xref: /openbmc/linux/kernel/rcu/tree.c (revision aa3fc090)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73 
74 /*
75  * In order to export the rcu_state name to the tracing tools, it
76  * needs to be added in the __tracepoint_string section.
77  * This requires defining a separate variable tp_<sname>_varname
78  * that points to the string being used, and this will allow
79  * the tracing userspace tools to be able to decipher the string
80  * address to the matching string.
81  */
82 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
83 static char sname##_varname[] = #sname; \
84 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
85 struct rcu_state sname##_state = { \
86 	.level = { &sname##_state.node[0] }, \
87 	.call = cr, \
88 	.fqs_state = RCU_GP_IDLE, \
89 	.gpnum = 0UL - 300UL, \
90 	.completed = 0UL - 300UL, \
91 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
92 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 	.orphan_donetail = &sname##_state.orphan_donelist, \
94 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
95 	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
96 	.name = sname##_varname, \
97 	.abbr = sabbr, \
98 }; \
99 DEFINE_PER_CPU(struct rcu_data, sname##_data)
100 
101 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
103 
104 static struct rcu_state *rcu_state_p;
105 LIST_HEAD(rcu_struct_flavors);
106 
107 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
109 module_param(rcu_fanout_leaf, int, 0444);
110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111 static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
112 	NUM_RCU_LVL_0,
113 	NUM_RCU_LVL_1,
114 	NUM_RCU_LVL_2,
115 	NUM_RCU_LVL_3,
116 	NUM_RCU_LVL_4,
117 };
118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119 
120 /*
121  * The rcu_scheduler_active variable transitions from zero to one just
122  * before the first task is spawned.  So when this variable is zero, RCU
123  * can assume that there is but one task, allowing RCU to (for example)
124  * optimize synchronize_sched() to a simple barrier().  When this variable
125  * is one, RCU must actually do all the hard work required to detect real
126  * grace periods.  This variable is also used to suppress boot-time false
127  * positives from lockdep-RCU error checking.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 #ifdef CONFIG_RCU_BOOST
147 
148 /*
149  * Control variables for per-CPU and per-rcu_node kthreads.  These
150  * handle all flavors of RCU.
151  */
152 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
153 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
154 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
155 DEFINE_PER_CPU(char, rcu_cpu_has_work);
156 
157 #endif /* #ifdef CONFIG_RCU_BOOST */
158 
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162 
163 /*
164  * Track the rcutorture test sequence number and the update version
165  * number within a given test.  The rcutorture_testseq is incremented
166  * on every rcutorture module load and unload, so has an odd value
167  * when a test is running.  The rcutorture_vernum is set to zero
168  * when rcutorture starts and is incremented on each rcutorture update.
169  * These variables enable correlating rcutorture output with the
170  * RCU tracing information.
171  */
172 unsigned long rcutorture_testseq;
173 unsigned long rcutorture_vernum;
174 
175 /*
176  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
177  * permit this function to be invoked without holding the root rcu_node
178  * structure's ->lock, but of course results can be subject to change.
179  */
180 static int rcu_gp_in_progress(struct rcu_state *rsp)
181 {
182 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183 }
184 
185 /*
186  * Note a quiescent state.  Because we do not need to know
187  * how many quiescent states passed, just if there was at least
188  * one since the start of the grace period, this just sets a flag.
189  * The caller must have disabled preemption.
190  */
191 void rcu_sched_qs(int cpu)
192 {
193 	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
194 
195 	if (rdp->passed_quiesce == 0)
196 		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
197 	rdp->passed_quiesce = 1;
198 }
199 
200 void rcu_bh_qs(int cpu)
201 {
202 	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
203 
204 	if (rdp->passed_quiesce == 0)
205 		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
206 	rdp->passed_quiesce = 1;
207 }
208 
209 /*
210  * Note a context switch.  This is a quiescent state for RCU-sched,
211  * and requires special handling for preemptible RCU.
212  * The caller must have disabled preemption.
