1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 73 74 /* 75 * In order to export the rcu_state name to the tracing tools, it 76 * needs to be added in the __tracepoint_string section. 77 * This requires defining a separate variable tp_<sname>_varname 78 * that points to the string being used, and this will allow 79 * the tracing userspace tools to be able to decipher the string 80 * address to the matching string. 81 */ 82 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 83 static char sname##_varname[] = #sname; \ 84 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ 85 struct rcu_state sname##_state = { \ 86 .level = { &sname##_state.node[0] }, \ 87 .call = cr, \ 88 .fqs_state = RCU_GP_IDLE, \ 89 .gpnum = 0UL - 300UL, \ 90 .completed = 0UL - 300UL, \ 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 93 .orphan_donetail = &sname##_state.orphan_donelist, \ 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ 96 .name = sname##_varname, \ 97 .abbr = sabbr, \ 98 }; \ 99 DEFINE_PER_CPU(struct rcu_data, sname##_data) 100 101 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 102 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 103 104 static struct rcu_state *rcu_state; 105 LIST_HEAD(rcu_struct_flavors); 106 107 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 108 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 109 module_param(rcu_fanout_leaf, int, 0444); 110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 111 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 112 NUM_RCU_LVL_0, 113 NUM_RCU_LVL_1, 114 NUM_RCU_LVL_2, 115 NUM_RCU_LVL_3, 116 NUM_RCU_LVL_4, 117 }; 118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 119 120 /* 121 * The rcu_scheduler_active variable transitions from zero to one just 122 * before the first task is spawned. So when this variable is zero, RCU 123 * can assume that there is but one task, allowing RCU to (for example) 124 * optimize synchronize_sched() to a simple barrier(). When this variable 125 * is one, RCU must actually do all the hard work required to detect real 126 * grace periods. This variable is also used to suppress boot-time false 127 * positives from lockdep-RCU error checking. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 #ifdef CONFIG_RCU_BOOST 147 148 /* 149 * Control variables for per-CPU and per-rcu_node kthreads. These 150 * handle all flavors of RCU. 151 */ 152 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 153 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 154 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 155 DEFINE_PER_CPU(char, rcu_cpu_has_work); 156 157 #endif /* #ifdef CONFIG_RCU_BOOST */ 158 159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 160 static void invoke_rcu_core(void); 161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 162 163 /* 164 * Track the rcutorture test sequence number and the update version 165 * number within a given test. The rcutorture_testseq is incremented 166 * on every rcutorture module load and unload, so has an odd value 167 * when a test is running. The rcutorture_vernum is set to zero 168 * when rcutorture starts and is incremented on each rcutorture update. 169 * These variables enable correlating rcutorture output with the 170 * RCU tracing information. 171 */ 172 unsigned long rcutorture_testseq; 173 unsigned long rcutorture_vernum; 174 175 /* 176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 177 * permit this function to be invoked without holding the root rcu_node 178 * structure's ->lock, but of course results can be subject to change. 179 */ 180 static int rcu_gp_in_progress(struct rcu_state *rsp) 181 { 182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 183 } 184 185 /* 186 * Note a quiescent state. Because we do not need to know 187 * how many quiescent states passed, just if there was at least 188 * one since the start of the grace period, this just sets a flag. 189 * The caller must have disabled preemption. 190 */ 191 void rcu_sched_qs(int cpu) 192 { 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); 194 195 if (rdp->passed_quiesce == 0) 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); 197 rdp->passed_quiesce = 1; 198 } 199 200 void rcu_bh_qs(int cpu) 201 { 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 203 204 if (rdp->passed_quiesce == 0) 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); 206 rdp->passed_quiesce = 1; 207 } 208 209 /* 210 * Note a context switch. This is a quiescent state for RCU-sched, 211 * and requires special handling for preemptible RCU. 212 * The caller must have disabled preemption. 213 */ 214 void rcu_note_context_switch(int cpu) 215 { 216 trace_rcu_utilization(TPS("Start context switch")); 217 rcu_sched_qs(cpu); 218 rcu_preempt_note_context_switch(cpu); 219 trace_rcu_utilization(TPS("End context switch")); 220 } 221 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 222 223 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 224 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 225 .dynticks = ATOMIC_INIT(1), 226 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 227 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 228 .dynticks_idle = ATOMIC_INIT(1), 229 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 230 }; 231 232 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 233 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 234 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 235 236 module_param(blimit, long, 0444); 237 module_param(qhimark, long, 0444); 238 module_param(qlowmark, long, 0444); 239 240 static ulong jiffies_till_first_fqs = ULONG_MAX; 241 static ulong jiffies_till_next_fqs = ULONG_MAX; 242 243 module_param(jiffies_till_first_fqs, ulong, 0644); 244 module_param(jiffies_till_next_fqs, ulong, 0644); 245 246 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 247 struct rcu_data *rdp); 248 static void force_qs_rnp(struct rcu_state *rsp, 249 int (*f)(struct rcu_data *rsp, bool *isidle, 250 unsigned long *maxj), 251 bool *isidle, unsigned long *maxj); 252 static void force_quiescent_state(struct rcu_state *rsp); 253 static int rcu_pending(int cpu); 254 255 /* 256 * Return the number of RCU-sched batches processed thus far for debug & stats. 257 */ 258 long rcu_batches_completed_sched(void) 259 { 260 return rcu_sched_state.completed; 261 } 262 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 263 264 /* 265 * Return the number of RCU BH batches processed thus far for debug & stats. 266 */ 267 long rcu_batches_completed_bh(void) 268 { 269 return rcu_bh_state.completed; 270 } 271 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 272 273 /* 274 * Force a quiescent state for RCU BH. 275 */ 276 void rcu_bh_force_quiescent_state(void) 277 { 278 force_quiescent_state(&rcu_bh_state); 279 } 280 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 281 282 /* 283 * Record the number of times rcutorture tests have been initiated and 284 * terminated. This information allows the debugfs tracing stats to be 285 * correlated to the rcutorture messages, even when the rcutorture module 286 * is being repeatedly loaded and unloaded. In other words, we cannot 287 * store this state in rcutorture itself. 288 */ 289 void rcutorture_record_test_transition(void) 290 { 291 rcutorture_testseq++; 292 rcutorture_vernum = 0; 293 } 294 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 295 296 /* 297 * Record the number of writer passes through the current rcutorture test. 298 * This is also used to correlate debugfs tracing stats with the rcutorture 299 * messages. 300 */ 301 void rcutorture_record_progress(unsigned long vernum) 302 { 303 rcutorture_vernum++; 304 } 305 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 306 307 /* 308 * Force a quiescent state for RCU-sched. 309 */ 310 void rcu_sched_force_quiescent_state(void) 311 { 312 force_quiescent_state(&rcu_sched_state); 313 } 314 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 315 316 /* 317 * Does the CPU have callbacks ready to be invoked? 318 */ 319 static int 320 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 321 { 322 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 323 rdp->nxttail[RCU_DONE_TAIL] != NULL; 324 } 325 326 /* 327 * Does the current CPU require a not-yet-started grace period? 328 * The caller must have disabled interrupts to prevent races with 329 * normal callback registry. 330 */ 331 static int 332 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 333 { 334 int i; 335 336 if (rcu_gp_in_progress(rsp)) 337 return 0; /* No, a grace period is already in progress. */ 338 if (rcu_nocb_needs_gp(rsp)) 339 return 1; /* Yes, a no-CBs CPU needs one. */ 340 if (!rdp->nxttail[RCU_NEXT_TAIL]) 341 return 0; /* No, this is a no-CBs (or offline) CPU. */ 342 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 343 return 1; /* Yes, this CPU has newly registered callbacks. */ 344 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 345 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 346 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 347 rdp->nxtcompleted[i])) 348 return 1; /* Yes, CBs for future grace period. */ 349 return 0; /* No grace period needed. */ 350 } 351 352 /* 353 * Return the root node of the specified rcu_state structure. 354 */ 355 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 356 { 357 return &rsp->node[0]; 358 } 359 360 /* 361 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 362 * 363 * If the new value of the ->dynticks_nesting counter now is zero, 364 * we really have entered idle, and must do the appropriate accounting. 365 * The caller must have disabled interrupts. 366 */ 367 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, 368 bool user) 369 { 370 struct rcu_state *rsp; 371 struct rcu_data *rdp; 372 373 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 374 if (!user && !is_idle_task(current)) { 375 struct task_struct *idle __maybe_unused = 376 idle_task(smp_processor_id()); 377 378 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 379 ftrace_dump(DUMP_ORIG); 380 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 381 current->pid, current->comm, 382 idle->pid, idle->comm); /* must be idle task! */ 383 } 384 for_each_rcu_flavor(rsp) { 385 rdp = this_cpu_ptr(rsp->rda); 386 do_nocb_deferred_wakeup(rdp); 387 } 388 rcu_prepare_for_idle(smp_processor_id()); 389 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 390 smp_mb__before_atomic_inc(); /* See above. */ 391 atomic_inc(&rdtp->dynticks); 392 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */ 393 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 394 395 /* 396 * It is illegal to enter an extended quiescent state while 397 * in an RCU read-side critical section. 398 */ 399 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 400 "Illegal idle entry in RCU read-side critical section."); 401 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 402 "Illegal idle entry in RCU-bh read-side critical section."); 403 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 404 "Illegal idle entry in RCU-sched read-side critical section."); 405 } 406 407 /* 408 * Enter an RCU extended quiescent state, which can be either the 409 * idle loop or adaptive-tickless usermode execution. 410 */ 411 static void rcu_eqs_enter(bool user) 412 { 413 long long oldval; 414 struct rcu_dynticks *rdtp; 415 416 rdtp = this_cpu_ptr(&rcu_dynticks); 417 oldval = rdtp->dynticks_nesting; 418 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 419 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 420 rdtp->dynticks_nesting = 0; 421 rcu_eqs_enter_common(rdtp, oldval, user); 422 } else { 423 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 424 } 425 } 426 427 /** 428 * rcu_idle_enter - inform RCU that current CPU is entering idle 429 * 430 * Enter idle mode, in other words, -leave- the mode in which RCU 431 * read-side critical sections can occur. (Though RCU read-side 432 * critical sections can occur in irq handlers in idle, a possibility 433 * handled by irq_enter() and irq_exit().) 434 * 435 * We crowbar the ->dynticks_nesting field to zero to allow for 436 * the possibility of usermode upcalls having messed up our count 437 * of interrupt nesting level during the prior busy period. 438 */ 439 void rcu_idle_enter(void) 440 { 441 unsigned long flags; 442 443 local_irq_save(flags); 444 rcu_eqs_enter(false); 445 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); 446 local_irq_restore(flags); 447 } 448 EXPORT_SYMBOL_GPL(rcu_idle_enter); 449 450 #ifdef CONFIG_RCU_USER_QS 451 /** 452 * rcu_user_enter - inform RCU that we are resuming userspace. 453 * 454 * Enter RCU idle mode right before resuming userspace. No use of RCU 455 * is permitted between this call and rcu_user_exit(). This way the 456 * CPU doesn't need to maintain the tick for RCU maintenance purposes 457 * when the CPU runs in userspace. 458 */ 459 void rcu_user_enter(void) 460 { 461 rcu_eqs_enter(1); 462 } 463 #endif /* CONFIG_RCU_USER_QS */ 464 465 /** 466 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 467 * 468 * Exit from an interrupt handler, which might possibly result in entering 469 * idle mode, in other words, leaving the mode in which read-side critical 470 * sections can occur. 471 * 472 * This code assumes that the idle loop never does anything that might 473 * result in unbalanced calls to irq_enter() and irq_exit(). If your 474 * architecture violates this assumption, RCU will give you what you 475 * deserve, good and hard. But very infrequently and irreproducibly. 476 * 477 * Use things like work queues to work around this limitation. 478 * 479 * You have been warned. 480 */ 481 void rcu_irq_exit(void) 482 { 483 unsigned long flags; 484 long long oldval; 485 struct rcu_dynticks *rdtp; 486 487 local_irq_save(flags); 488 rdtp = this_cpu_ptr(&rcu_dynticks); 489 oldval = rdtp->dynticks_nesting; 490 rdtp->dynticks_nesting--; 491 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 492 if (rdtp->dynticks_nesting) 493 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 494 else 495 rcu_eqs_enter_common(rdtp, oldval, true); 496 rcu_sysidle_enter(rdtp, 1); 497 local_irq_restore(flags); 498 } 499 500 /* 501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 502 * 503 * If the new value of the ->dynticks_nesting counter was previously zero, 504 * we really have exited idle, and must do the appropriate accounting. 505 * The caller must have disabled interrupts. 