xref: /openbmc/linux/kernel/rcu/tree.c (revision b23bf21f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/sched/isolation.h>
59 #include "../time/tick-internal.h"
60 
61 #include "tree.h"
62 #include "rcu.h"
63 
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 /*
72  * Steal a bit from the bottom of ->dynticks for idle entry/exit
73  * control.  Initially this is for TLB flushing.
74  */
75 #define RCU_DYNTICK_CTRL_MASK 0x1
76 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
77 #ifndef rcu_eqs_special_exit
78 #define rcu_eqs_special_exit() do { } while (0)
79 #endif
80 
81 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
82 	.dynticks_nesting = 1,
83 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
84 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
85 };
86 struct rcu_state rcu_state = {
87 	.level = { &rcu_state.node[0] },
88 	.gp_state = RCU_GP_IDLE,
89 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
90 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = 1;
103 module_param(use_softirq, bool, 0444);
104 /* Control rcu_node-tree auto-balancing at boot time. */
105 static bool rcu_fanout_exact;
106 module_param(rcu_fanout_exact, bool, 0444);
107 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
108 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
109 module_param(rcu_fanout_leaf, int, 0444);
110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111 /* Number of rcu_nodes at specified level. */
112 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
113 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
114 
115 /*
116  * The rcu_scheduler_active variable is initialized to the value
117  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
118  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
119  * RCU can assume that there is but one task, allowing RCU to (for example)
120  * optimize synchronize_rcu() to a simple barrier().  When this variable
121  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
122  * to detect real grace periods.  This variable is also used to suppress
123  * boot-time false positives from lockdep-RCU error checking.  Finally, it
124  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
125  * is fully initialized, including all of its kthreads having been spawned.
126  */
127 int rcu_scheduler_active __read_mostly;
128 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
129 
130 /*
131  * The rcu_scheduler_fully_active variable transitions from zero to one
132  * during the early_initcall() processing, which is after the scheduler
133  * is capable of creating new tasks.  So RCU processing (for example,
134  * creating tasks for RCU priority boosting) must be delayed until after
135  * rcu_scheduler_fully_active transitions from zero to one.  We also
136  * currently delay invocation of any RCU callbacks until after this point.
137  *
138  * It might later prove better for people registering RCU callbacks during
139  * early boot to take responsibility for these callbacks, but one step at
140  * a time.
141  */
142 static int rcu_scheduler_fully_active __read_mostly;
143 
144 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
145 			      unsigned long gps, unsigned long flags);
146 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
147 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 
153 /* rcuc/rcub kthread realtime priority */
154 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
155 module_param(kthread_prio, int, 0444);
156 
157 /* Delay in jiffies for grace-period initialization delays, debug only. */
158 
159 static int gp_preinit_delay;
160 module_param(gp_preinit_delay, int, 0444);
161 static int gp_init_delay;
162 module_param(gp_init_delay, int, 0444);
163 static int gp_cleanup_delay;
164 module_param(gp_cleanup_delay, int, 0444);
165 
166 /* Retrieve RCU kthreads priority for rcutorture */
167 int rcu_get_gp_kthreads_prio(void)
168 {
169 	return kthread_prio;
170 }
171 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
172 
173 /*
174  * Number of grace periods between delays, normalized by the duration of
175  * the delay.  The longer the delay, the more the grace periods between
176  * each delay.  The reason for this normalization is that it means that,
177  * for non-zero delays, the overall slowdown of grace periods is constant
178  * regardless of the duration of the delay.  This arrangement balances
179  * the need for long delays to increase some race probabilities with the
180  * need for fast grace periods to increase other race probabilities.
181  */
182 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
183 
184 /*
185  * Compute the mask of online CPUs for the specified rcu_node structure.
186  * This will not be stable unless the rcu_node structure's ->lock is
187  * held, but the bit corresponding to the current CPU will be stable
188  * in most contexts.
189  */
190 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
191 {
192 	return READ_ONCE(rnp->qsmaskinitnext);
193 }
194 
195 /*
196  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
197  * permit this function to be invoked without holding the root rcu_node
198  * structure's ->lock, but of course results can be subject to change.
199  */
200 static int rcu_gp_in_progress(void)
201 {
202 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
203 }
204 
205 /*
206  * Return the number of callbacks queued on the specified CPU.
207  * Handles both the nocbs and normal cases.
208  */
209 static long rcu_get_n_cbs_cpu(int cpu)
210 {
211 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
212 
213 	if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
214 		return rcu_segcblist_n_cbs(&rdp->cblist);
215 	return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
216 }
217 
218 void rcu_softirq_qs(void)
219 {
220 	rcu_qs();
221 	rcu_preempt_deferred_qs(current);
222 }
223 
224 /*
225  * Record entry into an extended quiescent state.  This is only to be
226  * called when not already in an extended quiescent state.
227  */
228 static void rcu_dynticks_eqs_enter(void)
229 {
230 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
231 	int seq;
232 
233 	/*
234 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
235 	 * critical sections, and we also must force ordering with the
236 	 * next idle sojourn.
237 	 */
238 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
239 	/* Better be in an extended quiescent state! */
240 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
241 		     (seq & RCU_DYNTICK_CTRL_CTR));
242 	/* Better not have special action (TLB flush) pending! */
243 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
244 		     (seq & RCU_DYNTICK_CTRL_MASK));
245 }
246 
247 /*
248  * Record exit from an extended quiescent state.  This is only to be
249  * called from an extended quiescent state.
250  */
251 static void rcu_dynticks_eqs_exit(void)
252 {
253 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
254 	int seq;
255 
256 	/*
257 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
258 	 * and we also must force ordering with the next RCU read-side
259 	 * critical section.
260 	 */
261 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
262 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
263 		     !(seq & RCU_DYNTICK_CTRL_CTR));
264 	if (seq & RCU_DYNTICK_CTRL_MASK) {
265 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
266 		smp_mb__after_atomic(); /* _exit after clearing mask. */
267 		/* Prefer duplicate flushes to losing a flush. */
268 		rcu_eqs_special_exit();
269 	}
270 }
271 
272 /*
273  * Reset the current CPU's ->dynticks counter to indicate that the
274  * newly onlined CPU is no longer in an extended quiescent state.
275  * This will either leave the counter unchanged, or increment it
276  * to the next non-quiescent value.
277  *
278  * The non-atomic test/increment sequence works because the upper bits
279  * of the ->dynticks counter are manipulated only by the corresponding CPU,
280  * or when the corresponding CPU is offline.
281  */
282 static void rcu_dynticks_eqs_online(void)
283 {
284 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
285 
286 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
287 		return;
288 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
289 }
290 
291 /*
292  * Is the current CPU in an extended quiescent state?
293  *
294  * No ordering, as we are sampling CPU-local information.
295  */
296 bool rcu_dynticks_curr_cpu_in_eqs(void)
297 {
298 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
299 
300 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
301 }
302 
303 /*
304  * Snapshot the ->dynticks counter with full ordering so as to allow
305  * stable comparison of this counter with past and future snapshots.
306  */
307 int rcu_dynticks_snap(struct rcu_data *rdp)
308 {
309 	int snap = atomic_add_return(0, &rdp->dynticks);
310 
311 	return snap & ~RCU_DYNTICK_CTRL_MASK;
312 }
313 
314 /*
315  * Return true if the snapshot returned from rcu_dynticks_snap()
316  * indicates that RCU is in an extended quiescent state.
317  */
318 static bool rcu_dynticks_in_eqs(int snap)
319 {
320 	return !(snap & RCU_DYNTICK_CTRL_CTR);
321 }
322 
323 /*
324  * Return true if the CPU corresponding to the specified rcu_data
325  * structure has spent some time in an extended quiescent state since
326  * rcu_dynticks_snap() returned the specified snapshot.
327  */
328 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
329 {
330 	return snap != rcu_dynticks_snap(rdp);
331 }
332 
333 /*
334  * Set the special (bottom) bit of the specified CPU so that it
335  * will take special action (such as flushing its TLB) on the
336  * next exit from an extended quiescent state.  Returns true if
337  * the bit was successfully set, or false if the CPU was not in
338  * an extended quiescent state.
339  */
340 bool rcu_eqs_special_set(int cpu)
341 {
342 	int old;
343 	int new;
344 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
345 
346 	do {
347 		old = atomic_read(&rdp->dynticks);
348 		if (old & RCU_DYNTICK_CTRL_CTR)
349 			return false;
350 		new = old | RCU_DYNTICK_CTRL_MASK;
351 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
352 	return true;
353 }
354 
355 /*
356  * Let the RCU core know that this CPU has gone through the scheduler,
357  * which is a quiescent state.  This is called when the need for a
358  * quiescent state is urgent, so we burn an atomic operation and full
359  * memory barriers to let the RCU core know about it, regardless of what
360  * this CPU might (or might not) do in the near future.
361  *
362  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
363  *
364  * The caller must have disabled interrupts and must not be idle.
365  */
366 static void __maybe_unused rcu_momentary_dyntick_idle(void)
367 {
368 	int special;
369 
370 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
371 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
372 				    &this_cpu_ptr(&rcu_data)->dynticks);
373 	/* It is illegal to call this from idle state. */
374 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
375 	rcu_preempt_deferred_qs(current);
376 }
377 
378 /**
379  * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
380  *
381  * If the current CPU is idle and running at a first-level (not nested)
382  * interrupt from idle, return true.  The caller must have at least
383  * disabled preemption.
384  */
385 static int rcu_is_cpu_rrupt_from_idle(void)
386 {
387 	/* Called only from within the scheduling-clock interrupt */
388 	lockdep_assert_in_irq();
389 
390 	/* Check for counter underflows */
391 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
392 			 "RCU dynticks_nesting counter underflow!");
393 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
394 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
395 
396 	/* Are we at first interrupt nesting level? */
397 	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
398 		return false;
399 
400 	/* Does CPU appear to be idle from an RCU standpoint? */
401 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
402 }
403 
404 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
405 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
406 static long blimit = DEFAULT_RCU_BLIMIT;
407 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
408 static long qhimark = DEFAULT_RCU_QHIMARK;
409 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
410 static long qlowmark = DEFAULT_RCU_QLOMARK;
411 
412 module_param(blimit, long, 0444);
413 module_param(qhimark, long, 0444);
414 module_param(qlowmark, long, 0444);
415 
416 static ulong jiffies_till_first_fqs = ULONG_MAX;
417 static ulong jiffies_till_next_fqs = ULONG_MAX;
418 static bool rcu_kick_kthreads;
419 
420 /*
421  * How long the grace period must be before we start recruiting
422  * quiescent-state help from rcu_note_context_switch().
423  */
424 static ulong jiffies_till_sched_qs = ULONG_MAX;
425 module_param(jiffies_till_sched_qs, ulong, 0444);
426 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
427 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
428 
429 /*
430  * Make sure that we give the grace-period kthread time to detect any
431  * idle CPUs before taking active measures to force quiescent states.
432  * However, don't go below 100 milliseconds, adjusted upwards for really
433  * large systems.
434  */
435 static void adjust_jiffies_till_sched_qs(void)
436 {
437 	unsigned long j;
438 
439 	/* If jiffies_till_sched_qs was specified, respect the request. */
440 	if (jiffies_till_sched_qs != ULONG_MAX) {
441 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
442 		return;
443 	}
444 	/* Otherwise, set to third fqs scan, but bound below on large system. */
445 	j = READ_ONCE(jiffies_till_first_fqs) +
446 		      2 * READ_ONCE(jiffies_till_next_fqs);
447 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
448 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
449 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
450 	WRITE_ONCE(jiffies_to_sched_qs, j);
451 }
452 
453 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
454 {
455 	ulong j;
456 	int ret = kstrtoul(val, 0, &j);
457 
458 	if (!ret) {
459 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
460 		adjust_jiffies_till_sched_qs();
461 	}
462 	return ret;
463 }
464 
465 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
466 {
467 	ulong j;
468 	int ret = kstrtoul(val, 0, &j);
469 
470 	if (!ret) {
471 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
472 		adjust_jiffies_till_sched_qs();
473 	}
474 	return ret;
475 }
476 
477 static struct kernel_param_ops first_fqs_jiffies_ops = {
478 	.set = param_set_first_fqs_jiffies,
479 	.get = param_get_ulong,
480 };
481 
482 static struct kernel_param_ops next_fqs_jiffies_ops = {
483 	.set = param_set_next_fqs_jiffies,
484 	.get = param_get_ulong,
485 };
486 
487 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
488 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
489 module_param(rcu_kick_kthreads, bool, 0644);
490 
491 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
492 static int rcu_pending(void);
493 
494 /*
495  * Return the number of RCU GPs completed thus far for debug & stats.
496  */
497 unsigned long rcu_get_gp_seq(void)
498 {
499 	return READ_ONCE(rcu_state.gp_seq);
500 }
501 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
502 
503 /*
504  * Return the number of RCU expedited batches completed thus far for
505  * debug & stats.  Odd numbers mean that a batch is in progress, even
506  * numbers mean idle.  The value returned will thus be roughly double
507  * the cumulative batches since boot.
508  */
509 unsigned long rcu_exp_batches_completed(void)
510 {
511 	return rcu_state.expedited_sequence;
512 }
513 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
514 
515 /*
516  * Return the root node of the rcu_state structure.
517  */
518 static struct rcu_node *rcu_get_root(void)
519 {
520 	return &rcu_state.node[0];
521 }
522 
523 /*
524  * Convert a ->gp_state value to a character string.
525  */
526 static const char *gp_state_getname(short gs)
527 {
528 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
529 		return "???";
530 	return gp_state_names[gs];
531 }
532 
533 /*
534  * Send along grace-period-related data for rcutorture diagnostics.
