1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/trace_events.h> 49 #include <linux/suspend.h> 50 #include <linux/ftrace.h> 51 #include <linux/tick.h> 52 #include <linux/sysrq.h> 53 #include <linux/kprobes.h> 54 #include <linux/gfp.h> 55 #include <linux/oom.h> 56 #include <linux/smpboot.h> 57 #include <linux/jiffies.h> 58 #include <linux/sched/isolation.h> 59 #include "../time/tick-internal.h" 60 61 #include "tree.h" 62 #include "rcu.h" 63 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 /* 72 * Steal a bit from the bottom of ->dynticks for idle entry/exit 73 * control. Initially this is for TLB flushing. 74 */ 75 #define RCU_DYNTICK_CTRL_MASK 0x1 76 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 77 #ifndef rcu_eqs_special_exit 78 #define rcu_eqs_special_exit() do { } while (0) 79 #endif 80 81 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 82 .dynticks_nesting = 1, 83 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 84 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 85 }; 86 struct rcu_state rcu_state = { 87 .level = { &rcu_state.node[0] }, 88 .gp_state = RCU_GP_IDLE, 89 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 90 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 91 .name = RCU_NAME, 92 .abbr = RCU_ABBR, 93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 95 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 96 }; 97 98 /* Dump rcu_node combining tree at boot to verify correct setup. */ 99 static bool dump_tree; 100 module_param(dump_tree, bool, 0444); 101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 102 static bool use_softirq = 1; 103 module_param(use_softirq, bool, 0444); 104 /* Control rcu_node-tree auto-balancing at boot time. */ 105 static bool rcu_fanout_exact; 106 module_param(rcu_fanout_exact, bool, 0444); 107 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 108 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 109 module_param(rcu_fanout_leaf, int, 0444); 110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 111 /* Number of rcu_nodes at specified level. */ 112 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 113 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 114 115 /* 116 * The rcu_scheduler_active variable is initialized to the value 117 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 118 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 119 * RCU can assume that there is but one task, allowing RCU to (for example) 120 * optimize synchronize_rcu() to a simple barrier(). When this variable 121 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 122 * to detect real grace periods. This variable is also used to suppress 123 * boot-time false positives from lockdep-RCU error checking. Finally, it 124 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 125 * is fully initialized, including all of its kthreads having been spawned. 126 */ 127 int rcu_scheduler_active __read_mostly; 128 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 129 130 /* 131 * The rcu_scheduler_fully_active variable transitions from zero to one 132 * during the early_initcall() processing, which is after the scheduler 133 * is capable of creating new tasks. So RCU processing (for example, 134 * creating tasks for RCU priority boosting) must be delayed until after 135 * rcu_scheduler_fully_active transitions from zero to one. We also 136 * currently delay invocation of any RCU callbacks until after this point. 137 * 138 * It might later prove better for people registering RCU callbacks during 139 * early boot to take responsibility for these callbacks, but one step at 140 * a time. 141 */ 142 static int rcu_scheduler_fully_active __read_mostly; 143 144 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 145 unsigned long gps, unsigned long flags); 146 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 147 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 149 static void invoke_rcu_core(void); 150 static void rcu_report_exp_rdp(struct rcu_data *rdp); 151 static void sync_sched_exp_online_cleanup(int cpu); 152 153 /* rcuc/rcub kthread realtime priority */ 154 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 155 module_param(kthread_prio, int, 0444); 156 157 /* Delay in jiffies for grace-period initialization delays, debug only. */ 158 159 static int gp_preinit_delay; 160 module_param(gp_preinit_delay, int, 0444); 161 static int gp_init_delay; 162 module_param(gp_init_delay, int, 0444); 163 static int gp_cleanup_delay; 164 module_param(gp_cleanup_delay, int, 0444); 165 166 /* Retrieve RCU kthreads priority for rcutorture */ 167 int rcu_get_gp_kthreads_prio(void) 168 { 169 return kthread_prio; 170 } 171 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 172 173 /* 174 * Number of grace periods between delays, normalized by the duration of 175 * the delay. The longer the delay, the more the grace periods between 176 * each delay. The reason for this normalization is that it means that, 177 * for non-zero delays, the overall slowdown of grace periods is constant 178 * regardless of the duration of the delay. This arrangement balances 179 * the need for long delays to increase some race probabilities with the 180 * need for fast grace periods to increase other race probabilities. 181 */ 182 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 183 184 /* 185 * Compute the mask of online CPUs for the specified rcu_node structure. 186 * This will not be stable unless the rcu_node structure's ->lock is 187 * held, but the bit corresponding to the current CPU will be stable 188 * in most contexts. 189 */ 190 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 191 { 192 return READ_ONCE(rnp->qsmaskinitnext); 193 } 194 195 /* 196 * Return true if an RCU grace period is in progress. The READ_ONCE()s 197 * permit this function to be invoked without holding the root rcu_node 198 * structure's ->lock, but of course results can be subject to change. 199 */ 200 static int rcu_gp_in_progress(void) 201 { 202 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 203 } 204 205 /* 206 * Return the number of callbacks queued on the specified CPU. 207 * Handles both the nocbs and normal cases. 208 */ 209 static long rcu_get_n_cbs_cpu(int cpu) 210 { 211 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 212 213 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */ 214 return rcu_segcblist_n_cbs(&rdp->cblist); 215 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */ 216 } 217 218 void rcu_softirq_qs(void) 219 { 220 rcu_qs(); 221 rcu_preempt_deferred_qs(current); 222 } 223 224 /* 225 * Record entry into an extended quiescent state. This is only to be 226 * called when not already in an extended quiescent state. 227 */ 228 static void rcu_dynticks_eqs_enter(void) 229 { 230 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 231 int seq; 232 233 /* 234 * CPUs seeing atomic_add_return() must see prior RCU read-side 235 * critical sections, and we also must force ordering with the 236 * next idle sojourn. 237 */ 238 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 239 /* Better be in an extended quiescent state! */ 240 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 241 (seq & RCU_DYNTICK_CTRL_CTR)); 242 /* Better not have special action (TLB flush) pending! */ 243 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 244 (seq & RCU_DYNTICK_CTRL_MASK)); 245 } 246 247 /* 248 * Record exit from an extended quiescent state. This is only to be 249 * called from an extended quiescent state. 250 */ 251 static void rcu_dynticks_eqs_exit(void) 252 { 253 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 254 int seq; 255 256 /* 257 * CPUs seeing atomic_add_return() must see prior idle sojourns, 258 * and we also must force ordering with the next RCU read-side 259 * critical section. 260 */ 261 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 262 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 263 !(seq & RCU_DYNTICK_CTRL_CTR)); 264 if (seq & RCU_DYNTICK_CTRL_MASK) { 265 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 266 smp_mb__after_atomic(); /* _exit after clearing mask. */ 267 /* Prefer duplicate flushes to losing a flush. */ 268 rcu_eqs_special_exit(); 269 } 270 } 271 272 /* 273 * Reset the current CPU's ->dynticks counter to indicate that the 274 * newly onlined CPU is no longer in an extended quiescent state. 275 * This will either leave the counter unchanged, or increment it 276 * to the next non-quiescent value. 277 * 278 * The non-atomic test/increment sequence works because the upper bits 279 * of the ->dynticks counter are manipulated only by the corresponding CPU, 280 * or when the corresponding CPU is offline. 281 */ 282 static void rcu_dynticks_eqs_online(void) 283 { 284 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 285 286 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 287 return; 288 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 289 } 290 291 /* 292 * Is the current CPU in an extended quiescent state? 293 * 294 * No ordering, as we are sampling CPU-local information. 295 */ 296 bool rcu_dynticks_curr_cpu_in_eqs(void) 297 { 298 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 299 300 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 301 } 302 303 /* 304 * Snapshot the ->dynticks counter with full ordering so as to allow 305 * stable comparison of this counter with past and future snapshots. 306 */ 307 int rcu_dynticks_snap(struct rcu_data *rdp) 308 { 309 int snap = atomic_add_return(0, &rdp->dynticks); 310 311 return snap & ~RCU_DYNTICK_CTRL_MASK; 312 } 313 314 /* 315 * Return true if the snapshot returned from rcu_dynticks_snap() 316 * indicates that RCU is in an extended quiescent state. 317 */ 318 static bool rcu_dynticks_in_eqs(int snap) 319 { 320 return !(snap & RCU_DYNTICK_CTRL_CTR); 321 } 322 323 /* 324 * Return true if the CPU corresponding to the specified rcu_data 325 * structure has spent some time in an extended quiescent state since 326 * rcu_dynticks_snap() returned the specified snapshot. 327 */ 328 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 329 { 330 return snap != rcu_dynticks_snap(rdp); 331 } 332 333 /* 334 * Set the special (bottom) bit of the specified CPU so that it 335 * will take special action (such as flushing its TLB) on the 336 * next exit from an extended quiescent state. Returns true if 337 * the bit was successfully set, or false if the CPU was not in 338 * an extended quiescent state. 339 */ 340 bool rcu_eqs_special_set(int cpu) 341 { 342 int old; 343 int new; 344 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 345 346 do { 347 old = atomic_read(&rdp->dynticks); 348 if (old & RCU_DYNTICK_CTRL_CTR) 349 return false; 350 new = old | RCU_DYNTICK_CTRL_MASK; 351 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 352 return true; 353 } 354 355 /* 356 * Let the RCU core know that this CPU has gone through the scheduler, 357 * which is a quiescent state. This is called when the need for a 358 * quiescent state is urgent, so we burn an atomic operation and full 359 * memory barriers to let the RCU core know about it, regardless of what 360 * this CPU might (or might not) do in the near future. 361 * 362 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 363 * 364 * The caller must have disabled interrupts and must not be idle. 365 */ 366 static void __maybe_unused rcu_momentary_dyntick_idle(void) 367 { 368 int special; 369 370 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 371 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 372 &this_cpu_ptr(&rcu_data)->dynticks); 373 /* It is illegal to call this from idle state. */ 374 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 375 rcu_preempt_deferred_qs(current); 376 } 377 378 /** 379 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle 380 * 381 * If the current CPU is idle and running at a first-level (not nested) 382 * interrupt from idle, return true. The caller must have at least 383 * disabled preemption. 384 */ 385 static int rcu_is_cpu_rrupt_from_idle(void) 386 { 387 /* Called only from within the scheduling-clock interrupt */ 388 lockdep_assert_in_irq(); 389 390 /* Check for counter underflows */ 391 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 392 "RCU dynticks_nesting counter underflow!"); 393 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 394 "RCU dynticks_nmi_nesting counter underflow/zero!"); 395 396 /* Are we at first interrupt nesting level? */ 397 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1) 398 return false; 399 400 /* Does CPU appear to be idle from an RCU standpoint? */ 401 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 402 } 403 404 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */ 405 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */ 406 static long blimit = DEFAULT_RCU_BLIMIT; 407 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 408 static long qhimark = DEFAULT_RCU_QHIMARK; 409 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 410 static long qlowmark = DEFAULT_RCU_QLOMARK; 411 412 module_param(blimit, long, 0444); 413 module_param(qhimark, long, 0444); 414 module_param(qlowmark, long, 0444); 415 416 static ulong jiffies_till_first_fqs = ULONG_MAX; 417 static ulong jiffies_till_next_fqs = ULONG_MAX; 418 static bool rcu_kick_kthreads; 419 420 /* 421 * How long the grace period must be before we start recruiting 422 * quiescent-state help from rcu_note_context_switch(). 423 */ 424 static ulong jiffies_till_sched_qs = ULONG_MAX; 425 module_param(jiffies_till_sched_qs, ulong, 0444); 426 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 427 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 428 429 /* 430 * Make sure that we give the grace-period kthread time to detect any 431 * idle CPUs before taking active measures to force quiescent states. 432 * However, don't go below 100 milliseconds, adjusted upwards for really 433 * large systems. 434 */ 435 static void adjust_jiffies_till_sched_qs(void) 436 { 437 unsigned long j; 438 439 /* If jiffies_till_sched_qs was specified, respect the request. */ 440 if (jiffies_till_sched_qs != ULONG_MAX) { 441 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 442 return; 443 } 444 /* Otherwise, set to third fqs scan, but bound below on large system. */ 445 j = READ_ONCE(jiffies_till_first_fqs) + 446 2 * READ_ONCE(jiffies_till_next_fqs); 447 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 448 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 449 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 450 WRITE_ONCE(jiffies_to_sched_qs, j); 451 } 452 453 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 454 { 455 ulong j; 456 int ret = kstrtoul(val, 0, &j); 457 458 if (!ret) { 459 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 460 adjust_jiffies_till_sched_qs(); 461 } 462 return ret; 463 } 464 465 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 466 { 467 ulong j; 468 int ret = kstrtoul(val, 0, &j); 469 470 if (!ret) { 471 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 472 adjust_jiffies_till_sched_qs(); 473 } 474 return ret; 475 } 476 477 static struct kernel_param_ops first_fqs_jiffies_ops = { 478 .set = param_set_first_fqs_jiffies, 479 .get = param_get_ulong, 480 }; 481 482 static struct kernel_param_ops next_fqs_jiffies_ops = { 483 .set = param_set_next_fqs_jiffies, 484 .get = param_get_ulong, 485 }; 486 487 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 488 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 489 module_param(rcu_kick_kthreads, bool, 0644); 490 491 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 492 static int rcu_pending(void); 493 494 /* 495 * Return the number of RCU GPs completed thus far for debug & stats. 