xref: /openbmc/linux/kernel/rcu/tree.c (revision c4ee0af3)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include <trace/events/rcu.h>
62 
63 #include "rcu.h"
64 
65 MODULE_ALIAS("rcutree");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "rcutree."
70 
71 /* Data structures. */
72 
73 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
74 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
75 
76 /*
77  * In order to export the rcu_state name to the tracing tools, it
78  * needs to be added in the __tracepoint_string section.
79  * This requires defining a separate variable tp_<sname>_varname
80  * that points to the string being used, and this will allow
81  * the tracing userspace tools to be able to decipher the string
82  * address to the matching string.
83  */
84 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87 struct rcu_state sname##_state = { \
88 	.level = { &sname##_state.node[0] }, \
89 	.call = cr, \
90 	.fqs_state = RCU_GP_IDLE, \
91 	.gpnum = 0UL - 300UL, \
92 	.completed = 0UL - 300UL, \
93 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 	.orphan_donetail = &sname##_state.orphan_donelist, \
96 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97 	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98 	.name = sname##_varname, \
99 	.abbr = sabbr, \
100 }; \
101 DEFINE_PER_CPU(struct rcu_data, sname##_data)
102 
103 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
105 
106 static struct rcu_state *rcu_state;
107 LIST_HEAD(rcu_struct_flavors);
108 
109 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
114 	NUM_RCU_LVL_0,
115 	NUM_RCU_LVL_1,
116 	NUM_RCU_LVL_2,
117 	NUM_RCU_LVL_3,
118 	NUM_RCU_LVL_4,
119 };
120 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121 
122 /*
123  * The rcu_scheduler_active variable transitions from zero to one just
124  * before the first task is spawned.  So when this variable is zero, RCU
125  * can assume that there is but one task, allowing RCU to (for example)
126  * optimize synchronize_sched() to a simple barrier().  When this variable
127  * is one, RCU must actually do all the hard work required to detect real
128  * grace periods.  This variable is also used to suppress boot-time false
129  * positives from lockdep-RCU error checking.
130  */
131 int rcu_scheduler_active __read_mostly;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133 
134 /*
135  * The rcu_scheduler_fully_active variable transitions from zero to one
136  * during the early_initcall() processing, which is after the scheduler
137  * is capable of creating new tasks.  So RCU processing (for example,
138  * creating tasks for RCU priority boosting) must be delayed until after
139  * rcu_scheduler_fully_active transitions from zero to one.  We also
140  * currently delay invocation of any RCU callbacks until after this point.
141  *
142  * It might later prove better for people registering RCU callbacks during
143  * early boot to take responsibility for these callbacks, but one step at
144  * a time.
145  */
146 static int rcu_scheduler_fully_active __read_mostly;
147 
148 #ifdef CONFIG_RCU_BOOST
149 
150 /*
151  * Control variables for per-CPU and per-rcu_node kthreads.  These
152  * handle all flavors of RCU.
153  */
154 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
155 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
156 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
157 DEFINE_PER_CPU(char, rcu_cpu_has_work);
158 
159 #endif /* #ifdef CONFIG_RCU_BOOST */
160 
161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 static void invoke_rcu_core(void);
163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164 
165 /*
166  * Track the rcutorture test sequence number and the update version
167  * number within a given test.  The rcutorture_testseq is incremented
168  * on every rcutorture module load and unload, so has an odd value
169  * when a test is running.  The rcutorture_vernum is set to zero
170  * when rcutorture starts and is incremented on each rcutorture update.
171  * These variables enable correlating rcutorture output with the
172  * RCU tracing information.
173  */
174 unsigned long rcutorture_testseq;
175 unsigned long rcutorture_vernum;
176 
177 /*
178  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
179  * permit this function to be invoked without holding the root rcu_node
180  * structure's ->lock, but of course results can be subject to change.
181  */
182 static int rcu_gp_in_progress(struct rcu_state *rsp)
183 {
184 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185 }
186 
187 /*
188  * Note a quiescent state.  Because we do not need to know
189  * how many quiescent states passed, just if there was at least
190  * one since the start of the grace period, this just sets a flag.
191  * The caller must have disabled preemption.
192  */
193 void rcu_sched_qs(int cpu)
194 {
195 	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
196 
197 	if (rdp->passed_quiesce == 0)
198 		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
199 	rdp->passed_quiesce = 1;
200 }
201 
202 void rcu_bh_qs(int cpu)
203 {
204 	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
205 
206 	if (rdp->passed_quiesce == 0)
207 		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
208 	rdp->passed_quiesce = 1;
209 }
210 
211 /*
212  * Note a context switch.  This is a quiescent state for RCU-sched,
213  * and requires special handling for preemptible RCU.
214  * The caller must have disabled preemption.
215  */
216 void rcu_note_context_switch(int cpu)
217 {
218 	trace_rcu_utilization(TPS("Start context switch"));
219 	rcu_sched_qs(cpu);
220 	rcu_preempt_note_context_switch(cpu);
221 	trace_rcu_utilization(TPS("End context switch"));
222 }
223 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
224 
225 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
226 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
227 	.dynticks = ATOMIC_INIT(1),
228 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 	.dynticks_idle = ATOMIC_INIT(1),
231 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
232 };
233 
234 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
235 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
236 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
237 
238 module_param(blimit, long, 0444);
239 module_param(qhimark, long, 0444);
240 module_param(qlowmark, long, 0444);
241 
242 static ulong jiffies_till_first_fqs = ULONG_MAX;
243 static ulong jiffies_till_next_fqs = ULONG_MAX;
244 
245 module_param(jiffies_till_first_fqs, ulong, 0644);
246 module_param(jiffies_till_next_fqs, ulong, 0644);
247 
248 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 				  struct rcu_data *rdp);
250 static void force_qs_rnp(struct rcu_state *rsp,
251 			 int (*f)(struct rcu_data *rsp, bool *isidle,
252 				  unsigned long *maxj),
253 			 bool *isidle, unsigned long *maxj);
254 static void force_quiescent_state(struct rcu_state *rsp);
255 static int rcu_pending(int cpu);
256 
257 /*
258  * Return the number of RCU-sched batches processed thus far for debug & stats.
259  */
260 long rcu_batches_completed_sched(void)
261 {
262 	return rcu_sched_state.completed;
263 }
264 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
265 
266 /*
267  * Return the number of RCU BH batches processed thus far for debug & stats.
268  */
269 long rcu_batches_completed_bh(void)
270 {
271 	return rcu_bh_state.completed;
272 }
273 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274 
275 /*
276  * Force a quiescent state for RCU BH.
277  */
278 void rcu_bh_force_quiescent_state(void)
279 {
280 	force_quiescent_state(&rcu_bh_state);
281 }
282 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283 
284 /*
285  * Record the number of times rcutorture tests have been initiated and
286  * terminated.  This information allows the debugfs tracing stats to be
287  * correlated to the rcutorture messages, even when the rcutorture module
288  * is being repeatedly loaded and unloaded.  In other words, we cannot
289  * store this state in rcutorture itself.
290  */
291 void rcutorture_record_test_transition(void)
292 {
293 	rcutorture_testseq++;
294 	rcutorture_vernum = 0;
295 }
296 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297 
298 /*
299  * Record the number of writer passes through the current rcutorture test.
300  * This is also used to correlate debugfs tracing stats with the rcutorture
301  * messages.
302  */
303 void rcutorture_record_progress(unsigned long vernum)
304 {
305 	rcutorture_vernum++;
306 }
307 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308 
309 /*
310  * Force a quiescent state for RCU-sched.
311  */
312 void rcu_sched_force_quiescent_state(void)
313 {
314 	force_quiescent_state(&rcu_sched_state);
315 }
316 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317 
318 /*
319  * Does the CPU have callbacks ready to be invoked?
320  */
321 static int
322 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323 {
324 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
326 }
327 
328 /*
329  * Does the current CPU require a not-yet-started grace period?
330  * The caller must have disabled interrupts to prevent races with
331  * normal callback registry.
332  */
333 static int
334 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335 {
336 	int i;
337 
338 	if (rcu_gp_in_progress(rsp))
339 		return 0;  /* No, a grace period is already in progress. */
340 	if (rcu_nocb_needs_gp(rsp))
341 		return 1;  /* Yes, a no-CBs CPU needs one. */
342 	if (!rdp->nxttail[RCU_NEXT_TAIL])
343 		return 0;  /* No, this is a no-CBs (or offline) CPU. */
344 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 		return 1;  /* Yes, this CPU has newly registered callbacks. */
346 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 				 rdp->nxtcompleted[i]))
350 			return 1;  /* Yes, CBs for future grace period. */
351 	return 0; /* No grace period needed. */
352 }
353 
354 /*
355  * Return the root node of the specified rcu_state structure.
356  */
357 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358 {
359 	return &rsp->node[0];
360 }
361 
362 /*
363  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
364  *
365  * If the new value of the ->dynticks_nesting counter now is zero,
366  * we really have entered idle, and must do the appropriate accounting.
367  * The caller must have disabled interrupts.
368  */
369 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 				bool user)
371 {
372 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
373 	if (!user && !is_idle_task(current)) {
374 		struct task_struct *idle __maybe_unused =
375 			idle_task(smp_processor_id());
376 
377 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
378 		ftrace_dump(DUMP_ORIG);
379 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
380 			  current->pid, current->comm,
381 			  idle->pid, idle->comm); /* must be idle task! */
382 	}
383 	rcu_prepare_for_idle(smp_processor_id());
384 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
385 	smp_mb__before_atomic_inc();  /* See above. */
386 	atomic_inc(&rdtp->dynticks);
387 	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
388 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
389 
390 	/*
391 	 * It is illegal to enter an extended quiescent state while
392 	 * in an RCU read-side critical section.
393 	 */
394 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
395 			   "Illegal idle entry in RCU read-side critical section.");
396 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
397 			   "Illegal idle entry in RCU-bh read-side critical section.");
398 	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
399 			   "Illegal idle entry in RCU-sched read-side critical section.");
400 }
401 
402 /*
403  * Enter an RCU extended quiescent state, which can be either the
404  * idle loop or adaptive-tickless usermode execution.
405  */
406 static void rcu_eqs_enter(bool user)
407 {
408 	long long oldval;
409 	struct rcu_dynticks *rdtp;
410 
411 	rdtp = this_cpu_ptr(&rcu_dynticks);
412 	oldval = rdtp->dynticks_nesting;
413 	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
414 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
415 		rdtp->dynticks_nesting = 0;
416 	else
417 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
418 	rcu_eqs_enter_common(rdtp, oldval, user);
419 }
420 
421 /**
422  * rcu_idle_enter - inform RCU that current CPU is entering idle
423  *
424  * Enter idle mode, in other words, -leave- the mode in which RCU
425  * read-side critical sections can occur.  (Though RCU read-side
426  * critical sections can occur in irq handlers in idle, a possibility
427  * handled by irq_enter() and irq_exit().)
428  *
429  * We crowbar the ->dynticks_nesting field to zero to allow for
430  * the possibility of usermode upcalls having messed up our count
431  * of interrupt nesting level during the prior busy period.
432  */
433 void rcu_idle_enter(void)
434 {
435 	unsigned long flags;
436 
437 	local_irq_save(flags);
438 	rcu_eqs_enter(false);
439 	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
440 	local_irq_restore(flags);
441 }
442 EXPORT_SYMBOL_GPL(rcu_idle_enter);
443 
444 #ifdef CONFIG_RCU_USER_QS
445 /**
446  * rcu_user_enter - inform RCU that we are resuming userspace.
447  *
448  * Enter RCU idle mode right before resuming userspace.  No use of RCU
449  * is permitted between this call and rcu_user_exit(). This way the
450  * CPU doesn't need to maintain the tick for RCU maintenance purposes
451  * when the CPU runs in userspace.
452  */
453 void rcu_user_enter(void)
454 {
455 	rcu_eqs_enter(1);
456 }
457 #endif /* CONFIG_RCU_USER_QS */
458 
459 /**
460  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
461  *
462  * Exit from an interrupt handler, which might possibly result in entering
463  * idle mode, in other words, leaving the mode in which read-side critical
464  * sections can occur.
465  *
466  * This code assumes that the idle loop never does anything that might
467  * result in unbalanced calls to irq_enter() and irq_exit().  If your
468  * architecture violates this assumption, RCU will give you what you
469  * deserve, good and hard.  But very infrequently and irreproducibly.
470  *
471  * Use things like work queues to work around this limitation.
472  *
473  * You have been warned.
474  */
475 void rcu_irq_exit(void)
476 {
477 	unsigned long flags;
478 	long long oldval;
479 	struct rcu_dynticks *rdtp;
480 
481 	local_irq_save(flags);
482 	rdtp = this_cpu_ptr(&rcu_dynticks);
483 	oldval = rdtp->dynticks_nesting;
484 	rdtp->dynticks_nesting--;
485 	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
486 	if (rdtp->dynticks_nesting)
487 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
488 	else
489 		rcu_eqs_enter_common(rdtp, oldval, true);
490 	rcu_sysidle_enter(rdtp, 1);
491 	local_irq_restore(flags);
492 }
493 
494 /*
495  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
496  *
497  * If the new value of the ->dynticks_nesting counter was previously zero,
498  * we really have exited idle, and must do the appropriate accounting.
499  * The caller must have disabled interrupts.
500  */
501 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
502 			       int user)
503 {
504 	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
505 	atomic_inc(&rdtp->dynticks);
506 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
507 	smp_mb__after_atomic_inc();  /* See above. */
508 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
509 	rcu_cleanup_after_idle(smp_processor_id());
510 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
511 	if (!user && !is_idle_task(current)) {
512 		struct task_struct *idle __maybe_unused =
513 			idle_task(smp_processor_id());
514 
515 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
516 				  oldval, rdtp->dynticks_nesting);
517 		ftrace_dump(DUMP_ORIG);
518 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
519 			  current->pid, current->comm,
520 			  idle->pid, idle->comm); /* must be idle task! */
521 	}
522 }
523 
524 /*
525  * Exit an RCU extended quiescent state, which can be either the
526  * idle loop or adaptive-tickless usermode execution.
