1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 73 74 /* 75 * In order to export the rcu_state name to the tracing tools, it 76 * needs to be added in the __tracepoint_string section. 77 * This requires defining a separate variable tp_<sname>_varname 78 * that points to the string being used, and this will allow 79 * the tracing userspace tools to be able to decipher the string 80 * address to the matching string. 81 */ 82 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 83 static char sname##_varname[] = #sname; \ 84 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ 85 struct rcu_state sname##_state = { \ 86 .level = { &sname##_state.node[0] }, \ 87 .call = cr, \ 88 .fqs_state = RCU_GP_IDLE, \ 89 .gpnum = 0UL - 300UL, \ 90 .completed = 0UL - 300UL, \ 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 93 .orphan_donetail = &sname##_state.orphan_donelist, \ 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ 96 .name = sname##_varname, \ 97 .abbr = sabbr, \ 98 }; \ 99 DEFINE_PER_CPU(struct rcu_data, sname##_data) 100 101 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 102 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 103 104 static struct rcu_state *rcu_state_p; 105 LIST_HEAD(rcu_struct_flavors); 106 107 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 108 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 109 module_param(rcu_fanout_leaf, int, 0444); 110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 111 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 112 NUM_RCU_LVL_0, 113 NUM_RCU_LVL_1, 114 NUM_RCU_LVL_2, 115 NUM_RCU_LVL_3, 116 NUM_RCU_LVL_4, 117 }; 118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 119 120 /* 121 * The rcu_scheduler_active variable transitions from zero to one just 122 * before the first task is spawned. So when this variable is zero, RCU 123 * can assume that there is but one task, allowing RCU to (for example) 124 * optimize synchronize_sched() to a simple barrier(). When this variable 125 * is one, RCU must actually do all the hard work required to detect real 126 * grace periods. This variable is also used to suppress boot-time false 127 * positives from lockdep-RCU error checking. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 #ifdef CONFIG_RCU_BOOST 147 148 /* 149 * Control variables for per-CPU and per-rcu_node kthreads. These 150 * handle all flavors of RCU. 151 */ 152 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 153 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 154 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 155 DEFINE_PER_CPU(char, rcu_cpu_has_work); 156 157 #endif /* #ifdef CONFIG_RCU_BOOST */ 158 159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 160 static void invoke_rcu_core(void); 161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 162 163 /* 164 * Track the rcutorture test sequence number and the update version 165 * number within a given test. The rcutorture_testseq is incremented 166 * on every rcutorture module load and unload, so has an odd value 167 * when a test is running. The rcutorture_vernum is set to zero 168 * when rcutorture starts and is incremented on each rcutorture update. 169 * These variables enable correlating rcutorture output with the 170 * RCU tracing information. 171 */ 172 unsigned long rcutorture_testseq; 173 unsigned long rcutorture_vernum; 174 175 /* 176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 177 * permit this function to be invoked without holding the root rcu_node 178 * structure's ->lock, but of course results can be subject to change. 179 */ 180 static int rcu_gp_in_progress(struct rcu_state *rsp) 181 { 182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 183 } 184 185 /* 186 * Note a quiescent state. Because we do not need to know 187 * how many quiescent states passed, just if there was at least 188 * one since the start of the grace period, this just sets a flag. 189 * The caller must have disabled preemption. 190 */ 191 void rcu_sched_qs(int cpu) 192 { 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); 194 195 if (rdp->passed_quiesce == 0) 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); 197 rdp->passed_quiesce = 1; 198 } 199 200 void rcu_bh_qs(int cpu) 201 { 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 203 204 if (rdp->passed_quiesce == 0) 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); 206 rdp->passed_quiesce = 1; 207 } 208 209 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 210 211 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 212 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 213 .dynticks = ATOMIC_INIT(1), 214 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 215 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 216 .dynticks_idle = ATOMIC_INIT(1), 217 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 218 }; 219 220 /* 221 * Let the RCU core know that this CPU has gone through the scheduler, 222 * which is a quiescent state. This is called when the need for a 223 * quiescent state is urgent, so we burn an atomic operation and full 224 * memory barriers to let the RCU core know about it, regardless of what 225 * this CPU might (or might not) do in the near future. 226 * 227 * We inform the RCU core by emulating a zero-duration dyntick-idle 228 * period, which we in turn do by incrementing the ->dynticks counter 229 * by two. 230 */ 231 static void rcu_momentary_dyntick_idle(void) 232 { 233 unsigned long flags; 234 struct rcu_data *rdp; 235 struct rcu_dynticks *rdtp; 236 int resched_mask; 237 struct rcu_state *rsp; 238 239 local_irq_save(flags); 240 241 /* 242 * Yes, we can lose flag-setting operations. This is OK, because 243 * the flag will be set again after some delay. 244 */ 245 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 246 raw_cpu_write(rcu_sched_qs_mask, 0); 247 248 /* Find the flavor that needs a quiescent state. */ 249 for_each_rcu_flavor(rsp) { 250 rdp = raw_cpu_ptr(rsp->rda); 251 if (!(resched_mask & rsp->flavor_mask)) 252 continue; 253 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 254 if (ACCESS_ONCE(rdp->mynode->completed) != 255 ACCESS_ONCE(rdp->cond_resched_completed)) 256 continue; 257 258 /* 259 * Pretend to be momentarily idle for the quiescent state. 260 * This allows the grace-period kthread to record the 261 * quiescent state, with no need for this CPU to do anything 262 * further. 263 */ 264 rdtp = this_cpu_ptr(&rcu_dynticks); 265 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 266 atomic_add(2, &rdtp->dynticks); /* QS. */ 267 smp_mb__after_atomic(); /* Later stuff after QS. */ 268 break; 269 } 270 local_irq_restore(flags); 271 } 272 273 /* 274 * Note a context switch. This is a quiescent state for RCU-sched, 275 * and requires special handling for preemptible RCU. 276 * The caller must have disabled preemption. 277 */ 278 void rcu_note_context_switch(int cpu) 279 { 280 trace_rcu_utilization(TPS("Start context switch")); 281 rcu_sched_qs(cpu); 282 rcu_preempt_note_context_switch(cpu); 283 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 284 rcu_momentary_dyntick_idle(); 285 trace_rcu_utilization(TPS("End context switch")); 286 } 287 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 288 289 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 290 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 291 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 292 293 module_param(blimit, long, 0444); 294 module_param(qhimark, long, 0444); 295 module_param(qlowmark, long, 0444); 296 297 static ulong jiffies_till_first_fqs = ULONG_MAX; 298 static ulong jiffies_till_next_fqs = ULONG_MAX; 299 300 module_param(jiffies_till_first_fqs, ulong, 0644); 301 module_param(jiffies_till_next_fqs, ulong, 0644); 302 303 /* 304 * How long the grace period must be before we start recruiting 305 * quiescent-state help from rcu_note_context_switch(). 306 */ 307 static ulong jiffies_till_sched_qs = HZ / 20; 308 module_param(jiffies_till_sched_qs, ulong, 0644); 309 310 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 311 struct rcu_data *rdp); 312 static void force_qs_rnp(struct rcu_state *rsp, 313 int (*f)(struct rcu_data *rsp, bool *isidle, 314 unsigned long *maxj), 315 bool *isidle, unsigned long *maxj); 316 static void force_quiescent_state(struct rcu_state *rsp); 317 static int rcu_pending(int cpu); 318 319 /* 320 * Return the number of RCU-sched batches processed thus far for debug & stats. 321 */ 322 long rcu_batches_completed_sched(void) 323 { 324 return rcu_sched_state.completed; 325 } 326 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 327 328 /* 329 * Return the number of RCU BH batches processed thus far for debug & stats. 330 */ 331 long rcu_batches_completed_bh(void) 332 { 333 return rcu_bh_state.completed; 334 } 335 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 336 337 /* 338 * Force a quiescent state. 339 */ 340 void rcu_force_quiescent_state(void) 341 { 342 force_quiescent_state(rcu_state_p); 343 } 344 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 345 346 /* 347 * Force a quiescent state for RCU BH. 348 */ 349 void rcu_bh_force_quiescent_state(void) 350 { 351 force_quiescent_state(&rcu_bh_state); 352 } 353 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 354 355 /* 356 * Show the state of the grace-period kthreads. 357 */ 358 void show_rcu_gp_kthreads(void) 359 { 360 struct rcu_state *rsp; 361 362 for_each_rcu_flavor(rsp) { 363 pr_info("%s: wait state: %d ->state: %#lx\n", 364 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 365 /* sched_show_task(rsp->gp_kthread); */ 366 } 367 } 368 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 369 370 /* 371 * Record the number of times rcutorture tests have been initiated and 372 * terminated. This information allows the debugfs tracing stats to be 373 * correlated to the rcutorture messages, even when the rcutorture module 374 * is being repeatedly loaded and unloaded. In other words, we cannot 375 * store this state in rcutorture itself. 376 */ 377 void rcutorture_record_test_transition(void) 378 { 379 rcutorture_testseq++; 380 rcutorture_vernum = 0; 381 } 382 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 383 384 /* 385 * Send along grace-period-related data for rcutorture diagnostics. 386 */ 387 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 388 unsigned long *gpnum, unsigned long *completed) 389 { 390 struct rcu_state *rsp = NULL; 391 392 switch (test_type) { 393 case RCU_FLAVOR: 394 rsp = rcu_state_p; 395 break; 396 case RCU_BH_FLAVOR: 397 rsp = &rcu_bh_state; 398 break; 399 case RCU_SCHED_FLAVOR: 400 rsp = &rcu_sched_state; 401 break; 402 default: 403 break; 404 } 405 if (rsp != NULL) { 406 *flags = ACCESS_ONCE(rsp->gp_flags); 407 *gpnum = ACCESS_ONCE(rsp->gpnum); 408 *completed = ACCESS_ONCE(rsp->completed); 409 return; 410 } 411 *flags = 0; 412 *gpnum = 0; 413 *completed = 0; 414 } 415 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 416 417 /* 418 * Record the number of writer passes through the current rcutorture test. 419 * This is also used to correlate debugfs tracing stats with the rcutorture 420 * messages. 421 */ 422 void rcutorture_record_progress(unsigned long vernum) 423 { 424 rcutorture_vernum++; 425 } 426 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 427 428 /* 429 * Force a quiescent state for RCU-sched. 430 */ 431 void rcu_sched_force_quiescent_state(void) 432 { 433 force_quiescent_state(&rcu_sched_state); 434 } 435 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 436 437 /* 438 * Does the CPU have callbacks ready to be invoked? 439 */ 440 static int 441 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 442 { 443 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 444 rdp->nxttail[RCU_DONE_TAIL] != NULL; 445 } 446 447 /* 448 * Return the root node of the specified rcu_state structure. 449 */ 450 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 451 { 452 return &rsp->node[0]; 453 } 454 455 /* 456 * Is there any need for future grace periods? 457 * Interrupts must be disabled. If the caller does not hold the root 458 * rnp_node structure's ->lock, the results are advisory only. 459 */ 460 static int rcu_future_needs_gp(struct rcu_state *rsp) 461 { 462 struct rcu_node *rnp = rcu_get_root(rsp); 463 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1; 464 int *fp = &rnp->need_future_gp[idx]; 465 466 return ACCESS_ONCE(*fp); 467 } 468 469 /* 470 * Does the current CPU require a not-yet-started grace period? 471 * The caller must have disabled interrupts to prevent races with 472 * normal callback registry. 473 */ 474 static int 475 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 476 { 477 int i; 478 479 if (rcu_gp_in_progress(rsp)) 480 return 0; /* No, a grace period is already in progress. */ 481 if (rcu_future_needs_gp(rsp)) 482 return 1; /* Yes, a no-CBs CPU needs one. */ 483 if (!rdp->nxttail[RCU_NEXT_TAIL]) 484 return 0; /* No, this is a no-CBs (or offline) CPU. */ 485 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 486 return 1; /* Yes, this CPU has newly registered callbacks. */ 487 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 488 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 489 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 490 rdp->nxtcompleted[i])) 491 return 1; /* Yes, CBs for future grace period. */ 492 return 0; /* No grace period needed. */ 493 } 494 495 /* 496 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 497 * 498 * If the new value of the ->dynticks_nesting counter now is zero, 499 * we really have entered idle, and must do the appropriate accounting. 500 * The caller must have disabled interrupts. 501 */ 502 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, 503 bool user) 504 { 505 struct rcu_state *rsp; 506 struct rcu_data *rdp; 507 508 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 509 if (!user && !is_idle_task(current)) { 510 struct task_struct *idle __maybe_unused = 511 idle_task(smp_processor_id()); 512 513 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 514 ftrace_dump(DUMP_ORIG); 515 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 516 current->pid, current->comm, 517 idle->pid, idle->comm); /* must be idle task! */ 518 } 519 for_each_rcu_flavor(rsp) { 520 rdp = this_cpu_ptr(rsp->rda); 521 do_nocb_deferred_wakeup(rdp); 522 } 523 rcu_prepare_for_idle(smp_processor_id()); 524 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 525 smp_mb__before_atomic(); /* See above. */ 526 atomic_inc(&rdtp->dynticks); 527 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 528 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 529 530 /* 531 * It is illegal to enter an extended quiescent state while 532 * in an RCU read-side critical section. 533 */ 534 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 535 "Illegal idle entry in RCU read-side critical section."); 536 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 537 "Illegal idle entry in RCU-bh read-side critical section."); 538 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 539 "Illegal idle entry in RCU-sched read-side critical section."); 540 } 541 542 /* 543 * Enter an RCU extended quiescent state, which can be either the 544 * idle loop or adaptive-tickless usermode execution. 545 */ 546 static void rcu_eqs_enter(bool user) 547 { 548 long long oldval; 549 struct rcu_dynticks *rdtp; 550 551 rdtp = this_cpu_ptr(&rcu_dynticks); 552 oldval = rdtp->dynticks_nesting; 553 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 554 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 555 rdtp->dynticks_nesting = 0; 556 rcu_eqs_enter_common(rdtp, oldval, user); 557 } else { 558 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 559 } 560 } 561 562 /** 563 * rcu_idle_enter - inform RCU that current CPU is entering idle 564 * 565 * Enter idle mode, in other words, -leave- the mode in which RCU 566 * read-side critical sections can occur. (Though RCU read-side 567 * critical sections can occur in irq handlers in idle, a possibility 568 * handled by irq_enter() and irq_exit().) 