1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/trace_events.h> 49 #include <linux/suspend.h> 50 #include <linux/ftrace.h> 51 #include <linux/tick.h> 52 #include <linux/sysrq.h> 53 #include <linux/kprobes.h> 54 55 #include "tree.h" 56 #include "rcu.h" 57 58 #ifdef MODULE_PARAM_PREFIX 59 #undef MODULE_PARAM_PREFIX 60 #endif 61 #define MODULE_PARAM_PREFIX "rcutree." 62 63 /* Data structures. */ 64 65 /* 66 * Steal a bit from the bottom of ->dynticks for idle entry/exit 67 * control. Initially this is for TLB flushing. 68 */ 69 #define RCU_DYNTICK_CTRL_MASK 0x1 70 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 71 #ifndef rcu_eqs_special_exit 72 #define rcu_eqs_special_exit() do { } while (0) 73 #endif 74 75 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 76 .dynticks_nesting = 1, 77 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 78 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 79 }; 80 struct rcu_state rcu_state = { 81 .level = { &rcu_state.node[0] }, 82 .gp_state = RCU_GP_IDLE, 83 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 84 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 85 .name = RCU_NAME, 86 .abbr = RCU_ABBR, 87 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 88 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 89 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 90 }; 91 92 /* Dump rcu_node combining tree at boot to verify correct setup. */ 93 static bool dump_tree; 94 module_param(dump_tree, bool, 0444); 95 /* Control rcu_node-tree auto-balancing at boot time. */ 96 static bool rcu_fanout_exact; 97 module_param(rcu_fanout_exact, bool, 0444); 98 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 99 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 100 module_param(rcu_fanout_leaf, int, 0444); 101 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 102 /* Number of rcu_nodes at specified level. */ 103 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 104 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 105 /* panic() on RCU Stall sysctl. */ 106 int sysctl_panic_on_rcu_stall __read_mostly; 107 /* Commandeer a sysrq key to dump RCU's tree. */ 108 static bool sysrq_rcu; 109 module_param(sysrq_rcu, bool, 0444); 110 111 /* 112 * The rcu_scheduler_active variable is initialized to the value 113 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 114 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 115 * RCU can assume that there is but one task, allowing RCU to (for example) 116 * optimize synchronize_rcu() to a simple barrier(). When this variable 117 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 118 * to detect real grace periods. This variable is also used to suppress 119 * boot-time false positives from lockdep-RCU error checking. Finally, it 120 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 121 * is fully initialized, including all of its kthreads having been spawned. 122 */ 123 int rcu_scheduler_active __read_mostly; 124 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 125 126 /* 127 * The rcu_scheduler_fully_active variable transitions from zero to one 128 * during the early_initcall() processing, which is after the scheduler 129 * is capable of creating new tasks. So RCU processing (for example, 130 * creating tasks for RCU priority boosting) must be delayed until after 131 * rcu_scheduler_fully_active transitions from zero to one. We also 132 * currently delay invocation of any RCU callbacks until after this point. 133 * 134 * It might later prove better for people registering RCU callbacks during 135 * early boot to take responsibility for these callbacks, but one step at 136 * a time. 137 */ 138 static int rcu_scheduler_fully_active __read_mostly; 139 140 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 141 unsigned long gps, unsigned long flags); 142 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 143 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 145 static void invoke_rcu_core(void); 146 static void invoke_rcu_callbacks(struct rcu_data *rdp); 147 static void rcu_report_exp_rdp(struct rcu_data *rdp); 148 static void sync_sched_exp_online_cleanup(int cpu); 149 150 /* rcuc/rcub kthread realtime priority */ 151 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 152 module_param(kthread_prio, int, 0644); 153 154 /* Delay in jiffies for grace-period initialization delays, debug only. */ 155 156 static int gp_preinit_delay; 157 module_param(gp_preinit_delay, int, 0444); 158 static int gp_init_delay; 159 module_param(gp_init_delay, int, 0444); 160 static int gp_cleanup_delay; 161 module_param(gp_cleanup_delay, int, 0444); 162 163 /* Retrieve RCU kthreads priority for rcutorture */ 164 int rcu_get_gp_kthreads_prio(void) 165 { 166 return kthread_prio; 167 } 168 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 169 170 /* 171 * Number of grace periods between delays, normalized by the duration of 172 * the delay. The longer the delay, the more the grace periods between 173 * each delay. The reason for this normalization is that it means that, 174 * for non-zero delays, the overall slowdown of grace periods is constant 175 * regardless of the duration of the delay. This arrangement balances 176 * the need for long delays to increase some race probabilities with the 177 * need for fast grace periods to increase other race probabilities. 178 */ 179 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 180 181 /* 182 * Compute the mask of online CPUs for the specified rcu_node structure. 183 * This will not be stable unless the rcu_node structure's ->lock is 184 * held, but the bit corresponding to the current CPU will be stable 185 * in most contexts. 186 */ 187 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 188 { 189 return READ_ONCE(rnp->qsmaskinitnext); 190 } 191 192 /* 193 * Return true if an RCU grace period is in progress. The READ_ONCE()s 194 * permit this function to be invoked without holding the root rcu_node 195 * structure's ->lock, but of course results can be subject to change. 196 */ 197 static int rcu_gp_in_progress(void) 198 { 199 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 200 } 201 202 /* 203 * Return the number of callbacks queued on the specified CPU. 204 * Handles both the nocbs and normal cases. 205 */ 206 static long rcu_get_n_cbs_cpu(int cpu) 207 { 208 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 209 210 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */ 211 return rcu_segcblist_n_cbs(&rdp->cblist); 212 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */ 213 } 214 215 void rcu_softirq_qs(void) 216 { 217 rcu_qs(); 218 rcu_preempt_deferred_qs(current); 219 } 220 221 /* 222 * Record entry into an extended quiescent state. This is only to be 223 * called when not already in an extended quiescent state. 224 */ 225 static void rcu_dynticks_eqs_enter(void) 226 { 227 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 228 int seq; 229 230 /* 231 * CPUs seeing atomic_add_return() must see prior RCU read-side 232 * critical sections, and we also must force ordering with the 233 * next idle sojourn. 234 */ 235 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 236 /* Better be in an extended quiescent state! */ 237 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 238 (seq & RCU_DYNTICK_CTRL_CTR)); 239 /* Better not have special action (TLB flush) pending! */ 240 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 241 (seq & RCU_DYNTICK_CTRL_MASK)); 242 } 243 244 /* 245 * Record exit from an extended quiescent state. This is only to be 246 * called from an extended quiescent state. 247 */ 248 static void rcu_dynticks_eqs_exit(void) 249 { 250 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 251 int seq; 252 253 /* 254 * CPUs seeing atomic_add_return() must see prior idle sojourns, 255 * and we also must force ordering with the next RCU read-side 256 * critical section. 257 */ 258 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 259 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 260 !(seq & RCU_DYNTICK_CTRL_CTR)); 261 if (seq & RCU_DYNTICK_CTRL_MASK) { 262 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 263 smp_mb__after_atomic(); /* _exit after clearing mask. */ 264 /* Prefer duplicate flushes to losing a flush. */ 265 rcu_eqs_special_exit(); 266 } 267 } 268 269 /* 270 * Reset the current CPU's ->dynticks counter to indicate that the 271 * newly onlined CPU is no longer in an extended quiescent state. 272 * This will either leave the counter unchanged, or increment it 273 * to the next non-quiescent value. 274 * 275 * The non-atomic test/increment sequence works because the upper bits 276 * of the ->dynticks counter are manipulated only by the corresponding CPU, 277 * or when the corresponding CPU is offline. 278 */ 279 static void rcu_dynticks_eqs_online(void) 280 { 281 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 282 283 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 284 return; 285 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 286 } 287 288 /* 289 * Is the current CPU in an extended quiescent state? 290 * 291 * No ordering, as we are sampling CPU-local information. 292 */ 293 bool rcu_dynticks_curr_cpu_in_eqs(void) 294 { 295 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 296 297 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 298 } 299 300 /* 301 * Snapshot the ->dynticks counter with full ordering so as to allow 302 * stable comparison of this counter with past and future snapshots. 303 */ 304 int rcu_dynticks_snap(struct rcu_data *rdp) 305 { 306 int snap = atomic_add_return(0, &rdp->dynticks); 307 308 return snap & ~RCU_DYNTICK_CTRL_MASK; 309 } 310 311 /* 312 * Return true if the snapshot returned from rcu_dynticks_snap() 313 * indicates that RCU is in an extended quiescent state. 314 */ 315 static bool rcu_dynticks_in_eqs(int snap) 316 { 317 return !(snap & RCU_DYNTICK_CTRL_CTR); 318 } 319 320 /* 321 * Return true if the CPU corresponding to the specified rcu_data 322 * structure has spent some time in an extended quiescent state since 323 * rcu_dynticks_snap() returned the specified snapshot. 324 */ 325 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 326 { 327 return snap != rcu_dynticks_snap(rdp); 328 } 329 330 /* 331 * Set the special (bottom) bit of the specified CPU so that it 332 * will take special action (such as flushing its TLB) on the 333 * next exit from an extended quiescent state. Returns true if 334 * the bit was successfully set, or false if the CPU was not in 335 * an extended quiescent state. 336 */ 337 bool rcu_eqs_special_set(int cpu) 338 { 339 int old; 340 int new; 341 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 342 343 do { 344 old = atomic_read(&rdp->dynticks); 345 if (old & RCU_DYNTICK_CTRL_CTR) 346 return false; 347 new = old | RCU_DYNTICK_CTRL_MASK; 348 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 349 return true; 350 } 351 352 /* 353 * Let the RCU core know that this CPU has gone through the scheduler, 354 * which is a quiescent state. This is called when the need for a 355 * quiescent state is urgent, so we burn an atomic operation and full 356 * memory barriers to let the RCU core know about it, regardless of what 357 * this CPU might (or might not) do in the near future. 358 * 359 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 360 * 361 * The caller must have disabled interrupts and must not be idle. 362 */ 363 static void __maybe_unused rcu_momentary_dyntick_idle(void) 364 { 365 int special; 366 367 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 368 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 369 &this_cpu_ptr(&rcu_data)->dynticks); 370 /* It is illegal to call this from idle state. */ 371 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 372 rcu_preempt_deferred_qs(current); 373 } 374 375 /** 376 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 377 * 378 * If the current CPU is idle or running at a first-level (not nested) 379 * interrupt from idle, return true. The caller must have at least 380 * disabled preemption. 381 */ 382 static int rcu_is_cpu_rrupt_from_idle(void) 383 { 384 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 && 385 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1; 386 } 387 388 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 389 static long blimit = DEFAULT_RCU_BLIMIT; 390 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 391 static long qhimark = DEFAULT_RCU_QHIMARK; 392 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 393 static long qlowmark = DEFAULT_RCU_QLOMARK; 394 395 module_param(blimit, long, 0444); 396 module_param(qhimark, long, 0444); 397 module_param(qlowmark, long, 0444); 398 399 static ulong jiffies_till_first_fqs = ULONG_MAX; 400 static ulong jiffies_till_next_fqs = ULONG_MAX; 401 static bool rcu_kick_kthreads; 402 403 /* 404 * How long the grace period must be before we start recruiting 405 * quiescent-state help from rcu_note_context_switch(). 406 */ 407 static ulong jiffies_till_sched_qs = ULONG_MAX; 408 module_param(jiffies_till_sched_qs, ulong, 0444); 409 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */ 410 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 411 412 /* 413 * Make sure that we give the grace-period kthread time to detect any 414 * idle CPUs before taking active measures to force quiescent states. 415 * However, don't go below 100 milliseconds, adjusted upwards for really 416 * large systems. 417 */ 418 static void adjust_jiffies_till_sched_qs(void) 419 { 420 unsigned long j; 421 422 /* If jiffies_till_sched_qs was specified, respect the request. */ 423 if (jiffies_till_sched_qs != ULONG_MAX) { 424 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 425 return; 426 } 427 j = READ_ONCE(jiffies_till_first_fqs) + 428 2 * READ_ONCE(jiffies_till_next_fqs); 429 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 430 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 431 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 432 WRITE_ONCE(jiffies_to_sched_qs, j); 433 } 434 435 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 436 { 437 ulong j; 438 int ret = kstrtoul(val, 0, &j); 439 440 if (!ret) { 441 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 442 adjust_jiffies_till_sched_qs(); 443 } 444 return ret; 445 } 446 447 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 448 { 449 ulong j; 450 int ret = kstrtoul(val, 0, &j); 451 452 if (!ret) { 453 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 454 adjust_jiffies_till_sched_qs(); 455 } 456 return ret; 457 } 458 459 static struct kernel_param_ops first_fqs_jiffies_ops = { 460 .set = param_set_first_fqs_jiffies, 461 .get = param_get_ulong, 462 }; 463 464 static struct kernel_param_ops next_fqs_jiffies_ops = { 465 .set = param_set_next_fqs_jiffies, 466 .get = param_get_ulong, 467 }; 468 469 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 470 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 471 module_param(rcu_kick_kthreads, bool, 0644); 472 473 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 474 static int rcu_pending(void); 475 476 /* 477 * Return the number of RCU GPs completed thus far for debug & stats. 478 */ 479 unsigned long rcu_get_gp_seq(void) 480 { 481 return READ_ONCE(rcu_state.gp_seq); 482 } 483 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 484 485 /* 486 * Return the number of RCU expedited batches completed thus far for 487 * debug & stats. Odd numbers mean that a batch is in progress, even 488 * numbers mean idle. The value returned will thus be roughly double 489 * the cumulative batches since boot. 490 */ 491 unsigned long rcu_exp_batches_completed(void) 492 { 493 return rcu_state.expedited_sequence; 494 } 495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 496 497 /* 498 * Return the root node of the rcu_state structure. 499 */ 500 static struct rcu_node *rcu_get_root(void) 501 { 502 return &rcu_state.node[0]; 503 } 504 505 /* 506 * Convert a ->gp_state value to a character string. 507 */ 508 static const char *gp_state_getname(short gs) 509 { 510 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 511 return "???"; 512 return gp_state_names[gs]; 513 } 514 515 /* 516 * Show the state of the grace-period kthreads. 