527  */
528 static void rcu_eqs_exit(bool user)
529 {
530 	struct rcu_dynticks *rdtp;
531 	long long oldval;
532 
533 	rdtp = this_cpu_ptr(&rcu_dynticks);
534 	oldval = rdtp->dynticks_nesting;
535 	WARN_ON_ONCE(oldval < 0);
536 	if (oldval & DYNTICK_TASK_NEST_MASK)
537 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
538 	else
539 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
540 	rcu_eqs_exit_common(rdtp, oldval, user);
541 }
542 
543 /**
544  * rcu_idle_exit - inform RCU that current CPU is leaving idle
545  *
546  * Exit idle mode, in other words, -enter- the mode in which RCU
547  * read-side critical sections can occur.
548  *
549  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
550  * allow for the possibility of usermode upcalls messing up our count
551  * of interrupt nesting level during the busy period that is just
552  * now starting.
553  */
554 void rcu_idle_exit(void)
555 {
556 	unsigned long flags;
557 
558 	local_irq_save(flags);
559 	rcu_eqs_exit(false);
560 	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
561 	local_irq_restore(flags);
562 }
563 EXPORT_SYMBOL_GPL(rcu_idle_exit);
564 
565 #ifdef CONFIG_RCU_USER_QS
566 /**
567  * rcu_user_exit - inform RCU that we are exiting userspace.
568  *
569  * Exit RCU idle mode while entering the kernel because it can
570  * run a RCU read side critical section anytime.
571  */
572 void rcu_user_exit(void)
573 {
574 	rcu_eqs_exit(1);
575 }
576 #endif /* CONFIG_RCU_USER_QS */
577 
578 /**
579  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
580  *
581  * Enter an interrupt handler, which might possibly result in exiting
582  * idle mode, in other words, entering the mode in which read-side critical
583  * sections can occur.
584  *
585  * Note that the Linux kernel is fully capable of entering an interrupt
586  * handler that it never exits, for example when doing upcalls to
587  * user mode!  This code assumes that the idle loop never does upcalls to
588  * user mode.  If your architecture does do upcalls from the idle loop (or
589  * does anything else that results in unbalanced calls to the irq_enter()
590  * and irq_exit() functions), RCU will give you what you deserve, good
591  * and hard.  But very infrequently and irreproducibly.
592  *
593  * Use things like work queues to work around this limitation.
594  *
595  * You have been warned.
596  */
597 void rcu_irq_enter(void)
598 {
599 	unsigned long flags;
600 	struct rcu_dynticks *rdtp;
601 	long long oldval;
602 
603 	local_irq_save(flags);
604 	rdtp = this_cpu_ptr(&rcu_dynticks);
605 	oldval = rdtp->dynticks_nesting;
606 	rdtp->dynticks_nesting++;
607 	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
608 	if (oldval)
609 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
610 	else
611 		rcu_eqs_exit_common(rdtp, oldval, true);
612 	rcu_sysidle_exit(rdtp, 1);
613 	local_irq_restore(flags);
614 }
615 
616 /**
617  * rcu_nmi_enter - inform RCU of entry to NMI context
618  *
619  * If the CPU was idle with dynamic ticks active, and there is no
620  * irq handler running, this updates rdtp->dynticks_nmi to let the
621  * RCU grace-period handling know that the CPU is active.
622  */
623 void rcu_nmi_enter(void)
624 {
625 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
626 
627 	if (rdtp->dynticks_nmi_nesting == 0 &&
628 	    (atomic_read(&rdtp->dynticks) & 0x1))
629 		return;
630 	rdtp->dynticks_nmi_nesting++;
631 	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
632 	atomic_inc(&rdtp->dynticks);
633 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
634 	smp_mb__after_atomic_inc();  /* See above. */
635 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
636 }
637 
638 /**
639  * rcu_nmi_exit - inform RCU of exit from NMI context
640  *
641  * If the CPU was idle with dynamic ticks active, and there is no
642  * irq handler running, this updates rdtp->dynticks_nmi to let the
643  * RCU grace-period handling know that the CPU is no longer active.
644  */
645 void rcu_nmi_exit(void)
646 {
647 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
648 
649 	if (rdtp->dynticks_nmi_nesting == 0 ||
650 	    --rdtp->dynticks_nmi_nesting != 0)
651 		return;
652 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
653 	smp_mb__before_atomic_inc();  /* See above. */
654 	atomic_inc(&rdtp->dynticks);
655 	smp_mb__after_atomic_inc();  /* Force delay to next write. */
656 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
657 }
658 
659 /**
660  * __rcu_is_watching - are RCU read-side critical sections safe?
661  *
662  * Return true if RCU is watching the running CPU, which means that
663  * this CPU can safely enter RCU read-side critical sections.  Unlike
664  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
665  * least disabled preemption.
666  */
667 bool notrace __rcu_is_watching(void)
668 {
669 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
670 }
671 
672 /**
673  * rcu_is_watching - see if RCU thinks that the current CPU is idle
674  *
675  * If the current CPU is in its idle loop and is neither in an interrupt
676  * or NMI handler, return true.
677  */
678 bool notrace rcu_is_watching(void)
679 {
680 	int ret;
681 
682 	preempt_disable();
683 	ret = __rcu_is_watching();
684 	preempt_enable();
685 	return ret;
686 }
687 EXPORT_SYMBOL_GPL(rcu_is_watching);
688 
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690 
691 /*
692  * Is the current CPU online?  Disable preemption to avoid false positives
693  * that could otherwise happen due to the current CPU number being sampled,
694  * this task being preempted, its old CPU being taken offline, resuming
695  * on some other CPU, then determining that its old CPU is now offline.
696  * It is OK to use RCU on an offline processor during initial boot, hence
697  * the check for rcu_scheduler_fully_active.  Note also that it is OK
698  * for a CPU coming online to use RCU for one jiffy prior to marking itself
699  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
700  * offline to continue to use RCU for one jiffy after marking itself
701  * offline in the cpu_online_mask.  This leniency is necessary given the
702  * non-atomic nature of the online and offline processing, for example,
703  * the fact that a CPU enters the scheduler after completing the CPU_DYING
704  * notifiers.
705  *
706  * This is also why RCU internally marks CPUs online during the
707  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708  *
709  * Disable checking if in an NMI handler because we cannot safely report
710  * errors from NMI handlers anyway.
711  */
712 bool rcu_lockdep_current_cpu_online(void)
713 {
714 	struct rcu_data *rdp;
715 	struct rcu_node *rnp;
716 	bool ret;
717 
718 	if (in_nmi())
719 		return 1;
720 	preempt_disable();
721 	rdp = this_cpu_ptr(&rcu_sched_data);
722 	rnp = rdp->mynode;
723 	ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 	      !rcu_scheduler_fully_active;
725 	preempt_enable();
726 	return ret;
727 }
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729 
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731 
732 /**
733  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734  *
735  * If the current CPU is idle or running at a first-level (not nested)
736  * interrupt from idle, return true.  The caller must have at least
737  * disabled preemption.
738  */
739 static int rcu_is_cpu_rrupt_from_idle(void)
740 {
741 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
742 }
743 
744 /*
745  * Snapshot the specified CPU's dynticks counter so that we can later
746  * credit them with an implicit quiescent state.  Return 1 if this CPU
747  * is in dynticks idle mode, which is an extended quiescent state.
748  */
749 static int dyntick_save_progress_counter(struct rcu_data *rdp,
750 					 bool *isidle, unsigned long *maxj)
751 {
752 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
753 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
754 	return (rdp->dynticks_snap & 0x1) == 0;
755 }
756 
757 /*
758  * Return true if the specified CPU has passed through a quiescent
759  * state by virtue of being in or having passed through an dynticks
760  * idle state since the last call to dyntick_save_progress_counter()
761  * for this same CPU, or by virtue of having been offline.
762  */
763 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
764 				    bool *isidle, unsigned long *maxj)
765 {
766 	unsigned int curr;
767 	unsigned int snap;
768 
769 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
770 	snap = (unsigned int)rdp->dynticks_snap;
771 
772 	/*
773 	 * If the CPU passed through or entered a dynticks idle phase with
774 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
775 	 * already acknowledged the request to pass through a quiescent
776 	 * state.  Either way, that CPU cannot possibly be in an RCU
777 	 * read-side critical section that started before the beginning
778 	 * of the current RCU grace period.
779 	 */
780 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
781 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
782 		rdp->dynticks_fqs++;
783 		return 1;
784 	}
785 
786 	/*
787 	 * Check for the CPU being offline, but only if the grace period
788 	 * is old enough.  We don't need to worry about the CPU changing
789 	 * state: If we see it offline even once, it has been through a
790 	 * quiescent state.
791 	 *
792 	 * The reason for insisting that the grace period be at least
793 	 * one jiffy old is that CPUs that are not quite online and that
794 	 * have just gone offline can still execute RCU read-side critical
795 	 * sections.
796 	 */
797 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
798 		return 0;  /* Grace period is not old enough. */
799 	barrier();
800 	if (cpu_is_offline(rdp->cpu)) {
801 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
802 		rdp->offline_fqs++;
803 		return 1;
804 	}
805 
806 	/*
807 	 * There is a possibility that a CPU in adaptive-ticks state
808 	 * might run in the kernel with the scheduling-clock tick disabled
809 	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
810 	 * force the CPU to restart the scheduling-clock tick in this
811 	 * CPU is in this state.
812 	 */
813 	rcu_kick_nohz_cpu(rdp->cpu);
814 
815 	return 0;
816 }
817 
818 static void record_gp_stall_check_time(struct rcu_state *rsp)
819 {
820 	unsigned long j = ACCESS_ONCE(jiffies);
821 
822 	rsp->gp_start = j;
823 	smp_wmb(); /* Record start time before stall time. */
824 	rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
825 }
826 
827 /*
828  * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
829  * for architectures that do not implement trigger_all_cpu_backtrace().
830  * The NMI-triggered stack traces are more accurate because they are
831  * printed by the target CPU.
832  */
833 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
834 {
835 	int cpu;
836 	unsigned long flags;
837 	struct rcu_node *rnp;
838 
839 	rcu_for_each_leaf_node(rsp, rnp) {
840 		raw_spin_lock_irqsave(&rnp->lock, flags);
841 		if (rnp->qsmask != 0) {
842 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
843 				if (rnp->qsmask & (1UL << cpu))
844 					dump_cpu_task(rnp->grplo + cpu);
845 		}
846 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
847 	}
848 }
849 
850 static void print_other_cpu_stall(struct rcu_state *rsp)
851 {
852 	int cpu;
853 	long delta;
854 	unsigned long flags;
855 	int ndetected = 0;
856 	struct rcu_node *rnp = rcu_get_root(rsp);
857 	long totqlen = 0;
858 
859 	/* Only let one CPU complain about others per time interval. */
860 
861 	raw_spin_lock_irqsave(&rnp->lock, flags);
862 	delta = jiffies - rsp->jiffies_stall;
863 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
864 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
865 		return;
866 	}
867 	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
868 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
869 
870 	/*
871 	 * OK, time to rat on our buddy...
872 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
873 	 * RCU CPU stall warnings.
874 	 */
875 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
876 	       rsp->name);
877 	print_cpu_stall_info_begin();
878 	rcu_for_each_leaf_node(rsp, rnp) {
879 		raw_spin_lock_irqsave(&rnp->lock, flags);
880 		ndetected += rcu_print_task_stall(rnp);
881 		if (rnp->qsmask != 0) {
882 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
883 				if (rnp->qsmask & (1UL << cpu)) {
884 					print_cpu_stall_info(rsp,
885 							     rnp->grplo + cpu);
886 					ndetected++;
887 				}
888 		}
889 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
890 	}
891 
892 	/*
893 	 * Now rat on any tasks that got kicked up to the root rcu_node
894 	 * due to CPU offlining.
895 	 */
896 	rnp = rcu_get_root(rsp);
897 	raw_spin_lock_irqsave(&rnp->lock, flags);
898 	ndetected += rcu_print_task_stall(rnp);
899 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
900 
901 	print_cpu_stall_info_end();
902 	for_each_possible_cpu(cpu)
903 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
904 	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
905 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
906 	       rsp->gpnum, rsp->completed, totqlen);
907 	if (ndetected == 0)
908 		pr_err("INFO: Stall ended before state dump start\n");
909 	else if (!trigger_all_cpu_backtrace())
910 		rcu_dump_cpu_stacks(rsp);
911 
912 	/* Complain about tasks blocking the grace period. */
913 
914 	rcu_print_detail_task_stall(rsp);
915 
916 	force_quiescent_state(rsp);  /* Kick them all. */
917 }
918 
919 /*
920  * This function really isn't for public consumption, but RCU is special in
921  * that context switches can allow the state machine to make progress.
922  */
923 extern void resched_cpu(int cpu);
924 
925 static void print_cpu_stall(struct rcu_state *rsp)
926 {
927 	int cpu;
928 	unsigned long flags;
929 	struct rcu_node *rnp = rcu_get_root(rsp);
930 	long totqlen = 0;
931 
932 	/*
933 	 * OK, time to rat on ourselves...
934 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
935 	 * RCU CPU stall warnings.
936 	 */
937 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
938 	print_cpu_stall_info_begin();
939 	print_cpu_stall_info(rsp, smp_processor_id());
940 	print_cpu_stall_info_end();
941 	for_each_possible_cpu(cpu)
942 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
943 	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
944 		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
945 	if (!trigger_all_cpu_backtrace())
946 		dump_stack();
947 
948 	raw_spin_lock_irqsave(&rnp->lock, flags);
949 	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
950 		rsp->jiffies_stall = jiffies +
951 				     3 * rcu_jiffies_till_stall_check() + 3;
952 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
953 
954 	/*
955 	 * Attempt to revive the RCU machinery by forcing a context switch.
956 	 *
957 	 * A context switch would normally allow the RCU state machine to make
958 	 * progress and it could be we're stuck in kernel space without context
959 	 * switches for an entirely unreasonable amount of time.