535  */
536 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
537 			    unsigned long *gp_seq)
538 {
539 	switch (test_type) {
540 	case RCU_FLAVOR:
541 		*flags = READ_ONCE(rcu_state.gp_flags);
542 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
543 		break;
544 	default:
545 		break;
546 	}
547 }
548 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
549 
550 /*
551  * Enter an RCU extended quiescent state, which can be either the
552  * idle loop or adaptive-tickless usermode execution.
553  *
554  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
555  * the possibility of usermode upcalls having messed up our count
556  * of interrupt nesting level during the prior busy period.
557  */
558 static void rcu_eqs_enter(bool user)
559 {
560 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
561 
562 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
563 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
564 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
565 		     rdp->dynticks_nesting == 0);
566 	if (rdp->dynticks_nesting != 1) {
567 		rdp->dynticks_nesting--;
568 		return;
569 	}
570 
571 	lockdep_assert_irqs_disabled();
572 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
573 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
574 	rdp = this_cpu_ptr(&rcu_data);
575 	do_nocb_deferred_wakeup(rdp);
576 	rcu_prepare_for_idle();
577 	rcu_preempt_deferred_qs(current);
578 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
579 	rcu_dynticks_eqs_enter();
580 	rcu_dynticks_task_enter();
581 }
582 
583 /**
584  * rcu_idle_enter - inform RCU that current CPU is entering idle
585  *
586  * Enter idle mode, in other words, -leave- the mode in which RCU
587  * read-side critical sections can occur.  (Though RCU read-side
588  * critical sections can occur in irq handlers in idle, a possibility
589  * handled by irq_enter() and irq_exit().)
590  *
591  * If you add or remove a call to rcu_idle_enter(), be sure to test with
592  * CONFIG_RCU_EQS_DEBUG=y.
593  */
594 void rcu_idle_enter(void)
595 {
596 	lockdep_assert_irqs_disabled();
597 	rcu_eqs_enter(false);
598 }
599 
600 #ifdef CONFIG_NO_HZ_FULL
601 /**
602  * rcu_user_enter - inform RCU that we are resuming userspace.
603  *
604  * Enter RCU idle mode right before resuming userspace.  No use of RCU
605  * is permitted between this call and rcu_user_exit(). This way the
606  * CPU doesn't need to maintain the tick for RCU maintenance purposes
607  * when the CPU runs in userspace.
608  *
609  * If you add or remove a call to rcu_user_enter(), be sure to test with
610  * CONFIG_RCU_EQS_DEBUG=y.
611  */
612 void rcu_user_enter(void)
613 {
614 	lockdep_assert_irqs_disabled();
615 	rcu_eqs_enter(true);
616 }
617 #endif /* CONFIG_NO_HZ_FULL */
618 
619 /*
620  * If we are returning from the outermost NMI handler that interrupted an
621  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
622  * to let the RCU grace-period handling know that the CPU is back to
623  * being RCU-idle.
624  *
625  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
626  * with CONFIG_RCU_EQS_DEBUG=y.
627  */
628 static __always_inline void rcu_nmi_exit_common(bool irq)
629 {
630 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
631 
632 	/*
633 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
634 	 * (We are exiting an NMI handler, so RCU better be paying attention
635 	 * to us!)
636 	 */
637 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
638 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
639 
640 	/*
641 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
642 	 * leave it in non-RCU-idle state.
643 	 */
644 	if (rdp->dynticks_nmi_nesting != 1) {
645 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
646 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
647 			   rdp->dynticks_nmi_nesting - 2);
648 		return;
649 	}
650 
651 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
652 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
653 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
654 
655 	if (irq)
656 		rcu_prepare_for_idle();
657 
658 	rcu_dynticks_eqs_enter();
659 
660 	if (irq)
661 		rcu_dynticks_task_enter();
662 }
663 
664 /**
665  * rcu_nmi_exit - inform RCU of exit from NMI context
666  *
667  * If you add or remove a call to rcu_nmi_exit(), be sure to test
668  * with CONFIG_RCU_EQS_DEBUG=y.
669  */
670 void rcu_nmi_exit(void)
671 {
672 	rcu_nmi_exit_common(false);
673 }
674 
675 /**
676  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
677  *
678  * Exit from an interrupt handler, which might possibly result in entering
679  * idle mode, in other words, leaving the mode in which read-side critical
680  * sections can occur.  The caller must have disabled interrupts.
681  *
682  * This code assumes that the idle loop never does anything that might
683  * result in unbalanced calls to irq_enter() and irq_exit().  If your
684  * architecture's idle loop violates this assumption, RCU will give you what
685  * you deserve, good and hard.  But very infrequently and irreproducibly.
686  *
687  * Use things like work queues to work around this limitation.
688  *
689  * You have been warned.
690  *
691  * If you add or remove a call to rcu_irq_exit(), be sure to test with
692  * CONFIG_RCU_EQS_DEBUG=y.
693  */
694 void rcu_irq_exit(void)
695 {
696 	lockdep_assert_irqs_disabled();
697 	rcu_nmi_exit_common(true);
698 }
699 
700 /*
701  * Wrapper for rcu_irq_exit() where interrupts are enabled.
702  *
703  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
704  * with CONFIG_RCU_EQS_DEBUG=y.
705  */
706 void rcu_irq_exit_irqson(void)
707 {
708 	unsigned long flags;
709 
710 	local_irq_save(flags);
711 	rcu_irq_exit();
712 	local_irq_restore(flags);
713 }
714 
715 /*
716  * Exit an RCU extended quiescent state, which can be either the
717  * idle loop or adaptive-tickless usermode execution.
718  *
719  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
720  * allow for the possibility of usermode upcalls messing up our count of
721  * interrupt nesting level during the busy period that is just now starting.
722  */
723 static void rcu_eqs_exit(bool user)
724 {
725 	struct rcu_data *rdp;
726 	long oldval;
727 
728 	lockdep_assert_irqs_disabled();
729 	rdp = this_cpu_ptr(&rcu_data);
730 	oldval = rdp->dynticks_nesting;
731 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
732 	if (oldval) {
733 		rdp->dynticks_nesting++;
734 		return;
735 	}
736 	rcu_dynticks_task_exit();
737 	rcu_dynticks_eqs_exit();
738 	rcu_cleanup_after_idle();
739 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
740 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
741 	WRITE_ONCE(rdp->dynticks_nesting, 1);
742 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
743 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
744 }
745 
746 /**
747  * rcu_idle_exit - inform RCU that current CPU is leaving idle
748  *
749  * Exit idle mode, in other words, -enter- the mode in which RCU
750  * read-side critical sections can occur.
751  *
752  * If you add or remove a call to rcu_idle_exit(), be sure to test with
753  * CONFIG_RCU_EQS_DEBUG=y.
754  */
755 void rcu_idle_exit(void)
756 {
757 	unsigned long flags;
758 
759 	local_irq_save(flags);
760 	rcu_eqs_exit(false);
761 	local_irq_restore(flags);
762 }
763 
764 #ifdef CONFIG_NO_HZ_FULL
765 /**
766  * rcu_user_exit - inform RCU that we are exiting userspace.
767  *
768  * Exit RCU idle mode while entering the kernel because it can
769  * run a RCU read side critical section anytime.
770  *
771  * If you add or remove a call to rcu_user_exit(), be sure to test with
772  * CONFIG_RCU_EQS_DEBUG=y.
773  */
774 void rcu_user_exit(void)
775 {
776 	rcu_eqs_exit(1);
777 }
778 #endif /* CONFIG_NO_HZ_FULL */
779 
780 /**
781  * rcu_nmi_enter_common - inform RCU of entry to NMI context
782  * @irq: Is this call from rcu_irq_enter?
783  *
784  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
785  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
786  * that the CPU is active.  This implementation permits nested NMIs, as
787  * long as the nesting level does not overflow an int.  (You will probably
788  * run out of stack space first.)
789  *
790  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
791  * with CONFIG_RCU_EQS_DEBUG=y.
792  */
793 static __always_inline void rcu_nmi_enter_common(bool irq)
794 {
795 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
796 	long incby = 2;
797 
798 	/* Complain about underflow. */
799 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
800 
801 	/*
802 	 * If idle from RCU viewpoint, atomically increment ->dynticks
803 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
804 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
805 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
806 	 * to be in the outermost NMI handler that interrupted an RCU-idle
807 	 * period (observation due to Andy Lutomirski).
808 	 */
809 	if (rcu_dynticks_curr_cpu_in_eqs()) {
810 
811 		if (irq)
812 			rcu_dynticks_task_exit();
813 
814 		rcu_dynticks_eqs_exit();
815 
816 		if (irq)
817 			rcu_cleanup_after_idle();
818 
819 		incby = 1;
820 	}
821 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
822 			  rdp->dynticks_nmi_nesting,
823 			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
824 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
825 		   rdp->dynticks_nmi_nesting + incby);
826 	barrier();
827 }
828 
829 /**
830  * rcu_nmi_enter - inform RCU of entry to NMI context
831  */
832 void rcu_nmi_enter(void)
833 {
834 	rcu_nmi_enter_common(false);
835 }
836 NOKPROBE_SYMBOL(rcu_nmi_enter);
837 
838 /**
839  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
840  *
841  * Enter an interrupt handler, which might possibly result in exiting
842  * idle mode, in other words, entering the mode in which read-side critical
843  * sections can occur.  The caller must have disabled interrupts.
844  *
845  * Note that the Linux kernel is fully capable of entering an interrupt
846  * handler that it never exits, for example when doing upcalls to user mode!
847  * This code assumes that the idle loop never does upcalls to user mode.
848  * If your architecture's idle loop does do upcalls to user mode (or does
849  * anything else that results in unbalanced calls to the irq_enter() and
850  * irq_exit() functions), RCU will give you what you deserve, good and hard.
851  * But very infrequently and irreproducibly.
852  *
853  * Use things like work queues to work around this limitation.
854  *
855  * You have been warned.
856  *
857  * If you add or remove a call to rcu_irq_enter(), be sure to test with
858  * CONFIG_RCU_EQS_DEBUG=y.
859  */
860 void rcu_irq_enter(void)
861 {
862 	lockdep_assert_irqs_disabled();
863 	rcu_nmi_enter_common(true);
864 }
865 
866 /*
867  * Wrapper for rcu_irq_enter() where interrupts are enabled.
868  *
869  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
870  * with CONFIG_RCU_EQS_DEBUG=y.
871  */
872 void rcu_irq_enter_irqson(void)
873 {
874 	unsigned long flags;
875 
876 	local_irq_save(flags);
877 	rcu_irq_enter();
878 	local_irq_restore(flags);
879 }
880 
881 /**
882  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
883  *
884  * Return true if RCU is watching the running CPU, which means that this
885  * CPU can safely enter RCU read-side critical sections.  In other words,
886  * if the current CPU is not in its idle loop or is in an interrupt or
887  * NMI handler, return true.
888  */
889 bool notrace rcu_is_watching(void)
890 {
891 	bool ret;
892 
893 	preempt_disable_notrace();
894 	ret = !rcu_dynticks_curr_cpu_in_eqs();
895 	preempt_enable_notrace();
896 	return ret;
897 }
898 EXPORT_SYMBOL_GPL(rcu_is_watching);
899 
900 /*
901  * If a holdout task is actually running, request an urgent quiescent
902  * state from its CPU.  This is unsynchronized, so migrations can cause
903  * the request to go to the wrong CPU.  Which is OK, all that will happen
904  * is that the CPU's next context switch will be a bit slower and next
905  * time around this task will generate another request.
906  */
907 void rcu_request_urgent_qs_task(struct task_struct *t)
908 {
909 	int cpu;
910 
911 	barrier();
912 	cpu = task_cpu(t);
913 	if (!task_curr(t))
914 		return; /* This task is not running on that CPU. */
915 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
916 }
917 
918 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
919 
920 /*
921  * Is the current CPU online as far as RCU is concerned?
922  *
923  * Disable preemption to avoid false positives that could otherwise
924  * happen due to the current CPU number being sampled, this task being
925  * preempted, its old CPU being taken offline, resuming on some other CPU,
926  * then determining that its old CPU is now offline.
927  *
928  * Disable checking if in an NMI handler because we cannot safely
929  * report errors from NMI handlers anyway.  In addition, it is OK to use
930  * RCU on an offline processor during initial boot, hence the check for
931  * rcu_scheduler_fully_active.
932  */
933 bool rcu_lockdep_current_cpu_online(void)
934 {
935 	struct rcu_data *rdp;
936 	struct rcu_node *rnp;
937 	bool ret = false;
938 
939 	if (in_nmi() || !rcu_scheduler_fully_active)
940 		return true;
941 	preempt_disable();
942 	rdp = this_cpu_ptr(&rcu_data);
943 	rnp = rdp->mynode;
944 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
945 		ret = true;
946 	preempt_enable();
947 	return ret;
948 }
949 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
950 
951 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
952 
953 /*
954  * We are reporting a quiescent state on behalf of some other CPU, so
955  * it is our responsibility to check for and handle potential overflow
956  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
957  * After all, the CPU might be in deep idle state, and thus executing no
958  * code whatsoever.
959  */
960 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
961 {
962 	raw_lockdep_assert_held_rcu_node(rnp);
963 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
964 			 rnp->gp_seq))
965 		WRITE_ONCE(rdp->gpwrap, true);
966 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
967 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
968 }
969 
970 /*
971  * Snapshot the specified CPU's dynticks counter so that we can later
972  * credit them with an implicit quiescent state.  Return 1 if this CPU
973  * is in dynticks idle mode, which is an extended quiescent state.
974  */
975 static int dyntick_save_progress_counter(struct rcu_data *rdp)
976 {
977 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
978 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
979 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
980 		rcu_gpnum_ovf(rdp->mynode, rdp);
981 		return 1;
982 	}
983 	return 0;
984 }
985 
986 /*
987  * Return true if the specified CPU has passed through a quiescent
988  * state by virtue of being in or having passed through an dynticks
989  * idle state since the last call to dyntick_save_progress_counter()
990  * for this same CPU, or by virtue of having been offline.