506 */ 507 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, 508 int user) 509 { 510 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */ 511 atomic_inc(&rdtp->dynticks); 512 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 513 smp_mb__after_atomic_inc(); /* See above. */ 514 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 515 rcu_cleanup_after_idle(smp_processor_id()); 516 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 517 if (!user && !is_idle_task(current)) { 518 struct task_struct *idle __maybe_unused = 519 idle_task(smp_processor_id()); 520 521 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 522 oldval, rdtp->dynticks_nesting); 523 ftrace_dump(DUMP_ORIG); 524 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 525 current->pid, current->comm, 526 idle->pid, idle->comm); /* must be idle task! */ 527 } 528 } 529 530 /* 531 * Exit an RCU extended quiescent state, which can be either the 532 * idle loop or adaptive-tickless usermode execution. 533 */ 534 static void rcu_eqs_exit(bool user) 535 { 536 struct rcu_dynticks *rdtp; 537 long long oldval; 538 539 rdtp = this_cpu_ptr(&rcu_dynticks); 540 oldval = rdtp->dynticks_nesting; 541 WARN_ON_ONCE(oldval < 0); 542 if (oldval & DYNTICK_TASK_NEST_MASK) { 543 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 544 } else { 545 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 546 rcu_eqs_exit_common(rdtp, oldval, user); 547 } 548 } 549 550 /** 551 * rcu_idle_exit - inform RCU that current CPU is leaving idle 552 * 553 * Exit idle mode, in other words, -enter- the mode in which RCU 554 * read-side critical sections can occur. 555 * 556 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 557 * allow for the possibility of usermode upcalls messing up our count 558 * of interrupt nesting level during the busy period that is just 559 * now starting. 560 */ 561 void rcu_idle_exit(void) 562 { 563 unsigned long flags; 564 565 local_irq_save(flags); 566 rcu_eqs_exit(false); 567 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); 568 local_irq_restore(flags); 569 } 570 EXPORT_SYMBOL_GPL(rcu_idle_exit); 571 572 #ifdef CONFIG_RCU_USER_QS 573 /** 574 * rcu_user_exit - inform RCU that we are exiting userspace. 575 * 576 * Exit RCU idle mode while entering the kernel because it can 577 * run a RCU read side critical section anytime. 578 */ 579 void rcu_user_exit(void) 580 { 581 rcu_eqs_exit(1); 582 } 583 #endif /* CONFIG_RCU_USER_QS */ 584 585 /** 586 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 587 * 588 * Enter an interrupt handler, which might possibly result in exiting 589 * idle mode, in other words, entering the mode in which read-side critical 590 * sections can occur. 591 * 592 * Note that the Linux kernel is fully capable of entering an interrupt 593 * handler that it never exits, for example when doing upcalls to 594 * user mode! This code assumes that the idle loop never does upcalls to 595 * user mode. If your architecture does do upcalls from the idle loop (or 596 * does anything else that results in unbalanced calls to the irq_enter() 597 * and irq_exit() functions), RCU will give you what you deserve, good 598 * and hard. But very infrequently and irreproducibly. 599 * 600 * Use things like work queues to work around this limitation. 601 * 602 * You have been warned. 603 */ 604 void rcu_irq_enter(void) 605 { 606 unsigned long flags; 607 struct rcu_dynticks *rdtp; 608 long long oldval; 609 610 local_irq_save(flags); 611 rdtp = this_cpu_ptr(&rcu_dynticks); 612 oldval = rdtp->dynticks_nesting; 613 rdtp->dynticks_nesting++; 614 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 615 if (oldval) 616 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 617 else 618 rcu_eqs_exit_common(rdtp, oldval, true); 619 rcu_sysidle_exit(rdtp, 1); 620 local_irq_restore(flags); 621 } 622 623 /** 624 * rcu_nmi_enter - inform RCU of entry to NMI context 625 * 626 * If the CPU was idle with dynamic ticks active, and there is no 627 * irq handler running, this updates rdtp->dynticks_nmi to let the 628 * RCU grace-period handling know that the CPU is active. 629 */ 630 void rcu_nmi_enter(void) 631 { 632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 633 634 if (rdtp->dynticks_nmi_nesting == 0 && 635 (atomic_read(&rdtp->dynticks) & 0x1)) 636 return; 637 rdtp->dynticks_nmi_nesting++; 638 smp_mb__before_atomic_inc(); /* Force delay from prior write. */ 639 atomic_inc(&rdtp->dynticks); 640 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 641 smp_mb__after_atomic_inc(); /* See above. */ 642 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 643 } 644 645 /** 646 * rcu_nmi_exit - inform RCU of exit from NMI context 647 * 648 * If the CPU was idle with dynamic ticks active, and there is no 649 * irq handler running, this updates rdtp->dynticks_nmi to let the 650 * RCU grace-period handling know that the CPU is no longer active. 651 */ 652 void rcu_nmi_exit(void) 653 { 654 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 655 656 if (rdtp->dynticks_nmi_nesting == 0 || 657 --rdtp->dynticks_nmi_nesting != 0) 658 return; 659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 660 smp_mb__before_atomic_inc(); /* See above. */ 661 atomic_inc(&rdtp->dynticks); 662 smp_mb__after_atomic_inc(); /* Force delay to next write. */ 663 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 664 } 665 666 /** 667 * __rcu_is_watching - are RCU read-side critical sections safe? 668 * 669 * Return true if RCU is watching the running CPU, which means that 670 * this CPU can safely enter RCU read-side critical sections. Unlike 671 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 672 * least disabled preemption. 673 */ 674 bool notrace __rcu_is_watching(void) 675 { 676 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 677 } 678 679 /** 680 * rcu_is_watching - see if RCU thinks that the current CPU is idle 681 * 682 * If the current CPU is in its idle loop and is neither in an interrupt 683 * or NMI handler, return true. 684 */ 685 bool notrace rcu_is_watching(void) 686 { 687 int ret; 688 689 preempt_disable(); 690 ret = __rcu_is_watching(); 691 preempt_enable(); 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(rcu_is_watching); 695 696 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 697 698 /* 699 * Is the current CPU online? Disable preemption to avoid false positives 700 * that could otherwise happen due to the current CPU number being sampled, 701 * this task being preempted, its old CPU being taken offline, resuming 702 * on some other CPU, then determining that its old CPU is now offline. 703 * It is OK to use RCU on an offline processor during initial boot, hence 704 * the check for rcu_scheduler_fully_active. Note also that it is OK 705 * for a CPU coming online to use RCU for one jiffy prior to marking itself 706 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 707 * offline to continue to use RCU for one jiffy after marking itself 708 * offline in the cpu_online_mask. This leniency is necessary given the 709 * non-atomic nature of the online and offline processing, for example, 710 * the fact that a CPU enters the scheduler after completing the CPU_DYING 711 * notifiers. 712 * 713 * This is also why RCU internally marks CPUs online during the 714 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 715 * 716 * Disable checking if in an NMI handler because we cannot safely report 717 * errors from NMI handlers anyway. 718 */ 719 bool rcu_lockdep_current_cpu_online(void) 720 { 721 struct rcu_data *rdp; 722 struct rcu_node *rnp; 723 bool ret; 724 725 if (in_nmi()) 726 return true; 727 preempt_disable(); 728 rdp = this_cpu_ptr(&rcu_sched_data); 729 rnp = rdp->mynode; 730 ret = (rdp->grpmask & rnp->qsmaskinit) || 731 !rcu_scheduler_fully_active; 732 preempt_enable(); 733 return ret; 734 } 735 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 736 737 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 738 739 /** 740 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 741 * 742 * If the current CPU is idle or running at a first-level (not nested) 743 * interrupt from idle, return true. The caller must have at least 744 * disabled preemption. 745 */ 746 static int rcu_is_cpu_rrupt_from_idle(void) 747 { 748 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 749 } 750 751 /* 752 * Snapshot the specified CPU's dynticks counter so that we can later 753 * credit them with an implicit quiescent state. Return 1 if this CPU 754 * is in dynticks idle mode, which is an extended quiescent state. 755 */ 756 static int dyntick_save_progress_counter(struct rcu_data *rdp, 757 bool *isidle, unsigned long *maxj) 758 { 759 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 760 rcu_sysidle_check_cpu(rdp, isidle, maxj); 761 return (rdp->dynticks_snap & 0x1) == 0; 762 } 763 764 /* 765 * This function really isn't for public consumption, but RCU is special in 766 * that context switches can allow the state machine to make progress. 767 */ 768 extern void resched_cpu(int cpu); 769 770 /* 771 * Return true if the specified CPU has passed through a quiescent 772 * state by virtue of being in or having passed through an dynticks 773 * idle state since the last call to dyntick_save_progress_counter() 774 * for this same CPU, or by virtue of having been offline. 775 */ 776 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 777 bool *isidle, unsigned long *maxj) 778 { 779 unsigned int curr; 780 unsigned int snap; 781 782 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 783 snap = (unsigned int)rdp->dynticks_snap; 784 785 /* 786 * If the CPU passed through or entered a dynticks idle phase with 787 * no active irq/NMI handlers, then we can safely pretend that the CPU 788 * already acknowledged the request to pass through a quiescent 789 * state. Either way, that CPU cannot possibly be in an RCU 790 * read-side critical section that started before the beginning 791 * of the current RCU grace period. 792 */ 793 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 794 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 795 rdp->dynticks_fqs++; 796 return 1; 797 } 798 799 /* 800 * Check for the CPU being offline, but only if the grace period 801 * is old enough. We don't need to worry about the CPU changing 802 * state: If we see it offline even once, it has been through a 803 * quiescent state. 804 * 805 * The reason for insisting that the grace period be at least 806 * one jiffy old is that CPUs that are not quite online and that 807 * have just gone offline can still execute RCU read-side critical 808 * sections. 809 */ 810 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 811 return 0; /* Grace period is not old enough. */ 812 barrier(); 813 if (cpu_is_offline(rdp->cpu)) { 814 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 815 rdp->offline_fqs++; 816 return 1; 817 } 818 819 /* 820 * There is a possibility that a CPU in adaptive-ticks state 821 * might run in the kernel with the scheduling-clock tick disabled 822 * for an extended time period. Invoke rcu_kick_nohz_cpu() to 823 * force the CPU to restart the scheduling-clock tick in this 824 * CPU is in this state. 825 */ 826 rcu_kick_nohz_cpu(rdp->cpu); 827 828 /* 829 * Alternatively, the CPU might be running in the kernel 830 * for an extended period of time without a quiescent state. 831 * Attempt to force the CPU through the scheduler to gain the 832 * needed quiescent state, but only if the grace period has gone 833 * on for an uncommonly long time. If there are many stuck CPUs, 834 * we will beat on the first one until it gets unstuck, then move 835 * to the next. Only do this for the primary flavor of RCU. 836 */ 837 if (rdp->rsp == rcu_state && 838 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 839 rdp->rsp->jiffies_resched += 5; 840 resched_cpu(rdp->cpu); 841 } 842 843 return 0; 844 } 845 846 static void record_gp_stall_check_time(struct rcu_state *rsp) 847 { 848 unsigned long j = jiffies; 849 unsigned long j1; 850 851 rsp->gp_start = j; 852 smp_wmb(); /* Record start time before stall time. */ 853 j1 = rcu_jiffies_till_stall_check(); 854 rsp->jiffies_stall = j + j1; 855 rsp->jiffies_resched = j + j1 / 2; 856 } 857 858 /* 859 * Dump stacks of all tasks running on stalled CPUs. This is a fallback 860 * for architectures that do not implement trigger_all_cpu_backtrace(). 861 * The NMI-triggered stack traces are more accurate because they are 862 * printed by the target CPU. 863 */ 864 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 865 { 866 int cpu; 867 unsigned long flags; 868 struct rcu_node *rnp; 869 870 rcu_for_each_leaf_node(rsp, rnp) { 871 raw_spin_lock_irqsave(&rnp->lock, flags); 872 if (rnp->qsmask != 0) { 873 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 874 if (rnp->qsmask & (1UL << cpu)) 875 dump_cpu_task(rnp->grplo + cpu); 876 } 877 raw_spin_unlock_irqrestore(&rnp->lock, flags); 878 } 879 } 880 881 static void print_other_cpu_stall(struct rcu_state *rsp) 882 { 883 int cpu; 884 long delta; 885 unsigned long flags; 886 int ndetected = 0; 887 struct rcu_node *rnp = rcu_get_root(rsp); 888 long totqlen = 0; 889 890 /* Only let one CPU complain about others per time interval. */ 891 892 raw_spin_lock_irqsave(&rnp->lock, flags); 893 delta = jiffies - rsp->jiffies_stall; 894 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 895 raw_spin_unlock_irqrestore(&rnp->lock, flags); 896 return; 897 } 898 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 899 raw_spin_unlock_irqrestore(&rnp->lock, flags); 900 901 /* 902 * OK, time to rat on our buddy... 903 * See Documentation/RCU/stallwarn.txt for info on how to debug 904 * RCU CPU stall warnings. 905 */ 906 pr_err("INFO: %s detected stalls on CPUs/tasks:", 907 rsp->name); 908 print_cpu_stall_info_begin(); 909 rcu_for_each_leaf_node(rsp, rnp) { 910 raw_spin_lock_irqsave(&rnp->lock, flags); 911 ndetected += rcu_print_task_stall(rnp); 912 if (rnp->qsmask != 0) { 913 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 914 if (rnp->qsmask & (1UL << cpu)) { 915 print_cpu_stall_info(rsp, 916 rnp->grplo + cpu); 917 ndetected++; 918 } 919 } 920 raw_spin_unlock_irqrestore(&rnp->lock, flags); 921 } 922 923 /* 924 * Now rat on any tasks that got kicked up to the root rcu_node 925 * due to CPU offlining. 926 */ 927 rnp = rcu_get_root(rsp); 928 raw_spin_lock_irqsave(&rnp->lock, flags); 929 ndetected += rcu_print_task_stall(rnp); 930 raw_spin_unlock_irqrestore(&rnp->lock, flags); 931 932 print_cpu_stall_info_end(); 933 for_each_possible_cpu(cpu) 934 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 935 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n", 936 smp_processor_id(), (long)(jiffies - rsp->gp_start), 937 rsp->gpnum, rsp->completed, totqlen); 938 if (ndetected == 0) 939 pr_err("INFO: Stall ended before state dump start\n"); 940 else if (!trigger_all_cpu_backtrace()) 941 rcu_dump_cpu_stacks(rsp); 942 943 /* Complain about tasks blocking the grace period. */ 944 945 rcu_print_detail_task_stall(rsp); 946 947 force_quiescent_state(rsp); /* Kick them all. */ 948 } 949 950 /* 951 * This function really isn't for public consumption, but RCU is special in 952 * that context switches can allow the state machine to make progress. 