960 	 */
961 	resched_cpu(smp_processor_id());
962 }
963 
964 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
965 {
966 	unsigned long completed;
967 	unsigned long gpnum;
968 	unsigned long gps;
969 	unsigned long j;
970 	unsigned long js;
971 	struct rcu_node *rnp;
972 
973 	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
974 		return;
975 	j = ACCESS_ONCE(jiffies);
976 
977 	/*
978 	 * Lots of memory barriers to reject false positives.
979 	 *
980 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
981 	 * then rsp->gp_start, and finally rsp->completed.  These values
982 	 * are updated in the opposite order with memory barriers (or
983 	 * equivalent) during grace-period initialization and cleanup.
984 	 * Now, a false positive can occur if we get an new value of
985 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
986 	 * the memory barriers, the only way that this can happen is if one
987 	 * grace period ends and another starts between these two fetches.
988 	 * Detect this by comparing rsp->completed with the previous fetch
989 	 * from rsp->gpnum.
990 	 *
991 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
992 	 * and rsp->gp_start suffice to forestall false positives.
993 	 */
994 	gpnum = ACCESS_ONCE(rsp->gpnum);
995 	smp_rmb(); /* Pick up ->gpnum first... */
996 	js = ACCESS_ONCE(rsp->jiffies_stall);
997 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
998 	gps = ACCESS_ONCE(rsp->gp_start);
999 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1000 	completed = ACCESS_ONCE(rsp->completed);
1001 	if (ULONG_CMP_GE(completed, gpnum) ||
1002 	    ULONG_CMP_LT(j, js) ||
1003 	    ULONG_CMP_GE(gps, js))
1004 		return; /* No stall or GP completed since entering function. */
1005 	rnp = rdp->mynode;
1006 	if (rcu_gp_in_progress(rsp) &&
1007 	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1008 
1009 		/* We haven't checked in, so go dump stack. */
1010 		print_cpu_stall(rsp);
1011 
1012 	} else if (rcu_gp_in_progress(rsp) &&
1013 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1014 
1015 		/* They had a few time units to dump stack, so complain. */
1016 		print_other_cpu_stall(rsp);
1017 	}
1018 }
1019 
1020 /**
1021  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1022  *
1023  * Set the stall-warning timeout way off into the future, thus preventing
1024  * any RCU CPU stall-warning messages from appearing in the current set of
1025  * RCU grace periods.
1026  *
1027  * The caller must disable hard irqs.
1028  */
1029 void rcu_cpu_stall_reset(void)
1030 {
1031 	struct rcu_state *rsp;
1032 
1033 	for_each_rcu_flavor(rsp)
1034 		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1035 }
1036 
1037 /*
1038  * Initialize the specified rcu_data structure's callback list to empty.
1039  */
1040 static void init_callback_list(struct rcu_data *rdp)
1041 {
1042 	int i;
1043 
1044 	if (init_nocb_callback_list(rdp))
1045 		return;
1046 	rdp->nxtlist = NULL;
1047 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1048 		rdp->nxttail[i] = &rdp->nxtlist;
1049 }
1050 
1051 /*
1052  * Determine the value that ->completed will have at the end of the
1053  * next subsequent grace period.  This is used to tag callbacks so that
1054  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1055  * been dyntick-idle for an extended period with callbacks under the
1056  * influence of RCU_FAST_NO_HZ.
1057  *
1058  * The caller must hold rnp->lock with interrupts disabled.
1059  */
1060 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1061 				       struct rcu_node *rnp)
1062 {
1063 	/*
1064 	 * If RCU is idle, we just wait for the next grace period.
1065 	 * But we can only be sure that RCU is idle if we are looking
1066 	 * at the root rcu_node structure -- otherwise, a new grace
1067 	 * period might have started, but just not yet gotten around
1068 	 * to initializing the current non-root rcu_node structure.
1069 	 */
1070 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1071 		return rnp->completed + 1;
1072 
1073 	/*
1074 	 * Otherwise, wait for a possible partial grace period and
1075 	 * then the subsequent full grace period.
1076 	 */
1077 	return rnp->completed + 2;
1078 }
1079 
1080 /*
1081  * Trace-event helper function for rcu_start_future_gp() and
1082  * rcu_nocb_wait_gp().
1083  */
1084 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1085 				unsigned long c, const char *s)
1086 {
1087 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1088 				      rnp->completed, c, rnp->level,
1089 				      rnp->grplo, rnp->grphi, s);
1090 }
1091 
1092 /*
1093  * Start some future grace period, as needed to handle newly arrived
1094  * callbacks.  The required future grace periods are recorded in each
1095  * rcu_node structure's ->need_future_gp field.
1096  *
1097  * The caller must hold the specified rcu_node structure's ->lock.
1098  */
1099 static unsigned long __maybe_unused
1100 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1101 {
1102 	unsigned long c;
1103 	int i;
1104 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1105 
1106 	/*
1107 	 * Pick up grace-period number for new callbacks.  If this
1108 	 * grace period is already marked as needed, return to the caller.
1109 	 */
1110 	c = rcu_cbs_completed(rdp->rsp, rnp);
1111 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1112 	if (rnp->need_future_gp[c & 0x1]) {
1113 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1114 		return c;
1115 	}
1116 
1117 	/*
1118 	 * If either this rcu_node structure or the root rcu_node structure
1119 	 * believe that a grace period is in progress, then we must wait
1120 	 * for the one following, which is in "c".  Because our request
1121 	 * will be noticed at the end of the current grace period, we don't
1122 	 * need to explicitly start one.
1123 	 */
1124 	if (rnp->gpnum != rnp->completed ||
1125 	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1126 		rnp->need_future_gp[c & 0x1]++;
1127 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1128 		return c;
1129 	}
1130 
1131 	/*
1132 	 * There might be no grace period in progress.  If we don't already
1133 	 * hold it, acquire the root rcu_node structure's lock in order to
1134 	 * start one (if needed).
1135 	 */
1136 	if (rnp != rnp_root)
1137 		raw_spin_lock(&rnp_root->lock);
1138 
1139 	/*
1140 	 * Get a new grace-period number.  If there really is no grace
1141 	 * period in progress, it will be smaller than the one we obtained
1142 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1143 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1144 	 */
1145 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1146 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1147 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1148 			rdp->nxtcompleted[i] = c;
1149 
1150 	/*
1151 	 * If the needed for the required grace period is already
1152 	 * recorded, trace and leave.
1153 	 */
1154 	if (rnp_root->need_future_gp[c & 0x1]) {
1155 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1156 		goto unlock_out;
1157 	}
1158 
1159 	/* Record the need for the future grace period. */
1160 	rnp_root->need_future_gp[c & 0x1]++;
1161 
1162 	/* If a grace period is not already in progress, start one. */
1163 	if (rnp_root->gpnum != rnp_root->completed) {
1164 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1165 	} else {
1166 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1167 		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1168 	}
1169 unlock_out:
1170 	if (rnp != rnp_root)
1171 		raw_spin_unlock(&rnp_root->lock);
1172 	return c;
1173 }
1174 
1175 /*
1176  * Clean up any old requests for the just-ended grace period.  Also return
1177  * whether any additional grace periods have been requested.  Also invoke
1178  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1179  * waiting for this grace period to complete.
1180  */
1181 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1182 {
1183 	int c = rnp->completed;
1184 	int needmore;
1185 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1186 
1187 	rcu_nocb_gp_cleanup(rsp, rnp);
1188 	rnp->need_future_gp[c & 0x1] = 0;
1189 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1190 	trace_rcu_future_gp(rnp, rdp, c,
1191 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1192 	return needmore;
1193 }
1194 
1195 /*
1196  * If there is room, assign a ->completed number to any callbacks on
1197  * this CPU that have not already been assigned.  Also accelerate any
1198  * callbacks that were previously assigned a ->completed number that has
1199  * since proven to be too conservative, which can happen if callbacks get
1200  * assigned a ->completed number while RCU is idle, but with reference to
1201  * a non-root rcu_node structure.  This function is idempotent, so it does
1202  * not hurt to call it repeatedly.
1203  *
1204  * The caller must hold rnp->lock with interrupts disabled.
1205  */
1206 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1207 			       struct rcu_data *rdp)
1208 {
1209 	unsigned long c;
1210 	int i;
1211 
1212 	/* If the CPU has no callbacks, nothing to do. */
1213 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1214 		return;
1215 
1216 	/*
1217 	 * Starting from the sublist containing the callbacks most
1218 	 * recently assigned a ->completed number and working down, find the
1219 	 * first sublist that is not assignable to an upcoming grace period.
1220 	 * Such a sublist has something in it (first two tests) and has
1221 	 * a ->completed number assigned that will complete sooner than
1222 	 * the ->completed number for newly arrived callbacks (last test).
1223 	 *
1224 	 * The key point is that any later sublist can be assigned the
1225 	 * same ->completed number as the newly arrived callbacks, which
1226 	 * means that the callbacks in any of these later sublist can be
1227 	 * grouped into a single sublist, whether or not they have already
1228 	 * been assigned a ->completed number.
1229 	 */
1230 	c = rcu_cbs_completed(rsp, rnp);
1231 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1232 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1233 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1234 			break;
1235 
1236 	/*
1237 	 * If there are no sublist for unassigned callbacks, leave.
1238 	 * At the same time, advance "i" one sublist, so that "i" will
1239 	 * index into the sublist where all the remaining callbacks should
1240 	 * be grouped into.
1241 	 */
1242 	if (++i >= RCU_NEXT_TAIL)
1243 		return;
1244 
1245 	/*
1246 	 * Assign all subsequent callbacks' ->completed number to the next
1247 	 * full grace period and group them all in the sublist initially
1248 	 * indexed by "i".
1249 	 */
1250 	for (; i <= RCU_NEXT_TAIL; i++) {
1251 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1252 		rdp->nxtcompleted[i] = c;
1253 	}
1254 	/* Record any needed additional grace periods. */
1255 	rcu_start_future_gp(rnp, rdp);
1256 
1257 	/* Trace depending on how much we were able to accelerate. */
1258 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1259 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1260 	else
1261 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1262 }
1263 
1264 /*
1265  * Move any callbacks whose grace period has completed to the
1266  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1267  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1268  * sublist.  This function is idempotent, so it does not hurt to
1269  * invoke it repeatedly.  As long as it is not invoked -too- often...
1270  *
1271  * The caller must hold rnp->lock with interrupts disabled.
1272  */
1273 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1274 			    struct rcu_data *rdp)
1275 {
1276 	int i, j;
1277 
1278 	/* If the CPU has no callbacks, nothing to do. */
1279 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1280 		return;
1281 
1282 	/*
1283 	 * Find all callbacks whose ->completed numbers indicate that they
1284 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1285 	 */
1286 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1287 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1288 			break;
1289 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1290 	}
1291 	/* Clean up any sublist tail pointers that were misordered above. */
1292 	for (j = RCU_WAIT_TAIL; j < i; j++)
1293 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1294 
1295 	/* Copy down callbacks to fill in empty sublists. */
1296 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1297 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1298 			break;
1299 		rdp->nxttail[j] = rdp->nxttail[i];
1300 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1301 	}
1302 
1303 	/* Classify any remaining callbacks. */
1304 	rcu_accelerate_cbs(rsp, rnp, rdp);
1305 }
1306 
1307 /*
1308  * Update CPU-local rcu_data state to record the beginnings and ends of
1309  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1310  * structure corresponding to the current CPU, and must have irqs disabled.
1311  */
1312 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1313 {
1314 	/* Handle the ends of any preceding grace periods first. */
1315 	if (rdp->completed == rnp->completed) {
1316 
1317 		/* No grace period end, so just accelerate recent callbacks. */
1318 		rcu_accelerate_cbs(rsp, rnp, rdp);
1319 
1320 	} else {
1321 
1322 		/* Advance callbacks. */
1323 		rcu_advance_cbs(rsp, rnp, rdp);
1324 
1325 		/* Remember that we saw this grace-period completion. */
1326 		rdp->completed = rnp->completed;
1327 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1328 	}
1329 
1330 	if (rdp->gpnum != rnp->gpnum) {
1331 		/*
1332 		 * If the current grace period is waiting for this CPU,
1333 		 * set up to detect a quiescent state, otherwise don't
1334 		 * go looking for one.
1335 		 */
1336 		rdp->gpnum = rnp->gpnum;
1337 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1338 		rdp->passed_quiesce = 0;
1339 		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1340 		zero_cpu_stall_ticks(rdp);
1341 	}
1342 }
1343 
1344 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1345 {
1346 	unsigned long flags;
1347 	struct rcu_node *rnp;
1348 
1349 	local_irq_save(flags);
1350 	rnp = rdp->mynode;
1351 	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1352 	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1353 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1354 		local_irq_restore(flags);
1355 		return;
1356 	}
1357 	__note_gp_changes(rsp, rnp, rdp);
1358 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1359 }
1360 
1361 /*
1362  * Initialize a new grace period.  Return 0 if no grace period required.
1363  */
1364 static int rcu_gp_init(struct rcu_state *rsp)
1365 {
1366 	struct rcu_data *rdp;
1367 	struct rcu_node *rnp = rcu_get_root(rsp);
1368 
1369 	rcu_bind_gp_kthread();
1370 	raw_spin_lock_irq(&rnp->lock);
1371 	if (rsp->gp_flags == 0) {
1372 		/* Spurious wakeup, tell caller to go back to sleep.  */
1373 		raw_spin_unlock_irq(&rnp->lock);
1374 		return 0;
1375 	}
1376 	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1377 
1378 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1379 		/*
1380 		 * Grace period already in progress, don't start another.
1381 		 * Not supposed to be able to happen.
1382 		 */
1383 		raw_spin_unlock_irq(&rnp->lock);
1384 		return 0;
1385 	}
1386 
1387 	/* Advance to a new grace period and initialize state. */
1388 	record_gp_stall_check_time(rsp);
1389 	smp_wmb(); /* Record GP times before starting GP. */
1390 	rsp->gpnum++;
1391 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1392 	raw_spin_unlock_irq(&rnp->lock);
1393 
1394 	/* Exclude any concurrent CPU-hotplug operations. */
1395 	mutex_lock(&rsp->onoff_mutex);
1396 
1397 	/*
1398 	 * Set the quiescent-state-needed bits in all the rcu_node
1399 	 * structures for all currently online CPUs in breadth-first order,
1400 	 * starting from the root rcu_node structure, relying on the layout
1401 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1402 	 * will access only the leaves of the hierarchy, thus seeing that no
1403 	 * grace period is in progress, at least until the corresponding
1404 	 * leaf node has been initialized.  In addition, we have excluded
1405 	 * CPU-hotplug operations.