569 * 570 * We crowbar the ->dynticks_nesting field to zero to allow for 571 * the possibility of usermode upcalls having messed up our count 572 * of interrupt nesting level during the prior busy period. 573 */ 574 void rcu_idle_enter(void) 575 { 576 unsigned long flags; 577 578 local_irq_save(flags); 579 rcu_eqs_enter(false); 580 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); 581 local_irq_restore(flags); 582 } 583 EXPORT_SYMBOL_GPL(rcu_idle_enter); 584 585 #ifdef CONFIG_RCU_USER_QS 586 /** 587 * rcu_user_enter - inform RCU that we are resuming userspace. 588 * 589 * Enter RCU idle mode right before resuming userspace. No use of RCU 590 * is permitted between this call and rcu_user_exit(). This way the 591 * CPU doesn't need to maintain the tick for RCU maintenance purposes 592 * when the CPU runs in userspace. 593 */ 594 void rcu_user_enter(void) 595 { 596 rcu_eqs_enter(1); 597 } 598 #endif /* CONFIG_RCU_USER_QS */ 599 600 /** 601 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 602 * 603 * Exit from an interrupt handler, which might possibly result in entering 604 * idle mode, in other words, leaving the mode in which read-side critical 605 * sections can occur. 606 * 607 * This code assumes that the idle loop never does anything that might 608 * result in unbalanced calls to irq_enter() and irq_exit(). If your 609 * architecture violates this assumption, RCU will give you what you 610 * deserve, good and hard. But very infrequently and irreproducibly. 611 * 612 * Use things like work queues to work around this limitation. 613 * 614 * You have been warned. 615 */ 616 void rcu_irq_exit(void) 617 { 618 unsigned long flags; 619 long long oldval; 620 struct rcu_dynticks *rdtp; 621 622 local_irq_save(flags); 623 rdtp = this_cpu_ptr(&rcu_dynticks); 624 oldval = rdtp->dynticks_nesting; 625 rdtp->dynticks_nesting--; 626 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 627 if (rdtp->dynticks_nesting) 628 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 629 else 630 rcu_eqs_enter_common(rdtp, oldval, true); 631 rcu_sysidle_enter(rdtp, 1); 632 local_irq_restore(flags); 633 } 634 635 /* 636 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 637 * 638 * If the new value of the ->dynticks_nesting counter was previously zero, 639 * we really have exited idle, and must do the appropriate accounting. 640 * The caller must have disabled interrupts. 641 */ 642 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, 643 int user) 644 { 645 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 646 atomic_inc(&rdtp->dynticks); 647 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 648 smp_mb__after_atomic(); /* See above. */ 649 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 650 rcu_cleanup_after_idle(smp_processor_id()); 651 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 652 if (!user && !is_idle_task(current)) { 653 struct task_struct *idle __maybe_unused = 654 idle_task(smp_processor_id()); 655 656 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 657 oldval, rdtp->dynticks_nesting); 658 ftrace_dump(DUMP_ORIG); 659 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 660 current->pid, current->comm, 661 idle->pid, idle->comm); /* must be idle task! */ 662 } 663 } 664 665 /* 666 * Exit an RCU extended quiescent state, which can be either the 667 * idle loop or adaptive-tickless usermode execution. 668 */ 669 static void rcu_eqs_exit(bool user) 670 { 671 struct rcu_dynticks *rdtp; 672 long long oldval; 673 674 rdtp = this_cpu_ptr(&rcu_dynticks); 675 oldval = rdtp->dynticks_nesting; 676 WARN_ON_ONCE(oldval < 0); 677 if (oldval & DYNTICK_TASK_NEST_MASK) { 678 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 679 } else { 680 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 681 rcu_eqs_exit_common(rdtp, oldval, user); 682 } 683 } 684 685 /** 686 * rcu_idle_exit - inform RCU that current CPU is leaving idle 687 * 688 * Exit idle mode, in other words, -enter- the mode in which RCU 689 * read-side critical sections can occur. 690 * 691 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 692 * allow for the possibility of usermode upcalls messing up our count 693 * of interrupt nesting level during the busy period that is just 694 * now starting. 695 */ 696 void rcu_idle_exit(void) 697 { 698 unsigned long flags; 699 700 local_irq_save(flags); 701 rcu_eqs_exit(false); 702 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); 703 local_irq_restore(flags); 704 } 705 EXPORT_SYMBOL_GPL(rcu_idle_exit); 706 707 #ifdef CONFIG_RCU_USER_QS 708 /** 709 * rcu_user_exit - inform RCU that we are exiting userspace. 710 * 711 * Exit RCU idle mode while entering the kernel because it can 712 * run a RCU read side critical section anytime. 713 */ 714 void rcu_user_exit(void) 715 { 716 rcu_eqs_exit(1); 717 } 718 #endif /* CONFIG_RCU_USER_QS */ 719 720 /** 721 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 722 * 723 * Enter an interrupt handler, which might possibly result in exiting 724 * idle mode, in other words, entering the mode in which read-side critical 725 * sections can occur. 726 * 727 * Note that the Linux kernel is fully capable of entering an interrupt 728 * handler that it never exits, for example when doing upcalls to 729 * user mode! This code assumes that the idle loop never does upcalls to 730 * user mode. If your architecture does do upcalls from the idle loop (or 731 * does anything else that results in unbalanced calls to the irq_enter() 732 * and irq_exit() functions), RCU will give you what you deserve, good 733 * and hard. But very infrequently and irreproducibly. 734 * 735 * Use things like work queues to work around this limitation. 736 * 737 * You have been warned. 738 */ 739 void rcu_irq_enter(void) 740 { 741 unsigned long flags; 742 struct rcu_dynticks *rdtp; 743 long long oldval; 744 745 local_irq_save(flags); 746 rdtp = this_cpu_ptr(&rcu_dynticks); 747 oldval = rdtp->dynticks_nesting; 748 rdtp->dynticks_nesting++; 749 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 750 if (oldval) 751 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 752 else 753 rcu_eqs_exit_common(rdtp, oldval, true); 754 rcu_sysidle_exit(rdtp, 1); 755 local_irq_restore(flags); 756 } 757 758 /** 759 * rcu_nmi_enter - inform RCU of entry to NMI context 760 * 761 * If the CPU was idle with dynamic ticks active, and there is no 762 * irq handler running, this updates rdtp->dynticks_nmi to let the 763 * RCU grace-period handling know that the CPU is active. 764 */ 765 void rcu_nmi_enter(void) 766 { 767 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 768 769 if (rdtp->dynticks_nmi_nesting == 0 && 770 (atomic_read(&rdtp->dynticks) & 0x1)) 771 return; 772 rdtp->dynticks_nmi_nesting++; 773 smp_mb__before_atomic(); /* Force delay from prior write. */ 774 atomic_inc(&rdtp->dynticks); 775 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 776 smp_mb__after_atomic(); /* See above. */ 777 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 778 } 779 780 /** 781 * rcu_nmi_exit - inform RCU of exit from NMI context 782 * 783 * If the CPU was idle with dynamic ticks active, and there is no 784 * irq handler running, this updates rdtp->dynticks_nmi to let the 785 * RCU grace-period handling know that the CPU is no longer active. 786 */ 787 void rcu_nmi_exit(void) 788 { 789 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 790 791 if (rdtp->dynticks_nmi_nesting == 0 || 792 --rdtp->dynticks_nmi_nesting != 0) 793 return; 794 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 795 smp_mb__before_atomic(); /* See above. */ 796 atomic_inc(&rdtp->dynticks); 797 smp_mb__after_atomic(); /* Force delay to next write. */ 798 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 799 } 800 801 /** 802 * __rcu_is_watching - are RCU read-side critical sections safe? 803 * 804 * Return true if RCU is watching the running CPU, which means that 805 * this CPU can safely enter RCU read-side critical sections. Unlike 806 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 807 * least disabled preemption. 808 */ 809 bool notrace __rcu_is_watching(void) 810 { 811 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 812 } 813 814 /** 815 * rcu_is_watching - see if RCU thinks that the current CPU is idle 816 * 817 * If the current CPU is in its idle loop and is neither in an interrupt 818 * or NMI handler, return true. 819 */ 820 bool notrace rcu_is_watching(void) 821 { 822 int ret; 823 824 preempt_disable(); 825 ret = __rcu_is_watching(); 826 preempt_enable(); 827 return ret; 828 } 829 EXPORT_SYMBOL_GPL(rcu_is_watching); 830 831 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 832 833 /* 834 * Is the current CPU online? Disable preemption to avoid false positives 835 * that could otherwise happen due to the current CPU number being sampled, 836 * this task being preempted, its old CPU being taken offline, resuming 837 * on some other CPU, then determining that its old CPU is now offline. 838 * It is OK to use RCU on an offline processor during initial boot, hence 839 * the check for rcu_scheduler_fully_active. Note also that it is OK 840 * for a CPU coming online to use RCU for one jiffy prior to marking itself 841 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 842 * offline to continue to use RCU for one jiffy after marking itself 843 * offline in the cpu_online_mask. This leniency is necessary given the 844 * non-atomic nature of the online and offline processing, for example, 845 * the fact that a CPU enters the scheduler after completing the CPU_DYING 846 * notifiers. 847 * 848 * This is also why RCU internally marks CPUs online during the 849 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 850 * 851 * Disable checking if in an NMI handler because we cannot safely report 852 * errors from NMI handlers anyway. 853 */ 854 bool rcu_lockdep_current_cpu_online(void) 855 { 856 struct rcu_data *rdp; 857 struct rcu_node *rnp; 858 bool ret; 859 860 if (in_nmi()) 861 return true; 862 preempt_disable(); 863 rdp = this_cpu_ptr(&rcu_sched_data); 864 rnp = rdp->mynode; 865 ret = (rdp->grpmask & rnp->qsmaskinit) || 866 !rcu_scheduler_fully_active; 867 preempt_enable(); 868 return ret; 869 } 870 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 871 872 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 873 874 /** 875 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 876 * 877 * If the current CPU is idle or running at a first-level (not nested) 878 * interrupt from idle, return true. The caller must have at least 879 * disabled preemption. 880 */ 881 static int rcu_is_cpu_rrupt_from_idle(void) 882 { 883 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 884 } 885 886 /* 887 * Snapshot the specified CPU's dynticks counter so that we can later 888 * credit them with an implicit quiescent state. Return 1 if this CPU 889 * is in dynticks idle mode, which is an extended quiescent state. 890 */ 891 static int dyntick_save_progress_counter(struct rcu_data *rdp, 892 bool *isidle, unsigned long *maxj) 893 { 894 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 895 rcu_sysidle_check_cpu(rdp, isidle, maxj); 896 if ((rdp->dynticks_snap & 0x1) == 0) { 897 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 898 return 1; 899 } else { 900 return 0; 901 } 902 } 903 904 /* 905 * This function really isn't for public consumption, but RCU is special in 906 * that context switches can allow the state machine to make progress. 907 */ 908 extern void resched_cpu(int cpu); 909 910 /* 911 * Return true if the specified CPU has passed through a quiescent 912 * state by virtue of being in or having passed through an dynticks 913 * idle state since the last call to dyntick_save_progress_counter() 914 * for this same CPU, or by virtue of having been offline. 915 */ 916 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 917 bool *isidle, unsigned long *maxj) 918 { 919 unsigned int curr; 920 int *rcrmp; 921 unsigned int snap; 922 923 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 924 snap = (unsigned int)rdp->dynticks_snap; 925 926 /* 927 * If the CPU passed through or entered a dynticks idle phase with 928 * no active irq/NMI handlers, then we can safely pretend that the CPU 929 * already acknowledged the request to pass through a quiescent 930 * state. Either way, that CPU cannot possibly be in an RCU 931 * read-side critical section that started before the beginning 932 * of the current RCU grace period. 933 */ 934 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 935 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 936 rdp->dynticks_fqs++; 937 return 1; 938 } 939 940 /* 941 * Check for the CPU being offline, but only if the grace period 942 * is old enough. We don't need to worry about the CPU changing 943 * state: If we see it offline even once, it has been through a 944 * quiescent state. 945 * 946 * The reason for insisting that the grace period be at least 947 * one jiffy old is that CPUs that are not quite online and that 948 * have just gone offline can still execute RCU read-side critical 949 * sections. 950 */ 951 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 952 return 0; /* Grace period is not old enough. */ 953 barrier(); 954 if (cpu_is_offline(rdp->cpu)) { 955 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 956 rdp->offline_fqs++; 957 return 1; 958 } 959 960 /* 961 * A CPU running for an extended time within the kernel can 962 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 963 * even context-switching back and forth between a pair of 964 * in-kernel CPU-bound tasks cannot advance grace periods. 965 * So if the grace period is old enough, make the CPU pay attention. 966 * Note that the unsynchronized assignments to the per-CPU 967 * rcu_sched_qs_mask variable are safe. Yes, setting of 968 * bits can be lost, but they will be set again on the next 969 * force-quiescent-state pass. So lost bit sets do not result 970 * in incorrect behavior, merely in a grace period lasting 971 * a few jiffies longer than it might otherwise. Because 972 * there are at most four threads involved, and because the 973 * updates are only once every few jiffies, the probability of 974 * lossage (and thus of slight grace-period extension) is 975 * quite low. 976 * 977 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 978 * is set too high, we override with half of the RCU CPU stall 979 * warning delay. 