496 */ 497 unsigned long rcu_get_gp_seq(void) 498 { 499 return READ_ONCE(rcu_state.gp_seq); 500 } 501 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 502 503 /* 504 * Return the number of RCU expedited batches completed thus far for 505 * debug & stats. Odd numbers mean that a batch is in progress, even 506 * numbers mean idle. The value returned will thus be roughly double 507 * the cumulative batches since boot. 508 */ 509 unsigned long rcu_exp_batches_completed(void) 510 { 511 return rcu_state.expedited_sequence; 512 } 513 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 514 515 /* 516 * Return the root node of the rcu_state structure. 517 */ 518 static struct rcu_node *rcu_get_root(void) 519 { 520 return &rcu_state.node[0]; 521 } 522 523 /* 524 * Convert a ->gp_state value to a character string. 525 */ 526 static const char *gp_state_getname(short gs) 527 { 528 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 529 return "???"; 530 return gp_state_names[gs]; 531 } 532 533 /* 534 * Send along grace-period-related data for rcutorture diagnostics. 535 */ 536 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 537 unsigned long *gp_seq) 538 { 539 switch (test_type) { 540 case RCU_FLAVOR: 541 *flags = READ_ONCE(rcu_state.gp_flags); 542 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 543 break; 544 default: 545 break; 546 } 547 } 548 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 549 550 /* 551 * Enter an RCU extended quiescent state, which can be either the 552 * idle loop or adaptive-tickless usermode execution. 553 * 554 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 555 * the possibility of usermode upcalls having messed up our count 556 * of interrupt nesting level during the prior busy period. 557 */ 558 static void rcu_eqs_enter(bool user) 559 { 560 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 561 562 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 563 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 564 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 565 rdp->dynticks_nesting == 0); 566 if (rdp->dynticks_nesting != 1) { 567 rdp->dynticks_nesting--; 568 return; 569 } 570 571 lockdep_assert_irqs_disabled(); 572 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 573 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 574 rdp = this_cpu_ptr(&rcu_data); 575 do_nocb_deferred_wakeup(rdp); 576 rcu_prepare_for_idle(); 577 rcu_preempt_deferred_qs(current); 578 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 579 rcu_dynticks_eqs_enter(); 580 rcu_dynticks_task_enter(); 581 } 582 583 /** 584 * rcu_idle_enter - inform RCU that current CPU is entering idle 585 * 586 * Enter idle mode, in other words, -leave- the mode in which RCU 587 * read-side critical sections can occur. (Though RCU read-side 588 * critical sections can occur in irq handlers in idle, a possibility 589 * handled by irq_enter() and irq_exit().) 590 * 591 * If you add or remove a call to rcu_idle_enter(), be sure to test with 592 * CONFIG_RCU_EQS_DEBUG=y. 593 */ 594 void rcu_idle_enter(void) 595 { 596 lockdep_assert_irqs_disabled(); 597 rcu_eqs_enter(false); 598 } 599 600 #ifdef CONFIG_NO_HZ_FULL 601 /** 602 * rcu_user_enter - inform RCU that we are resuming userspace. 603 * 604 * Enter RCU idle mode right before resuming userspace. No use of RCU 605 * is permitted between this call and rcu_user_exit(). This way the 606 * CPU doesn't need to maintain the tick for RCU maintenance purposes 607 * when the CPU runs in userspace. 608 * 609 * If you add or remove a call to rcu_user_enter(), be sure to test with 610 * CONFIG_RCU_EQS_DEBUG=y. 611 */ 612 void rcu_user_enter(void) 613 { 614 lockdep_assert_irqs_disabled(); 615 rcu_eqs_enter(true); 616 } 617 #endif /* CONFIG_NO_HZ_FULL */ 618 619 /* 620 * If we are returning from the outermost NMI handler that interrupted an 621 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 622 * to let the RCU grace-period handling know that the CPU is back to 623 * being RCU-idle. 624 * 625 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 626 * with CONFIG_RCU_EQS_DEBUG=y. 627 */ 628 static __always_inline void rcu_nmi_exit_common(bool irq) 629 { 630 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 631 632 /* 633 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 634 * (We are exiting an NMI handler, so RCU better be paying attention 635 * to us!) 636 */ 637 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 638 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 639 640 /* 641 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 642 * leave it in non-RCU-idle state. 643 */ 644 if (rdp->dynticks_nmi_nesting != 1) { 645 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 646 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 647 rdp->dynticks_nmi_nesting - 2); 648 return; 649 } 650 651 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 652 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 653 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 654 655 if (irq) 656 rcu_prepare_for_idle(); 657 658 rcu_dynticks_eqs_enter(); 659 660 if (irq) 661 rcu_dynticks_task_enter(); 662 } 663 664 /** 665 * rcu_nmi_exit - inform RCU of exit from NMI context 666 * 667 * If you add or remove a call to rcu_nmi_exit(), be sure to test 668 * with CONFIG_RCU_EQS_DEBUG=y. 669 */ 670 void rcu_nmi_exit(void) 671 { 672 rcu_nmi_exit_common(false); 673 } 674 675 /** 676 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 677 * 678 * Exit from an interrupt handler, which might possibly result in entering 679 * idle mode, in other words, leaving the mode in which read-side critical 680 * sections can occur. The caller must have disabled interrupts. 681 * 682 * This code assumes that the idle loop never does anything that might 683 * result in unbalanced calls to irq_enter() and irq_exit(). If your 684 * architecture's idle loop violates this assumption, RCU will give you what 685 * you deserve, good and hard. But very infrequently and irreproducibly. 686 * 687 * Use things like work queues to work around this limitation. 688 * 689 * You have been warned. 690 * 691 * If you add or remove a call to rcu_irq_exit(), be sure to test with 692 * CONFIG_RCU_EQS_DEBUG=y. 693 */ 694 void rcu_irq_exit(void) 695 { 696 lockdep_assert_irqs_disabled(); 697 rcu_nmi_exit_common(true); 698 } 699 700 /* 701 * Wrapper for rcu_irq_exit() where interrupts are enabled. 702 * 703 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 704 * with CONFIG_RCU_EQS_DEBUG=y. 705 */ 706 void rcu_irq_exit_irqson(void) 707 { 708 unsigned long flags; 709 710 local_irq_save(flags); 711 rcu_irq_exit(); 712 local_irq_restore(flags); 713 } 714 715 /* 716 * Exit an RCU extended quiescent state, which can be either the 717 * idle loop or adaptive-tickless usermode execution. 718 * 719 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 720 * allow for the possibility of usermode upcalls messing up our count of 721 * interrupt nesting level during the busy period that is just now starting. 722 */ 723 static void rcu_eqs_exit(bool user) 724 { 725 struct rcu_data *rdp; 726 long oldval; 727 728 lockdep_assert_irqs_disabled(); 729 rdp = this_cpu_ptr(&rcu_data); 730 oldval = rdp->dynticks_nesting; 731 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 732 if (oldval) { 733 rdp->dynticks_nesting++; 734 return; 735 } 736 rcu_dynticks_task_exit(); 737 rcu_dynticks_eqs_exit(); 738 rcu_cleanup_after_idle(); 739 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 740 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 741 WRITE_ONCE(rdp->dynticks_nesting, 1); 742 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 743 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 744 } 745 746 /** 747 * rcu_idle_exit - inform RCU that current CPU is leaving idle 748 * 749 * Exit idle mode, in other words, -enter- the mode in which RCU 750 * read-side critical sections can occur. 751 * 752 * If you add or remove a call to rcu_idle_exit(), be sure to test with 753 * CONFIG_RCU_EQS_DEBUG=y. 754 */ 755 void rcu_idle_exit(void) 756 { 757 unsigned long flags; 758 759 local_irq_save(flags); 760 rcu_eqs_exit(false); 761 local_irq_restore(flags); 762 } 763 764 #ifdef CONFIG_NO_HZ_FULL 765 /** 766 * rcu_user_exit - inform RCU that we are exiting userspace. 767 * 768 * Exit RCU idle mode while entering the kernel because it can 769 * run a RCU read side critical section anytime. 770 * 771 * If you add or remove a call to rcu_user_exit(), be sure to test with 772 * CONFIG_RCU_EQS_DEBUG=y. 773 */ 774 void rcu_user_exit(void) 775 { 776 rcu_eqs_exit(1); 777 } 778 #endif /* CONFIG_NO_HZ_FULL */ 779 780 /** 781 * rcu_nmi_enter_common - inform RCU of entry to NMI context 782 * @irq: Is this call from rcu_irq_enter? 783 * 784 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 785 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 786 * that the CPU is active. This implementation permits nested NMIs, as 787 * long as the nesting level does not overflow an int. (You will probably 788 * run out of stack space first.) 789 * 790 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 791 * with CONFIG_RCU_EQS_DEBUG=y. 792 */ 793 static __always_inline void rcu_nmi_enter_common(bool irq) 794 { 795 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 796 long incby = 2; 797 798 /* Complain about underflow. */ 799 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 800 801 /* 802 * If idle from RCU viewpoint, atomically increment ->dynticks 803 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 804 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 805 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 806 * to be in the outermost NMI handler that interrupted an RCU-idle 807 * period (observation due to Andy Lutomirski). 808 */ 809 if (rcu_dynticks_curr_cpu_in_eqs()) { 810 811 if (irq) 812 rcu_dynticks_task_exit(); 813 814 rcu_dynticks_eqs_exit(); 815 816 if (irq) 817 rcu_cleanup_after_idle(); 818 819 incby = 1; 820 } 821 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 822 rdp->dynticks_nmi_nesting, 823 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 824 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 825 rdp->dynticks_nmi_nesting + incby); 826 barrier(); 827 } 828 829 /** 830 * rcu_nmi_enter - inform RCU of entry to NMI context 831 */ 832 void rcu_nmi_enter(void) 833 { 834 rcu_nmi_enter_common(false); 835 } 836 NOKPROBE_SYMBOL(rcu_nmi_enter); 837 838 /** 839 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 840 * 841 * Enter an interrupt handler, which might possibly result in exiting 842 * idle mode, in other words, entering the mode in which read-side critical 843 * sections can occur. The caller must have disabled interrupts. 844 * 845 * Note that the Linux kernel is fully capable of entering an interrupt 846 * handler that it never exits, for example when doing upcalls to user mode! 847 * This code assumes that the idle loop never does upcalls to user mode. 848 * If your architecture's idle loop does do upcalls to user mode (or does 849 * anything else that results in unbalanced calls to the irq_enter() and 850 * irq_exit() functions), RCU will give you what you deserve, good and hard. 851 * But very infrequently and irreproducibly. 852 * 853 * Use things like work queues to work around this limitation. 854 * 855 * You have been warned. 856 * 857 * If you add or remove a call to rcu_irq_enter(), be sure to test with 858 * CONFIG_RCU_EQS_DEBUG=y. 859 */ 860 void rcu_irq_enter(void) 861 { 862 lockdep_assert_irqs_disabled(); 863 rcu_nmi_enter_common(true); 864 } 865 866 /* 867 * Wrapper for rcu_irq_enter() where interrupts are enabled. 868 * 869 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 870 * with CONFIG_RCU_EQS_DEBUG=y. 871 */ 872 void rcu_irq_enter_irqson(void) 873 { 874 unsigned long flags; 875 876 local_irq_save(flags); 877 rcu_irq_enter(); 878 local_irq_restore(flags); 879 } 880 881 /** 882 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 883 * 884 * Return true if RCU is watching the running CPU, which means that this 885 * CPU can safely enter RCU read-side critical sections. In other words, 886 * if the current CPU is not in its idle loop or is in an interrupt or 887 * NMI handler, return true. 888 */ 889 bool notrace rcu_is_watching(void) 890 { 891 bool ret; 892 893 preempt_disable_notrace(); 894 ret = !rcu_dynticks_curr_cpu_in_eqs(); 895 preempt_enable_notrace(); 896 return ret; 897 } 898 EXPORT_SYMBOL_GPL(rcu_is_watching); 899 900 /* 901 * If a holdout task is actually running, request an urgent quiescent 902 * state from its CPU. This is unsynchronized, so migrations can cause 903 * the request to go to the wrong CPU. Which is OK, all that will happen 904 * is that the CPU's next context switch will be a bit slower and next 905 * time around this task will generate another request. 906 */ 907 void rcu_request_urgent_qs_task(struct task_struct *t) 908 { 909 int cpu; 910 911 barrier(); 912 cpu = task_cpu(t); 913 if (!task_curr(t)) 914 return; /* This task is not running on that CPU. */ 915 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 916 } 917 918 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 919 920 /* 921 * Is the current CPU online as far as RCU is concerned? 922 * 923 * Disable preemption to avoid false positives that could otherwise 924 * happen due to the current CPU number being sampled, this task being 925 * preempted, its old CPU being taken offline, resuming on some other CPU, 926 * then determining that its old CPU is now offline. 927 * 928 * Disable checking if in an NMI handler because we cannot safely 929 * report errors from NMI handlers anyway. In addition, it is OK to use 930 * RCU on an offline processor during initial boot, hence the check for 931 * rcu_scheduler_fully_active. 932 */ 933 bool rcu_lockdep_current_cpu_online(void) 934 { 935 struct rcu_data *rdp; 936 struct rcu_node *rnp; 937 bool ret = false; 938 939 if (in_nmi() || !rcu_scheduler_fully_active) 940 return true; 941 preempt_disable(); 942 rdp = this_cpu_ptr(&rcu_data); 943 rnp = rdp->mynode; 944 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 945 ret = true; 946 preempt_enable(); 947 return ret; 948 } 949 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 950 951 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 952 953 /* 954 * We are reporting a quiescent state on behalf of some other CPU, so 955 * it is our responsibility to check for and handle potential overflow 956 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 957 * After all, the CPU might be in deep idle state, and thus executing no 958 * code whatsoever. 