991  */
992 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
993 {
994 	unsigned long jtsq;
995 	bool *rnhqp;
996 	bool *ruqp;
997 	struct rcu_node *rnp = rdp->mynode;
998 
999 	/*
1000 	 * If the CPU passed through or entered a dynticks idle phase with
1001 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1002 	 * already acknowledged the request to pass through a quiescent
1003 	 * state.  Either way, that CPU cannot possibly be in an RCU
1004 	 * read-side critical section that started before the beginning
1005 	 * of the current RCU grace period.
1006 	 */
1007 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1008 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1009 		rcu_gpnum_ovf(rnp, rdp);
1010 		return 1;
1011 	}
1012 
1013 	/* If waiting too long on an offline CPU, complain. */
1014 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1015 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1016 		bool onl;
1017 		struct rcu_node *rnp1;
1018 
1019 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1020 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1021 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1022 			(long)rnp->gp_seq, (long)rnp->completedqs);
1023 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1024 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1025 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1026 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1027 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1028 			__func__, rdp->cpu, ".o"[onl],
1029 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1030 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1031 		return 1; /* Break things loose after complaining. */
1032 	}
1033 
1034 	/*
1035 	 * A CPU running for an extended time within the kernel can
1036 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1037 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1038 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1039 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1040 	 * variable are safe because the assignments are repeated if this
1041 	 * CPU failed to pass through a quiescent state.  This code
1042 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1043 	 * is set way high.
1044 	 */
1045 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1046 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1047 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1048 	if (!READ_ONCE(*rnhqp) &&
1049 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1050 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1051 		WRITE_ONCE(*rnhqp, true);
1052 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1053 		smp_store_release(ruqp, true);
1054 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1055 		WRITE_ONCE(*ruqp, true);
1056 	}
1057 
1058 	/*
1059 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1060 	 * The above code handles this, but only for straight cond_resched().
1061 	 * And some in-kernel loops check need_resched() before calling
1062 	 * cond_resched(), which defeats the above code for CPUs that are
1063 	 * running in-kernel with scheduling-clock interrupts disabled.
1064 	 * So hit them over the head with the resched_cpu() hammer!
1065 	 */
1066 	if (tick_nohz_full_cpu(rdp->cpu) &&
1067 		   time_after(jiffies,
1068 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1069 		resched_cpu(rdp->cpu);
1070 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1071 	}
1072 
1073 	/*
1074 	 * If more than halfway to RCU CPU stall-warning time, invoke
1075 	 * resched_cpu() more frequently to try to loosen things up a bit.
1076 	 * Also check to see if the CPU is getting hammered with interrupts,
1077 	 * but only once per grace period, just to keep the IPIs down to
1078 	 * a dull roar.
1079 	 */
1080 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1081 		if (time_after(jiffies,
1082 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1083 			resched_cpu(rdp->cpu);
1084 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1085 		}
1086 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1087 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1088 		    (rnp->ffmask & rdp->grpmask)) {
1089 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1090 			rdp->rcu_iw_pending = true;
1091 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1092 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1093 		}
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1100 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1101 			      unsigned long gp_seq_req, const char *s)
1102 {
1103 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1104 				      rnp->level, rnp->grplo, rnp->grphi, s);
1105 }
1106 
1107 /*
1108  * rcu_start_this_gp - Request the start of a particular grace period
1109  * @rnp_start: The leaf node of the CPU from which to start.
1110  * @rdp: The rcu_data corresponding to the CPU from which to start.
1111  * @gp_seq_req: The gp_seq of the grace period to start.
1112  *
1113  * Start the specified grace period, as needed to handle newly arrived
1114  * callbacks.  The required future grace periods are recorded in each
1115  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1116  * is reason to awaken the grace-period kthread.
1117  *
1118  * The caller must hold the specified rcu_node structure's ->lock, which
1119  * is why the caller is responsible for waking the grace-period kthread.
1120  *
1121  * Returns true if the GP thread needs to be awakened else false.
1122  */
1123 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1124 			      unsigned long gp_seq_req)
1125 {
1126 	bool ret = false;
1127 	struct rcu_node *rnp;
1128 
1129 	/*
1130 	 * Use funnel locking to either acquire the root rcu_node
1131 	 * structure's lock or bail out if the need for this grace period
1132 	 * has already been recorded -- or if that grace period has in
1133 	 * fact already started.  If there is already a grace period in
1134 	 * progress in a non-leaf node, no recording is needed because the
1135 	 * end of the grace period will scan the leaf rcu_node structures.
1136 	 * Note that rnp_start->lock must not be released.
1137 	 */
1138 	raw_lockdep_assert_held_rcu_node(rnp_start);
1139 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1140 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1141 		if (rnp != rnp_start)
1142 			raw_spin_lock_rcu_node(rnp);
1143 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1144 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1145 		    (rnp != rnp_start &&
1146 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1147 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1148 					  TPS("Prestarted"));
1149 			goto unlock_out;
1150 		}
1151 		rnp->gp_seq_needed = gp_seq_req;
1152 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1153 			/*
1154 			 * We just marked the leaf or internal node, and a
1155 			 * grace period is in progress, which means that
1156 			 * rcu_gp_cleanup() will see the marking.  Bail to
1157 			 * reduce contention.
1158 			 */
1159 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1160 					  TPS("Startedleaf"));
1161 			goto unlock_out;
1162 		}
1163 		if (rnp != rnp_start && rnp->parent != NULL)
1164 			raw_spin_unlock_rcu_node(rnp);
1165 		if (!rnp->parent)
1166 			break;  /* At root, and perhaps also leaf. */
1167 	}
1168 
1169 	/* If GP already in progress, just leave, otherwise start one. */
1170 	if (rcu_gp_in_progress()) {
1171 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1172 		goto unlock_out;
1173 	}
1174 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1175 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1176 	rcu_state.gp_req_activity = jiffies;
1177 	if (!rcu_state.gp_kthread) {
1178 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1179 		goto unlock_out;
1180 	}
1181 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1182 	ret = true;  /* Caller must wake GP kthread. */
1183 unlock_out:
1184 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1185 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1186 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1187 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1188 	}
1189 	if (rnp != rnp_start)
1190 		raw_spin_unlock_rcu_node(rnp);
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Clean up any old requests for the just-ended grace period.  Also return
1196  * whether any additional grace periods have been requested.
1197  */
1198 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1199 {
1200 	bool needmore;
1201 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1202 
1203 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1204 	if (!needmore)
1205 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1206 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1207 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1208 	return needmore;
1209 }
1210 
1211 /*
1212  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1213  * an interrupt or softirq handler), and don't bother awakening when there
1214  * is nothing for the grace-period kthread to do (as in several CPUs raced
1215  * to awaken, and we lost), and finally don't try to awaken a kthread that
1216  * has not yet been created.  If all those checks are passed, track some
1217  * debug information and awaken.
1218  *
1219  * So why do the self-wakeup when in an interrupt or softirq handler
1220  * in the grace-period kthread's context?  Because the kthread might have
1221  * been interrupted just as it was going to sleep, and just after the final
1222  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1223  * is required, and is therefore supplied.
1224  */
1225 static void rcu_gp_kthread_wake(void)
1226 {
1227 	if ((current == rcu_state.gp_kthread &&
1228 	     !in_irq() && !in_serving_softirq()) ||
1229 	    !READ_ONCE(rcu_state.gp_flags) ||
1230 	    !rcu_state.gp_kthread)
1231 		return;
1232 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1233 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1234 	swake_up_one(&rcu_state.gp_wq);
1235 }
1236 
1237 /*
1238  * If there is room, assign a ->gp_seq number to any callbacks on this
1239  * CPU that have not already been assigned.  Also accelerate any callbacks
1240  * that were previously assigned a ->gp_seq number that has since proven
1241  * to be too conservative, which can happen if callbacks get assigned a
1242  * ->gp_seq number while RCU is idle, but with reference to a non-root
1243  * rcu_node structure.  This function is idempotent, so it does not hurt
1244  * to call it repeatedly.  Returns an flag saying that we should awaken
1245  * the RCU grace-period kthread.
1246  *
1247  * The caller must hold rnp->lock with interrupts disabled.
1248  */
1249 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1250 {
1251 	unsigned long gp_seq_req;
1252 	bool ret = false;
1253 
1254 	raw_lockdep_assert_held_rcu_node(rnp);
1255 
1256 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1257 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1258 		return false;
1259 
1260 	/*
1261 	 * Callbacks are often registered with incomplete grace-period
1262 	 * information.  Something about the fact that getting exact
1263 	 * information requires acquiring a global lock...  RCU therefore
1264 	 * makes a conservative estimate of the grace period number at which
1265 	 * a given callback will become ready to invoke.	The following
1266 	 * code checks this estimate and improves it when possible, thus
1267 	 * accelerating callback invocation to an earlier grace-period
1268 	 * number.
1269 	 */
1270 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1271 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1272 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1273 
1274 	/* Trace depending on how much we were able to accelerate. */
1275 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1276 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1277 	else
1278 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1279 	return ret;
1280 }
1281 
1282 /*
1283  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1284  * rcu_node structure's ->lock be held.  It consults the cached value
1285  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1286  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1287  * while holding the leaf rcu_node structure's ->lock.
1288  */
1289 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1290 					struct rcu_data *rdp)
1291 {
1292 	unsigned long c;
1293 	bool needwake;
1294 
1295 	lockdep_assert_irqs_disabled();
1296 	c = rcu_seq_snap(&rcu_state.gp_seq);
1297 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1298 		/* Old request still live, so mark recent callbacks. */
1299 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1300 		return;
1301 	}
1302 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1303 	needwake = rcu_accelerate_cbs(rnp, rdp);
1304 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1305 	if (needwake)
1306 		rcu_gp_kthread_wake();
1307 }
1308 
1309 /*
1310  * Move any callbacks whose grace period has completed to the
1311  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1312  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1313  * sublist.  This function is idempotent, so it does not hurt to
1314  * invoke it repeatedly.  As long as it is not invoked -too- often...
1315  * Returns true if the RCU grace-period kthread needs to be awakened.
1316  *
1317  * The caller must hold rnp->lock with interrupts disabled.
1318  */
1319 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1320 {
1321 	raw_lockdep_assert_held_rcu_node(rnp);
1322 
1323 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1324 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1325 		return false;
1326 
1327 	/*
1328 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1329 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1330 	 */
1331 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1332 
1333 	/* Classify any remaining callbacks. */
1334 	return rcu_accelerate_cbs(rnp, rdp);
1335 }
1336 
1337 /*
1338  * Update CPU-local rcu_data state to record the beginnings and ends of
1339  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1340  * structure corresponding to the current CPU, and must have irqs disabled.
1341  * Returns true if the grace-period kthread needs to be awakened.
1342  */
1343 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1344 {
1345 	bool ret;
1346 	bool need_gp;
1347 
1348 	raw_lockdep_assert_held_rcu_node(rnp);
1349 
1350 	if (rdp->gp_seq == rnp->gp_seq)
1351 		return false; /* Nothing to do. */
1352 
1353 	/* Handle the ends of any preceding grace periods first. */
1354 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1355 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1356 		ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1357 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1358 	} else {
1359 		ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1360 	}
1361 
1362 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1363 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1364 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1365 		/*
1366 		 * If the current grace period is waiting for this CPU,
1367 		 * set up to detect a quiescent state, otherwise don't
1368 		 * go looking for one.
1369 		 */
1370 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1371 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1372 		rdp->cpu_no_qs.b.norm = need_gp;
1373 		rdp->core_needs_qs = need_gp;
1374 		zero_cpu_stall_ticks(rdp);
1375 	}
1376 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1377 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1378 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1379 	WRITE_ONCE(rdp->gpwrap, false);
1380 	rcu_gpnum_ovf(rnp, rdp);
1381 	return ret;
1382 }
1383 
1384 static void note_gp_changes(struct rcu_data *rdp)
1385 {
1386 	unsigned long flags;
1387 	bool needwake;
1388 	struct rcu_node *rnp;
1389 
1390 	local_irq_save(flags);
1391 	rnp = rdp->mynode;
1392 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1393 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1394 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1395 		local_irq_restore(flags);
1396 		return;
1397 	}
1398 	needwake = __note_gp_changes(rnp, rdp);
1399 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1400 	if (needwake)
1401 		rcu_gp_kthread_wake();
1402 }
1403 
1404 static void rcu_gp_slow(int delay)
1405 {
1406 	if (delay > 0 &&
1407 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1408 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1409 		schedule_timeout_uninterruptible(delay);
1410 }
1411 
1412 /*
1413  * Initialize a new grace period.  Return false if no grace period required.
1414  */
1415 static bool rcu_gp_init(void)
1416 {
1417 	unsigned long flags;
1418 	unsigned long oldmask;
1419 	unsigned long mask;
1420 	struct rcu_data *rdp;
1421 	struct rcu_node *rnp = rcu_get_root();
1422 
1423 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1424 	raw_spin_lock_irq_rcu_node(rnp);
1425 	if (!READ_ONCE(rcu_state.gp_flags)) {
1426 		/* Spurious wakeup, tell caller to go back to sleep.  */
1427 		raw_spin_unlock_irq_rcu_node(rnp);
1428 		return false;
1429 	}
1430 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1431 
1432 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1433 		/*
1434 		 * Grace period already in progress, don't start another.
1435 		 * Not supposed to be able to happen.
1436 		 */
1437 		raw_spin_unlock_irq_rcu_node(rnp);
1438 		return false;
1439 	}
1440 
1441 	/* Advance to a new grace period and initialize state. */
1442 	record_gp_stall_check_time();
1443 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1444 	rcu_seq_start(&rcu_state.gp_seq);
1445 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1446 	raw_spin_unlock_irq_rcu_node(rnp);
1447 
1448 	/*
1449 	 * Apply per-leaf buffered online and offline operations to the
1450 	 * rcu_node tree.  Note that this new grace period need not wait
1451 	 * for subsequent online CPUs, and that quiescent-state forcing
1452 	 * will handle subsequent offline CPUs.