953 */ 954 extern void resched_cpu(int cpu); 955 956 static void print_cpu_stall(struct rcu_state *rsp) 957 { 958 int cpu; 959 unsigned long flags; 960 struct rcu_node *rnp = rcu_get_root(rsp); 961 long totqlen = 0; 962 963 /* 964 * OK, time to rat on ourselves... 965 * See Documentation/RCU/stallwarn.txt for info on how to debug 966 * RCU CPU stall warnings. 967 */ 968 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 969 print_cpu_stall_info_begin(); 970 print_cpu_stall_info(rsp, smp_processor_id()); 971 print_cpu_stall_info_end(); 972 for_each_possible_cpu(cpu) 973 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 974 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n", 975 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen); 976 if (!trigger_all_cpu_backtrace()) 977 dump_stack(); 978 979 raw_spin_lock_irqsave(&rnp->lock, flags); 980 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) 981 rsp->jiffies_stall = jiffies + 982 3 * rcu_jiffies_till_stall_check() + 3; 983 raw_spin_unlock_irqrestore(&rnp->lock, flags); 984 985 /* 986 * Attempt to revive the RCU machinery by forcing a context switch. 987 * 988 * A context switch would normally allow the RCU state machine to make 989 * progress and it could be we're stuck in kernel space without context 990 * switches for an entirely unreasonable amount of time. 991 */ 992 resched_cpu(smp_processor_id()); 993 } 994 995 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 996 { 997 unsigned long completed; 998 unsigned long gpnum; 999 unsigned long gps; 1000 unsigned long j; 1001 unsigned long js; 1002 struct rcu_node *rnp; 1003 1004 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1005 return; 1006 j = jiffies; 1007 1008 /* 1009 * Lots of memory barriers to reject false positives. 1010 * 1011 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1012 * then rsp->gp_start, and finally rsp->completed. These values 1013 * are updated in the opposite order with memory barriers (or 1014 * equivalent) during grace-period initialization and cleanup. 1015 * Now, a false positive can occur if we get an new value of 1016 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1017 * the memory barriers, the only way that this can happen is if one 1018 * grace period ends and another starts between these two fetches. 1019 * Detect this by comparing rsp->completed with the previous fetch 1020 * from rsp->gpnum. 1021 * 1022 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1023 * and rsp->gp_start suffice to forestall false positives. 1024 */ 1025 gpnum = ACCESS_ONCE(rsp->gpnum); 1026 smp_rmb(); /* Pick up ->gpnum first... */ 1027 js = ACCESS_ONCE(rsp->jiffies_stall); 1028 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1029 gps = ACCESS_ONCE(rsp->gp_start); 1030 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1031 completed = ACCESS_ONCE(rsp->completed); 1032 if (ULONG_CMP_GE(completed, gpnum) || 1033 ULONG_CMP_LT(j, js) || 1034 ULONG_CMP_GE(gps, js)) 1035 return; /* No stall or GP completed since entering function. */ 1036 rnp = rdp->mynode; 1037 if (rcu_gp_in_progress(rsp) && 1038 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1039 1040 /* We haven't checked in, so go dump stack. */ 1041 print_cpu_stall(rsp); 1042 1043 } else if (rcu_gp_in_progress(rsp) && 1044 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1045 1046 /* They had a few time units to dump stack, so complain. */ 1047 print_other_cpu_stall(rsp); 1048 } 1049 } 1050 1051 /** 1052 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1053 * 1054 * Set the stall-warning timeout way off into the future, thus preventing 1055 * any RCU CPU stall-warning messages from appearing in the current set of 1056 * RCU grace periods. 1057 * 1058 * The caller must disable hard irqs. 1059 */ 1060 void rcu_cpu_stall_reset(void) 1061 { 1062 struct rcu_state *rsp; 1063 1064 for_each_rcu_flavor(rsp) 1065 rsp->jiffies_stall = jiffies + ULONG_MAX / 2; 1066 } 1067 1068 /* 1069 * Initialize the specified rcu_data structure's callback list to empty. 1070 */ 1071 static void init_callback_list(struct rcu_data *rdp) 1072 { 1073 int i; 1074 1075 if (init_nocb_callback_list(rdp)) 1076 return; 1077 rdp->nxtlist = NULL; 1078 for (i = 0; i < RCU_NEXT_SIZE; i++) 1079 rdp->nxttail[i] = &rdp->nxtlist; 1080 } 1081 1082 /* 1083 * Determine the value that ->completed will have at the end of the 1084 * next subsequent grace period. This is used to tag callbacks so that 1085 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1086 * been dyntick-idle for an extended period with callbacks under the 1087 * influence of RCU_FAST_NO_HZ. 1088 * 1089 * The caller must hold rnp->lock with interrupts disabled. 1090 */ 1091 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1092 struct rcu_node *rnp) 1093 { 1094 /* 1095 * If RCU is idle, we just wait for the next grace period. 1096 * But we can only be sure that RCU is idle if we are looking 1097 * at the root rcu_node structure -- otherwise, a new grace 1098 * period might have started, but just not yet gotten around 1099 * to initializing the current non-root rcu_node structure. 1100 */ 1101 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1102 return rnp->completed + 1; 1103 1104 /* 1105 * Otherwise, wait for a possible partial grace period and 1106 * then the subsequent full grace period. 1107 */ 1108 return rnp->completed + 2; 1109 } 1110 1111 /* 1112 * Trace-event helper function for rcu_start_future_gp() and 1113 * rcu_nocb_wait_gp(). 1114 */ 1115 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1116 unsigned long c, const char *s) 1117 { 1118 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1119 rnp->completed, c, rnp->level, 1120 rnp->grplo, rnp->grphi, s); 1121 } 1122 1123 /* 1124 * Start some future grace period, as needed to handle newly arrived 1125 * callbacks. The required future grace periods are recorded in each 1126 * rcu_node structure's ->need_future_gp field. 1127 * 1128 * The caller must hold the specified rcu_node structure's ->lock. 1129 */ 1130 static unsigned long __maybe_unused 1131 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp) 1132 { 1133 unsigned long c; 1134 int i; 1135 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1136 1137 /* 1138 * Pick up grace-period number for new callbacks. If this 1139 * grace period is already marked as needed, return to the caller. 1140 */ 1141 c = rcu_cbs_completed(rdp->rsp, rnp); 1142 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1143 if (rnp->need_future_gp[c & 0x1]) { 1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1145 return c; 1146 } 1147 1148 /* 1149 * If either this rcu_node structure or the root rcu_node structure 1150 * believe that a grace period is in progress, then we must wait 1151 * for the one following, which is in "c". Because our request 1152 * will be noticed at the end of the current grace period, we don't 1153 * need to explicitly start one. 1154 */ 1155 if (rnp->gpnum != rnp->completed || 1156 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) { 1157 rnp->need_future_gp[c & 0x1]++; 1158 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1159 return c; 1160 } 1161 1162 /* 1163 * There might be no grace period in progress. If we don't already 1164 * hold it, acquire the root rcu_node structure's lock in order to 1165 * start one (if needed). 1166 */ 1167 if (rnp != rnp_root) { 1168 raw_spin_lock(&rnp_root->lock); 1169 smp_mb__after_unlock_lock(); 1170 } 1171 1172 /* 1173 * Get a new grace-period number. If there really is no grace 1174 * period in progress, it will be smaller than the one we obtained 1175 * earlier. Adjust callbacks as needed. Note that even no-CBs 1176 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1177 */ 1178 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1179 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1180 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1181 rdp->nxtcompleted[i] = c; 1182 1183 /* 1184 * If the needed for the required grace period is already 1185 * recorded, trace and leave. 1186 */ 1187 if (rnp_root->need_future_gp[c & 0x1]) { 1188 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1189 goto unlock_out; 1190 } 1191 1192 /* Record the need for the future grace period. */ 1193 rnp_root->need_future_gp[c & 0x1]++; 1194 1195 /* If a grace period is not already in progress, start one. */ 1196 if (rnp_root->gpnum != rnp_root->completed) { 1197 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1198 } else { 1199 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1200 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1201 } 1202 unlock_out: 1203 if (rnp != rnp_root) 1204 raw_spin_unlock(&rnp_root->lock); 1205 return c; 1206 } 1207 1208 /* 1209 * Clean up any old requests for the just-ended grace period. Also return 1210 * whether any additional grace periods have been requested. Also invoke 1211 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1212 * waiting for this grace period to complete. 1213 */ 1214 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1215 { 1216 int c = rnp->completed; 1217 int needmore; 1218 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1219 1220 rcu_nocb_gp_cleanup(rsp, rnp); 1221 rnp->need_future_gp[c & 0x1] = 0; 1222 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1223 trace_rcu_future_gp(rnp, rdp, c, 1224 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1225 return needmore; 1226 } 1227 1228 /* 1229 * If there is room, assign a ->completed number to any callbacks on 1230 * this CPU that have not already been assigned. Also accelerate any 1231 * callbacks that were previously assigned a ->completed number that has 1232 * since proven to be too conservative, which can happen if callbacks get 1233 * assigned a ->completed number while RCU is idle, but with reference to 1234 * a non-root rcu_node structure. This function is idempotent, so it does 1235 * not hurt to call it repeatedly. 1236 * 1237 * The caller must hold rnp->lock with interrupts disabled. 1238 */ 1239 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1240 struct rcu_data *rdp) 1241 { 1242 unsigned long c; 1243 int i; 1244 1245 /* If the CPU has no callbacks, nothing to do. */ 1246 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1247 return; 1248 1249 /* 1250 * Starting from the sublist containing the callbacks most 1251 * recently assigned a ->completed number and working down, find the 1252 * first sublist that is not assignable to an upcoming grace period. 1253 * Such a sublist has something in it (first two tests) and has 1254 * a ->completed number assigned that will complete sooner than 1255 * the ->completed number for newly arrived callbacks (last test). 1256 * 1257 * The key point is that any later sublist can be assigned the 1258 * same ->completed number as the newly arrived callbacks, which 1259 * means that the callbacks in any of these later sublist can be 1260 * grouped into a single sublist, whether or not they have already 1261 * been assigned a ->completed number. 1262 */ 1263 c = rcu_cbs_completed(rsp, rnp); 1264 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1265 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1266 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1267 break; 1268 1269 /* 1270 * If there are no sublist for unassigned callbacks, leave. 1271 * At the same time, advance "i" one sublist, so that "i" will 1272 * index into the sublist where all the remaining callbacks should 1273 * be grouped into. 1274 */ 1275 if (++i >= RCU_NEXT_TAIL) 1276 return; 1277 1278 /* 1279 * Assign all subsequent callbacks' ->completed number to the next 1280 * full grace period and group them all in the sublist initially 1281 * indexed by "i". 1282 */ 1283 for (; i <= RCU_NEXT_TAIL; i++) { 1284 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1285 rdp->nxtcompleted[i] = c; 1286 } 1287 /* Record any needed additional grace periods. */ 1288 rcu_start_future_gp(rnp, rdp); 1289 1290 /* Trace depending on how much we were able to accelerate. */ 1291 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1292 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1293 else 1294 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1295 } 1296 1297 /* 1298 * Move any callbacks whose grace period has completed to the 1299 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1300 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1301 * sublist. This function is idempotent, so it does not hurt to 1302 * invoke it repeatedly. As long as it is not invoked -too- often... 1303 * 1304 * The caller must hold rnp->lock with interrupts disabled. 1305 */ 1306 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1307 struct rcu_data *rdp) 1308 { 1309 int i, j; 1310 1311 /* If the CPU has no callbacks, nothing to do. */ 1312 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1313 return; 1314 1315 /* 1316 * Find all callbacks whose ->completed numbers indicate that they 1317 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1318 */ 1319 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1320 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1321 break; 1322 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1323 } 1324 /* Clean up any sublist tail pointers that were misordered above. */ 1325 for (j = RCU_WAIT_TAIL; j < i; j++) 1326 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1327 1328 /* Copy down callbacks to fill in empty sublists. */ 1329 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1330 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1331 break; 1332 rdp->nxttail[j] = rdp->nxttail[i]; 1333 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1334 } 1335 1336 /* Classify any remaining callbacks. */ 1337 rcu_accelerate_cbs(rsp, rnp, rdp); 1338 } 1339 1340 /* 1341 * Update CPU-local rcu_data state to record the beginnings and ends of 1342 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1343 * structure corresponding to the current CPU, and must have irqs disabled. 