517 */ 518 void show_rcu_gp_kthreads(void) 519 { 520 int cpu; 521 unsigned long j; 522 unsigned long ja; 523 unsigned long jr; 524 unsigned long jw; 525 struct rcu_data *rdp; 526 struct rcu_node *rnp; 527 528 j = jiffies; 529 ja = j - READ_ONCE(rcu_state.gp_activity); 530 jr = j - READ_ONCE(rcu_state.gp_req_activity); 531 jw = j - READ_ONCE(rcu_state.gp_wake_time); 532 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %lu ->gp_req_activity %lu ->gp_wake_time %lu ->gp_wake_seq %ld ->gp_seq %ld ->gp_seq_needed %ld ->gp_flags %#x\n", 533 rcu_state.name, gp_state_getname(rcu_state.gp_state), 534 rcu_state.gp_state, 535 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL, 536 ja, jr, jw, (long)READ_ONCE(rcu_state.gp_wake_seq), 537 (long)READ_ONCE(rcu_state.gp_seq), 538 (long)READ_ONCE(rcu_get_root()->gp_seq_needed), 539 READ_ONCE(rcu_state.gp_flags)); 540 rcu_for_each_node_breadth_first(rnp) { 541 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed)) 542 continue; 543 pr_info("\trcu_node %d:%d ->gp_seq %ld ->gp_seq_needed %ld\n", 544 rnp->grplo, rnp->grphi, (long)rnp->gp_seq, 545 (long)rnp->gp_seq_needed); 546 if (!rcu_is_leaf_node(rnp)) 547 continue; 548 for_each_leaf_node_possible_cpu(rnp, cpu) { 549 rdp = per_cpu_ptr(&rcu_data, cpu); 550 if (rdp->gpwrap || 551 ULONG_CMP_GE(rcu_state.gp_seq, 552 rdp->gp_seq_needed)) 553 continue; 554 pr_info("\tcpu %d ->gp_seq_needed %ld\n", 555 cpu, (long)rdp->gp_seq_needed); 556 } 557 } 558 /* sched_show_task(rcu_state.gp_kthread); */ 559 } 560 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 561 562 /* Dump grace-period-request information due to commandeered sysrq. */ 563 static void sysrq_show_rcu(int key) 564 { 565 show_rcu_gp_kthreads(); 566 } 567 568 static struct sysrq_key_op sysrq_rcudump_op = { 569 .handler = sysrq_show_rcu, 570 .help_msg = "show-rcu(y)", 571 .action_msg = "Show RCU tree", 572 .enable_mask = SYSRQ_ENABLE_DUMP, 573 }; 574 575 static int __init rcu_sysrq_init(void) 576 { 577 if (sysrq_rcu) 578 return register_sysrq_key('y', &sysrq_rcudump_op); 579 return 0; 580 } 581 early_initcall(rcu_sysrq_init); 582 583 /* 584 * Send along grace-period-related data for rcutorture diagnostics. 585 */ 586 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 587 unsigned long *gp_seq) 588 { 589 switch (test_type) { 590 case RCU_FLAVOR: 591 *flags = READ_ONCE(rcu_state.gp_flags); 592 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 593 break; 594 default: 595 break; 596 } 597 } 598 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 599 600 /* 601 * Enter an RCU extended quiescent state, which can be either the 602 * idle loop or adaptive-tickless usermode execution. 603 * 604 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 605 * the possibility of usermode upcalls having messed up our count 606 * of interrupt nesting level during the prior busy period. 607 */ 608 static void rcu_eqs_enter(bool user) 609 { 610 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 611 612 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 613 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 614 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 615 rdp->dynticks_nesting == 0); 616 if (rdp->dynticks_nesting != 1) { 617 rdp->dynticks_nesting--; 618 return; 619 } 620 621 lockdep_assert_irqs_disabled(); 622 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 623 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 624 rdp = this_cpu_ptr(&rcu_data); 625 do_nocb_deferred_wakeup(rdp); 626 rcu_prepare_for_idle(); 627 rcu_preempt_deferred_qs(current); 628 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 629 rcu_dynticks_eqs_enter(); 630 rcu_dynticks_task_enter(); 631 } 632 633 /** 634 * rcu_idle_enter - inform RCU that current CPU is entering idle 635 * 636 * Enter idle mode, in other words, -leave- the mode in which RCU 637 * read-side critical sections can occur. (Though RCU read-side 638 * critical sections can occur in irq handlers in idle, a possibility 639 * handled by irq_enter() and irq_exit().) 640 * 641 * If you add or remove a call to rcu_idle_enter(), be sure to test with 642 * CONFIG_RCU_EQS_DEBUG=y. 643 */ 644 void rcu_idle_enter(void) 645 { 646 lockdep_assert_irqs_disabled(); 647 rcu_eqs_enter(false); 648 } 649 650 #ifdef CONFIG_NO_HZ_FULL 651 /** 652 * rcu_user_enter - inform RCU that we are resuming userspace. 653 * 654 * Enter RCU idle mode right before resuming userspace. No use of RCU 655 * is permitted between this call and rcu_user_exit(). This way the 656 * CPU doesn't need to maintain the tick for RCU maintenance purposes 657 * when the CPU runs in userspace. 658 * 659 * If you add or remove a call to rcu_user_enter(), be sure to test with 660 * CONFIG_RCU_EQS_DEBUG=y. 661 */ 662 void rcu_user_enter(void) 663 { 664 lockdep_assert_irqs_disabled(); 665 rcu_eqs_enter(true); 666 } 667 #endif /* CONFIG_NO_HZ_FULL */ 668 669 /* 670 * If we are returning from the outermost NMI handler that interrupted an 671 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 672 * to let the RCU grace-period handling know that the CPU is back to 673 * being RCU-idle. 674 * 675 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 676 * with CONFIG_RCU_EQS_DEBUG=y. 677 */ 678 static __always_inline void rcu_nmi_exit_common(bool irq) 679 { 680 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 681 682 /* 683 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 684 * (We are exiting an NMI handler, so RCU better be paying attention 685 * to us!) 686 */ 687 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 688 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 689 690 /* 691 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 692 * leave it in non-RCU-idle state. 693 */ 694 if (rdp->dynticks_nmi_nesting != 1) { 695 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 696 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 697 rdp->dynticks_nmi_nesting - 2); 698 return; 699 } 700 701 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 702 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 703 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 704 705 if (irq) 706 rcu_prepare_for_idle(); 707 708 rcu_dynticks_eqs_enter(); 709 710 if (irq) 711 rcu_dynticks_task_enter(); 712 } 713 714 /** 715 * rcu_nmi_exit - inform RCU of exit from NMI context 716 * 717 * If you add or remove a call to rcu_nmi_exit(), be sure to test 718 * with CONFIG_RCU_EQS_DEBUG=y. 719 */ 720 void rcu_nmi_exit(void) 721 { 722 rcu_nmi_exit_common(false); 723 } 724 725 /** 726 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 727 * 728 * Exit from an interrupt handler, which might possibly result in entering 729 * idle mode, in other words, leaving the mode in which read-side critical 730 * sections can occur. The caller must have disabled interrupts. 731 * 732 * This code assumes that the idle loop never does anything that might 733 * result in unbalanced calls to irq_enter() and irq_exit(). If your 734 * architecture's idle loop violates this assumption, RCU will give you what 735 * you deserve, good and hard. But very infrequently and irreproducibly. 736 * 737 * Use things like work queues to work around this limitation. 738 * 739 * You have been warned. 740 * 741 * If you add or remove a call to rcu_irq_exit(), be sure to test with 742 * CONFIG_RCU_EQS_DEBUG=y. 743 */ 744 void rcu_irq_exit(void) 745 { 746 lockdep_assert_irqs_disabled(); 747 rcu_nmi_exit_common(true); 748 } 749 750 /* 751 * Wrapper for rcu_irq_exit() where interrupts are enabled. 752 * 753 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 754 * with CONFIG_RCU_EQS_DEBUG=y. 755 */ 756 void rcu_irq_exit_irqson(void) 757 { 758 unsigned long flags; 759 760 local_irq_save(flags); 761 rcu_irq_exit(); 762 local_irq_restore(flags); 763 } 764 765 /* 766 * Exit an RCU extended quiescent state, which can be either the 767 * idle loop or adaptive-tickless usermode execution. 768 * 769 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 770 * allow for the possibility of usermode upcalls messing up our count of 771 * interrupt nesting level during the busy period that is just now starting. 772 */ 773 static void rcu_eqs_exit(bool user) 774 { 775 struct rcu_data *rdp; 776 long oldval; 777 778 lockdep_assert_irqs_disabled(); 779 rdp = this_cpu_ptr(&rcu_data); 780 oldval = rdp->dynticks_nesting; 781 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 782 if (oldval) { 783 rdp->dynticks_nesting++; 784 return; 785 } 786 rcu_dynticks_task_exit(); 787 rcu_dynticks_eqs_exit(); 788 rcu_cleanup_after_idle(); 789 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 790 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 791 WRITE_ONCE(rdp->dynticks_nesting, 1); 792 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 793 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 794 } 795 796 /** 797 * rcu_idle_exit - inform RCU that current CPU is leaving idle 798 * 799 * Exit idle mode, in other words, -enter- the mode in which RCU 800 * read-side critical sections can occur. 801 * 802 * If you add or remove a call to rcu_idle_exit(), be sure to test with 803 * CONFIG_RCU_EQS_DEBUG=y. 804 */ 805 void rcu_idle_exit(void) 806 { 807 unsigned long flags; 808 809 local_irq_save(flags); 810 rcu_eqs_exit(false); 811 local_irq_restore(flags); 812 } 813 814 #ifdef CONFIG_NO_HZ_FULL 815 /** 816 * rcu_user_exit - inform RCU that we are exiting userspace. 817 * 818 * Exit RCU idle mode while entering the kernel because it can 819 * run a RCU read side critical section anytime. 820 * 821 * If you add or remove a call to rcu_user_exit(), be sure to test with 822 * CONFIG_RCU_EQS_DEBUG=y. 823 */ 824 void rcu_user_exit(void) 825 { 826 rcu_eqs_exit(1); 827 } 828 #endif /* CONFIG_NO_HZ_FULL */ 829 830 /** 831 * rcu_nmi_enter_common - inform RCU of entry to NMI context 832 * @irq: Is this call from rcu_irq_enter? 833 * 834 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 835 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 836 * that the CPU is active. This implementation permits nested NMIs, as 837 * long as the nesting level does not overflow an int. (You will probably 838 * run out of stack space first.) 839 * 840 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 841 * with CONFIG_RCU_EQS_DEBUG=y. 842 */ 843 static __always_inline void rcu_nmi_enter_common(bool irq) 844 { 845 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 846 long incby = 2; 847 848 /* Complain about underflow. */ 849 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 850 851 /* 852 * If idle from RCU viewpoint, atomically increment ->dynticks 853 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 854 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 855 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 856 * to be in the outermost NMI handler that interrupted an RCU-idle 857 * period (observation due to Andy Lutomirski). 858 */ 859 if (rcu_dynticks_curr_cpu_in_eqs()) { 860 861 if (irq) 862 rcu_dynticks_task_exit(); 863 864 rcu_dynticks_eqs_exit(); 865 866 if (irq) 867 rcu_cleanup_after_idle(); 868 869 incby = 1; 870 } 871 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 872 rdp->dynticks_nmi_nesting, 873 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 874 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 875 rdp->dynticks_nmi_nesting + incby); 876 barrier(); 877 } 878 879 /** 880 * rcu_nmi_enter - inform RCU of entry to NMI context 881 */ 882 void rcu_nmi_enter(void) 883 { 884 rcu_nmi_enter_common(false); 885 } 886 NOKPROBE_SYMBOL(rcu_nmi_enter); 887 888 /** 889 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 890 * 891 * Enter an interrupt handler, which might possibly result in exiting 892 * idle mode, in other words, entering the mode in which read-side critical 893 * sections can occur. The caller must have disabled interrupts. 894 * 895 * Note that the Linux kernel is fully capable of entering an interrupt 896 * handler that it never exits, for example when doing upcalls to user mode! 897 * This code assumes that the idle loop never does upcalls to user mode. 898 * If your architecture's idle loop does do upcalls to user mode (or does 899 * anything else that results in unbalanced calls to the irq_enter() and 900 * irq_exit() functions), RCU will give you what you deserve, good and hard. 901 * But very infrequently and irreproducibly. 902 * 903 * Use things like work queues to work around this limitation. 904 * 905 * You have been warned. 906 * 907 * If you add or remove a call to rcu_irq_enter(), be sure to test with 908 * CONFIG_RCU_EQS_DEBUG=y. 909 */ 910 void rcu_irq_enter(void) 911 { 912 lockdep_assert_irqs_disabled(); 913 rcu_nmi_enter_common(true); 914 } 915 916 /* 917 * Wrapper for rcu_irq_enter() where interrupts are enabled. 918 * 919 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 920 * with CONFIG_RCU_EQS_DEBUG=y. 921 */ 922 void rcu_irq_enter_irqson(void) 923 { 924 unsigned long flags; 925 926 local_irq_save(flags); 927 rcu_irq_enter(); 928 local_irq_restore(flags); 929 } 930 931 /** 932 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 933 * 934 * Return true if RCU is watching the running CPU, which means that this 935 * CPU can safely enter RCU read-side critical sections. In other words, 936 * if the current CPU is not in its idle loop or is in an interrupt or 937 * NMI handler, return true. 938 */ 939 bool notrace rcu_is_watching(void) 940 { 941 bool ret; 942 943 preempt_disable_notrace(); 944 ret = !rcu_dynticks_curr_cpu_in_eqs(); 945 preempt_enable_notrace(); 946 return ret; 947 } 948 EXPORT_SYMBOL_GPL(rcu_is_watching); 949 950 /* 951 * If a holdout task is actually running, request an urgent quiescent 952 * state from its CPU. This is unsynchronized, so migrations can cause 953 * the request to go to the wrong CPU. Which is OK, all that will happen 954 * is that the CPU's next context switch will be a bit slower and next 955 * time around this task will generate another request. 956 */ 957 void rcu_request_urgent_qs_task(struct task_struct *t) 958 { 959 int cpu; 960 961 barrier(); 962 cpu = task_cpu(t); 963 if (!task_curr(t)) 964 return; /* This task is not running on that CPU. */ 965 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 966 } 967 968 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 969 970 /* 971 * Is the current CPU online as far as RCU is concerned? 972 * 973 * Disable preemption to avoid false positives that could otherwise 974 * happen due to the current CPU number being sampled, this task being 975 * preempted, its old CPU being taken offline, resuming on some other CPU, 976 * then determining that its old CPU is now offline. 977 * 978 * Disable checking if in an NMI handler because we cannot safely 979 * report errors from NMI handlers anyway. In addition, it is OK to use 980 * RCU on an offline processor during initial boot, hence the check for 981 * rcu_scheduler_fully_active. 982 */ 983 bool rcu_lockdep_current_cpu_online(void) 984 { 985 struct rcu_data *rdp; 986 struct rcu_node *rnp; 987 bool ret = false; 988 989 if (in_nmi() || !rcu_scheduler_fully_active) 990 return true; 991 preempt_disable(); 992 rdp = this_cpu_ptr(&rcu_data); 993 rnp = rdp->mynode; 994 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 995 ret = true; 996 preempt_enable(); 997 return ret; 998 } 999 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1000 1001 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1002 1003 /* 1004 * We are reporting a quiescent state on behalf of some other CPU, so 1005 * it is our responsibility to check for and handle potential overflow 1006 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1007 * After all, the CPU might be in deep idle state, and thus executing no 1008 * code whatsoever. 1009 */ 1010 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1011 { 1012 raw_lockdep_assert_held_rcu_node(rnp); 1013 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1014 rnp->gp_seq)) 1015 WRITE_ONCE(rdp->gpwrap, true); 1016 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1017 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1018 } 1019 1020 /* 1021 * Snapshot the specified CPU's dynticks counter so that we can later 1022 * credit them with an implicit quiescent state. Return 1 if this CPU 1023 * is in dynticks idle mode, which is an extended quiescent state. 1024 */ 1025 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1026 { 1027 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1028 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1029 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1030 rcu_gpnum_ovf(rdp->mynode, rdp); 1031 return 1; 1032 } 1033 return 0; 1034 } 1035 1036 /* 1037 * Handler for the irq_work request posted when a grace period has 1038 * gone on for too long, but not yet long enough for an RCU CPU 1039 * stall warning. Set state appropriately, but just complain if 1040 * there is unexpected state on entry. 