213  */
214 void rcu_note_context_switch(int cpu)
215 {
216 	trace_rcu_utilization(TPS("Start context switch"));
217 	rcu_sched_qs(cpu);
218 	rcu_preempt_note_context_switch(cpu);
219 	trace_rcu_utilization(TPS("End context switch"));
220 }
221 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
222 
223 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
224 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
225 	.dynticks = ATOMIC_INIT(1),
226 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
227 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
228 	.dynticks_idle = ATOMIC_INIT(1),
229 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
230 };
231 
232 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
233 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
234 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
235 
236 module_param(blimit, long, 0444);
237 module_param(qhimark, long, 0444);
238 module_param(qlowmark, long, 0444);
239 
240 static ulong jiffies_till_first_fqs = ULONG_MAX;
241 static ulong jiffies_till_next_fqs = ULONG_MAX;
242 
243 module_param(jiffies_till_first_fqs, ulong, 0644);
244 module_param(jiffies_till_next_fqs, ulong, 0644);
245 
246 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247 				  struct rcu_data *rdp);
248 static void force_qs_rnp(struct rcu_state *rsp,
249 			 int (*f)(struct rcu_data *rsp, bool *isidle,
250 				  unsigned long *maxj),
251 			 bool *isidle, unsigned long *maxj);
252 static void force_quiescent_state(struct rcu_state *rsp);
253 static int rcu_pending(int cpu);
254 
255 /*
256  * Return the number of RCU-sched batches processed thus far for debug & stats.
257  */
258 long rcu_batches_completed_sched(void)
259 {
260 	return rcu_sched_state.completed;
261 }
262 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
263 
264 /*
265  * Return the number of RCU BH batches processed thus far for debug & stats.
266  */
267 long rcu_batches_completed_bh(void)
268 {
269 	return rcu_bh_state.completed;
270 }
271 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
272 
273 /*
274  * Force a quiescent state.
275  */
276 void rcu_force_quiescent_state(void)
277 {
278 	force_quiescent_state(rcu_state_p);
279 }
280 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
281 
282 /*
283  * Force a quiescent state for RCU BH.
284  */
285 void rcu_bh_force_quiescent_state(void)
286 {
287 	force_quiescent_state(&rcu_bh_state);
288 }
289 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
290 
291 /*
292  * Show the state of the grace-period kthreads.
293  */
294 void show_rcu_gp_kthreads(void)
295 {
296 	struct rcu_state *rsp;
297 
298 	for_each_rcu_flavor(rsp) {
299 		pr_info("%s: wait state: %d ->state: %#lx\n",
300 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
301 		/* sched_show_task(rsp->gp_kthread); */
302 	}
303 }
304 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
305 
306 /*
307  * Record the number of times rcutorture tests have been initiated and
308  * terminated.  This information allows the debugfs tracing stats to be
309  * correlated to the rcutorture messages, even when the rcutorture module
310  * is being repeatedly loaded and unloaded.  In other words, we cannot
311  * store this state in rcutorture itself.
312  */
313 void rcutorture_record_test_transition(void)
314 {
315 	rcutorture_testseq++;
316 	rcutorture_vernum = 0;
317 }
318 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
319 
320 /*
321  * Send along grace-period-related data for rcutorture diagnostics.
322  */
323 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
324 			    unsigned long *gpnum, unsigned long *completed)
325 {
326 	struct rcu_state *rsp = NULL;
327 
328 	switch (test_type) {
329 	case RCU_FLAVOR:
330 		rsp = rcu_state_p;
331 		break;
332 	case RCU_BH_FLAVOR:
333 		rsp = &rcu_bh_state;
334 		break;
335 	case RCU_SCHED_FLAVOR:
336 		rsp = &rcu_sched_state;
337 		break;
338 	default:
339 		break;
340 	}
341 	if (rsp != NULL) {
342 		*flags = ACCESS_ONCE(rsp->gp_flags);
343 		*gpnum = ACCESS_ONCE(rsp->gpnum);
344 		*completed = ACCESS_ONCE(rsp->completed);
345 		return;
346 	}
347 	*flags = 0;
348 	*gpnum = 0;
349 	*completed = 0;
350 }
351 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
352 
353 /*
354  * Record the number of writer passes through the current rcutorture test.
355  * This is also used to correlate debugfs tracing stats with the rcutorture
356  * messages.