1344 */ 1345 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 1346 { 1347 /* Handle the ends of any preceding grace periods first. */ 1348 if (rdp->completed == rnp->completed) { 1349 1350 /* No grace period end, so just accelerate recent callbacks. */ 1351 rcu_accelerate_cbs(rsp, rnp, rdp); 1352 1353 } else { 1354 1355 /* Advance callbacks. */ 1356 rcu_advance_cbs(rsp, rnp, rdp); 1357 1358 /* Remember that we saw this grace-period completion. */ 1359 rdp->completed = rnp->completed; 1360 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1361 } 1362 1363 if (rdp->gpnum != rnp->gpnum) { 1364 /* 1365 * If the current grace period is waiting for this CPU, 1366 * set up to detect a quiescent state, otherwise don't 1367 * go looking for one. 1368 */ 1369 rdp->gpnum = rnp->gpnum; 1370 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1371 rdp->passed_quiesce = 0; 1372 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1373 zero_cpu_stall_ticks(rdp); 1374 } 1375 } 1376 1377 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1378 { 1379 unsigned long flags; 1380 struct rcu_node *rnp; 1381 1382 local_irq_save(flags); 1383 rnp = rdp->mynode; 1384 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1385 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ 1386 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1387 local_irq_restore(flags); 1388 return; 1389 } 1390 smp_mb__after_unlock_lock(); 1391 __note_gp_changes(rsp, rnp, rdp); 1392 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1393 } 1394 1395 /* 1396 * Initialize a new grace period. Return 0 if no grace period required. 1397 */ 1398 static int rcu_gp_init(struct rcu_state *rsp) 1399 { 1400 struct rcu_data *rdp; 1401 struct rcu_node *rnp = rcu_get_root(rsp); 1402 1403 rcu_bind_gp_kthread(); 1404 raw_spin_lock_irq(&rnp->lock); 1405 smp_mb__after_unlock_lock(); 1406 if (rsp->gp_flags == 0) { 1407 /* Spurious wakeup, tell caller to go back to sleep. */ 1408 raw_spin_unlock_irq(&rnp->lock); 1409 return 0; 1410 } 1411 rsp->gp_flags = 0; /* Clear all flags: New grace period. */ 1412 1413 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1414 /* 1415 * Grace period already in progress, don't start another. 1416 * Not supposed to be able to happen. 1417 */ 1418 raw_spin_unlock_irq(&rnp->lock); 1419 return 0; 1420 } 1421 1422 /* Advance to a new grace period and initialize state. */ 1423 record_gp_stall_check_time(rsp); 1424 /* Record GP times before starting GP, hence smp_store_release(). */ 1425 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1426 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1427 raw_spin_unlock_irq(&rnp->lock); 1428 1429 /* Exclude any concurrent CPU-hotplug operations. */ 1430 mutex_lock(&rsp->onoff_mutex); 1431 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */ 1432 1433 /* 1434 * Set the quiescent-state-needed bits in all the rcu_node 1435 * structures for all currently online CPUs in breadth-first order, 1436 * starting from the root rcu_node structure, relying on the layout 1437 * of the tree within the rsp->node[] array. Note that other CPUs 1438 * will access only the leaves of the hierarchy, thus seeing that no 1439 * grace period is in progress, at least until the corresponding 1440 * leaf node has been initialized. In addition, we have excluded 1441 * CPU-hotplug operations. 1442 * 1443 * The grace period cannot complete until the initialization 1444 * process finishes, because this kthread handles both. 1445 */ 1446 rcu_for_each_node_breadth_first(rsp, rnp) { 1447 raw_spin_lock_irq(&rnp->lock); 1448 smp_mb__after_unlock_lock(); 1449 rdp = this_cpu_ptr(rsp->rda); 1450 rcu_preempt_check_blocked_tasks(rnp); 1451 rnp->qsmask = rnp->qsmaskinit; 1452 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1453 WARN_ON_ONCE(rnp->completed != rsp->completed); 1454 ACCESS_ONCE(rnp->completed) = rsp->completed; 1455 if (rnp == rdp->mynode) 1456 __note_gp_changes(rsp, rnp, rdp); 1457 rcu_preempt_boost_start_gp(rnp); 1458 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1459 rnp->level, rnp->grplo, 1460 rnp->grphi, rnp->qsmask); 1461 raw_spin_unlock_irq(&rnp->lock); 1462 #ifdef CONFIG_PROVE_RCU_DELAY 1463 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 && 1464 system_state == SYSTEM_RUNNING) 1465 udelay(200); 1466 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ 1467 cond_resched(); 1468 } 1469 1470 mutex_unlock(&rsp->onoff_mutex); 1471 return 1; 1472 } 1473 1474 /* 1475 * Do one round of quiescent-state forcing. 1476 */ 1477 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1478 { 1479 int fqs_state = fqs_state_in; 1480 bool isidle = false; 1481 unsigned long maxj; 1482 struct rcu_node *rnp = rcu_get_root(rsp); 1483 1484 rsp->n_force_qs++; 1485 if (fqs_state == RCU_SAVE_DYNTICK) { 1486 /* Collect dyntick-idle snapshots. */ 1487 if (is_sysidle_rcu_state(rsp)) { 1488 isidle = 1; 1489 maxj = jiffies - ULONG_MAX / 4; 1490 } 1491 force_qs_rnp(rsp, dyntick_save_progress_counter, 1492 &isidle, &maxj); 1493 rcu_sysidle_report_gp(rsp, isidle, maxj); 1494 fqs_state = RCU_FORCE_QS; 1495 } else { 1496 /* Handle dyntick-idle and offline CPUs. */ 1497 isidle = 0; 1498 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1499 } 1500 /* Clear flag to prevent immediate re-entry. */ 1501 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1502 raw_spin_lock_irq(&rnp->lock); 1503 smp_mb__after_unlock_lock(); 1504 rsp->gp_flags &= ~RCU_GP_FLAG_FQS; 1505 raw_spin_unlock_irq(&rnp->lock); 1506 } 1507 return fqs_state; 1508 } 1509 1510 /* 1511 * Clean up after the old grace period. 1512 */ 1513 static void rcu_gp_cleanup(struct rcu_state *rsp) 1514 { 1515 unsigned long gp_duration; 1516 int nocb = 0; 1517 struct rcu_data *rdp; 1518 struct rcu_node *rnp = rcu_get_root(rsp); 1519 1520 raw_spin_lock_irq(&rnp->lock); 1521 smp_mb__after_unlock_lock(); 1522 gp_duration = jiffies - rsp->gp_start; 1523 if (gp_duration > rsp->gp_max) 1524 rsp->gp_max = gp_duration; 1525 1526 /* 1527 * We know the grace period is complete, but to everyone else 1528 * it appears to still be ongoing. But it is also the case 1529 * that to everyone else it looks like there is nothing that 1530 * they can do to advance the grace period. It is therefore 1531 * safe for us to drop the lock in order to mark the grace 1532 * period as completed in all of the rcu_node structures. 1533 */ 1534 raw_spin_unlock_irq(&rnp->lock); 1535 1536 /* 1537 * Propagate new ->completed value to rcu_node structures so 1538 * that other CPUs don't have to wait until the start of the next 1539 * grace period to process their callbacks. This also avoids 1540 * some nasty RCU grace-period initialization races by forcing 1541 * the end of the current grace period to be completely recorded in 1542 * all of the rcu_node structures before the beginning of the next 1543 * grace period is recorded in any of the rcu_node structures. 1544 */ 1545 rcu_for_each_node_breadth_first(rsp, rnp) { 1546 raw_spin_lock_irq(&rnp->lock); 1547 smp_mb__after_unlock_lock(); 1548 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1549 rdp = this_cpu_ptr(rsp->rda); 1550 if (rnp == rdp->mynode) 1551 __note_gp_changes(rsp, rnp, rdp); 1552 /* smp_mb() provided by prior unlock-lock pair. */ 1553 nocb += rcu_future_gp_cleanup(rsp, rnp); 1554 raw_spin_unlock_irq(&rnp->lock); 1555 cond_resched(); 1556 } 1557 rnp = rcu_get_root(rsp); 1558 raw_spin_lock_irq(&rnp->lock); 1559 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */ 1560 rcu_nocb_gp_set(rnp, nocb); 1561 1562 /* Declare grace period done. */ 1563 ACCESS_ONCE(rsp->completed) = rsp->gpnum; 1564 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1565 rsp->fqs_state = RCU_GP_IDLE; 1566 rdp = this_cpu_ptr(rsp->rda); 1567 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */ 1568 if (cpu_needs_another_gp(rsp, rdp)) { 1569 rsp->gp_flags = RCU_GP_FLAG_INIT; 1570 trace_rcu_grace_period(rsp->name, 1571 ACCESS_ONCE(rsp->gpnum), 1572 TPS("newreq")); 1573 } 1574 raw_spin_unlock_irq(&rnp->lock); 1575 } 1576 1577 /* 1578 * Body of kthread that handles grace periods. 1579 */ 1580 static int __noreturn rcu_gp_kthread(void *arg) 1581 { 1582 int fqs_state; 1583 int gf; 1584 unsigned long j; 1585 int ret; 1586 struct rcu_state *rsp = arg; 1587 struct rcu_node *rnp = rcu_get_root(rsp); 1588 1589 for (;;) { 1590 1591 /* Handle grace-period start. */ 1592 for (;;) { 1593 trace_rcu_grace_period(rsp->name, 1594 ACCESS_ONCE(rsp->gpnum), 1595 TPS("reqwait")); 1596 wait_event_interruptible(rsp->gp_wq, 1597 ACCESS_ONCE(rsp->gp_flags) & 1598 RCU_GP_FLAG_INIT); 1599 /* Locking provides needed memory barrier. */ 1600 if (rcu_gp_init(rsp)) 1601 break; 1602 cond_resched(); 1603 flush_signals(current); 1604 trace_rcu_grace_period(rsp->name, 1605 ACCESS_ONCE(rsp->gpnum), 1606 TPS("reqwaitsig")); 1607 } 1608 1609 /* Handle quiescent-state forcing. */ 1610 fqs_state = RCU_SAVE_DYNTICK; 1611 j = jiffies_till_first_fqs; 1612 if (j > HZ) { 1613 j = HZ; 1614 jiffies_till_first_fqs = HZ; 1615 } 1616 ret = 0; 1617 for (;;) { 1618 if (!ret) 1619 rsp->jiffies_force_qs = jiffies + j; 1620 trace_rcu_grace_period(rsp->name, 1621 ACCESS_ONCE(rsp->gpnum), 1622 TPS("fqswait")); 1623 ret = wait_event_interruptible_timeout(rsp->gp_wq, 1624 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 1625 RCU_GP_FLAG_FQS) || 1626 (!ACCESS_ONCE(rnp->qsmask) && 1627 !rcu_preempt_blocked_readers_cgp(rnp)), 1628 j); 1629 /* Locking provides needed memory barriers. */ 1630 /* If grace period done, leave loop. */ 1631 if (!ACCESS_ONCE(rnp->qsmask) && 1632 !rcu_preempt_blocked_readers_cgp(rnp)) 1633 break; 1634 /* If time for quiescent-state forcing, do it. */ 1635 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 1636 (gf & RCU_GP_FLAG_FQS)) { 1637 trace_rcu_grace_period(rsp->name, 1638 ACCESS_ONCE(rsp->gpnum), 1639 TPS("fqsstart")); 1640 fqs_state = rcu_gp_fqs(rsp, fqs_state); 1641 trace_rcu_grace_period(rsp->name, 1642 ACCESS_ONCE(rsp->gpnum), 1643 TPS("fqsend")); 1644 cond_resched(); 1645 } else { 1646 /* Deal with stray signal. */ 1647 cond_resched(); 1648 flush_signals(current); 1649 trace_rcu_grace_period(rsp->name, 1650 ACCESS_ONCE(rsp->gpnum), 1651 TPS("fqswaitsig")); 1652 } 1653 j = jiffies_till_next_fqs; 1654 if (j > HZ) { 1655 j = HZ; 1656 jiffies_till_next_fqs = HZ; 1657 } else if (j < 1) { 1658 j = 1; 1659 jiffies_till_next_fqs = 1; 1660 } 1661 } 1662 1663 /* Handle grace-period end. */ 1664 rcu_gp_cleanup(rsp); 1665 } 1666 } 1667 1668 static void rsp_wakeup(struct irq_work *work) 1669 { 1670 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work); 1671 1672 /* Wake up rcu_gp_kthread() to start the grace period. */ 1673 wake_up(&rsp->gp_wq); 1674 } 1675 1676 /* 1677 * Start a new RCU grace period if warranted, re-initializing the hierarchy 1678 * in preparation for detecting the next grace period. The caller must hold 1679 * the root node's ->lock and hard irqs must be disabled. 1680 * 1681 * Note that it is legal for a dying CPU (which is marked as offline) to 1682 * invoke this function. This can happen when the dying CPU reports its 1683 * quiescent state. 1684 */ 1685 static void 1686 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 1687 struct rcu_data *rdp) 1688 { 1689 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 1690 /* 1691 * Either we have not yet spawned the grace-period 1692 * task, this CPU does not need another grace period, 1693 * or a grace period is already in progress. 1694 * Either way, don't start a new grace period. 1695 */ 1696 return; 1697 } 1698 rsp->gp_flags = RCU_GP_FLAG_INIT; 1699 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 1700 TPS("newreq")); 1701 1702 /* 1703 * We can't do wakeups while holding the rnp->lock, as that 1704 * could cause possible deadlocks with the rq->lock. Defer 1705 * the wakeup to interrupt context. And don't bother waking 1706 * up the running kthread. 1707 */ 1708 if (current != rsp->gp_kthread) 1709 irq_work_queue(&rsp->wakeup_work); 1710 } 1711 1712 /* 1713 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 1714 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 1715 * is invoked indirectly from rcu_advance_cbs(), which would result in 1716 * endless recursion -- or would do so if it wasn't for the self-deadlock 1717 * that is encountered beforehand. 1718 */ 1719 static void 1720 rcu_start_gp(struct rcu_state *rsp) 1721 { 1722 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1723 struct rcu_node *rnp = rcu_get_root(rsp); 1724 1725 /* 1726 * If there is no grace period in progress right now, any 1727 * callbacks we have up to this point will be satisfied by the 1728 * next grace period. Also, advancing the callbacks reduces the 1729 * probability of false positives from cpu_needs_another_gp() 1730 * resulting in pointless grace periods. So, advance callbacks 1731 * then start the grace period! 1732 */ 1733 rcu_advance_cbs(rsp, rnp, rdp); 1734 rcu_start_gp_advanced(rsp, rnp, rdp); 1735 } 1736 1737 /* 1738 * Report a full set of quiescent states to the specified rcu_state 1739 * data structure. This involves cleaning up after the prior grace 1740 * period and letting rcu_start_gp() start up the next grace period 1741 * if one is needed. Note that the caller must hold rnp->lock, which 1742 * is released before return. 1743 */ 1744 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 1745 __releases(rcu_get_root(rsp)->lock) 1746 { 1747 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 1748 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 1749 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 1750 } 1751 1752 /* 1753 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1754 * Allows quiescent states for a group of CPUs to be reported at one go 1755 * to the specified rcu_node structure, though all the CPUs in the group 1756 * must be represented by the same rcu_node structure (which need not be 1757 * a leaf rcu_node structure, though it often will be). That structure's 1758 * lock must be held upon entry, and it is released before return. 1759 */ 1760 static void 1761 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 1762 struct rcu_node *rnp, unsigned long flags) 1763 __releases(rnp->lock) 1764 { 1765 struct rcu_node *rnp_c; 1766 1767 /* Walk up the rcu_node hierarchy. */ 1768 for (;;) { 1769 if (!(rnp->qsmask & mask)) { 1770 1771 /* Our bit has already been cleared, so done. */ 1772 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1773 return; 1774 } 1775 rnp->qsmask &= ~mask; 1776 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 1777 mask, rnp->qsmask, rnp->level, 1778 rnp->grplo, rnp->grphi, 1779 !!rnp->gp_tasks); 1780 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1781 1782 /* Other bits still set at this level, so done. */ 1783 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1784 return; 1785 } 1786 mask = rnp->grpmask; 1787 if (rnp->parent == NULL) { 1788 1789 /* No more levels. Exit loop holding root lock. */ 1790 1791 break; 1792 } 1793 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1794 rnp_c = rnp; 1795 rnp = rnp->parent; 1796 raw_spin_lock_irqsave(&rnp->lock, flags); 1797 smp_mb__after_unlock_lock(); 1798 WARN_ON_ONCE(rnp_c->qsmask); 1799 } 1800 1801 /* 1802 * Get here if we are the last CPU to pass through a quiescent 1803 * state for this grace period. Invoke rcu_report_qs_rsp() 1804 * to clean up and start the next grace period if one is needed. 