1041 */ 1042 static void rcu_iw_handler(struct irq_work *iwp) 1043 { 1044 struct rcu_data *rdp; 1045 struct rcu_node *rnp; 1046 1047 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1048 rnp = rdp->mynode; 1049 raw_spin_lock_rcu_node(rnp); 1050 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1051 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1052 rdp->rcu_iw_pending = false; 1053 } 1054 raw_spin_unlock_rcu_node(rnp); 1055 } 1056 1057 /* 1058 * Return true if the specified CPU has passed through a quiescent 1059 * state by virtue of being in or having passed through an dynticks 1060 * idle state since the last call to dyntick_save_progress_counter() 1061 * for this same CPU, or by virtue of having been offline. 1062 */ 1063 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1064 { 1065 unsigned long jtsq; 1066 bool *rnhqp; 1067 bool *ruqp; 1068 struct rcu_node *rnp = rdp->mynode; 1069 1070 /* 1071 * If the CPU passed through or entered a dynticks idle phase with 1072 * no active irq/NMI handlers, then we can safely pretend that the CPU 1073 * already acknowledged the request to pass through a quiescent 1074 * state. Either way, that CPU cannot possibly be in an RCU 1075 * read-side critical section that started before the beginning 1076 * of the current RCU grace period. 1077 */ 1078 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1079 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1080 rcu_gpnum_ovf(rnp, rdp); 1081 return 1; 1082 } 1083 1084 /* If waiting too long on an offline CPU, complain. */ 1085 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1086 time_after(jiffies, rcu_state.gp_start + HZ)) { 1087 bool onl; 1088 struct rcu_node *rnp1; 1089 1090 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1091 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1092 __func__, rnp->grplo, rnp->grphi, rnp->level, 1093 (long)rnp->gp_seq, (long)rnp->completedqs); 1094 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1095 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1096 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1097 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1098 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1099 __func__, rdp->cpu, ".o"[onl], 1100 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1101 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1102 return 1; /* Break things loose after complaining. */ 1103 } 1104 1105 /* 1106 * A CPU running for an extended time within the kernel can 1107 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1108 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1109 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1110 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1111 * variable are safe because the assignments are repeated if this 1112 * CPU failed to pass through a quiescent state. This code 1113 * also checks .jiffies_resched in case jiffies_to_sched_qs 1114 * is set way high. 1115 */ 1116 jtsq = READ_ONCE(jiffies_to_sched_qs); 1117 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1118 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1119 if (!READ_ONCE(*rnhqp) && 1120 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1121 time_after(jiffies, rcu_state.jiffies_resched))) { 1122 WRITE_ONCE(*rnhqp, true); 1123 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1124 smp_store_release(ruqp, true); 1125 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1126 WRITE_ONCE(*ruqp, true); 1127 } 1128 1129 /* 1130 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1131 * The above code handles this, but only for straight cond_resched(). 1132 * And some in-kernel loops check need_resched() before calling 1133 * cond_resched(), which defeats the above code for CPUs that are 1134 * running in-kernel with scheduling-clock interrupts disabled. 1135 * So hit them over the head with the resched_cpu() hammer! 1136 */ 1137 if (tick_nohz_full_cpu(rdp->cpu) && 1138 time_after(jiffies, 1139 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1140 resched_cpu(rdp->cpu); 1141 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1142 } 1143 1144 /* 1145 * If more than halfway to RCU CPU stall-warning time, invoke 1146 * resched_cpu() more frequently to try to loosen things up a bit. 1147 * Also check to see if the CPU is getting hammered with interrupts, 1148 * but only once per grace period, just to keep the IPIs down to 1149 * a dull roar. 1150 */ 1151 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1152 if (time_after(jiffies, 1153 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1154 resched_cpu(rdp->cpu); 1155 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1156 } 1157 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1158 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1159 (rnp->ffmask & rdp->grpmask)) { 1160 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1161 rdp->rcu_iw_pending = true; 1162 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1163 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1164 } 1165 } 1166 1167 return 0; 1168 } 1169 1170 static void record_gp_stall_check_time(void) 1171 { 1172 unsigned long j = jiffies; 1173 unsigned long j1; 1174 1175 rcu_state.gp_start = j; 1176 j1 = rcu_jiffies_till_stall_check(); 1177 /* Record ->gp_start before ->jiffies_stall. */ 1178 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */ 1179 rcu_state.jiffies_resched = j + j1 / 2; 1180 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs); 1181 } 1182 1183 /* 1184 * Complain about starvation of grace-period kthread. 1185 */ 1186 static void rcu_check_gp_kthread_starvation(void) 1187 { 1188 struct task_struct *gpk = rcu_state.gp_kthread; 1189 unsigned long j; 1190 1191 j = jiffies - READ_ONCE(rcu_state.gp_activity); 1192 if (j > 2 * HZ) { 1193 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1194 rcu_state.name, j, 1195 (long)rcu_seq_current(&rcu_state.gp_seq), 1196 READ_ONCE(rcu_state.gp_flags), 1197 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state, 1198 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1); 1199 if (gpk) { 1200 pr_err("RCU grace-period kthread stack dump:\n"); 1201 sched_show_task(gpk); 1202 wake_up_process(gpk); 1203 } 1204 } 1205 } 1206 1207 /* 1208 * Dump stacks of all tasks running on stalled CPUs. First try using 1209 * NMIs, but fall back to manual remote stack tracing on architectures 1210 * that don't support NMI-based stack dumps. The NMI-triggered stack 1211 * traces are more accurate because they are printed by the target CPU. 1212 */ 1213 static void rcu_dump_cpu_stacks(void) 1214 { 1215 int cpu; 1216 unsigned long flags; 1217 struct rcu_node *rnp; 1218 1219 rcu_for_each_leaf_node(rnp) { 1220 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1221 for_each_leaf_node_possible_cpu(rnp, cpu) 1222 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1223 if (!trigger_single_cpu_backtrace(cpu)) 1224 dump_cpu_task(cpu); 1225 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1226 } 1227 } 1228 1229 /* 1230 * If too much time has passed in the current grace period, and if 1231 * so configured, go kick the relevant kthreads. 1232 */ 1233 static void rcu_stall_kick_kthreads(void) 1234 { 1235 unsigned long j; 1236 1237 if (!rcu_kick_kthreads) 1238 return; 1239 j = READ_ONCE(rcu_state.jiffies_kick_kthreads); 1240 if (time_after(jiffies, j) && rcu_state.gp_kthread && 1241 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) { 1242 WARN_ONCE(1, "Kicking %s grace-period kthread\n", 1243 rcu_state.name); 1244 rcu_ftrace_dump(DUMP_ALL); 1245 wake_up_process(rcu_state.gp_kthread); 1246 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ); 1247 } 1248 } 1249 1250 static void panic_on_rcu_stall(void) 1251 { 1252 if (sysctl_panic_on_rcu_stall) 1253 panic("RCU Stall\n"); 1254 } 1255 1256 static void print_other_cpu_stall(unsigned long gp_seq) 1257 { 1258 int cpu; 1259 unsigned long flags; 1260 unsigned long gpa; 1261 unsigned long j; 1262 int ndetected = 0; 1263 struct rcu_node *rnp = rcu_get_root(); 1264 long totqlen = 0; 1265 1266 /* Kick and suppress, if so configured. */ 1267 rcu_stall_kick_kthreads(); 1268 if (rcu_cpu_stall_suppress) 1269 return; 1270 1271 /* 1272 * OK, time to rat on our buddy... 1273 * See Documentation/RCU/stallwarn.txt for info on how to debug 1274 * RCU CPU stall warnings. 1275 */ 1276 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name); 1277 print_cpu_stall_info_begin(); 1278 rcu_for_each_leaf_node(rnp) { 1279 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1280 ndetected += rcu_print_task_stall(rnp); 1281 if (rnp->qsmask != 0) { 1282 for_each_leaf_node_possible_cpu(rnp, cpu) 1283 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1284 print_cpu_stall_info(cpu); 1285 ndetected++; 1286 } 1287 } 1288 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1289 } 1290 1291 print_cpu_stall_info_end(); 1292 for_each_possible_cpu(cpu) 1293 totqlen += rcu_get_n_cbs_cpu(cpu); 1294 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1295 smp_processor_id(), (long)(jiffies - rcu_state.gp_start), 1296 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1297 if (ndetected) { 1298 rcu_dump_cpu_stacks(); 1299 1300 /* Complain about tasks blocking the grace period. */ 1301 rcu_print_detail_task_stall(); 1302 } else { 1303 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) { 1304 pr_err("INFO: Stall ended before state dump start\n"); 1305 } else { 1306 j = jiffies; 1307 gpa = READ_ONCE(rcu_state.gp_activity); 1308 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1309 rcu_state.name, j - gpa, j, gpa, 1310 READ_ONCE(jiffies_till_next_fqs), 1311 rcu_get_root()->qsmask); 1312 /* In this case, the current CPU might be at fault. */ 1313 sched_show_task(current); 1314 } 1315 } 1316 /* Rewrite if needed in case of slow consoles. */ 1317 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1318 WRITE_ONCE(rcu_state.jiffies_stall, 1319 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1320 1321 rcu_check_gp_kthread_starvation(); 1322 1323 panic_on_rcu_stall(); 1324 1325 rcu_force_quiescent_state(); /* Kick them all. */ 1326 } 1327 1328 static void print_cpu_stall(void) 1329 { 1330 int cpu; 1331 unsigned long flags; 1332 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1333 struct rcu_node *rnp = rcu_get_root(); 1334 long totqlen = 0; 1335 1336 /* Kick and suppress, if so configured. */ 1337 rcu_stall_kick_kthreads(); 1338 if (rcu_cpu_stall_suppress) 1339 return; 1340 1341 /* 1342 * OK, time to rat on ourselves... 1343 * See Documentation/RCU/stallwarn.txt for info on how to debug 1344 * RCU CPU stall warnings. 1345 */ 1346 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name); 1347 print_cpu_stall_info_begin(); 1348 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1349 print_cpu_stall_info(smp_processor_id()); 1350 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1351 print_cpu_stall_info_end(); 1352 for_each_possible_cpu(cpu) 1353 totqlen += rcu_get_n_cbs_cpu(cpu); 1354 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1355 jiffies - rcu_state.gp_start, 1356 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1357 1358 rcu_check_gp_kthread_starvation(); 1359 1360 rcu_dump_cpu_stacks(); 1361 1362 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1363 /* Rewrite if needed in case of slow consoles. */ 1364 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1365 WRITE_ONCE(rcu_state.jiffies_stall, 1366 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1367 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1368 1369 panic_on_rcu_stall(); 1370 1371 /* 1372 * Attempt to revive the RCU machinery by forcing a context switch. 1373 * 1374 * A context switch would normally allow the RCU state machine to make 1375 * progress and it could be we're stuck in kernel space without context 1376 * switches for an entirely unreasonable amount of time. 1377 */ 1378 set_tsk_need_resched(current); 1379 set_preempt_need_resched(); 1380 } 1381 1382 static void check_cpu_stall(struct rcu_data *rdp) 1383 { 1384 unsigned long gs1; 1385 unsigned long gs2; 1386 unsigned long gps; 1387 unsigned long j; 1388 unsigned long jn; 1389 unsigned long js; 1390 struct rcu_node *rnp; 1391 1392 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1393 !rcu_gp_in_progress()) 1394 return; 1395 rcu_stall_kick_kthreads(); 1396 j = jiffies; 1397 1398 /* 1399 * Lots of memory barriers to reject false positives. 1400 * 1401 * The idea is to pick up rcu_state.gp_seq, then 1402 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally 1403 * another copy of rcu_state.gp_seq. These values are updated in 1404 * the opposite order with memory barriers (or equivalent) during 1405 * grace-period initialization and cleanup. Now, a false positive 1406 * can occur if we get an new value of rcu_state.gp_start and a old 1407 * value of rcu_state.jiffies_stall. But given the memory barriers, 1408 * the only way that this can happen is if one grace period ends 1409 * and another starts between these two fetches. This is detected 1410 * by comparing the second fetch of rcu_state.gp_seq with the 1411 * previous fetch from rcu_state.gp_seq. 1412 * 1413 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall, 1414 * and rcu_state.gp_start suffice to forestall false positives. 1415 */ 1416 gs1 = READ_ONCE(rcu_state.gp_seq); 1417 smp_rmb(); /* Pick up ->gp_seq first... */ 1418 js = READ_ONCE(rcu_state.jiffies_stall); 1419 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1420 gps = READ_ONCE(rcu_state.gp_start); 1421 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1422 gs2 = READ_ONCE(rcu_state.gp_seq); 1423 if (gs1 != gs2 || 1424 ULONG_CMP_LT(j, js) || 1425 ULONG_CMP_GE(gps, js)) 1426 return; /* No stall or GP completed since entering function. */ 1427 rnp = rdp->mynode; 1428 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1429 if (rcu_gp_in_progress() && 1430 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1431 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1432 1433 /* We haven't checked in, so go dump stack. */ 1434 print_cpu_stall(); 1435 1436 } else if (rcu_gp_in_progress() && 1437 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1438 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1439 1440 /* They had a few time units to dump stack, so complain. */ 1441 print_other_cpu_stall(gs2); 1442 } 1443 } 1444 1445 /** 1446 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1447 * 1448 * Set the stall-warning timeout way off into the future, thus preventing 1449 * any RCU CPU stall-warning messages from appearing in the current set of 1450 * RCU grace periods. 1451 * 1452 * The caller must disable hard irqs. 1453 */ 1454 void rcu_cpu_stall_reset(void) 1455 { 1456 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2); 1457 } 1458 1459 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1460 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1461 unsigned long gp_seq_req, const char *s) 1462 { 1463 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1464 rnp->level, rnp->grplo, rnp->grphi, s); 1465 } 1466 1467 /* 1468 * rcu_start_this_gp - Request the start of a particular grace period 1469 * @rnp_start: The leaf node of the CPU from which to start. 1470 * @rdp: The rcu_data corresponding to the CPU from which to start. 1471 * @gp_seq_req: The gp_seq of the grace period to start. 1472 * 1473 * Start the specified grace period, as needed to handle newly arrived 1474 * callbacks. The required future grace periods are recorded in each 1475 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1476 * is reason to awaken the grace-period kthread. 1477 * 1478 * The caller must hold the specified rcu_node structure's ->lock, which 1479 * is why the caller is responsible for waking the grace-period kthread. 1480 * 1481 * Returns true if the GP thread needs to be awakened else false. 1482 */ 1483 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1484 unsigned long gp_seq_req) 1485 { 1486 bool ret = false; 1487 struct rcu_node *rnp; 1488 1489 /* 1490 * Use funnel locking to either acquire the root rcu_node 1491 * structure's lock or bail out if the need for this grace period 1492 * has already been recorded -- or if that grace period has in 1493 * fact already started. If there is already a grace period in 1494 * progress in a non-leaf node, no recording is needed because the 1495 * end of the grace period will scan the leaf rcu_node structures. 1496 * Note that rnp_start->lock must not be released. 