357  */
358 void rcutorture_record_progress(unsigned long vernum)
359 {
360 	rcutorture_vernum++;
361 }
362 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
363 
364 /*
365  * Force a quiescent state for RCU-sched.
366  */
367 void rcu_sched_force_quiescent_state(void)
368 {
369 	force_quiescent_state(&rcu_sched_state);
370 }
371 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
372 
373 /*
374  * Does the CPU have callbacks ready to be invoked?
375  */
376 static int
377 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
378 {
379 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
380 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
381 }
382 
383 /*
384  * Return the root node of the specified rcu_state structure.
385  */
386 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
387 {
388 	return &rsp->node[0];
389 }
390 
391 /*
392  * Is there any need for future grace periods?
393  * Interrupts must be disabled.  If the caller does not hold the root
394  * rnp_node structure's ->lock, the results are advisory only.
395  */
396 static int rcu_future_needs_gp(struct rcu_state *rsp)
397 {
398 	struct rcu_node *rnp = rcu_get_root(rsp);
399 	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
400 	int *fp = &rnp->need_future_gp[idx];
401 
402 	return ACCESS_ONCE(*fp);
403 }
404 
405 /*
406  * Does the current CPU require a not-yet-started grace period?
407  * The caller must have disabled interrupts to prevent races with
408  * normal callback registry.
409  */
410 static int
411 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
412 {
413 	int i;
414 
415 	if (rcu_gp_in_progress(rsp))
416 		return 0;  /* No, a grace period is already in progress. */
417 	if (rcu_future_needs_gp(rsp))
418 		return 1;  /* Yes, a no-CBs CPU needs one. */
419 	if (!rdp->nxttail[RCU_NEXT_TAIL])
420 		return 0;  /* No, this is a no-CBs (or offline) CPU. */
421 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
422 		return 1;  /* Yes, this CPU has newly registered callbacks. */
423 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
424 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
425 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
426 				 rdp->nxtcompleted[i]))
427 			return 1;  /* Yes, CBs for future grace period. */
428 	return 0; /* No grace period needed. */
429 }
430 
431 /*
432  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
433  *
434  * If the new value of the ->dynticks_nesting counter now is zero,
435  * we really have entered idle, and must do the appropriate accounting.
436  * The caller must have disabled interrupts.
437  */
438 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
439 				bool user)
440 {
441 	struct rcu_state *rsp;
442 	struct rcu_data *rdp;
443 
444 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
445 	if (!user && !is_idle_task(current)) {
446 		struct task_struct *idle __maybe_unused =
447 			idle_task(smp_processor_id());
448 
449 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
450 		ftrace_dump(DUMP_ORIG);
451 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
452 			  current->pid, current->comm,
453 			  idle->pid, idle->comm); /* must be idle task! */
454 	}
455 	for_each_rcu_flavor(rsp) {
456 		rdp = this_cpu_ptr(rsp->rda);
457 		do_nocb_deferred_wakeup(rdp);
458 	}
459 	rcu_prepare_for_idle(smp_processor_id());
460 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
461 	smp_mb__before_atomic();  /* See above. */
462 	atomic_inc(&rdtp->dynticks);
463 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
464 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
465 
466 	/*
467 	 * It is illegal to enter an extended quiescent state while
468 	 * in an RCU read-side critical section.
469 	 */
470 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
471 			   "Illegal idle entry in RCU read-side critical section.");
472 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
473 			   "Illegal idle entry in RCU-bh read-side critical section.");
474 	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
475 			   "Illegal idle entry in RCU-sched read-side critical section.");
476 }
477 
478 /*
479  * Enter an RCU extended quiescent state, which can be either the
480  * idle loop or adaptive-tickless usermode execution.
481  */
482 static void rcu_eqs_enter(bool user)
483 {
484 	long long oldval;
485 	struct rcu_dynticks *rdtp;
486 
487 	rdtp = this_cpu_ptr(&rcu_dynticks);
488 	oldval = rdtp->dynticks_nesting;
489 	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
490 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
491 		rdtp->dynticks_nesting = 0;
492 		rcu_eqs_enter_common(rdtp, oldval, user);
493 	} else {
494 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
495 	}
496 }
497 
498 /**
499  * rcu_idle_enter - inform RCU that current CPU is entering idle
500  *
501  * Enter idle mode, in other words, -leave- the mode in which RCU
502  * read-side critical sections can occur.  (Though RCU read-side
503  * critical sections can occur in irq handlers in idle, a possibility
504  * handled by irq_enter() and irq_exit().)