1805 */ 1806 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 1807 } 1808 1809 /* 1810 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1811 * structure. This must be either called from the specified CPU, or 1812 * called when the specified CPU is known to be offline (and when it is 1813 * also known that no other CPU is concurrently trying to help the offline 1814 * CPU). The lastcomp argument is used to make sure we are still in the 1815 * grace period of interest. We don't want to end the current grace period 1816 * based on quiescent states detected in an earlier grace period! 1817 */ 1818 static void 1819 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 1820 { 1821 unsigned long flags; 1822 unsigned long mask; 1823 struct rcu_node *rnp; 1824 1825 rnp = rdp->mynode; 1826 raw_spin_lock_irqsave(&rnp->lock, flags); 1827 smp_mb__after_unlock_lock(); 1828 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || 1829 rnp->completed == rnp->gpnum) { 1830 1831 /* 1832 * The grace period in which this quiescent state was 1833 * recorded has ended, so don't report it upwards. 1834 * We will instead need a new quiescent state that lies 1835 * within the current grace period. 1836 */ 1837 rdp->passed_quiesce = 0; /* need qs for new gp. */ 1838 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1839 return; 1840 } 1841 mask = rdp->grpmask; 1842 if ((rnp->qsmask & mask) == 0) { 1843 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1844 } else { 1845 rdp->qs_pending = 0; 1846 1847 /* 1848 * This GP can't end until cpu checks in, so all of our 1849 * callbacks can be processed during the next GP. 1850 */ 1851 rcu_accelerate_cbs(rsp, rnp, rdp); 1852 1853 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 1854 } 1855 } 1856 1857 /* 1858 * Check to see if there is a new grace period of which this CPU 1859 * is not yet aware, and if so, set up local rcu_data state for it. 1860 * Otherwise, see if this CPU has just passed through its first 1861 * quiescent state for this grace period, and record that fact if so. 1862 */ 1863 static void 1864 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 1865 { 1866 /* Check for grace-period ends and beginnings. */ 1867 note_gp_changes(rsp, rdp); 1868 1869 /* 1870 * Does this CPU still need to do its part for current grace period? 1871 * If no, return and let the other CPUs do their part as well. 1872 */ 1873 if (!rdp->qs_pending) 1874 return; 1875 1876 /* 1877 * Was there a quiescent state since the beginning of the grace 1878 * period? If no, then exit and wait for the next call. 1879 */ 1880 if (!rdp->passed_quiesce) 1881 return; 1882 1883 /* 1884 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 1885 * judge of that). 1886 */ 1887 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 1888 } 1889 1890 #ifdef CONFIG_HOTPLUG_CPU 1891 1892 /* 1893 * Send the specified CPU's RCU callbacks to the orphanage. The 1894 * specified CPU must be offline, and the caller must hold the 1895 * ->orphan_lock. 1896 */ 1897 static void 1898 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 1899 struct rcu_node *rnp, struct rcu_data *rdp) 1900 { 1901 /* No-CBs CPUs do not have orphanable callbacks. */ 1902 if (rcu_is_nocb_cpu(rdp->cpu)) 1903 return; 1904 1905 /* 1906 * Orphan the callbacks. First adjust the counts. This is safe 1907 * because _rcu_barrier() excludes CPU-hotplug operations, so it 1908 * cannot be running now. Thus no memory barrier is required. 1909 */ 1910 if (rdp->nxtlist != NULL) { 1911 rsp->qlen_lazy += rdp->qlen_lazy; 1912 rsp->qlen += rdp->qlen; 1913 rdp->n_cbs_orphaned += rdp->qlen; 1914 rdp->qlen_lazy = 0; 1915 ACCESS_ONCE(rdp->qlen) = 0; 1916 } 1917 1918 /* 1919 * Next, move those callbacks still needing a grace period to 1920 * the orphanage, where some other CPU will pick them up. 1921 * Some of the callbacks might have gone partway through a grace 1922 * period, but that is too bad. They get to start over because we 1923 * cannot assume that grace periods are synchronized across CPUs. 1924 * We don't bother updating the ->nxttail[] array yet, instead 1925 * we just reset the whole thing later on. 1926 */ 1927 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 1928 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 1929 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 1930 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 1931 } 1932 1933 /* 1934 * Then move the ready-to-invoke callbacks to the orphanage, 1935 * where some other CPU will pick them up. These will not be 1936 * required to pass though another grace period: They are done. 1937 */ 1938 if (rdp->nxtlist != NULL) { 1939 *rsp->orphan_donetail = rdp->nxtlist; 1940 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 1941 } 1942 1943 /* Finally, initialize the rcu_data structure's list to empty. */ 1944 init_callback_list(rdp); 1945 } 1946 1947 /* 1948 * Adopt the RCU callbacks from the specified rcu_state structure's 1949 * orphanage. The caller must hold the ->orphan_lock. 1950 */ 1951 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 1952 { 1953 int i; 1954 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 1955 1956 /* No-CBs CPUs are handled specially. */ 1957 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 1958 return; 1959 1960 /* Do the accounting first. */ 1961 rdp->qlen_lazy += rsp->qlen_lazy; 1962 rdp->qlen += rsp->qlen; 1963 rdp->n_cbs_adopted += rsp->qlen; 1964 if (rsp->qlen_lazy != rsp->qlen) 1965 rcu_idle_count_callbacks_posted(); 1966 rsp->qlen_lazy = 0; 1967 rsp->qlen = 0; 1968 1969 /* 1970 * We do not need a memory barrier here because the only way we 1971 * can get here if there is an rcu_barrier() in flight is if 1972 * we are the task doing the rcu_barrier(). 1973 */ 1974 1975 /* First adopt the ready-to-invoke callbacks. */ 1976 if (rsp->orphan_donelist != NULL) { 1977 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 1978 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 1979 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 1980 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 1981 rdp->nxttail[i] = rsp->orphan_donetail; 1982 rsp->orphan_donelist = NULL; 1983 rsp->orphan_donetail = &rsp->orphan_donelist; 1984 } 1985 1986 /* And then adopt the callbacks that still need a grace period. */ 1987 if (rsp->orphan_nxtlist != NULL) { 1988 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 1989 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 1990 rsp->orphan_nxtlist = NULL; 1991 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 1992 } 1993 } 1994 1995 /* 1996 * Trace the fact that this CPU is going offline. 1997 */ 1998 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 1999 { 2000 RCU_TRACE(unsigned long mask); 2001 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2002 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2003 2004 RCU_TRACE(mask = rdp->grpmask); 2005 trace_rcu_grace_period(rsp->name, 2006 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2007 TPS("cpuofl")); 2008 } 2009 2010 /* 2011 * The CPU has been completely removed, and some other CPU is reporting 2012 * this fact from process context. Do the remainder of the cleanup, 2013 * including orphaning the outgoing CPU's RCU callbacks, and also 2014 * adopting them. There can only be one CPU hotplug operation at a time, 2015 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2016 */ 2017 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2018 { 2019 unsigned long flags; 2020 unsigned long mask; 2021 int need_report = 0; 2022 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2023 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2024 2025 /* Adjust any no-longer-needed kthreads. */ 2026 rcu_boost_kthread_setaffinity(rnp, -1); 2027 2028 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ 2029 2030 /* Exclude any attempts to start a new grace period. */ 2031 mutex_lock(&rsp->onoff_mutex); 2032 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2033 2034 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2035 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2036 rcu_adopt_orphan_cbs(rsp, flags); 2037 2038 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 2039 mask = rdp->grpmask; /* rnp->grplo is constant. */ 2040 do { 2041 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2042 smp_mb__after_unlock_lock(); 2043 rnp->qsmaskinit &= ~mask; 2044 if (rnp->qsmaskinit != 0) { 2045 if (rnp != rdp->mynode) 2046 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2047 break; 2048 } 2049 if (rnp == rdp->mynode) 2050 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 2051 else 2052 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2053 mask = rnp->grpmask; 2054 rnp = rnp->parent; 2055 } while (rnp != NULL); 2056 2057 /* 2058 * We still hold the leaf rcu_node structure lock here, and 2059 * irqs are still disabled. The reason for this subterfuge is 2060 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock 2061 * held leads to deadlock. 2062 */ 2063 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ 2064 rnp = rdp->mynode; 2065 if (need_report & RCU_OFL_TASKS_NORM_GP) 2066 rcu_report_unblock_qs_rnp(rnp, flags); 2067 else 2068 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2069 if (need_report & RCU_OFL_TASKS_EXP_GP) 2070 rcu_report_exp_rnp(rsp, rnp, true); 2071 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2072 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2073 cpu, rdp->qlen, rdp->nxtlist); 2074 init_callback_list(rdp); 2075 /* Disallow further callbacks on this CPU. */ 2076 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2077 mutex_unlock(&rsp->onoff_mutex); 2078 } 2079 2080 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2081 2082 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2083 { 2084 } 2085 2086 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2087 { 2088 } 2089 2090 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2091 2092 /* 2093 * Invoke any RCU callbacks that have made it to the end of their grace 2094 * period. Thottle as specified by rdp->blimit. 2095 */ 2096 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2097 { 2098 unsigned long flags; 2099 struct rcu_head *next, *list, **tail; 2100 long bl, count, count_lazy; 2101 int i; 2102 2103 /* If no callbacks are ready, just return. */ 2104 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2105 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2106 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2107 need_resched(), is_idle_task(current), 2108 rcu_is_callbacks_kthread()); 2109 return; 2110 } 2111 2112 /* 2113 * Extract the list of ready callbacks, disabling to prevent 2114 * races with call_rcu() from interrupt handlers. 2115 */ 2116 local_irq_save(flags); 2117 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2118 bl = rdp->blimit; 2119 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2120 list = rdp->nxtlist; 2121 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2122 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2123 tail = rdp->nxttail[RCU_DONE_TAIL]; 2124 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2125 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2126 rdp->nxttail[i] = &rdp->nxtlist; 2127 local_irq_restore(flags); 2128 2129 /* Invoke callbacks. */ 2130 count = count_lazy = 0; 2131 while (list) { 2132 next = list->next; 2133 prefetch(next); 2134 debug_rcu_head_unqueue(list); 2135 if (__rcu_reclaim(rsp->name, list)) 2136 count_lazy++; 2137 list = next; 2138 /* Stop only if limit reached and CPU has something to do. */ 2139 if (++count >= bl && 2140 (need_resched() || 2141 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2142 break; 2143 } 2144 2145 local_irq_save(flags); 2146 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2147 is_idle_task(current), 2148 rcu_is_callbacks_kthread()); 2149 2150 /* Update count, and requeue any remaining callbacks. */ 2151 if (list != NULL) { 2152 *tail = rdp->nxtlist; 2153 rdp->nxtlist = list; 2154 for (i = 0; i < RCU_NEXT_SIZE; i++) 2155 if (&rdp->nxtlist == rdp->nxttail[i]) 2156 rdp->nxttail[i] = tail; 2157 else 2158 break; 2159 } 2160 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2161 rdp->qlen_lazy -= count_lazy; 2162 ACCESS_ONCE(rdp->qlen) -= count; 2163 rdp->n_cbs_invoked += count; 2164 2165 /* Reinstate batch limit if we have worked down the excess. */ 2166 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2167 rdp->blimit = blimit; 2168 2169 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2170 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2171 rdp->qlen_last_fqs_check = 0; 2172 rdp->n_force_qs_snap = rsp->n_force_qs; 2173 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2174 rdp->qlen_last_fqs_check = rdp->qlen; 2175 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2176 2177 local_irq_restore(flags); 2178 2179 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2180 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2181 invoke_rcu_core(); 2182 } 2183 2184 /* 2185 * Check to see if this CPU is in a non-context-switch quiescent state 2186 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2187 * Also schedule RCU core processing. 2188 * 2189 * This function must be called from hardirq context. It is normally 2190 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2191 * false, there is no point in invoking rcu_check_callbacks(). 2192 */ 2193 void rcu_check_callbacks(int cpu, int user) 2194 { 2195 trace_rcu_utilization(TPS("Start scheduler-tick")); 2196 increment_cpu_stall_ticks(); 2197 if (user || rcu_is_cpu_rrupt_from_idle()) { 2198 2199 /* 2200 * Get here if this CPU took its interrupt from user 2201 * mode or from the idle loop, and if this is not a 2202 * nested interrupt. In this case, the CPU is in 2203 * a quiescent state, so note it. 2204 * 2205 * No memory barrier is required here because both 2206 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2207 * variables that other CPUs neither access nor modify, 2208 * at least not while the corresponding CPU is online. 2209 */ 2210 2211 rcu_sched_qs(cpu); 2212 rcu_bh_qs(cpu); 2213 2214 } else if (!in_softirq()) { 2215 2216 /* 2217 * Get here if this CPU did not take its interrupt from 2218 * softirq, in other words, if it is not interrupting 2219 * a rcu_bh read-side critical section. This is an _bh 2220 * critical section, so note it. 2221 */ 2222 2223 rcu_bh_qs(cpu); 2224 } 2225 rcu_preempt_check_callbacks(cpu); 2226 if (rcu_pending(cpu)) 2227 invoke_rcu_core(); 2228 trace_rcu_utilization(TPS("End scheduler-tick")); 2229 } 2230 2231 /* 2232 * Scan the leaf rcu_node structures, processing dyntick state for any that 2233 * have not yet encountered a quiescent state, using the function specified. 2234 * Also initiate boosting for any threads blocked on the root rcu_node. 2235 * 2236 * The caller must have suppressed start of new grace periods. 