1406 	 *
1407 	 * The grace period cannot complete until the initialization
1408 	 * process finishes, because this kthread handles both.
1409 	 */
1410 	rcu_for_each_node_breadth_first(rsp, rnp) {
1411 		raw_spin_lock_irq(&rnp->lock);
1412 		rdp = this_cpu_ptr(rsp->rda);
1413 		rcu_preempt_check_blocked_tasks(rnp);
1414 		rnp->qsmask = rnp->qsmaskinit;
1415 		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1416 		WARN_ON_ONCE(rnp->completed != rsp->completed);
1417 		ACCESS_ONCE(rnp->completed) = rsp->completed;
1418 		if (rnp == rdp->mynode)
1419 			__note_gp_changes(rsp, rnp, rdp);
1420 		rcu_preempt_boost_start_gp(rnp);
1421 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1422 					    rnp->level, rnp->grplo,
1423 					    rnp->grphi, rnp->qsmask);
1424 		raw_spin_unlock_irq(&rnp->lock);
1425 #ifdef CONFIG_PROVE_RCU_DELAY
1426 		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1427 		    system_state == SYSTEM_RUNNING)
1428 			udelay(200);
1429 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1430 		cond_resched();
1431 	}
1432 
1433 	mutex_unlock(&rsp->onoff_mutex);
1434 	return 1;
1435 }
1436 
1437 /*
1438  * Do one round of quiescent-state forcing.
1439  */
1440 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1441 {
1442 	int fqs_state = fqs_state_in;
1443 	bool isidle = false;
1444 	unsigned long maxj;
1445 	struct rcu_node *rnp = rcu_get_root(rsp);
1446 
1447 	rsp->n_force_qs++;
1448 	if (fqs_state == RCU_SAVE_DYNTICK) {
1449 		/* Collect dyntick-idle snapshots. */
1450 		if (is_sysidle_rcu_state(rsp)) {
1451 			isidle = 1;
1452 			maxj = jiffies - ULONG_MAX / 4;
1453 		}
1454 		force_qs_rnp(rsp, dyntick_save_progress_counter,
1455 			     &isidle, &maxj);
1456 		rcu_sysidle_report_gp(rsp, isidle, maxj);
1457 		fqs_state = RCU_FORCE_QS;
1458 	} else {
1459 		/* Handle dyntick-idle and offline CPUs. */
1460 		isidle = 0;
1461 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1462 	}
1463 	/* Clear flag to prevent immediate re-entry. */
1464 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1465 		raw_spin_lock_irq(&rnp->lock);
1466 		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1467 		raw_spin_unlock_irq(&rnp->lock);
1468 	}
1469 	return fqs_state;
1470 }
1471 
1472 /*
1473  * Clean up after the old grace period.
1474  */
1475 static void rcu_gp_cleanup(struct rcu_state *rsp)
1476 {
1477 	unsigned long gp_duration;
1478 	int nocb = 0;
1479 	struct rcu_data *rdp;
1480 	struct rcu_node *rnp = rcu_get_root(rsp);
1481 
1482 	raw_spin_lock_irq(&rnp->lock);
1483 	gp_duration = jiffies - rsp->gp_start;
1484 	if (gp_duration > rsp->gp_max)
1485 		rsp->gp_max = gp_duration;
1486 
1487 	/*
1488 	 * We know the grace period is complete, but to everyone else
1489 	 * it appears to still be ongoing.  But it is also the case
1490 	 * that to everyone else it looks like there is nothing that
1491 	 * they can do to advance the grace period.  It is therefore
1492 	 * safe for us to drop the lock in order to mark the grace
1493 	 * period as completed in all of the rcu_node structures.
1494 	 */
1495 	raw_spin_unlock_irq(&rnp->lock);
1496 
1497 	/*
1498 	 * Propagate new ->completed value to rcu_node structures so
1499 	 * that other CPUs don't have to wait until the start of the next
1500 	 * grace period to process their callbacks.  This also avoids
1501 	 * some nasty RCU grace-period initialization races by forcing
1502 	 * the end of the current grace period to be completely recorded in
1503 	 * all of the rcu_node structures before the beginning of the next
1504 	 * grace period is recorded in any of the rcu_node structures.
1505 	 */
1506 	rcu_for_each_node_breadth_first(rsp, rnp) {
1507 		raw_spin_lock_irq(&rnp->lock);
1508 		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1509 		rdp = this_cpu_ptr(rsp->rda);
1510 		if (rnp == rdp->mynode)
1511 			__note_gp_changes(rsp, rnp, rdp);
1512 		nocb += rcu_future_gp_cleanup(rsp, rnp);
1513 		raw_spin_unlock_irq(&rnp->lock);
1514 		cond_resched();
1515 	}
1516 	rnp = rcu_get_root(rsp);
1517 	raw_spin_lock_irq(&rnp->lock);
1518 	rcu_nocb_gp_set(rnp, nocb);
1519 
1520 	rsp->completed = rsp->gpnum; /* Declare grace period done. */
1521 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1522 	rsp->fqs_state = RCU_GP_IDLE;
1523 	rdp = this_cpu_ptr(rsp->rda);
1524 	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1525 	if (cpu_needs_another_gp(rsp, rdp)) {
1526 		rsp->gp_flags = RCU_GP_FLAG_INIT;
1527 		trace_rcu_grace_period(rsp->name,
1528 				       ACCESS_ONCE(rsp->gpnum),
1529 				       TPS("newreq"));
1530 	}
1531 	raw_spin_unlock_irq(&rnp->lock);
1532 }
1533 
1534 /*
1535  * Body of kthread that handles grace periods.
1536  */
1537 static int __noreturn rcu_gp_kthread(void *arg)
1538 {
1539 	int fqs_state;
1540 	int gf;
1541 	unsigned long j;
1542 	int ret;
1543 	struct rcu_state *rsp = arg;
1544 	struct rcu_node *rnp = rcu_get_root(rsp);
1545 
1546 	for (;;) {
1547 
1548 		/* Handle grace-period start. */
1549 		for (;;) {
1550 			trace_rcu_grace_period(rsp->name,
1551 					       ACCESS_ONCE(rsp->gpnum),
1552 					       TPS("reqwait"));
1553 			wait_event_interruptible(rsp->gp_wq,
1554 						 ACCESS_ONCE(rsp->gp_flags) &
1555 						 RCU_GP_FLAG_INIT);
1556 			if (rcu_gp_init(rsp))
1557 				break;
1558 			cond_resched();
1559 			flush_signals(current);
1560 			trace_rcu_grace_period(rsp->name,
1561 					       ACCESS_ONCE(rsp->gpnum),
1562 					       TPS("reqwaitsig"));
1563 		}
1564 
1565 		/* Handle quiescent-state forcing. */
1566 		fqs_state = RCU_SAVE_DYNTICK;
1567 		j = jiffies_till_first_fqs;
1568 		if (j > HZ) {
1569 			j = HZ;
1570 			jiffies_till_first_fqs = HZ;
1571 		}
1572 		ret = 0;
1573 		for (;;) {
1574 			if (!ret)
1575 				rsp->jiffies_force_qs = jiffies + j;
1576 			trace_rcu_grace_period(rsp->name,
1577 					       ACCESS_ONCE(rsp->gpnum),
1578 					       TPS("fqswait"));
1579 			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1580 					((gf = ACCESS_ONCE(rsp->gp_flags)) &
1581 					 RCU_GP_FLAG_FQS) ||
1582 					(!ACCESS_ONCE(rnp->qsmask) &&
1583 					 !rcu_preempt_blocked_readers_cgp(rnp)),
1584 					j);
1585 			/* If grace period done, leave loop. */
1586 			if (!ACCESS_ONCE(rnp->qsmask) &&
1587 			    !rcu_preempt_blocked_readers_cgp(rnp))
1588 				break;
1589 			/* If time for quiescent-state forcing, do it. */
1590 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1591 			    (gf & RCU_GP_FLAG_FQS)) {
1592 				trace_rcu_grace_period(rsp->name,
1593 						       ACCESS_ONCE(rsp->gpnum),
1594 						       TPS("fqsstart"));
1595 				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1596 				trace_rcu_grace_period(rsp->name,
1597 						       ACCESS_ONCE(rsp->gpnum),
1598 						       TPS("fqsend"));
1599 				cond_resched();
1600 			} else {
1601 				/* Deal with stray signal. */
1602 				cond_resched();
1603 				flush_signals(current);
1604 				trace_rcu_grace_period(rsp->name,
1605 						       ACCESS_ONCE(rsp->gpnum),
1606 						       TPS("fqswaitsig"));
1607 			}
1608 			j = jiffies_till_next_fqs;
1609 			if (j > HZ) {
1610 				j = HZ;
1611 				jiffies_till_next_fqs = HZ;
1612 			} else if (j < 1) {
1613 				j = 1;
1614 				jiffies_till_next_fqs = 1;
1615 			}
1616 		}
1617 
1618 		/* Handle grace-period end. */
1619 		rcu_gp_cleanup(rsp);
1620 	}
1621 }
1622 
1623 static void rsp_wakeup(struct irq_work *work)
1624 {
1625 	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1626 
1627 	/* Wake up rcu_gp_kthread() to start the grace period. */
1628 	wake_up(&rsp->gp_wq);
1629 }
1630 
1631 /*
1632  * Start a new RCU grace period if warranted, re-initializing the hierarchy
1633  * in preparation for detecting the next grace period.  The caller must hold
1634  * the root node's ->lock and hard irqs must be disabled.
1635  *
1636  * Note that it is legal for a dying CPU (which is marked as offline) to
1637  * invoke this function.  This can happen when the dying CPU reports its
1638  * quiescent state.
1639  */
1640 static void
1641 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1642 		      struct rcu_data *rdp)
1643 {
1644 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1645 		/*
1646 		 * Either we have not yet spawned the grace-period
1647 		 * task, this CPU does not need another grace period,
1648 		 * or a grace period is already in progress.
1649 		 * Either way, don't start a new grace period.
1650 		 */
1651 		return;
1652 	}
1653 	rsp->gp_flags = RCU_GP_FLAG_INIT;
1654 	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1655 			       TPS("newreq"));
1656 
1657 	/*
1658 	 * We can't do wakeups while holding the rnp->lock, as that
1659 	 * could cause possible deadlocks with the rq->lock. Defer
1660 	 * the wakeup to interrupt context.  And don't bother waking
1661 	 * up the running kthread.
1662 	 */
1663 	if (current != rsp->gp_kthread)
1664 		irq_work_queue(&rsp->wakeup_work);
1665 }
1666 
1667 /*
1668  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1669  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
1670  * is invoked indirectly from rcu_advance_cbs(), which would result in
1671  * endless recursion -- or would do so if it wasn't for the self-deadlock
1672  * that is encountered beforehand.
1673  */
1674 static void
1675 rcu_start_gp(struct rcu_state *rsp)
1676 {
1677 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1678 	struct rcu_node *rnp = rcu_get_root(rsp);
1679 
1680 	/*
1681 	 * If there is no grace period in progress right now, any
1682 	 * callbacks we have up to this point will be satisfied by the
1683 	 * next grace period.  Also, advancing the callbacks reduces the
1684 	 * probability of false positives from cpu_needs_another_gp()
1685 	 * resulting in pointless grace periods.  So, advance callbacks
1686 	 * then start the grace period!
1687 	 */
1688 	rcu_advance_cbs(rsp, rnp, rdp);
1689 	rcu_start_gp_advanced(rsp, rnp, rdp);
1690 }
1691 
1692 /*
1693  * Report a full set of quiescent states to the specified rcu_state
1694  * data structure.  This involves cleaning up after the prior grace
1695  * period and letting rcu_start_gp() start up the next grace period
1696  * if one is needed.  Note that the caller must hold rnp->lock, which
1697  * is released before return.
1698  */
1699 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1700 	__releases(rcu_get_root(rsp)->lock)
1701 {
1702 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1703 	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1704 	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1705 }
1706 
1707 /*
1708  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1709  * Allows quiescent states for a group of CPUs to be reported at one go
1710  * to the specified rcu_node structure, though all the CPUs in the group
1711  * must be represented by the same rcu_node structure (which need not be
1712  * a leaf rcu_node structure, though it often will be).  That structure's
1713  * lock must be held upon entry, and it is released before return.
1714  */
1715 static void
1716 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1717 		  struct rcu_node *rnp, unsigned long flags)
1718 	__releases(rnp->lock)
1719 {
1720 	struct rcu_node *rnp_c;
1721 
1722 	/* Walk up the rcu_node hierarchy. */
1723 	for (;;) {
1724 		if (!(rnp->qsmask & mask)) {
1725 
1726 			/* Our bit has already been cleared, so done. */
1727 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1728 			return;
1729 		}
1730 		rnp->qsmask &= ~mask;
1731 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1732 						 mask, rnp->qsmask, rnp->level,
1733 						 rnp->grplo, rnp->grphi,
1734 						 !!rnp->gp_tasks);
1735 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1736 
1737 			/* Other bits still set at this level, so done. */
1738 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1739 			return;
1740 		}
1741 		mask = rnp->grpmask;
1742 		if (rnp->parent == NULL) {
1743 
1744 			/* No more levels.  Exit loop holding root lock. */
1745 
1746 			break;
1747 		}
1748 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1749 		rnp_c = rnp;
1750 		rnp = rnp->parent;
1751 		raw_spin_lock_irqsave(&rnp->lock, flags);
1752 		WARN_ON_ONCE(rnp_c->qsmask);
1753 	}
1754 
1755 	/*
1756 	 * Get here if we are the last CPU to pass through a quiescent
1757 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1758 	 * to clean up and start the next grace period if one is needed.