1453 	 */
1454 	rcu_state.gp_state = RCU_GP_ONOFF;
1455 	rcu_for_each_leaf_node(rnp) {
1456 		raw_spin_lock(&rcu_state.ofl_lock);
1457 		raw_spin_lock_irq_rcu_node(rnp);
1458 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1459 		    !rnp->wait_blkd_tasks) {
1460 			/* Nothing to do on this leaf rcu_node structure. */
1461 			raw_spin_unlock_irq_rcu_node(rnp);
1462 			raw_spin_unlock(&rcu_state.ofl_lock);
1463 			continue;
1464 		}
1465 
1466 		/* Record old state, apply changes to ->qsmaskinit field. */
1467 		oldmask = rnp->qsmaskinit;
1468 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1469 
1470 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1471 		if (!oldmask != !rnp->qsmaskinit) {
1472 			if (!oldmask) { /* First online CPU for rcu_node. */
1473 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1474 					rcu_init_new_rnp(rnp);
1475 			} else if (rcu_preempt_has_tasks(rnp)) {
1476 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1477 			} else { /* Last offline CPU and can propagate. */
1478 				rcu_cleanup_dead_rnp(rnp);
1479 			}
1480 		}
1481 
1482 		/*
1483 		 * If all waited-on tasks from prior grace period are
1484 		 * done, and if all this rcu_node structure's CPUs are
1485 		 * still offline, propagate up the rcu_node tree and
1486 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1487 		 * rcu_node structure's CPUs has since come back online,
1488 		 * simply clear ->wait_blkd_tasks.
1489 		 */
1490 		if (rnp->wait_blkd_tasks &&
1491 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1492 			rnp->wait_blkd_tasks = false;
1493 			if (!rnp->qsmaskinit)
1494 				rcu_cleanup_dead_rnp(rnp);
1495 		}
1496 
1497 		raw_spin_unlock_irq_rcu_node(rnp);
1498 		raw_spin_unlock(&rcu_state.ofl_lock);
1499 	}
1500 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1501 
1502 	/*
1503 	 * Set the quiescent-state-needed bits in all the rcu_node
1504 	 * structures for all currently online CPUs in breadth-first
1505 	 * order, starting from the root rcu_node structure, relying on the
1506 	 * layout of the tree within the rcu_state.node[] array.  Note that
1507 	 * other CPUs will access only the leaves of the hierarchy, thus
1508 	 * seeing that no grace period is in progress, at least until the
1509 	 * corresponding leaf node has been initialized.
1510 	 *
1511 	 * The grace period cannot complete until the initialization
1512 	 * process finishes, because this kthread handles both.
1513 	 */
1514 	rcu_state.gp_state = RCU_GP_INIT;
1515 	rcu_for_each_node_breadth_first(rnp) {
1516 		rcu_gp_slow(gp_init_delay);
1517 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1518 		rdp = this_cpu_ptr(&rcu_data);
1519 		rcu_preempt_check_blocked_tasks(rnp);
1520 		rnp->qsmask = rnp->qsmaskinit;
1521 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1522 		if (rnp == rdp->mynode)
1523 			(void)__note_gp_changes(rnp, rdp);
1524 		rcu_preempt_boost_start_gp(rnp);
1525 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1526 					    rnp->level, rnp->grplo,
1527 					    rnp->grphi, rnp->qsmask);
1528 		/* Quiescent states for tasks on any now-offline CPUs. */
1529 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1530 		rnp->rcu_gp_init_mask = mask;
1531 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1532 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1533 		else
1534 			raw_spin_unlock_irq_rcu_node(rnp);
1535 		cond_resched_tasks_rcu_qs();
1536 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1537 	}
1538 
1539 	return true;
1540 }
1541 
1542 /*
1543  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1544  * time.
1545  */
1546 static bool rcu_gp_fqs_check_wake(int *gfp)
1547 {
1548 	struct rcu_node *rnp = rcu_get_root();
1549 
1550 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1551 	*gfp = READ_ONCE(rcu_state.gp_flags);
1552 	if (*gfp & RCU_GP_FLAG_FQS)
1553 		return true;
1554 
1555 	/* The current grace period has completed. */
1556 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1557 		return true;
1558 
1559 	return false;
1560 }
1561 
1562 /*
1563  * Do one round of quiescent-state forcing.
1564  */
1565 static void rcu_gp_fqs(bool first_time)
1566 {
1567 	struct rcu_node *rnp = rcu_get_root();
1568 
1569 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1570 	rcu_state.n_force_qs++;
1571 	if (first_time) {
1572 		/* Collect dyntick-idle snapshots. */
1573 		force_qs_rnp(dyntick_save_progress_counter);
1574 	} else {
1575 		/* Handle dyntick-idle and offline CPUs. */
1576 		force_qs_rnp(rcu_implicit_dynticks_qs);
1577 	}
1578 	/* Clear flag to prevent immediate re-entry. */
1579 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1580 		raw_spin_lock_irq_rcu_node(rnp);
1581 		WRITE_ONCE(rcu_state.gp_flags,
1582 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1583 		raw_spin_unlock_irq_rcu_node(rnp);
1584 	}
1585 }
1586 
1587 /*
1588  * Loop doing repeated quiescent-state forcing until the grace period ends.
1589  */
1590 static void rcu_gp_fqs_loop(void)
1591 {
1592 	bool first_gp_fqs;
1593 	int gf;
1594 	unsigned long j;
1595 	int ret;
1596 	struct rcu_node *rnp = rcu_get_root();
1597 
1598 	first_gp_fqs = true;
1599 	j = READ_ONCE(jiffies_till_first_fqs);
1600 	ret = 0;
1601 	for (;;) {
1602 		if (!ret) {
1603 			rcu_state.jiffies_force_qs = jiffies + j;
1604 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1605 				   jiffies + (j ? 3 * j : 2));
1606 		}
1607 		trace_rcu_grace_period(rcu_state.name,
1608 				       READ_ONCE(rcu_state.gp_seq),
1609 				       TPS("fqswait"));
1610 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1611 		ret = swait_event_idle_timeout_exclusive(
1612 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1613 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1614 		/* Locking provides needed memory barriers. */
1615 		/* If grace period done, leave loop. */
1616 		if (!READ_ONCE(rnp->qsmask) &&
1617 		    !rcu_preempt_blocked_readers_cgp(rnp))
1618 			break;
1619 		/* If time for quiescent-state forcing, do it. */
1620 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1621 		    (gf & RCU_GP_FLAG_FQS)) {
1622 			trace_rcu_grace_period(rcu_state.name,
1623 					       READ_ONCE(rcu_state.gp_seq),
1624 					       TPS("fqsstart"));
1625 			rcu_gp_fqs(first_gp_fqs);
1626 			first_gp_fqs = false;
1627 			trace_rcu_grace_period(rcu_state.name,
1628 					       READ_ONCE(rcu_state.gp_seq),
1629 					       TPS("fqsend"));
1630 			cond_resched_tasks_rcu_qs();
1631 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1632 			ret = 0; /* Force full wait till next FQS. */
1633 			j = READ_ONCE(jiffies_till_next_fqs);
1634 		} else {
1635 			/* Deal with stray signal. */
1636 			cond_resched_tasks_rcu_qs();
1637 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1638 			WARN_ON(signal_pending(current));
1639 			trace_rcu_grace_period(rcu_state.name,
1640 					       READ_ONCE(rcu_state.gp_seq),
1641 					       TPS("fqswaitsig"));
1642 			ret = 1; /* Keep old FQS timing. */
1643 			j = jiffies;
1644 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1645 				j = 1;
1646 			else
1647 				j = rcu_state.jiffies_force_qs - j;
1648 		}
1649 	}
1650 }
1651 
1652 /*
1653  * Clean up after the old grace period.
1654  */
1655 static void rcu_gp_cleanup(void)
1656 {
1657 	unsigned long gp_duration;
1658 	bool needgp = false;
1659 	unsigned long new_gp_seq;
1660 	struct rcu_data *rdp;
1661 	struct rcu_node *rnp = rcu_get_root();
1662 	struct swait_queue_head *sq;
1663 
1664 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1665 	raw_spin_lock_irq_rcu_node(rnp);
1666 	rcu_state.gp_end = jiffies;
1667 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1668 	if (gp_duration > rcu_state.gp_max)
1669 		rcu_state.gp_max = gp_duration;
1670 
1671 	/*
1672 	 * We know the grace period is complete, but to everyone else
1673 	 * it appears to still be ongoing.  But it is also the case
1674 	 * that to everyone else it looks like there is nothing that
1675 	 * they can do to advance the grace period.  It is therefore
1676 	 * safe for us to drop the lock in order to mark the grace
1677 	 * period as completed in all of the rcu_node structures.
1678 	 */
1679 	raw_spin_unlock_irq_rcu_node(rnp);
1680 
1681 	/*
1682 	 * Propagate new ->gp_seq value to rcu_node structures so that
1683 	 * other CPUs don't have to wait until the start of the next grace
1684 	 * period to process their callbacks.  This also avoids some nasty
1685 	 * RCU grace-period initialization races by forcing the end of
1686 	 * the current grace period to be completely recorded in all of
1687 	 * the rcu_node structures before the beginning of the next grace
1688 	 * period is recorded in any of the rcu_node structures.
1689 	 */
1690 	new_gp_seq = rcu_state.gp_seq;
1691 	rcu_seq_end(&new_gp_seq);
1692 	rcu_for_each_node_breadth_first(rnp) {
1693 		raw_spin_lock_irq_rcu_node(rnp);
1694 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1695 			dump_blkd_tasks(rnp, 10);
1696 		WARN_ON_ONCE(rnp->qsmask);
1697 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1698 		rdp = this_cpu_ptr(&rcu_data);
1699 		if (rnp == rdp->mynode)
1700 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1701 		/* smp_mb() provided by prior unlock-lock pair. */
1702 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1703 		sq = rcu_nocb_gp_get(rnp);
1704 		raw_spin_unlock_irq_rcu_node(rnp);
1705 		rcu_nocb_gp_cleanup(sq);
1706 		cond_resched_tasks_rcu_qs();
1707 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1708 		rcu_gp_slow(gp_cleanup_delay);
1709 	}
1710 	rnp = rcu_get_root();
1711 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1712 
1713 	/* Declare grace period done, trace first to use old GP number. */
1714 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1715 	rcu_seq_end(&rcu_state.gp_seq);
1716 	rcu_state.gp_state = RCU_GP_IDLE;
1717 	/* Check for GP requests since above loop. */
1718 	rdp = this_cpu_ptr(&rcu_data);
1719 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1720 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1721 				  TPS("CleanupMore"));
1722 		needgp = true;
1723 	}
1724 	/* Advance CBs to reduce false positives below. */
1725 	if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
1726 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1727 		rcu_state.gp_req_activity = jiffies;
1728 		trace_rcu_grace_period(rcu_state.name,
1729 				       READ_ONCE(rcu_state.gp_seq),
1730 				       TPS("newreq"));
1731 	} else {
1732 		WRITE_ONCE(rcu_state.gp_flags,
1733 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1734 	}
1735 	raw_spin_unlock_irq_rcu_node(rnp);
1736 }
1737 
1738 /*
1739  * Body of kthread that handles grace periods.
1740  */
1741 static int __noreturn rcu_gp_kthread(void *unused)
1742 {
1743 	rcu_bind_gp_kthread();
1744 	for (;;) {
1745 
1746 		/* Handle grace-period start. */
1747 		for (;;) {
1748 			trace_rcu_grace_period(rcu_state.name,
1749 					       READ_ONCE(rcu_state.gp_seq),
1750 					       TPS("reqwait"));
1751 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1752 			swait_event_idle_exclusive(rcu_state.gp_wq,
1753 					 READ_ONCE(rcu_state.gp_flags) &
1754 					 RCU_GP_FLAG_INIT);
1755 			rcu_state.gp_state = RCU_GP_DONE_GPS;
1756 			/* Locking provides needed memory barrier. */
1757 			if (rcu_gp_init())
1758 				break;
1759 			cond_resched_tasks_rcu_qs();
1760 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1761 			WARN_ON(signal_pending(current));
1762 			trace_rcu_grace_period(rcu_state.name,
1763 					       READ_ONCE(rcu_state.gp_seq),
1764 					       TPS("reqwaitsig"));
1765 		}
1766 
1767 		/* Handle quiescent-state forcing. */
1768 		rcu_gp_fqs_loop();
1769 
1770 		/* Handle grace-period end. */
1771 		rcu_state.gp_state = RCU_GP_CLEANUP;
1772 		rcu_gp_cleanup();
1773 		rcu_state.gp_state = RCU_GP_CLEANED;
1774 	}
1775 }
1776 
1777 /*
1778  * Report a full set of quiescent states to the rcu_state data structure.
1779  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1780  * another grace period is required.  Whether we wake the grace-period
1781  * kthread or it awakens itself for the next round of quiescent-state
1782  * forcing, that kthread will clean up after the just-completed grace
1783  * period.  Note that the caller must hold rnp->lock, which is released
1784  * before return.
1785  */
1786 static void rcu_report_qs_rsp(unsigned long flags)
1787 	__releases(rcu_get_root()->lock)
1788 {
1789 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1790 	WARN_ON_ONCE(!rcu_gp_in_progress());
1791 	WRITE_ONCE(rcu_state.gp_flags,
1792 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1793 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1794 	rcu_gp_kthread_wake();
1795 }
1796 
1797 /*
1798  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1799  * Allows quiescent states for a group of CPUs to be reported at one go
1800  * to the specified rcu_node structure, though all the CPUs in the group
1801  * must be represented by the same rcu_node structure (which need not be a
1802  * leaf rcu_node structure, though it often will be).  The gps parameter
1803  * is the grace-period snapshot, which means that the quiescent states
1804  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1805  * must be held upon entry, and it is released before return.