959 */ 960 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 961 { 962 raw_lockdep_assert_held_rcu_node(rnp); 963 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 964 rnp->gp_seq)) 965 WRITE_ONCE(rdp->gpwrap, true); 966 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 967 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 968 } 969 970 /* 971 * Snapshot the specified CPU's dynticks counter so that we can later 972 * credit them with an implicit quiescent state. Return 1 if this CPU 973 * is in dynticks idle mode, which is an extended quiescent state. 974 */ 975 static int dyntick_save_progress_counter(struct rcu_data *rdp) 976 { 977 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 978 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 979 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 980 rcu_gpnum_ovf(rdp->mynode, rdp); 981 return 1; 982 } 983 return 0; 984 } 985 986 /* 987 * Return true if the specified CPU has passed through a quiescent 988 * state by virtue of being in or having passed through an dynticks 989 * idle state since the last call to dyntick_save_progress_counter() 990 * for this same CPU, or by virtue of having been offline. 991 */ 992 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 993 { 994 unsigned long jtsq; 995 bool *rnhqp; 996 bool *ruqp; 997 struct rcu_node *rnp = rdp->mynode; 998 999 /* 1000 * If the CPU passed through or entered a dynticks idle phase with 1001 * no active irq/NMI handlers, then we can safely pretend that the CPU 1002 * already acknowledged the request to pass through a quiescent 1003 * state. Either way, that CPU cannot possibly be in an RCU 1004 * read-side critical section that started before the beginning 1005 * of the current RCU grace period. 1006 */ 1007 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1008 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1009 rcu_gpnum_ovf(rnp, rdp); 1010 return 1; 1011 } 1012 1013 /* If waiting too long on an offline CPU, complain. */ 1014 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1015 time_after(jiffies, rcu_state.gp_start + HZ)) { 1016 bool onl; 1017 struct rcu_node *rnp1; 1018 1019 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1020 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1021 __func__, rnp->grplo, rnp->grphi, rnp->level, 1022 (long)rnp->gp_seq, (long)rnp->completedqs); 1023 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1024 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1025 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1026 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1027 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1028 __func__, rdp->cpu, ".o"[onl], 1029 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1030 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1031 return 1; /* Break things loose after complaining. */ 1032 } 1033 1034 /* 1035 * A CPU running for an extended time within the kernel can 1036 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1037 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1038 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1039 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1040 * variable are safe because the assignments are repeated if this 1041 * CPU failed to pass through a quiescent state. This code 1042 * also checks .jiffies_resched in case jiffies_to_sched_qs 1043 * is set way high. 1044 */ 1045 jtsq = READ_ONCE(jiffies_to_sched_qs); 1046 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1047 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1048 if (!READ_ONCE(*rnhqp) && 1049 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1050 time_after(jiffies, rcu_state.jiffies_resched))) { 1051 WRITE_ONCE(*rnhqp, true); 1052 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1053 smp_store_release(ruqp, true); 1054 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1055 WRITE_ONCE(*ruqp, true); 1056 } 1057 1058 /* 1059 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1060 * The above code handles this, but only for straight cond_resched(). 1061 * And some in-kernel loops check need_resched() before calling 1062 * cond_resched(), which defeats the above code for CPUs that are 1063 * running in-kernel with scheduling-clock interrupts disabled. 1064 * So hit them over the head with the resched_cpu() hammer! 1065 */ 1066 if (tick_nohz_full_cpu(rdp->cpu) && 1067 time_after(jiffies, 1068 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1069 resched_cpu(rdp->cpu); 1070 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1071 } 1072 1073 /* 1074 * If more than halfway to RCU CPU stall-warning time, invoke 1075 * resched_cpu() more frequently to try to loosen things up a bit. 1076 * Also check to see if the CPU is getting hammered with interrupts, 1077 * but only once per grace period, just to keep the IPIs down to 1078 * a dull roar. 1079 */ 1080 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1081 if (time_after(jiffies, 1082 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1083 resched_cpu(rdp->cpu); 1084 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1085 } 1086 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1087 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1088 (rnp->ffmask & rdp->grpmask)) { 1089 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1090 rdp->rcu_iw_pending = true; 1091 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1092 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1093 } 1094 } 1095 1096 return 0; 1097 } 1098 1099 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1100 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1101 unsigned long gp_seq_req, const char *s) 1102 { 1103 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1104 rnp->level, rnp->grplo, rnp->grphi, s); 1105 } 1106 1107 /* 1108 * rcu_start_this_gp - Request the start of a particular grace period 1109 * @rnp_start: The leaf node of the CPU from which to start. 1110 * @rdp: The rcu_data corresponding to the CPU from which to start. 1111 * @gp_seq_req: The gp_seq of the grace period to start. 1112 * 1113 * Start the specified grace period, as needed to handle newly arrived 1114 * callbacks. The required future grace periods are recorded in each 1115 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1116 * is reason to awaken the grace-period kthread. 1117 * 1118 * The caller must hold the specified rcu_node structure's ->lock, which 1119 * is why the caller is responsible for waking the grace-period kthread. 1120 * 1121 * Returns true if the GP thread needs to be awakened else false. 1122 */ 1123 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1124 unsigned long gp_seq_req) 1125 { 1126 bool ret = false; 1127 struct rcu_node *rnp; 1128 1129 /* 1130 * Use funnel locking to either acquire the root rcu_node 1131 * structure's lock or bail out if the need for this grace period 1132 * has already been recorded -- or if that grace period has in 1133 * fact already started. If there is already a grace period in 1134 * progress in a non-leaf node, no recording is needed because the 1135 * end of the grace period will scan the leaf rcu_node structures. 1136 * Note that rnp_start->lock must not be released. 1137 */ 1138 raw_lockdep_assert_held_rcu_node(rnp_start); 1139 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1140 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1141 if (rnp != rnp_start) 1142 raw_spin_lock_rcu_node(rnp); 1143 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1144 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1145 (rnp != rnp_start && 1146 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1147 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1148 TPS("Prestarted")); 1149 goto unlock_out; 1150 } 1151 rnp->gp_seq_needed = gp_seq_req; 1152 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1153 /* 1154 * We just marked the leaf or internal node, and a 1155 * grace period is in progress, which means that 1156 * rcu_gp_cleanup() will see the marking. Bail to 1157 * reduce contention. 1158 */ 1159 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1160 TPS("Startedleaf")); 1161 goto unlock_out; 1162 } 1163 if (rnp != rnp_start && rnp->parent != NULL) 1164 raw_spin_unlock_rcu_node(rnp); 1165 if (!rnp->parent) 1166 break; /* At root, and perhaps also leaf. */ 1167 } 1168 1169 /* If GP already in progress, just leave, otherwise start one. */ 1170 if (rcu_gp_in_progress()) { 1171 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1172 goto unlock_out; 1173 } 1174 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1175 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1176 rcu_state.gp_req_activity = jiffies; 1177 if (!rcu_state.gp_kthread) { 1178 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1179 goto unlock_out; 1180 } 1181 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1182 ret = true; /* Caller must wake GP kthread. */ 1183 unlock_out: 1184 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1185 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1186 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1187 rdp->gp_seq_needed = rnp->gp_seq_needed; 1188 } 1189 if (rnp != rnp_start) 1190 raw_spin_unlock_rcu_node(rnp); 1191 return ret; 1192 } 1193 1194 /* 1195 * Clean up any old requests for the just-ended grace period. Also return 1196 * whether any additional grace periods have been requested. 1197 */ 1198 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1199 { 1200 bool needmore; 1201 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1202 1203 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1204 if (!needmore) 1205 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1206 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1207 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1208 return needmore; 1209 } 1210 1211 /* 1212 * Awaken the grace-period kthread. Don't do a self-awaken (unless in 1213 * an interrupt or softirq handler), and don't bother awakening when there 1214 * is nothing for the grace-period kthread to do (as in several CPUs raced 1215 * to awaken, and we lost), and finally don't try to awaken a kthread that 1216 * has not yet been created. If all those checks are passed, track some 1217 * debug information and awaken. 1218 * 1219 * So why do the self-wakeup when in an interrupt or softirq handler 1220 * in the grace-period kthread's context? Because the kthread might have 1221 * been interrupted just as it was going to sleep, and just after the final 1222 * pre-sleep check of the awaken condition. In this case, a wakeup really 1223 * is required, and is therefore supplied. 1224 */ 1225 static void rcu_gp_kthread_wake(void) 1226 { 1227 if ((current == rcu_state.gp_kthread && 1228 !in_irq() && !in_serving_softirq()) || 1229 !READ_ONCE(rcu_state.gp_flags) || 1230 !rcu_state.gp_kthread) 1231 return; 1232 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1233 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1234 swake_up_one(&rcu_state.gp_wq); 1235 } 1236 1237 /* 1238 * If there is room, assign a ->gp_seq number to any callbacks on this 1239 * CPU that have not already been assigned. Also accelerate any callbacks 1240 * that were previously assigned a ->gp_seq number that has since proven 1241 * to be too conservative, which can happen if callbacks get assigned a 1242 * ->gp_seq number while RCU is idle, but with reference to a non-root 1243 * rcu_node structure. This function is idempotent, so it does not hurt 1244 * to call it repeatedly. Returns an flag saying that we should awaken 1245 * the RCU grace-period kthread. 1246 * 1247 * The caller must hold rnp->lock with interrupts disabled. 1248 */ 1249 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1250 { 1251 unsigned long gp_seq_req; 1252 bool ret = false; 1253 1254 raw_lockdep_assert_held_rcu_node(rnp); 1255 1256 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1257 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1258 return false; 1259 1260 /* 1261 * Callbacks are often registered with incomplete grace-period 1262 * information. Something about the fact that getting exact 1263 * information requires acquiring a global lock... RCU therefore 1264 * makes a conservative estimate of the grace period number at which 1265 * a given callback will become ready to invoke. The following 1266 * code checks this estimate and improves it when possible, thus 1267 * accelerating callback invocation to an earlier grace-period 1268 * number. 1269 */ 1270 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1271 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1272 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1273 1274 /* Trace depending on how much we were able to accelerate. */ 1275 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1276 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1277 else 1278 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1279 return ret; 1280 } 1281 1282 /* 1283 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1284 * rcu_node structure's ->lock be held. It consults the cached value 1285 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1286 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1287 * while holding the leaf rcu_node structure's ->lock. 1288 */ 1289 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1290 struct rcu_data *rdp) 1291 { 1292 unsigned long c; 1293 bool needwake; 1294 1295 lockdep_assert_irqs_disabled(); 1296 c = rcu_seq_snap(&rcu_state.gp_seq); 1297 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1298 /* Old request still live, so mark recent callbacks. */ 1299 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1300 return; 1301 } 1302 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1303 needwake = rcu_accelerate_cbs(rnp, rdp); 1304 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1305 if (needwake) 1306 rcu_gp_kthread_wake(); 1307 } 1308 1309 /* 1310 * Move any callbacks whose grace period has completed to the 1311 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1312 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1313 * sublist. This function is idempotent, so it does not hurt to 1314 * invoke it repeatedly. As long as it is not invoked -too- often... 1315 * Returns true if the RCU grace-period kthread needs to be awakened. 1316 * 1317 * The caller must hold rnp->lock with interrupts disabled. 1318 */ 1319 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1320 { 1321 raw_lockdep_assert_held_rcu_node(rnp); 1322 1323 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1324 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1325 return false; 1326 1327 /* 1328 * Find all callbacks whose ->gp_seq numbers indicate that they 1329 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1330 */ 1331 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1332 1333 /* Classify any remaining callbacks. */ 1334 return rcu_accelerate_cbs(rnp, rdp); 1335 } 1336 1337 /* 1338 * Update CPU-local rcu_data state to record the beginnings and ends of 1339 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1340 * structure corresponding to the current CPU, and must have irqs disabled. 