1497 */ 1498 raw_lockdep_assert_held_rcu_node(rnp_start); 1499 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1500 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1501 if (rnp != rnp_start) 1502 raw_spin_lock_rcu_node(rnp); 1503 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1504 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1505 (rnp != rnp_start && 1506 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1507 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1508 TPS("Prestarted")); 1509 goto unlock_out; 1510 } 1511 rnp->gp_seq_needed = gp_seq_req; 1512 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1513 /* 1514 * We just marked the leaf or internal node, and a 1515 * grace period is in progress, which means that 1516 * rcu_gp_cleanup() will see the marking. Bail to 1517 * reduce contention. 1518 */ 1519 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1520 TPS("Startedleaf")); 1521 goto unlock_out; 1522 } 1523 if (rnp != rnp_start && rnp->parent != NULL) 1524 raw_spin_unlock_rcu_node(rnp); 1525 if (!rnp->parent) 1526 break; /* At root, and perhaps also leaf. */ 1527 } 1528 1529 /* If GP already in progress, just leave, otherwise start one. */ 1530 if (rcu_gp_in_progress()) { 1531 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1532 goto unlock_out; 1533 } 1534 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1535 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1536 rcu_state.gp_req_activity = jiffies; 1537 if (!rcu_state.gp_kthread) { 1538 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1539 goto unlock_out; 1540 } 1541 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1542 ret = true; /* Caller must wake GP kthread. */ 1543 unlock_out: 1544 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1545 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1546 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1547 rdp->gp_seq_needed = rnp->gp_seq_needed; 1548 } 1549 if (rnp != rnp_start) 1550 raw_spin_unlock_rcu_node(rnp); 1551 return ret; 1552 } 1553 1554 /* 1555 * Clean up any old requests for the just-ended grace period. Also return 1556 * whether any additional grace periods have been requested. 1557 */ 1558 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1559 { 1560 bool needmore; 1561 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1562 1563 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1564 if (!needmore) 1565 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1566 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1567 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1568 return needmore; 1569 } 1570 1571 /* 1572 * Awaken the grace-period kthread. Don't do a self-awaken (unless in 1573 * an interrupt or softirq handler), and don't bother awakening when there 1574 * is nothing for the grace-period kthread to do (as in several CPUs raced 1575 * to awaken, and we lost), and finally don't try to awaken a kthread that 1576 * has not yet been created. If all those checks are passed, track some 1577 * debug information and awaken. 1578 * 1579 * So why do the self-wakeup when in an interrupt or softirq handler 1580 * in the grace-period kthread's context? Because the kthread might have 1581 * been interrupted just as it was going to sleep, and just after the final 1582 * pre-sleep check of the awaken condition. In this case, a wakeup really 1583 * is required, and is therefore supplied. 1584 */ 1585 static void rcu_gp_kthread_wake(void) 1586 { 1587 if ((current == rcu_state.gp_kthread && 1588 !in_interrupt() && !in_serving_softirq()) || 1589 !READ_ONCE(rcu_state.gp_flags) || 1590 !rcu_state.gp_kthread) 1591 return; 1592 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1593 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1594 swake_up_one(&rcu_state.gp_wq); 1595 } 1596 1597 /* 1598 * If there is room, assign a ->gp_seq number to any callbacks on this 1599 * CPU that have not already been assigned. Also accelerate any callbacks 1600 * that were previously assigned a ->gp_seq number that has since proven 1601 * to be too conservative, which can happen if callbacks get assigned a 1602 * ->gp_seq number while RCU is idle, but with reference to a non-root 1603 * rcu_node structure. This function is idempotent, so it does not hurt 1604 * to call it repeatedly. Returns an flag saying that we should awaken 1605 * the RCU grace-period kthread. 1606 * 1607 * The caller must hold rnp->lock with interrupts disabled. 1608 */ 1609 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1610 { 1611 unsigned long gp_seq_req; 1612 bool ret = false; 1613 1614 raw_lockdep_assert_held_rcu_node(rnp); 1615 1616 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1617 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1618 return false; 1619 1620 /* 1621 * Callbacks are often registered with incomplete grace-period 1622 * information. Something about the fact that getting exact 1623 * information requires acquiring a global lock... RCU therefore 1624 * makes a conservative estimate of the grace period number at which 1625 * a given callback will become ready to invoke. The following 1626 * code checks this estimate and improves it when possible, thus 1627 * accelerating callback invocation to an earlier grace-period 1628 * number. 1629 */ 1630 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1631 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1632 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1633 1634 /* Trace depending on how much we were able to accelerate. */ 1635 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1636 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1637 else 1638 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1639 return ret; 1640 } 1641 1642 /* 1643 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1644 * rcu_node structure's ->lock be held. It consults the cached value 1645 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1646 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1647 * while holding the leaf rcu_node structure's ->lock. 1648 */ 1649 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1650 struct rcu_data *rdp) 1651 { 1652 unsigned long c; 1653 bool needwake; 1654 1655 lockdep_assert_irqs_disabled(); 1656 c = rcu_seq_snap(&rcu_state.gp_seq); 1657 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1658 /* Old request still live, so mark recent callbacks. */ 1659 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1660 return; 1661 } 1662 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1663 needwake = rcu_accelerate_cbs(rnp, rdp); 1664 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1665 if (needwake) 1666 rcu_gp_kthread_wake(); 1667 } 1668 1669 /* 1670 * Move any callbacks whose grace period has completed to the 1671 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1672 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1673 * sublist. This function is idempotent, so it does not hurt to 1674 * invoke it repeatedly. As long as it is not invoked -too- often... 1675 * Returns true if the RCU grace-period kthread needs to be awakened. 1676 * 1677 * The caller must hold rnp->lock with interrupts disabled. 1678 */ 1679 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1680 { 1681 raw_lockdep_assert_held_rcu_node(rnp); 1682 1683 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1684 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1685 return false; 1686 1687 /* 1688 * Find all callbacks whose ->gp_seq numbers indicate that they 1689 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1690 */ 1691 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1692 1693 /* Classify any remaining callbacks. */ 1694 return rcu_accelerate_cbs(rnp, rdp); 1695 } 1696 1697 /* 1698 * Update CPU-local rcu_data state to record the beginnings and ends of 1699 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1700 * structure corresponding to the current CPU, and must have irqs disabled. 1701 * Returns true if the grace-period kthread needs to be awakened. 1702 */ 1703 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1704 { 1705 bool ret; 1706 bool need_gp; 1707 1708 raw_lockdep_assert_held_rcu_node(rnp); 1709 1710 if (rdp->gp_seq == rnp->gp_seq) 1711 return false; /* Nothing to do. */ 1712 1713 /* Handle the ends of any preceding grace periods first. */ 1714 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1715 unlikely(READ_ONCE(rdp->gpwrap))) { 1716 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1717 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1718 } else { 1719 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1720 } 1721 1722 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1723 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1724 unlikely(READ_ONCE(rdp->gpwrap))) { 1725 /* 1726 * If the current grace period is waiting for this CPU, 1727 * set up to detect a quiescent state, otherwise don't 1728 * go looking for one. 1729 */ 1730 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1731 need_gp = !!(rnp->qsmask & rdp->grpmask); 1732 rdp->cpu_no_qs.b.norm = need_gp; 1733 rdp->core_needs_qs = need_gp; 1734 zero_cpu_stall_ticks(rdp); 1735 } 1736 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1737 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1738 rdp->gp_seq_needed = rnp->gp_seq_needed; 1739 WRITE_ONCE(rdp->gpwrap, false); 1740 rcu_gpnum_ovf(rnp, rdp); 1741 return ret; 1742 } 1743 1744 static void note_gp_changes(struct rcu_data *rdp) 1745 { 1746 unsigned long flags; 1747 bool needwake; 1748 struct rcu_node *rnp; 1749 1750 local_irq_save(flags); 1751 rnp = rdp->mynode; 1752 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1753 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1754 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1755 local_irq_restore(flags); 1756 return; 1757 } 1758 needwake = __note_gp_changes(rnp, rdp); 1759 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1760 if (needwake) 1761 rcu_gp_kthread_wake(); 1762 } 1763 1764 static void rcu_gp_slow(int delay) 1765 { 1766 if (delay > 0 && 1767 !(rcu_seq_ctr(rcu_state.gp_seq) % 1768 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1769 schedule_timeout_uninterruptible(delay); 1770 } 1771 1772 /* 1773 * Initialize a new grace period. Return false if no grace period required. 1774 */ 1775 static bool rcu_gp_init(void) 1776 { 1777 unsigned long flags; 1778 unsigned long oldmask; 1779 unsigned long mask; 1780 struct rcu_data *rdp; 1781 struct rcu_node *rnp = rcu_get_root(); 1782 1783 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1784 raw_spin_lock_irq_rcu_node(rnp); 1785 if (!READ_ONCE(rcu_state.gp_flags)) { 1786 /* Spurious wakeup, tell caller to go back to sleep. */ 1787 raw_spin_unlock_irq_rcu_node(rnp); 1788 return false; 1789 } 1790 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1791 1792 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1793 /* 1794 * Grace period already in progress, don't start another. 1795 * Not supposed to be able to happen. 1796 */ 1797 raw_spin_unlock_irq_rcu_node(rnp); 1798 return false; 1799 } 1800 1801 /* Advance to a new grace period and initialize state. */ 1802 record_gp_stall_check_time(); 1803 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1804 rcu_seq_start(&rcu_state.gp_seq); 1805 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1806 raw_spin_unlock_irq_rcu_node(rnp); 1807 1808 /* 1809 * Apply per-leaf buffered online and offline operations to the 1810 * rcu_node tree. Note that this new grace period need not wait 1811 * for subsequent online CPUs, and that quiescent-state forcing 1812 * will handle subsequent offline CPUs. 1813 */ 1814 rcu_state.gp_state = RCU_GP_ONOFF; 1815 rcu_for_each_leaf_node(rnp) { 1816 raw_spin_lock(&rcu_state.ofl_lock); 1817 raw_spin_lock_irq_rcu_node(rnp); 1818 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1819 !rnp->wait_blkd_tasks) { 1820 /* Nothing to do on this leaf rcu_node structure. */ 1821 raw_spin_unlock_irq_rcu_node(rnp); 1822 raw_spin_unlock(&rcu_state.ofl_lock); 1823 continue; 1824 } 1825 1826 /* Record old state, apply changes to ->qsmaskinit field. */ 1827 oldmask = rnp->qsmaskinit; 1828 rnp->qsmaskinit = rnp->qsmaskinitnext; 1829 1830 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1831 if (!oldmask != !rnp->qsmaskinit) { 1832 if (!oldmask) { /* First online CPU for rcu_node. */ 1833 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1834 rcu_init_new_rnp(rnp); 1835 } else if (rcu_preempt_has_tasks(rnp)) { 1836 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1837 } else { /* Last offline CPU and can propagate. */ 1838 rcu_cleanup_dead_rnp(rnp); 1839 } 1840 } 1841 1842 /* 1843 * If all waited-on tasks from prior grace period are 1844 * done, and if all this rcu_node structure's CPUs are 1845 * still offline, propagate up the rcu_node tree and 1846 * clear ->wait_blkd_tasks. Otherwise, if one of this 1847 * rcu_node structure's CPUs has since come back online, 1848 * simply clear ->wait_blkd_tasks. 1849 */ 1850 if (rnp->wait_blkd_tasks && 1851 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1852 rnp->wait_blkd_tasks = false; 1853 if (!rnp->qsmaskinit) 1854 rcu_cleanup_dead_rnp(rnp); 1855 } 1856 1857 raw_spin_unlock_irq_rcu_node(rnp); 1858 raw_spin_unlock(&rcu_state.ofl_lock); 1859 } 1860 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1861 1862 /* 1863 * Set the quiescent-state-needed bits in all the rcu_node 1864 * structures for all currently online CPUs in breadth-first 1865 * order, starting from the root rcu_node structure, relying on the 1866 * layout of the tree within the rcu_state.node[] array. Note that 1867 * other CPUs will access only the leaves of the hierarchy, thus 1868 * seeing that no grace period is in progress, at least until the 1869 * corresponding leaf node has been initialized. 1870 * 1871 * The grace period cannot complete until the initialization 1872 * process finishes, because this kthread handles both. 1873 */ 1874 rcu_state.gp_state = RCU_GP_INIT; 1875 rcu_for_each_node_breadth_first(rnp) { 1876 rcu_gp_slow(gp_init_delay); 1877 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1878 rdp = this_cpu_ptr(&rcu_data); 1879 rcu_preempt_check_blocked_tasks(rnp); 1880 rnp->qsmask = rnp->qsmaskinit; 1881 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1882 if (rnp == rdp->mynode) 1883 (void)__note_gp_changes(rnp, rdp); 1884 rcu_preempt_boost_start_gp(rnp); 1885 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1886 rnp->level, rnp->grplo, 1887 rnp->grphi, rnp->qsmask); 1888 /* Quiescent states for tasks on any now-offline CPUs. */ 1889 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1890 rnp->rcu_gp_init_mask = mask; 1891 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1892 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1893 else 1894 raw_spin_unlock_irq_rcu_node(rnp); 1895 cond_resched_tasks_rcu_qs(); 1896 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1897 } 1898 1899 return true; 1900 } 1901 1902 /* 1903 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1904 * time. 1905 */ 1906 static bool rcu_gp_fqs_check_wake(int *gfp) 1907 { 1908 struct rcu_node *rnp = rcu_get_root(); 1909 1910 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1911 *gfp = READ_ONCE(rcu_state.gp_flags); 1912 if (*gfp & RCU_GP_FLAG_FQS) 1913 return true; 1914 1915 /* The current grace period has completed. */ 1916 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1917 return true; 1918 1919 return false; 1920 } 1921 1922 /* 1923 * Do one round of quiescent-state forcing. 1924 */ 1925 static void rcu_gp_fqs(bool first_time) 1926 { 1927 struct rcu_node *rnp = rcu_get_root(); 1928 1929 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1930 rcu_state.n_force_qs++; 1931 if (first_time) { 1932 /* Collect dyntick-idle snapshots. */ 1933 force_qs_rnp(dyntick_save_progress_counter); 1934 } else { 1935 /* Handle dyntick-idle and offline CPUs. */ 1936 force_qs_rnp(rcu_implicit_dynticks_qs); 1937 } 1938 /* Clear flag to prevent immediate re-entry. */ 1939 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1940 raw_spin_lock_irq_rcu_node(rnp); 1941 WRITE_ONCE(rcu_state.gp_flags, 1942 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1943 raw_spin_unlock_irq_rcu_node(rnp); 1944 } 1945 } 1946 1947 /* 1948 * Loop doing repeated quiescent-state forcing until the grace period ends. 1949 */ 1950 static void rcu_gp_fqs_loop(void) 1951 { 1952 bool first_gp_fqs; 1953 int gf; 1954 unsigned long j; 1955 int ret; 1956 struct rcu_node *rnp = rcu_get_root(); 1957 1958 first_gp_fqs = true; 1959 j = READ_ONCE(jiffies_till_first_fqs); 1960 ret = 0; 1961 for (;;) { 1962 if (!ret) { 1963 rcu_state.jiffies_force_qs = jiffies + j; 1964 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1965 jiffies + (j ? 