2237 */ 2238 static void force_qs_rnp(struct rcu_state *rsp, 2239 int (*f)(struct rcu_data *rsp, bool *isidle, 2240 unsigned long *maxj), 2241 bool *isidle, unsigned long *maxj) 2242 { 2243 unsigned long bit; 2244 int cpu; 2245 unsigned long flags; 2246 unsigned long mask; 2247 struct rcu_node *rnp; 2248 2249 rcu_for_each_leaf_node(rsp, rnp) { 2250 cond_resched(); 2251 mask = 0; 2252 raw_spin_lock_irqsave(&rnp->lock, flags); 2253 smp_mb__after_unlock_lock(); 2254 if (!rcu_gp_in_progress(rsp)) { 2255 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2256 return; 2257 } 2258 if (rnp->qsmask == 0) { 2259 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 2260 continue; 2261 } 2262 cpu = rnp->grplo; 2263 bit = 1; 2264 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2265 if ((rnp->qsmask & bit) != 0) { 2266 if ((rnp->qsmaskinit & bit) != 0) 2267 *isidle = 0; 2268 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2269 mask |= bit; 2270 } 2271 } 2272 if (mask != 0) { 2273 2274 /* rcu_report_qs_rnp() releases rnp->lock. */ 2275 rcu_report_qs_rnp(mask, rsp, rnp, flags); 2276 continue; 2277 } 2278 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2279 } 2280 rnp = rcu_get_root(rsp); 2281 if (rnp->qsmask == 0) { 2282 raw_spin_lock_irqsave(&rnp->lock, flags); 2283 smp_mb__after_unlock_lock(); 2284 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ 2285 } 2286 } 2287 2288 /* 2289 * Force quiescent states on reluctant CPUs, and also detect which 2290 * CPUs are in dyntick-idle mode. 2291 */ 2292 static void force_quiescent_state(struct rcu_state *rsp) 2293 { 2294 unsigned long flags; 2295 bool ret; 2296 struct rcu_node *rnp; 2297 struct rcu_node *rnp_old = NULL; 2298 2299 /* Funnel through hierarchy to reduce memory contention. */ 2300 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; 2301 for (; rnp != NULL; rnp = rnp->parent) { 2302 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2303 !raw_spin_trylock(&rnp->fqslock); 2304 if (rnp_old != NULL) 2305 raw_spin_unlock(&rnp_old->fqslock); 2306 if (ret) { 2307 ACCESS_ONCE(rsp->n_force_qs_lh)++; 2308 return; 2309 } 2310 rnp_old = rnp; 2311 } 2312 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2313 2314 /* Reached the root of the rcu_node tree, acquire lock. */ 2315 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2316 smp_mb__after_unlock_lock(); 2317 raw_spin_unlock(&rnp_old->fqslock); 2318 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2319 ACCESS_ONCE(rsp->n_force_qs_lh)++; 2320 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2321 return; /* Someone beat us to it. */ 2322 } 2323 rsp->gp_flags |= RCU_GP_FLAG_FQS; 2324 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2325 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 2326 } 2327 2328 /* 2329 * This does the RCU core processing work for the specified rcu_state 2330 * and rcu_data structures. This may be called only from the CPU to 2331 * whom the rdp belongs. 2332 */ 2333 static void 2334 __rcu_process_callbacks(struct rcu_state *rsp) 2335 { 2336 unsigned long flags; 2337 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 2338 2339 WARN_ON_ONCE(rdp->beenonline == 0); 2340 2341 /* Update RCU state based on any recent quiescent states. */ 2342 rcu_check_quiescent_state(rsp, rdp); 2343 2344 /* Does this CPU require a not-yet-started grace period? */ 2345 local_irq_save(flags); 2346 if (cpu_needs_another_gp(rsp, rdp)) { 2347 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2348 rcu_start_gp(rsp); 2349 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2350 } else { 2351 local_irq_restore(flags); 2352 } 2353 2354 /* If there are callbacks ready, invoke them. */ 2355 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2356 invoke_rcu_callbacks(rsp, rdp); 2357 2358 /* Do any needed deferred wakeups of rcuo kthreads. */ 2359 do_nocb_deferred_wakeup(rdp); 2360 } 2361 2362 /* 2363 * Do RCU core processing for the current CPU. 2364 */ 2365 static void rcu_process_callbacks(struct softirq_action *unused) 2366 { 2367 struct rcu_state *rsp; 2368 2369 if (cpu_is_offline(smp_processor_id())) 2370 return; 2371 trace_rcu_utilization(TPS("Start RCU core")); 2372 for_each_rcu_flavor(rsp) 2373 __rcu_process_callbacks(rsp); 2374 trace_rcu_utilization(TPS("End RCU core")); 2375 } 2376 2377 /* 2378 * Schedule RCU callback invocation. If the specified type of RCU 2379 * does not support RCU priority boosting, just do a direct call, 2380 * otherwise wake up the per-CPU kernel kthread. Note that because we 2381 * are running on the current CPU with interrupts disabled, the 2382 * rcu_cpu_kthread_task cannot disappear out from under us. 2383 */ 2384 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2385 { 2386 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2387 return; 2388 if (likely(!rsp->boost)) { 2389 rcu_do_batch(rsp, rdp); 2390 return; 2391 } 2392 invoke_rcu_callbacks_kthread(); 2393 } 2394 2395 static void invoke_rcu_core(void) 2396 { 2397 if (cpu_online(smp_processor_id())) 2398 raise_softirq(RCU_SOFTIRQ); 2399 } 2400 2401 /* 2402 * Handle any core-RCU processing required by a call_rcu() invocation. 2403 */ 2404 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2405 struct rcu_head *head, unsigned long flags) 2406 { 2407 /* 2408 * If called from an extended quiescent state, invoke the RCU 2409 * core in order to force a re-evaluation of RCU's idleness. 2410 */ 2411 if (!rcu_is_watching() && cpu_online(smp_processor_id())) 2412 invoke_rcu_core(); 2413 2414 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2415 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2416 return; 2417 2418 /* 2419 * Force the grace period if too many callbacks or too long waiting. 2420 * Enforce hysteresis, and don't invoke force_quiescent_state() 2421 * if some other CPU has recently done so. Also, don't bother 2422 * invoking force_quiescent_state() if the newly enqueued callback 2423 * is the only one waiting for a grace period to complete. 2424 */ 2425 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2426 2427 /* Are we ignoring a completed grace period? */ 2428 note_gp_changes(rsp, rdp); 2429 2430 /* Start a new grace period if one not already started. */ 2431 if (!rcu_gp_in_progress(rsp)) { 2432 struct rcu_node *rnp_root = rcu_get_root(rsp); 2433 2434 raw_spin_lock(&rnp_root->lock); 2435 smp_mb__after_unlock_lock(); 2436 rcu_start_gp(rsp); 2437 raw_spin_unlock(&rnp_root->lock); 2438 } else { 2439 /* Give the grace period a kick. */ 2440 rdp->blimit = LONG_MAX; 2441 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2442 *rdp->nxttail[RCU_DONE_TAIL] != head) 2443 force_quiescent_state(rsp); 2444 rdp->n_force_qs_snap = rsp->n_force_qs; 2445 rdp->qlen_last_fqs_check = rdp->qlen; 2446 } 2447 } 2448 } 2449 2450 /* 2451 * RCU callback function to leak a callback. 2452 */ 2453 static void rcu_leak_callback(struct rcu_head *rhp) 2454 { 2455 } 2456 2457 /* 2458 * Helper function for call_rcu() and friends. The cpu argument will 2459 * normally be -1, indicating "currently running CPU". It may specify 2460 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2461 * is expected to specify a CPU. 2462 */ 2463 static void 2464 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2465 struct rcu_state *rsp, int cpu, bool lazy) 2466 { 2467 unsigned long flags; 2468 struct rcu_data *rdp; 2469 2470 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ 2471 if (debug_rcu_head_queue(head)) { 2472 /* Probable double call_rcu(), so leak the callback. */ 2473 ACCESS_ONCE(head->func) = rcu_leak_callback; 2474 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2475 return; 2476 } 2477 head->func = func; 2478 head->next = NULL; 2479 2480 /* 2481 * Opportunistically note grace-period endings and beginnings. 2482 * Note that we might see a beginning right after we see an 2483 * end, but never vice versa, since this CPU has to pass through 2484 * a quiescent state betweentimes. 2485 */ 2486 local_irq_save(flags); 2487 rdp = this_cpu_ptr(rsp->rda); 2488 2489 /* Add the callback to our list. */ 2490 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2491 int offline; 2492 2493 if (cpu != -1) 2494 rdp = per_cpu_ptr(rsp->rda, cpu); 2495 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2496 WARN_ON_ONCE(offline); 2497 /* _call_rcu() is illegal on offline CPU; leak the callback. */ 2498 local_irq_restore(flags); 2499 return; 2500 } 2501 ACCESS_ONCE(rdp->qlen)++; 2502 if (lazy) 2503 rdp->qlen_lazy++; 2504 else 2505 rcu_idle_count_callbacks_posted(); 2506 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 2507 *rdp->nxttail[RCU_NEXT_TAIL] = head; 2508 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 2509 2510 if (__is_kfree_rcu_offset((unsigned long)func)) 2511 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2512 rdp->qlen_lazy, rdp->qlen); 2513 else 2514 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 2515 2516 /* Go handle any RCU core processing required. */ 2517 __call_rcu_core(rsp, rdp, head, flags); 2518 local_irq_restore(flags); 2519 } 2520 2521 /* 2522 * Queue an RCU-sched callback for invocation after a grace period. 2523 */ 2524 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2525 { 2526 __call_rcu(head, func, &rcu_sched_state, -1, 0); 2527 } 2528 EXPORT_SYMBOL_GPL(call_rcu_sched); 2529 2530 /* 2531 * Queue an RCU callback for invocation after a quicker grace period. 2532 */ 2533 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2534 { 2535 __call_rcu(head, func, &rcu_bh_state, -1, 0); 2536 } 2537 EXPORT_SYMBOL_GPL(call_rcu_bh); 2538 2539 /* 2540 * Because a context switch is a grace period for RCU-sched and RCU-bh, 2541 * any blocking grace-period wait automatically implies a grace period 2542 * if there is only one CPU online at any point time during execution 2543 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 2544 * occasionally incorrectly indicate that there are multiple CPUs online 2545 * when there was in fact only one the whole time, as this just adds 2546 * some overhead: RCU still operates correctly. 2547 */ 2548 static inline int rcu_blocking_is_gp(void) 2549 { 2550 int ret; 2551 2552 might_sleep(); /* Check for RCU read-side critical section. */ 2553 preempt_disable(); 2554 ret = num_online_cpus() <= 1; 2555 preempt_enable(); 2556 return ret; 2557 } 2558 2559 /** 2560 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 2561 * 2562 * Control will return to the caller some time after a full rcu-sched 2563 * grace period has elapsed, in other words after all currently executing 2564 * rcu-sched read-side critical sections have completed. These read-side 2565 * critical sections are delimited by rcu_read_lock_sched() and 2566 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 2567 * local_irq_disable(), and so on may be used in place of 2568 * rcu_read_lock_sched(). 2569 * 2570 * This means that all preempt_disable code sequences, including NMI and 2571 * non-threaded hardware-interrupt handlers, in progress on entry will 2572 * have completed before this primitive returns. However, this does not 2573 * guarantee that softirq handlers will have completed, since in some 2574 * kernels, these handlers can run in process context, and can block. 2575 * 2576 * Note that this guarantee implies further memory-ordering guarantees. 2577 * On systems with more than one CPU, when synchronize_sched() returns, 2578 * each CPU is guaranteed to have executed a full memory barrier since the 2579 * end of its last RCU-sched read-side critical section whose beginning 2580 * preceded the call to synchronize_sched(). In addition, each CPU having 2581 * an RCU read-side critical section that extends beyond the return from 2582 * synchronize_sched() is guaranteed to have executed a full memory barrier 2583 * after the beginning of synchronize_sched() and before the beginning of 2584 * that RCU read-side critical section. Note that these guarantees include 2585 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2586 * that are executing in the kernel. 2587 * 2588 * Furthermore, if CPU A invoked synchronize_sched(), which returned 2589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2590 * to have executed a full memory barrier during the execution of 2591 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 2592 * again only if the system has more than one CPU). 2593 * 2594 * This primitive provides the guarantees made by the (now removed) 2595 * synchronize_kernel() API. In contrast, synchronize_rcu() only 2596 * guarantees that rcu_read_lock() sections will have completed. 2597 * In "classic RCU", these two guarantees happen to be one and 2598 * the same, but can differ in realtime RCU implementations. 2599 */ 2600 void synchronize_sched(void) 2601 { 2602 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2603 !lock_is_held(&rcu_lock_map) && 2604 !lock_is_held(&rcu_sched_lock_map), 2605 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 2606 if (rcu_blocking_is_gp()) 2607 return; 2608 if (rcu_expedited) 2609 synchronize_sched_expedited(); 2610 else 2611 wait_rcu_gp(call_rcu_sched); 2612 } 2613 EXPORT_SYMBOL_GPL(synchronize_sched); 2614 2615 /** 2616 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 2617 * 2618 * Control will return to the caller some time after a full rcu_bh grace 2619 * period has elapsed, in other words after all currently executing rcu_bh 2620 * read-side critical sections have completed. RCU read-side critical 2621 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 2622 * and may be nested. 2623 * 2624 * See the description of synchronize_sched() for more detailed information 2625 * on memory ordering guarantees. 2626 */ 2627 void synchronize_rcu_bh(void) 2628 { 2629 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2630 !lock_is_held(&rcu_lock_map) && 2631 !lock_is_held(&rcu_sched_lock_map), 2632 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 2633 if (rcu_blocking_is_gp()) 2634 return; 2635 if (rcu_expedited) 2636 synchronize_rcu_bh_expedited(); 2637 else 2638 wait_rcu_gp(call_rcu_bh); 2639 } 2640 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 2641 2642 /** 2643 * get_state_synchronize_rcu - Snapshot current RCU state 2644 * 2645 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2646 * to determine whether or not a full grace period has elapsed in the 2647 * meantime. 2648 */ 2649 unsigned long get_state_synchronize_rcu(void) 2650 { 2651 /* 2652 * Any prior manipulation of RCU-protected data must happen 2653 * before the load from ->gpnum. 2654 */ 2655 smp_mb(); /* ^^^ */ 2656 2657 /* 2658 * Make sure this load happens before the purportedly 2659 * time-consuming work between get_state_synchronize_rcu() 2660 * and cond_synchronize_rcu(). 