1759 	 */
1760 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1761 }
1762 
1763 /*
1764  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1765  * structure.  This must be either called from the specified CPU, or
1766  * called when the specified CPU is known to be offline (and when it is
1767  * also known that no other CPU is concurrently trying to help the offline
1768  * CPU).  The lastcomp argument is used to make sure we are still in the
1769  * grace period of interest.  We don't want to end the current grace period
1770  * based on quiescent states detected in an earlier grace period!
1771  */
1772 static void
1773 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1774 {
1775 	unsigned long flags;
1776 	unsigned long mask;
1777 	struct rcu_node *rnp;
1778 
1779 	rnp = rdp->mynode;
1780 	raw_spin_lock_irqsave(&rnp->lock, flags);
1781 	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1782 	    rnp->completed == rnp->gpnum) {
1783 
1784 		/*
1785 		 * The grace period in which this quiescent state was
1786 		 * recorded has ended, so don't report it upwards.
1787 		 * We will instead need a new quiescent state that lies
1788 		 * within the current grace period.
1789 		 */
1790 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1791 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1792 		return;
1793 	}
1794 	mask = rdp->grpmask;
1795 	if ((rnp->qsmask & mask) == 0) {
1796 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1797 	} else {
1798 		rdp->qs_pending = 0;
1799 
1800 		/*
1801 		 * This GP can't end until cpu checks in, so all of our
1802 		 * callbacks can be processed during the next GP.
1803 		 */
1804 		rcu_accelerate_cbs(rsp, rnp, rdp);
1805 
1806 		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1807 	}
1808 }
1809 
1810 /*
1811  * Check to see if there is a new grace period of which this CPU
1812  * is not yet aware, and if so, set up local rcu_data state for it.
1813  * Otherwise, see if this CPU has just passed through its first
1814  * quiescent state for this grace period, and record that fact if so.
1815  */
1816 static void
1817 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1818 {
1819 	/* Check for grace-period ends and beginnings. */
1820 	note_gp_changes(rsp, rdp);
1821 
1822 	/*
1823 	 * Does this CPU still need to do its part for current grace period?
1824 	 * If no, return and let the other CPUs do their part as well.
1825 	 */
1826 	if (!rdp->qs_pending)
1827 		return;
1828 
1829 	/*
1830 	 * Was there a quiescent state since the beginning of the grace
1831 	 * period? If no, then exit and wait for the next call.
1832 	 */
1833 	if (!rdp->passed_quiesce)
1834 		return;
1835 
1836 	/*
1837 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1838 	 * judge of that).
1839 	 */
1840 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1841 }
1842 
1843 #ifdef CONFIG_HOTPLUG_CPU
1844 
1845 /*
1846  * Send the specified CPU's RCU callbacks to the orphanage.  The
1847  * specified CPU must be offline, and the caller must hold the
1848  * ->orphan_lock.
1849  */
1850 static void
1851 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1852 			  struct rcu_node *rnp, struct rcu_data *rdp)
1853 {
1854 	/* No-CBs CPUs do not have orphanable callbacks. */
1855 	if (rcu_is_nocb_cpu(rdp->cpu))
1856 		return;
1857 
1858 	/*
1859 	 * Orphan the callbacks.  First adjust the counts.  This is safe
1860 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1861 	 * cannot be running now.  Thus no memory barrier is required.
1862 	 */
1863 	if (rdp->nxtlist != NULL) {
1864 		rsp->qlen_lazy += rdp->qlen_lazy;
1865 		rsp->qlen += rdp->qlen;
1866 		rdp->n_cbs_orphaned += rdp->qlen;
1867 		rdp->qlen_lazy = 0;
1868 		ACCESS_ONCE(rdp->qlen) = 0;
1869 	}
1870 
1871 	/*
1872 	 * Next, move those callbacks still needing a grace period to
1873 	 * the orphanage, where some other CPU will pick them up.
1874 	 * Some of the callbacks might have gone partway through a grace
1875 	 * period, but that is too bad.  They get to start over because we
1876 	 * cannot assume that grace periods are synchronized across CPUs.
1877 	 * We don't bother updating the ->nxttail[] array yet, instead
1878 	 * we just reset the whole thing later on.
1879 	 */
1880 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1881 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1882 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1883 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1884 	}
1885 
1886 	/*
1887 	 * Then move the ready-to-invoke callbacks to the orphanage,
1888 	 * where some other CPU will pick them up.  These will not be
1889 	 * required to pass though another grace period: They are done.
1890 	 */
1891 	if (rdp->nxtlist != NULL) {
1892 		*rsp->orphan_donetail = rdp->nxtlist;
1893 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1894 	}
1895 
1896 	/* Finally, initialize the rcu_data structure's list to empty.  */
1897 	init_callback_list(rdp);
1898 }
1899 
1900 /*
1901  * Adopt the RCU callbacks from the specified rcu_state structure's
1902  * orphanage.  The caller must hold the ->orphan_lock.
1903  */
1904 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1905 {
1906 	int i;
1907 	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1908 
1909 	/* No-CBs CPUs are handled specially. */
1910 	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1911 		return;
1912 
1913 	/* Do the accounting first. */
1914 	rdp->qlen_lazy += rsp->qlen_lazy;
1915 	rdp->qlen += rsp->qlen;
1916 	rdp->n_cbs_adopted += rsp->qlen;
1917 	if (rsp->qlen_lazy != rsp->qlen)
1918 		rcu_idle_count_callbacks_posted();
1919 	rsp->qlen_lazy = 0;
1920 	rsp->qlen = 0;
1921 
1922 	/*
1923 	 * We do not need a memory barrier here because the only way we
1924 	 * can get here if there is an rcu_barrier() in flight is if
1925 	 * we are the task doing the rcu_barrier().
1926 	 */
1927 
1928 	/* First adopt the ready-to-invoke callbacks. */
1929 	if (rsp->orphan_donelist != NULL) {
1930 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1931 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1932 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1933 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1934 				rdp->nxttail[i] = rsp->orphan_donetail;
1935 		rsp->orphan_donelist = NULL;
1936 		rsp->orphan_donetail = &rsp->orphan_donelist;
1937 	}
1938 
1939 	/* And then adopt the callbacks that still need a grace period. */
1940 	if (rsp->orphan_nxtlist != NULL) {
1941 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1942 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1943 		rsp->orphan_nxtlist = NULL;
1944 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1945 	}
1946 }
1947 
1948 /*
1949  * Trace the fact that this CPU is going offline.
1950  */
1951 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1952 {
1953 	RCU_TRACE(unsigned long mask);
1954 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1955 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1956 
1957 	RCU_TRACE(mask = rdp->grpmask);
1958 	trace_rcu_grace_period(rsp->name,
1959 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1960 			       TPS("cpuofl"));
1961 }
1962 
1963 /*
1964  * The CPU has been completely removed, and some other CPU is reporting
1965  * this fact from process context.  Do the remainder of the cleanup,
1966  * including orphaning the outgoing CPU's RCU callbacks, and also
1967  * adopting them.  There can only be one CPU hotplug operation at a time,
1968  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1969  */
1970 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1971 {
1972 	unsigned long flags;
1973 	unsigned long mask;
1974 	int need_report = 0;
1975 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1976 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1977 
1978 	/* Adjust any no-longer-needed kthreads. */
1979 	rcu_boost_kthread_setaffinity(rnp, -1);
1980 
1981 	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1982 
1983 	/* Exclude any attempts to start a new grace period. */
1984 	mutex_lock(&rsp->onoff_mutex);
1985 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1986 
1987 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1988 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1989 	rcu_adopt_orphan_cbs(rsp);
1990 
1991 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1992 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1993 	do {
1994 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1995 		rnp->qsmaskinit &= ~mask;
1996 		if (rnp->qsmaskinit != 0) {
1997 			if (rnp != rdp->mynode)
1998 				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1999 			break;
2000 		}
2001 		if (rnp == rdp->mynode)
2002 			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2003 		else
2004 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2005 		mask = rnp->grpmask;
2006 		rnp = rnp->parent;
2007 	} while (rnp != NULL);
2008 
2009 	/*
2010 	 * We still hold the leaf rcu_node structure lock here, and
2011 	 * irqs are still disabled.  The reason for this subterfuge is
2012 	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2013 	 * held leads to deadlock.
2014 	 */
2015 	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2016 	rnp = rdp->mynode;
2017 	if (need_report & RCU_OFL_TASKS_NORM_GP)
2018 		rcu_report_unblock_qs_rnp(rnp, flags);
2019 	else
2020 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2021 	if (need_report & RCU_OFL_TASKS_EXP_GP)
2022 		rcu_report_exp_rnp(rsp, rnp, true);
2023 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2024 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2025 		  cpu, rdp->qlen, rdp->nxtlist);
2026 	init_callback_list(rdp);
2027 	/* Disallow further callbacks on this CPU. */
2028 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2029 	mutex_unlock(&rsp->onoff_mutex);
2030 }
2031 
2032 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2033 
2034 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2035 {
2036 }
2037 
2038 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2039 {
2040 }
2041 
2042 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2043 
2044 /*
2045  * Invoke any RCU callbacks that have made it to the end of their grace
2046  * period.  Thottle as specified by rdp->blimit.
2047  */
2048 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2049 {
2050 	unsigned long flags;
2051 	struct rcu_head *next, *list, **tail;
2052 	long bl, count, count_lazy;
2053 	int i;
2054 
2055 	/* If no callbacks are ready, just return. */
2056 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2057 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2058 		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2059 				    need_resched(), is_idle_task(current),
2060 				    rcu_is_callbacks_kthread());
2061 		return;
2062 	}
2063 
2064 	/*
2065 	 * Extract the list of ready callbacks, disabling to prevent
2066 	 * races with call_rcu() from interrupt handlers.
2067 	 */
2068 	local_irq_save(flags);
2069 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2070 	bl = rdp->blimit;
2071 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2072 	list = rdp->nxtlist;
2073 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2074 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2075 	tail = rdp->nxttail[RCU_DONE_TAIL];
2076 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2077 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2078 			rdp->nxttail[i] = &rdp->nxtlist;
2079 	local_irq_restore(flags);
2080 
2081 	/* Invoke callbacks. */
2082 	count = count_lazy = 0;
2083 	while (list) {
2084 		next = list->next;
2085 		prefetch(next);
2086 		debug_rcu_head_unqueue(list);
2087 		if (__rcu_reclaim(rsp->name, list))
2088 			count_lazy++;
2089 		list = next;
2090 		/* Stop only if limit reached and CPU has something to do. */
2091 		if (++count >= bl &&
2092 		    (need_resched() ||
2093 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2094 			break;
2095 	}
2096 
2097 	local_irq_save(flags);
2098 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2099 			    is_idle_task(current),
2100 			    rcu_is_callbacks_kthread());
2101 
2102 	/* Update count, and requeue any remaining callbacks. */
2103 	if (list != NULL) {
2104 		*tail = rdp->nxtlist;
2105 		rdp->nxtlist = list;
2106 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2107 			if (&rdp->nxtlist == rdp->nxttail[i])
2108 				rdp->nxttail[i] = tail;
2109 			else
2110 				break;
2111 	}
2112 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2113 	rdp->qlen_lazy -= count_lazy;
2114 	ACCESS_ONCE(rdp->qlen) -= count;
2115 	rdp->n_cbs_invoked += count;
2116 
2117 	/* Reinstate batch limit if we have worked down the excess. */
2118 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2119 		rdp->blimit = blimit;
2120 
2121 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2122 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2123 		rdp->qlen_last_fqs_check = 0;
2124 		rdp->n_force_qs_snap = rsp->n_force_qs;
2125 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2126 		rdp->qlen_last_fqs_check = rdp->qlen;
2127 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2128 
2129 	local_irq_restore(flags);
2130 
2131 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2132 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2133 		invoke_rcu_core();
2134 }
2135 
2136 /*
2137  * Check to see if this CPU is in a non-context-switch quiescent state
2138  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2139  * Also schedule RCU core processing.
2140  *
2141  * This function must be called from hardirq context.  It is normally
2142  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2143  * false, there is no point in invoking rcu_check_callbacks().
2144  */
2145 void rcu_check_callbacks(int cpu, int user)
2146 {
2147 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2148 	increment_cpu_stall_ticks();
2149 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2150 
2151 		/*
2152 		 * Get here if this CPU took its interrupt from user
2153 		 * mode or from the idle loop, and if this is not a
2154 		 * nested interrupt.  In this case, the CPU is in
2155 		 * a quiescent state, so note it.
2156 		 *
2157 		 * No memory barrier is required here because both
2158 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2159 		 * variables that other CPUs neither access nor modify,
2160 		 * at least not while the corresponding CPU is online.
2161 		 */
2162 
2163 		rcu_sched_qs(cpu);
2164 		rcu_bh_qs(cpu);
2165 
2166 	} else if (!in_softirq()) {
2167 
2168 		/*
2169 		 * Get here if this CPU did not take its interrupt from
2170 		 * softirq, in other words, if it is not interrupting
2171 		 * a rcu_bh read-side critical section.  This is an _bh
2172 		 * critical section, so note it.
2173 		 */
2174 
2175 		rcu_bh_qs(cpu);
2176 	}
2177 	rcu_preempt_check_callbacks(cpu);
2178 	if (rcu_pending(cpu))
2179 		invoke_rcu_core();
2180 	trace_rcu_utilization(TPS("End scheduler-tick"));
2181 }
2182 
2183 /*
2184  * Scan the leaf rcu_node structures, processing dyntick state for any that
2185  * have not yet encountered a quiescent state, using the function specified.
2186  * Also initiate boosting for any threads blocked on the root rcu_node.
2187  *
2188  * The caller must have suppressed start of new grace periods.