1806  *
1807  * As a special case, if mask is zero, the bit-already-cleared check is
1808  * disabled.  This allows propagating quiescent state due to resumed tasks
1809  * during grace-period initialization.
1810  */
1811 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1812 			      unsigned long gps, unsigned long flags)
1813 	__releases(rnp->lock)
1814 {
1815 	unsigned long oldmask = 0;
1816 	struct rcu_node *rnp_c;
1817 
1818 	raw_lockdep_assert_held_rcu_node(rnp);
1819 
1820 	/* Walk up the rcu_node hierarchy. */
1821 	for (;;) {
1822 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1823 
1824 			/*
1825 			 * Our bit has already been cleared, or the
1826 			 * relevant grace period is already over, so done.
1827 			 */
1828 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1829 			return;
1830 		}
1831 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1832 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1833 			     rcu_preempt_blocked_readers_cgp(rnp));
1834 		rnp->qsmask &= ~mask;
1835 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1836 						 mask, rnp->qsmask, rnp->level,
1837 						 rnp->grplo, rnp->grphi,
1838 						 !!rnp->gp_tasks);
1839 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1840 
1841 			/* Other bits still set at this level, so done. */
1842 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1843 			return;
1844 		}
1845 		rnp->completedqs = rnp->gp_seq;
1846 		mask = rnp->grpmask;
1847 		if (rnp->parent == NULL) {
1848 
1849 			/* No more levels.  Exit loop holding root lock. */
1850 
1851 			break;
1852 		}
1853 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1854 		rnp_c = rnp;
1855 		rnp = rnp->parent;
1856 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1857 		oldmask = rnp_c->qsmask;
1858 	}
1859 
1860 	/*
1861 	 * Get here if we are the last CPU to pass through a quiescent
1862 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1863 	 * to clean up and start the next grace period if one is needed.
1864 	 */
1865 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1866 }
1867 
1868 /*
1869  * Record a quiescent state for all tasks that were previously queued
1870  * on the specified rcu_node structure and that were blocking the current
1871  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1872  * irqs disabled, and this lock is released upon return, but irqs remain
1873  * disabled.
1874  */
1875 static void __maybe_unused
1876 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1877 	__releases(rnp->lock)
1878 {
1879 	unsigned long gps;
1880 	unsigned long mask;
1881 	struct rcu_node *rnp_p;
1882 
1883 	raw_lockdep_assert_held_rcu_node(rnp);
1884 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
1885 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1886 	    rnp->qsmask != 0) {
1887 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1888 		return;  /* Still need more quiescent states! */
1889 	}
1890 
1891 	rnp->completedqs = rnp->gp_seq;
1892 	rnp_p = rnp->parent;
1893 	if (rnp_p == NULL) {
1894 		/*
1895 		 * Only one rcu_node structure in the tree, so don't
1896 		 * try to report up to its nonexistent parent!
1897 		 */
1898 		rcu_report_qs_rsp(flags);
1899 		return;
1900 	}
1901 
1902 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1903 	gps = rnp->gp_seq;
1904 	mask = rnp->grpmask;
1905 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1906 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1907 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1908 }
1909 
1910 /*
1911  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1912  * structure.  This must be called from the specified CPU.
1913  */
1914 static void
1915 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1916 {
1917 	unsigned long flags;
1918 	unsigned long mask;
1919 	bool needwake;
1920 	struct rcu_node *rnp;
1921 
1922 	rnp = rdp->mynode;
1923 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1924 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1925 	    rdp->gpwrap) {
1926 
1927 		/*
1928 		 * The grace period in which this quiescent state was
1929 		 * recorded has ended, so don't report it upwards.
1930 		 * We will instead need a new quiescent state that lies
1931 		 * within the current grace period.
1932 		 */
1933 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1934 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1935 		return;
1936 	}
1937 	mask = rdp->grpmask;
1938 	rdp->core_needs_qs = false;
1939 	if ((rnp->qsmask & mask) == 0) {
1940 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941 	} else {
1942 		/*
1943 		 * This GP can't end until cpu checks in, so all of our
1944 		 * callbacks can be processed during the next GP.
1945 		 */
1946 		needwake = rcu_accelerate_cbs(rnp, rdp);
1947 
1948 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1949 		/* ^^^ Released rnp->lock */
1950 		if (needwake)
1951 			rcu_gp_kthread_wake();
1952 	}
1953 }
1954 
1955 /*
1956  * Check to see if there is a new grace period of which this CPU
1957  * is not yet aware, and if so, set up local rcu_data state for it.
1958  * Otherwise, see if this CPU has just passed through its first
1959  * quiescent state for this grace period, and record that fact if so.
1960  */
1961 static void
1962 rcu_check_quiescent_state(struct rcu_data *rdp)
1963 {
1964 	/* Check for grace-period ends and beginnings. */
1965 	note_gp_changes(rdp);
1966 
1967 	/*
1968 	 * Does this CPU still need to do its part for current grace period?
1969 	 * If no, return and let the other CPUs do their part as well.
1970 	 */
1971 	if (!rdp->core_needs_qs)
1972 		return;
1973 
1974 	/*
1975 	 * Was there a quiescent state since the beginning of the grace
1976 	 * period? If no, then exit and wait for the next call.
1977 	 */
1978 	if (rdp->cpu_no_qs.b.norm)
1979 		return;
1980 
1981 	/*
1982 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1983 	 * judge of that).
1984 	 */
1985 	rcu_report_qs_rdp(rdp->cpu, rdp);
1986 }
1987 
1988 /*
1989  * Near the end of the offline process.  Trace the fact that this CPU
1990  * is going offline.
1991  */
1992 int rcutree_dying_cpu(unsigned int cpu)
1993 {
1994 	bool blkd;
1995 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1996 	struct rcu_node *rnp = rdp->mynode;
1997 
1998 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
1999 		return 0;
2000 
2001 	blkd = !!(rnp->qsmask & rdp->grpmask);
2002 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2003 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2004 	return 0;
2005 }
2006 
2007 /*
2008  * All CPUs for the specified rcu_node structure have gone offline,
2009  * and all tasks that were preempted within an RCU read-side critical
2010  * section while running on one of those CPUs have since exited their RCU
2011  * read-side critical section.  Some other CPU is reporting this fact with
2012  * the specified rcu_node structure's ->lock held and interrupts disabled.
2013  * This function therefore goes up the tree of rcu_node structures,
2014  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2015  * the leaf rcu_node structure's ->qsmaskinit field has already been
2016  * updated.
2017  *
2018  * This function does check that the specified rcu_node structure has
2019  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2020  * prematurely.  That said, invoking it after the fact will cost you
2021  * a needless lock acquisition.  So once it has done its work, don't
2022  * invoke it again.
2023  */
2024 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2025 {
2026 	long mask;
2027 	struct rcu_node *rnp = rnp_leaf;
2028 
2029 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2030 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2031 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2032 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2033 		return;
2034 	for (;;) {
2035 		mask = rnp->grpmask;
2036 		rnp = rnp->parent;
2037 		if (!rnp)
2038 			break;
2039 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2040 		rnp->qsmaskinit &= ~mask;
2041 		/* Between grace periods, so better already be zero! */
2042 		WARN_ON_ONCE(rnp->qsmask);
2043 		if (rnp->qsmaskinit) {
2044 			raw_spin_unlock_rcu_node(rnp);
2045 			/* irqs remain disabled. */
2046 			return;
2047 		}
2048 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2049 	}
2050 }
2051 
2052 /*
2053  * The CPU has been completely removed, and some other CPU is reporting
2054  * this fact from process context.  Do the remainder of the cleanup.
2055  * There can only be one CPU hotplug operation at a time, so no need for
2056  * explicit locking.
2057  */
2058 int rcutree_dead_cpu(unsigned int cpu)
2059 {
2060 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2061 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2062 
2063 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2064 		return 0;
2065 
2066 	/* Adjust any no-longer-needed kthreads. */
2067 	rcu_boost_kthread_setaffinity(rnp, -1);
2068 	/* Do any needed no-CB deferred wakeups from this CPU. */
2069 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2070 	return 0;
2071 }
2072 
2073 /*
2074  * Invoke any RCU callbacks that have made it to the end of their grace
2075  * period.  Thottle as specified by rdp->blimit.
2076  */
2077 static void rcu_do_batch(struct rcu_data *rdp)
2078 {
2079 	unsigned long flags;
2080 	struct rcu_head *rhp;
2081 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2082 	long bl, count;
2083 
2084 	/* If no callbacks are ready, just return. */
2085 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2086 		trace_rcu_batch_start(rcu_state.name,
2087 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2088 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2089 		trace_rcu_batch_end(rcu_state.name, 0,
2090 				    !rcu_segcblist_empty(&rdp->cblist),
2091 				    need_resched(), is_idle_task(current),
2092 				    rcu_is_callbacks_kthread());
2093 		return;
2094 	}
2095 
2096 	/*
2097 	 * Extract the list of ready callbacks, disabling to prevent
2098 	 * races with call_rcu() from interrupt handlers.  Leave the
2099 	 * callback counts, as rcu_barrier() needs to be conservative.
2100 	 */
2101 	local_irq_save(flags);
2102 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2103 	bl = rdp->blimit;
2104 	trace_rcu_batch_start(rcu_state.name,
2105 			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2106 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2107 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2108 	local_irq_restore(flags);
2109 
2110 	/* Invoke callbacks. */
2111 	rhp = rcu_cblist_dequeue(&rcl);
2112 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2113 		debug_rcu_head_unqueue(rhp);
2114 		if (__rcu_reclaim(rcu_state.name, rhp))
2115 			rcu_cblist_dequeued_lazy(&rcl);
2116 		/*
2117 		 * Stop only if limit reached and CPU has something to do.
2118 		 * Note: The rcl structure counts down from zero.
2119 		 */
2120 		if (-rcl.len >= bl &&
2121 		    (need_resched() ||
2122 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2123 			break;
2124 	}
2125 
2126 	local_irq_save(flags);
2127 	count = -rcl.len;
2128 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2129 			    is_idle_task(current), rcu_is_callbacks_kthread());
2130 
2131 	/* Update counts and requeue any remaining callbacks. */
2132 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2133 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2134 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2135 
2136 	/* Reinstate batch limit if we have worked down the excess. */
2137 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2138 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2139 		rdp->blimit = blimit;
2140 
2141 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2142 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2143 		rdp->qlen_last_fqs_check = 0;
2144 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2145 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2146 		rdp->qlen_last_fqs_check = count;
2147 
2148 	/*
2149 	 * The following usually indicates a double call_rcu().  To track
2150 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2151 	 */
2152 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2153 
2154 	local_irq_restore(flags);
2155 
2156 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2157 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2158 		invoke_rcu_core();
2159 }
2160 
2161 /*
2162  * This function is invoked from each scheduling-clock interrupt,
2163  * and checks to see if this CPU is in a non-context-switch quiescent
2164  * state, for example, user mode or idle loop.  It also schedules RCU
2165  * core processing.  If the current grace period has gone on too long,
2166  * it will ask the scheduler to manufacture a context switch for the sole
2167  * purpose of providing a providing the needed quiescent state.
2168  */
2169 void rcu_sched_clock_irq(int user)
2170 {
2171 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2172 	raw_cpu_inc(rcu_data.ticks_this_gp);
2173 	/* The load-acquire pairs with the store-release setting to true. */
2174 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2175 		/* Idle and userspace execution already are quiescent states. */
2176 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2177 			set_tsk_need_resched(current);
2178 			set_preempt_need_resched();
2179 		}
2180 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2181 	}
2182 	rcu_flavor_sched_clock_irq(user);
2183 	if (rcu_pending())
2184 		invoke_rcu_core();
2185 
2186 	trace_rcu_utilization(TPS("End scheduler-tick"));
2187 }
2188 
2189 /*
2190  * Scan the leaf rcu_node structures.  For each structure on which all
2191  * CPUs have reported a quiescent state and on which there are tasks
2192  * blocking the current grace period, initiate RCU priority boosting.
2193  * Otherwise, invoke the specified function to check dyntick state for
2194  * each CPU that has not yet reported a quiescent state.
2195  */
2196 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2197 {
2198 	int cpu;
2199 	unsigned long flags;
2200 	unsigned long mask;
2201 	struct rcu_node *rnp;
2202 
2203 	rcu_for_each_leaf_node(rnp) {
2204 		cond_resched_tasks_rcu_qs();
2205 		mask = 0;
2206 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2207 		if (rnp->qsmask == 0) {
2208 			if (!IS_ENABLED(CONFIG_PREEMPT) ||
2209 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2210 				/*
2211 				 * No point in scanning bits because they
2212 				 * are all zero.  But we might need to
2213 				 * priority-boost blocked readers.
2214 				 */
2215 				rcu_initiate_boost(rnp, flags);
2216 				/* rcu_initiate_boost() releases rnp->lock */
2217 				continue;
2218 			}
2219 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2220 			continue;
2221 		}
2222 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2223 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2224 			if ((rnp->qsmask & bit) != 0) {
2225 				if (f(per_cpu_ptr(&rcu_data, cpu)))
2226 					mask |= bit;
2227 			}
2228 		}
2229 		if (mask != 0) {
2230 			/* Idle/offline CPUs, report (releases rnp->lock). */
2231 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2232 		} else {
2233 			/* Nothing to do here, so just drop the lock. */
2234 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2235 		}
2236 	}
2237 }
2238 
2239 /*
2240  * Force quiescent states on reluctant CPUs, and also detect which
2241  * CPUs are in dyntick-idle mode.