505  *
506  * We crowbar the ->dynticks_nesting field to zero to allow for
507  * the possibility of usermode upcalls having messed up our count
508  * of interrupt nesting level during the prior busy period.
509  */
510 void rcu_idle_enter(void)
511 {
512 	unsigned long flags;
513 
514 	local_irq_save(flags);
515 	rcu_eqs_enter(false);
516 	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
517 	local_irq_restore(flags);
518 }
519 EXPORT_SYMBOL_GPL(rcu_idle_enter);
520 
521 #ifdef CONFIG_RCU_USER_QS
522 /**
523  * rcu_user_enter - inform RCU that we are resuming userspace.
524  *
525  * Enter RCU idle mode right before resuming userspace.  No use of RCU
526  * is permitted between this call and rcu_user_exit(). This way the
527  * CPU doesn't need to maintain the tick for RCU maintenance purposes
528  * when the CPU runs in userspace.
529  */
530 void rcu_user_enter(void)
531 {
532 	rcu_eqs_enter(1);
533 }
534 #endif /* CONFIG_RCU_USER_QS */
535 
536 /**
537  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
538  *
539  * Exit from an interrupt handler, which might possibly result in entering
540  * idle mode, in other words, leaving the mode in which read-side critical
541  * sections can occur.
542  *
543  * This code assumes that the idle loop never does anything that might
544  * result in unbalanced calls to irq_enter() and irq_exit().  If your
545  * architecture violates this assumption, RCU will give you what you
546  * deserve, good and hard.  But very infrequently and irreproducibly.
547  *
548  * Use things like work queues to work around this limitation.
549  *
550  * You have been warned.
551  */
552 void rcu_irq_exit(void)
553 {
554 	unsigned long flags;
555 	long long oldval;
556 	struct rcu_dynticks *rdtp;
557 
558 	local_irq_save(flags);
559 	rdtp = this_cpu_ptr(&rcu_dynticks);
560 	oldval = rdtp->dynticks_nesting;
561 	rdtp->dynticks_nesting--;
562 	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
563 	if (rdtp->dynticks_nesting)
564 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
565 	else
566 		rcu_eqs_enter_common(rdtp, oldval, true);
567 	rcu_sysidle_enter(rdtp, 1);
568 	local_irq_restore(flags);
569 }
570 
571 /*
572  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
573  *
574  * If the new value of the ->dynticks_nesting counter was previously zero,
575  * we really have exited idle, and must do the appropriate accounting.
576  * The caller must have disabled interrupts.
577  */
578 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
579 			       int user)
580 {
581 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
582 	atomic_inc(&rdtp->dynticks);
583 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
584 	smp_mb__after_atomic();  /* See above. */
585 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
586 	rcu_cleanup_after_idle(smp_processor_id());
587 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
588 	if (!user && !is_idle_task(current)) {
589 		struct task_struct *idle __maybe_unused =
590 			idle_task(smp_processor_id());
591 
592 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
593 				  oldval, rdtp->dynticks_nesting);
594 		ftrace_dump(DUMP_ORIG);
595 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
596 			  current->pid, current->comm,
597 			  idle->pid, idle->comm); /* must be idle task! */
598 	}
599 }
600 
601 /*
602  * Exit an RCU extended quiescent state, which can be either the
603  * idle loop or adaptive-tickless usermode execution.
604  */
605 static void rcu_eqs_exit(bool user)
606 {
607 	struct rcu_dynticks *rdtp;
608 	long long oldval;
609 
610 	rdtp = this_cpu_ptr(&rcu_dynticks);
611 	oldval = rdtp->dynticks_nesting;
612 	WARN_ON_ONCE(oldval < 0);
613 	if (oldval & DYNTICK_TASK_NEST_MASK) {
614 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
615 	} else {
616 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
617 		rcu_eqs_exit_common(rdtp, oldval, user);
618 	}
619 }
620 
621 /**
622  * rcu_idle_exit - inform RCU that current CPU is leaving idle
623  *
624  * Exit idle mode, in other words, -enter- the mode in which RCU
625  * read-side critical sections can occur.