2661 */ 2662 return smp_load_acquire(&rcu_state->gpnum); 2663 } 2664 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2665 2666 /** 2667 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2668 * 2669 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2670 * 2671 * If a full RCU grace period has elapsed since the earlier call to 2672 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2673 * synchronize_rcu() to wait for a full grace period. 2674 * 2675 * Yes, this function does not take counter wrap into account. But 2676 * counter wrap is harmless. If the counter wraps, we have waited for 2677 * more than 2 billion grace periods (and way more on a 64-bit system!), 2678 * so waiting for one additional grace period should be just fine. 2679 */ 2680 void cond_synchronize_rcu(unsigned long oldstate) 2681 { 2682 unsigned long newstate; 2683 2684 /* 2685 * Ensure that this load happens before any RCU-destructive 2686 * actions the caller might carry out after we return. 2687 */ 2688 newstate = smp_load_acquire(&rcu_state->completed); 2689 if (ULONG_CMP_GE(oldstate, newstate)) 2690 synchronize_rcu(); 2691 } 2692 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2693 2694 static int synchronize_sched_expedited_cpu_stop(void *data) 2695 { 2696 /* 2697 * There must be a full memory barrier on each affected CPU 2698 * between the time that try_stop_cpus() is called and the 2699 * time that it returns. 2700 * 2701 * In the current initial implementation of cpu_stop, the 2702 * above condition is already met when the control reaches 2703 * this point and the following smp_mb() is not strictly 2704 * necessary. Do smp_mb() anyway for documentation and 2705 * robustness against future implementation changes. 2706 */ 2707 smp_mb(); /* See above comment block. */ 2708 return 0; 2709 } 2710 2711 /** 2712 * synchronize_sched_expedited - Brute-force RCU-sched grace period 2713 * 2714 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 2715 * approach to force the grace period to end quickly. This consumes 2716 * significant time on all CPUs and is unfriendly to real-time workloads, 2717 * so is thus not recommended for any sort of common-case code. In fact, 2718 * if you are using synchronize_sched_expedited() in a loop, please 2719 * restructure your code to batch your updates, and then use a single 2720 * synchronize_sched() instead. 2721 * 2722 * Note that it is illegal to call this function while holding any lock 2723 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 2724 * to call this function from a CPU-hotplug notifier. Failing to observe 2725 * these restriction will result in deadlock. 2726 * 2727 * This implementation can be thought of as an application of ticket 2728 * locking to RCU, with sync_sched_expedited_started and 2729 * sync_sched_expedited_done taking on the roles of the halves 2730 * of the ticket-lock word. Each task atomically increments 2731 * sync_sched_expedited_started upon entry, snapshotting the old value, 2732 * then attempts to stop all the CPUs. If this succeeds, then each 2733 * CPU will have executed a context switch, resulting in an RCU-sched 2734 * grace period. We are then done, so we use atomic_cmpxchg() to 2735 * update sync_sched_expedited_done to match our snapshot -- but 2736 * only if someone else has not already advanced past our snapshot. 2737 * 2738 * On the other hand, if try_stop_cpus() fails, we check the value 2739 * of sync_sched_expedited_done. If it has advanced past our 2740 * initial snapshot, then someone else must have forced a grace period 2741 * some time after we took our snapshot. In this case, our work is 2742 * done for us, and we can simply return. Otherwise, we try again, 2743 * but keep our initial snapshot for purposes of checking for someone 2744 * doing our work for us. 2745 * 2746 * If we fail too many times in a row, we fall back to synchronize_sched(). 2747 */ 2748 void synchronize_sched_expedited(void) 2749 { 2750 long firstsnap, s, snap; 2751 int trycount = 0; 2752 struct rcu_state *rsp = &rcu_sched_state; 2753 2754 /* 2755 * If we are in danger of counter wrap, just do synchronize_sched(). 2756 * By allowing sync_sched_expedited_started to advance no more than 2757 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 2758 * that more than 3.5 billion CPUs would be required to force a 2759 * counter wrap on a 32-bit system. Quite a few more CPUs would of 2760 * course be required on a 64-bit system. 2761 */ 2762 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 2763 (ulong)atomic_long_read(&rsp->expedited_done) + 2764 ULONG_MAX / 8)) { 2765 synchronize_sched(); 2766 atomic_long_inc(&rsp->expedited_wrap); 2767 return; 2768 } 2769 2770 /* 2771 * Take a ticket. Note that atomic_inc_return() implies a 2772 * full memory barrier. 2773 */ 2774 snap = atomic_long_inc_return(&rsp->expedited_start); 2775 firstsnap = snap; 2776 get_online_cpus(); 2777 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 2778 2779 /* 2780 * Each pass through the following loop attempts to force a 2781 * context switch on each CPU. 2782 */ 2783 while (try_stop_cpus(cpu_online_mask, 2784 synchronize_sched_expedited_cpu_stop, 2785 NULL) == -EAGAIN) { 2786 put_online_cpus(); 2787 atomic_long_inc(&rsp->expedited_tryfail); 2788 2789 /* Check to see if someone else did our work for us. */ 2790 s = atomic_long_read(&rsp->expedited_done); 2791 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 2792 /* ensure test happens before caller kfree */ 2793 smp_mb__before_atomic_inc(); /* ^^^ */ 2794 atomic_long_inc(&rsp->expedited_workdone1); 2795 return; 2796 } 2797 2798 /* No joy, try again later. Or just synchronize_sched(). */ 2799 if (trycount++ < 10) { 2800 udelay(trycount * num_online_cpus()); 2801 } else { 2802 wait_rcu_gp(call_rcu_sched); 2803 atomic_long_inc(&rsp->expedited_normal); 2804 return; 2805 } 2806 2807 /* Recheck to see if someone else did our work for us. */ 2808 s = atomic_long_read(&rsp->expedited_done); 2809 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 2810 /* ensure test happens before caller kfree */ 2811 smp_mb__before_atomic_inc(); /* ^^^ */ 2812 atomic_long_inc(&rsp->expedited_workdone2); 2813 return; 2814 } 2815 2816 /* 2817 * Refetching sync_sched_expedited_started allows later 2818 * callers to piggyback on our grace period. We retry 2819 * after they started, so our grace period works for them, 2820 * and they started after our first try, so their grace 2821 * period works for us. 2822 */ 2823 get_online_cpus(); 2824 snap = atomic_long_read(&rsp->expedited_start); 2825 smp_mb(); /* ensure read is before try_stop_cpus(). */ 2826 } 2827 atomic_long_inc(&rsp->expedited_stoppedcpus); 2828 2829 /* 2830 * Everyone up to our most recent fetch is covered by our grace 2831 * period. Update the counter, but only if our work is still 2832 * relevant -- which it won't be if someone who started later 2833 * than we did already did their update. 2834 */ 2835 do { 2836 atomic_long_inc(&rsp->expedited_done_tries); 2837 s = atomic_long_read(&rsp->expedited_done); 2838 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 2839 /* ensure test happens before caller kfree */ 2840 smp_mb__before_atomic_inc(); /* ^^^ */ 2841 atomic_long_inc(&rsp->expedited_done_lost); 2842 break; 2843 } 2844 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 2845 atomic_long_inc(&rsp->expedited_done_exit); 2846 2847 put_online_cpus(); 2848 } 2849 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 2850 2851 /* 2852 * Check to see if there is any immediate RCU-related work to be done 2853 * by the current CPU, for the specified type of RCU, returning 1 if so. 2854 * The checks are in order of increasing expense: checks that can be 2855 * carried out against CPU-local state are performed first. However, 2856 * we must check for CPU stalls first, else we might not get a chance. 2857 */ 2858 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 2859 { 2860 struct rcu_node *rnp = rdp->mynode; 2861 2862 rdp->n_rcu_pending++; 2863 2864 /* Check for CPU stalls, if enabled. */ 2865 check_cpu_stall(rsp, rdp); 2866 2867 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 2868 if (rcu_nohz_full_cpu(rsp)) 2869 return 0; 2870 2871 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2872 if (rcu_scheduler_fully_active && 2873 rdp->qs_pending && !rdp->passed_quiesce) { 2874 rdp->n_rp_qs_pending++; 2875 } else if (rdp->qs_pending && rdp->passed_quiesce) { 2876 rdp->n_rp_report_qs++; 2877 return 1; 2878 } 2879 2880 /* Does this CPU have callbacks ready to invoke? */ 2881 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 2882 rdp->n_rp_cb_ready++; 2883 return 1; 2884 } 2885 2886 /* Has RCU gone idle with this CPU needing another grace period? */ 2887 if (cpu_needs_another_gp(rsp, rdp)) { 2888 rdp->n_rp_cpu_needs_gp++; 2889 return 1; 2890 } 2891 2892 /* Has another RCU grace period completed? */ 2893 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 2894 rdp->n_rp_gp_completed++; 2895 return 1; 2896 } 2897 2898 /* Has a new RCU grace period started? */ 2899 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ 2900 rdp->n_rp_gp_started++; 2901 return 1; 2902 } 2903 2904 /* Does this CPU need a deferred NOCB wakeup? */ 2905 if (rcu_nocb_need_deferred_wakeup(rdp)) { 2906 rdp->n_rp_nocb_defer_wakeup++; 2907 return 1; 2908 } 2909 2910 /* nothing to do */ 2911 rdp->n_rp_need_nothing++; 2912 return 0; 2913 } 2914 2915 /* 2916 * Check to see if there is any immediate RCU-related work to be done 2917 * by the current CPU, returning 1 if so. This function is part of the 2918 * RCU implementation; it is -not- an exported member of the RCU API. 2919 */ 2920 static int rcu_pending(int cpu) 2921 { 2922 struct rcu_state *rsp; 2923 2924 for_each_rcu_flavor(rsp) 2925 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) 2926 return 1; 2927 return 0; 2928 } 2929 2930 /* 2931 * Return true if the specified CPU has any callback. If all_lazy is 2932 * non-NULL, store an indication of whether all callbacks are lazy. 2933 * (If there are no callbacks, all of them are deemed to be lazy.) 2934 */ 2935 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy) 2936 { 2937 bool al = true; 2938 bool hc = false; 2939 struct rcu_data *rdp; 2940 struct rcu_state *rsp; 2941 2942 for_each_rcu_flavor(rsp) { 2943 rdp = per_cpu_ptr(rsp->rda, cpu); 2944 if (!rdp->nxtlist) 2945 continue; 2946 hc = true; 2947 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 2948 al = false; 2949 break; 2950 } 2951 } 2952 if (all_lazy) 2953 *all_lazy = al; 2954 return hc; 2955 } 2956 2957 /* 2958 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 2959 * the compiler is expected to optimize this away. 2960 */ 2961 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 2962 int cpu, unsigned long done) 2963 { 2964 trace_rcu_barrier(rsp->name, s, cpu, 2965 atomic_read(&rsp->barrier_cpu_count), done); 2966 } 2967 2968 /* 2969 * RCU callback function for _rcu_barrier(). If we are last, wake 2970 * up the task executing _rcu_barrier(). 2971 */ 2972 static void rcu_barrier_callback(struct rcu_head *rhp) 2973 { 2974 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 2975 struct rcu_state *rsp = rdp->rsp; 2976 2977 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 2978 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 2979 complete(&rsp->barrier_completion); 2980 } else { 2981 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 2982 } 2983 } 2984 2985 /* 2986 * Called with preemption disabled, and from cross-cpu IRQ context. 2987 */ 2988 static void rcu_barrier_func(void *type) 2989 { 2990 struct rcu_state *rsp = type; 2991 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 2992 2993 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 2994 atomic_inc(&rsp->barrier_cpu_count); 2995 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 2996 } 2997 2998 /* 2999 * Orchestrate the specified type of RCU barrier, waiting for all 3000 * RCU callbacks of the specified type to complete. 3001 */ 3002 static void _rcu_barrier(struct rcu_state *rsp) 3003 { 3004 int cpu; 3005 struct rcu_data *rdp; 3006 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 3007 unsigned long snap_done; 3008 3009 _rcu_barrier_trace(rsp, "Begin", -1, snap); 3010 3011 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3012 mutex_lock(&rsp->barrier_mutex); 3013 3014 /* 3015 * Ensure that all prior references, including to ->n_barrier_done, 3016 * are ordered before the _rcu_barrier() machinery. 3017 */ 3018 smp_mb(); /* See above block comment. */ 3019 3020 /* 3021 * Recheck ->n_barrier_done to see if others did our work for us. 3022 * This means checking ->n_barrier_done for an even-to-odd-to-even 3023 * transition. The "if" expression below therefore rounds the old 3024 * value up to the next even number and adds two before comparing. 3025 */ 3026 snap_done = rsp->n_barrier_done; 3027 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 3028 3029 /* 3030 * If the value in snap is odd, we needed to wait for the current 3031 * rcu_barrier() to complete, then wait for the next one, in other 3032 * words, we need the value of snap_done to be three larger than 3033 * the value of snap. On the other hand, if the value in snap is 3034 * even, we only had to wait for the next rcu_barrier() to complete, 3035 * in other words, we need the value of snap_done to be only two 3036 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 3037 * this for us (thank you, Linus!). 3038 */ 3039 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 3040 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 3041 smp_mb(); /* caller's subsequent code after above check. */ 3042 mutex_unlock(&rsp->barrier_mutex); 3043 return; 3044 } 3045 3046 /* 3047 * Increment ->n_barrier_done to avoid duplicate work. Use 3048 * ACCESS_ONCE() to prevent the compiler from speculating 3049 * the increment to precede the early-exit check. 3050 */ 3051 ACCESS_ONCE(rsp->n_barrier_done)++; 3052 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 3053 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 3054 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 3055 3056 /* 3057 * Initialize the count to one rather than to zero in order to 3058 * avoid a too-soon return to zero in case of a short grace period 3059 * (or preemption of this task). Exclude CPU-hotplug operations 3060 * to ensure that no offline CPU has callbacks queued. 3061 */ 3062 init_completion(&rsp->barrier_completion); 3063 atomic_set(&rsp->barrier_cpu_count, 1); 3064 get_online_cpus(); 3065 3066 /* 3067 * Force each CPU with callbacks to register a new callback. 3068 * When that callback is invoked, we will know that all of the 3069 * corresponding CPU's preceding callbacks have been invoked. 