2242  */
2243 void rcu_force_quiescent_state(void)
2244 {
2245 	unsigned long flags;
2246 	bool ret;
2247 	struct rcu_node *rnp;
2248 	struct rcu_node *rnp_old = NULL;
2249 
2250 	/* Funnel through hierarchy to reduce memory contention. */
2251 	rnp = __this_cpu_read(rcu_data.mynode);
2252 	for (; rnp != NULL; rnp = rnp->parent) {
2253 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2254 		      !raw_spin_trylock(&rnp->fqslock);
2255 		if (rnp_old != NULL)
2256 			raw_spin_unlock(&rnp_old->fqslock);
2257 		if (ret)
2258 			return;
2259 		rnp_old = rnp;
2260 	}
2261 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2262 
2263 	/* Reached the root of the rcu_node tree, acquire lock. */
2264 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2265 	raw_spin_unlock(&rnp_old->fqslock);
2266 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2267 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2268 		return;  /* Someone beat us to it. */
2269 	}
2270 	WRITE_ONCE(rcu_state.gp_flags,
2271 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2272 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2273 	rcu_gp_kthread_wake();
2274 }
2275 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2276 
2277 /* Perform RCU core processing work for the current CPU.  */
2278 static __latent_entropy void rcu_core(void)
2279 {
2280 	unsigned long flags;
2281 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2282 	struct rcu_node *rnp = rdp->mynode;
2283 
2284 	if (cpu_is_offline(smp_processor_id()))
2285 		return;
2286 	trace_rcu_utilization(TPS("Start RCU core"));
2287 	WARN_ON_ONCE(!rdp->beenonline);
2288 
2289 	/* Report any deferred quiescent states if preemption enabled. */
2290 	if (!(preempt_count() & PREEMPT_MASK)) {
2291 		rcu_preempt_deferred_qs(current);
2292 	} else if (rcu_preempt_need_deferred_qs(current)) {
2293 		set_tsk_need_resched(current);
2294 		set_preempt_need_resched();
2295 	}
2296 
2297 	/* Update RCU state based on any recent quiescent states. */
2298 	rcu_check_quiescent_state(rdp);
2299 
2300 	/* No grace period and unregistered callbacks? */
2301 	if (!rcu_gp_in_progress() &&
2302 	    rcu_segcblist_is_enabled(&rdp->cblist)) {
2303 		local_irq_save(flags);
2304 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2305 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2306 		local_irq_restore(flags);
2307 	}
2308 
2309 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2310 
2311 	/* If there are callbacks ready, invoke them. */
2312 	if (rcu_segcblist_ready_cbs(&rdp->cblist) &&
2313 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2314 		rcu_do_batch(rdp);
2315 
2316 	/* Do any needed deferred wakeups of rcuo kthreads. */
2317 	do_nocb_deferred_wakeup(rdp);
2318 	trace_rcu_utilization(TPS("End RCU core"));
2319 }
2320 
2321 static void rcu_core_si(struct softirq_action *h)
2322 {
2323 	rcu_core();
2324 }
2325 
2326 static void rcu_wake_cond(struct task_struct *t, int status)
2327 {
2328 	/*
2329 	 * If the thread is yielding, only wake it when this
2330 	 * is invoked from idle
2331 	 */
2332 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2333 		wake_up_process(t);
2334 }
2335 
2336 static void invoke_rcu_core_kthread(void)
2337 {
2338 	struct task_struct *t;
2339 	unsigned long flags;
2340 
2341 	local_irq_save(flags);
2342 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2343 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2344 	if (t != NULL && t != current)
2345 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2346 	local_irq_restore(flags);
2347 }
2348 
2349 /*
2350  * Wake up this CPU's rcuc kthread to do RCU core processing.
2351  */
2352 static void invoke_rcu_core(void)
2353 {
2354 	if (!cpu_online(smp_processor_id()))
2355 		return;
2356 	if (use_softirq)
2357 		raise_softirq(RCU_SOFTIRQ);
2358 	else
2359 		invoke_rcu_core_kthread();
2360 }
2361 
2362 static void rcu_cpu_kthread_park(unsigned int cpu)
2363 {
2364 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2365 }
2366 
2367 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2368 {
2369 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2370 }
2371 
2372 /*
2373  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2374  * the RCU softirq used in configurations of RCU that do not support RCU
2375  * priority boosting.
2376  */
2377 static void rcu_cpu_kthread(unsigned int cpu)
2378 {
2379 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2380 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2381 	int spincnt;
2382 
2383 	for (spincnt = 0; spincnt < 10; spincnt++) {
2384 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2385 		local_bh_disable();
2386 		*statusp = RCU_KTHREAD_RUNNING;
2387 		local_irq_disable();
2388 		work = *workp;
2389 		*workp = 0;
2390 		local_irq_enable();
2391 		if (work)
2392 			rcu_core();
2393 		local_bh_enable();
2394 		if (*workp == 0) {
2395 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2396 			*statusp = RCU_KTHREAD_WAITING;
2397 			return;
2398 		}
2399 	}
2400 	*statusp = RCU_KTHREAD_YIELDING;
2401 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2402 	schedule_timeout_interruptible(2);
2403 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2404 	*statusp = RCU_KTHREAD_WAITING;
2405 }
2406 
2407 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2408 	.store			= &rcu_data.rcu_cpu_kthread_task,
2409 	.thread_should_run	= rcu_cpu_kthread_should_run,
2410 	.thread_fn		= rcu_cpu_kthread,
2411 	.thread_comm		= "rcuc/%u",
2412 	.setup			= rcu_cpu_kthread_setup,
2413 	.park			= rcu_cpu_kthread_park,
2414 };
2415 
2416 /*
2417  * Spawn per-CPU RCU core processing kthreads.
2418  */
2419 static int __init rcu_spawn_core_kthreads(void)
2420 {
2421 	int cpu;
2422 
2423 	for_each_possible_cpu(cpu)
2424 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2425 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2426 		return 0;
2427 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2428 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2429 	return 0;
2430 }
2431 early_initcall(rcu_spawn_core_kthreads);
2432 
2433 /*
2434  * Handle any core-RCU processing required by a call_rcu() invocation.
2435  */
2436 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2437 			    unsigned long flags)
2438 {
2439 	/*
2440 	 * If called from an extended quiescent state, invoke the RCU
2441 	 * core in order to force a re-evaluation of RCU's idleness.
2442 	 */
2443 	if (!rcu_is_watching())
2444 		invoke_rcu_core();
2445 
2446 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2447 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2448 		return;
2449 
2450 	/*
2451 	 * Force the grace period if too many callbacks or too long waiting.
2452 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2453 	 * if some other CPU has recently done so.  Also, don't bother
2454 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2455 	 * is the only one waiting for a grace period to complete.
2456 	 */
2457 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2458 		     rdp->qlen_last_fqs_check + qhimark)) {
2459 
2460 		/* Are we ignoring a completed grace period? */
2461 		note_gp_changes(rdp);
2462 
2463 		/* Start a new grace period if one not already started. */
2464 		if (!rcu_gp_in_progress()) {
2465 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2466 		} else {
2467 			/* Give the grace period a kick. */
2468 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2469 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2470 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2471 				rcu_force_quiescent_state();
2472 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2473 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2474 		}
2475 	}
2476 }
2477 
2478 /*
2479  * RCU callback function to leak a callback.
2480  */
2481 static void rcu_leak_callback(struct rcu_head *rhp)
2482 {
2483 }
2484 
2485 /*
2486  * Helper function for call_rcu() and friends.  The cpu argument will
2487  * normally be -1, indicating "currently running CPU".  It may specify
2488  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2489  * is expected to specify a CPU.
2490  */
2491 static void
2492 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2493 {
2494 	unsigned long flags;
2495 	struct rcu_data *rdp;
2496 
2497 	/* Misaligned rcu_head! */
2498 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2499 
2500 	if (debug_rcu_head_queue(head)) {
2501 		/*
2502 		 * Probable double call_rcu(), so leak the callback.
2503 		 * Use rcu:rcu_callback trace event to find the previous
2504 		 * time callback was passed to __call_rcu().
2505 		 */
2506 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2507 			  head, head->func);
2508 		WRITE_ONCE(head->func, rcu_leak_callback);
2509 		return;
2510 	}
2511 	head->func = func;
2512 	head->next = NULL;
2513 	local_irq_save(flags);
2514 	rdp = this_cpu_ptr(&rcu_data);
2515 
2516 	/* Add the callback to our list. */
2517 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2518 		int offline;
2519 
2520 		if (cpu != -1)
2521 			rdp = per_cpu_ptr(&rcu_data, cpu);
2522 		if (likely(rdp->mynode)) {
2523 			/* Post-boot, so this should be for a no-CBs CPU. */
2524 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2525 			WARN_ON_ONCE(offline);
2526 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
2527 			local_irq_restore(flags);
2528 			return;
2529 		}
2530 		/*
2531 		 * Very early boot, before rcu_init().  Initialize if needed
2532 		 * and then drop through to queue the callback.
2533 		 */
2534 		WARN_ON_ONCE(cpu != -1);
2535 		WARN_ON_ONCE(!rcu_is_watching());
2536 		if (rcu_segcblist_empty(&rdp->cblist))
2537 			rcu_segcblist_init(&rdp->cblist);
2538 	}
2539 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2540 	if (__is_kfree_rcu_offset((unsigned long)func))
2541 		trace_rcu_kfree_callback(rcu_state.name, head,
2542 					 (unsigned long)func,
2543 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2544 					 rcu_segcblist_n_cbs(&rdp->cblist));
2545 	else
2546 		trace_rcu_callback(rcu_state.name, head,
2547 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2548 				   rcu_segcblist_n_cbs(&rdp->cblist));
2549 
2550 	/* Go handle any RCU core processing required. */
2551 	__call_rcu_core(rdp, head, flags);
2552 	local_irq_restore(flags);
2553 }
2554 
2555 /**
2556  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2557  * @head: structure to be used for queueing the RCU updates.
2558  * @func: actual callback function to be invoked after the grace period
2559  *
2560  * The callback function will be invoked some time after a full grace
2561  * period elapses, in other words after all pre-existing RCU read-side
2562  * critical sections have completed.  However, the callback function
2563  * might well execute concurrently with RCU read-side critical sections
2564  * that started after call_rcu() was invoked.  RCU read-side critical
2565  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2566  * may be nested.  In addition, regions of code across which interrupts,
2567  * preemption, or softirqs have been disabled also serve as RCU read-side
2568  * critical sections.  This includes hardware interrupt handlers, softirq
2569  * handlers, and NMI handlers.
2570  *
2571  * Note that all CPUs must agree that the grace period extended beyond
2572  * all pre-existing RCU read-side critical section.  On systems with more
2573  * than one CPU, this means that when "func()" is invoked, each CPU is
2574  * guaranteed to have executed a full memory barrier since the end of its
2575  * last RCU read-side critical section whose beginning preceded the call
2576  * to call_rcu().  It also means that each CPU executing an RCU read-side
2577  * critical section that continues beyond the start of "func()" must have
2578  * executed a memory barrier after the call_rcu() but before the beginning
2579  * of that RCU read-side critical section.  Note that these guarantees
2580  * include CPUs that are offline, idle, or executing in user mode, as
2581  * well as CPUs that are executing in the kernel.
2582  *
2583  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2584  * resulting RCU callback function "func()", then both CPU A and CPU B are
2585  * guaranteed to execute a full memory barrier during the time interval
2586  * between the call to call_rcu() and the invocation of "func()" -- even
2587  * if CPU A and CPU B are the same CPU (but again only if the system has
2588  * more than one CPU).
2589  */
2590 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2591 {
2592 	__call_rcu(head, func, -1, 0);
2593 }
2594 EXPORT_SYMBOL_GPL(call_rcu);
2595 
2596 /*
2597  * Queue an RCU callback for lazy invocation after a grace period.
2598  * This will likely be later named something like "call_rcu_lazy()",
2599  * but this change will require some way of tagging the lazy RCU
2600  * callbacks in the list of pending callbacks. Until then, this
2601  * function may only be called from __kfree_rcu().
2602  */
2603 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2604 {
2605 	__call_rcu(head, func, -1, 1);
2606 }
2607 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2608 
2609 /*
2610  * During early boot, any blocking grace-period wait automatically
2611  * implies a grace period.  Later on, this is never the case for PREEMPT.
2612  *
2613  * Howevr, because a context switch is a grace period for !PREEMPT, any
2614  * blocking grace-period wait automatically implies a grace period if
2615  * there is only one CPU online at any point time during execution of
2616  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2617  * occasionally incorrectly indicate that there are multiple CPUs online
2618  * when there was in fact only one the whole time, as this just adds some
2619  * overhead: RCU still operates correctly.
2620  */
2621 static int rcu_blocking_is_gp(void)
2622 {
2623 	int ret;
2624 
2625 	if (IS_ENABLED(CONFIG_PREEMPT))
2626 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2627 	might_sleep();  /* Check for RCU read-side critical section. */
2628 	preempt_disable();
2629 	ret = num_online_cpus() <= 1;
2630 	preempt_enable();
2631 	return ret;
2632 }
2633 
2634 /**
2635  * synchronize_rcu - wait until a grace period has elapsed.
2636  *
2637  * Control will return to the caller some time after a full grace
2638  * period has elapsed, in other words after all currently executing RCU
2639  * read-side critical sections have completed.  Note, however, that
2640  * upon return from synchronize_rcu(), the caller might well be executing
2641  * concurrently with new RCU read-side critical sections that began while
2642  * synchronize_rcu() was waiting.  RCU read-side critical sections are
2643  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2644  * In addition, regions of code across which interrupts, preemption, or
2645  * softirqs have been disabled also serve as RCU read-side critical
2646  * sections.  This includes hardware interrupt handlers, softirq handlers,
2647  * and NMI handlers.
2648  *
2649  * Note that this guarantee implies further memory-ordering guarantees.