626  *
627  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
628  * allow for the possibility of usermode upcalls messing up our count
629  * of interrupt nesting level during the busy period that is just
630  * now starting.
631  */
632 void rcu_idle_exit(void)
633 {
634 	unsigned long flags;
635 
636 	local_irq_save(flags);
637 	rcu_eqs_exit(false);
638 	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
639 	local_irq_restore(flags);
640 }
641 EXPORT_SYMBOL_GPL(rcu_idle_exit);
642 
643 #ifdef CONFIG_RCU_USER_QS
644 /**
645  * rcu_user_exit - inform RCU that we are exiting userspace.
646  *
647  * Exit RCU idle mode while entering the kernel because it can
648  * run a RCU read side critical section anytime.
649  */
650 void rcu_user_exit(void)
651 {
652 	rcu_eqs_exit(1);
653 }
654 #endif /* CONFIG_RCU_USER_QS */
655 
656 /**
657  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
658  *
659  * Enter an interrupt handler, which might possibly result in exiting
660  * idle mode, in other words, entering the mode in which read-side critical
661  * sections can occur.
662  *
663  * Note that the Linux kernel is fully capable of entering an interrupt
664  * handler that it never exits, for example when doing upcalls to
665  * user mode!  This code assumes that the idle loop never does upcalls to
666  * user mode.  If your architecture does do upcalls from the idle loop (or
667  * does anything else that results in unbalanced calls to the irq_enter()
668  * and irq_exit() functions), RCU will give you what you deserve, good
669  * and hard.  But very infrequently and irreproducibly.
670  *
671  * Use things like work queues to work around this limitation.
672  *
673  * You have been warned.
674  */
675 void rcu_irq_enter(void)
676 {
677 	unsigned long flags;
678 	struct rcu_dynticks *rdtp;
679 	long long oldval;
680 
681 	local_irq_save(flags);
682 	rdtp = this_cpu_ptr(&rcu_dynticks);
683 	oldval = rdtp->dynticks_nesting;
684 	rdtp->dynticks_nesting++;
685 	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
686 	if (oldval)
687 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
688 	else
689 		rcu_eqs_exit_common(rdtp, oldval, true);
690 	rcu_sysidle_exit(rdtp, 1);
691 	local_irq_restore(flags);
692 }
693 
694 /**
695  * rcu_nmi_enter - inform RCU of entry to NMI context
696  *
697  * If the CPU was idle with dynamic ticks active, and there is no
698  * irq handler running, this updates rdtp->dynticks_nmi to let the
699  * RCU grace-period handling know that the CPU is active.
700  */
701 void rcu_nmi_enter(void)
702 {
703 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
704 
705 	if (rdtp->dynticks_nmi_nesting == 0 &&
706 	    (atomic_read(&rdtp->dynticks) & 0x1))
707 		return;
708 	rdtp->dynticks_nmi_nesting++;
709 	smp_mb__before_atomic();  /* Force delay from prior write. */
710 	atomic_inc(&rdtp->dynticks);
711 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
712 	smp_mb__after_atomic();  /* See above. */
713 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
714 }
715 
716 /**
717  * rcu_nmi_exit - inform RCU of exit from NMI context
718  *
719  * If the CPU was idle with dynamic ticks active, and there is no
720  * irq handler running, this updates rdtp->dynticks_nmi to let the
721  * RCU grace-period handling know that the CPU is no longer active.
722  */
723 void rcu_nmi_exit(void)
724 {
725 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
726 
727 	if (rdtp->dynticks_nmi_nesting == 0 ||
728 	    --rdtp->dynticks_nmi_nesting != 0)
729 		return;
730 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
731 	smp_mb__before_atomic();  /* See above. */
732 	atomic_inc(&rdtp->dynticks);
733 	smp_mb__after_atomic();  /* Force delay to next write. */
734 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
735 }
736 
737 /**
738  * __rcu_is_watching - are RCU read-side critical sections safe?