980 */ 981 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 982 if (ULONG_CMP_GE(jiffies, 983 rdp->rsp->gp_start + jiffies_till_sched_qs) || 984 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 985 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 986 ACCESS_ONCE(rdp->cond_resched_completed) = 987 ACCESS_ONCE(rdp->mynode->completed); 988 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 989 ACCESS_ONCE(*rcrmp) = 990 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask; 991 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 992 rdp->rsp->jiffies_resched += 5; /* Enable beating. */ 993 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 994 /* Time to beat on that CPU again! */ 995 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 996 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 997 } 998 } 999 1000 return 0; 1001 } 1002 1003 static void record_gp_stall_check_time(struct rcu_state *rsp) 1004 { 1005 unsigned long j = jiffies; 1006 unsigned long j1; 1007 1008 rsp->gp_start = j; 1009 smp_wmb(); /* Record start time before stall time. */ 1010 j1 = rcu_jiffies_till_stall_check(); 1011 ACCESS_ONCE(rsp->jiffies_stall) = j + j1; 1012 rsp->jiffies_resched = j + j1 / 2; 1013 } 1014 1015 /* 1016 * Dump stacks of all tasks running on stalled CPUs. 1017 */ 1018 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1019 { 1020 int cpu; 1021 unsigned long flags; 1022 struct rcu_node *rnp; 1023 1024 rcu_for_each_leaf_node(rsp, rnp) { 1025 raw_spin_lock_irqsave(&rnp->lock, flags); 1026 if (rnp->qsmask != 0) { 1027 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1028 if (rnp->qsmask & (1UL << cpu)) 1029 dump_cpu_task(rnp->grplo + cpu); 1030 } 1031 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1032 } 1033 } 1034 1035 static void print_other_cpu_stall(struct rcu_state *rsp) 1036 { 1037 int cpu; 1038 long delta; 1039 unsigned long flags; 1040 int ndetected = 0; 1041 struct rcu_node *rnp = rcu_get_root(rsp); 1042 long totqlen = 0; 1043 1044 /* Only let one CPU complain about others per time interval. */ 1045 1046 raw_spin_lock_irqsave(&rnp->lock, flags); 1047 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall); 1048 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1049 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1050 return; 1051 } 1052 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1053 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1054 1055 /* 1056 * OK, time to rat on our buddy... 1057 * See Documentation/RCU/stallwarn.txt for info on how to debug 1058 * RCU CPU stall warnings. 1059 */ 1060 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1061 rsp->name); 1062 print_cpu_stall_info_begin(); 1063 rcu_for_each_leaf_node(rsp, rnp) { 1064 raw_spin_lock_irqsave(&rnp->lock, flags); 1065 ndetected += rcu_print_task_stall(rnp); 1066 if (rnp->qsmask != 0) { 1067 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1068 if (rnp->qsmask & (1UL << cpu)) { 1069 print_cpu_stall_info(rsp, 1070 rnp->grplo + cpu); 1071 ndetected++; 1072 } 1073 } 1074 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1075 } 1076 1077 /* 1078 * Now rat on any tasks that got kicked up to the root rcu_node 1079 * due to CPU offlining. 1080 */ 1081 rnp = rcu_get_root(rsp); 1082 raw_spin_lock_irqsave(&rnp->lock, flags); 1083 ndetected += rcu_print_task_stall(rnp); 1084 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1085 1086 print_cpu_stall_info_end(); 1087 for_each_possible_cpu(cpu) 1088 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1089 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1090 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1091 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1092 if (ndetected == 0) 1093 pr_err("INFO: Stall ended before state dump start\n"); 1094 else 1095 rcu_dump_cpu_stacks(rsp); 1096 1097 /* Complain about tasks blocking the grace period. */ 1098 1099 rcu_print_detail_task_stall(rsp); 1100 1101 force_quiescent_state(rsp); /* Kick them all. */ 1102 } 1103 1104 static void print_cpu_stall(struct rcu_state *rsp) 1105 { 1106 int cpu; 1107 unsigned long flags; 1108 struct rcu_node *rnp = rcu_get_root(rsp); 1109 long totqlen = 0; 1110 1111 /* 1112 * OK, time to rat on ourselves... 1113 * See Documentation/RCU/stallwarn.txt for info on how to debug 1114 * RCU CPU stall warnings. 1115 */ 1116 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1117 print_cpu_stall_info_begin(); 1118 print_cpu_stall_info(rsp, smp_processor_id()); 1119 print_cpu_stall_info_end(); 1120 for_each_possible_cpu(cpu) 1121 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1122 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1123 jiffies - rsp->gp_start, 1124 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1125 rcu_dump_cpu_stacks(rsp); 1126 1127 raw_spin_lock_irqsave(&rnp->lock, flags); 1128 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall))) 1129 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 1130 3 * rcu_jiffies_till_stall_check() + 3; 1131 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1132 1133 /* 1134 * Attempt to revive the RCU machinery by forcing a context switch. 1135 * 1136 * A context switch would normally allow the RCU state machine to make 1137 * progress and it could be we're stuck in kernel space without context 1138 * switches for an entirely unreasonable amount of time. 1139 */ 1140 resched_cpu(smp_processor_id()); 1141 } 1142 1143 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1144 { 1145 unsigned long completed; 1146 unsigned long gpnum; 1147 unsigned long gps; 1148 unsigned long j; 1149 unsigned long js; 1150 struct rcu_node *rnp; 1151 1152 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1153 return; 1154 j = jiffies; 1155 1156 /* 1157 * Lots of memory barriers to reject false positives. 1158 * 1159 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1160 * then rsp->gp_start, and finally rsp->completed. These values 1161 * are updated in the opposite order with memory barriers (or 1162 * equivalent) during grace-period initialization and cleanup. 1163 * Now, a false positive can occur if we get an new value of 1164 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1165 * the memory barriers, the only way that this can happen is if one 1166 * grace period ends and another starts between these two fetches. 1167 * Detect this by comparing rsp->completed with the previous fetch 1168 * from rsp->gpnum. 1169 * 1170 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1171 * and rsp->gp_start suffice to forestall false positives. 1172 */ 1173 gpnum = ACCESS_ONCE(rsp->gpnum); 1174 smp_rmb(); /* Pick up ->gpnum first... */ 1175 js = ACCESS_ONCE(rsp->jiffies_stall); 1176 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1177 gps = ACCESS_ONCE(rsp->gp_start); 1178 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1179 completed = ACCESS_ONCE(rsp->completed); 1180 if (ULONG_CMP_GE(completed, gpnum) || 1181 ULONG_CMP_LT(j, js) || 1182 ULONG_CMP_GE(gps, js)) 1183 return; /* No stall or GP completed since entering function. */ 1184 rnp = rdp->mynode; 1185 if (rcu_gp_in_progress(rsp) && 1186 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1187 1188 /* We haven't checked in, so go dump stack. */ 1189 print_cpu_stall(rsp); 1190 1191 } else if (rcu_gp_in_progress(rsp) && 1192 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1193 1194 /* They had a few time units to dump stack, so complain. */ 1195 print_other_cpu_stall(rsp); 1196 } 1197 } 1198 1199 /** 1200 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1201 * 1202 * Set the stall-warning timeout way off into the future, thus preventing 1203 * any RCU CPU stall-warning messages from appearing in the current set of 1204 * RCU grace periods. 1205 * 1206 * The caller must disable hard irqs. 1207 */ 1208 void rcu_cpu_stall_reset(void) 1209 { 1210 struct rcu_state *rsp; 1211 1212 for_each_rcu_flavor(rsp) 1213 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2; 1214 } 1215 1216 /* 1217 * Initialize the specified rcu_data structure's callback list to empty. 1218 */ 1219 static void init_callback_list(struct rcu_data *rdp) 1220 { 1221 int i; 1222 1223 if (init_nocb_callback_list(rdp)) 1224 return; 1225 rdp->nxtlist = NULL; 1226 for (i = 0; i < RCU_NEXT_SIZE; i++) 1227 rdp->nxttail[i] = &rdp->nxtlist; 1228 } 1229 1230 /* 1231 * Determine the value that ->completed will have at the end of the 1232 * next subsequent grace period. This is used to tag callbacks so that 1233 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1234 * been dyntick-idle for an extended period with callbacks under the 1235 * influence of RCU_FAST_NO_HZ. 1236 * 1237 * The caller must hold rnp->lock with interrupts disabled. 1238 */ 1239 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1240 struct rcu_node *rnp) 1241 { 1242 /* 1243 * If RCU is idle, we just wait for the next grace period. 1244 * But we can only be sure that RCU is idle if we are looking 1245 * at the root rcu_node structure -- otherwise, a new grace 1246 * period might have started, but just not yet gotten around 1247 * to initializing the current non-root rcu_node structure. 1248 */ 1249 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1250 return rnp->completed + 1; 1251 1252 /* 1253 * Otherwise, wait for a possible partial grace period and 1254 * then the subsequent full grace period. 1255 */ 1256 return rnp->completed + 2; 1257 } 1258 1259 /* 1260 * Trace-event helper function for rcu_start_future_gp() and 1261 * rcu_nocb_wait_gp(). 1262 */ 1263 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1264 unsigned long c, const char *s) 1265 { 1266 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1267 rnp->completed, c, rnp->level, 1268 rnp->grplo, rnp->grphi, s); 1269 } 1270 1271 /* 1272 * Start some future grace period, as needed to handle newly arrived 1273 * callbacks. The required future grace periods are recorded in each 1274 * rcu_node structure's ->need_future_gp field. Returns true if there 1275 * is reason to awaken the grace-period kthread. 1276 * 1277 * The caller must hold the specified rcu_node structure's ->lock. 1278 */ 1279 static bool __maybe_unused 1280 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1281 unsigned long *c_out) 1282 { 1283 unsigned long c; 1284 int i; 1285 bool ret = false; 1286 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1287 1288 /* 1289 * Pick up grace-period number for new callbacks. If this 1290 * grace period is already marked as needed, return to the caller. 1291 */ 1292 c = rcu_cbs_completed(rdp->rsp, rnp); 1293 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1294 if (rnp->need_future_gp[c & 0x1]) { 1295 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1296 goto out; 1297 } 1298 1299 /* 1300 * If either this rcu_node structure or the root rcu_node structure 1301 * believe that a grace period is in progress, then we must wait 1302 * for the one following, which is in "c". Because our request 1303 * will be noticed at the end of the current grace period, we don't 1304 * need to explicitly start one. We only do the lockless check 1305 * of rnp_root's fields if the current rcu_node structure thinks 1306 * there is no grace period in flight, and because we hold rnp->lock, 1307 * the only possible change is when rnp_root's two fields are 1308 * equal, in which case rnp_root->gpnum might be concurrently 1309 * incremented. But that is OK, as it will just result in our 1310 * doing some extra useless work. 1311 */ 1312 if (rnp->gpnum != rnp->completed || 1313 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) { 1314 rnp->need_future_gp[c & 0x1]++; 1315 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1316 goto out; 1317 } 1318 1319 /* 1320 * There might be no grace period in progress. If we don't already 1321 * hold it, acquire the root rcu_node structure's lock in order to 1322 * start one (if needed). 1323 */ 1324 if (rnp != rnp_root) { 1325 raw_spin_lock(&rnp_root->lock); 1326 smp_mb__after_unlock_lock(); 1327 } 1328 1329 /* 1330 * Get a new grace-period number. If there really is no grace 1331 * period in progress, it will be smaller than the one we obtained 1332 * earlier. Adjust callbacks as needed. Note that even no-CBs 1333 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1334 */ 1335 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1336 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1337 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1338 rdp->nxtcompleted[i] = c; 1339 1340 /* 1341 * If the needed for the required grace period is already 1342 * recorded, trace and leave. 1343 */ 1344 if (rnp_root->need_future_gp[c & 0x1]) { 1345 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1346 goto unlock_out; 1347 } 1348 1349 /* Record the need for the future grace period. */ 1350 rnp_root->need_future_gp[c & 0x1]++; 1351 1352 /* If a grace period is not already in progress, start one. */ 1353 if (rnp_root->gpnum != rnp_root->completed) { 1354 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1355 } else { 1356 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1357 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1358 } 1359 unlock_out: 1360 if (rnp != rnp_root) 1361 raw_spin_unlock(&rnp_root->lock); 1362 out: 1363 if (c_out != NULL) 1364 *c_out = c; 1365 return ret; 1366 } 1367 1368 /* 1369 * Clean up any old requests for the just-ended grace period. Also return 1370 * whether any additional grace periods have been requested. Also invoke 1371 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1372 * waiting for this grace period to complete. 1373 */ 1374 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1375 { 1376 int c = rnp->completed; 1377 int needmore; 1378 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1379 1380 rcu_nocb_gp_cleanup(rsp, rnp); 1381 rnp->need_future_gp[c & 0x1] = 0; 1382 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1383 trace_rcu_future_gp(rnp, rdp, c, 1384 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1385 return needmore; 1386 } 1387 1388 /* 1389 * Awaken the grace-period kthread for the specified flavor of RCU. 1390 * Don't do a self-awaken, and don't bother awakening when there is 1391 * nothing for the grace-period kthread to do (as in several CPUs 1392 * raced to awaken, and we lost), and finally don't try to awaken 1393 * a kthread that has not yet been created. 1394 */ 1395 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1396 { 1397 if (current == rsp->gp_kthread || 1398 !ACCESS_ONCE(rsp->gp_flags) || 1399 !rsp->gp_kthread) 1400 return; 1401 wake_up(&rsp->gp_wq); 1402 } 1403 1404 /* 1405 * If there is room, assign a ->completed number to any callbacks on 1406 * this CPU that have not already been assigned. Also accelerate any 1407 * callbacks that were previously assigned a ->completed number that has 1408 * since proven to be too conservative, which can happen if callbacks get 1409 * assigned a ->completed number while RCU is idle, but with reference to 1410 * a non-root rcu_node structure. This function is idempotent, so it does 1411 * not hurt to call it repeatedly. Returns an flag saying that we should 1412 * awaken the RCU grace-period kthread. 1413 * 1414 * The caller must hold rnp->lock with interrupts disabled. 1415 */ 1416 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1417 struct rcu_data *rdp) 1418 { 1419 unsigned long c; 1420 int i; 1421 bool ret; 1422 1423 /* If the CPU has no callbacks, nothing to do. */ 1424 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1425 return false; 1426 1427 /* 1428 * Starting from the sublist containing the callbacks most 1429 * recently assigned a ->completed number and working down, find the 1430 * first sublist that is not assignable to an upcoming grace period. 1431 * Such a sublist has something in it (first two tests) and has 1432 * a ->completed number assigned that will complete sooner than 1433 * the ->completed number for newly arrived callbacks (last test). 1434 * 1435 * The key point is that any later sublist can be assigned the 1436 * same ->completed number as the newly arrived callbacks, which 1437 * means that the callbacks in any of these later sublist can be 1438 * grouped into a single sublist, whether or not they have already 1439 * been assigned a ->completed number. 1440 */ 1441 c = rcu_cbs_completed(rsp, rnp); 1442 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1443 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1444 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1445 break; 1446 1447 /* 1448 * If there are no sublist for unassigned callbacks, leave. 