1341 * Returns true if the grace-period kthread needs to be awakened. 1342 */ 1343 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1344 { 1345 bool ret; 1346 bool need_gp; 1347 1348 raw_lockdep_assert_held_rcu_node(rnp); 1349 1350 if (rdp->gp_seq == rnp->gp_seq) 1351 return false; /* Nothing to do. */ 1352 1353 /* Handle the ends of any preceding grace periods first. */ 1354 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1355 unlikely(READ_ONCE(rdp->gpwrap))) { 1356 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1357 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1358 } else { 1359 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1360 } 1361 1362 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1363 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1364 unlikely(READ_ONCE(rdp->gpwrap))) { 1365 /* 1366 * If the current grace period is waiting for this CPU, 1367 * set up to detect a quiescent state, otherwise don't 1368 * go looking for one. 1369 */ 1370 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1371 need_gp = !!(rnp->qsmask & rdp->grpmask); 1372 rdp->cpu_no_qs.b.norm = need_gp; 1373 rdp->core_needs_qs = need_gp; 1374 zero_cpu_stall_ticks(rdp); 1375 } 1376 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1377 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1378 rdp->gp_seq_needed = rnp->gp_seq_needed; 1379 WRITE_ONCE(rdp->gpwrap, false); 1380 rcu_gpnum_ovf(rnp, rdp); 1381 return ret; 1382 } 1383 1384 static void note_gp_changes(struct rcu_data *rdp) 1385 { 1386 unsigned long flags; 1387 bool needwake; 1388 struct rcu_node *rnp; 1389 1390 local_irq_save(flags); 1391 rnp = rdp->mynode; 1392 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1393 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1394 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1395 local_irq_restore(flags); 1396 return; 1397 } 1398 needwake = __note_gp_changes(rnp, rdp); 1399 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1400 if (needwake) 1401 rcu_gp_kthread_wake(); 1402 } 1403 1404 static void rcu_gp_slow(int delay) 1405 { 1406 if (delay > 0 && 1407 !(rcu_seq_ctr(rcu_state.gp_seq) % 1408 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1409 schedule_timeout_uninterruptible(delay); 1410 } 1411 1412 /* 1413 * Initialize a new grace period. Return false if no grace period required. 1414 */ 1415 static bool rcu_gp_init(void) 1416 { 1417 unsigned long flags; 1418 unsigned long oldmask; 1419 unsigned long mask; 1420 struct rcu_data *rdp; 1421 struct rcu_node *rnp = rcu_get_root(); 1422 1423 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1424 raw_spin_lock_irq_rcu_node(rnp); 1425 if (!READ_ONCE(rcu_state.gp_flags)) { 1426 /* Spurious wakeup, tell caller to go back to sleep. */ 1427 raw_spin_unlock_irq_rcu_node(rnp); 1428 return false; 1429 } 1430 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1431 1432 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1433 /* 1434 * Grace period already in progress, don't start another. 1435 * Not supposed to be able to happen. 1436 */ 1437 raw_spin_unlock_irq_rcu_node(rnp); 1438 return false; 1439 } 1440 1441 /* Advance to a new grace period and initialize state. */ 1442 record_gp_stall_check_time(); 1443 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1444 rcu_seq_start(&rcu_state.gp_seq); 1445 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1446 raw_spin_unlock_irq_rcu_node(rnp); 1447 1448 /* 1449 * Apply per-leaf buffered online and offline operations to the 1450 * rcu_node tree. Note that this new grace period need not wait 1451 * for subsequent online CPUs, and that quiescent-state forcing 1452 * will handle subsequent offline CPUs. 1453 */ 1454 rcu_state.gp_state = RCU_GP_ONOFF; 1455 rcu_for_each_leaf_node(rnp) { 1456 raw_spin_lock(&rcu_state.ofl_lock); 1457 raw_spin_lock_irq_rcu_node(rnp); 1458 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1459 !rnp->wait_blkd_tasks) { 1460 /* Nothing to do on this leaf rcu_node structure. */ 1461 raw_spin_unlock_irq_rcu_node(rnp); 1462 raw_spin_unlock(&rcu_state.ofl_lock); 1463 continue; 1464 } 1465 1466 /* Record old state, apply changes to ->qsmaskinit field. */ 1467 oldmask = rnp->qsmaskinit; 1468 rnp->qsmaskinit = rnp->qsmaskinitnext; 1469 1470 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1471 if (!oldmask != !rnp->qsmaskinit) { 1472 if (!oldmask) { /* First online CPU for rcu_node. */ 1473 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1474 rcu_init_new_rnp(rnp); 1475 } else if (rcu_preempt_has_tasks(rnp)) { 1476 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1477 } else { /* Last offline CPU and can propagate. */ 1478 rcu_cleanup_dead_rnp(rnp); 1479 } 1480 } 1481 1482 /* 1483 * If all waited-on tasks from prior grace period are 1484 * done, and if all this rcu_node structure's CPUs are 1485 * still offline, propagate up the rcu_node tree and 1486 * clear ->wait_blkd_tasks. Otherwise, if one of this 1487 * rcu_node structure's CPUs has since come back online, 1488 * simply clear ->wait_blkd_tasks. 1489 */ 1490 if (rnp->wait_blkd_tasks && 1491 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1492 rnp->wait_blkd_tasks = false; 1493 if (!rnp->qsmaskinit) 1494 rcu_cleanup_dead_rnp(rnp); 1495 } 1496 1497 raw_spin_unlock_irq_rcu_node(rnp); 1498 raw_spin_unlock(&rcu_state.ofl_lock); 1499 } 1500 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1501 1502 /* 1503 * Set the quiescent-state-needed bits in all the rcu_node 1504 * structures for all currently online CPUs in breadth-first 1505 * order, starting from the root rcu_node structure, relying on the 1506 * layout of the tree within the rcu_state.node[] array. Note that 1507 * other CPUs will access only the leaves of the hierarchy, thus 1508 * seeing that no grace period is in progress, at least until the 1509 * corresponding leaf node has been initialized. 1510 * 1511 * The grace period cannot complete until the initialization 1512 * process finishes, because this kthread handles both. 1513 */ 1514 rcu_state.gp_state = RCU_GP_INIT; 1515 rcu_for_each_node_breadth_first(rnp) { 1516 rcu_gp_slow(gp_init_delay); 1517 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1518 rdp = this_cpu_ptr(&rcu_data); 1519 rcu_preempt_check_blocked_tasks(rnp); 1520 rnp->qsmask = rnp->qsmaskinit; 1521 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1522 if (rnp == rdp->mynode) 1523 (void)__note_gp_changes(rnp, rdp); 1524 rcu_preempt_boost_start_gp(rnp); 1525 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1526 rnp->level, rnp->grplo, 1527 rnp->grphi, rnp->qsmask); 1528 /* Quiescent states for tasks on any now-offline CPUs. */ 1529 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1530 rnp->rcu_gp_init_mask = mask; 1531 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1532 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1533 else 1534 raw_spin_unlock_irq_rcu_node(rnp); 1535 cond_resched_tasks_rcu_qs(); 1536 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1537 } 1538 1539 return true; 1540 } 1541 1542 /* 1543 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1544 * time. 1545 */ 1546 static bool rcu_gp_fqs_check_wake(int *gfp) 1547 { 1548 struct rcu_node *rnp = rcu_get_root(); 1549 1550 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1551 *gfp = READ_ONCE(rcu_state.gp_flags); 1552 if (*gfp & RCU_GP_FLAG_FQS) 1553 return true; 1554 1555 /* The current grace period has completed. */ 1556 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1557 return true; 1558 1559 return false; 1560 } 1561 1562 /* 1563 * Do one round of quiescent-state forcing. 1564 */ 1565 static void rcu_gp_fqs(bool first_time) 1566 { 1567 struct rcu_node *rnp = rcu_get_root(); 1568 1569 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1570 rcu_state.n_force_qs++; 1571 if (first_time) { 1572 /* Collect dyntick-idle snapshots. */ 1573 force_qs_rnp(dyntick_save_progress_counter); 1574 } else { 1575 /* Handle dyntick-idle and offline CPUs. */ 1576 force_qs_rnp(rcu_implicit_dynticks_qs); 1577 } 1578 /* Clear flag to prevent immediate re-entry. */ 1579 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1580 raw_spin_lock_irq_rcu_node(rnp); 1581 WRITE_ONCE(rcu_state.gp_flags, 1582 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1583 raw_spin_unlock_irq_rcu_node(rnp); 1584 } 1585 } 1586 1587 /* 1588 * Loop doing repeated quiescent-state forcing until the grace period ends. 1589 */ 1590 static void rcu_gp_fqs_loop(void) 1591 { 1592 bool first_gp_fqs; 1593 int gf; 1594 unsigned long j; 1595 int ret; 1596 struct rcu_node *rnp = rcu_get_root(); 1597 1598 first_gp_fqs = true; 1599 j = READ_ONCE(jiffies_till_first_fqs); 1600 ret = 0; 1601 for (;;) { 1602 if (!ret) { 1603 rcu_state.jiffies_force_qs = jiffies + j; 1604 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1605 jiffies + (j ? 3 * j : 2)); 1606 } 1607 trace_rcu_grace_period(rcu_state.name, 1608 READ_ONCE(rcu_state.gp_seq), 1609 TPS("fqswait")); 1610 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1611 ret = swait_event_idle_timeout_exclusive( 1612 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1613 rcu_state.gp_state = RCU_GP_DOING_FQS; 1614 /* Locking provides needed memory barriers. */ 1615 /* If grace period done, leave loop. */ 1616 if (!READ_ONCE(rnp->qsmask) && 1617 !rcu_preempt_blocked_readers_cgp(rnp)) 1618 break; 1619 /* If time for quiescent-state forcing, do it. */ 1620 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1621 (gf & RCU_GP_FLAG_FQS)) { 1622 trace_rcu_grace_period(rcu_state.name, 1623 READ_ONCE(rcu_state.gp_seq), 1624 TPS("fqsstart")); 1625 rcu_gp_fqs(first_gp_fqs); 1626 first_gp_fqs = false; 1627 trace_rcu_grace_period(rcu_state.name, 1628 READ_ONCE(rcu_state.gp_seq), 1629 TPS("fqsend")); 1630 cond_resched_tasks_rcu_qs(); 1631 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1632 ret = 0; /* Force full wait till next FQS. */ 1633 j = READ_ONCE(jiffies_till_next_fqs); 1634 } else { 1635 /* Deal with stray signal. */ 1636 cond_resched_tasks_rcu_qs(); 1637 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1638 WARN_ON(signal_pending(current)); 1639 trace_rcu_grace_period(rcu_state.name, 1640 READ_ONCE(rcu_state.gp_seq), 1641 TPS("fqswaitsig")); 1642 ret = 1; /* Keep old FQS timing. */ 1643 j = jiffies; 1644 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1645 j = 1; 1646 else 1647 j = rcu_state.jiffies_force_qs - j; 1648 } 1649 } 1650 } 1651 1652 /* 1653 * Clean up after the old grace period. 1654 */ 1655 static void rcu_gp_cleanup(void) 1656 { 1657 unsigned long gp_duration; 1658 bool needgp = false; 1659 unsigned long new_gp_seq; 1660 struct rcu_data *rdp; 1661 struct rcu_node *rnp = rcu_get_root(); 1662 struct swait_queue_head *sq; 1663 1664 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1665 raw_spin_lock_irq_rcu_node(rnp); 1666 rcu_state.gp_end = jiffies; 1667 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1668 if (gp_duration > rcu_state.gp_max) 1669 rcu_state.gp_max = gp_duration; 1670 1671 /* 1672 * We know the grace period is complete, but to everyone else 1673 * it appears to still be ongoing. But it is also the case 1674 * that to everyone else it looks like there is nothing that 1675 * they can do to advance the grace period. It is therefore 1676 * safe for us to drop the lock in order to mark the grace 1677 * period as completed in all of the rcu_node structures. 1678 */ 1679 raw_spin_unlock_irq_rcu_node(rnp); 1680 1681 /* 1682 * Propagate new ->gp_seq value to rcu_node structures so that 1683 * other CPUs don't have to wait until the start of the next grace 1684 * period to process their callbacks. This also avoids some nasty 1685 * RCU grace-period initialization races by forcing the end of 1686 * the current grace period to be completely recorded in all of 1687 * the rcu_node structures before the beginning of the next grace 1688 * period is recorded in any of the rcu_node structures. 1689 */ 1690 new_gp_seq = rcu_state.gp_seq; 1691 rcu_seq_end(&new_gp_seq); 1692 rcu_for_each_node_breadth_first(rnp) { 1693 raw_spin_lock_irq_rcu_node(rnp); 1694 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1695 dump_blkd_tasks(rnp, 10); 1696 WARN_ON_ONCE(rnp->qsmask); 1697 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1698 rdp = this_cpu_ptr(&rcu_data); 1699 if (rnp == rdp->mynode) 1700 needgp = __note_gp_changes(rnp, rdp) || needgp; 1701 /* smp_mb() provided by prior unlock-lock pair. */ 1702 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1703 sq = rcu_nocb_gp_get(rnp); 1704 raw_spin_unlock_irq_rcu_node(rnp); 1705 rcu_nocb_gp_cleanup(sq); 1706 cond_resched_tasks_rcu_qs(); 1707 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1708 rcu_gp_slow(gp_cleanup_delay); 1709 } 1710 rnp = rcu_get_root(); 1711 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1712 1713 /* Declare grace period done, trace first to use old GP number. */ 1714 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1715 rcu_seq_end(&rcu_state.gp_seq); 1716 rcu_state.gp_state = RCU_GP_IDLE; 1717 /* Check for GP requests since above loop. */ 1718 rdp = this_cpu_ptr(&rcu_data); 1719 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1720 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1721 TPS("CleanupMore")); 1722 needgp = true; 1723 } 1724 /* Advance CBs to reduce false positives below. */ 1725 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 1726 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1727 rcu_state.gp_req_activity = jiffies; 1728 trace_rcu_grace_period(rcu_state.name, 1729 READ_ONCE(rcu_state.gp_seq), 1730 TPS("newreq")); 1731 } else { 1732 WRITE_ONCE(rcu_state.gp_flags, 1733 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1734 } 1735 raw_spin_unlock_irq_rcu_node(rnp); 1736 } 1737 1738 /* 1739 * Body of kthread that handles grace periods. 1740 */ 1741 static int __noreturn rcu_gp_kthread(void *unused) 1742 { 1743 rcu_bind_gp_kthread(); 1744 for (;;) { 1745 1746 /* Handle grace-period start. */ 1747 for (;;) { 1748 trace_rcu_grace_period(rcu_state.name, 1749 READ_ONCE(rcu_state.gp_seq), 1750 TPS("reqwait")); 1751 rcu_state.gp_state = RCU_GP_WAIT_GPS; 1752 swait_event_idle_exclusive(rcu_state.gp_wq, 1753 READ_ONCE(rcu_state.gp_flags) & 1754 RCU_GP_FLAG_INIT); 1755 rcu_state.gp_state = RCU_GP_DONE_GPS; 1756 /* Locking provides needed memory barrier. */ 1757 if (rcu_gp_init()) 1758 break; 1759 cond_resched_tasks_rcu_qs(); 1760 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1761 WARN_ON(signal_pending(current)); 1762 trace_rcu_grace_period(rcu_state.name, 1763 READ_ONCE(rcu_state.gp_seq), 1764 TPS("reqwaitsig")); 1765 } 1766 1767 /* Handle quiescent-state forcing. */ 1768 rcu_gp_fqs_loop(); 1769 1770 /* Handle grace-period end. */ 1771 rcu_state.gp_state = RCU_GP_CLEANUP; 1772 rcu_gp_cleanup(); 1773 rcu_state.gp_state = RCU_GP_CLEANED; 1774 } 1775 } 1776 1777 /* 1778 * Report a full set of quiescent states to the rcu_state data structure. 