2650  * On systems with more than one CPU, when synchronize_rcu() returns,
2651  * each CPU is guaranteed to have executed a full memory barrier since
2652  * the end of its last RCU read-side critical section whose beginning
2653  * preceded the call to synchronize_rcu().  In addition, each CPU having
2654  * an RCU read-side critical section that extends beyond the return from
2655  * synchronize_rcu() is guaranteed to have executed a full memory barrier
2656  * after the beginning of synchronize_rcu() and before the beginning of
2657  * that RCU read-side critical section.  Note that these guarantees include
2658  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2659  * that are executing in the kernel.
2660  *
2661  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2662  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2663  * to have executed a full memory barrier during the execution of
2664  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2665  * again only if the system has more than one CPU).
2666  */
2667 void synchronize_rcu(void)
2668 {
2669 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2670 			 lock_is_held(&rcu_lock_map) ||
2671 			 lock_is_held(&rcu_sched_lock_map),
2672 			 "Illegal synchronize_rcu() in RCU read-side critical section");
2673 	if (rcu_blocking_is_gp())
2674 		return;
2675 	if (rcu_gp_is_expedited())
2676 		synchronize_rcu_expedited();
2677 	else
2678 		wait_rcu_gp(call_rcu);
2679 }
2680 EXPORT_SYMBOL_GPL(synchronize_rcu);
2681 
2682 /**
2683  * get_state_synchronize_rcu - Snapshot current RCU state
2684  *
2685  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2686  * to determine whether or not a full grace period has elapsed in the
2687  * meantime.
2688  */
2689 unsigned long get_state_synchronize_rcu(void)
2690 {
2691 	/*
2692 	 * Any prior manipulation of RCU-protected data must happen
2693 	 * before the load from ->gp_seq.
2694 	 */
2695 	smp_mb();  /* ^^^ */
2696 	return rcu_seq_snap(&rcu_state.gp_seq);
2697 }
2698 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2699 
2700 /**
2701  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2702  *
2703  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2704  *
2705  * If a full RCU grace period has elapsed since the earlier call to
2706  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2707  * synchronize_rcu() to wait for a full grace period.
2708  *
2709  * Yes, this function does not take counter wrap into account.  But
2710  * counter wrap is harmless.  If the counter wraps, we have waited for
2711  * more than 2 billion grace periods (and way more on a 64-bit system!),
2712  * so waiting for one additional grace period should be just fine.
2713  */
2714 void cond_synchronize_rcu(unsigned long oldstate)
2715 {
2716 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2717 		synchronize_rcu();
2718 	else
2719 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2720 }
2721 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2722 
2723 /*
2724  * Check to see if there is any immediate RCU-related work to be done by
2725  * the current CPU, returning 1 if so and zero otherwise.  The checks are
2726  * in order of increasing expense: checks that can be carried out against
2727  * CPU-local state are performed first.  However, we must check for CPU
2728  * stalls first, else we might not get a chance.
2729  */
2730 static int rcu_pending(void)
2731 {
2732 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2733 	struct rcu_node *rnp = rdp->mynode;
2734 
2735 	/* Check for CPU stalls, if enabled. */
2736 	check_cpu_stall(rdp);
2737 
2738 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2739 	if (rcu_nohz_full_cpu())
2740 		return 0;
2741 
2742 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2743 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2744 		return 1;
2745 
2746 	/* Does this CPU have callbacks ready to invoke? */
2747 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2748 		return 1;
2749 
2750 	/* Has RCU gone idle with this CPU needing another grace period? */
2751 	if (!rcu_gp_in_progress() &&
2752 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
2753 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2754 		return 1;
2755 
2756 	/* Have RCU grace period completed or started?  */
2757 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2758 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2759 		return 1;
2760 
2761 	/* Does this CPU need a deferred NOCB wakeup? */
2762 	if (rcu_nocb_need_deferred_wakeup(rdp))
2763 		return 1;
2764 
2765 	/* nothing to do */
2766 	return 0;
2767 }
2768 
2769 /*
2770  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2771  * the compiler is expected to optimize this away.
2772  */
2773 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2774 {
2775 	trace_rcu_barrier(rcu_state.name, s, cpu,
2776 			  atomic_read(&rcu_state.barrier_cpu_count), done);
2777 }
2778 
2779 /*
2780  * RCU callback function for rcu_barrier().  If we are last, wake
2781  * up the task executing rcu_barrier().
2782  */
2783 static void rcu_barrier_callback(struct rcu_head *rhp)
2784 {
2785 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2786 		rcu_barrier_trace(TPS("LastCB"), -1,
2787 				   rcu_state.barrier_sequence);
2788 		complete(&rcu_state.barrier_completion);
2789 	} else {
2790 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2791 	}
2792 }
2793 
2794 /*
2795  * Called with preemption disabled, and from cross-cpu IRQ context.
2796  */
2797 static void rcu_barrier_func(void *unused)
2798 {
2799 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2800 
2801 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2802 	rdp->barrier_head.func = rcu_barrier_callback;
2803 	debug_rcu_head_queue(&rdp->barrier_head);
2804 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2805 		atomic_inc(&rcu_state.barrier_cpu_count);
2806 	} else {
2807 		debug_rcu_head_unqueue(&rdp->barrier_head);
2808 		rcu_barrier_trace(TPS("IRQNQ"), -1,
2809 				   rcu_state.barrier_sequence);
2810 	}
2811 }
2812 
2813 /**
2814  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2815  *
2816  * Note that this primitive does not necessarily wait for an RCU grace period
2817  * to complete.  For example, if there are no RCU callbacks queued anywhere
2818  * in the system, then rcu_barrier() is within its rights to return
2819  * immediately, without waiting for anything, much less an RCU grace period.
2820  */
2821 void rcu_barrier(void)
2822 {
2823 	int cpu;
2824 	struct rcu_data *rdp;
2825 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2826 
2827 	rcu_barrier_trace(TPS("Begin"), -1, s);
2828 
2829 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2830 	mutex_lock(&rcu_state.barrier_mutex);
2831 
2832 	/* Did someone else do our work for us? */
2833 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2834 		rcu_barrier_trace(TPS("EarlyExit"), -1,
2835 				   rcu_state.barrier_sequence);
2836 		smp_mb(); /* caller's subsequent code after above check. */
2837 		mutex_unlock(&rcu_state.barrier_mutex);
2838 		return;
2839 	}
2840 
2841 	/* Mark the start of the barrier operation. */
2842 	rcu_seq_start(&rcu_state.barrier_sequence);
2843 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2844 
2845 	/*
2846 	 * Initialize the count to one rather than to zero in order to
2847 	 * avoid a too-soon return to zero in case of a short grace period
2848 	 * (or preemption of this task).  Exclude CPU-hotplug operations
2849 	 * to ensure that no offline CPU has callbacks queued.
2850 	 */
2851 	init_completion(&rcu_state.barrier_completion);
2852 	atomic_set(&rcu_state.barrier_cpu_count, 1);
2853 	get_online_cpus();
2854 
2855 	/*
2856 	 * Force each CPU with callbacks to register a new callback.
2857 	 * When that callback is invoked, we will know that all of the
2858 	 * corresponding CPU's preceding callbacks have been invoked.
2859 	 */
2860 	for_each_possible_cpu(cpu) {
2861 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2862 			continue;
2863 		rdp = per_cpu_ptr(&rcu_data, cpu);
2864 		if (rcu_is_nocb_cpu(cpu)) {
2865 			if (!rcu_nocb_cpu_needs_barrier(cpu)) {
2866 				rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
2867 						   rcu_state.barrier_sequence);
2868 			} else {
2869 				rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
2870 						   rcu_state.barrier_sequence);
2871 				smp_mb__before_atomic();
2872 				atomic_inc(&rcu_state.barrier_cpu_count);
2873 				__call_rcu(&rdp->barrier_head,
2874 					   rcu_barrier_callback, cpu, 0);
2875 			}
2876 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2877 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
2878 					   rcu_state.barrier_sequence);
2879 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2880 		} else {
2881 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2882 					   rcu_state.barrier_sequence);
2883 		}
2884 	}
2885 	put_online_cpus();
2886 
2887 	/*
2888 	 * Now that we have an rcu_barrier_callback() callback on each
2889 	 * CPU, and thus each counted, remove the initial count.
2890 	 */
2891 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2892 		complete(&rcu_state.barrier_completion);
2893 
2894 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2895 	wait_for_completion(&rcu_state.barrier_completion);
2896 
2897 	/* Mark the end of the barrier operation. */
2898 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2899 	rcu_seq_end(&rcu_state.barrier_sequence);
2900 
2901 	/* Other rcu_barrier() invocations can now safely proceed. */
2902 	mutex_unlock(&rcu_state.barrier_mutex);
2903 }
2904 EXPORT_SYMBOL_GPL(rcu_barrier);
2905 
2906 /*
2907  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2908  * first CPU in a given leaf rcu_node structure coming online.  The caller
2909  * must hold the corresponding leaf rcu_node ->lock with interrrupts
2910  * disabled.
2911  */
2912 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2913 {
2914 	long mask;
2915 	long oldmask;
2916 	struct rcu_node *rnp = rnp_leaf;
2917 
2918 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2919 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
2920 	for (;;) {
2921 		mask = rnp->grpmask;
2922 		rnp = rnp->parent;
2923 		if (rnp == NULL)
2924 			return;
2925 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2926 		oldmask = rnp->qsmaskinit;
2927 		rnp->qsmaskinit |= mask;
2928 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2929 		if (oldmask)
2930 			return;
2931 	}
2932 }
2933 
2934 /*
2935  * Do boot-time initialization of a CPU's per-CPU RCU data.
2936  */
2937 static void __init
2938 rcu_boot_init_percpu_data(int cpu)
2939 {
2940 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2941 
2942 	/* Set up local state, ensuring consistent view of global state. */
2943 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2944 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2945 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2946 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
2947 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
2948 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
2949 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
2950 	rdp->cpu = cpu;
2951 	rcu_boot_init_nocb_percpu_data(rdp);
2952 }
2953 
2954 /*
2955  * Invoked early in the CPU-online process, when pretty much all services
2956  * are available.  The incoming CPU is not present.
2957  *
2958  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
2959  * offline event can be happening at a given time.  Note also that we can
2960  * accept some slop in the rsp->gp_seq access due to the fact that this
2961  * CPU cannot possibly have any RCU callbacks in flight yet.
2962  */
2963 int rcutree_prepare_cpu(unsigned int cpu)
2964 {
2965 	unsigned long flags;
2966 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2967 	struct rcu_node *rnp = rcu_get_root();
2968 
2969 	/* Set up local state, ensuring consistent view of global state. */
2970 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2971 	rdp->qlen_last_fqs_check = 0;
2972 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
2973 	rdp->blimit = blimit;
2974 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
2975 	    !init_nocb_callback_list(rdp))
2976 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
2977 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
2978 	rcu_dynticks_eqs_online();
2979 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
2980 
2981 	/*
2982 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
2983 	 * propagation up the rcu_node tree will happen at the beginning
2984 	 * of the next grace period.
2985 	 */
2986 	rnp = rdp->mynode;
2987 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
2988 	rdp->beenonline = true;	 /* We have now been online. */
2989 	rdp->gp_seq = rnp->gp_seq;
2990 	rdp->gp_seq_needed = rnp->gp_seq;
2991 	rdp->cpu_no_qs.b.norm = true;
2992 	rdp->core_needs_qs = false;
2993 	rdp->rcu_iw_pending = false;
2994 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
2995 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
2996 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2997 	rcu_prepare_kthreads(cpu);
2998 	rcu_spawn_cpu_nocb_kthread(cpu);
2999 
3000 	return 0;
3001 }
3002 
3003 /*
3004  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3005  */
3006 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3007 {
3008 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3009 
3010 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3011 }
3012 
3013 /*
3014  * Near the end of the CPU-online process.  Pretty much all services
3015  * enabled, and the CPU is now very much alive.
3016  */
3017 int rcutree_online_cpu(unsigned int cpu)
3018 {
3019 	unsigned long flags;
3020 	struct rcu_data *rdp;
3021 	struct rcu_node *rnp;
3022 
3023 	rdp = per_cpu_ptr(&rcu_data, cpu);
3024 	rnp = rdp->mynode;
3025 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3026 	rnp->ffmask |= rdp->grpmask;
3027 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3028 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3029 		return 0; /* Too early in boot for scheduler work. */
3030 	sync_sched_exp_online_cleanup(cpu);
3031 	rcutree_affinity_setting(cpu, -1);
3032 	return 0;
3033 }
3034 
3035 /*
3036  * Near the beginning of the process.  The CPU is still very much alive
3037  * with pretty much all services enabled.
3038  */
3039 int rcutree_offline_cpu(unsigned int cpu)
3040 {
3041 	unsigned long flags;
3042 	struct rcu_data *rdp;
3043 	struct rcu_node *rnp;
3044 
3045 	rdp = per_cpu_ptr(&rcu_data, cpu);
3046 	rnp = rdp->mynode;
3047 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3048 	rnp->ffmask &= ~rdp->grpmask;
3049 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3050 
3051 	rcutree_affinity_setting(cpu, cpu);
3052 	return 0;
3053 }
3054 
3055 static DEFINE_PER_CPU(int, rcu_cpu_started);
3056 
3057 /*
3058  * Mark the specified CPU as being online so that subsequent grace periods
3059  * (both expedited and normal) will wait on it.  Note that this means that
3060  * incoming CPUs are not allowed to use RCU read-side critical sections
3061  * until this function is called.  Failing to observe this restriction
3062  * will result in lockdep splats.
3063  *
3064  * Note that this function is special in that it is invoked directly
3065  * from the incoming CPU rather than from the cpuhp_step mechanism.
3066  * This is because this function must be invoked at a precise location.