2189  */
2190 static void force_qs_rnp(struct rcu_state *rsp,
2191 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2192 				  unsigned long *maxj),
2193 			 bool *isidle, unsigned long *maxj)
2194 {
2195 	unsigned long bit;
2196 	int cpu;
2197 	unsigned long flags;
2198 	unsigned long mask;
2199 	struct rcu_node *rnp;
2200 
2201 	rcu_for_each_leaf_node(rsp, rnp) {
2202 		cond_resched();
2203 		mask = 0;
2204 		raw_spin_lock_irqsave(&rnp->lock, flags);
2205 		if (!rcu_gp_in_progress(rsp)) {
2206 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2207 			return;
2208 		}
2209 		if (rnp->qsmask == 0) {
2210 			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2211 			continue;
2212 		}
2213 		cpu = rnp->grplo;
2214 		bit = 1;
2215 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2216 			if ((rnp->qsmask & bit) != 0) {
2217 				if ((rnp->qsmaskinit & bit) != 0)
2218 					*isidle = 0;
2219 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2220 					mask |= bit;
2221 			}
2222 		}
2223 		if (mask != 0) {
2224 
2225 			/* rcu_report_qs_rnp() releases rnp->lock. */
2226 			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2227 			continue;
2228 		}
2229 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2230 	}
2231 	rnp = rcu_get_root(rsp);
2232 	if (rnp->qsmask == 0) {
2233 		raw_spin_lock_irqsave(&rnp->lock, flags);
2234 		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2235 	}
2236 }
2237 
2238 /*
2239  * Force quiescent states on reluctant CPUs, and also detect which
2240  * CPUs are in dyntick-idle mode.
2241  */
2242 static void force_quiescent_state(struct rcu_state *rsp)
2243 {
2244 	unsigned long flags;
2245 	bool ret;
2246 	struct rcu_node *rnp;
2247 	struct rcu_node *rnp_old = NULL;
2248 
2249 	/* Funnel through hierarchy to reduce memory contention. */
2250 	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2251 	for (; rnp != NULL; rnp = rnp->parent) {
2252 		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2253 		      !raw_spin_trylock(&rnp->fqslock);
2254 		if (rnp_old != NULL)
2255 			raw_spin_unlock(&rnp_old->fqslock);
2256 		if (ret) {
2257 			rsp->n_force_qs_lh++;
2258 			return;
2259 		}
2260 		rnp_old = rnp;
2261 	}
2262 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2263 
2264 	/* Reached the root of the rcu_node tree, acquire lock. */
2265 	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2266 	raw_spin_unlock(&rnp_old->fqslock);
2267 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2268 		rsp->n_force_qs_lh++;
2269 		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2270 		return;  /* Someone beat us to it. */
2271 	}
2272 	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2273 	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2274 	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2275 }
2276 
2277 /*
2278  * This does the RCU core processing work for the specified rcu_state
2279  * and rcu_data structures.  This may be called only from the CPU to
2280  * whom the rdp belongs.
2281  */
2282 static void
2283 __rcu_process_callbacks(struct rcu_state *rsp)
2284 {
2285 	unsigned long flags;
2286 	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2287 
2288 	WARN_ON_ONCE(rdp->beenonline == 0);
2289 
2290 	/* Update RCU state based on any recent quiescent states. */
2291 	rcu_check_quiescent_state(rsp, rdp);
2292 
2293 	/* Does this CPU require a not-yet-started grace period? */
2294 	local_irq_save(flags);
2295 	if (cpu_needs_another_gp(rsp, rdp)) {
2296 		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2297 		rcu_start_gp(rsp);
2298 		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2299 	} else {
2300 		local_irq_restore(flags);
2301 	}
2302 
2303 	/* If there are callbacks ready, invoke them. */
2304 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2305 		invoke_rcu_callbacks(rsp, rdp);
2306 }
2307 
2308 /*
2309  * Do RCU core processing for the current CPU.
2310  */
2311 static void rcu_process_callbacks(struct softirq_action *unused)
2312 {
2313 	struct rcu_state *rsp;
2314 
2315 	if (cpu_is_offline(smp_processor_id()))
2316 		return;
2317 	trace_rcu_utilization(TPS("Start RCU core"));
2318 	for_each_rcu_flavor(rsp)
2319 		__rcu_process_callbacks(rsp);
2320 	trace_rcu_utilization(TPS("End RCU core"));
2321 }
2322 
2323 /*
2324  * Schedule RCU callback invocation.  If the specified type of RCU
2325  * does not support RCU priority boosting, just do a direct call,
2326  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2327  * are running on the current CPU with interrupts disabled, the
2328  * rcu_cpu_kthread_task cannot disappear out from under us.
2329  */
2330 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2331 {
2332 	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2333 		return;
2334 	if (likely(!rsp->boost)) {
2335 		rcu_do_batch(rsp, rdp);
2336 		return;
2337 	}
2338 	invoke_rcu_callbacks_kthread();
2339 }
2340 
2341 static void invoke_rcu_core(void)
2342 {
2343 	if (cpu_online(smp_processor_id()))
2344 		raise_softirq(RCU_SOFTIRQ);
2345 }
2346 
2347 /*
2348  * Handle any core-RCU processing required by a call_rcu() invocation.
2349  */
2350 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2351 			    struct rcu_head *head, unsigned long flags)
2352 {
2353 	/*
2354 	 * If called from an extended quiescent state, invoke the RCU
2355 	 * core in order to force a re-evaluation of RCU's idleness.
2356 	 */
2357 	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2358 		invoke_rcu_core();
2359 
2360 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2361 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2362 		return;
2363 
2364 	/*
2365 	 * Force the grace period if too many callbacks or too long waiting.
2366 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2367 	 * if some other CPU has recently done so.  Also, don't bother
2368 	 * invoking force_quiescent_state() if the newly enqueued callback
2369 	 * is the only one waiting for a grace period to complete.
2370 	 */
2371 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2372 
2373 		/* Are we ignoring a completed grace period? */
2374 		note_gp_changes(rsp, rdp);
2375 
2376 		/* Start a new grace period if one not already started. */
2377 		if (!rcu_gp_in_progress(rsp)) {
2378 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2379 
2380 			raw_spin_lock(&rnp_root->lock);
2381 			rcu_start_gp(rsp);
2382 			raw_spin_unlock(&rnp_root->lock);
2383 		} else {
2384 			/* Give the grace period a kick. */
2385 			rdp->blimit = LONG_MAX;
2386 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2387 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2388 				force_quiescent_state(rsp);
2389 			rdp->n_force_qs_snap = rsp->n_force_qs;
2390 			rdp->qlen_last_fqs_check = rdp->qlen;
2391 		}
2392 	}
2393 }
2394 
2395 /*
2396  * RCU callback function to leak a callback.
2397  */
2398 static void rcu_leak_callback(struct rcu_head *rhp)
2399 {
2400 }
2401 
2402 /*
2403  * Helper function for call_rcu() and friends.  The cpu argument will
2404  * normally be -1, indicating "currently running CPU".  It may specify
2405  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2406  * is expected to specify a CPU.
2407  */
2408 static void
2409 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2410 	   struct rcu_state *rsp, int cpu, bool lazy)
2411 {
2412 	unsigned long flags;
2413 	struct rcu_data *rdp;
2414 
2415 	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2416 	if (debug_rcu_head_queue(head)) {
2417 		/* Probable double call_rcu(), so leak the callback. */
2418 		ACCESS_ONCE(head->func) = rcu_leak_callback;
2419 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2420 		return;
2421 	}
2422 	head->func = func;
2423 	head->next = NULL;
2424 
2425 	/*
2426 	 * Opportunistically note grace-period endings and beginnings.
2427 	 * Note that we might see a beginning right after we see an
2428 	 * end, but never vice versa, since this CPU has to pass through
2429 	 * a quiescent state betweentimes.
2430 	 */
2431 	local_irq_save(flags);
2432 	rdp = this_cpu_ptr(rsp->rda);
2433 
2434 	/* Add the callback to our list. */
2435 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2436 		int offline;
2437 
2438 		if (cpu != -1)
2439 			rdp = per_cpu_ptr(rsp->rda, cpu);
2440 		offline = !__call_rcu_nocb(rdp, head, lazy);
2441 		WARN_ON_ONCE(offline);
2442 		/* _call_rcu() is illegal on offline CPU; leak the callback. */
2443 		local_irq_restore(flags);
2444 		return;
2445 	}
2446 	ACCESS_ONCE(rdp->qlen)++;
2447 	if (lazy)
2448 		rdp->qlen_lazy++;
2449 	else
2450 		rcu_idle_count_callbacks_posted();
2451 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
2452 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
2453 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2454 
2455 	if (__is_kfree_rcu_offset((unsigned long)func))
2456 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2457 					 rdp->qlen_lazy, rdp->qlen);
2458 	else
2459 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2460 
2461 	/* Go handle any RCU core processing required. */
2462 	__call_rcu_core(rsp, rdp, head, flags);
2463 	local_irq_restore(flags);
2464 }
2465 
2466 /*
2467  * Queue an RCU-sched callback for invocation after a grace period.
2468  */
2469 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2470 {
2471 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2472 }
2473 EXPORT_SYMBOL_GPL(call_rcu_sched);
2474 
2475 /*
2476  * Queue an RCU callback for invocation after a quicker grace period.
2477  */
2478 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2479 {
2480 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2481 }
2482 EXPORT_SYMBOL_GPL(call_rcu_bh);
2483 
2484 /*
2485  * Because a context switch is a grace period for RCU-sched and RCU-bh,
2486  * any blocking grace-period wait automatically implies a grace period
2487  * if there is only one CPU online at any point time during execution
2488  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
2489  * occasionally incorrectly indicate that there are multiple CPUs online
2490  * when there was in fact only one the whole time, as this just adds
2491  * some overhead: RCU still operates correctly.
2492  */
2493 static inline int rcu_blocking_is_gp(void)
2494 {
2495 	int ret;
2496 
2497 	might_sleep();  /* Check for RCU read-side critical section. */
2498 	preempt_disable();
2499 	ret = num_online_cpus() <= 1;
2500 	preempt_enable();
2501 	return ret;
2502 }
2503 
2504 /**
2505  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2506  *
2507  * Control will return to the caller some time after a full rcu-sched
2508  * grace period has elapsed, in other words after all currently executing
2509  * rcu-sched read-side critical sections have completed.   These read-side
2510  * critical sections are delimited by rcu_read_lock_sched() and
2511  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
2512  * local_irq_disable(), and so on may be used in place of
2513  * rcu_read_lock_sched().
2514  *
2515  * This means that all preempt_disable code sequences, including NMI and
2516  * non-threaded hardware-interrupt handlers, in progress on entry will
2517  * have completed before this primitive returns.  However, this does not
2518  * guarantee that softirq handlers will have completed, since in some
2519  * kernels, these handlers can run in process context, and can block.
2520  *
2521  * Note that this guarantee implies further memory-ordering guarantees.
2522  * On systems with more than one CPU, when synchronize_sched() returns,
2523  * each CPU is guaranteed to have executed a full memory barrier since the
2524  * end of its last RCU-sched read-side critical section whose beginning
2525  * preceded the call to synchronize_sched().  In addition, each CPU having
2526  * an RCU read-side critical section that extends beyond the return from
2527  * synchronize_sched() is guaranteed to have executed a full memory barrier
2528  * after the beginning of synchronize_sched() and before the beginning of
2529  * that RCU read-side critical section.  Note that these guarantees include
2530  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2531  * that are executing in the kernel.
2532  *
2533  * Furthermore, if CPU A invoked synchronize_sched(), which returned
2534  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2535  * to have executed a full memory barrier during the execution of
2536  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2537  * again only if the system has more than one CPU).
2538  *
2539  * This primitive provides the guarantees made by the (now removed)
2540  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2541  * guarantees that rcu_read_lock() sections will have completed.
2542  * In "classic RCU", these two guarantees happen to be one and
2543  * the same, but can differ in realtime RCU implementations.
2544  */
2545 void synchronize_sched(void)
2546 {
2547 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2548 			   !lock_is_held(&rcu_lock_map) &&
2549 			   !lock_is_held(&rcu_sched_lock_map),
2550 			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2551 	if (rcu_blocking_is_gp())
2552 		return;
2553 	if (rcu_expedited)
2554 		synchronize_sched_expedited();
2555 	else
2556 		wait_rcu_gp(call_rcu_sched);
2557 }
2558 EXPORT_SYMBOL_GPL(synchronize_sched);
2559 
2560 /**
2561  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2562  *
2563  * Control will return to the caller some time after a full rcu_bh grace
2564  * period has elapsed, in other words after all currently executing rcu_bh
2565  * read-side critical sections have completed.  RCU read-side critical
2566  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2567  * and may be nested.
2568  *
2569  * See the description of synchronize_sched() for more detailed information
2570  * on memory ordering guarantees.
2571  */
2572 void synchronize_rcu_bh(void)
2573 {
2574 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2575 			   !lock_is_held(&rcu_lock_map) &&
2576 			   !lock_is_held(&rcu_sched_lock_map),
2577 			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2578 	if (rcu_blocking_is_gp())
2579 		return;
2580 	if (rcu_expedited)
2581 		synchronize_rcu_bh_expedited();
2582 	else
2583 		wait_rcu_gp(call_rcu_bh);
2584 }
2585 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2586 
2587 static int synchronize_sched_expedited_cpu_stop(void *data)
2588 {
2589 	/*
2590 	 * There must be a full memory barrier on each affected CPU
2591 	 * between the time that try_stop_cpus() is called and the
2592 	 * time that it returns.
2593 	 *
2594 	 * In the current initial implementation of cpu_stop, the
2595 	 * above condition is already met when the control reaches
2596 	 * this point and the following smp_mb() is not strictly
2597 	 * necessary.  Do smp_mb() anyway for documentation and
2598 	 * robustness against future implementation changes.
2599 	 */
2600 	smp_mb(); /* See above comment block. */
2601 	return 0;
2602 }
2603 
2604 /**
2605  * synchronize_sched_expedited - Brute-force RCU-sched grace period
2606  *
2607  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2608  * approach to force the grace period to end quickly.  This consumes
2609  * significant time on all CPUs and is unfriendly to real-time workloads,
2610  * so is thus not recommended for any sort of common-case code.  In fact,
2611  * if you are using synchronize_sched_expedited() in a loop, please
2612  * restructure your code to batch your updates, and then use a single
2613  * synchronize_sched() instead.
2614  *
2615  * Note that it is illegal to call this function while holding any lock
2616  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
2617  * to call this function from a CPU-hotplug notifier.  Failing to observe
2618  * these restriction will result in deadlock.