1449 * At the same time, advance "i" one sublist, so that "i" will 1450 * index into the sublist where all the remaining callbacks should 1451 * be grouped into. 1452 */ 1453 if (++i >= RCU_NEXT_TAIL) 1454 return false; 1455 1456 /* 1457 * Assign all subsequent callbacks' ->completed number to the next 1458 * full grace period and group them all in the sublist initially 1459 * indexed by "i". 1460 */ 1461 for (; i <= RCU_NEXT_TAIL; i++) { 1462 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1463 rdp->nxtcompleted[i] = c; 1464 } 1465 /* Record any needed additional grace periods. */ 1466 ret = rcu_start_future_gp(rnp, rdp, NULL); 1467 1468 /* Trace depending on how much we were able to accelerate. */ 1469 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1470 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1471 else 1472 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1473 return ret; 1474 } 1475 1476 /* 1477 * Move any callbacks whose grace period has completed to the 1478 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1479 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1480 * sublist. This function is idempotent, so it does not hurt to 1481 * invoke it repeatedly. As long as it is not invoked -too- often... 1482 * Returns true if the RCU grace-period kthread needs to be awakened. 1483 * 1484 * The caller must hold rnp->lock with interrupts disabled. 1485 */ 1486 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1487 struct rcu_data *rdp) 1488 { 1489 int i, j; 1490 1491 /* If the CPU has no callbacks, nothing to do. */ 1492 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1493 return false; 1494 1495 /* 1496 * Find all callbacks whose ->completed numbers indicate that they 1497 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1498 */ 1499 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1500 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1501 break; 1502 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1503 } 1504 /* Clean up any sublist tail pointers that were misordered above. */ 1505 for (j = RCU_WAIT_TAIL; j < i; j++) 1506 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1507 1508 /* Copy down callbacks to fill in empty sublists. */ 1509 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1510 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1511 break; 1512 rdp->nxttail[j] = rdp->nxttail[i]; 1513 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1514 } 1515 1516 /* Classify any remaining callbacks. */ 1517 return rcu_accelerate_cbs(rsp, rnp, rdp); 1518 } 1519 1520 /* 1521 * Update CPU-local rcu_data state to record the beginnings and ends of 1522 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1523 * structure corresponding to the current CPU, and must have irqs disabled. 1524 * Returns true if the grace-period kthread needs to be awakened. 1525 */ 1526 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1527 struct rcu_data *rdp) 1528 { 1529 bool ret; 1530 1531 /* Handle the ends of any preceding grace periods first. */ 1532 if (rdp->completed == rnp->completed) { 1533 1534 /* No grace period end, so just accelerate recent callbacks. */ 1535 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1536 1537 } else { 1538 1539 /* Advance callbacks. */ 1540 ret = rcu_advance_cbs(rsp, rnp, rdp); 1541 1542 /* Remember that we saw this grace-period completion. */ 1543 rdp->completed = rnp->completed; 1544 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1545 } 1546 1547 if (rdp->gpnum != rnp->gpnum) { 1548 /* 1549 * If the current grace period is waiting for this CPU, 1550 * set up to detect a quiescent state, otherwise don't 1551 * go looking for one. 1552 */ 1553 rdp->gpnum = rnp->gpnum; 1554 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1555 rdp->passed_quiesce = 0; 1556 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1557 zero_cpu_stall_ticks(rdp); 1558 } 1559 return ret; 1560 } 1561 1562 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1563 { 1564 unsigned long flags; 1565 bool needwake; 1566 struct rcu_node *rnp; 1567 1568 local_irq_save(flags); 1569 rnp = rdp->mynode; 1570 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1571 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ 1572 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1573 local_irq_restore(flags); 1574 return; 1575 } 1576 smp_mb__after_unlock_lock(); 1577 needwake = __note_gp_changes(rsp, rnp, rdp); 1578 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1579 if (needwake) 1580 rcu_gp_kthread_wake(rsp); 1581 } 1582 1583 /* 1584 * Initialize a new grace period. Return 0 if no grace period required. 1585 */ 1586 static int rcu_gp_init(struct rcu_state *rsp) 1587 { 1588 struct rcu_data *rdp; 1589 struct rcu_node *rnp = rcu_get_root(rsp); 1590 1591 rcu_bind_gp_kthread(); 1592 raw_spin_lock_irq(&rnp->lock); 1593 smp_mb__after_unlock_lock(); 1594 if (!ACCESS_ONCE(rsp->gp_flags)) { 1595 /* Spurious wakeup, tell caller to go back to sleep. */ 1596 raw_spin_unlock_irq(&rnp->lock); 1597 return 0; 1598 } 1599 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */ 1600 1601 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1602 /* 1603 * Grace period already in progress, don't start another. 1604 * Not supposed to be able to happen. 1605 */ 1606 raw_spin_unlock_irq(&rnp->lock); 1607 return 0; 1608 } 1609 1610 /* Advance to a new grace period and initialize state. */ 1611 record_gp_stall_check_time(rsp); 1612 /* Record GP times before starting GP, hence smp_store_release(). */ 1613 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1614 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1615 raw_spin_unlock_irq(&rnp->lock); 1616 1617 /* Exclude any concurrent CPU-hotplug operations. */ 1618 mutex_lock(&rsp->onoff_mutex); 1619 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */ 1620 1621 /* 1622 * Set the quiescent-state-needed bits in all the rcu_node 1623 * structures for all currently online CPUs in breadth-first order, 1624 * starting from the root rcu_node structure, relying on the layout 1625 * of the tree within the rsp->node[] array. Note that other CPUs 1626 * will access only the leaves of the hierarchy, thus seeing that no 1627 * grace period is in progress, at least until the corresponding 1628 * leaf node has been initialized. In addition, we have excluded 1629 * CPU-hotplug operations. 1630 * 1631 * The grace period cannot complete until the initialization 1632 * process finishes, because this kthread handles both. 1633 */ 1634 rcu_for_each_node_breadth_first(rsp, rnp) { 1635 raw_spin_lock_irq(&rnp->lock); 1636 smp_mb__after_unlock_lock(); 1637 rdp = this_cpu_ptr(rsp->rda); 1638 rcu_preempt_check_blocked_tasks(rnp); 1639 rnp->qsmask = rnp->qsmaskinit; 1640 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1641 WARN_ON_ONCE(rnp->completed != rsp->completed); 1642 ACCESS_ONCE(rnp->completed) = rsp->completed; 1643 if (rnp == rdp->mynode) 1644 (void)__note_gp_changes(rsp, rnp, rdp); 1645 rcu_preempt_boost_start_gp(rnp); 1646 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1647 rnp->level, rnp->grplo, 1648 rnp->grphi, rnp->qsmask); 1649 raw_spin_unlock_irq(&rnp->lock); 1650 cond_resched(); 1651 } 1652 1653 mutex_unlock(&rsp->onoff_mutex); 1654 return 1; 1655 } 1656 1657 /* 1658 * Do one round of quiescent-state forcing. 1659 */ 1660 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1661 { 1662 int fqs_state = fqs_state_in; 1663 bool isidle = false; 1664 unsigned long maxj; 1665 struct rcu_node *rnp = rcu_get_root(rsp); 1666 1667 rsp->n_force_qs++; 1668 if (fqs_state == RCU_SAVE_DYNTICK) { 1669 /* Collect dyntick-idle snapshots. */ 1670 if (is_sysidle_rcu_state(rsp)) { 1671 isidle = 1; 1672 maxj = jiffies - ULONG_MAX / 4; 1673 } 1674 force_qs_rnp(rsp, dyntick_save_progress_counter, 1675 &isidle, &maxj); 1676 rcu_sysidle_report_gp(rsp, isidle, maxj); 1677 fqs_state = RCU_FORCE_QS; 1678 } else { 1679 /* Handle dyntick-idle and offline CPUs. */ 1680 isidle = 0; 1681 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1682 } 1683 /* Clear flag to prevent immediate re-entry. */ 1684 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1685 raw_spin_lock_irq(&rnp->lock); 1686 smp_mb__after_unlock_lock(); 1687 ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS; 1688 raw_spin_unlock_irq(&rnp->lock); 1689 } 1690 return fqs_state; 1691 } 1692 1693 /* 1694 * Clean up after the old grace period. 1695 */ 1696 static void rcu_gp_cleanup(struct rcu_state *rsp) 1697 { 1698 unsigned long gp_duration; 1699 bool needgp = false; 1700 int nocb = 0; 1701 struct rcu_data *rdp; 1702 struct rcu_node *rnp = rcu_get_root(rsp); 1703 1704 raw_spin_lock_irq(&rnp->lock); 1705 smp_mb__after_unlock_lock(); 1706 gp_duration = jiffies - rsp->gp_start; 1707 if (gp_duration > rsp->gp_max) 1708 rsp->gp_max = gp_duration; 1709 1710 /* 1711 * We know the grace period is complete, but to everyone else 1712 * it appears to still be ongoing. But it is also the case 1713 * that to everyone else it looks like there is nothing that 1714 * they can do to advance the grace period. It is therefore 1715 * safe for us to drop the lock in order to mark the grace 1716 * period as completed in all of the rcu_node structures. 1717 */ 1718 raw_spin_unlock_irq(&rnp->lock); 1719 1720 /* 1721 * Propagate new ->completed value to rcu_node structures so 1722 * that other CPUs don't have to wait until the start of the next 1723 * grace period to process their callbacks. This also avoids 1724 * some nasty RCU grace-period initialization races by forcing 1725 * the end of the current grace period to be completely recorded in 1726 * all of the rcu_node structures before the beginning of the next 1727 * grace period is recorded in any of the rcu_node structures. 1728 */ 1729 rcu_for_each_node_breadth_first(rsp, rnp) { 1730 raw_spin_lock_irq(&rnp->lock); 1731 smp_mb__after_unlock_lock(); 1732 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1733 rdp = this_cpu_ptr(rsp->rda); 1734 if (rnp == rdp->mynode) 1735 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 1736 /* smp_mb() provided by prior unlock-lock pair. */ 1737 nocb += rcu_future_gp_cleanup(rsp, rnp); 1738 raw_spin_unlock_irq(&rnp->lock); 1739 cond_resched(); 1740 } 1741 rnp = rcu_get_root(rsp); 1742 raw_spin_lock_irq(&rnp->lock); 1743 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */ 1744 rcu_nocb_gp_set(rnp, nocb); 1745 1746 /* Declare grace period done. */ 1747 ACCESS_ONCE(rsp->completed) = rsp->gpnum; 1748 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1749 rsp->fqs_state = RCU_GP_IDLE; 1750 rdp = this_cpu_ptr(rsp->rda); 1751 /* Advance CBs to reduce false positives below. */ 1752 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 1753 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 1754 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 1755 trace_rcu_grace_period(rsp->name, 1756 ACCESS_ONCE(rsp->gpnum), 1757 TPS("newreq")); 1758 } 1759 raw_spin_unlock_irq(&rnp->lock); 1760 } 1761 1762 /* 1763 * Body of kthread that handles grace periods. 1764 */ 1765 static int __noreturn rcu_gp_kthread(void *arg) 1766 { 1767 int fqs_state; 1768 int gf; 1769 unsigned long j; 1770 int ret; 1771 struct rcu_state *rsp = arg; 1772 struct rcu_node *rnp = rcu_get_root(rsp); 1773 1774 for (;;) { 1775 1776 /* Handle grace-period start. */ 1777 for (;;) { 1778 trace_rcu_grace_period(rsp->name, 1779 ACCESS_ONCE(rsp->gpnum), 1780 TPS("reqwait")); 1781 rsp->gp_state = RCU_GP_WAIT_GPS; 1782 wait_event_interruptible(rsp->gp_wq, 1783 ACCESS_ONCE(rsp->gp_flags) & 1784 RCU_GP_FLAG_INIT); 1785 /* Locking provides needed memory barrier. */ 1786 if (rcu_gp_init(rsp)) 1787 break; 1788 cond_resched(); 1789 flush_signals(current); 1790 trace_rcu_grace_period(rsp->name, 1791 ACCESS_ONCE(rsp->gpnum), 1792 TPS("reqwaitsig")); 1793 } 1794 1795 /* Handle quiescent-state forcing. */ 1796 fqs_state = RCU_SAVE_DYNTICK; 1797 j = jiffies_till_first_fqs; 1798 if (j > HZ) { 1799 j = HZ; 1800 jiffies_till_first_fqs = HZ; 1801 } 1802 ret = 0; 1803 for (;;) { 1804 if (!ret) 1805 rsp->jiffies_force_qs = jiffies + j; 1806 trace_rcu_grace_period(rsp->name, 1807 ACCESS_ONCE(rsp->gpnum), 1808 TPS("fqswait")); 1809 rsp->gp_state = RCU_GP_WAIT_FQS; 1810 ret = wait_event_interruptible_timeout(rsp->gp_wq, 1811 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 1812 RCU_GP_FLAG_FQS) || 1813 (!ACCESS_ONCE(rnp->qsmask) && 1814 !rcu_preempt_blocked_readers_cgp(rnp)), 1815 j); 1816 /* Locking provides needed memory barriers. */ 1817 /* If grace period done, leave loop. */ 1818 if (!ACCESS_ONCE(rnp->qsmask) && 1819 !rcu_preempt_blocked_readers_cgp(rnp)) 1820 break; 1821 /* If time for quiescent-state forcing, do it. */ 1822 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 1823 (gf & RCU_GP_FLAG_FQS)) { 1824 trace_rcu_grace_period(rsp->name, 1825 ACCESS_ONCE(rsp->gpnum), 1826 TPS("fqsstart")); 1827 fqs_state = rcu_gp_fqs(rsp, fqs_state); 1828 trace_rcu_grace_period(rsp->name, 1829 ACCESS_ONCE(rsp->gpnum), 1830 TPS("fqsend")); 1831 cond_resched(); 1832 } else { 1833 /* Deal with stray signal. */ 1834 cond_resched(); 1835 flush_signals(current); 1836 trace_rcu_grace_period(rsp->name, 1837 ACCESS_ONCE(rsp->gpnum), 1838 TPS("fqswaitsig")); 1839 } 1840 j = jiffies_till_next_fqs; 1841 if (j > HZ) { 1842 j = HZ; 1843 jiffies_till_next_fqs = HZ; 1844 } else if (j < 1) { 1845 j = 1; 1846 jiffies_till_next_fqs = 1; 1847 } 1848 } 1849 1850 /* Handle grace-period end. */ 1851 rcu_gp_cleanup(rsp); 1852 } 1853 } 1854 1855 /* 1856 * Start a new RCU grace period if warranted, re-initializing the hierarchy 1857 * in preparation for detecting the next grace period. The caller must hold 1858 * the root node's ->lock and hard irqs must be disabled. 1859 * 1860 * Note that it is legal for a dying CPU (which is marked as offline) to 1861 * invoke this function. This can happen when the dying CPU reports its 1862 * quiescent state. 1863 * 1864 * Returns true if the grace-period kthread must be awakened. 1865 */ 1866 static bool 1867 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 1868 struct rcu_data *rdp) 1869 { 1870 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 1871 /* 1872 * Either we have not yet spawned the grace-period 1873 * task, this CPU does not need another grace period, 1874 * or a grace period is already in progress. 1875 * Either way, don't start a new grace period. 1876 */ 1877 return false; 1878 } 1879 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 1880 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 1881 TPS("newreq")); 1882 1883 /* 1884 * We can't do wakeups while holding the rnp->lock, as that 1885 * could cause possible deadlocks with the rq->lock. Defer 1886 * the wakeup to our caller. 1887 */ 1888 return true; 1889 } 1890 1891 /* 1892 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 1893 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 1894 * is invoked indirectly from rcu_advance_cbs(), which would result in 1895 * endless recursion -- or would do so if it wasn't for the self-deadlock 1896 * that is encountered beforehand. 1897 * 1898 * Returns true if the grace-period kthread needs to be awakened. 1899 */ 1900 static bool rcu_start_gp(struct rcu_state *rsp) 1901 { 1902 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1903 struct rcu_node *rnp = rcu_get_root(rsp); 1904 bool ret = false; 1905 1906 /* 1907 * If there is no grace period in progress right now, any 1908 * callbacks we have up to this point will be satisfied by the 1909 * next grace period. Also, advancing the callbacks reduces the 1910 * probability of false positives from cpu_needs_another_gp() 1911 * resulting in pointless grace periods. So, advance callbacks 1912 * then start the grace period! 