1779 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1780 * another grace period is required. Whether we wake the grace-period 1781 * kthread or it awakens itself for the next round of quiescent-state 1782 * forcing, that kthread will clean up after the just-completed grace 1783 * period. Note that the caller must hold rnp->lock, which is released 1784 * before return. 1785 */ 1786 static void rcu_report_qs_rsp(unsigned long flags) 1787 __releases(rcu_get_root()->lock) 1788 { 1789 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1790 WARN_ON_ONCE(!rcu_gp_in_progress()); 1791 WRITE_ONCE(rcu_state.gp_flags, 1792 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1793 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1794 rcu_gp_kthread_wake(); 1795 } 1796 1797 /* 1798 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1799 * Allows quiescent states for a group of CPUs to be reported at one go 1800 * to the specified rcu_node structure, though all the CPUs in the group 1801 * must be represented by the same rcu_node structure (which need not be a 1802 * leaf rcu_node structure, though it often will be). The gps parameter 1803 * is the grace-period snapshot, which means that the quiescent states 1804 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1805 * must be held upon entry, and it is released before return. 1806 * 1807 * As a special case, if mask is zero, the bit-already-cleared check is 1808 * disabled. This allows propagating quiescent state due to resumed tasks 1809 * during grace-period initialization. 1810 */ 1811 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1812 unsigned long gps, unsigned long flags) 1813 __releases(rnp->lock) 1814 { 1815 unsigned long oldmask = 0; 1816 struct rcu_node *rnp_c; 1817 1818 raw_lockdep_assert_held_rcu_node(rnp); 1819 1820 /* Walk up the rcu_node hierarchy. */ 1821 for (;;) { 1822 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1823 1824 /* 1825 * Our bit has already been cleared, or the 1826 * relevant grace period is already over, so done. 1827 */ 1828 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1829 return; 1830 } 1831 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1832 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1833 rcu_preempt_blocked_readers_cgp(rnp)); 1834 rnp->qsmask &= ~mask; 1835 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1836 mask, rnp->qsmask, rnp->level, 1837 rnp->grplo, rnp->grphi, 1838 !!rnp->gp_tasks); 1839 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1840 1841 /* Other bits still set at this level, so done. */ 1842 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1843 return; 1844 } 1845 rnp->completedqs = rnp->gp_seq; 1846 mask = rnp->grpmask; 1847 if (rnp->parent == NULL) { 1848 1849 /* No more levels. Exit loop holding root lock. */ 1850 1851 break; 1852 } 1853 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1854 rnp_c = rnp; 1855 rnp = rnp->parent; 1856 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1857 oldmask = rnp_c->qsmask; 1858 } 1859 1860 /* 1861 * Get here if we are the last CPU to pass through a quiescent 1862 * state for this grace period. Invoke rcu_report_qs_rsp() 1863 * to clean up and start the next grace period if one is needed. 1864 */ 1865 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1866 } 1867 1868 /* 1869 * Record a quiescent state for all tasks that were previously queued 1870 * on the specified rcu_node structure and that were blocking the current 1871 * RCU grace period. The caller must hold the corresponding rnp->lock with 1872 * irqs disabled, and this lock is released upon return, but irqs remain 1873 * disabled. 1874 */ 1875 static void __maybe_unused 1876 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1877 __releases(rnp->lock) 1878 { 1879 unsigned long gps; 1880 unsigned long mask; 1881 struct rcu_node *rnp_p; 1882 1883 raw_lockdep_assert_held_rcu_node(rnp); 1884 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 1885 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1886 rnp->qsmask != 0) { 1887 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1888 return; /* Still need more quiescent states! */ 1889 } 1890 1891 rnp->completedqs = rnp->gp_seq; 1892 rnp_p = rnp->parent; 1893 if (rnp_p == NULL) { 1894 /* 1895 * Only one rcu_node structure in the tree, so don't 1896 * try to report up to its nonexistent parent! 1897 */ 1898 rcu_report_qs_rsp(flags); 1899 return; 1900 } 1901 1902 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1903 gps = rnp->gp_seq; 1904 mask = rnp->grpmask; 1905 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1906 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1907 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1908 } 1909 1910 /* 1911 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1912 * structure. This must be called from the specified CPU. 1913 */ 1914 static void 1915 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 1916 { 1917 unsigned long flags; 1918 unsigned long mask; 1919 bool needwake; 1920 struct rcu_node *rnp; 1921 1922 rnp = rdp->mynode; 1923 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1924 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1925 rdp->gpwrap) { 1926 1927 /* 1928 * The grace period in which this quiescent state was 1929 * recorded has ended, so don't report it upwards. 1930 * We will instead need a new quiescent state that lies 1931 * within the current grace period. 1932 */ 1933 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1934 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1935 return; 1936 } 1937 mask = rdp->grpmask; 1938 rdp->core_needs_qs = false; 1939 if ((rnp->qsmask & mask) == 0) { 1940 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1941 } else { 1942 /* 1943 * This GP can't end until cpu checks in, so all of our 1944 * callbacks can be processed during the next GP. 1945 */ 1946 needwake = rcu_accelerate_cbs(rnp, rdp); 1947 1948 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1949 /* ^^^ Released rnp->lock */ 1950 if (needwake) 1951 rcu_gp_kthread_wake(); 1952 } 1953 } 1954 1955 /* 1956 * Check to see if there is a new grace period of which this CPU 1957 * is not yet aware, and if so, set up local rcu_data state for it. 1958 * Otherwise, see if this CPU has just passed through its first 1959 * quiescent state for this grace period, and record that fact if so. 1960 */ 1961 static void 1962 rcu_check_quiescent_state(struct rcu_data *rdp) 1963 { 1964 /* Check for grace-period ends and beginnings. */ 1965 note_gp_changes(rdp); 1966 1967 /* 1968 * Does this CPU still need to do its part for current grace period? 1969 * If no, return and let the other CPUs do their part as well. 1970 */ 1971 if (!rdp->core_needs_qs) 1972 return; 1973 1974 /* 1975 * Was there a quiescent state since the beginning of the grace 1976 * period? If no, then exit and wait for the next call. 1977 */ 1978 if (rdp->cpu_no_qs.b.norm) 1979 return; 1980 1981 /* 1982 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 1983 * judge of that). 1984 */ 1985 rcu_report_qs_rdp(rdp->cpu, rdp); 1986 } 1987 1988 /* 1989 * Near the end of the offline process. Trace the fact that this CPU 1990 * is going offline. 1991 */ 1992 int rcutree_dying_cpu(unsigned int cpu) 1993 { 1994 bool blkd; 1995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1996 struct rcu_node *rnp = rdp->mynode; 1997 1998 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1999 return 0; 2000 2001 blkd = !!(rnp->qsmask & rdp->grpmask); 2002 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2003 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2004 return 0; 2005 } 2006 2007 /* 2008 * All CPUs for the specified rcu_node structure have gone offline, 2009 * and all tasks that were preempted within an RCU read-side critical 2010 * section while running on one of those CPUs have since exited their RCU 2011 * read-side critical section. Some other CPU is reporting this fact with 2012 * the specified rcu_node structure's ->lock held and interrupts disabled. 2013 * This function therefore goes up the tree of rcu_node structures, 2014 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2015 * the leaf rcu_node structure's ->qsmaskinit field has already been 2016 * updated. 2017 * 2018 * This function does check that the specified rcu_node structure has 2019 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2020 * prematurely. That said, invoking it after the fact will cost you 2021 * a needless lock acquisition. So once it has done its work, don't 2022 * invoke it again. 2023 */ 2024 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2025 { 2026 long mask; 2027 struct rcu_node *rnp = rnp_leaf; 2028 2029 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2030 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2031 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2032 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2033 return; 2034 for (;;) { 2035 mask = rnp->grpmask; 2036 rnp = rnp->parent; 2037 if (!rnp) 2038 break; 2039 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2040 rnp->qsmaskinit &= ~mask; 2041 /* Between grace periods, so better already be zero! */ 2042 WARN_ON_ONCE(rnp->qsmask); 2043 if (rnp->qsmaskinit) { 2044 raw_spin_unlock_rcu_node(rnp); 2045 /* irqs remain disabled. */ 2046 return; 2047 } 2048 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2049 } 2050 } 2051 2052 /* 2053 * The CPU has been completely removed, and some other CPU is reporting 2054 * this fact from process context. Do the remainder of the cleanup. 2055 * There can only be one CPU hotplug operation at a time, so no need for 2056 * explicit locking. 2057 */ 2058 int rcutree_dead_cpu(unsigned int cpu) 2059 { 2060 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2061 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2062 2063 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2064 return 0; 2065 2066 /* Adjust any no-longer-needed kthreads. */ 2067 rcu_boost_kthread_setaffinity(rnp, -1); 2068 /* Do any needed no-CB deferred wakeups from this CPU. */ 2069 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2070 return 0; 2071 } 2072 2073 /* 2074 * Invoke any RCU callbacks that have made it to the end of their grace 2075 * period. Thottle as specified by rdp->blimit. 2076 */ 2077 static void rcu_do_batch(struct rcu_data *rdp) 2078 { 2079 unsigned long flags; 2080 struct rcu_head *rhp; 2081 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2082 long bl, count; 2083 2084 /* If no callbacks are ready, just return. */ 2085 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2086 trace_rcu_batch_start(rcu_state.name, 2087 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2088 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2089 trace_rcu_batch_end(rcu_state.name, 0, 2090 !rcu_segcblist_empty(&rdp->cblist), 2091 need_resched(), is_idle_task(current), 2092 rcu_is_callbacks_kthread()); 2093 return; 2094 } 2095 2096 /* 2097 * Extract the list of ready callbacks, disabling to prevent 2098 * races with call_rcu() from interrupt handlers. Leave the 2099 * callback counts, as rcu_barrier() needs to be conservative. 2100 */ 2101 local_irq_save(flags); 2102 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2103 bl = rdp->blimit; 2104 trace_rcu_batch_start(rcu_state.name, 2105 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2106 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2107 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2108 local_irq_restore(flags); 2109 2110 /* Invoke callbacks. */ 2111 rhp = rcu_cblist_dequeue(&rcl); 2112 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2113 debug_rcu_head_unqueue(rhp); 2114 if (__rcu_reclaim(rcu_state.name, rhp)) 2115 rcu_cblist_dequeued_lazy(&rcl); 2116 /* 2117 * Stop only if limit reached and CPU has something to do. 2118 * Note: The rcl structure counts down from zero. 2119 */ 2120 if (-rcl.len >= bl && 2121 (need_resched() || 2122 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2123 break; 2124 } 2125 2126 local_irq_save(flags); 2127 count = -rcl.len; 2128 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2129 is_idle_task(current), rcu_is_callbacks_kthread()); 2130 2131 /* Update counts and requeue any remaining callbacks. */ 2132 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2133 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2134 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2135 2136 /* Reinstate batch limit if we have worked down the excess. */ 2137 count = rcu_segcblist_n_cbs(&rdp->cblist); 2138 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2139 rdp->blimit = blimit; 2140 2141 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2142 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2143 rdp->qlen_last_fqs_check = 0; 2144 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2145 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2146 rdp->qlen_last_fqs_check = count; 2147 2148 /* 2149 * The following usually indicates a double call_rcu(). To track 2150 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2151 */ 2152 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2153 2154 local_irq_restore(flags); 2155 2156 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2157 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2158 invoke_rcu_core(); 2159 } 2160 2161 /* 2162 * This function is invoked from each scheduling-clock interrupt, 2163 * and checks to see if this CPU is in a non-context-switch quiescent 2164 * state, for example, user mode or idle loop. It also schedules RCU 2165 * core processing. If the current grace period has gone on too long, 2166 * it will ask the scheduler to manufacture a context switch for the sole 2167 * purpose of providing a providing the needed quiescent state. 2168 */ 2169 void rcu_sched_clock_irq(int user) 2170 { 2171 trace_rcu_utilization(TPS("Start scheduler-tick")); 2172 raw_cpu_inc(rcu_data.ticks_this_gp); 2173 /* The load-acquire pairs with the store-release setting to true. */ 2174 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2175 /* Idle and userspace execution already are quiescent states. */ 2176 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2177 set_tsk_need_resched(current); 2178 set_preempt_need_resched(); 2179 } 2180 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2181 } 2182 rcu_flavor_sched_clock_irq(user); 2183 if (rcu_pending()) 2184 invoke_rcu_core(); 2185 2186 trace_rcu_utilization(TPS("End scheduler-tick")); 2187 } 2188 2189 /* 2190 * Scan the leaf rcu_node structures. For each structure on which all 2191 * CPUs have reported a quiescent state and on which there are tasks 2192 * blocking the current grace period, initiate RCU priority boosting. 2193 * Otherwise, invoke the specified function to check dyntick state for 2194 * each CPU that has not yet reported a quiescent state. 