3067  */
3068 void rcu_cpu_starting(unsigned int cpu)
3069 {
3070 	unsigned long flags;
3071 	unsigned long mask;
3072 	int nbits;
3073 	unsigned long oldmask;
3074 	struct rcu_data *rdp;
3075 	struct rcu_node *rnp;
3076 
3077 	if (per_cpu(rcu_cpu_started, cpu))
3078 		return;
3079 
3080 	per_cpu(rcu_cpu_started, cpu) = 1;
3081 
3082 	rdp = per_cpu_ptr(&rcu_data, cpu);
3083 	rnp = rdp->mynode;
3084 	mask = rdp->grpmask;
3085 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3086 	rnp->qsmaskinitnext |= mask;
3087 	oldmask = rnp->expmaskinitnext;
3088 	rnp->expmaskinitnext |= mask;
3089 	oldmask ^= rnp->expmaskinitnext;
3090 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3091 	/* Allow lockless access for expedited grace periods. */
3092 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3093 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3094 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3095 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3096 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3097 		/* Report QS -after- changing ->qsmaskinitnext! */
3098 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3099 	} else {
3100 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3101 	}
3102 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3103 }
3104 
3105 #ifdef CONFIG_HOTPLUG_CPU
3106 /*
3107  * The outgoing function has no further need of RCU, so remove it from
3108  * the rcu_node tree's ->qsmaskinitnext bit masks.
3109  *
3110  * Note that this function is special in that it is invoked directly
3111  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3112  * This is because this function must be invoked at a precise location.
3113  */
3114 void rcu_report_dead(unsigned int cpu)
3115 {
3116 	unsigned long flags;
3117 	unsigned long mask;
3118 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3119 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3120 
3121 	/* QS for any half-done expedited grace period. */
3122 	preempt_disable();
3123 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3124 	preempt_enable();
3125 	rcu_preempt_deferred_qs(current);
3126 
3127 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3128 	mask = rdp->grpmask;
3129 	raw_spin_lock(&rcu_state.ofl_lock);
3130 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3131 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3132 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3133 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3134 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3135 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3136 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3137 	}
3138 	rnp->qsmaskinitnext &= ~mask;
3139 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3140 	raw_spin_unlock(&rcu_state.ofl_lock);
3141 
3142 	per_cpu(rcu_cpu_started, cpu) = 0;
3143 }
3144 
3145 /*
3146  * The outgoing CPU has just passed through the dying-idle state, and we
3147  * are being invoked from the CPU that was IPIed to continue the offline
3148  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3149  */
3150 void rcutree_migrate_callbacks(int cpu)
3151 {
3152 	unsigned long flags;
3153 	struct rcu_data *my_rdp;
3154 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3155 	struct rcu_node *rnp_root = rcu_get_root();
3156 	bool needwake;
3157 
3158 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3159 		return;  /* No callbacks to migrate. */
3160 
3161 	local_irq_save(flags);
3162 	my_rdp = this_cpu_ptr(&rcu_data);
3163 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3164 		local_irq_restore(flags);
3165 		return;
3166 	}
3167 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3168 	/* Leverage recent GPs and set GP for new callbacks. */
3169 	needwake = rcu_advance_cbs(rnp_root, rdp) ||
3170 		   rcu_advance_cbs(rnp_root, my_rdp);
3171 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3172 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3173 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3174 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3175 	if (needwake)
3176 		rcu_gp_kthread_wake();
3177 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3178 		  !rcu_segcblist_empty(&rdp->cblist),
3179 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3180 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3181 		  rcu_segcblist_first_cb(&rdp->cblist));
3182 }
3183 #endif
3184 
3185 /*
3186  * On non-huge systems, use expedited RCU grace periods to make suspend
3187  * and hibernation run faster.
3188  */
3189 static int rcu_pm_notify(struct notifier_block *self,
3190 			 unsigned long action, void *hcpu)
3191 {
3192 	switch (action) {
3193 	case PM_HIBERNATION_PREPARE:
3194 	case PM_SUSPEND_PREPARE:
3195 		rcu_expedite_gp();
3196 		break;
3197 	case PM_POST_HIBERNATION:
3198 	case PM_POST_SUSPEND:
3199 		rcu_unexpedite_gp();
3200 		break;
3201 	default:
3202 		break;
3203 	}
3204 	return NOTIFY_OK;
3205 }
3206 
3207 /*
3208  * Spawn the kthreads that handle RCU's grace periods.
3209  */
3210 static int __init rcu_spawn_gp_kthread(void)
3211 {
3212 	unsigned long flags;
3213 	int kthread_prio_in = kthread_prio;
3214 	struct rcu_node *rnp;
3215 	struct sched_param sp;
3216 	struct task_struct *t;
3217 
3218 	/* Force priority into range. */
3219 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3220 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3221 		kthread_prio = 2;
3222 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3223 		kthread_prio = 1;
3224 	else if (kthread_prio < 0)
3225 		kthread_prio = 0;
3226 	else if (kthread_prio > 99)
3227 		kthread_prio = 99;
3228 
3229 	if (kthread_prio != kthread_prio_in)
3230 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3231 			 kthread_prio, kthread_prio_in);
3232 
3233 	rcu_scheduler_fully_active = 1;
3234 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3235 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3236 		return 0;
3237 	rnp = rcu_get_root();
3238 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3239 	rcu_state.gp_kthread = t;
3240 	if (kthread_prio) {
3241 		sp.sched_priority = kthread_prio;
3242 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3243 	}
3244 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3245 	wake_up_process(t);
3246 	rcu_spawn_nocb_kthreads();
3247 	rcu_spawn_boost_kthreads();
3248 	return 0;
3249 }
3250 early_initcall(rcu_spawn_gp_kthread);
3251 
3252 /*
3253  * This function is invoked towards the end of the scheduler's
3254  * initialization process.  Before this is called, the idle task might
3255  * contain synchronous grace-period primitives (during which time, this idle
3256  * task is booting the system, and such primitives are no-ops).  After this
3257  * function is called, any synchronous grace-period primitives are run as
3258  * expedited, with the requesting task driving the grace period forward.
3259  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3260  * runtime RCU functionality.
3261  */
3262 void rcu_scheduler_starting(void)
3263 {
3264 	WARN_ON(num_online_cpus() != 1);
3265 	WARN_ON(nr_context_switches() > 0);
3266 	rcu_test_sync_prims();
3267 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3268 	rcu_test_sync_prims();
3269 }
3270 
3271 /*
3272  * Helper function for rcu_init() that initializes the rcu_state structure.
3273  */
3274 static void __init rcu_init_one(void)
3275 {
3276 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3277 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3278 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3279 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3280 
3281 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3282 	int cpustride = 1;
3283 	int i;
3284 	int j;
3285 	struct rcu_node *rnp;
3286 
3287 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3288 
3289 	/* Silence gcc 4.8 false positive about array index out of range. */
3290 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3291 		panic("rcu_init_one: rcu_num_lvls out of range");
3292 
3293 	/* Initialize the level-tracking arrays. */
3294 
3295 	for (i = 1; i < rcu_num_lvls; i++)
3296 		rcu_state.level[i] =
3297 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3298 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3299 
3300 	/* Initialize the elements themselves, starting from the leaves. */
3301 
3302 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3303 		cpustride *= levelspread[i];
3304 		rnp = rcu_state.level[i];
3305 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3306 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3307 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3308 						   &rcu_node_class[i], buf[i]);
3309 			raw_spin_lock_init(&rnp->fqslock);
3310 			lockdep_set_class_and_name(&rnp->fqslock,
3311 						   &rcu_fqs_class[i], fqs[i]);
3312 			rnp->gp_seq = rcu_state.gp_seq;
3313 			rnp->gp_seq_needed = rcu_state.gp_seq;
3314 			rnp->completedqs = rcu_state.gp_seq;
3315 			rnp->qsmask = 0;
3316 			rnp->qsmaskinit = 0;
3317 			rnp->grplo = j * cpustride;
3318 			rnp->grphi = (j + 1) * cpustride - 1;
3319 			if (rnp->grphi >= nr_cpu_ids)
3320 				rnp->grphi = nr_cpu_ids - 1;
3321 			if (i == 0) {
3322 				rnp->grpnum = 0;
3323 				rnp->grpmask = 0;
3324 				rnp->parent = NULL;
3325 			} else {
3326 				rnp->grpnum = j % levelspread[i - 1];
3327 				rnp->grpmask = BIT(rnp->grpnum);
3328 				rnp->parent = rcu_state.level[i - 1] +
3329 					      j / levelspread[i - 1];
3330 			}
3331 			rnp->level = i;
3332 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3333 			rcu_init_one_nocb(rnp);
3334 			init_waitqueue_head(&rnp->exp_wq[0]);
3335 			init_waitqueue_head(&rnp->exp_wq[1]);
3336 			init_waitqueue_head(&rnp->exp_wq[2]);
3337 			init_waitqueue_head(&rnp->exp_wq[3]);
3338 			spin_lock_init(&rnp->exp_lock);
3339 		}
3340 	}
3341 
3342 	init_swait_queue_head(&rcu_state.gp_wq);
3343 	init_swait_queue_head(&rcu_state.expedited_wq);
3344 	rnp = rcu_first_leaf_node();
3345 	for_each_possible_cpu(i) {
3346 		while (i > rnp->grphi)
3347 			rnp++;
3348 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3349 		rcu_boot_init_percpu_data(i);
3350 	}
3351 }
3352 
3353 /*
3354  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3355  * replace the definitions in tree.h because those are needed to size
3356  * the ->node array in the rcu_state structure.
3357  */
3358 static void __init rcu_init_geometry(void)
3359 {
3360 	ulong d;
3361 	int i;
3362 	int rcu_capacity[RCU_NUM_LVLS];
3363 
3364 	/*
3365 	 * Initialize any unspecified boot parameters.
3366 	 * The default values of jiffies_till_first_fqs and
3367 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3368 	 * value, which is a function of HZ, then adding one for each
3369 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3370 	 */
3371 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3372 	if (jiffies_till_first_fqs == ULONG_MAX)
3373 		jiffies_till_first_fqs = d;
3374 	if (jiffies_till_next_fqs == ULONG_MAX)
3375 		jiffies_till_next_fqs = d;
3376 	adjust_jiffies_till_sched_qs();
3377 
3378 	/* If the compile-time values are accurate, just leave. */
3379 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3380 	    nr_cpu_ids == NR_CPUS)
3381 		return;
3382 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3383 		rcu_fanout_leaf, nr_cpu_ids);
3384 
3385 	/*
3386 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3387 	 * and cannot exceed the number of bits in the rcu_node masks.
3388 	 * Complain and fall back to the compile-time values if this
3389 	 * limit is exceeded.
3390 	 */
3391 	if (rcu_fanout_leaf < 2 ||
3392 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3393 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3394 		WARN_ON(1);
3395 		return;
3396 	}
3397 
3398 	/*
3399 	 * Compute number of nodes that can be handled an rcu_node tree
3400 	 * with the given number of levels.
3401 	 */
3402 	rcu_capacity[0] = rcu_fanout_leaf;
3403 	for (i = 1; i < RCU_NUM_LVLS; i++)
3404 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3405 
3406 	/*
3407 	 * The tree must be able to accommodate the configured number of CPUs.
3408 	 * If this limit is exceeded, fall back to the compile-time values.
3409 	 */
3410 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3411 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3412 		WARN_ON(1);
3413 		return;
3414 	}
3415 
3416 	/* Calculate the number of levels in the tree. */
3417 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3418 	}
3419 	rcu_num_lvls = i + 1;
3420 
3421 	/* Calculate the number of rcu_nodes at each level of the tree. */
3422 	for (i = 0; i < rcu_num_lvls; i++) {
3423 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3424 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3425 	}
3426 
3427 	/* Calculate the total number of rcu_node structures. */
3428 	rcu_num_nodes = 0;
3429 	for (i = 0; i < rcu_num_lvls; i++)
3430 		rcu_num_nodes += num_rcu_lvl[i];
3431 }
3432 
3433 /*
3434  * Dump out the structure of the rcu_node combining tree associated
3435  * with the rcu_state structure.
3436  */
3437 static void __init rcu_dump_rcu_node_tree(void)
3438 {
3439 	int level = 0;
3440 	struct rcu_node *rnp;
3441 
3442 	pr_info("rcu_node tree layout dump\n");
3443 	pr_info(" ");
3444 	rcu_for_each_node_breadth_first(rnp) {
3445 		if (rnp->level != level) {
3446 			pr_cont("\n");
3447 			pr_info(" ");
3448 			level = rnp->level;
3449 		}
3450 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3451 	}
3452 	pr_cont("\n");
3453 }
3454 
3455 struct workqueue_struct *rcu_gp_wq;
3456 struct workqueue_struct *rcu_par_gp_wq;
3457 
3458 void __init rcu_init(void)
3459 {
3460 	int cpu;
3461 
3462 	rcu_early_boot_tests();
3463 
3464 	rcu_bootup_announce();
3465 	rcu_init_geometry();
3466 	rcu_init_one();
3467 	if (dump_tree)
3468 		rcu_dump_rcu_node_tree();
3469 	if (use_softirq)
3470 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3471 
3472 	/*
3473 	 * We don't need protection against CPU-hotplug here because
3474 	 * this is called early in boot, before either interrupts
3475 	 * or the scheduler are operational.
3476 	 */
3477 	pm_notifier(rcu_pm_notify, 0);
3478 	for_each_online_cpu(cpu) {
3479 		rcutree_prepare_cpu(cpu);
3480 		rcu_cpu_starting(cpu);
3481 		rcutree_online_cpu(cpu);
3482 	}
3483 
3484 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3485 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3486 	WARN_ON(!rcu_gp_wq);
3487 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3488 	WARN_ON(!rcu_par_gp_wq);
3489 	srcu_init();
3490 }
3491 
3492 #include "tree_stall.h"
3493 #include "tree_exp.h"
3494 #include "tree_plugin.h"
3495