1913 */ 1914 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 1915 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 1916 return ret; 1917 } 1918 1919 /* 1920 * Report a full set of quiescent states to the specified rcu_state 1921 * data structure. This involves cleaning up after the prior grace 1922 * period and letting rcu_start_gp() start up the next grace period 1923 * if one is needed. Note that the caller must hold rnp->lock, which 1924 * is released before return. 1925 */ 1926 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 1927 __releases(rcu_get_root(rsp)->lock) 1928 { 1929 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 1930 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 1931 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 1932 } 1933 1934 /* 1935 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1936 * Allows quiescent states for a group of CPUs to be reported at one go 1937 * to the specified rcu_node structure, though all the CPUs in the group 1938 * must be represented by the same rcu_node structure (which need not be 1939 * a leaf rcu_node structure, though it often will be). That structure's 1940 * lock must be held upon entry, and it is released before return. 1941 */ 1942 static void 1943 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 1944 struct rcu_node *rnp, unsigned long flags) 1945 __releases(rnp->lock) 1946 { 1947 struct rcu_node *rnp_c; 1948 1949 /* Walk up the rcu_node hierarchy. */ 1950 for (;;) { 1951 if (!(rnp->qsmask & mask)) { 1952 1953 /* Our bit has already been cleared, so done. */ 1954 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1955 return; 1956 } 1957 rnp->qsmask &= ~mask; 1958 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 1959 mask, rnp->qsmask, rnp->level, 1960 rnp->grplo, rnp->grphi, 1961 !!rnp->gp_tasks); 1962 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1963 1964 /* Other bits still set at this level, so done. */ 1965 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1966 return; 1967 } 1968 mask = rnp->grpmask; 1969 if (rnp->parent == NULL) { 1970 1971 /* No more levels. Exit loop holding root lock. */ 1972 1973 break; 1974 } 1975 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1976 rnp_c = rnp; 1977 rnp = rnp->parent; 1978 raw_spin_lock_irqsave(&rnp->lock, flags); 1979 smp_mb__after_unlock_lock(); 1980 WARN_ON_ONCE(rnp_c->qsmask); 1981 } 1982 1983 /* 1984 * Get here if we are the last CPU to pass through a quiescent 1985 * state for this grace period. Invoke rcu_report_qs_rsp() 1986 * to clean up and start the next grace period if one is needed. 1987 */ 1988 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 1989 } 1990 1991 /* 1992 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1993 * structure. This must be either called from the specified CPU, or 1994 * called when the specified CPU is known to be offline (and when it is 1995 * also known that no other CPU is concurrently trying to help the offline 1996 * CPU). The lastcomp argument is used to make sure we are still in the 1997 * grace period of interest. We don't want to end the current grace period 1998 * based on quiescent states detected in an earlier grace period! 1999 */ 2000 static void 2001 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2002 { 2003 unsigned long flags; 2004 unsigned long mask; 2005 bool needwake; 2006 struct rcu_node *rnp; 2007 2008 rnp = rdp->mynode; 2009 raw_spin_lock_irqsave(&rnp->lock, flags); 2010 smp_mb__after_unlock_lock(); 2011 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || 2012 rnp->completed == rnp->gpnum) { 2013 2014 /* 2015 * The grace period in which this quiescent state was 2016 * recorded has ended, so don't report it upwards. 2017 * We will instead need a new quiescent state that lies 2018 * within the current grace period. 2019 */ 2020 rdp->passed_quiesce = 0; /* need qs for new gp. */ 2021 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2022 return; 2023 } 2024 mask = rdp->grpmask; 2025 if ((rnp->qsmask & mask) == 0) { 2026 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2027 } else { 2028 rdp->qs_pending = 0; 2029 2030 /* 2031 * This GP can't end until cpu checks in, so all of our 2032 * callbacks can be processed during the next GP. 2033 */ 2034 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2035 2036 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 2037 if (needwake) 2038 rcu_gp_kthread_wake(rsp); 2039 } 2040 } 2041 2042 /* 2043 * Check to see if there is a new grace period of which this CPU 2044 * is not yet aware, and if so, set up local rcu_data state for it. 2045 * Otherwise, see if this CPU has just passed through its first 2046 * quiescent state for this grace period, and record that fact if so. 2047 */ 2048 static void 2049 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2050 { 2051 /* Check for grace-period ends and beginnings. */ 2052 note_gp_changes(rsp, rdp); 2053 2054 /* 2055 * Does this CPU still need to do its part for current grace period? 2056 * If no, return and let the other CPUs do their part as well. 2057 */ 2058 if (!rdp->qs_pending) 2059 return; 2060 2061 /* 2062 * Was there a quiescent state since the beginning of the grace 2063 * period? If no, then exit and wait for the next call. 2064 */ 2065 if (!rdp->passed_quiesce) 2066 return; 2067 2068 /* 2069 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2070 * judge of that). 2071 */ 2072 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2073 } 2074 2075 #ifdef CONFIG_HOTPLUG_CPU 2076 2077 /* 2078 * Send the specified CPU's RCU callbacks to the orphanage. The 2079 * specified CPU must be offline, and the caller must hold the 2080 * ->orphan_lock. 2081 */ 2082 static void 2083 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2084 struct rcu_node *rnp, struct rcu_data *rdp) 2085 { 2086 /* No-CBs CPUs do not have orphanable callbacks. */ 2087 if (rcu_is_nocb_cpu(rdp->cpu)) 2088 return; 2089 2090 /* 2091 * Orphan the callbacks. First adjust the counts. This is safe 2092 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2093 * cannot be running now. Thus no memory barrier is required. 2094 */ 2095 if (rdp->nxtlist != NULL) { 2096 rsp->qlen_lazy += rdp->qlen_lazy; 2097 rsp->qlen += rdp->qlen; 2098 rdp->n_cbs_orphaned += rdp->qlen; 2099 rdp->qlen_lazy = 0; 2100 ACCESS_ONCE(rdp->qlen) = 0; 2101 } 2102 2103 /* 2104 * Next, move those callbacks still needing a grace period to 2105 * the orphanage, where some other CPU will pick them up. 2106 * Some of the callbacks might have gone partway through a grace 2107 * period, but that is too bad. They get to start over because we 2108 * cannot assume that grace periods are synchronized across CPUs. 2109 * We don't bother updating the ->nxttail[] array yet, instead 2110 * we just reset the whole thing later on. 2111 */ 2112 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2113 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2114 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2115 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2116 } 2117 2118 /* 2119 * Then move the ready-to-invoke callbacks to the orphanage, 2120 * where some other CPU will pick them up. These will not be 2121 * required to pass though another grace period: They are done. 2122 */ 2123 if (rdp->nxtlist != NULL) { 2124 *rsp->orphan_donetail = rdp->nxtlist; 2125 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2126 } 2127 2128 /* Finally, initialize the rcu_data structure's list to empty. */ 2129 init_callback_list(rdp); 2130 } 2131 2132 /* 2133 * Adopt the RCU callbacks from the specified rcu_state structure's 2134 * orphanage. The caller must hold the ->orphan_lock. 2135 */ 2136 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2137 { 2138 int i; 2139 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2140 2141 /* No-CBs CPUs are handled specially. */ 2142 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2143 return; 2144 2145 /* Do the accounting first. */ 2146 rdp->qlen_lazy += rsp->qlen_lazy; 2147 rdp->qlen += rsp->qlen; 2148 rdp->n_cbs_adopted += rsp->qlen; 2149 if (rsp->qlen_lazy != rsp->qlen) 2150 rcu_idle_count_callbacks_posted(); 2151 rsp->qlen_lazy = 0; 2152 rsp->qlen = 0; 2153 2154 /* 2155 * We do not need a memory barrier here because the only way we 2156 * can get here if there is an rcu_barrier() in flight is if 2157 * we are the task doing the rcu_barrier(). 2158 */ 2159 2160 /* First adopt the ready-to-invoke callbacks. */ 2161 if (rsp->orphan_donelist != NULL) { 2162 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2163 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2164 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2165 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2166 rdp->nxttail[i] = rsp->orphan_donetail; 2167 rsp->orphan_donelist = NULL; 2168 rsp->orphan_donetail = &rsp->orphan_donelist; 2169 } 2170 2171 /* And then adopt the callbacks that still need a grace period. */ 2172 if (rsp->orphan_nxtlist != NULL) { 2173 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2174 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2175 rsp->orphan_nxtlist = NULL; 2176 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2177 } 2178 } 2179 2180 /* 2181 * Trace the fact that this CPU is going offline. 2182 */ 2183 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2184 { 2185 RCU_TRACE(unsigned long mask); 2186 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2187 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2188 2189 RCU_TRACE(mask = rdp->grpmask); 2190 trace_rcu_grace_period(rsp->name, 2191 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2192 TPS("cpuofl")); 2193 } 2194 2195 /* 2196 * The CPU has been completely removed, and some other CPU is reporting 2197 * this fact from process context. Do the remainder of the cleanup, 2198 * including orphaning the outgoing CPU's RCU callbacks, and also 2199 * adopting them. There can only be one CPU hotplug operation at a time, 2200 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2201 */ 2202 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2203 { 2204 unsigned long flags; 2205 unsigned long mask; 2206 int need_report = 0; 2207 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2208 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2209 2210 /* Adjust any no-longer-needed kthreads. */ 2211 rcu_boost_kthread_setaffinity(rnp, -1); 2212 2213 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ 2214 2215 /* Exclude any attempts to start a new grace period. */ 2216 mutex_lock(&rsp->onoff_mutex); 2217 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2218 2219 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2220 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2221 rcu_adopt_orphan_cbs(rsp, flags); 2222 2223 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 2224 mask = rdp->grpmask; /* rnp->grplo is constant. */ 2225 do { 2226 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2227 smp_mb__after_unlock_lock(); 2228 rnp->qsmaskinit &= ~mask; 2229 if (rnp->qsmaskinit != 0) { 2230 if (rnp != rdp->mynode) 2231 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2232 break; 2233 } 2234 if (rnp == rdp->mynode) 2235 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 2236 else 2237 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2238 mask = rnp->grpmask; 2239 rnp = rnp->parent; 2240 } while (rnp != NULL); 2241 2242 /* 2243 * We still hold the leaf rcu_node structure lock here, and 2244 * irqs are still disabled. The reason for this subterfuge is 2245 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock 2246 * held leads to deadlock. 2247 */ 2248 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ 2249 rnp = rdp->mynode; 2250 if (need_report & RCU_OFL_TASKS_NORM_GP) 2251 rcu_report_unblock_qs_rnp(rnp, flags); 2252 else 2253 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2254 if (need_report & RCU_OFL_TASKS_EXP_GP) 2255 rcu_report_exp_rnp(rsp, rnp, true); 2256 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2257 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2258 cpu, rdp->qlen, rdp->nxtlist); 2259 init_callback_list(rdp); 2260 /* Disallow further callbacks on this CPU. */ 2261 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2262 mutex_unlock(&rsp->onoff_mutex); 2263 } 2264 2265 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2266 2267 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2268 { 2269 } 2270 2271 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2272 { 2273 } 2274 2275 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2276 2277 /* 2278 * Invoke any RCU callbacks that have made it to the end of their grace 2279 * period. Thottle as specified by rdp->blimit. 2280 */ 2281 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2282 { 2283 unsigned long flags; 2284 struct rcu_head *next, *list, **tail; 2285 long bl, count, count_lazy; 2286 int i; 2287 2288 /* If no callbacks are ready, just return. */ 2289 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2290 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2291 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2292 need_resched(), is_idle_task(current), 2293 rcu_is_callbacks_kthread()); 2294 return; 2295 } 2296 2297 /* 2298 * Extract the list of ready callbacks, disabling to prevent 2299 * races with call_rcu() from interrupt handlers. 2300 */ 2301 local_irq_save(flags); 2302 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2303 bl = rdp->blimit; 2304 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2305 list = rdp->nxtlist; 2306 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2307 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2308 tail = rdp->nxttail[RCU_DONE_TAIL]; 2309 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2310 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2311 rdp->nxttail[i] = &rdp->nxtlist; 2312 local_irq_restore(flags); 2313 2314 /* Invoke callbacks. */ 2315 count = count_lazy = 0; 2316 while (list) { 2317 next = list->next; 2318 prefetch(next); 2319 debug_rcu_head_unqueue(list); 2320 if (__rcu_reclaim(rsp->name, list)) 2321 count_lazy++; 2322 list = next; 2323 /* Stop only if limit reached and CPU has something to do. */ 2324 if (++count >= bl && 2325 (need_resched() || 2326 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2327 break; 2328 } 2329 2330 local_irq_save(flags); 2331 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2332 is_idle_task(current), 2333 rcu_is_callbacks_kthread()); 2334 2335 /* Update count, and requeue any remaining callbacks. */ 2336 if (list != NULL) { 2337 *tail = rdp->nxtlist; 2338 rdp->nxtlist = list; 2339 for (i = 0; i < RCU_NEXT_SIZE; i++) 2340 if (&rdp->nxtlist == rdp->nxttail[i]) 2341 rdp->nxttail[i] = tail; 2342 else 2343 break; 2344 } 2345 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2346 rdp->qlen_lazy -= count_lazy; 2347 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count; 2348 rdp->n_cbs_invoked += count; 2349 2350 /* Reinstate batch limit if we have worked down the excess. */ 2351 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2352 rdp->blimit = blimit; 2353 2354 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2355 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2356 rdp->qlen_last_fqs_check = 0; 2357 rdp->n_force_qs_snap = rsp->n_force_qs; 2358 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2359 rdp->qlen_last_fqs_check = rdp->qlen; 2360 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2361 2362 local_irq_restore(flags); 2363 2364 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2365 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2366 invoke_rcu_core(); 2367 } 2368 2369 /* 2370 * Check to see if this CPU is in a non-context-switch quiescent state 2371 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2372 * Also schedule RCU core processing. 