2619  *
2620  * This implementation can be thought of as an application of ticket
2621  * locking to RCU, with sync_sched_expedited_started and
2622  * sync_sched_expedited_done taking on the roles of the halves
2623  * of the ticket-lock word.  Each task atomically increments
2624  * sync_sched_expedited_started upon entry, snapshotting the old value,
2625  * then attempts to stop all the CPUs.  If this succeeds, then each
2626  * CPU will have executed a context switch, resulting in an RCU-sched
2627  * grace period.  We are then done, so we use atomic_cmpxchg() to
2628  * update sync_sched_expedited_done to match our snapshot -- but
2629  * only if someone else has not already advanced past our snapshot.
2630  *
2631  * On the other hand, if try_stop_cpus() fails, we check the value
2632  * of sync_sched_expedited_done.  If it has advanced past our
2633  * initial snapshot, then someone else must have forced a grace period
2634  * some time after we took our snapshot.  In this case, our work is
2635  * done for us, and we can simply return.  Otherwise, we try again,
2636  * but keep our initial snapshot for purposes of checking for someone
2637  * doing our work for us.
2638  *
2639  * If we fail too many times in a row, we fall back to synchronize_sched().
2640  */
2641 void synchronize_sched_expedited(void)
2642 {
2643 	long firstsnap, s, snap;
2644 	int trycount = 0;
2645 	struct rcu_state *rsp = &rcu_sched_state;
2646 
2647 	/*
2648 	 * If we are in danger of counter wrap, just do synchronize_sched().
2649 	 * By allowing sync_sched_expedited_started to advance no more than
2650 	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2651 	 * that more than 3.5 billion CPUs would be required to force a
2652 	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
2653 	 * course be required on a 64-bit system.
2654 	 */
2655 	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2656 			 (ulong)atomic_long_read(&rsp->expedited_done) +
2657 			 ULONG_MAX / 8)) {
2658 		synchronize_sched();
2659 		atomic_long_inc(&rsp->expedited_wrap);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * Take a ticket.  Note that atomic_inc_return() implies a
2665 	 * full memory barrier.
2666 	 */
2667 	snap = atomic_long_inc_return(&rsp->expedited_start);
2668 	firstsnap = snap;
2669 	get_online_cpus();
2670 	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2671 
2672 	/*
2673 	 * Each pass through the following loop attempts to force a
2674 	 * context switch on each CPU.
2675 	 */
2676 	while (try_stop_cpus(cpu_online_mask,
2677 			     synchronize_sched_expedited_cpu_stop,
2678 			     NULL) == -EAGAIN) {
2679 		put_online_cpus();
2680 		atomic_long_inc(&rsp->expedited_tryfail);
2681 
2682 		/* Check to see if someone else did our work for us. */
2683 		s = atomic_long_read(&rsp->expedited_done);
2684 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2685 			/* ensure test happens before caller kfree */
2686 			smp_mb__before_atomic_inc(); /* ^^^ */
2687 			atomic_long_inc(&rsp->expedited_workdone1);
2688 			return;
2689 		}
2690 
2691 		/* No joy, try again later.  Or just synchronize_sched(). */
2692 		if (trycount++ < 10) {
2693 			udelay(trycount * num_online_cpus());
2694 		} else {
2695 			wait_rcu_gp(call_rcu_sched);
2696 			atomic_long_inc(&rsp->expedited_normal);
2697 			return;
2698 		}
2699 
2700 		/* Recheck to see if someone else did our work for us. */
2701 		s = atomic_long_read(&rsp->expedited_done);
2702 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2703 			/* ensure test happens before caller kfree */
2704 			smp_mb__before_atomic_inc(); /* ^^^ */
2705 			atomic_long_inc(&rsp->expedited_workdone2);
2706 			return;
2707 		}
2708 
2709 		/*
2710 		 * Refetching sync_sched_expedited_started allows later
2711 		 * callers to piggyback on our grace period.  We retry
2712 		 * after they started, so our grace period works for them,
2713 		 * and they started after our first try, so their grace
2714 		 * period works for us.
2715 		 */
2716 		get_online_cpus();
2717 		snap = atomic_long_read(&rsp->expedited_start);
2718 		smp_mb(); /* ensure read is before try_stop_cpus(). */
2719 	}
2720 	atomic_long_inc(&rsp->expedited_stoppedcpus);
2721 
2722 	/*
2723 	 * Everyone up to our most recent fetch is covered by our grace
2724 	 * period.  Update the counter, but only if our work is still
2725 	 * relevant -- which it won't be if someone who started later
2726 	 * than we did already did their update.
2727 	 */
2728 	do {
2729 		atomic_long_inc(&rsp->expedited_done_tries);
2730 		s = atomic_long_read(&rsp->expedited_done);
2731 		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2732 			/* ensure test happens before caller kfree */
2733 			smp_mb__before_atomic_inc(); /* ^^^ */
2734 			atomic_long_inc(&rsp->expedited_done_lost);
2735 			break;
2736 		}
2737 	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2738 	atomic_long_inc(&rsp->expedited_done_exit);
2739 
2740 	put_online_cpus();
2741 }
2742 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2743 
2744 /*
2745  * Check to see if there is any immediate RCU-related work to be done
2746  * by the current CPU, for the specified type of RCU, returning 1 if so.
2747  * The checks are in order of increasing expense: checks that can be
2748  * carried out against CPU-local state are performed first.  However,
2749  * we must check for CPU stalls first, else we might not get a chance.
2750  */
2751 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2752 {
2753 	struct rcu_node *rnp = rdp->mynode;
2754 
2755 	rdp->n_rcu_pending++;
2756 
2757 	/* Check for CPU stalls, if enabled. */
2758 	check_cpu_stall(rsp, rdp);
2759 
2760 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2761 	if (rcu_scheduler_fully_active &&
2762 	    rdp->qs_pending && !rdp->passed_quiesce) {
2763 		rdp->n_rp_qs_pending++;
2764 	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2765 		rdp->n_rp_report_qs++;
2766 		return 1;
2767 	}
2768 
2769 	/* Does this CPU have callbacks ready to invoke? */
2770 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2771 		rdp->n_rp_cb_ready++;
2772 		return 1;
2773 	}
2774 
2775 	/* Has RCU gone idle with this CPU needing another grace period? */
2776 	if (cpu_needs_another_gp(rsp, rdp)) {
2777 		rdp->n_rp_cpu_needs_gp++;
2778 		return 1;
2779 	}
2780 
2781 	/* Has another RCU grace period completed?  */
2782 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2783 		rdp->n_rp_gp_completed++;
2784 		return 1;
2785 	}
2786 
2787 	/* Has a new RCU grace period started? */
2788 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2789 		rdp->n_rp_gp_started++;
2790 		return 1;
2791 	}
2792 
2793 	/* nothing to do */
2794 	rdp->n_rp_need_nothing++;
2795 	return 0;
2796 }
2797 
2798 /*
2799  * Check to see if there is any immediate RCU-related work to be done
2800  * by the current CPU, returning 1 if so.  This function is part of the
2801  * RCU implementation; it is -not- an exported member of the RCU API.
2802  */
2803 static int rcu_pending(int cpu)
2804 {
2805 	struct rcu_state *rsp;
2806 
2807 	for_each_rcu_flavor(rsp)
2808 		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2809 			return 1;
2810 	return 0;
2811 }
2812 
2813 /*
2814  * Return true if the specified CPU has any callback.  If all_lazy is
2815  * non-NULL, store an indication of whether all callbacks are lazy.
2816  * (If there are no callbacks, all of them are deemed to be lazy.)
2817  */
2818 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2819 {
2820 	bool al = true;
2821 	bool hc = false;
2822 	struct rcu_data *rdp;
2823 	struct rcu_state *rsp;
2824 
2825 	for_each_rcu_flavor(rsp) {
2826 		rdp = per_cpu_ptr(rsp->rda, cpu);
2827 		if (!rdp->nxtlist)
2828 			continue;
2829 		hc = true;
2830 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2831 			al = false;
2832 			break;
2833 		}
2834 	}
2835 	if (all_lazy)
2836 		*all_lazy = al;
2837 	return hc;
2838 }
2839 
2840 /*
2841  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
2842  * the compiler is expected to optimize this away.
2843  */
2844 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2845 			       int cpu, unsigned long done)
2846 {
2847 	trace_rcu_barrier(rsp->name, s, cpu,
2848 			  atomic_read(&rsp->barrier_cpu_count), done);
2849 }
2850 
2851 /*
2852  * RCU callback function for _rcu_barrier().  If we are last, wake
2853  * up the task executing _rcu_barrier().
2854  */
2855 static void rcu_barrier_callback(struct rcu_head *rhp)
2856 {
2857 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2858 	struct rcu_state *rsp = rdp->rsp;
2859 
2860 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2861 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2862 		complete(&rsp->barrier_completion);
2863 	} else {
2864 		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2865 	}
2866 }
2867 
2868 /*
2869  * Called with preemption disabled, and from cross-cpu IRQ context.
2870  */
2871 static void rcu_barrier_func(void *type)
2872 {
2873 	struct rcu_state *rsp = type;
2874 	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2875 
2876 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2877 	atomic_inc(&rsp->barrier_cpu_count);
2878 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2879 }
2880 
2881 /*
2882  * Orchestrate the specified type of RCU barrier, waiting for all
2883  * RCU callbacks of the specified type to complete.
2884  */
2885 static void _rcu_barrier(struct rcu_state *rsp)
2886 {
2887 	int cpu;
2888 	struct rcu_data *rdp;
2889 	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2890 	unsigned long snap_done;
2891 
2892 	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2893 
2894 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2895 	mutex_lock(&rsp->barrier_mutex);
2896 
2897 	/*
2898 	 * Ensure that all prior references, including to ->n_barrier_done,
2899 	 * are ordered before the _rcu_barrier() machinery.
2900 	 */
2901 	smp_mb();  /* See above block comment. */
2902 
2903 	/*
2904 	 * Recheck ->n_barrier_done to see if others did our work for us.
2905 	 * This means checking ->n_barrier_done for an even-to-odd-to-even
2906 	 * transition.  The "if" expression below therefore rounds the old
2907 	 * value up to the next even number and adds two before comparing.
2908 	 */
2909 	snap_done = rsp->n_barrier_done;
2910 	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2911 
2912 	/*
2913 	 * If the value in snap is odd, we needed to wait for the current
2914 	 * rcu_barrier() to complete, then wait for the next one, in other
2915 	 * words, we need the value of snap_done to be three larger than
2916 	 * the value of snap.  On the other hand, if the value in snap is
2917 	 * even, we only had to wait for the next rcu_barrier() to complete,
2918 	 * in other words, we need the value of snap_done to be only two
2919 	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
2920 	 * this for us (thank you, Linus!).
2921 	 */
2922 	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
2923 		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2924 		smp_mb(); /* caller's subsequent code after above check. */
2925 		mutex_unlock(&rsp->barrier_mutex);
2926 		return;
2927 	}
2928 
2929 	/*
2930 	 * Increment ->n_barrier_done to avoid duplicate work.  Use
2931 	 * ACCESS_ONCE() to prevent the compiler from speculating
2932 	 * the increment to precede the early-exit check.
2933 	 */
2934 	ACCESS_ONCE(rsp->n_barrier_done)++;
2935 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2936 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2937 	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2938 
2939 	/*
2940 	 * Initialize the count to one rather than to zero in order to
2941 	 * avoid a too-soon return to zero in case of a short grace period
2942 	 * (or preemption of this task).  Exclude CPU-hotplug operations
2943 	 * to ensure that no offline CPU has callbacks queued.
2944 	 */
2945 	init_completion(&rsp->barrier_completion);
2946 	atomic_set(&rsp->barrier_cpu_count, 1);
2947 	get_online_cpus();
2948 
2949 	/*
2950 	 * Force each CPU with callbacks to register a new callback.
2951 	 * When that callback is invoked, we will know that all of the
2952 	 * corresponding CPU's preceding callbacks have been invoked.
2953 	 */
2954 	for_each_possible_cpu(cpu) {
2955 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2956 			continue;
2957 		rdp = per_cpu_ptr(rsp->rda, cpu);
2958 		if (rcu_is_nocb_cpu(cpu)) {
2959 			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2960 					   rsp->n_barrier_done);
2961 			atomic_inc(&rsp->barrier_cpu_count);
2962 			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2963 				   rsp, cpu, 0);
2964 		} else if (ACCESS_ONCE(rdp->qlen)) {
2965 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
2966 					   rsp->n_barrier_done);
2967 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2968 		} else {
2969 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2970 					   rsp->n_barrier_done);
2971 		}
2972 	}
2973 	put_online_cpus();
2974 
2975 	/*
2976 	 * Now that we have an rcu_barrier_callback() callback on each
2977 	 * CPU, and thus each counted, remove the initial count.
2978 	 */
2979 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2980 		complete(&rsp->barrier_completion);
2981 
2982 	/* Increment ->n_barrier_done to prevent duplicate work. */
2983 	smp_mb(); /* Keep increment after above mechanism. */
2984 	ACCESS_ONCE(rsp->n_barrier_done)++;
2985 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2986 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2987 	smp_mb(); /* Keep increment before caller's subsequent code. */
2988 
2989 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2990 	wait_for_completion(&rsp->barrier_completion);
2991 
2992 	/* Other rcu_barrier() invocations can now safely proceed. */
2993 	mutex_unlock(&rsp->barrier_mutex);
2994 }
2995 
2996 /**
2997  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2998  */
2999 void rcu_barrier_bh(void)
3000 {
3001 	_rcu_barrier(&rcu_bh_state);
3002 }
3003 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3004 
3005 /**
3006  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3007  */
3008 void rcu_barrier_sched(void)
3009 {
3010 	_rcu_barrier(&rcu_sched_state);
3011 }
3012 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3013 
3014 /*
3015  * Do boot-time initialization of a CPU's per-CPU RCU data.