2195 */ 2196 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2197 { 2198 int cpu; 2199 unsigned long flags; 2200 unsigned long mask; 2201 struct rcu_node *rnp; 2202 2203 rcu_for_each_leaf_node(rnp) { 2204 cond_resched_tasks_rcu_qs(); 2205 mask = 0; 2206 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2207 if (rnp->qsmask == 0) { 2208 if (!IS_ENABLED(CONFIG_PREEMPT) || 2209 rcu_preempt_blocked_readers_cgp(rnp)) { 2210 /* 2211 * No point in scanning bits because they 2212 * are all zero. But we might need to 2213 * priority-boost blocked readers. 2214 */ 2215 rcu_initiate_boost(rnp, flags); 2216 /* rcu_initiate_boost() releases rnp->lock */ 2217 continue; 2218 } 2219 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2220 continue; 2221 } 2222 for_each_leaf_node_possible_cpu(rnp, cpu) { 2223 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2224 if ((rnp->qsmask & bit) != 0) { 2225 if (f(per_cpu_ptr(&rcu_data, cpu))) 2226 mask |= bit; 2227 } 2228 } 2229 if (mask != 0) { 2230 /* Idle/offline CPUs, report (releases rnp->lock). */ 2231 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2232 } else { 2233 /* Nothing to do here, so just drop the lock. */ 2234 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2235 } 2236 } 2237 } 2238 2239 /* 2240 * Force quiescent states on reluctant CPUs, and also detect which 2241 * CPUs are in dyntick-idle mode. 2242 */ 2243 void rcu_force_quiescent_state(void) 2244 { 2245 unsigned long flags; 2246 bool ret; 2247 struct rcu_node *rnp; 2248 struct rcu_node *rnp_old = NULL; 2249 2250 /* Funnel through hierarchy to reduce memory contention. */ 2251 rnp = __this_cpu_read(rcu_data.mynode); 2252 for (; rnp != NULL; rnp = rnp->parent) { 2253 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2254 !raw_spin_trylock(&rnp->fqslock); 2255 if (rnp_old != NULL) 2256 raw_spin_unlock(&rnp_old->fqslock); 2257 if (ret) 2258 return; 2259 rnp_old = rnp; 2260 } 2261 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2262 2263 /* Reached the root of the rcu_node tree, acquire lock. */ 2264 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2265 raw_spin_unlock(&rnp_old->fqslock); 2266 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2267 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2268 return; /* Someone beat us to it. */ 2269 } 2270 WRITE_ONCE(rcu_state.gp_flags, 2271 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2272 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2273 rcu_gp_kthread_wake(); 2274 } 2275 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2276 2277 /* Perform RCU core processing work for the current CPU. */ 2278 static __latent_entropy void rcu_core(void) 2279 { 2280 unsigned long flags; 2281 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2282 struct rcu_node *rnp = rdp->mynode; 2283 2284 if (cpu_is_offline(smp_processor_id())) 2285 return; 2286 trace_rcu_utilization(TPS("Start RCU core")); 2287 WARN_ON_ONCE(!rdp->beenonline); 2288 2289 /* Report any deferred quiescent states if preemption enabled. */ 2290 if (!(preempt_count() & PREEMPT_MASK)) { 2291 rcu_preempt_deferred_qs(current); 2292 } else if (rcu_preempt_need_deferred_qs(current)) { 2293 set_tsk_need_resched(current); 2294 set_preempt_need_resched(); 2295 } 2296 2297 /* Update RCU state based on any recent quiescent states. */ 2298 rcu_check_quiescent_state(rdp); 2299 2300 /* No grace period and unregistered callbacks? */ 2301 if (!rcu_gp_in_progress() && 2302 rcu_segcblist_is_enabled(&rdp->cblist)) { 2303 local_irq_save(flags); 2304 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2305 rcu_accelerate_cbs_unlocked(rnp, rdp); 2306 local_irq_restore(flags); 2307 } 2308 2309 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2310 2311 /* If there are callbacks ready, invoke them. */ 2312 if (rcu_segcblist_ready_cbs(&rdp->cblist) && 2313 likely(READ_ONCE(rcu_scheduler_fully_active))) 2314 rcu_do_batch(rdp); 2315 2316 /* Do any needed deferred wakeups of rcuo kthreads. */ 2317 do_nocb_deferred_wakeup(rdp); 2318 trace_rcu_utilization(TPS("End RCU core")); 2319 } 2320 2321 static void rcu_core_si(struct softirq_action *h) 2322 { 2323 rcu_core(); 2324 } 2325 2326 static void rcu_wake_cond(struct task_struct *t, int status) 2327 { 2328 /* 2329 * If the thread is yielding, only wake it when this 2330 * is invoked from idle 2331 */ 2332 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2333 wake_up_process(t); 2334 } 2335 2336 static void invoke_rcu_core_kthread(void) 2337 { 2338 struct task_struct *t; 2339 unsigned long flags; 2340 2341 local_irq_save(flags); 2342 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2343 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2344 if (t != NULL && t != current) 2345 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2346 local_irq_restore(flags); 2347 } 2348 2349 /* 2350 * Wake up this CPU's rcuc kthread to do RCU core processing. 2351 */ 2352 static void invoke_rcu_core(void) 2353 { 2354 if (!cpu_online(smp_processor_id())) 2355 return; 2356 if (use_softirq) 2357 raise_softirq(RCU_SOFTIRQ); 2358 else 2359 invoke_rcu_core_kthread(); 2360 } 2361 2362 static void rcu_cpu_kthread_park(unsigned int cpu) 2363 { 2364 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2365 } 2366 2367 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2368 { 2369 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2370 } 2371 2372 /* 2373 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2374 * the RCU softirq used in configurations of RCU that do not support RCU 2375 * priority boosting. 2376 */ 2377 static void rcu_cpu_kthread(unsigned int cpu) 2378 { 2379 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2380 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2381 int spincnt; 2382 2383 for (spincnt = 0; spincnt < 10; spincnt++) { 2384 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 2385 local_bh_disable(); 2386 *statusp = RCU_KTHREAD_RUNNING; 2387 local_irq_disable(); 2388 work = *workp; 2389 *workp = 0; 2390 local_irq_enable(); 2391 if (work) 2392 rcu_core(); 2393 local_bh_enable(); 2394 if (*workp == 0) { 2395 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2396 *statusp = RCU_KTHREAD_WAITING; 2397 return; 2398 } 2399 } 2400 *statusp = RCU_KTHREAD_YIELDING; 2401 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2402 schedule_timeout_interruptible(2); 2403 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2404 *statusp = RCU_KTHREAD_WAITING; 2405 } 2406 2407 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2408 .store = &rcu_data.rcu_cpu_kthread_task, 2409 .thread_should_run = rcu_cpu_kthread_should_run, 2410 .thread_fn = rcu_cpu_kthread, 2411 .thread_comm = "rcuc/%u", 2412 .setup = rcu_cpu_kthread_setup, 2413 .park = rcu_cpu_kthread_park, 2414 }; 2415 2416 /* 2417 * Spawn per-CPU RCU core processing kthreads. 2418 */ 2419 static int __init rcu_spawn_core_kthreads(void) 2420 { 2421 int cpu; 2422 2423 for_each_possible_cpu(cpu) 2424 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2425 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2426 return 0; 2427 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2428 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2429 return 0; 2430 } 2431 early_initcall(rcu_spawn_core_kthreads); 2432 2433 /* 2434 * Handle any core-RCU processing required by a call_rcu() invocation. 2435 */ 2436 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2437 unsigned long flags) 2438 { 2439 /* 2440 * If called from an extended quiescent state, invoke the RCU 2441 * core in order to force a re-evaluation of RCU's idleness. 2442 */ 2443 if (!rcu_is_watching()) 2444 invoke_rcu_core(); 2445 2446 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2447 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2448 return; 2449 2450 /* 2451 * Force the grace period if too many callbacks or too long waiting. 2452 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2453 * if some other CPU has recently done so. Also, don't bother 2454 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2455 * is the only one waiting for a grace period to complete. 2456 */ 2457 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2458 rdp->qlen_last_fqs_check + qhimark)) { 2459 2460 /* Are we ignoring a completed grace period? */ 2461 note_gp_changes(rdp); 2462 2463 /* Start a new grace period if one not already started. */ 2464 if (!rcu_gp_in_progress()) { 2465 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2466 } else { 2467 /* Give the grace period a kick. */ 2468 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2469 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2470 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2471 rcu_force_quiescent_state(); 2472 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2473 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2474 } 2475 } 2476 } 2477 2478 /* 2479 * RCU callback function to leak a callback. 2480 */ 2481 static void rcu_leak_callback(struct rcu_head *rhp) 2482 { 2483 } 2484 2485 /* 2486 * Helper function for call_rcu() and friends. The cpu argument will 2487 * normally be -1, indicating "currently running CPU". It may specify 2488 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2489 * is expected to specify a CPU. 2490 */ 2491 static void 2492 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2493 { 2494 unsigned long flags; 2495 struct rcu_data *rdp; 2496 2497 /* Misaligned rcu_head! */ 2498 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2499 2500 if (debug_rcu_head_queue(head)) { 2501 /* 2502 * Probable double call_rcu(), so leak the callback. 2503 * Use rcu:rcu_callback trace event to find the previous 2504 * time callback was passed to __call_rcu(). 2505 */ 2506 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n", 2507 head, head->func); 2508 WRITE_ONCE(head->func, rcu_leak_callback); 2509 return; 2510 } 2511 head->func = func; 2512 head->next = NULL; 2513 local_irq_save(flags); 2514 rdp = this_cpu_ptr(&rcu_data); 2515 2516 /* Add the callback to our list. */ 2517 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2518 int offline; 2519 2520 if (cpu != -1) 2521 rdp = per_cpu_ptr(&rcu_data, cpu); 2522 if (likely(rdp->mynode)) { 2523 /* Post-boot, so this should be for a no-CBs CPU. */ 2524 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2525 WARN_ON_ONCE(offline); 2526 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2527 local_irq_restore(flags); 2528 return; 2529 } 2530 /* 2531 * Very early boot, before rcu_init(). Initialize if needed 2532 * and then drop through to queue the callback. 2533 */ 2534 WARN_ON_ONCE(cpu != -1); 2535 WARN_ON_ONCE(!rcu_is_watching()); 2536 if (rcu_segcblist_empty(&rdp->cblist)) 2537 rcu_segcblist_init(&rdp->cblist); 2538 } 2539 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2540 if (__is_kfree_rcu_offset((unsigned long)func)) 2541 trace_rcu_kfree_callback(rcu_state.name, head, 2542 (unsigned long)func, 2543 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2544 rcu_segcblist_n_cbs(&rdp->cblist)); 2545 else 2546 trace_rcu_callback(rcu_state.name, head, 2547 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2548 rcu_segcblist_n_cbs(&rdp->cblist)); 2549 2550 /* Go handle any RCU core processing required. */ 2551 __call_rcu_core(rdp, head, flags); 2552 local_irq_restore(flags); 2553 } 2554 2555 /** 2556 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2557 * @head: structure to be used for queueing the RCU updates. 2558 * @func: actual callback function to be invoked after the grace period 2559 * 2560 * The callback function will be invoked some time after a full grace 2561 * period elapses, in other words after all pre-existing RCU read-side 2562 * critical sections have completed. However, the callback function 2563 * might well execute concurrently with RCU read-side critical sections 2564 * that started after call_rcu() was invoked. RCU read-side critical 2565 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2566 * may be nested. In addition, regions of code across which interrupts, 2567 * preemption, or softirqs have been disabled also serve as RCU read-side 2568 * critical sections. This includes hardware interrupt handlers, softirq 2569 * handlers, and NMI handlers. 2570 * 2571 * Note that all CPUs must agree that the grace period extended beyond 2572 * all pre-existing RCU read-side critical section. On systems with more 2573 * than one CPU, this means that when "func()" is invoked, each CPU is 2574 * guaranteed to have executed a full memory barrier since the end of its 2575 * last RCU read-side critical section whose beginning preceded the call 2576 * to call_rcu(). It also means that each CPU executing an RCU read-side 2577 * critical section that continues beyond the start of "func()" must have 2578 * executed a memory barrier after the call_rcu() but before the beginning 2579 * of that RCU read-side critical section. Note that these guarantees 2580 * include CPUs that are offline, idle, or executing in user mode, as 2581 * well as CPUs that are executing in the kernel. 2582 * 2583 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2584 * resulting RCU callback function "func()", then both CPU A and CPU B are 2585 * guaranteed to execute a full memory barrier during the time interval 2586 * between the call to call_rcu() and the invocation of "func()" -- even 2587 * if CPU A and CPU B are the same CPU (but again only if the system has 2588 * more than one CPU). 2589 */ 2590 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2591 { 2592 __call_rcu(head, func, -1, 0); 2593 } 2594 EXPORT_SYMBOL_GPL(call_rcu); 2595 2596 /* 2597 * Queue an RCU callback for lazy invocation after a grace period. 2598 * This will likely be later named something like "call_rcu_lazy()", 2599 * but this change will require some way of tagging the lazy RCU 2600 * callbacks in the list of pending callbacks. Until then, this 2601 * function may only be called from __kfree_rcu(). 2602 */ 2603 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2604 { 2605 __call_rcu(head, func, -1, 1); 2606 } 2607 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2608 2609 /* 2610 * During early boot, any blocking grace-period wait automatically 2611 * implies a grace period. Later on, this is never the case for PREEMPT. 2612 * 2613 * Howevr, because a context switch is a grace period for !PREEMPT, any 2614 * blocking grace-period wait automatically implies a grace period if 2615 * there is only one CPU online at any point time during execution of 2616 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 2617 * occasionally incorrectly indicate that there are multiple CPUs online 2618 * when there was in fact only one the whole time, as this just adds some 2619 * overhead: RCU still operates correctly. 2620 */ 2621 static int rcu_blocking_is_gp(void) 2622 { 2623 int ret; 2624 2625 if (IS_ENABLED(CONFIG_PREEMPT)) 2626 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 2627 might_sleep(); /* Check for RCU read-side critical section. */ 2628 preempt_disable(); 2629 ret = num_online_cpus() <= 1; 2630 preempt_enable(); 2631 return ret; 2632 } 2633 2634 /** 2635 * synchronize_rcu - wait until a grace period has elapsed. 