2373 * 2374 * This function must be called from hardirq context. It is normally 2375 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2376 * false, there is no point in invoking rcu_check_callbacks(). 2377 */ 2378 void rcu_check_callbacks(int cpu, int user) 2379 { 2380 trace_rcu_utilization(TPS("Start scheduler-tick")); 2381 increment_cpu_stall_ticks(); 2382 if (user || rcu_is_cpu_rrupt_from_idle()) { 2383 2384 /* 2385 * Get here if this CPU took its interrupt from user 2386 * mode or from the idle loop, and if this is not a 2387 * nested interrupt. In this case, the CPU is in 2388 * a quiescent state, so note it. 2389 * 2390 * No memory barrier is required here because both 2391 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2392 * variables that other CPUs neither access nor modify, 2393 * at least not while the corresponding CPU is online. 2394 */ 2395 2396 rcu_sched_qs(cpu); 2397 rcu_bh_qs(cpu); 2398 2399 } else if (!in_softirq()) { 2400 2401 /* 2402 * Get here if this CPU did not take its interrupt from 2403 * softirq, in other words, if it is not interrupting 2404 * a rcu_bh read-side critical section. This is an _bh 2405 * critical section, so note it. 2406 */ 2407 2408 rcu_bh_qs(cpu); 2409 } 2410 rcu_preempt_check_callbacks(cpu); 2411 if (rcu_pending(cpu)) 2412 invoke_rcu_core(); 2413 trace_rcu_utilization(TPS("End scheduler-tick")); 2414 } 2415 2416 /* 2417 * Scan the leaf rcu_node structures, processing dyntick state for any that 2418 * have not yet encountered a quiescent state, using the function specified. 2419 * Also initiate boosting for any threads blocked on the root rcu_node. 2420 * 2421 * The caller must have suppressed start of new grace periods. 2422 */ 2423 static void force_qs_rnp(struct rcu_state *rsp, 2424 int (*f)(struct rcu_data *rsp, bool *isidle, 2425 unsigned long *maxj), 2426 bool *isidle, unsigned long *maxj) 2427 { 2428 unsigned long bit; 2429 int cpu; 2430 unsigned long flags; 2431 unsigned long mask; 2432 struct rcu_node *rnp; 2433 2434 rcu_for_each_leaf_node(rsp, rnp) { 2435 cond_resched(); 2436 mask = 0; 2437 raw_spin_lock_irqsave(&rnp->lock, flags); 2438 smp_mb__after_unlock_lock(); 2439 if (!rcu_gp_in_progress(rsp)) { 2440 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2441 return; 2442 } 2443 if (rnp->qsmask == 0) { 2444 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 2445 continue; 2446 } 2447 cpu = rnp->grplo; 2448 bit = 1; 2449 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2450 if ((rnp->qsmask & bit) != 0) { 2451 if ((rnp->qsmaskinit & bit) != 0) 2452 *isidle = 0; 2453 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2454 mask |= bit; 2455 } 2456 } 2457 if (mask != 0) { 2458 2459 /* rcu_report_qs_rnp() releases rnp->lock. */ 2460 rcu_report_qs_rnp(mask, rsp, rnp, flags); 2461 continue; 2462 } 2463 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2464 } 2465 rnp = rcu_get_root(rsp); 2466 if (rnp->qsmask == 0) { 2467 raw_spin_lock_irqsave(&rnp->lock, flags); 2468 smp_mb__after_unlock_lock(); 2469 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ 2470 } 2471 } 2472 2473 /* 2474 * Force quiescent states on reluctant CPUs, and also detect which 2475 * CPUs are in dyntick-idle mode. 2476 */ 2477 static void force_quiescent_state(struct rcu_state *rsp) 2478 { 2479 unsigned long flags; 2480 bool ret; 2481 struct rcu_node *rnp; 2482 struct rcu_node *rnp_old = NULL; 2483 2484 /* Funnel through hierarchy to reduce memory contention. */ 2485 rnp = __this_cpu_read(rsp->rda->mynode); 2486 for (; rnp != NULL; rnp = rnp->parent) { 2487 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2488 !raw_spin_trylock(&rnp->fqslock); 2489 if (rnp_old != NULL) 2490 raw_spin_unlock(&rnp_old->fqslock); 2491 if (ret) { 2492 rsp->n_force_qs_lh++; 2493 return; 2494 } 2495 rnp_old = rnp; 2496 } 2497 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2498 2499 /* Reached the root of the rcu_node tree, acquire lock. */ 2500 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2501 smp_mb__after_unlock_lock(); 2502 raw_spin_unlock(&rnp_old->fqslock); 2503 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2504 rsp->n_force_qs_lh++; 2505 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2506 return; /* Someone beat us to it. */ 2507 } 2508 ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS; 2509 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2510 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 2511 } 2512 2513 /* 2514 * This does the RCU core processing work for the specified rcu_state 2515 * and rcu_data structures. This may be called only from the CPU to 2516 * whom the rdp belongs. 2517 */ 2518 static void 2519 __rcu_process_callbacks(struct rcu_state *rsp) 2520 { 2521 unsigned long flags; 2522 bool needwake; 2523 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2524 2525 WARN_ON_ONCE(rdp->beenonline == 0); 2526 2527 /* Update RCU state based on any recent quiescent states. */ 2528 rcu_check_quiescent_state(rsp, rdp); 2529 2530 /* Does this CPU require a not-yet-started grace period? */ 2531 local_irq_save(flags); 2532 if (cpu_needs_another_gp(rsp, rdp)) { 2533 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2534 needwake = rcu_start_gp(rsp); 2535 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2536 if (needwake) 2537 rcu_gp_kthread_wake(rsp); 2538 } else { 2539 local_irq_restore(flags); 2540 } 2541 2542 /* If there are callbacks ready, invoke them. */ 2543 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2544 invoke_rcu_callbacks(rsp, rdp); 2545 2546 /* Do any needed deferred wakeups of rcuo kthreads. */ 2547 do_nocb_deferred_wakeup(rdp); 2548 } 2549 2550 /* 2551 * Do RCU core processing for the current CPU. 2552 */ 2553 static void rcu_process_callbacks(struct softirq_action *unused) 2554 { 2555 struct rcu_state *rsp; 2556 2557 if (cpu_is_offline(smp_processor_id())) 2558 return; 2559 trace_rcu_utilization(TPS("Start RCU core")); 2560 for_each_rcu_flavor(rsp) 2561 __rcu_process_callbacks(rsp); 2562 trace_rcu_utilization(TPS("End RCU core")); 2563 } 2564 2565 /* 2566 * Schedule RCU callback invocation. If the specified type of RCU 2567 * does not support RCU priority boosting, just do a direct call, 2568 * otherwise wake up the per-CPU kernel kthread. Note that because we 2569 * are running on the current CPU with interrupts disabled, the 2570 * rcu_cpu_kthread_task cannot disappear out from under us. 2571 */ 2572 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2573 { 2574 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2575 return; 2576 if (likely(!rsp->boost)) { 2577 rcu_do_batch(rsp, rdp); 2578 return; 2579 } 2580 invoke_rcu_callbacks_kthread(); 2581 } 2582 2583 static void invoke_rcu_core(void) 2584 { 2585 if (cpu_online(smp_processor_id())) 2586 raise_softirq(RCU_SOFTIRQ); 2587 } 2588 2589 /* 2590 * Handle any core-RCU processing required by a call_rcu() invocation. 2591 */ 2592 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2593 struct rcu_head *head, unsigned long flags) 2594 { 2595 bool needwake; 2596 2597 /* 2598 * If called from an extended quiescent state, invoke the RCU 2599 * core in order to force a re-evaluation of RCU's idleness. 2600 */ 2601 if (!rcu_is_watching() && cpu_online(smp_processor_id())) 2602 invoke_rcu_core(); 2603 2604 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2605 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2606 return; 2607 2608 /* 2609 * Force the grace period if too many callbacks or too long waiting. 2610 * Enforce hysteresis, and don't invoke force_quiescent_state() 2611 * if some other CPU has recently done so. Also, don't bother 2612 * invoking force_quiescent_state() if the newly enqueued callback 2613 * is the only one waiting for a grace period to complete. 2614 */ 2615 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2616 2617 /* Are we ignoring a completed grace period? */ 2618 note_gp_changes(rsp, rdp); 2619 2620 /* Start a new grace period if one not already started. */ 2621 if (!rcu_gp_in_progress(rsp)) { 2622 struct rcu_node *rnp_root = rcu_get_root(rsp); 2623 2624 raw_spin_lock(&rnp_root->lock); 2625 smp_mb__after_unlock_lock(); 2626 needwake = rcu_start_gp(rsp); 2627 raw_spin_unlock(&rnp_root->lock); 2628 if (needwake) 2629 rcu_gp_kthread_wake(rsp); 2630 } else { 2631 /* Give the grace period a kick. */ 2632 rdp->blimit = LONG_MAX; 2633 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2634 *rdp->nxttail[RCU_DONE_TAIL] != head) 2635 force_quiescent_state(rsp); 2636 rdp->n_force_qs_snap = rsp->n_force_qs; 2637 rdp->qlen_last_fqs_check = rdp->qlen; 2638 } 2639 } 2640 } 2641 2642 /* 2643 * RCU callback function to leak a callback. 2644 */ 2645 static void rcu_leak_callback(struct rcu_head *rhp) 2646 { 2647 } 2648 2649 /* 2650 * Helper function for call_rcu() and friends. The cpu argument will 2651 * normally be -1, indicating "currently running CPU". It may specify 2652 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2653 * is expected to specify a CPU. 2654 */ 2655 static void 2656 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2657 struct rcu_state *rsp, int cpu, bool lazy) 2658 { 2659 unsigned long flags; 2660 struct rcu_data *rdp; 2661 2662 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 2663 if (debug_rcu_head_queue(head)) { 2664 /* Probable double call_rcu(), so leak the callback. */ 2665 ACCESS_ONCE(head->func) = rcu_leak_callback; 2666 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2667 return; 2668 } 2669 head->func = func; 2670 head->next = NULL; 2671 2672 /* 2673 * Opportunistically note grace-period endings and beginnings. 2674 * Note that we might see a beginning right after we see an 2675 * end, but never vice versa, since this CPU has to pass through 2676 * a quiescent state betweentimes. 2677 */ 2678 local_irq_save(flags); 2679 rdp = this_cpu_ptr(rsp->rda); 2680 2681 /* Add the callback to our list. */ 2682 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2683 int offline; 2684 2685 if (cpu != -1) 2686 rdp = per_cpu_ptr(rsp->rda, cpu); 2687 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2688 WARN_ON_ONCE(offline); 2689 /* _call_rcu() is illegal on offline CPU; leak the callback. */ 2690 local_irq_restore(flags); 2691 return; 2692 } 2693 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1; 2694 if (lazy) 2695 rdp->qlen_lazy++; 2696 else 2697 rcu_idle_count_callbacks_posted(); 2698 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 2699 *rdp->nxttail[RCU_NEXT_TAIL] = head; 2700 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 2701 2702 if (__is_kfree_rcu_offset((unsigned long)func)) 2703 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2704 rdp->qlen_lazy, rdp->qlen); 2705 else 2706 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 2707 2708 /* Go handle any RCU core processing required. */ 2709 __call_rcu_core(rsp, rdp, head, flags); 2710 local_irq_restore(flags); 2711 } 2712 2713 /* 2714 * Queue an RCU-sched callback for invocation after a grace period. 2715 */ 2716 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2717 { 2718 __call_rcu(head, func, &rcu_sched_state, -1, 0); 2719 } 2720 EXPORT_SYMBOL_GPL(call_rcu_sched); 2721 2722 /* 2723 * Queue an RCU callback for invocation after a quicker grace period. 2724 */ 2725 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2726 { 2727 __call_rcu(head, func, &rcu_bh_state, -1, 0); 2728 } 2729 EXPORT_SYMBOL_GPL(call_rcu_bh); 2730 2731 /* 2732 * Queue an RCU callback for lazy invocation after a grace period. 2733 * This will likely be later named something like "call_rcu_lazy()", 2734 * but this change will require some way of tagging the lazy RCU 2735 * callbacks in the list of pending callbacks. Until then, this 2736 * function may only be called from __kfree_rcu(). 2737 */ 2738 void kfree_call_rcu(struct rcu_head *head, 2739 void (*func)(struct rcu_head *rcu)) 2740 { 2741 __call_rcu(head, func, rcu_state_p, -1, 1); 2742 } 2743 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2744 2745 /* 2746 * Because a context switch is a grace period for RCU-sched and RCU-bh, 2747 * any blocking grace-period wait automatically implies a grace period 2748 * if there is only one CPU online at any point time during execution 2749 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 2750 * occasionally incorrectly indicate that there are multiple CPUs online 2751 * when there was in fact only one the whole time, as this just adds 2752 * some overhead: RCU still operates correctly. 2753 */ 2754 static inline int rcu_blocking_is_gp(void) 2755 { 2756 int ret; 2757 2758 might_sleep(); /* Check for RCU read-side critical section. */ 2759 preempt_disable(); 2760 ret = num_online_cpus() <= 1; 2761 preempt_enable(); 2762 return ret; 2763 } 2764 2765 /** 2766 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 2767 * 2768 * Control will return to the caller some time after a full rcu-sched 2769 * grace period has elapsed, in other words after all currently executing 2770 * rcu-sched read-side critical sections have completed. These read-side 2771 * critical sections are delimited by rcu_read_lock_sched() and 2772 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 2773 * local_irq_disable(), and so on may be used in place of 2774 * rcu_read_lock_sched(). 2775 * 2776 * This means that all preempt_disable code sequences, including NMI and 2777 * non-threaded hardware-interrupt handlers, in progress on entry will 2778 * have completed before this primitive returns. However, this does not 2779 * guarantee that softirq handlers will have completed, since in some 2780 * kernels, these handlers can run in process context, and can block. 2781 * 2782 * Note that this guarantee implies further memory-ordering guarantees. 2783 * On systems with more than one CPU, when synchronize_sched() returns, 2784 * each CPU is guaranteed to have executed a full memory barrier since the 2785 * end of its last RCU-sched read-side critical section whose beginning 2786 * preceded the call to synchronize_sched(). In addition, each CPU having 2787 * an RCU read-side critical section that extends beyond the return from 2788 * synchronize_sched() is guaranteed to have executed a full memory barrier 2789 * after the beginning of synchronize_sched() and before the beginning of 2790 * that RCU read-side critical section. Note that these guarantees include 2791 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2792 * that are executing in the kernel. 2793 * 2794 * Furthermore, if CPU A invoked synchronize_sched(), which returned 2795 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2796 * to have executed a full memory barrier during the execution of 2797 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 2798 * again only if the system has more than one CPU). 2799 * 2800 * This primitive provides the guarantees made by the (now removed) 2801 * synchronize_kernel() API. In contrast, synchronize_rcu() only 2802 * guarantees that rcu_read_lock() sections will have completed. 2803 * In "classic RCU", these two guarantees happen to be one and 2804 * the same, but can differ in realtime RCU implementations. 