3 * j : 2)); 1966 } 1967 trace_rcu_grace_period(rcu_state.name, 1968 READ_ONCE(rcu_state.gp_seq), 1969 TPS("fqswait")); 1970 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1971 ret = swait_event_idle_timeout_exclusive( 1972 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1973 rcu_state.gp_state = RCU_GP_DOING_FQS; 1974 /* Locking provides needed memory barriers. */ 1975 /* If grace period done, leave loop. */ 1976 if (!READ_ONCE(rnp->qsmask) && 1977 !rcu_preempt_blocked_readers_cgp(rnp)) 1978 break; 1979 /* If time for quiescent-state forcing, do it. */ 1980 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1981 (gf & RCU_GP_FLAG_FQS)) { 1982 trace_rcu_grace_period(rcu_state.name, 1983 READ_ONCE(rcu_state.gp_seq), 1984 TPS("fqsstart")); 1985 rcu_gp_fqs(first_gp_fqs); 1986 first_gp_fqs = false; 1987 trace_rcu_grace_period(rcu_state.name, 1988 READ_ONCE(rcu_state.gp_seq), 1989 TPS("fqsend")); 1990 cond_resched_tasks_rcu_qs(); 1991 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1992 ret = 0; /* Force full wait till next FQS. */ 1993 j = READ_ONCE(jiffies_till_next_fqs); 1994 } else { 1995 /* Deal with stray signal. */ 1996 cond_resched_tasks_rcu_qs(); 1997 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1998 WARN_ON(signal_pending(current)); 1999 trace_rcu_grace_period(rcu_state.name, 2000 READ_ONCE(rcu_state.gp_seq), 2001 TPS("fqswaitsig")); 2002 ret = 1; /* Keep old FQS timing. */ 2003 j = jiffies; 2004 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2005 j = 1; 2006 else 2007 j = rcu_state.jiffies_force_qs - j; 2008 } 2009 } 2010 } 2011 2012 /* 2013 * Clean up after the old grace period. 2014 */ 2015 static void rcu_gp_cleanup(void) 2016 { 2017 unsigned long gp_duration; 2018 bool needgp = false; 2019 unsigned long new_gp_seq; 2020 struct rcu_data *rdp; 2021 struct rcu_node *rnp = rcu_get_root(); 2022 struct swait_queue_head *sq; 2023 2024 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2025 raw_spin_lock_irq_rcu_node(rnp); 2026 rcu_state.gp_end = jiffies; 2027 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2028 if (gp_duration > rcu_state.gp_max) 2029 rcu_state.gp_max = gp_duration; 2030 2031 /* 2032 * We know the grace period is complete, but to everyone else 2033 * it appears to still be ongoing. But it is also the case 2034 * that to everyone else it looks like there is nothing that 2035 * they can do to advance the grace period. It is therefore 2036 * safe for us to drop the lock in order to mark the grace 2037 * period as completed in all of the rcu_node structures. 2038 */ 2039 raw_spin_unlock_irq_rcu_node(rnp); 2040 2041 /* 2042 * Propagate new ->gp_seq value to rcu_node structures so that 2043 * other CPUs don't have to wait until the start of the next grace 2044 * period to process their callbacks. This also avoids some nasty 2045 * RCU grace-period initialization races by forcing the end of 2046 * the current grace period to be completely recorded in all of 2047 * the rcu_node structures before the beginning of the next grace 2048 * period is recorded in any of the rcu_node structures. 2049 */ 2050 new_gp_seq = rcu_state.gp_seq; 2051 rcu_seq_end(&new_gp_seq); 2052 rcu_for_each_node_breadth_first(rnp) { 2053 raw_spin_lock_irq_rcu_node(rnp); 2054 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2055 dump_blkd_tasks(rnp, 10); 2056 WARN_ON_ONCE(rnp->qsmask); 2057 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2058 rdp = this_cpu_ptr(&rcu_data); 2059 if (rnp == rdp->mynode) 2060 needgp = __note_gp_changes(rnp, rdp) || needgp; 2061 /* smp_mb() provided by prior unlock-lock pair. */ 2062 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2063 sq = rcu_nocb_gp_get(rnp); 2064 raw_spin_unlock_irq_rcu_node(rnp); 2065 rcu_nocb_gp_cleanup(sq); 2066 cond_resched_tasks_rcu_qs(); 2067 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2068 rcu_gp_slow(gp_cleanup_delay); 2069 } 2070 rnp = rcu_get_root(); 2071 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2072 2073 /* Declare grace period done, trace first to use old GP number. */ 2074 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2075 rcu_seq_end(&rcu_state.gp_seq); 2076 rcu_state.gp_state = RCU_GP_IDLE; 2077 /* Check for GP requests since above loop. */ 2078 rdp = this_cpu_ptr(&rcu_data); 2079 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2080 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2081 TPS("CleanupMore")); 2082 needgp = true; 2083 } 2084 /* Advance CBs to reduce false positives below. */ 2085 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 2086 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2087 rcu_state.gp_req_activity = jiffies; 2088 trace_rcu_grace_period(rcu_state.name, 2089 READ_ONCE(rcu_state.gp_seq), 2090 TPS("newreq")); 2091 } else { 2092 WRITE_ONCE(rcu_state.gp_flags, 2093 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2094 } 2095 raw_spin_unlock_irq_rcu_node(rnp); 2096 } 2097 2098 /* 2099 * Body of kthread that handles grace periods. 2100 */ 2101 static int __noreturn rcu_gp_kthread(void *unused) 2102 { 2103 rcu_bind_gp_kthread(); 2104 for (;;) { 2105 2106 /* Handle grace-period start. */ 2107 for (;;) { 2108 trace_rcu_grace_period(rcu_state.name, 2109 READ_ONCE(rcu_state.gp_seq), 2110 TPS("reqwait")); 2111 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2112 swait_event_idle_exclusive(rcu_state.gp_wq, 2113 READ_ONCE(rcu_state.gp_flags) & 2114 RCU_GP_FLAG_INIT); 2115 rcu_state.gp_state = RCU_GP_DONE_GPS; 2116 /* Locking provides needed memory barrier. */ 2117 if (rcu_gp_init()) 2118 break; 2119 cond_resched_tasks_rcu_qs(); 2120 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2121 WARN_ON(signal_pending(current)); 2122 trace_rcu_grace_period(rcu_state.name, 2123 READ_ONCE(rcu_state.gp_seq), 2124 TPS("reqwaitsig")); 2125 } 2126 2127 /* Handle quiescent-state forcing. */ 2128 rcu_gp_fqs_loop(); 2129 2130 /* Handle grace-period end. */ 2131 rcu_state.gp_state = RCU_GP_CLEANUP; 2132 rcu_gp_cleanup(); 2133 rcu_state.gp_state = RCU_GP_CLEANED; 2134 } 2135 } 2136 2137 /* 2138 * Report a full set of quiescent states to the rcu_state data structure. 2139 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2140 * another grace period is required. Whether we wake the grace-period 2141 * kthread or it awakens itself for the next round of quiescent-state 2142 * forcing, that kthread will clean up after the just-completed grace 2143 * period. Note that the caller must hold rnp->lock, which is released 2144 * before return. 2145 */ 2146 static void rcu_report_qs_rsp(unsigned long flags) 2147 __releases(rcu_get_root()->lock) 2148 { 2149 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2150 WARN_ON_ONCE(!rcu_gp_in_progress()); 2151 WRITE_ONCE(rcu_state.gp_flags, 2152 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2153 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2154 rcu_gp_kthread_wake(); 2155 } 2156 2157 /* 2158 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2159 * Allows quiescent states for a group of CPUs to be reported at one go 2160 * to the specified rcu_node structure, though all the CPUs in the group 2161 * must be represented by the same rcu_node structure (which need not be a 2162 * leaf rcu_node structure, though it often will be). The gps parameter 2163 * is the grace-period snapshot, which means that the quiescent states 2164 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2165 * must be held upon entry, and it is released before return. 2166 * 2167 * As a special case, if mask is zero, the bit-already-cleared check is 2168 * disabled. This allows propagating quiescent state due to resumed tasks 2169 * during grace-period initialization. 2170 */ 2171 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2172 unsigned long gps, unsigned long flags) 2173 __releases(rnp->lock) 2174 { 2175 unsigned long oldmask = 0; 2176 struct rcu_node *rnp_c; 2177 2178 raw_lockdep_assert_held_rcu_node(rnp); 2179 2180 /* Walk up the rcu_node hierarchy. */ 2181 for (;;) { 2182 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2183 2184 /* 2185 * Our bit has already been cleared, or the 2186 * relevant grace period is already over, so done. 2187 */ 2188 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2189 return; 2190 } 2191 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2192 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2193 rcu_preempt_blocked_readers_cgp(rnp)); 2194 rnp->qsmask &= ~mask; 2195 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2196 mask, rnp->qsmask, rnp->level, 2197 rnp->grplo, rnp->grphi, 2198 !!rnp->gp_tasks); 2199 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2200 2201 /* Other bits still set at this level, so done. */ 2202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2203 return; 2204 } 2205 rnp->completedqs = rnp->gp_seq; 2206 mask = rnp->grpmask; 2207 if (rnp->parent == NULL) { 2208 2209 /* No more levels. Exit loop holding root lock. */ 2210 2211 break; 2212 } 2213 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2214 rnp_c = rnp; 2215 rnp = rnp->parent; 2216 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2217 oldmask = rnp_c->qsmask; 2218 } 2219 2220 /* 2221 * Get here if we are the last CPU to pass through a quiescent 2222 * state for this grace period. Invoke rcu_report_qs_rsp() 2223 * to clean up and start the next grace period if one is needed. 2224 */ 2225 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2226 } 2227 2228 /* 2229 * Record a quiescent state for all tasks that were previously queued 2230 * on the specified rcu_node structure and that were blocking the current 2231 * RCU grace period. The caller must hold the corresponding rnp->lock with 2232 * irqs disabled, and this lock is released upon return, but irqs remain 2233 * disabled. 2234 */ 2235 static void __maybe_unused 2236 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2237 __releases(rnp->lock) 2238 { 2239 unsigned long gps; 2240 unsigned long mask; 2241 struct rcu_node *rnp_p; 2242 2243 raw_lockdep_assert_held_rcu_node(rnp); 2244 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 2245 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2246 rnp->qsmask != 0) { 2247 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2248 return; /* Still need more quiescent states! */ 2249 } 2250 2251 rnp->completedqs = rnp->gp_seq; 2252 rnp_p = rnp->parent; 2253 if (rnp_p == NULL) { 2254 /* 2255 * Only one rcu_node structure in the tree, so don't 2256 * try to report up to its nonexistent parent! 2257 */ 2258 rcu_report_qs_rsp(flags); 2259 return; 2260 } 2261 2262 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2263 gps = rnp->gp_seq; 2264 mask = rnp->grpmask; 2265 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2266 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2267 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2268 } 2269 2270 /* 2271 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2272 * structure. This must be called from the specified CPU. 2273 */ 2274 static void 2275 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2276 { 2277 unsigned long flags; 2278 unsigned long mask; 2279 bool needwake; 2280 struct rcu_node *rnp; 2281 2282 rnp = rdp->mynode; 2283 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2284 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2285 rdp->gpwrap) { 2286 2287 /* 2288 * The grace period in which this quiescent state was 2289 * recorded has ended, so don't report it upwards. 2290 * We will instead need a new quiescent state that lies 2291 * within the current grace period. 2292 */ 2293 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2294 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2295 return; 2296 } 2297 mask = rdp->grpmask; 2298 if ((rnp->qsmask & mask) == 0) { 2299 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2300 } else { 2301 rdp->core_needs_qs = false; 2302 2303 /* 2304 * This GP can't end until cpu checks in, so all of our 2305 * callbacks can be processed during the next GP. 2306 */ 2307 needwake = rcu_accelerate_cbs(rnp, rdp); 2308 2309 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2310 /* ^^^ Released rnp->lock */ 2311 if (needwake) 2312 rcu_gp_kthread_wake(); 2313 } 2314 } 2315 2316 /* 2317 * Check to see if there is a new grace period of which this CPU 2318 * is not yet aware, and if so, set up local rcu_data state for it. 2319 * Otherwise, see if this CPU has just passed through its first 2320 * quiescent state for this grace period, and record that fact if so. 2321 */ 2322 static void 2323 rcu_check_quiescent_state(struct rcu_data *rdp) 2324 { 2325 /* Check for grace-period ends and beginnings. */ 2326 note_gp_changes(rdp); 2327 2328 /* 2329 * Does this CPU still need to do its part for current grace period? 2330 * If no, return and let the other CPUs do their part as well. 2331 */ 2332 if (!rdp->core_needs_qs) 2333 return; 2334 2335 /* 2336 * Was there a quiescent state since the beginning of the grace 2337 * period? If no, then exit and wait for the next call. 2338 */ 2339 if (rdp->cpu_no_qs.b.norm) 2340 return; 2341 2342 /* 2343 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2344 * judge of that). 2345 */ 2346 rcu_report_qs_rdp(rdp->cpu, rdp); 2347 } 2348 2349 /* 2350 * Near the end of the offline process. Trace the fact that this CPU 2351 * is going offline. 2352 */ 2353 int rcutree_dying_cpu(unsigned int cpu) 2354 { 2355 RCU_TRACE(bool blkd;) 2356 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);) 2357 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2358 2359 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2360 return 0; 2361 2362 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2363 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2364 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2365 return 0; 2366 } 2367 2368 /* 2369 * All CPUs for the specified rcu_node structure have gone offline, 2370 * and all tasks that were preempted within an RCU read-side critical 2371 * section while running on one of those CPUs have since exited their RCU 2372 * read-side critical section. Some other CPU is reporting this fact with 2373 * the specified rcu_node structure's ->lock held and interrupts disabled. 2374 * This function therefore goes up the tree of rcu_node structures, 2375 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2376 * the leaf rcu_node structure's ->qsmaskinit field has already been 2377 * updated. 2378 * 2379 * This function does check that the specified rcu_node structure has 2380 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2381 * prematurely. That said, invoking it after the fact will cost you 2382 * a needless lock acquisition. So once it has done its work, don't 2383 * invoke it again. 2384 */ 2385 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2386 { 2387 long mask; 2388 struct rcu_node *rnp = rnp_leaf; 2389 2390 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2391 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2392 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2393 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2394 return; 2395 for (;;) { 2396 mask = rnp->grpmask; 2397 rnp = rnp->parent; 2398 if (!rnp) 2399 break; 2400 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2401 rnp->qsmaskinit &= ~mask; 2402 /* Between grace periods, so better already be zero! */ 2403 WARN_ON_ONCE(rnp->qsmask); 2404 if (rnp->qsmaskinit) { 2405 raw_spin_unlock_rcu_node(rnp); 2406 /* irqs remain disabled. */ 2407 return; 2408 } 2409 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2410 } 2411 } 2412 2413 /* 2414 * The CPU has been completely removed, and some other CPU is reporting 2415 * this fact from process context. Do the remainder of the cleanup. 2416 * There can only be one CPU hotplug operation at a time, so no need for 2417 * explicit locking. 2418 */ 2419 int rcutree_dead_cpu(unsigned int cpu) 2420 { 2421 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2422 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2423 2424 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2425 return 0; 2426 2427 /* Adjust any no-longer-needed kthreads. */ 2428 rcu_boost_kthread_setaffinity(rnp, -1); 2429 /* Do any needed no-CB deferred wakeups from this CPU. */ 2430 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2431 return 0; 2432 } 2433 2434 /* 2435 * Invoke any RCU callbacks that have made it to the end of their grace 2436 * period. Thottle as specified by rdp->blimit. 2437 */ 2438 static void rcu_do_batch(struct rcu_data *rdp) 2439 { 2440 unsigned long flags; 2441 struct rcu_head *rhp; 2442 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2443 long bl, count; 2444 2445 /* If no callbacks are ready, just return. */ 2446 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2447 trace_rcu_batch_start(rcu_state.name, 2448 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2449 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2450 trace_rcu_batch_end(rcu_state.name, 0, 2451 !rcu_segcblist_empty(&rdp->cblist), 2452 need_resched(), is_idle_task(current), 2453 rcu_is_callbacks_kthread()); 2454 return; 2455 } 2456 2457 /* 2458 * Extract the list of ready callbacks, disabling to prevent 2459 * races with call_rcu() from interrupt handlers. Leave the 2460 * callback counts, as rcu_barrier() needs to be conservative. 