2636 * 2637 * Control will return to the caller some time after a full grace 2638 * period has elapsed, in other words after all currently executing RCU 2639 * read-side critical sections have completed. Note, however, that 2640 * upon return from synchronize_rcu(), the caller might well be executing 2641 * concurrently with new RCU read-side critical sections that began while 2642 * synchronize_rcu() was waiting. RCU read-side critical sections are 2643 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 2644 * In addition, regions of code across which interrupts, preemption, or 2645 * softirqs have been disabled also serve as RCU read-side critical 2646 * sections. This includes hardware interrupt handlers, softirq handlers, 2647 * and NMI handlers. 2648 * 2649 * Note that this guarantee implies further memory-ordering guarantees. 2650 * On systems with more than one CPU, when synchronize_rcu() returns, 2651 * each CPU is guaranteed to have executed a full memory barrier since 2652 * the end of its last RCU read-side critical section whose beginning 2653 * preceded the call to synchronize_rcu(). In addition, each CPU having 2654 * an RCU read-side critical section that extends beyond the return from 2655 * synchronize_rcu() is guaranteed to have executed a full memory barrier 2656 * after the beginning of synchronize_rcu() and before the beginning of 2657 * that RCU read-side critical section. Note that these guarantees include 2658 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2659 * that are executing in the kernel. 2660 * 2661 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 2662 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2663 * to have executed a full memory barrier during the execution of 2664 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 2665 * again only if the system has more than one CPU). 2666 */ 2667 void synchronize_rcu(void) 2668 { 2669 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 2670 lock_is_held(&rcu_lock_map) || 2671 lock_is_held(&rcu_sched_lock_map), 2672 "Illegal synchronize_rcu() in RCU read-side critical section"); 2673 if (rcu_blocking_is_gp()) 2674 return; 2675 if (rcu_gp_is_expedited()) 2676 synchronize_rcu_expedited(); 2677 else 2678 wait_rcu_gp(call_rcu); 2679 } 2680 EXPORT_SYMBOL_GPL(synchronize_rcu); 2681 2682 /** 2683 * get_state_synchronize_rcu - Snapshot current RCU state 2684 * 2685 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2686 * to determine whether or not a full grace period has elapsed in the 2687 * meantime. 2688 */ 2689 unsigned long get_state_synchronize_rcu(void) 2690 { 2691 /* 2692 * Any prior manipulation of RCU-protected data must happen 2693 * before the load from ->gp_seq. 2694 */ 2695 smp_mb(); /* ^^^ */ 2696 return rcu_seq_snap(&rcu_state.gp_seq); 2697 } 2698 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2699 2700 /** 2701 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2702 * 2703 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2704 * 2705 * If a full RCU grace period has elapsed since the earlier call to 2706 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2707 * synchronize_rcu() to wait for a full grace period. 2708 * 2709 * Yes, this function does not take counter wrap into account. But 2710 * counter wrap is harmless. If the counter wraps, we have waited for 2711 * more than 2 billion grace periods (and way more on a 64-bit system!), 2712 * so waiting for one additional grace period should be just fine. 2713 */ 2714 void cond_synchronize_rcu(unsigned long oldstate) 2715 { 2716 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 2717 synchronize_rcu(); 2718 else 2719 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 2720 } 2721 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2722 2723 /* 2724 * Check to see if there is any immediate RCU-related work to be done by 2725 * the current CPU, returning 1 if so and zero otherwise. The checks are 2726 * in order of increasing expense: checks that can be carried out against 2727 * CPU-local state are performed first. However, we must check for CPU 2728 * stalls first, else we might not get a chance. 2729 */ 2730 static int rcu_pending(void) 2731 { 2732 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2733 struct rcu_node *rnp = rdp->mynode; 2734 2735 /* Check for CPU stalls, if enabled. */ 2736 check_cpu_stall(rdp); 2737 2738 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 2739 if (rcu_nohz_full_cpu()) 2740 return 0; 2741 2742 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2743 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 2744 return 1; 2745 2746 /* Does this CPU have callbacks ready to invoke? */ 2747 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2748 return 1; 2749 2750 /* Has RCU gone idle with this CPU needing another grace period? */ 2751 if (!rcu_gp_in_progress() && 2752 rcu_segcblist_is_enabled(&rdp->cblist) && 2753 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2754 return 1; 2755 2756 /* Have RCU grace period completed or started? */ 2757 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 2758 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 2759 return 1; 2760 2761 /* Does this CPU need a deferred NOCB wakeup? */ 2762 if (rcu_nocb_need_deferred_wakeup(rdp)) 2763 return 1; 2764 2765 /* nothing to do */ 2766 return 0; 2767 } 2768 2769 /* 2770 * Helper function for rcu_barrier() tracing. If tracing is disabled, 2771 * the compiler is expected to optimize this away. 2772 */ 2773 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 2774 { 2775 trace_rcu_barrier(rcu_state.name, s, cpu, 2776 atomic_read(&rcu_state.barrier_cpu_count), done); 2777 } 2778 2779 /* 2780 * RCU callback function for rcu_barrier(). If we are last, wake 2781 * up the task executing rcu_barrier(). 2782 */ 2783 static void rcu_barrier_callback(struct rcu_head *rhp) 2784 { 2785 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 2786 rcu_barrier_trace(TPS("LastCB"), -1, 2787 rcu_state.barrier_sequence); 2788 complete(&rcu_state.barrier_completion); 2789 } else { 2790 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 2791 } 2792 } 2793 2794 /* 2795 * Called with preemption disabled, and from cross-cpu IRQ context. 2796 */ 2797 static void rcu_barrier_func(void *unused) 2798 { 2799 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2800 2801 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 2802 rdp->barrier_head.func = rcu_barrier_callback; 2803 debug_rcu_head_queue(&rdp->barrier_head); 2804 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 2805 atomic_inc(&rcu_state.barrier_cpu_count); 2806 } else { 2807 debug_rcu_head_unqueue(&rdp->barrier_head); 2808 rcu_barrier_trace(TPS("IRQNQ"), -1, 2809 rcu_state.barrier_sequence); 2810 } 2811 } 2812 2813 /** 2814 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 2815 * 2816 * Note that this primitive does not necessarily wait for an RCU grace period 2817 * to complete. For example, if there are no RCU callbacks queued anywhere 2818 * in the system, then rcu_barrier() is within its rights to return 2819 * immediately, without waiting for anything, much less an RCU grace period. 2820 */ 2821 void rcu_barrier(void) 2822 { 2823 int cpu; 2824 struct rcu_data *rdp; 2825 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 2826 2827 rcu_barrier_trace(TPS("Begin"), -1, s); 2828 2829 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 2830 mutex_lock(&rcu_state.barrier_mutex); 2831 2832 /* Did someone else do our work for us? */ 2833 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 2834 rcu_barrier_trace(TPS("EarlyExit"), -1, 2835 rcu_state.barrier_sequence); 2836 smp_mb(); /* caller's subsequent code after above check. */ 2837 mutex_unlock(&rcu_state.barrier_mutex); 2838 return; 2839 } 2840 2841 /* Mark the start of the barrier operation. */ 2842 rcu_seq_start(&rcu_state.barrier_sequence); 2843 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 2844 2845 /* 2846 * Initialize the count to one rather than to zero in order to 2847 * avoid a too-soon return to zero in case of a short grace period 2848 * (or preemption of this task). Exclude CPU-hotplug operations 2849 * to ensure that no offline CPU has callbacks queued. 2850 */ 2851 init_completion(&rcu_state.barrier_completion); 2852 atomic_set(&rcu_state.barrier_cpu_count, 1); 2853 get_online_cpus(); 2854 2855 /* 2856 * Force each CPU with callbacks to register a new callback. 2857 * When that callback is invoked, we will know that all of the 2858 * corresponding CPU's preceding callbacks have been invoked. 2859 */ 2860 for_each_possible_cpu(cpu) { 2861 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 2862 continue; 2863 rdp = per_cpu_ptr(&rcu_data, cpu); 2864 if (rcu_is_nocb_cpu(cpu)) { 2865 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 2866 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 2867 rcu_state.barrier_sequence); 2868 } else { 2869 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 2870 rcu_state.barrier_sequence); 2871 smp_mb__before_atomic(); 2872 atomic_inc(&rcu_state.barrier_cpu_count); 2873 __call_rcu(&rdp->barrier_head, 2874 rcu_barrier_callback, cpu, 0); 2875 } 2876 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 2877 rcu_barrier_trace(TPS("OnlineQ"), cpu, 2878 rcu_state.barrier_sequence); 2879 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 2880 } else { 2881 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 2882 rcu_state.barrier_sequence); 2883 } 2884 } 2885 put_online_cpus(); 2886 2887 /* 2888 * Now that we have an rcu_barrier_callback() callback on each 2889 * CPU, and thus each counted, remove the initial count. 2890 */ 2891 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 2892 complete(&rcu_state.barrier_completion); 2893 2894 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 2895 wait_for_completion(&rcu_state.barrier_completion); 2896 2897 /* Mark the end of the barrier operation. */ 2898 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 2899 rcu_seq_end(&rcu_state.barrier_sequence); 2900 2901 /* Other rcu_barrier() invocations can now safely proceed. */ 2902 mutex_unlock(&rcu_state.barrier_mutex); 2903 } 2904 EXPORT_SYMBOL_GPL(rcu_barrier); 2905 2906 /* 2907 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 2908 * first CPU in a given leaf rcu_node structure coming online. The caller 2909 * must hold the corresponding leaf rcu_node ->lock with interrrupts 2910 * disabled. 2911 */ 2912 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 2913 { 2914 long mask; 2915 long oldmask; 2916 struct rcu_node *rnp = rnp_leaf; 2917 2918 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2919 WARN_ON_ONCE(rnp->wait_blkd_tasks); 2920 for (;;) { 2921 mask = rnp->grpmask; 2922 rnp = rnp->parent; 2923 if (rnp == NULL) 2924 return; 2925 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 2926 oldmask = rnp->qsmaskinit; 2927 rnp->qsmaskinit |= mask; 2928 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 2929 if (oldmask) 2930 return; 2931 } 2932 } 2933 2934 /* 2935 * Do boot-time initialization of a CPU's per-CPU RCU data. 2936 */ 2937 static void __init 2938 rcu_boot_init_percpu_data(int cpu) 2939 { 2940 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2941 2942 /* Set up local state, ensuring consistent view of global state. */ 2943 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 2944 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 2945 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 2946 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 2947 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 2948 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 2949 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 2950 rdp->cpu = cpu; 2951 rcu_boot_init_nocb_percpu_data(rdp); 2952 } 2953 2954 /* 2955 * Invoked early in the CPU-online process, when pretty much all services 2956 * are available. The incoming CPU is not present. 2957 * 2958 * Initializes a CPU's per-CPU RCU data. Note that only one online or 2959 * offline event can be happening at a given time. Note also that we can 2960 * accept some slop in the rsp->gp_seq access due to the fact that this 2961 * CPU cannot possibly have any RCU callbacks in flight yet. 2962 */ 2963 int rcutree_prepare_cpu(unsigned int cpu) 2964 { 2965 unsigned long flags; 2966 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2967 struct rcu_node *rnp = rcu_get_root(); 2968 2969 /* Set up local state, ensuring consistent view of global state. */ 2970 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2971 rdp->qlen_last_fqs_check = 0; 2972 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2973 rdp->blimit = blimit; 2974 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 2975 !init_nocb_callback_list(rdp)) 2976 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 2977 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 2978 rcu_dynticks_eqs_online(); 2979 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2980 2981 /* 2982 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 2983 * propagation up the rcu_node tree will happen at the beginning 2984 * of the next grace period. 2985 */ 2986 rnp = rdp->mynode; 2987 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2988 rdp->beenonline = true; /* We have now been online. */ 2989 rdp->gp_seq = rnp->gp_seq; 2990 rdp->gp_seq_needed = rnp->gp_seq; 2991 rdp->cpu_no_qs.b.norm = true; 2992 rdp->core_needs_qs = false; 2993 rdp->rcu_iw_pending = false; 2994 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 2995 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 2996 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2997 rcu_prepare_kthreads(cpu); 2998 rcu_spawn_cpu_nocb_kthread(cpu); 2999 3000 return 0; 3001 } 3002 3003 /* 3004 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3005 */ 3006 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3007 { 3008 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3009 3010 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3011 } 3012 3013 /* 3014 * Near the end of the CPU-online process. Pretty much all services 3015 * enabled, and the CPU is now very much alive. 3016 */ 3017 int rcutree_online_cpu(unsigned int cpu) 3018 { 3019 unsigned long flags; 3020 struct rcu_data *rdp; 3021 struct rcu_node *rnp; 3022 3023 rdp = per_cpu_ptr(&rcu_data, cpu); 3024 rnp = rdp->mynode; 3025 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3026 rnp->ffmask |= rdp->grpmask; 3027 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3028 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3029 return 0; /* Too early in boot for scheduler work. */ 3030 sync_sched_exp_online_cleanup(cpu); 3031 rcutree_affinity_setting(cpu, -1); 3032 return 0; 3033 } 3034 3035 /* 3036 * Near the beginning of the process. The CPU is still very much alive 3037 * with pretty much all services enabled. 