2805 */ 2806 void synchronize_sched(void) 2807 { 2808 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2809 !lock_is_held(&rcu_lock_map) && 2810 !lock_is_held(&rcu_sched_lock_map), 2811 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 2812 if (rcu_blocking_is_gp()) 2813 return; 2814 if (rcu_expedited) 2815 synchronize_sched_expedited(); 2816 else 2817 wait_rcu_gp(call_rcu_sched); 2818 } 2819 EXPORT_SYMBOL_GPL(synchronize_sched); 2820 2821 /** 2822 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 2823 * 2824 * Control will return to the caller some time after a full rcu_bh grace 2825 * period has elapsed, in other words after all currently executing rcu_bh 2826 * read-side critical sections have completed. RCU read-side critical 2827 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 2828 * and may be nested. 2829 * 2830 * See the description of synchronize_sched() for more detailed information 2831 * on memory ordering guarantees. 2832 */ 2833 void synchronize_rcu_bh(void) 2834 { 2835 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2836 !lock_is_held(&rcu_lock_map) && 2837 !lock_is_held(&rcu_sched_lock_map), 2838 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 2839 if (rcu_blocking_is_gp()) 2840 return; 2841 if (rcu_expedited) 2842 synchronize_rcu_bh_expedited(); 2843 else 2844 wait_rcu_gp(call_rcu_bh); 2845 } 2846 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 2847 2848 /** 2849 * get_state_synchronize_rcu - Snapshot current RCU state 2850 * 2851 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2852 * to determine whether or not a full grace period has elapsed in the 2853 * meantime. 2854 */ 2855 unsigned long get_state_synchronize_rcu(void) 2856 { 2857 /* 2858 * Any prior manipulation of RCU-protected data must happen 2859 * before the load from ->gpnum. 2860 */ 2861 smp_mb(); /* ^^^ */ 2862 2863 /* 2864 * Make sure this load happens before the purportedly 2865 * time-consuming work between get_state_synchronize_rcu() 2866 * and cond_synchronize_rcu(). 2867 */ 2868 return smp_load_acquire(&rcu_state_p->gpnum); 2869 } 2870 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2871 2872 /** 2873 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2874 * 2875 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2876 * 2877 * If a full RCU grace period has elapsed since the earlier call to 2878 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2879 * synchronize_rcu() to wait for a full grace period. 2880 * 2881 * Yes, this function does not take counter wrap into account. But 2882 * counter wrap is harmless. If the counter wraps, we have waited for 2883 * more than 2 billion grace periods (and way more on a 64-bit system!), 2884 * so waiting for one additional grace period should be just fine. 2885 */ 2886 void cond_synchronize_rcu(unsigned long oldstate) 2887 { 2888 unsigned long newstate; 2889 2890 /* 2891 * Ensure that this load happens before any RCU-destructive 2892 * actions the caller might carry out after we return. 2893 */ 2894 newstate = smp_load_acquire(&rcu_state_p->completed); 2895 if (ULONG_CMP_GE(oldstate, newstate)) 2896 synchronize_rcu(); 2897 } 2898 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2899 2900 static int synchronize_sched_expedited_cpu_stop(void *data) 2901 { 2902 /* 2903 * There must be a full memory barrier on each affected CPU 2904 * between the time that try_stop_cpus() is called and the 2905 * time that it returns. 2906 * 2907 * In the current initial implementation of cpu_stop, the 2908 * above condition is already met when the control reaches 2909 * this point and the following smp_mb() is not strictly 2910 * necessary. Do smp_mb() anyway for documentation and 2911 * robustness against future implementation changes. 2912 */ 2913 smp_mb(); /* See above comment block. */ 2914 return 0; 2915 } 2916 2917 /** 2918 * synchronize_sched_expedited - Brute-force RCU-sched grace period 2919 * 2920 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 2921 * approach to force the grace period to end quickly. This consumes 2922 * significant time on all CPUs and is unfriendly to real-time workloads, 2923 * so is thus not recommended for any sort of common-case code. In fact, 2924 * if you are using synchronize_sched_expedited() in a loop, please 2925 * restructure your code to batch your updates, and then use a single 2926 * synchronize_sched() instead. 2927 * 2928 * Note that it is illegal to call this function while holding any lock 2929 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 2930 * to call this function from a CPU-hotplug notifier. Failing to observe 2931 * these restriction will result in deadlock. 2932 * 2933 * This implementation can be thought of as an application of ticket 2934 * locking to RCU, with sync_sched_expedited_started and 2935 * sync_sched_expedited_done taking on the roles of the halves 2936 * of the ticket-lock word. Each task atomically increments 2937 * sync_sched_expedited_started upon entry, snapshotting the old value, 2938 * then attempts to stop all the CPUs. If this succeeds, then each 2939 * CPU will have executed a context switch, resulting in an RCU-sched 2940 * grace period. We are then done, so we use atomic_cmpxchg() to 2941 * update sync_sched_expedited_done to match our snapshot -- but 2942 * only if someone else has not already advanced past our snapshot. 2943 * 2944 * On the other hand, if try_stop_cpus() fails, we check the value 2945 * of sync_sched_expedited_done. If it has advanced past our 2946 * initial snapshot, then someone else must have forced a grace period 2947 * some time after we took our snapshot. In this case, our work is 2948 * done for us, and we can simply return. Otherwise, we try again, 2949 * but keep our initial snapshot for purposes of checking for someone 2950 * doing our work for us. 2951 * 2952 * If we fail too many times in a row, we fall back to synchronize_sched(). 2953 */ 2954 void synchronize_sched_expedited(void) 2955 { 2956 long firstsnap, s, snap; 2957 int trycount = 0; 2958 struct rcu_state *rsp = &rcu_sched_state; 2959 2960 /* 2961 * If we are in danger of counter wrap, just do synchronize_sched(). 2962 * By allowing sync_sched_expedited_started to advance no more than 2963 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 2964 * that more than 3.5 billion CPUs would be required to force a 2965 * counter wrap on a 32-bit system. Quite a few more CPUs would of 2966 * course be required on a 64-bit system. 2967 */ 2968 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 2969 (ulong)atomic_long_read(&rsp->expedited_done) + 2970 ULONG_MAX / 8)) { 2971 synchronize_sched(); 2972 atomic_long_inc(&rsp->expedited_wrap); 2973 return; 2974 } 2975 2976 /* 2977 * Take a ticket. Note that atomic_inc_return() implies a 2978 * full memory barrier. 2979 */ 2980 snap = atomic_long_inc_return(&rsp->expedited_start); 2981 firstsnap = snap; 2982 get_online_cpus(); 2983 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 2984 2985 /* 2986 * Each pass through the following loop attempts to force a 2987 * context switch on each CPU. 2988 */ 2989 while (try_stop_cpus(cpu_online_mask, 2990 synchronize_sched_expedited_cpu_stop, 2991 NULL) == -EAGAIN) { 2992 put_online_cpus(); 2993 atomic_long_inc(&rsp->expedited_tryfail); 2994 2995 /* Check to see if someone else did our work for us. */ 2996 s = atomic_long_read(&rsp->expedited_done); 2997 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 2998 /* ensure test happens before caller kfree */ 2999 smp_mb__before_atomic(); /* ^^^ */ 3000 atomic_long_inc(&rsp->expedited_workdone1); 3001 return; 3002 } 3003 3004 /* No joy, try again later. Or just synchronize_sched(). */ 3005 if (trycount++ < 10) { 3006 udelay(trycount * num_online_cpus()); 3007 } else { 3008 wait_rcu_gp(call_rcu_sched); 3009 atomic_long_inc(&rsp->expedited_normal); 3010 return; 3011 } 3012 3013 /* Recheck to see if someone else did our work for us. */ 3014 s = atomic_long_read(&rsp->expedited_done); 3015 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3016 /* ensure test happens before caller kfree */ 3017 smp_mb__before_atomic(); /* ^^^ */ 3018 atomic_long_inc(&rsp->expedited_workdone2); 3019 return; 3020 } 3021 3022 /* 3023 * Refetching sync_sched_expedited_started allows later 3024 * callers to piggyback on our grace period. We retry 3025 * after they started, so our grace period works for them, 3026 * and they started after our first try, so their grace 3027 * period works for us. 3028 */ 3029 get_online_cpus(); 3030 snap = atomic_long_read(&rsp->expedited_start); 3031 smp_mb(); /* ensure read is before try_stop_cpus(). */ 3032 } 3033 atomic_long_inc(&rsp->expedited_stoppedcpus); 3034 3035 /* 3036 * Everyone up to our most recent fetch is covered by our grace 3037 * period. Update the counter, but only if our work is still 3038 * relevant -- which it won't be if someone who started later 3039 * than we did already did their update. 3040 */ 3041 do { 3042 atomic_long_inc(&rsp->expedited_done_tries); 3043 s = atomic_long_read(&rsp->expedited_done); 3044 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 3045 /* ensure test happens before caller kfree */ 3046 smp_mb__before_atomic(); /* ^^^ */ 3047 atomic_long_inc(&rsp->expedited_done_lost); 3048 break; 3049 } 3050 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 3051 atomic_long_inc(&rsp->expedited_done_exit); 3052 3053 put_online_cpus(); 3054 } 3055 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3056 3057 /* 3058 * Check to see if there is any immediate RCU-related work to be done 3059 * by the current CPU, for the specified type of RCU, returning 1 if so. 3060 * The checks are in order of increasing expense: checks that can be 3061 * carried out against CPU-local state are performed first. However, 3062 * we must check for CPU stalls first, else we might not get a chance. 3063 */ 3064 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3065 { 3066 struct rcu_node *rnp = rdp->mynode; 3067 3068 rdp->n_rcu_pending++; 3069 3070 /* Check for CPU stalls, if enabled. */ 3071 check_cpu_stall(rsp, rdp); 3072 3073 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3074 if (rcu_nohz_full_cpu(rsp)) 3075 return 0; 3076 3077 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3078 if (rcu_scheduler_fully_active && 3079 rdp->qs_pending && !rdp->passed_quiesce) { 3080 rdp->n_rp_qs_pending++; 3081 } else if (rdp->qs_pending && rdp->passed_quiesce) { 3082 rdp->n_rp_report_qs++; 3083 return 1; 3084 } 3085 3086 /* Does this CPU have callbacks ready to invoke? */ 3087 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3088 rdp->n_rp_cb_ready++; 3089 return 1; 3090 } 3091 3092 /* Has RCU gone idle with this CPU needing another grace period? */ 3093 if (cpu_needs_another_gp(rsp, rdp)) { 3094 rdp->n_rp_cpu_needs_gp++; 3095 return 1; 3096 } 3097 3098 /* Has another RCU grace period completed? */ 3099 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3100 rdp->n_rp_gp_completed++; 3101 return 1; 3102 } 3103 3104 /* Has a new RCU grace period started? */ 3105 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ 3106 rdp->n_rp_gp_started++; 3107 return 1; 3108 } 3109 3110 /* Does this CPU need a deferred NOCB wakeup? */ 3111 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3112 rdp->n_rp_nocb_defer_wakeup++; 3113 return 1; 3114 } 3115 3116 /* nothing to do */ 3117 rdp->n_rp_need_nothing++; 3118 return 0; 3119 } 3120 3121 /* 3122 * Check to see if there is any immediate RCU-related work to be done 3123 * by the current CPU, returning 1 if so. This function is part of the 3124 * RCU implementation; it is -not- an exported member of the RCU API. 3125 */ 3126 static int rcu_pending(int cpu) 3127 { 3128 struct rcu_state *rsp; 3129 3130 for_each_rcu_flavor(rsp) 3131 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) 3132 return 1; 3133 return 0; 3134 } 3135 3136 /* 3137 * Return true if the specified CPU has any callback. If all_lazy is 3138 * non-NULL, store an indication of whether all callbacks are lazy. 3139 * (If there are no callbacks, all of them are deemed to be lazy.) 3140 */ 3141 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy) 3142 { 3143 bool al = true; 3144 bool hc = false; 3145 struct rcu_data *rdp; 3146 struct rcu_state *rsp; 3147 3148 for_each_rcu_flavor(rsp) { 3149 rdp = per_cpu_ptr(rsp->rda, cpu); 3150 if (!rdp->nxtlist) 3151 continue; 3152 hc = true; 3153 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3154 al = false; 3155 break; 3156 } 3157 } 3158 if (all_lazy) 3159 *all_lazy = al; 3160 return hc; 3161 } 3162 3163 /* 3164 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3165 * the compiler is expected to optimize this away. 3166 */ 3167 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3168 int cpu, unsigned long done) 3169 { 3170 trace_rcu_barrier(rsp->name, s, cpu, 3171 atomic_read(&rsp->barrier_cpu_count), done); 3172 } 3173 3174 /* 3175 * RCU callback function for _rcu_barrier(). If we are last, wake 3176 * up the task executing _rcu_barrier(). 3177 */ 3178 static void rcu_barrier_callback(struct rcu_head *rhp) 3179 { 3180 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3181 struct rcu_state *rsp = rdp->rsp; 3182 3183 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3184 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 3185 complete(&rsp->barrier_completion); 3186 } else { 3187 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 3188 } 3189 } 3190 3191 /* 3192 * Called with preemption disabled, and from cross-cpu IRQ context. 3193 */ 3194 static void rcu_barrier_func(void *type) 3195 { 3196 struct rcu_state *rsp = type; 3197 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3198 3199 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 3200 atomic_inc(&rsp->barrier_cpu_count); 3201 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3202 } 3203 3204 /* 3205 * Orchestrate the specified type of RCU barrier, waiting for all 3206 * RCU callbacks of the specified type to complete. 3207 */ 3208 static void _rcu_barrier(struct rcu_state *rsp) 3209 { 3210 int cpu; 3211 struct rcu_data *rdp; 3212 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 3213 unsigned long snap_done; 3214 3215 _rcu_barrier_trace(rsp, "Begin", -1, snap); 3216 3217 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3218 mutex_lock(&rsp->barrier_mutex); 3219 3220 /* 3221 * Ensure that all prior references, including to ->n_barrier_done, 3222 * are ordered before the _rcu_barrier() machinery. 3223 */ 3224 smp_mb(); /* See above block comment. */ 3225 3226 /* 3227 * Recheck ->n_barrier_done to see if others did our work for us. 3228 * This means checking ->n_barrier_done for an even-to-odd-to-even 3229 * transition. The "if" expression below therefore rounds the old 3230 * value up to the next even number and adds two before comparing. 3231 */ 3232 snap_done = rsp->n_barrier_done; 3233 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 3234 3235 /* 3236 * If the value in snap is odd, we needed to wait for the current 3237 * rcu_barrier() to complete, then wait for the next one, in other 3238 * words, we need the value of snap_done to be three larger than 3239 * the value of snap. On the other hand, if the value in snap is 3240 * even, we only had to wait for the next rcu_barrier() to complete, 3241 * in other words, we need the value of snap_done to be only two 3242 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 3243 * this for us (thank you, Linus!). 3244 */ 3245 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 3246 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 3247 smp_mb(); /* caller's subsequent code after above check. */ 3248 mutex_unlock(&rsp->barrier_mutex); 3249 return; 3250 } 3251 3252 /* 3253 * Increment ->n_barrier_done to avoid duplicate work. Use 3254 * ACCESS_ONCE() to prevent the compiler from speculating 3255 * the increment to precede the early-exit check. 