3070 */ 3071 for_each_possible_cpu(cpu) { 3072 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3073 continue; 3074 rdp = per_cpu_ptr(rsp->rda, cpu); 3075 if (rcu_is_nocb_cpu(cpu)) { 3076 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3077 rsp->n_barrier_done); 3078 atomic_inc(&rsp->barrier_cpu_count); 3079 __call_rcu(&rdp->barrier_head, rcu_barrier_callback, 3080 rsp, cpu, 0); 3081 } else if (ACCESS_ONCE(rdp->qlen)) { 3082 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3083 rsp->n_barrier_done); 3084 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3085 } else { 3086 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3087 rsp->n_barrier_done); 3088 } 3089 } 3090 put_online_cpus(); 3091 3092 /* 3093 * Now that we have an rcu_barrier_callback() callback on each 3094 * CPU, and thus each counted, remove the initial count. 3095 */ 3096 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3097 complete(&rsp->barrier_completion); 3098 3099 /* Increment ->n_barrier_done to prevent duplicate work. */ 3100 smp_mb(); /* Keep increment after above mechanism. */ 3101 ACCESS_ONCE(rsp->n_barrier_done)++; 3102 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 3103 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 3104 smp_mb(); /* Keep increment before caller's subsequent code. */ 3105 3106 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3107 wait_for_completion(&rsp->barrier_completion); 3108 3109 /* Other rcu_barrier() invocations can now safely proceed. */ 3110 mutex_unlock(&rsp->barrier_mutex); 3111 } 3112 3113 /** 3114 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3115 */ 3116 void rcu_barrier_bh(void) 3117 { 3118 _rcu_barrier(&rcu_bh_state); 3119 } 3120 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3121 3122 /** 3123 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3124 */ 3125 void rcu_barrier_sched(void) 3126 { 3127 _rcu_barrier(&rcu_sched_state); 3128 } 3129 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3130 3131 /* 3132 * Do boot-time initialization of a CPU's per-CPU RCU data. 3133 */ 3134 static void __init 3135 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3136 { 3137 unsigned long flags; 3138 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3139 struct rcu_node *rnp = rcu_get_root(rsp); 3140 3141 /* Set up local state, ensuring consistent view of global state. */ 3142 raw_spin_lock_irqsave(&rnp->lock, flags); 3143 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3144 init_callback_list(rdp); 3145 rdp->qlen_lazy = 0; 3146 ACCESS_ONCE(rdp->qlen) = 0; 3147 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3148 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3149 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3150 rdp->cpu = cpu; 3151 rdp->rsp = rsp; 3152 rcu_boot_init_nocb_percpu_data(rdp); 3153 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3154 } 3155 3156 /* 3157 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3158 * offline event can be happening at a given time. Note also that we 3159 * can accept some slop in the rsp->completed access due to the fact 3160 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3161 */ 3162 static void 3163 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) 3164 { 3165 unsigned long flags; 3166 unsigned long mask; 3167 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3168 struct rcu_node *rnp = rcu_get_root(rsp); 3169 3170 /* Exclude new grace periods. */ 3171 mutex_lock(&rsp->onoff_mutex); 3172 3173 /* Set up local state, ensuring consistent view of global state. */ 3174 raw_spin_lock_irqsave(&rnp->lock, flags); 3175 rdp->beenonline = 1; /* We have now been online. */ 3176 rdp->preemptible = preemptible; 3177 rdp->qlen_last_fqs_check = 0; 3178 rdp->n_force_qs_snap = rsp->n_force_qs; 3179 rdp->blimit = blimit; 3180 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3181 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3182 rcu_sysidle_init_percpu_data(rdp->dynticks); 3183 atomic_set(&rdp->dynticks->dynticks, 3184 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3185 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3186 3187 /* Add CPU to rcu_node bitmasks. */ 3188 rnp = rdp->mynode; 3189 mask = rdp->grpmask; 3190 do { 3191 /* Exclude any attempts to start a new GP on small systems. */ 3192 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3193 rnp->qsmaskinit |= mask; 3194 mask = rnp->grpmask; 3195 if (rnp == rdp->mynode) { 3196 /* 3197 * If there is a grace period in progress, we will 3198 * set up to wait for it next time we run the 3199 * RCU core code. 3200 */ 3201 rdp->gpnum = rnp->completed; 3202 rdp->completed = rnp->completed; 3203 rdp->passed_quiesce = 0; 3204 rdp->qs_pending = 0; 3205 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3206 } 3207 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 3208 rnp = rnp->parent; 3209 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 3210 local_irq_restore(flags); 3211 3212 mutex_unlock(&rsp->onoff_mutex); 3213 } 3214 3215 static void rcu_prepare_cpu(int cpu) 3216 { 3217 struct rcu_state *rsp; 3218 3219 for_each_rcu_flavor(rsp) 3220 rcu_init_percpu_data(cpu, rsp, 3221 strcmp(rsp->name, "rcu_preempt") == 0); 3222 } 3223 3224 /* 3225 * Handle CPU online/offline notification events. 3226 */ 3227 static int rcu_cpu_notify(struct notifier_block *self, 3228 unsigned long action, void *hcpu) 3229 { 3230 long cpu = (long)hcpu; 3231 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); 3232 struct rcu_node *rnp = rdp->mynode; 3233 struct rcu_state *rsp; 3234 3235 trace_rcu_utilization(TPS("Start CPU hotplug")); 3236 switch (action) { 3237 case CPU_UP_PREPARE: 3238 case CPU_UP_PREPARE_FROZEN: 3239 rcu_prepare_cpu(cpu); 3240 rcu_prepare_kthreads(cpu); 3241 break; 3242 case CPU_ONLINE: 3243 case CPU_DOWN_FAILED: 3244 rcu_boost_kthread_setaffinity(rnp, -1); 3245 break; 3246 case CPU_DOWN_PREPARE: 3247 rcu_boost_kthread_setaffinity(rnp, cpu); 3248 break; 3249 case CPU_DYING: 3250 case CPU_DYING_FROZEN: 3251 for_each_rcu_flavor(rsp) 3252 rcu_cleanup_dying_cpu(rsp); 3253 break; 3254 case CPU_DEAD: 3255 case CPU_DEAD_FROZEN: 3256 case CPU_UP_CANCELED: 3257 case CPU_UP_CANCELED_FROZEN: 3258 for_each_rcu_flavor(rsp) 3259 rcu_cleanup_dead_cpu(cpu, rsp); 3260 break; 3261 default: 3262 break; 3263 } 3264 trace_rcu_utilization(TPS("End CPU hotplug")); 3265 return NOTIFY_OK; 3266 } 3267 3268 static int rcu_pm_notify(struct notifier_block *self, 3269 unsigned long action, void *hcpu) 3270 { 3271 switch (action) { 3272 case PM_HIBERNATION_PREPARE: 3273 case PM_SUSPEND_PREPARE: 3274 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3275 rcu_expedited = 1; 3276 break; 3277 case PM_POST_HIBERNATION: 3278 case PM_POST_SUSPEND: 3279 rcu_expedited = 0; 3280 break; 3281 default: 3282 break; 3283 } 3284 return NOTIFY_OK; 3285 } 3286 3287 /* 3288 * Spawn the kthread that handles this RCU flavor's grace periods. 3289 */ 3290 static int __init rcu_spawn_gp_kthread(void) 3291 { 3292 unsigned long flags; 3293 struct rcu_node *rnp; 3294 struct rcu_state *rsp; 3295 struct task_struct *t; 3296 3297 for_each_rcu_flavor(rsp) { 3298 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); 3299 BUG_ON(IS_ERR(t)); 3300 rnp = rcu_get_root(rsp); 3301 raw_spin_lock_irqsave(&rnp->lock, flags); 3302 rsp->gp_kthread = t; 3303 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3304 rcu_spawn_nocb_kthreads(rsp); 3305 } 3306 return 0; 3307 } 3308 early_initcall(rcu_spawn_gp_kthread); 3309 3310 /* 3311 * This function is invoked towards the end of the scheduler's initialization 3312 * process. Before this is called, the idle task might contain 3313 * RCU read-side critical sections (during which time, this idle 3314 * task is booting the system). After this function is called, the 3315 * idle tasks are prohibited from containing RCU read-side critical 3316 * sections. This function also enables RCU lockdep checking. 3317 */ 3318 void rcu_scheduler_starting(void) 3319 { 3320 WARN_ON(num_online_cpus() != 1); 3321 WARN_ON(nr_context_switches() > 0); 3322 rcu_scheduler_active = 1; 3323 } 3324 3325 /* 3326 * Compute the per-level fanout, either using the exact fanout specified 3327 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3328 */ 3329 #ifdef CONFIG_RCU_FANOUT_EXACT 3330 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3331 { 3332 int i; 3333 3334 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3335 for (i = rcu_num_lvls - 2; i >= 0; i--) 3336 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3337 } 3338 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 3339 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3340 { 3341 int ccur; 3342 int cprv; 3343 int i; 3344 3345 cprv = nr_cpu_ids; 3346 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3347 ccur = rsp->levelcnt[i]; 3348 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3349 cprv = ccur; 3350 } 3351 } 3352 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 3353 3354 /* 3355 * Helper function for rcu_init() that initializes one rcu_state structure. 3356 */ 3357 static void __init rcu_init_one(struct rcu_state *rsp, 3358 struct rcu_data __percpu *rda) 3359 { 3360 static char *buf[] = { "rcu_node_0", 3361 "rcu_node_1", 3362 "rcu_node_2", 3363 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3364 static char *fqs[] = { "rcu_node_fqs_0", 3365 "rcu_node_fqs_1", 3366 "rcu_node_fqs_2", 3367 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3368 int cpustride = 1; 3369 int i; 3370 int j; 3371 struct rcu_node *rnp; 3372 3373 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3374 3375 /* Silence gcc 4.8 warning about array index out of range. */ 3376 if (rcu_num_lvls > RCU_NUM_LVLS) 3377 panic("rcu_init_one: rcu_num_lvls overflow"); 3378 3379 /* Initialize the level-tracking arrays. */ 3380 3381 for (i = 0; i < rcu_num_lvls; i++) 3382 rsp->levelcnt[i] = num_rcu_lvl[i]; 3383 for (i = 1; i < rcu_num_lvls; i++) 3384 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3385 rcu_init_levelspread(rsp); 3386 3387 /* Initialize the elements themselves, starting from the leaves. */ 3388 3389 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3390 cpustride *= rsp->levelspread[i]; 3391 rnp = rsp->level[i]; 3392 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3393 raw_spin_lock_init(&rnp->lock); 3394 lockdep_set_class_and_name(&rnp->lock, 3395 &rcu_node_class[i], buf[i]); 3396 raw_spin_lock_init(&rnp->fqslock); 3397 lockdep_set_class_and_name(&rnp->fqslock, 3398 &rcu_fqs_class[i], fqs[i]); 3399 rnp->gpnum = rsp->gpnum; 3400 rnp->completed = rsp->completed; 3401 rnp->qsmask = 0; 3402 rnp->qsmaskinit = 0; 3403 rnp->grplo = j * cpustride; 3404 rnp->grphi = (j + 1) * cpustride - 1; 3405 if (rnp->grphi >= NR_CPUS) 3406 rnp->grphi = NR_CPUS - 1; 3407 if (i == 0) { 3408 rnp->grpnum = 0; 3409 rnp->grpmask = 0; 3410 rnp->parent = NULL; 3411 } else { 3412 rnp->grpnum = j % rsp->levelspread[i - 1]; 3413 rnp->grpmask = 1UL << rnp->grpnum; 3414 rnp->parent = rsp->level[i - 1] + 3415 j / rsp->levelspread[i - 1]; 3416 } 3417 rnp->level = i; 3418 INIT_LIST_HEAD(&rnp->blkd_tasks); 3419 rcu_init_one_nocb(rnp); 3420 } 3421 } 3422 3423 rsp->rda = rda; 3424 init_waitqueue_head(&rsp->gp_wq); 3425 init_irq_work(&rsp->wakeup_work, rsp_wakeup); 3426 rnp = rsp->level[rcu_num_lvls - 1]; 3427 for_each_possible_cpu(i) { 3428 while (i > rnp->grphi) 3429 rnp++; 3430 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3431 rcu_boot_init_percpu_data(i, rsp); 3432 } 3433 list_add(&rsp->flavors, &rcu_struct_flavors); 3434 } 3435 3436 /* 3437 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3438 * replace the definitions in tree.h because those are needed to size 3439 * the ->node array in the rcu_state structure. 3440 */ 3441 static void __init rcu_init_geometry(void) 3442 { 3443 ulong d; 3444 int i; 3445 int j; 3446 int n = nr_cpu_ids; 3447 int rcu_capacity[MAX_RCU_LVLS + 1]; 3448 3449 /* 3450 * Initialize any unspecified boot parameters. 3451 * The default values of jiffies_till_first_fqs and 3452 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3453 * value, which is a function of HZ, then adding one for each 3454 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3455 */ 3456 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3457 if (jiffies_till_first_fqs == ULONG_MAX) 3458 jiffies_till_first_fqs = d; 3459 if (jiffies_till_next_fqs == ULONG_MAX) 3460 jiffies_till_next_fqs = d; 3461 3462 /* If the compile-time values are accurate, just leave. */ 3463 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 3464 nr_cpu_ids == NR_CPUS) 3465 return; 3466 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 3467 rcu_fanout_leaf, nr_cpu_ids); 3468 3469 /* 3470 * Compute number of nodes that can be handled an rcu_node tree 3471 * with the given number of levels. Setting rcu_capacity[0] makes 3472 * some of the arithmetic easier. 3473 */ 3474 rcu_capacity[0] = 1; 3475 rcu_capacity[1] = rcu_fanout_leaf; 3476 for (i = 2; i <= MAX_RCU_LVLS; i++) 3477 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 3478 3479 /* 3480 * The boot-time rcu_fanout_leaf parameter is only permitted 3481 * to increase the leaf-level fanout, not decrease it. Of course, 3482 * the leaf-level fanout cannot exceed the number of bits in 3483 * the rcu_node masks. Finally, the tree must be able to accommodate 3484 * the configured number of CPUs. Complain and fall back to the 3485 * compile-time values if these limits are exceeded. 3486 */ 3487 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 3488 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 3489 n > rcu_capacity[MAX_RCU_LVLS]) { 3490 WARN_ON(1); 3491 return; 3492 } 3493 3494 /* Calculate the number of rcu_nodes at each level of the tree. */ 3495 for (i = 1; i <= MAX_RCU_LVLS; i++) 3496 if (n <= rcu_capacity[i]) { 3497 for (j = 0; j <= i; j++) 3498 num_rcu_lvl[j] = 3499 DIV_ROUND_UP(n, rcu_capacity[i - j]); 3500 rcu_num_lvls = i; 3501 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 3502 num_rcu_lvl[j] = 0; 3503 break; 3504 } 3505 3506 /* Calculate the total number of rcu_node structures. */ 3507 rcu_num_nodes = 0; 3508 for (i = 0; i <= MAX_RCU_LVLS; i++) 3509 rcu_num_nodes += num_rcu_lvl[i]; 3510 rcu_num_nodes -= n; 3511 } 3512 3513 void __init rcu_init(void) 3514 { 3515 int cpu; 3516 3517 rcu_bootup_announce(); 3518 rcu_init_geometry(); 3519 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 3520 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 3521 __rcu_init_preempt(); 3522 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3523 3524 /* 3525 * We don't need protection against CPU-hotplug here because 3526 * this is called early in boot, before either interrupts 3527 * or the scheduler are operational. 3528 */ 3529 cpu_notifier(rcu_cpu_notify, 0); 3530 pm_notifier(rcu_pm_notify, 0); 3531 for_each_online_cpu(cpu) 3532 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 3533 } 3534 3535 #include "tree_plugin.h" 3536