2461 */ 2462 local_irq_save(flags); 2463 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2464 bl = rdp->blimit; 2465 trace_rcu_batch_start(rcu_state.name, 2466 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2467 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2468 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2469 local_irq_restore(flags); 2470 2471 /* Invoke callbacks. */ 2472 rhp = rcu_cblist_dequeue(&rcl); 2473 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2474 debug_rcu_head_unqueue(rhp); 2475 if (__rcu_reclaim(rcu_state.name, rhp)) 2476 rcu_cblist_dequeued_lazy(&rcl); 2477 /* 2478 * Stop only if limit reached and CPU has something to do. 2479 * Note: The rcl structure counts down from zero. 2480 */ 2481 if (-rcl.len >= bl && 2482 (need_resched() || 2483 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2484 break; 2485 } 2486 2487 local_irq_save(flags); 2488 count = -rcl.len; 2489 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2490 is_idle_task(current), rcu_is_callbacks_kthread()); 2491 2492 /* Update counts and requeue any remaining callbacks. */ 2493 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2494 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2495 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2496 2497 /* Reinstate batch limit if we have worked down the excess. */ 2498 count = rcu_segcblist_n_cbs(&rdp->cblist); 2499 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2500 rdp->blimit = blimit; 2501 2502 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2503 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2504 rdp->qlen_last_fqs_check = 0; 2505 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2506 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2507 rdp->qlen_last_fqs_check = count; 2508 2509 /* 2510 * The following usually indicates a double call_rcu(). To track 2511 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2512 */ 2513 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2514 2515 local_irq_restore(flags); 2516 2517 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2518 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2519 invoke_rcu_core(); 2520 } 2521 2522 /* 2523 * This function is invoked from each scheduling-clock interrupt, 2524 * and checks to see if this CPU is in a non-context-switch quiescent 2525 * state, for example, user mode or idle loop. It also schedules RCU 2526 * core processing. If the current grace period has gone on too long, 2527 * it will ask the scheduler to manufacture a context switch for the sole 2528 * purpose of providing a providing the needed quiescent state. 2529 */ 2530 void rcu_sched_clock_irq(int user) 2531 { 2532 trace_rcu_utilization(TPS("Start scheduler-tick")); 2533 raw_cpu_inc(rcu_data.ticks_this_gp); 2534 /* The load-acquire pairs with the store-release setting to true. */ 2535 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2536 /* Idle and userspace execution already are quiescent states. */ 2537 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2538 set_tsk_need_resched(current); 2539 set_preempt_need_resched(); 2540 } 2541 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2542 } 2543 rcu_flavor_sched_clock_irq(user); 2544 if (rcu_pending()) 2545 invoke_rcu_core(); 2546 2547 trace_rcu_utilization(TPS("End scheduler-tick")); 2548 } 2549 2550 /* 2551 * Scan the leaf rcu_node structures, processing dyntick state for any that 2552 * have not yet encountered a quiescent state, using the function specified. 2553 * Also initiate boosting for any threads blocked on the root rcu_node. 2554 * 2555 * The caller must have suppressed start of new grace periods. 2556 */ 2557 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2558 { 2559 int cpu; 2560 unsigned long flags; 2561 unsigned long mask; 2562 struct rcu_node *rnp; 2563 2564 rcu_for_each_leaf_node(rnp) { 2565 cond_resched_tasks_rcu_qs(); 2566 mask = 0; 2567 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2568 if (rnp->qsmask == 0) { 2569 if (!IS_ENABLED(CONFIG_PREEMPT) || 2570 rcu_preempt_blocked_readers_cgp(rnp)) { 2571 /* 2572 * No point in scanning bits because they 2573 * are all zero. But we might need to 2574 * priority-boost blocked readers. 2575 */ 2576 rcu_initiate_boost(rnp, flags); 2577 /* rcu_initiate_boost() releases rnp->lock */ 2578 continue; 2579 } 2580 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2581 continue; 2582 } 2583 for_each_leaf_node_possible_cpu(rnp, cpu) { 2584 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2585 if ((rnp->qsmask & bit) != 0) { 2586 if (f(per_cpu_ptr(&rcu_data, cpu))) 2587 mask |= bit; 2588 } 2589 } 2590 if (mask != 0) { 2591 /* Idle/offline CPUs, report (releases rnp->lock). */ 2592 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2593 } else { 2594 /* Nothing to do here, so just drop the lock. */ 2595 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2596 } 2597 } 2598 } 2599 2600 /* 2601 * Force quiescent states on reluctant CPUs, and also detect which 2602 * CPUs are in dyntick-idle mode. 2603 */ 2604 void rcu_force_quiescent_state(void) 2605 { 2606 unsigned long flags; 2607 bool ret; 2608 struct rcu_node *rnp; 2609 struct rcu_node *rnp_old = NULL; 2610 2611 /* Funnel through hierarchy to reduce memory contention. */ 2612 rnp = __this_cpu_read(rcu_data.mynode); 2613 for (; rnp != NULL; rnp = rnp->parent) { 2614 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2615 !raw_spin_trylock(&rnp->fqslock); 2616 if (rnp_old != NULL) 2617 raw_spin_unlock(&rnp_old->fqslock); 2618 if (ret) 2619 return; 2620 rnp_old = rnp; 2621 } 2622 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2623 2624 /* Reached the root of the rcu_node tree, acquire lock. */ 2625 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2626 raw_spin_unlock(&rnp_old->fqslock); 2627 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2628 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2629 return; /* Someone beat us to it. */ 2630 } 2631 WRITE_ONCE(rcu_state.gp_flags, 2632 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2633 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2634 rcu_gp_kthread_wake(); 2635 } 2636 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2637 2638 /* 2639 * This function checks for grace-period requests that fail to motivate 2640 * RCU to come out of its idle mode. 2641 */ 2642 void 2643 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp, 2644 const unsigned long gpssdelay) 2645 { 2646 unsigned long flags; 2647 unsigned long j; 2648 struct rcu_node *rnp_root = rcu_get_root(); 2649 static atomic_t warned = ATOMIC_INIT(0); 2650 2651 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() || 2652 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2653 return; 2654 j = jiffies; /* Expensive access, and in common case don't get here. */ 2655 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2656 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2657 atomic_read(&warned)) 2658 return; 2659 2660 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2661 j = jiffies; 2662 if (rcu_gp_in_progress() || 2663 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2664 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2665 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2666 atomic_read(&warned)) { 2667 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2668 return; 2669 } 2670 /* Hold onto the leaf lock to make others see warned==1. */ 2671 2672 if (rnp_root != rnp) 2673 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2674 j = jiffies; 2675 if (rcu_gp_in_progress() || 2676 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2677 time_before(j, rcu_state.gp_req_activity + gpssdelay) || 2678 time_before(j, rcu_state.gp_activity + gpssdelay) || 2679 atomic_xchg(&warned, 1)) { 2680 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2681 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2682 return; 2683 } 2684 WARN_ON(1); 2685 if (rnp_root != rnp) 2686 raw_spin_unlock_rcu_node(rnp_root); 2687 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2688 show_rcu_gp_kthreads(); 2689 } 2690 2691 /* 2692 * Do a forward-progress check for rcutorture. This is normally invoked 2693 * due to an OOM event. The argument "j" gives the time period during 2694 * which rcutorture would like progress to have been made. 2695 */ 2696 void rcu_fwd_progress_check(unsigned long j) 2697 { 2698 unsigned long cbs; 2699 int cpu; 2700 unsigned long max_cbs = 0; 2701 int max_cpu = -1; 2702 struct rcu_data *rdp; 2703 2704 if (rcu_gp_in_progress()) { 2705 pr_info("%s: GP age %lu jiffies\n", 2706 __func__, jiffies - rcu_state.gp_start); 2707 show_rcu_gp_kthreads(); 2708 } else { 2709 pr_info("%s: Last GP end %lu jiffies ago\n", 2710 __func__, jiffies - rcu_state.gp_end); 2711 preempt_disable(); 2712 rdp = this_cpu_ptr(&rcu_data); 2713 rcu_check_gp_start_stall(rdp->mynode, rdp, j); 2714 preempt_enable(); 2715 } 2716 for_each_possible_cpu(cpu) { 2717 cbs = rcu_get_n_cbs_cpu(cpu); 2718 if (!cbs) 2719 continue; 2720 if (max_cpu < 0) 2721 pr_info("%s: callbacks", __func__); 2722 pr_cont(" %d: %lu", cpu, cbs); 2723 if (cbs <= max_cbs) 2724 continue; 2725 max_cbs = cbs; 2726 max_cpu = cpu; 2727 } 2728 if (max_cpu >= 0) 2729 pr_cont("\n"); 2730 } 2731 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check); 2732 2733 /* Perform RCU core processing work for the current CPU. */ 2734 static __latent_entropy void rcu_core(struct softirq_action *unused) 2735 { 2736 unsigned long flags; 2737 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2738 struct rcu_node *rnp = rdp->mynode; 2739 2740 if (cpu_is_offline(smp_processor_id())) 2741 return; 2742 trace_rcu_utilization(TPS("Start RCU core")); 2743 WARN_ON_ONCE(!rdp->beenonline); 2744 2745 /* Report any deferred quiescent states if preemption enabled. */ 2746 if (!(preempt_count() & PREEMPT_MASK)) { 2747 rcu_preempt_deferred_qs(current); 2748 } else if (rcu_preempt_need_deferred_qs(current)) { 2749 set_tsk_need_resched(current); 2750 set_preempt_need_resched(); 2751 } 2752 2753 /* Update RCU state based on any recent quiescent states. */ 2754 rcu_check_quiescent_state(rdp); 2755 2756 /* No grace period and unregistered callbacks? */ 2757 if (!rcu_gp_in_progress() && 2758 rcu_segcblist_is_enabled(&rdp->cblist)) { 2759 local_irq_save(flags); 2760 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2761 rcu_accelerate_cbs_unlocked(rnp, rdp); 2762 local_irq_restore(flags); 2763 } 2764 2765 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2766 2767 /* If there are callbacks ready, invoke them. */ 2768 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2769 invoke_rcu_callbacks(rdp); 2770 2771 /* Do any needed deferred wakeups of rcuo kthreads. */ 2772 do_nocb_deferred_wakeup(rdp); 2773 trace_rcu_utilization(TPS("End RCU core")); 2774 } 2775 2776 /* 2777 * Schedule RCU callback invocation. If the running implementation of RCU 2778 * does not support RCU priority boosting, just do a direct call, otherwise 2779 * wake up the per-CPU kernel kthread. Note that because we are running 2780 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task 2781 * cannot disappear out from under us. 2782 */ 2783 static void invoke_rcu_callbacks(struct rcu_data *rdp) 2784 { 2785 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2786 return; 2787 if (likely(!rcu_state.boost)) { 2788 rcu_do_batch(rdp); 2789 return; 2790 } 2791 invoke_rcu_callbacks_kthread(); 2792 } 2793 2794 static void invoke_rcu_core(void) 2795 { 2796 if (cpu_online(smp_processor_id())) 2797 raise_softirq(RCU_SOFTIRQ); 2798 } 2799 2800 /* 2801 * Handle any core-RCU processing required by a call_rcu() invocation. 2802 */ 2803 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2804 unsigned long flags) 2805 { 2806 /* 2807 * If called from an extended quiescent state, invoke the RCU 2808 * core in order to force a re-evaluation of RCU's idleness. 2809 */ 2810 if (!rcu_is_watching()) 2811 invoke_rcu_core(); 2812 2813 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2814 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2815 return; 2816 2817 /* 2818 * Force the grace period if too many callbacks or too long waiting. 2819 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2820 * if some other CPU has recently done so. Also, don't bother 2821 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2822 * is the only one waiting for a grace period to complete. 2823 */ 2824 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2825 rdp->qlen_last_fqs_check + qhimark)) { 2826 2827 /* Are we ignoring a completed grace period? */ 2828 note_gp_changes(rdp); 2829 2830 /* Start a new grace period if one not already started. */ 2831 if (!rcu_gp_in_progress()) { 2832 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2833 } else { 2834 /* Give the grace period a kick. */ 2835 rdp->blimit = LONG_MAX; 2836 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2837 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2838 rcu_force_quiescent_state(); 2839 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2840 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2841 } 2842 } 2843 } 2844 2845 /* 2846 * RCU callback function to leak a callback. 2847 */ 2848 static void rcu_leak_callback(struct rcu_head *rhp) 2849 { 2850 } 2851 2852 /* 2853 * Helper function for call_rcu() and friends. The cpu argument will 2854 * normally be -1, indicating "currently running CPU". It may specify 2855 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2856 * is expected to specify a CPU. 2857 */ 2858 static void 2859 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2860 { 2861 unsigned long flags; 2862 struct rcu_data *rdp; 2863 2864 /* Misaligned rcu_head! */ 2865 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2866 2867 if (debug_rcu_head_queue(head)) { 2868 /* 2869 * Probable double call_rcu(), so leak the callback. 2870 * Use rcu:rcu_callback trace event to find the previous 2871 * time callback was passed to __call_rcu(). 2872 */ 2873 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2874 head, head->func); 2875 WRITE_ONCE(head->func, rcu_leak_callback); 2876 return; 2877 } 2878 head->func = func; 2879 head->next = NULL; 2880 local_irq_save(flags); 2881 rdp = this_cpu_ptr(&rcu_data); 2882 2883 /* Add the callback to our list. */ 2884 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2885 int offline; 2886 2887 if (cpu != -1) 2888 rdp = per_cpu_ptr(&rcu_data, cpu); 2889 if (likely(rdp->mynode)) { 2890 /* Post-boot, so this should be for a no-CBs CPU. */ 2891 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2892 WARN_ON_ONCE(offline); 2893 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2894 local_irq_restore(flags); 2895 return; 2896 } 2897 /* 2898 * Very early boot, before rcu_init(). Initialize if needed 2899 * and then drop through to queue the callback. 2900 */ 2901 WARN_ON_ONCE(cpu != -1); 2902 WARN_ON_ONCE(!rcu_is_watching()); 2903 if (rcu_segcblist_empty(&rdp->cblist)) 2904 rcu_segcblist_init(&rdp->cblist); 2905 } 2906 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2907 if (__is_kfree_rcu_offset((unsigned long)func)) 2908 trace_rcu_kfree_callback(rcu_state.name, head, 2909 (unsigned long)func, 2910 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2911 rcu_segcblist_n_cbs(&rdp->cblist)); 2912 else 2913 trace_rcu_callback(rcu_state.name, head, 2914 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2915 rcu_segcblist_n_cbs(&rdp->cblist)); 2916 2917 /* Go handle any RCU core processing required. */ 2918 __call_rcu_core(rdp, head, flags); 2919 local_irq_restore(flags); 2920 } 2921 2922 /** 2923 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2924 * @head: structure to be used for queueing the RCU updates. 2925 * @func: actual callback function to be invoked after the grace period 2926 * 2927 * The callback function will be invoked some time after a full grace 2928 * period elapses, in other words after all pre-existing RCU read-side 2929 * critical sections have completed. However, the callback function 2930 * might well execute concurrently with RCU read-side critical sections 2931 * that started after call_rcu() was invoked. RCU read-side critical 2932 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2933 * may be nested. In addition, regions of code across which interrupts, 2934 * preemption, or softirqs have been disabled also serve as RCU read-side 2935 * critical sections. This includes hardware interrupt handlers, softirq 2936 * handlers, and NMI handlers. 