3256 */ 3257 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3258 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 3259 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 3260 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 3261 3262 /* 3263 * Initialize the count to one rather than to zero in order to 3264 * avoid a too-soon return to zero in case of a short grace period 3265 * (or preemption of this task). Exclude CPU-hotplug operations 3266 * to ensure that no offline CPU has callbacks queued. 3267 */ 3268 init_completion(&rsp->barrier_completion); 3269 atomic_set(&rsp->barrier_cpu_count, 1); 3270 get_online_cpus(); 3271 3272 /* 3273 * Force each CPU with callbacks to register a new callback. 3274 * When that callback is invoked, we will know that all of the 3275 * corresponding CPU's preceding callbacks have been invoked. 3276 */ 3277 for_each_possible_cpu(cpu) { 3278 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3279 continue; 3280 rdp = per_cpu_ptr(rsp->rda, cpu); 3281 if (rcu_is_nocb_cpu(cpu)) { 3282 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3283 rsp->n_barrier_done); 3284 atomic_inc(&rsp->barrier_cpu_count); 3285 __call_rcu(&rdp->barrier_head, rcu_barrier_callback, 3286 rsp, cpu, 0); 3287 } else if (ACCESS_ONCE(rdp->qlen)) { 3288 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3289 rsp->n_barrier_done); 3290 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3291 } else { 3292 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3293 rsp->n_barrier_done); 3294 } 3295 } 3296 put_online_cpus(); 3297 3298 /* 3299 * Now that we have an rcu_barrier_callback() callback on each 3300 * CPU, and thus each counted, remove the initial count. 3301 */ 3302 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3303 complete(&rsp->barrier_completion); 3304 3305 /* Increment ->n_barrier_done to prevent duplicate work. */ 3306 smp_mb(); /* Keep increment after above mechanism. */ 3307 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3308 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 3309 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 3310 smp_mb(); /* Keep increment before caller's subsequent code. */ 3311 3312 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3313 wait_for_completion(&rsp->barrier_completion); 3314 3315 /* Other rcu_barrier() invocations can now safely proceed. */ 3316 mutex_unlock(&rsp->barrier_mutex); 3317 } 3318 3319 /** 3320 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3321 */ 3322 void rcu_barrier_bh(void) 3323 { 3324 _rcu_barrier(&rcu_bh_state); 3325 } 3326 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3327 3328 /** 3329 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3330 */ 3331 void rcu_barrier_sched(void) 3332 { 3333 _rcu_barrier(&rcu_sched_state); 3334 } 3335 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3336 3337 /* 3338 * Do boot-time initialization of a CPU's per-CPU RCU data. 3339 */ 3340 static void __init 3341 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3342 { 3343 unsigned long flags; 3344 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3345 struct rcu_node *rnp = rcu_get_root(rsp); 3346 3347 /* Set up local state, ensuring consistent view of global state. */ 3348 raw_spin_lock_irqsave(&rnp->lock, flags); 3349 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3350 init_callback_list(rdp); 3351 rdp->qlen_lazy = 0; 3352 ACCESS_ONCE(rdp->qlen) = 0; 3353 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3354 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3355 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3356 rdp->cpu = cpu; 3357 rdp->rsp = rsp; 3358 rcu_boot_init_nocb_percpu_data(rdp); 3359 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3360 } 3361 3362 /* 3363 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3364 * offline event can be happening at a given time. Note also that we 3365 * can accept some slop in the rsp->completed access due to the fact 3366 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3367 */ 3368 static void 3369 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3370 { 3371 unsigned long flags; 3372 unsigned long mask; 3373 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3374 struct rcu_node *rnp = rcu_get_root(rsp); 3375 3376 /* Exclude new grace periods. */ 3377 mutex_lock(&rsp->onoff_mutex); 3378 3379 /* Set up local state, ensuring consistent view of global state. */ 3380 raw_spin_lock_irqsave(&rnp->lock, flags); 3381 rdp->beenonline = 1; /* We have now been online. */ 3382 rdp->qlen_last_fqs_check = 0; 3383 rdp->n_force_qs_snap = rsp->n_force_qs; 3384 rdp->blimit = blimit; 3385 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3386 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3387 rcu_sysidle_init_percpu_data(rdp->dynticks); 3388 atomic_set(&rdp->dynticks->dynticks, 3389 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3390 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3391 3392 /* Add CPU to rcu_node bitmasks. */ 3393 rnp = rdp->mynode; 3394 mask = rdp->grpmask; 3395 do { 3396 /* Exclude any attempts to start a new GP on small systems. */ 3397 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3398 rnp->qsmaskinit |= mask; 3399 mask = rnp->grpmask; 3400 if (rnp == rdp->mynode) { 3401 /* 3402 * If there is a grace period in progress, we will 3403 * set up to wait for it next time we run the 3404 * RCU core code. 3405 */ 3406 rdp->gpnum = rnp->completed; 3407 rdp->completed = rnp->completed; 3408 rdp->passed_quiesce = 0; 3409 rdp->qs_pending = 0; 3410 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3411 } 3412 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 3413 rnp = rnp->parent; 3414 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 3415 local_irq_restore(flags); 3416 3417 mutex_unlock(&rsp->onoff_mutex); 3418 } 3419 3420 static void rcu_prepare_cpu(int cpu) 3421 { 3422 struct rcu_state *rsp; 3423 3424 for_each_rcu_flavor(rsp) 3425 rcu_init_percpu_data(cpu, rsp); 3426 } 3427 3428 /* 3429 * Handle CPU online/offline notification events. 3430 */ 3431 static int rcu_cpu_notify(struct notifier_block *self, 3432 unsigned long action, void *hcpu) 3433 { 3434 long cpu = (long)hcpu; 3435 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3436 struct rcu_node *rnp = rdp->mynode; 3437 struct rcu_state *rsp; 3438 3439 trace_rcu_utilization(TPS("Start CPU hotplug")); 3440 switch (action) { 3441 case CPU_UP_PREPARE: 3442 case CPU_UP_PREPARE_FROZEN: 3443 rcu_prepare_cpu(cpu); 3444 rcu_prepare_kthreads(cpu); 3445 break; 3446 case CPU_ONLINE: 3447 case CPU_DOWN_FAILED: 3448 rcu_boost_kthread_setaffinity(rnp, -1); 3449 break; 3450 case CPU_DOWN_PREPARE: 3451 rcu_boost_kthread_setaffinity(rnp, cpu); 3452 break; 3453 case CPU_DYING: 3454 case CPU_DYING_FROZEN: 3455 for_each_rcu_flavor(rsp) 3456 rcu_cleanup_dying_cpu(rsp); 3457 break; 3458 case CPU_DEAD: 3459 case CPU_DEAD_FROZEN: 3460 case CPU_UP_CANCELED: 3461 case CPU_UP_CANCELED_FROZEN: 3462 for_each_rcu_flavor(rsp) 3463 rcu_cleanup_dead_cpu(cpu, rsp); 3464 break; 3465 default: 3466 break; 3467 } 3468 trace_rcu_utilization(TPS("End CPU hotplug")); 3469 return NOTIFY_OK; 3470 } 3471 3472 static int rcu_pm_notify(struct notifier_block *self, 3473 unsigned long action, void *hcpu) 3474 { 3475 switch (action) { 3476 case PM_HIBERNATION_PREPARE: 3477 case PM_SUSPEND_PREPARE: 3478 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3479 rcu_expedited = 1; 3480 break; 3481 case PM_POST_HIBERNATION: 3482 case PM_POST_SUSPEND: 3483 rcu_expedited = 0; 3484 break; 3485 default: 3486 break; 3487 } 3488 return NOTIFY_OK; 3489 } 3490 3491 /* 3492 * Spawn the kthread that handles this RCU flavor's grace periods. 3493 */ 3494 static int __init rcu_spawn_gp_kthread(void) 3495 { 3496 unsigned long flags; 3497 struct rcu_node *rnp; 3498 struct rcu_state *rsp; 3499 struct task_struct *t; 3500 3501 for_each_rcu_flavor(rsp) { 3502 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); 3503 BUG_ON(IS_ERR(t)); 3504 rnp = rcu_get_root(rsp); 3505 raw_spin_lock_irqsave(&rnp->lock, flags); 3506 rsp->gp_kthread = t; 3507 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3508 rcu_spawn_nocb_kthreads(rsp); 3509 } 3510 return 0; 3511 } 3512 early_initcall(rcu_spawn_gp_kthread); 3513 3514 /* 3515 * This function is invoked towards the end of the scheduler's initialization 3516 * process. Before this is called, the idle task might contain 3517 * RCU read-side critical sections (during which time, this idle 3518 * task is booting the system). After this function is called, the 3519 * idle tasks are prohibited from containing RCU read-side critical 3520 * sections. This function also enables RCU lockdep checking. 3521 */ 3522 void rcu_scheduler_starting(void) 3523 { 3524 WARN_ON(num_online_cpus() != 1); 3525 WARN_ON(nr_context_switches() > 0); 3526 rcu_scheduler_active = 1; 3527 } 3528 3529 /* 3530 * Compute the per-level fanout, either using the exact fanout specified 3531 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3532 */ 3533 #ifdef CONFIG_RCU_FANOUT_EXACT 3534 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3535 { 3536 int i; 3537 3538 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3539 for (i = rcu_num_lvls - 2; i >= 0; i--) 3540 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3541 } 3542 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 3543 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3544 { 3545 int ccur; 3546 int cprv; 3547 int i; 3548 3549 cprv = nr_cpu_ids; 3550 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3551 ccur = rsp->levelcnt[i]; 3552 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3553 cprv = ccur; 3554 } 3555 } 3556 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 3557 3558 /* 3559 * Helper function for rcu_init() that initializes one rcu_state structure. 3560 */ 3561 static void __init rcu_init_one(struct rcu_state *rsp, 3562 struct rcu_data __percpu *rda) 3563 { 3564 static const char * const buf[] = { 3565 "rcu_node_0", 3566 "rcu_node_1", 3567 "rcu_node_2", 3568 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3569 static const char * const fqs[] = { 3570 "rcu_node_fqs_0", 3571 "rcu_node_fqs_1", 3572 "rcu_node_fqs_2", 3573 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3574 static u8 fl_mask = 0x1; 3575 int cpustride = 1; 3576 int i; 3577 int j; 3578 struct rcu_node *rnp; 3579 3580 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3581 3582 /* Silence gcc 4.8 warning about array index out of range. */ 3583 if (rcu_num_lvls > RCU_NUM_LVLS) 3584 panic("rcu_init_one: rcu_num_lvls overflow"); 3585 3586 /* Initialize the level-tracking arrays. */ 3587 3588 for (i = 0; i < rcu_num_lvls; i++) 3589 rsp->levelcnt[i] = num_rcu_lvl[i]; 3590 for (i = 1; i < rcu_num_lvls; i++) 3591 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3592 rcu_init_levelspread(rsp); 3593 rsp->flavor_mask = fl_mask; 3594 fl_mask <<= 1; 3595 3596 /* Initialize the elements themselves, starting from the leaves. */ 3597 3598 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3599 cpustride *= rsp->levelspread[i]; 3600 rnp = rsp->level[i]; 3601 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3602 raw_spin_lock_init(&rnp->lock); 3603 lockdep_set_class_and_name(&rnp->lock, 3604 &rcu_node_class[i], buf[i]); 3605 raw_spin_lock_init(&rnp->fqslock); 3606 lockdep_set_class_and_name(&rnp->fqslock, 3607 &rcu_fqs_class[i], fqs[i]); 3608 rnp->gpnum = rsp->gpnum; 3609 rnp->completed = rsp->completed; 3610 rnp->qsmask = 0; 3611 rnp->qsmaskinit = 0; 3612 rnp->grplo = j * cpustride; 3613 rnp->grphi = (j + 1) * cpustride - 1; 3614 if (rnp->grphi >= nr_cpu_ids) 3615 rnp->grphi = nr_cpu_ids - 1; 3616 if (i == 0) { 3617 rnp->grpnum = 0; 3618 rnp->grpmask = 0; 3619 rnp->parent = NULL; 3620 } else { 3621 rnp->grpnum = j % rsp->levelspread[i - 1]; 3622 rnp->grpmask = 1UL << rnp->grpnum; 3623 rnp->parent = rsp->level[i - 1] + 3624 j / rsp->levelspread[i - 1]; 3625 } 3626 rnp->level = i; 3627 INIT_LIST_HEAD(&rnp->blkd_tasks); 3628 rcu_init_one_nocb(rnp); 3629 } 3630 } 3631 3632 rsp->rda = rda; 3633 init_waitqueue_head(&rsp->gp_wq); 3634 rnp = rsp->level[rcu_num_lvls - 1]; 3635 for_each_possible_cpu(i) { 3636 while (i > rnp->grphi) 3637 rnp++; 3638 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3639 rcu_boot_init_percpu_data(i, rsp); 3640 } 3641 list_add(&rsp->flavors, &rcu_struct_flavors); 3642 } 3643 3644 /* 3645 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3646 * replace the definitions in tree.h because those are needed to size 3647 * the ->node array in the rcu_state structure. 3648 */ 3649 static void __init rcu_init_geometry(void) 3650 { 3651 ulong d; 3652 int i; 3653 int j; 3654 int n = nr_cpu_ids; 3655 int rcu_capacity[MAX_RCU_LVLS + 1]; 3656 3657 /* 3658 * Initialize any unspecified boot parameters. 3659 * The default values of jiffies_till_first_fqs and 3660 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3661 * value, which is a function of HZ, then adding one for each 3662 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3663 */ 3664 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3665 if (jiffies_till_first_fqs == ULONG_MAX) 3666 jiffies_till_first_fqs = d; 3667 if (jiffies_till_next_fqs == ULONG_MAX) 3668 jiffies_till_next_fqs = d; 3669 3670 /* If the compile-time values are accurate, just leave. */ 3671 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 3672 nr_cpu_ids == NR_CPUS) 3673 return; 3674 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 3675 rcu_fanout_leaf, nr_cpu_ids); 3676 3677 /* 3678 * Compute number of nodes that can be handled an rcu_node tree 3679 * with the given number of levels. Setting rcu_capacity[0] makes 3680 * some of the arithmetic easier. 3681 */ 3682 rcu_capacity[0] = 1; 3683 rcu_capacity[1] = rcu_fanout_leaf; 3684 for (i = 2; i <= MAX_RCU_LVLS; i++) 3685 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 3686 3687 /* 3688 * The boot-time rcu_fanout_leaf parameter is only permitted 3689 * to increase the leaf-level fanout, not decrease it. Of course, 3690 * the leaf-level fanout cannot exceed the number of bits in 3691 * the rcu_node masks. Finally, the tree must be able to accommodate 3692 * the configured number of CPUs. Complain and fall back to the 3693 * compile-time values if these limits are exceeded. 3694 */ 3695 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 3696 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 3697 n > rcu_capacity[MAX_RCU_LVLS]) { 3698 WARN_ON(1); 3699 return; 3700 } 3701 3702 /* Calculate the number of rcu_nodes at each level of the tree. */ 3703 for (i = 1; i <= MAX_RCU_LVLS; i++) 3704 if (n <= rcu_capacity[i]) { 3705 for (j = 0; j <= i; j++) 3706 num_rcu_lvl[j] = 3707 DIV_ROUND_UP(n, rcu_capacity[i - j]); 3708 rcu_num_lvls = i; 3709 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 3710 num_rcu_lvl[j] = 0; 3711 break; 3712 } 3713 3714 /* Calculate the total number of rcu_node structures. */ 3715 rcu_num_nodes = 0; 3716 for (i = 0; i <= MAX_RCU_LVLS; i++) 3717 rcu_num_nodes += num_rcu_lvl[i]; 3718 rcu_num_nodes -= n; 3719 } 3720 3721 void __init rcu_init(void) 3722 { 3723 int cpu; 3724 3725 rcu_bootup_announce(); 3726 rcu_init_geometry(); 3727 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 3728 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 3729 __rcu_init_preempt(); 3730 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3731 3732 /* 3733 * We don't need protection against CPU-hotplug here because 3734 * this is called early in boot, before either interrupts 3735 * or the scheduler are operational. 3736 */ 3737 cpu_notifier(rcu_cpu_notify, 0); 3738 pm_notifier(rcu_pm_notify, 0); 3739 for_each_online_cpu(cpu) 3740 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 3741 } 3742 3743 #include "tree_plugin.h" 3744