpu_ids == NR_CPUS) 3903 return; 3904 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3905 rcu_fanout_leaf, nr_cpu_ids); 3906 3907 /* 3908 * The boot-time rcu_fanout_leaf parameter must be at least two 3909 * and cannot exceed the number of bits in the rcu_node masks. 3910 * Complain and fall back to the compile-time values if this 3911 * limit is exceeded. 3912 */ 3913 if (rcu_fanout_leaf < 2 || 3914 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3915 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3916 WARN_ON(1); 3917 return; 3918 } 3919 3920 /* 3921 * Compute number of nodes that can be handled an rcu_node tree 3922 * with the given number of levels. 3923 */ 3924 rcu_capacity[0] = rcu_fanout_leaf; 3925 for (i = 1; i < RCU_NUM_LVLS; i++) 3926 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3927 3928 /* 3929 * The tree must be able to accommodate the configured number of CPUs. 3930 * If this limit is exceeded, fall back to the compile-time values. 3931 */ 3932 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3933 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3934 WARN_ON(1); 3935 return; 3936 } 3937 3938 /* Calculate the number of levels in the tree. */ 3939 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3940 } 3941 rcu_num_lvls = i + 1; 3942 3943 /* Calculate the number of rcu_nodes at each level of the tree. */ 3944 for (i = 0; i < rcu_num_lvls; i++) { 3945 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3946 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3947 } 3948 3949 /* Calculate the total number of rcu_node structures. */ 3950 rcu_num_nodes = 0; 3951 for (i = 0; i < rcu_num_lvls; i++) 3952 rcu_num_nodes += num_rcu_lvl[i]; 3953 } 3954 3955 /* 3956 * Dump out the structure of the rcu_node combining tree associated 3957 * with the rcu_state structure. 3958 */ 3959 static void __init rcu_dump_rcu_node_tree(void) 3960 { 3961 int level = 0; 3962 struct rcu_node *rnp; 3963 3964 pr_info("rcu_node tree layout dump\n"); 3965 pr_info(" "); 3966 rcu_for_each_node_breadth_first(rnp) { 3967 if (rnp->level != level) { 3968 pr_cont("\n"); 3969 pr_info(" "); 3970 level = rnp->level; 3971 } 3972 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3973 } 3974 pr_cont("\n"); 3975 } 3976 3977 struct workqueue_struct *rcu_gp_wq; 3978 struct workqueue_struct *rcu_par_gp_wq; 3979 3980 static void __init kfree_rcu_batch_init(void) 3981 { 3982 int cpu; 3983 int i; 3984 3985 for_each_possible_cpu(cpu) { 3986 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3987 3988 spin_lock_init(&krcp->lock); 3989 for (i = 0; i < KFREE_N_BATCHES; i++) { 3990 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 3991 krcp->krw_arr[i].krcp = krcp; 3992 } 3993 3994 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 3995 krcp->initialized = true; 3996 } 3997 } 3998 3999 void __init rcu_init(void) 4000 { 4001 int cpu; 4002 4003 rcu_early_boot_tests(); 4004 4005 kfree_rcu_batch_init(); 4006 rcu_bootup_announce(); 4007 rcu_init_geometry(); 4008 rcu_init_one(); 4009 if (dump_tree) 4010 rcu_dump_rcu_node_tree(); 4011 if (use_softirq) 4012 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4013 4014 /* 4015 * We don't need protection against CPU-hotplug here because 4016 * this is called early in boot, before either interrupts 4017 * or the scheduler are operational. 4018 */ 4019 pm_notifier(rcu_pm_notify, 0); 4020 for_each_online_cpu(cpu) { 4021 rcutree_prepare_cpu(cpu); 4022 rcu_cpu_starting(cpu); 4023 rcutree_online_cpu(cpu); 4024 } 4025 4026 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4027 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4028 WARN_ON(!rcu_gp_wq); 4029 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4030 WARN_ON(!rcu_par_gp_wq); 4031 srcu_init(); 4032 4033 /* Fill in default value for rcutree.qovld boot parameter. */ 4034 /* -After- the rcu_node ->lock fields are initialized! */ 4035 if (qovld < 0) 4036 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4037 else 4038 qovld_calc = qovld; 4039 } 4040 4041 #include "tree_stall.h" 4042 #include "tree_exp.h" 4043 #include "tree_plugin.h" 4044