2937 * 2938 * Note that all CPUs must agree that the grace period extended beyond 2939 * all pre-existing RCU read-side critical section. On systems with more 2940 * than one CPU, this means that when "func()" is invoked, each CPU is 2941 * guaranteed to have executed a full memory barrier since the end of its 2942 * last RCU read-side critical section whose beginning preceded the call 2943 * to call_rcu(). It also means that each CPU executing an RCU read-side 2944 * critical section that continues beyond the start of "func()" must have 2945 * executed a memory barrier after the call_rcu() but before the beginning 2946 * of that RCU read-side critical section. Note that these guarantees 2947 * include CPUs that are offline, idle, or executing in user mode, as 2948 * well as CPUs that are executing in the kernel. 2949 * 2950 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2951 * resulting RCU callback function "func()", then both CPU A and CPU B are 2952 * guaranteed to execute a full memory barrier during the time interval 2953 * between the call to call_rcu() and the invocation of "func()" -- even 2954 * if CPU A and CPU B are the same CPU (but again only if the system has 2955 * more than one CPU). 2956 */ 2957 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2958 { 2959 __call_rcu(head, func, -1, 0); 2960 } 2961 EXPORT_SYMBOL_GPL(call_rcu); 2962 2963 /* 2964 * Queue an RCU callback for lazy invocation after a grace period. 2965 * This will likely be later named something like "call_rcu_lazy()", 2966 * but this change will require some way of tagging the lazy RCU 2967 * callbacks in the list of pending callbacks. Until then, this 2968 * function may only be called from __kfree_rcu(). 2969 */ 2970 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2971 { 2972 __call_rcu(head, func, -1, 1); 2973 } 2974 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2975 2976 /* 2977 * During early boot, any blocking grace-period wait automatically 2978 * implies a grace period. Later on, this is never the case for PREEMPT. 2979 * 2980 * Howevr, because a context switch is a grace period for !PREEMPT, any 2981 * blocking grace-period wait automatically implies a grace period if 2982 * there is only one CPU online at any point time during execution of 2983 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 2984 * occasionally incorrectly indicate that there are multiple CPUs online 2985 * when there was in fact only one the whole time, as this just adds some 2986 * overhead: RCU still operates correctly. 2987 */ 2988 static int rcu_blocking_is_gp(void) 2989 { 2990 int ret; 2991 2992 if (IS_ENABLED(CONFIG_PREEMPT)) 2993 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 2994 might_sleep(); /* Check for RCU read-side critical section. */ 2995 preempt_disable(); 2996 ret = num_online_cpus() <= 1; 2997 preempt_enable(); 2998 return ret; 2999 } 3000 3001 /** 3002 * synchronize_rcu - wait until a grace period has elapsed. 3003 * 3004 * Control will return to the caller some time after a full grace 3005 * period has elapsed, in other words after all currently executing RCU 3006 * read-side critical sections have completed. Note, however, that 3007 * upon return from synchronize_rcu(), the caller might well be executing 3008 * concurrently with new RCU read-side critical sections that began while 3009 * synchronize_rcu() was waiting. RCU read-side critical sections are 3010 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3011 * In addition, regions of code across which interrupts, preemption, or 3012 * softirqs have been disabled also serve as RCU read-side critical 3013 * sections. This includes hardware interrupt handlers, softirq handlers, 3014 * and NMI handlers. 3015 * 3016 * Note that this guarantee implies further memory-ordering guarantees. 3017 * On systems with more than one CPU, when synchronize_rcu() returns, 3018 * each CPU is guaranteed to have executed a full memory barrier since 3019 * the end of its last RCU read-side critical section whose beginning 3020 * preceded the call to synchronize_rcu(). In addition, each CPU having 3021 * an RCU read-side critical section that extends beyond the return from 3022 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3023 * after the beginning of synchronize_rcu() and before the beginning of 3024 * that RCU read-side critical section. Note that these guarantees include 3025 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3026 * that are executing in the kernel. 3027 * 3028 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3029 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3030 * to have executed a full memory barrier during the execution of 3031 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3032 * again only if the system has more than one CPU). 3033 */ 3034 void synchronize_rcu(void) 3035 { 3036 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3037 lock_is_held(&rcu_lock_map) || 3038 lock_is_held(&rcu_sched_lock_map), 3039 "Illegal synchronize_rcu() in RCU read-side critical section"); 3040 if (rcu_blocking_is_gp()) 3041 return; 3042 if (rcu_gp_is_expedited()) 3043 synchronize_rcu_expedited(); 3044 else 3045 wait_rcu_gp(call_rcu); 3046 } 3047 EXPORT_SYMBOL_GPL(synchronize_rcu); 3048 3049 /** 3050 * get_state_synchronize_rcu - Snapshot current RCU state 3051 * 3052 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3053 * to determine whether or not a full grace period has elapsed in the 3054 * meantime. 3055 */ 3056 unsigned long get_state_synchronize_rcu(void) 3057 { 3058 /* 3059 * Any prior manipulation of RCU-protected data must happen 3060 * before the load from ->gp_seq. 3061 */ 3062 smp_mb(); /* ^^^ */ 3063 return rcu_seq_snap(&rcu_state.gp_seq); 3064 } 3065 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3066 3067 /** 3068 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3069 * 3070 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3071 * 3072 * If a full RCU grace period has elapsed since the earlier call to 3073 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3074 * synchronize_rcu() to wait for a full grace period. 3075 * 3076 * Yes, this function does not take counter wrap into account. But 3077 * counter wrap is harmless. If the counter wraps, we have waited for 3078 * more than 2 billion grace periods (and way more on a 64-bit system!), 3079 * so waiting for one additional grace period should be just fine. 3080 */ 3081 void cond_synchronize_rcu(unsigned long oldstate) 3082 { 3083 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3084 synchronize_rcu(); 3085 else 3086 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3087 } 3088 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3089 3090 /* 3091 * Check to see if there is any immediate RCU-related work to be done by 3092 * the current CPU, returning 1 if so and zero otherwise. The checks are 3093 * in order of increasing expense: checks that can be carried out against 3094 * CPU-local state are performed first. However, we must check for CPU 3095 * stalls first, else we might not get a chance. 3096 */ 3097 static int rcu_pending(void) 3098 { 3099 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3100 struct rcu_node *rnp = rdp->mynode; 3101 3102 /* Check for CPU stalls, if enabled. */ 3103 check_cpu_stall(rdp); 3104 3105 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3106 if (rcu_nohz_full_cpu()) 3107 return 0; 3108 3109 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3110 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3111 return 1; 3112 3113 /* Does this CPU have callbacks ready to invoke? */ 3114 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3115 return 1; 3116 3117 /* Has RCU gone idle with this CPU needing another grace period? */ 3118 if (!rcu_gp_in_progress() && 3119 rcu_segcblist_is_enabled(&rdp->cblist) && 3120 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3121 return 1; 3122 3123 /* Have RCU grace period completed or started? */ 3124 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3125 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3126 return 1; 3127 3128 /* Does this CPU need a deferred NOCB wakeup? */ 3129 if (rcu_nocb_need_deferred_wakeup(rdp)) 3130 return 1; 3131 3132 /* nothing to do */ 3133 return 0; 3134 } 3135 3136 /* 3137 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3138 * the compiler is expected to optimize this away. 3139 */ 3140 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3141 { 3142 trace_rcu_barrier(rcu_state.name, s, cpu, 3143 atomic_read(&rcu_state.barrier_cpu_count), done); 3144 } 3145 3146 /* 3147 * RCU callback function for rcu_barrier(). If we are last, wake 3148 * up the task executing rcu_barrier(). 3149 */ 3150 static void rcu_barrier_callback(struct rcu_head *rhp) 3151 { 3152 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3153 rcu_barrier_trace(TPS("LastCB"), -1, 3154 rcu_state.barrier_sequence); 3155 complete(&rcu_state.barrier_completion); 3156 } else { 3157 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3158 } 3159 } 3160 3161 /* 3162 * Called with preemption disabled, and from cross-cpu IRQ context. 3163 */ 3164 static void rcu_barrier_func(void *unused) 3165 { 3166 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3167 3168 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3169 rdp->barrier_head.func = rcu_barrier_callback; 3170 debug_rcu_head_queue(&rdp->barrier_head); 3171 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3172 atomic_inc(&rcu_state.barrier_cpu_count); 3173 } else { 3174 debug_rcu_head_unqueue(&rdp->barrier_head); 3175 rcu_barrier_trace(TPS("IRQNQ"), -1, 3176 rcu_state.barrier_sequence); 3177 } 3178 } 3179 3180 /** 3181 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3182 * 3183 * Note that this primitive does not necessarily wait for an RCU grace period 3184 * to complete. For example, if there are no RCU callbacks queued anywhere 3185 * in the system, then rcu_barrier() is within its rights to return 3186 * immediately, without waiting for anything, much less an RCU grace period. 3187 */ 3188 void rcu_barrier(void) 3189 { 3190 int cpu; 3191 struct rcu_data *rdp; 3192 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3193 3194 rcu_barrier_trace(TPS("Begin"), -1, s); 3195 3196 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3197 mutex_lock(&rcu_state.barrier_mutex); 3198 3199 /* Did someone else do our work for us? */ 3200 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3201 rcu_barrier_trace(TPS("EarlyExit"), -1, 3202 rcu_state.barrier_sequence); 3203 smp_mb(); /* caller's subsequent code after above check. */ 3204 mutex_unlock(&rcu_state.barrier_mutex); 3205 return; 3206 } 3207 3208 /* Mark the start of the barrier operation. */ 3209 rcu_seq_start(&rcu_state.barrier_sequence); 3210 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3211 3212 /* 3213 * Initialize the count to one rather than to zero in order to 3214 * avoid a too-soon return to zero in case of a short grace period 3215 * (or preemption of this task). Exclude CPU-hotplug operations 3216 * to ensure that no offline CPU has callbacks queued. 3217 */ 3218 init_completion(&rcu_state.barrier_completion); 3219 atomic_set(&rcu_state.barrier_cpu_count, 1); 3220 get_online_cpus(); 3221 3222 /* 3223 * Force each CPU with callbacks to register a new callback. 3224 * When that callback is invoked, we will know that all of the 3225 * corresponding CPU's preceding callbacks have been invoked. 3226 */ 3227 for_each_possible_cpu(cpu) { 3228 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3229 continue; 3230 rdp = per_cpu_ptr(&rcu_data, cpu); 3231 if (rcu_is_nocb_cpu(cpu)) { 3232 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 3233 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 3234 rcu_state.barrier_sequence); 3235 } else { 3236 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 3237 rcu_state.barrier_sequence); 3238 smp_mb__before_atomic(); 3239 atomic_inc(&rcu_state.barrier_cpu_count); 3240 __call_rcu(&rdp->barrier_head, 3241 rcu_barrier_callback, cpu, 0); 3242 } 3243 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3244 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3245 rcu_state.barrier_sequence); 3246 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3247 } else { 3248 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3249 rcu_state.barrier_sequence); 3250 } 3251 } 3252 put_online_cpus(); 3253 3254 /* 3255 * Now that we have an rcu_barrier_callback() callback on each 3256 * CPU, and thus each counted, remove the initial count. 3257 */ 3258 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3259 complete(&rcu_state.barrier_completion); 3260 3261 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3262 wait_for_completion(&rcu_state.barrier_completion); 3263 3264 /* Mark the end of the barrier operation. */ 3265 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3266 rcu_seq_end(&rcu_state.barrier_sequence); 3267 3268 /* Other rcu_barrier() invocations can now safely proceed. */ 3269 mutex_unlock(&rcu_state.barrier_mutex); 3270 } 3271 EXPORT_SYMBOL_GPL(rcu_barrier); 3272 3273 /* 3274 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3275 * first CPU in a given leaf rcu_node structure coming online. The caller 3276 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3277 * disabled. 3278 */ 3279 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3280 { 3281 long mask; 3282 long oldmask; 3283 struct rcu_node *rnp = rnp_leaf; 3284 3285 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3286 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3287 for (;;) { 3288 mask = rnp->grpmask; 3289 rnp = rnp->parent; 3290 if (rnp == NULL) 3291 return; 3292 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3293 oldmask = rnp->qsmaskinit; 3294 rnp->qsmaskinit |= mask; 3295 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3296 if (oldmask) 3297 return; 3298 } 3299 } 3300 3301 /* 3302 * Do boot-time initialization of a CPU's per-CPU RCU data. 3303 */ 3304 static void __init 3305 rcu_boot_init_percpu_data(int cpu) 3306 { 3307 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3308 3309 /* Set up local state, ensuring consistent view of global state. */ 3310 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3311 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3312 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3313 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3314 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3315 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3316 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3317 rdp->cpu = cpu; 3318 rcu_boot_init_nocb_percpu_data(rdp); 3319 } 3320 3321 /* 3322 * Invoked early in the CPU-online process, when pretty much all services 3323 * are available. The incoming CPU is not present. 3324 * 3325 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3326 * offline event can be happening at a given time. Note also that we can 3327 * accept some slop in the rsp->gp_seq access due to the fact that this 3328 * CPU cannot possibly have any RCU callbacks in flight yet. 3329 */ 3330 int rcutree_prepare_cpu(unsigned int cpu) 3331 { 3332 unsigned long flags; 3333 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3334 struct rcu_node *rnp = rcu_get_root(); 3335 3336 /* Set up local state, ensuring consistent view of global state. */ 3337 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3338 rdp->qlen_last_fqs_check = 0; 3339 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3340 rdp->blimit = blimit; 3341 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3342 !init_nocb_callback_list(rdp)) 3343 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3344 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3345 rcu_dynticks_eqs_online(); 3346 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3347 3348 /* 3349 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3350 * propagation up the rcu_node tree will happen at the beginning 3351 * of the next grace period. 