3016  */
3017 static void __init
3018 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3019 {
3020 	unsigned long flags;
3021 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3022 	struct rcu_node *rnp = rcu_get_root(rsp);
3023 
3024 	/* Set up local state, ensuring consistent view of global state. */
3025 	raw_spin_lock_irqsave(&rnp->lock, flags);
3026 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3027 	init_callback_list(rdp);
3028 	rdp->qlen_lazy = 0;
3029 	ACCESS_ONCE(rdp->qlen) = 0;
3030 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3031 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3032 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3033 	rdp->cpu = cpu;
3034 	rdp->rsp = rsp;
3035 	rcu_boot_init_nocb_percpu_data(rdp);
3036 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3037 }
3038 
3039 /*
3040  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3041  * offline event can be happening at a given time.  Note also that we
3042  * can accept some slop in the rsp->completed access due to the fact
3043  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3044  */
3045 static void
3046 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3047 {
3048 	unsigned long flags;
3049 	unsigned long mask;
3050 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3051 	struct rcu_node *rnp = rcu_get_root(rsp);
3052 
3053 	/* Exclude new grace periods. */
3054 	mutex_lock(&rsp->onoff_mutex);
3055 
3056 	/* Set up local state, ensuring consistent view of global state. */
3057 	raw_spin_lock_irqsave(&rnp->lock, flags);
3058 	rdp->beenonline = 1;	 /* We have now been online. */
3059 	rdp->preemptible = preemptible;
3060 	rdp->qlen_last_fqs_check = 0;
3061 	rdp->n_force_qs_snap = rsp->n_force_qs;
3062 	rdp->blimit = blimit;
3063 	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3064 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3065 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3066 	atomic_set(&rdp->dynticks->dynticks,
3067 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3068 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3069 
3070 	/* Add CPU to rcu_node bitmasks. */
3071 	rnp = rdp->mynode;
3072 	mask = rdp->grpmask;
3073 	do {
3074 		/* Exclude any attempts to start a new GP on small systems. */
3075 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3076 		rnp->qsmaskinit |= mask;
3077 		mask = rnp->grpmask;
3078 		if (rnp == rdp->mynode) {
3079 			/*
3080 			 * If there is a grace period in progress, we will
3081 			 * set up to wait for it next time we run the
3082 			 * RCU core code.
3083 			 */
3084 			rdp->gpnum = rnp->completed;
3085 			rdp->completed = rnp->completed;
3086 			rdp->passed_quiesce = 0;
3087 			rdp->qs_pending = 0;
3088 			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3089 		}
3090 		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3091 		rnp = rnp->parent;
3092 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3093 	local_irq_restore(flags);
3094 
3095 	mutex_unlock(&rsp->onoff_mutex);
3096 }
3097 
3098 static void rcu_prepare_cpu(int cpu)
3099 {
3100 	struct rcu_state *rsp;
3101 
3102 	for_each_rcu_flavor(rsp)
3103 		rcu_init_percpu_data(cpu, rsp,
3104 				     strcmp(rsp->name, "rcu_preempt") == 0);
3105 }
3106 
3107 /*
3108  * Handle CPU online/offline notification events.
3109  */
3110 static int rcu_cpu_notify(struct notifier_block *self,
3111 				    unsigned long action, void *hcpu)
3112 {
3113 	long cpu = (long)hcpu;
3114 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3115 	struct rcu_node *rnp = rdp->mynode;
3116 	struct rcu_state *rsp;
3117 
3118 	trace_rcu_utilization(TPS("Start CPU hotplug"));
3119 	switch (action) {
3120 	case CPU_UP_PREPARE:
3121 	case CPU_UP_PREPARE_FROZEN:
3122 		rcu_prepare_cpu(cpu);
3123 		rcu_prepare_kthreads(cpu);
3124 		break;
3125 	case CPU_ONLINE:
3126 	case CPU_DOWN_FAILED:
3127 		rcu_boost_kthread_setaffinity(rnp, -1);
3128 		break;
3129 	case CPU_DOWN_PREPARE:
3130 		rcu_boost_kthread_setaffinity(rnp, cpu);
3131 		break;
3132 	case CPU_DYING:
3133 	case CPU_DYING_FROZEN:
3134 		for_each_rcu_flavor(rsp)
3135 			rcu_cleanup_dying_cpu(rsp);
3136 		break;
3137 	case CPU_DEAD:
3138 	case CPU_DEAD_FROZEN:
3139 	case CPU_UP_CANCELED:
3140 	case CPU_UP_CANCELED_FROZEN:
3141 		for_each_rcu_flavor(rsp)
3142 			rcu_cleanup_dead_cpu(cpu, rsp);
3143 		break;
3144 	default:
3145 		break;
3146 	}
3147 	trace_rcu_utilization(TPS("End CPU hotplug"));
3148 	return NOTIFY_OK;
3149 }
3150 
3151 static int rcu_pm_notify(struct notifier_block *self,
3152 			 unsigned long action, void *hcpu)
3153 {
3154 	switch (action) {
3155 	case PM_HIBERNATION_PREPARE:
3156 	case PM_SUSPEND_PREPARE:
3157 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3158 			rcu_expedited = 1;
3159 		break;
3160 	case PM_POST_HIBERNATION:
3161 	case PM_POST_SUSPEND:
3162 		rcu_expedited = 0;
3163 		break;
3164 	default:
3165 		break;
3166 	}
3167 	return NOTIFY_OK;
3168 }
3169 
3170 /*
3171  * Spawn the kthread that handles this RCU flavor's grace periods.
3172  */
3173 static int __init rcu_spawn_gp_kthread(void)
3174 {
3175 	unsigned long flags;
3176 	struct rcu_node *rnp;
3177 	struct rcu_state *rsp;
3178 	struct task_struct *t;
3179 
3180 	for_each_rcu_flavor(rsp) {
3181 		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3182 		BUG_ON(IS_ERR(t));
3183 		rnp = rcu_get_root(rsp);
3184 		raw_spin_lock_irqsave(&rnp->lock, flags);
3185 		rsp->gp_kthread = t;
3186 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3187 		rcu_spawn_nocb_kthreads(rsp);
3188 	}
3189 	return 0;
3190 }
3191 early_initcall(rcu_spawn_gp_kthread);
3192 
3193 /*
3194  * This function is invoked towards the end of the scheduler's initialization
3195  * process.  Before this is called, the idle task might contain
3196  * RCU read-side critical sections (during which time, this idle
3197  * task is booting the system).  After this function is called, the
3198  * idle tasks are prohibited from containing RCU read-side critical
3199  * sections.  This function also enables RCU lockdep checking.
3200  */
3201 void rcu_scheduler_starting(void)
3202 {
3203 	WARN_ON(num_online_cpus() != 1);
3204 	WARN_ON(nr_context_switches() > 0);
3205 	rcu_scheduler_active = 1;
3206 }
3207 
3208 /*
3209  * Compute the per-level fanout, either using the exact fanout specified
3210  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3211  */
3212 #ifdef CONFIG_RCU_FANOUT_EXACT
3213 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3214 {
3215 	int i;
3216 
3217 	for (i = rcu_num_lvls - 1; i > 0; i--)
3218 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3219 	rsp->levelspread[0] = rcu_fanout_leaf;
3220 }
3221 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3222 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3223 {
3224 	int ccur;
3225 	int cprv;
3226 	int i;
3227 
3228 	cprv = nr_cpu_ids;
3229 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3230 		ccur = rsp->levelcnt[i];
3231 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3232 		cprv = ccur;
3233 	}
3234 }
3235 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3236 
3237 /*
3238  * Helper function for rcu_init() that initializes one rcu_state structure.
3239  */
3240 static void __init rcu_init_one(struct rcu_state *rsp,
3241 		struct rcu_data __percpu *rda)
3242 {
3243 	static char *buf[] = { "rcu_node_0",
3244 			       "rcu_node_1",
3245 			       "rcu_node_2",
3246 			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
3247 	static char *fqs[] = { "rcu_node_fqs_0",
3248 			       "rcu_node_fqs_1",
3249 			       "rcu_node_fqs_2",
3250 			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3251 	int cpustride = 1;
3252 	int i;
3253 	int j;
3254 	struct rcu_node *rnp;
3255 
3256 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3257 
3258 	/* Silence gcc 4.8 warning about array index out of range. */
3259 	if (rcu_num_lvls > RCU_NUM_LVLS)
3260 		panic("rcu_init_one: rcu_num_lvls overflow");
3261 
3262 	/* Initialize the level-tracking arrays. */
3263 
3264 	for (i = 0; i < rcu_num_lvls; i++)
3265 		rsp->levelcnt[i] = num_rcu_lvl[i];
3266 	for (i = 1; i < rcu_num_lvls; i++)
3267 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3268 	rcu_init_levelspread(rsp);
3269 
3270 	/* Initialize the elements themselves, starting from the leaves. */
3271 
3272 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3273 		cpustride *= rsp->levelspread[i];
3274 		rnp = rsp->level[i];
3275 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3276 			raw_spin_lock_init(&rnp->lock);
3277 			lockdep_set_class_and_name(&rnp->lock,
3278 						   &rcu_node_class[i], buf[i]);
3279 			raw_spin_lock_init(&rnp->fqslock);
3280 			lockdep_set_class_and_name(&rnp->fqslock,
3281 						   &rcu_fqs_class[i], fqs[i]);
3282 			rnp->gpnum = rsp->gpnum;
3283 			rnp->completed = rsp->completed;
3284 			rnp->qsmask = 0;
3285 			rnp->qsmaskinit = 0;
3286 			rnp->grplo = j * cpustride;
3287 			rnp->grphi = (j + 1) * cpustride - 1;
3288 			if (rnp->grphi >= NR_CPUS)
3289 				rnp->grphi = NR_CPUS - 1;
3290 			if (i == 0) {
3291 				rnp->grpnum = 0;
3292 				rnp->grpmask = 0;
3293 				rnp->parent = NULL;
3294 			} else {
3295 				rnp->grpnum = j % rsp->levelspread[i - 1];
3296 				rnp->grpmask = 1UL << rnp->grpnum;
3297 				rnp->parent = rsp->level[i - 1] +
3298 					      j / rsp->levelspread[i - 1];
3299 			}
3300 			rnp->level = i;
3301 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3302 			rcu_init_one_nocb(rnp);
3303 		}
3304 	}
3305 
3306 	rsp->rda = rda;
3307 	init_waitqueue_head(&rsp->gp_wq);
3308 	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3309 	rnp = rsp->level[rcu_num_lvls - 1];
3310 	for_each_possible_cpu(i) {
3311 		while (i > rnp->grphi)
3312 			rnp++;
3313 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3314 		rcu_boot_init_percpu_data(i, rsp);
3315 	}
3316 	list_add(&rsp->flavors, &rcu_struct_flavors);
3317 }
3318 
3319 /*
3320  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3321  * replace the definitions in tree.h because those are needed to size
3322  * the ->node array in the rcu_state structure.
3323  */
3324 static void __init rcu_init_geometry(void)
3325 {
3326 	ulong d;
3327 	int i;
3328 	int j;
3329 	int n = nr_cpu_ids;
3330 	int rcu_capacity[MAX_RCU_LVLS + 1];
3331 
3332 	/*
3333 	 * Initialize any unspecified boot parameters.
3334 	 * The default values of jiffies_till_first_fqs and
3335 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3336 	 * value, which is a function of HZ, then adding one for each
3337 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3338 	 */
3339 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3340 	if (jiffies_till_first_fqs == ULONG_MAX)
3341 		jiffies_till_first_fqs = d;
3342 	if (jiffies_till_next_fqs == ULONG_MAX)
3343 		jiffies_till_next_fqs = d;
3344 
3345 	/* If the compile-time values are accurate, just leave. */
3346 	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3347 	    nr_cpu_ids == NR_CPUS)
3348 		return;
3349 
3350 	/*
3351 	 * Compute number of nodes that can be handled an rcu_node tree
3352 	 * with the given number of levels.  Setting rcu_capacity[0] makes
3353 	 * some of the arithmetic easier.
3354 	 */
3355 	rcu_capacity[0] = 1;
3356 	rcu_capacity[1] = rcu_fanout_leaf;
3357 	for (i = 2; i <= MAX_RCU_LVLS; i++)
3358 		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3359 
3360 	/*
3361 	 * The boot-time rcu_fanout_leaf parameter is only permitted
3362 	 * to increase the leaf-level fanout, not decrease it.  Of course,
3363 	 * the leaf-level fanout cannot exceed the number of bits in
3364 	 * the rcu_node masks.  Finally, the tree must be able to accommodate
3365 	 * the configured number of CPUs.  Complain and fall back to the
3366 	 * compile-time values if these limits are exceeded.
3367 	 */
3368 	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3369 	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3370 	    n > rcu_capacity[MAX_RCU_LVLS]) {
3371 		WARN_ON(1);
3372 		return;
3373 	}
3374 
3375 	/* Calculate the number of rcu_nodes at each level of the tree. */
3376 	for (i = 1; i <= MAX_RCU_LVLS; i++)
3377 		if (n <= rcu_capacity[i]) {
3378 			for (j = 0; j <= i; j++)
3379 				num_rcu_lvl[j] =
3380 					DIV_ROUND_UP(n, rcu_capacity[i - j]);
3381 			rcu_num_lvls = i;
3382 			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3383 				num_rcu_lvl[j] = 0;
3384 			break;
3385 		}
3386 
3387 	/* Calculate the total number of rcu_node structures. */
3388 	rcu_num_nodes = 0;
3389 	for (i = 0; i <= MAX_RCU_LVLS; i++)
3390 		rcu_num_nodes += num_rcu_lvl[i];
3391 	rcu_num_nodes -= n;
3392 }
3393 
3394 void __init rcu_init(void)
3395 {
3396 	int cpu;
3397 
3398 	rcu_bootup_announce();
3399 	rcu_init_geometry();
3400 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3401 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3402 	__rcu_init_preempt();
3403 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3404 
3405 	/*
3406 	 * We don't need protection against CPU-hotplug here because
3407 	 * this is called early in boot, before either interrupts
3408 	 * or the scheduler are operational.
3409 	 */
3410 	cpu_notifier(rcu_cpu_notify, 0);
3411 	pm_notifier(rcu_pm_notify, 0);
3412 	for_each_online_cpu(cpu)
3413 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3414 }
3415 
3416 #include "tree_plugin.h"
3417