3038 */ 3039 int rcutree_offline_cpu(unsigned int cpu) 3040 { 3041 unsigned long flags; 3042 struct rcu_data *rdp; 3043 struct rcu_node *rnp; 3044 3045 rdp = per_cpu_ptr(&rcu_data, cpu); 3046 rnp = rdp->mynode; 3047 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3048 rnp->ffmask &= ~rdp->grpmask; 3049 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3050 3051 rcutree_affinity_setting(cpu, cpu); 3052 return 0; 3053 } 3054 3055 static DEFINE_PER_CPU(int, rcu_cpu_started); 3056 3057 /* 3058 * Mark the specified CPU as being online so that subsequent grace periods 3059 * (both expedited and normal) will wait on it. Note that this means that 3060 * incoming CPUs are not allowed to use RCU read-side critical sections 3061 * until this function is called. Failing to observe this restriction 3062 * will result in lockdep splats. 3063 * 3064 * Note that this function is special in that it is invoked directly 3065 * from the incoming CPU rather than from the cpuhp_step mechanism. 3066 * This is because this function must be invoked at a precise location. 3067 */ 3068 void rcu_cpu_starting(unsigned int cpu) 3069 { 3070 unsigned long flags; 3071 unsigned long mask; 3072 int nbits; 3073 unsigned long oldmask; 3074 struct rcu_data *rdp; 3075 struct rcu_node *rnp; 3076 3077 if (per_cpu(rcu_cpu_started, cpu)) 3078 return; 3079 3080 per_cpu(rcu_cpu_started, cpu) = 1; 3081 3082 rdp = per_cpu_ptr(&rcu_data, cpu); 3083 rnp = rdp->mynode; 3084 mask = rdp->grpmask; 3085 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3086 rnp->qsmaskinitnext |= mask; 3087 oldmask = rnp->expmaskinitnext; 3088 rnp->expmaskinitnext |= mask; 3089 oldmask ^= rnp->expmaskinitnext; 3090 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3091 /* Allow lockless access for expedited grace periods. */ 3092 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3093 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3094 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3095 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3096 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3097 /* Report QS -after- changing ->qsmaskinitnext! */ 3098 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3099 } else { 3100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3101 } 3102 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3103 } 3104 3105 #ifdef CONFIG_HOTPLUG_CPU 3106 /* 3107 * The outgoing function has no further need of RCU, so remove it from 3108 * the rcu_node tree's ->qsmaskinitnext bit masks. 3109 * 3110 * Note that this function is special in that it is invoked directly 3111 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3112 * This is because this function must be invoked at a precise location. 3113 */ 3114 void rcu_report_dead(unsigned int cpu) 3115 { 3116 unsigned long flags; 3117 unsigned long mask; 3118 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3119 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3120 3121 /* QS for any half-done expedited grace period. */ 3122 preempt_disable(); 3123 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3124 preempt_enable(); 3125 rcu_preempt_deferred_qs(current); 3126 3127 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3128 mask = rdp->grpmask; 3129 raw_spin_lock(&rcu_state.ofl_lock); 3130 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3131 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3132 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3133 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3134 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3135 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3136 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3137 } 3138 rnp->qsmaskinitnext &= ~mask; 3139 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3140 raw_spin_unlock(&rcu_state.ofl_lock); 3141 3142 per_cpu(rcu_cpu_started, cpu) = 0; 3143 } 3144 3145 /* 3146 * The outgoing CPU has just passed through the dying-idle state, and we 3147 * are being invoked from the CPU that was IPIed to continue the offline 3148 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3149 */ 3150 void rcutree_migrate_callbacks(int cpu) 3151 { 3152 unsigned long flags; 3153 struct rcu_data *my_rdp; 3154 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3155 struct rcu_node *rnp_root = rcu_get_root(); 3156 bool needwake; 3157 3158 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3159 return; /* No callbacks to migrate. */ 3160 3161 local_irq_save(flags); 3162 my_rdp = this_cpu_ptr(&rcu_data); 3163 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3164 local_irq_restore(flags); 3165 return; 3166 } 3167 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3168 /* Leverage recent GPs and set GP for new callbacks. */ 3169 needwake = rcu_advance_cbs(rnp_root, rdp) || 3170 rcu_advance_cbs(rnp_root, my_rdp); 3171 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3172 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3173 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3174 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3175 if (needwake) 3176 rcu_gp_kthread_wake(); 3177 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3178 !rcu_segcblist_empty(&rdp->cblist), 3179 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3180 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3181 rcu_segcblist_first_cb(&rdp->cblist)); 3182 } 3183 #endif 3184 3185 /* 3186 * On non-huge systems, use expedited RCU grace periods to make suspend 3187 * and hibernation run faster. 3188 */ 3189 static int rcu_pm_notify(struct notifier_block *self, 3190 unsigned long action, void *hcpu) 3191 { 3192 switch (action) { 3193 case PM_HIBERNATION_PREPARE: 3194 case PM_SUSPEND_PREPARE: 3195 rcu_expedite_gp(); 3196 break; 3197 case PM_POST_HIBERNATION: 3198 case PM_POST_SUSPEND: 3199 rcu_unexpedite_gp(); 3200 break; 3201 default: 3202 break; 3203 } 3204 return NOTIFY_OK; 3205 } 3206 3207 /* 3208 * Spawn the kthreads that handle RCU's grace periods. 3209 */ 3210 static int __init rcu_spawn_gp_kthread(void) 3211 { 3212 unsigned long flags; 3213 int kthread_prio_in = kthread_prio; 3214 struct rcu_node *rnp; 3215 struct sched_param sp; 3216 struct task_struct *t; 3217 3218 /* Force priority into range. */ 3219 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3220 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3221 kthread_prio = 2; 3222 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3223 kthread_prio = 1; 3224 else if (kthread_prio < 0) 3225 kthread_prio = 0; 3226 else if (kthread_prio > 99) 3227 kthread_prio = 99; 3228 3229 if (kthread_prio != kthread_prio_in) 3230 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3231 kthread_prio, kthread_prio_in); 3232 3233 rcu_scheduler_fully_active = 1; 3234 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3235 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3236 return 0; 3237 rnp = rcu_get_root(); 3238 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3239 rcu_state.gp_kthread = t; 3240 if (kthread_prio) { 3241 sp.sched_priority = kthread_prio; 3242 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3243 } 3244 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3245 wake_up_process(t); 3246 rcu_spawn_nocb_kthreads(); 3247 rcu_spawn_boost_kthreads(); 3248 return 0; 3249 } 3250 early_initcall(rcu_spawn_gp_kthread); 3251 3252 /* 3253 * This function is invoked towards the end of the scheduler's 3254 * initialization process. Before this is called, the idle task might 3255 * contain synchronous grace-period primitives (during which time, this idle 3256 * task is booting the system, and such primitives are no-ops). After this 3257 * function is called, any synchronous grace-period primitives are run as 3258 * expedited, with the requesting task driving the grace period forward. 3259 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3260 * runtime RCU functionality. 3261 */ 3262 void rcu_scheduler_starting(void) 3263 { 3264 WARN_ON(num_online_cpus() != 1); 3265 WARN_ON(nr_context_switches() > 0); 3266 rcu_test_sync_prims(); 3267 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3268 rcu_test_sync_prims(); 3269 } 3270 3271 /* 3272 * Helper function for rcu_init() that initializes the rcu_state structure. 3273 */ 3274 static void __init rcu_init_one(void) 3275 { 3276 static const char * const buf[] = RCU_NODE_NAME_INIT; 3277 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3278 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3279 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3280 3281 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3282 int cpustride = 1; 3283 int i; 3284 int j; 3285 struct rcu_node *rnp; 3286 3287 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3288 3289 /* Silence gcc 4.8 false positive about array index out of range. */ 3290 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3291 panic("rcu_init_one: rcu_num_lvls out of range"); 3292 3293 /* Initialize the level-tracking arrays. */ 3294 3295 for (i = 1; i < rcu_num_lvls; i++) 3296 rcu_state.level[i] = 3297 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3298 rcu_init_levelspread(levelspread, num_rcu_lvl); 3299 3300 /* Initialize the elements themselves, starting from the leaves. */ 3301 3302 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3303 cpustride *= levelspread[i]; 3304 rnp = rcu_state.level[i]; 3305 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3306 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3307 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3308 &rcu_node_class[i], buf[i]); 3309 raw_spin_lock_init(&rnp->fqslock); 3310 lockdep_set_class_and_name(&rnp->fqslock, 3311 &rcu_fqs_class[i], fqs[i]); 3312 rnp->gp_seq = rcu_state.gp_seq; 3313 rnp->gp_seq_needed = rcu_state.gp_seq; 3314 rnp->completedqs = rcu_state.gp_seq; 3315 rnp->qsmask = 0; 3316 rnp->qsmaskinit = 0; 3317 rnp->grplo = j * cpustride; 3318 rnp->grphi = (j + 1) * cpustride - 1; 3319 if (rnp->grphi >= nr_cpu_ids) 3320 rnp->grphi = nr_cpu_ids - 1; 3321 if (i == 0) { 3322 rnp->grpnum = 0; 3323 rnp->grpmask = 0; 3324 rnp->parent = NULL; 3325 } else { 3326 rnp->grpnum = j % levelspread[i - 1]; 3327 rnp->grpmask = BIT(rnp->grpnum); 3328 rnp->parent = rcu_state.level[i - 1] + 3329 j / levelspread[i - 1]; 3330 } 3331 rnp->level = i; 3332 INIT_LIST_HEAD(&rnp->blkd_tasks); 3333 rcu_init_one_nocb(rnp); 3334 init_waitqueue_head(&rnp->exp_wq[0]); 3335 init_waitqueue_head(&rnp->exp_wq[1]); 3336 init_waitqueue_head(&rnp->exp_wq[2]); 3337 init_waitqueue_head(&rnp->exp_wq[3]); 3338 spin_lock_init(&rnp->exp_lock); 3339 } 3340 } 3341 3342 init_swait_queue_head(&rcu_state.gp_wq); 3343 init_swait_queue_head(&rcu_state.expedited_wq); 3344 rnp = rcu_first_leaf_node(); 3345 for_each_possible_cpu(i) { 3346 while (i > rnp->grphi) 3347 rnp++; 3348 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3349 rcu_boot_init_percpu_data(i); 3350 } 3351 } 3352 3353 /* 3354 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3355 * replace the definitions in tree.h because those are needed to size 3356 * the ->node array in the rcu_state structure. 3357 */ 3358 static void __init rcu_init_geometry(void) 3359 { 3360 ulong d; 3361 int i; 3362 int rcu_capacity[RCU_NUM_LVLS]; 3363 3364 /* 3365 * Initialize any unspecified boot parameters. 3366 * The default values of jiffies_till_first_fqs and 3367 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3368 * value, which is a function of HZ, then adding one for each 3369 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3370 */ 3371 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3372 if (jiffies_till_first_fqs == ULONG_MAX) 3373 jiffies_till_first_fqs = d; 3374 if (jiffies_till_next_fqs == ULONG_MAX) 3375 jiffies_till_next_fqs = d; 3376 adjust_jiffies_till_sched_qs(); 3377 3378 /* If the compile-time values are accurate, just leave. */ 3379 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3380 nr_cpu_ids == NR_CPUS) 3381 return; 3382 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3383 rcu_fanout_leaf, nr_cpu_ids); 3384 3385 /* 3386 * The boot-time rcu_fanout_leaf parameter must be at least two 3387 * and cannot exceed the number of bits in the rcu_node masks. 3388 * Complain and fall back to the compile-time values if this 3389 * limit is exceeded. 3390 */ 3391 if (rcu_fanout_leaf < 2 || 3392 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3393 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3394 WARN_ON(1); 3395 return; 3396 } 3397 3398 /* 3399 * Compute number of nodes that can be handled an rcu_node tree 3400 * with the given number of levels. 3401 */ 3402 rcu_capacity[0] = rcu_fanout_leaf; 3403 for (i = 1; i < RCU_NUM_LVLS; i++) 3404 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3405 3406 /* 3407 * The tree must be able to accommodate the configured number of CPUs. 3408 * If this limit is exceeded, fall back to the compile-time values. 3409 */ 3410 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3411 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3412 WARN_ON(1); 3413 return; 3414 } 3415 3416 /* Calculate the number of levels in the tree. */ 3417 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3418 } 3419 rcu_num_lvls = i + 1; 3420 3421 /* Calculate the number of rcu_nodes at each level of the tree. */ 3422 for (i = 0; i < rcu_num_lvls; i++) { 3423 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3424 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3425 } 3426 3427 /* Calculate the total number of rcu_node structures. */ 3428 rcu_num_nodes = 0; 3429 for (i = 0; i < rcu_num_lvls; i++) 3430 rcu_num_nodes += num_rcu_lvl[i]; 3431 } 3432 3433 /* 3434 * Dump out the structure of the rcu_node combining tree associated 3435 * with the rcu_state structure. 3436 */ 3437 static void __init rcu_dump_rcu_node_tree(void) 3438 { 3439 int level = 0; 3440 struct rcu_node *rnp; 3441 3442 pr_info("rcu_node tree layout dump\n"); 3443 pr_info(" "); 3444 rcu_for_each_node_breadth_first(rnp) { 3445 if (rnp->level != level) { 3446 pr_cont("\n"); 3447 pr_info(" "); 3448 level = rnp->level; 3449 } 3450 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3451 } 3452 pr_cont("\n"); 3453 } 3454 3455 struct workqueue_struct *rcu_gp_wq; 3456 struct workqueue_struct *rcu_par_gp_wq; 3457 3458 void __init rcu_init(void) 3459 { 3460 int cpu; 3461 3462 rcu_early_boot_tests(); 3463 3464 rcu_bootup_announce(); 3465 rcu_init_geometry(); 3466 rcu_init_one(); 3467 if (dump_tree) 3468 rcu_dump_rcu_node_tree(); 3469 if (use_softirq) 3470 open_softirq(RCU_SOFTIRQ, rcu_core_si); 3471 3472 /* 3473 * We don't need protection against CPU-hotplug here because 3474 * this is called early in boot, before either interrupts 3475 * or the scheduler are operational. 3476 */ 3477 pm_notifier(rcu_pm_notify, 0); 3478 for_each_online_cpu(cpu) { 3479 rcutree_prepare_cpu(cpu); 3480 rcu_cpu_starting(cpu); 3481 rcutree_online_cpu(cpu); 3482 } 3483 3484 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3485 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3486 WARN_ON(!rcu_gp_wq); 3487 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3488 WARN_ON(!rcu_par_gp_wq); 3489 srcu_init(); 3490 } 3491 3492 #include "tree_stall.h" 3493 #include "tree_exp.h" 3494 #include "tree_plugin.h" 3495