3352 */ 3353 rnp = rdp->mynode; 3354 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3355 rdp->beenonline = true; /* We have now been online. */ 3356 rdp->gp_seq = rnp->gp_seq; 3357 rdp->gp_seq_needed = rnp->gp_seq; 3358 rdp->cpu_no_qs.b.norm = true; 3359 rdp->core_needs_qs = false; 3360 rdp->rcu_iw_pending = false; 3361 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3362 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3363 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3364 rcu_prepare_kthreads(cpu); 3365 rcu_spawn_cpu_nocb_kthread(cpu); 3366 3367 return 0; 3368 } 3369 3370 /* 3371 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3372 */ 3373 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3374 { 3375 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3376 3377 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3378 } 3379 3380 /* 3381 * Near the end of the CPU-online process. Pretty much all services 3382 * enabled, and the CPU is now very much alive. 3383 */ 3384 int rcutree_online_cpu(unsigned int cpu) 3385 { 3386 unsigned long flags; 3387 struct rcu_data *rdp; 3388 struct rcu_node *rnp; 3389 3390 rdp = per_cpu_ptr(&rcu_data, cpu); 3391 rnp = rdp->mynode; 3392 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3393 rnp->ffmask |= rdp->grpmask; 3394 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3395 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3396 return 0; /* Too early in boot for scheduler work. */ 3397 sync_sched_exp_online_cleanup(cpu); 3398 rcutree_affinity_setting(cpu, -1); 3399 return 0; 3400 } 3401 3402 /* 3403 * Near the beginning of the process. The CPU is still very much alive 3404 * with pretty much all services enabled. 3405 */ 3406 int rcutree_offline_cpu(unsigned int cpu) 3407 { 3408 unsigned long flags; 3409 struct rcu_data *rdp; 3410 struct rcu_node *rnp; 3411 3412 rdp = per_cpu_ptr(&rcu_data, cpu); 3413 rnp = rdp->mynode; 3414 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3415 rnp->ffmask &= ~rdp->grpmask; 3416 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3417 3418 rcutree_affinity_setting(cpu, cpu); 3419 return 0; 3420 } 3421 3422 static DEFINE_PER_CPU(int, rcu_cpu_started); 3423 3424 /* 3425 * Mark the specified CPU as being online so that subsequent grace periods 3426 * (both expedited and normal) will wait on it. Note that this means that 3427 * incoming CPUs are not allowed to use RCU read-side critical sections 3428 * until this function is called. Failing to observe this restriction 3429 * will result in lockdep splats. 3430 * 3431 * Note that this function is special in that it is invoked directly 3432 * from the incoming CPU rather than from the cpuhp_step mechanism. 3433 * This is because this function must be invoked at a precise location. 3434 */ 3435 void rcu_cpu_starting(unsigned int cpu) 3436 { 3437 unsigned long flags; 3438 unsigned long mask; 3439 int nbits; 3440 unsigned long oldmask; 3441 struct rcu_data *rdp; 3442 struct rcu_node *rnp; 3443 3444 if (per_cpu(rcu_cpu_started, cpu)) 3445 return; 3446 3447 per_cpu(rcu_cpu_started, cpu) = 1; 3448 3449 rdp = per_cpu_ptr(&rcu_data, cpu); 3450 rnp = rdp->mynode; 3451 mask = rdp->grpmask; 3452 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3453 rnp->qsmaskinitnext |= mask; 3454 oldmask = rnp->expmaskinitnext; 3455 rnp->expmaskinitnext |= mask; 3456 oldmask ^= rnp->expmaskinitnext; 3457 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3458 /* Allow lockless access for expedited grace periods. */ 3459 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3460 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3461 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3462 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3463 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3464 /* Report QS -after- changing ->qsmaskinitnext! */ 3465 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3466 } else { 3467 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3468 } 3469 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3470 } 3471 3472 #ifdef CONFIG_HOTPLUG_CPU 3473 /* 3474 * The outgoing function has no further need of RCU, so remove it from 3475 * the rcu_node tree's ->qsmaskinitnext bit masks. 3476 * 3477 * Note that this function is special in that it is invoked directly 3478 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3479 * This is because this function must be invoked at a precise location. 3480 */ 3481 void rcu_report_dead(unsigned int cpu) 3482 { 3483 unsigned long flags; 3484 unsigned long mask; 3485 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3486 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3487 3488 /* QS for any half-done expedited grace period. */ 3489 preempt_disable(); 3490 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3491 preempt_enable(); 3492 rcu_preempt_deferred_qs(current); 3493 3494 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3495 mask = rdp->grpmask; 3496 raw_spin_lock(&rcu_state.ofl_lock); 3497 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3498 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3499 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3500 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3501 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3502 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3503 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3504 } 3505 rnp->qsmaskinitnext &= ~mask; 3506 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3507 raw_spin_unlock(&rcu_state.ofl_lock); 3508 3509 per_cpu(rcu_cpu_started, cpu) = 0; 3510 } 3511 3512 /* 3513 * The outgoing CPU has just passed through the dying-idle state, and we 3514 * are being invoked from the CPU that was IPIed to continue the offline 3515 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3516 */ 3517 void rcutree_migrate_callbacks(int cpu) 3518 { 3519 unsigned long flags; 3520 struct rcu_data *my_rdp; 3521 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3522 struct rcu_node *rnp_root = rcu_get_root(); 3523 bool needwake; 3524 3525 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3526 return; /* No callbacks to migrate. */ 3527 3528 local_irq_save(flags); 3529 my_rdp = this_cpu_ptr(&rcu_data); 3530 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3531 local_irq_restore(flags); 3532 return; 3533 } 3534 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3535 /* Leverage recent GPs and set GP for new callbacks. */ 3536 needwake = rcu_advance_cbs(rnp_root, rdp) || 3537 rcu_advance_cbs(rnp_root, my_rdp); 3538 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3539 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3540 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3541 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3542 if (needwake) 3543 rcu_gp_kthread_wake(); 3544 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3545 !rcu_segcblist_empty(&rdp->cblist), 3546 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3547 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3548 rcu_segcblist_first_cb(&rdp->cblist)); 3549 } 3550 #endif 3551 3552 /* 3553 * On non-huge systems, use expedited RCU grace periods to make suspend 3554 * and hibernation run faster. 3555 */ 3556 static int rcu_pm_notify(struct notifier_block *self, 3557 unsigned long action, void *hcpu) 3558 { 3559 switch (action) { 3560 case PM_HIBERNATION_PREPARE: 3561 case PM_SUSPEND_PREPARE: 3562 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3563 rcu_expedite_gp(); 3564 break; 3565 case PM_POST_HIBERNATION: 3566 case PM_POST_SUSPEND: 3567 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3568 rcu_unexpedite_gp(); 3569 break; 3570 default: 3571 break; 3572 } 3573 return NOTIFY_OK; 3574 } 3575 3576 /* 3577 * Spawn the kthreads that handle RCU's grace periods. 3578 */ 3579 static int __init rcu_spawn_gp_kthread(void) 3580 { 3581 unsigned long flags; 3582 int kthread_prio_in = kthread_prio; 3583 struct rcu_node *rnp; 3584 struct sched_param sp; 3585 struct task_struct *t; 3586 3587 /* Force priority into range. */ 3588 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3589 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3590 kthread_prio = 2; 3591 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3592 kthread_prio = 1; 3593 else if (kthread_prio < 0) 3594 kthread_prio = 0; 3595 else if (kthread_prio > 99) 3596 kthread_prio = 99; 3597 3598 if (kthread_prio != kthread_prio_in) 3599 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3600 kthread_prio, kthread_prio_in); 3601 3602 rcu_scheduler_fully_active = 1; 3603 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3604 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3605 return 0; 3606 rnp = rcu_get_root(); 3607 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3608 rcu_state.gp_kthread = t; 3609 if (kthread_prio) { 3610 sp.sched_priority = kthread_prio; 3611 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3612 } 3613 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3614 wake_up_process(t); 3615 rcu_spawn_nocb_kthreads(); 3616 rcu_spawn_boost_kthreads(); 3617 return 0; 3618 } 3619 early_initcall(rcu_spawn_gp_kthread); 3620 3621 /* 3622 * This function is invoked towards the end of the scheduler's 3623 * initialization process. Before this is called, the idle task might 3624 * contain synchronous grace-period primitives (during which time, this idle 3625 * task is booting the system, and such primitives are no-ops). After this 3626 * function is called, any synchronous grace-period primitives are run as 3627 * expedited, with the requesting task driving the grace period forward. 3628 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3629 * runtime RCU functionality. 3630 */ 3631 void rcu_scheduler_starting(void) 3632 { 3633 WARN_ON(num_online_cpus() != 1); 3634 WARN_ON(nr_context_switches() > 0); 3635 rcu_test_sync_prims(); 3636 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3637 rcu_test_sync_prims(); 3638 } 3639 3640 /* 3641 * Helper function for rcu_init() that initializes the rcu_state structure. 3642 */ 3643 static void __init rcu_init_one(void) 3644 { 3645 static const char * const buf[] = RCU_NODE_NAME_INIT; 3646 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3647 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3648 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3649 3650 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3651 int cpustride = 1; 3652 int i; 3653 int j; 3654 struct rcu_node *rnp; 3655 3656 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3657 3658 /* Silence gcc 4.8 false positive about array index out of range. */ 3659 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3660 panic("rcu_init_one: rcu_num_lvls out of range"); 3661 3662 /* Initialize the level-tracking arrays. */ 3663 3664 for (i = 1; i < rcu_num_lvls; i++) 3665 rcu_state.level[i] = 3666 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3667 rcu_init_levelspread(levelspread, num_rcu_lvl); 3668 3669 /* Initialize the elements themselves, starting from the leaves. */ 3670 3671 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3672 cpustride *= levelspread[i]; 3673 rnp = rcu_state.level[i]; 3674 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3675 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3676 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3677 &rcu_node_class[i], buf[i]); 3678 raw_spin_lock_init(&rnp->fqslock); 3679 lockdep_set_class_and_name(&rnp->fqslock, 3680 &rcu_fqs_class[i], fqs[i]); 3681 rnp->gp_seq = rcu_state.gp_seq; 3682 rnp->gp_seq_needed = rcu_state.gp_seq; 3683 rnp->completedqs = rcu_state.gp_seq; 3684 rnp->qsmask = 0; 3685 rnp->qsmaskinit = 0; 3686 rnp->grplo = j * cpustride; 3687 rnp->grphi = (j + 1) * cpustride - 1; 3688 if (rnp->grphi >= nr_cpu_ids) 3689 rnp->grphi = nr_cpu_ids - 1; 3690 if (i == 0) { 3691 rnp->grpnum = 0; 3692 rnp->grpmask = 0; 3693 rnp->parent = NULL; 3694 } else { 3695 rnp->grpnum = j % levelspread[i - 1]; 3696 rnp->grpmask = BIT(rnp->grpnum); 3697 rnp->parent = rcu_state.level[i - 1] + 3698 j / levelspread[i - 1]; 3699 } 3700 rnp->level = i; 3701 INIT_LIST_HEAD(&rnp->blkd_tasks); 3702 rcu_init_one_nocb(rnp); 3703 init_waitqueue_head(&rnp->exp_wq[0]); 3704 init_waitqueue_head(&rnp->exp_wq[1]); 3705 init_waitqueue_head(&rnp->exp_wq[2]); 3706 init_waitqueue_head(&rnp->exp_wq[3]); 3707 spin_lock_init(&rnp->exp_lock); 3708 } 3709 } 3710 3711 init_swait_queue_head(&rcu_state.gp_wq); 3712 init_swait_queue_head(&rcu_state.expedited_wq); 3713 rnp = rcu_first_leaf_node(); 3714 for_each_possible_cpu(i) { 3715 while (i > rnp->grphi) 3716 rnp++; 3717 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3718 rcu_boot_init_percpu_data(i); 3719 } 3720 } 3721 3722 /* 3723 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3724 * replace the definitions in tree.h because those are needed to size 3725 * the ->node array in the rcu_state structure. 3726 */ 3727 static void __init rcu_init_geometry(void) 3728 { 3729 ulong d; 3730 int i; 3731 int rcu_capacity[RCU_NUM_LVLS]; 3732 3733 /* 3734 * Initialize any unspecified boot parameters. 3735 * The default values of jiffies_till_first_fqs and 3736 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3737 * value, which is a function of HZ, then adding one for each 3738 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3739 */ 3740 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3741 if (jiffies_till_first_fqs == ULONG_MAX) 3742 jiffies_till_first_fqs = d; 3743 if (jiffies_till_next_fqs == ULONG_MAX) 3744 jiffies_till_next_fqs = d; 3745 if (jiffies_till_sched_qs == ULONG_MAX) 3746 adjust_jiffies_till_sched_qs(); 3747 3748 /* If the compile-time values are accurate, just leave. */ 3749 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3750 nr_cpu_ids == NR_CPUS) 3751 return; 3752 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3753 rcu_fanout_leaf, nr_cpu_ids); 3754 3755 /* 3756 * The boot-time rcu_fanout_leaf parameter must be at least two 3757 * and cannot exceed the number of bits in the rcu_node masks. 3758 * Complain and fall back to the compile-time values if this 3759 * limit is exceeded. 3760 */ 3761 if (rcu_fanout_leaf < 2 || 3762 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3763 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3764 WARN_ON(1); 3765 return; 3766 } 3767 3768 /* 3769 * Compute number of nodes that can be handled an rcu_node tree 3770 * with the given number of levels. 3771 */ 3772 rcu_capacity[0] = rcu_fanout_leaf; 3773 for (i = 1; i < RCU_NUM_LVLS; i++) 3774 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3775 3776 /* 3777 * The tree must be able to accommodate the configured number of CPUs. 3778 * If this limit is exceeded, fall back to the compile-time values. 3779 */ 3780 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3781 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3782 WARN_ON(1); 3783 return; 3784 } 3785 3786 /* Calculate the number of levels in the tree. */ 3787 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3788 } 3789 rcu_num_lvls = i + 1; 3790 3791 /* Calculate the number of rcu_nodes at each level of the tree. */ 3792 for (i = 0; i < rcu_num_lvls; i++) { 3793 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3794 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3795 } 3796 3797 /* Calculate the total number of rcu_node structures. */ 3798 rcu_num_nodes = 0; 3799 for (i = 0; i < rcu_num_lvls; i++) 3800 rcu_num_nodes += num_rcu_lvl[i]; 3801 } 3802 3803 /* 3804 * Dump out the structure of the rcu_node combining tree associated 3805 * with the rcu_state structure. 3806 */ 3807 static void __init rcu_dump_rcu_node_tree(void) 3808 { 3809 int level = 0; 3810 struct rcu_node *rnp; 3811 3812 pr_info("rcu_node tree layout dump\n"); 3813 pr_info(" "); 3814 rcu_for_each_node_breadth_first(rnp) { 3815 if (rnp->level != level) { 3816 pr_cont("\n"); 3817 pr_info(" "); 3818 level = rnp->level; 3819 } 3820 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3821 } 3822 pr_cont("\n"); 3823 } 3824 3825 struct workqueue_struct *rcu_gp_wq; 3826 struct workqueue_struct *rcu_par_gp_wq; 3827 3828 void __init rcu_init(void) 3829 { 3830 int cpu; 3831 3832 rcu_early_boot_tests(); 3833 3834 rcu_bootup_announce(); 3835 rcu_init_geometry(); 3836 rcu_init_one(); 3837 if (dump_tree) 3838 rcu_dump_rcu_node_tree(); 3839 open_softirq(RCU_SOFTIRQ, rcu_core); 3840 3841 /* 3842 * We don't need protection against CPU-hotplug here because 3843 * this is called early in boot, before either interrupts 3844 * or the scheduler are operational. 3845 */ 3846 pm_notifier(rcu_pm_notify, 0); 3847 for_each_online_cpu(cpu) { 3848 rcutree_prepare_cpu(cpu); 3849 rcu_cpu_starting(cpu); 3850 rcutree_online_cpu(cpu); 3851 } 3852 3853 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3854 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3855 WARN_ON(!rcu_gp_wq); 3856 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3857 WARN_ON(!rcu_par_gp_wq); 3858 srcu_init(); 3859 } 3860 3861 #include "tree_exp.h" 3862 #include "tree_plugin.h" 3863