739  *
740  * Return true if RCU is watching the running CPU, which means that
741  * this CPU can safely enter RCU read-side critical sections.  Unlike
742  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
743  * least disabled preemption.
744  */
745 bool notrace __rcu_is_watching(void)
746 {
747 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
748 }
749 
750 /**
751  * rcu_is_watching - see if RCU thinks that the current CPU is idle
752  *
753  * If the current CPU is in its idle loop and is neither in an interrupt
754  * or NMI handler, return true.
755  */
756 bool notrace rcu_is_watching(void)
757 {
758 	int ret;
759 
760 	preempt_disable();
761 	ret = __rcu_is_watching();
762 	preempt_enable();
763 	return ret;
764 }
765 EXPORT_SYMBOL_GPL(rcu_is_watching);
766 
767 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
768 
769 /*
770  * Is the current CPU online?  Disable preemption to avoid false positives
771  * that could otherwise happen due to the current CPU number being sampled,
772  * this task being preempted, its old CPU being taken offline, resuming
773  * on some other CPU, then determining that its old CPU is now offline.
774  * It is OK to use RCU on an offline processor during initial boot, hence
775  * the check for rcu_scheduler_fully_active.  Note also that it is OK
776  * for a CPU coming online to use RCU for one jiffy prior to marking itself
777  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
778  * offline to continue to use RCU for one jiffy after marking itself
779  * offline in the cpu_online_mask.  This leniency is necessary given the
780  * non-atomic nature of the online and offline processing, for example,
781  * the fact that a CPU enters the scheduler after completing the CPU_DYING
782  * notifiers.
783  *
784  * This is also why RCU internally marks CPUs online during the
785  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
786  *
787  * Disable checking if in an NMI handler because we cannot safely report
788  * errors from NMI handlers anyway.
789  */
790 bool rcu_lockdep_current_cpu_online(void)
791 {
792 	struct rcu_data *rdp;
793 	struct rcu_node *rnp;
794 	bool ret;
795 
796 	if (in_nmi())
797 		return true;
798 	preempt_disable();
799 	rdp = this_cpu_ptr(&rcu_sched_data);
800 	rnp = rdp->mynode;
801 	ret = (rdp->grpmask & rnp->qsmaskinit) ||
802 	      !rcu_scheduler_fully_active;
803 	preempt_enable();
804 	return ret;
805 }
806 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
807 
808 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
809 
810 /**
811  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
812  *
813  * If the current CPU is idle or running at a first-level (not nested)
814  * interrupt from idle, return true.  The caller must have at least
815  * disabled preemption.
816  */
817 static int rcu_is_cpu_rrupt_from_idle(void)
818 {
819 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
820 }
821 
822 /*
823  * Snapshot the specified CPU's dynticks counter so that we can later
824  * credit them with an implicit quiescent state.  Return 1 if this CPU
825  * is in dynticks idle mode, which is an extended quiescent state.
826  */
827 static int dyntick_save_progress_counter(struct rcu_data *rdp,
828 					 bool *isidle, unsigned long *maxj)
829 {
830 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
831 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
832 	if ((rdp->dynticks_snap & 0x1) == 0) {
833 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
834 		return 1;
835 	} else {
836 		return 0;
837 	}
838 }
839 
840 /*
841  * This function really isn't for public consumption, but RCU is special in
842  * that context switches can allow the state machine to make progress.
843  */
844 extern void resched_cpu(int cpu);
845 
846 /*
847  * Return true if the specified CPU has passed through a quiescent
848  * state by virtue of being in or having passed through an dynticks
849  * idle state since the last call to dyntick_save_progress_counter()
850  * for this same CPU, or by virtue of having been offline.
851  */
852 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
853 				    bool *isidle, unsigned long *maxj)
854 {
855 	unsigned int curr;
856 	unsigned int snap;
857 
858 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
859 	snap = (unsigned int)rdp->dynticks_snap;
860 
861 	/*
862 	 * If the CPU passed through or entered a dynticks idle phase with
863 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
864 	 * already acknowledged the request to pass through a quiescent
865 	 * state.  Either way, that CPU cannot possibly be in an RCU
866 	 * read-side critical section that started before the beginning
867 	 * of the current RCU grace period.
868 	 */
869 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
870 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
871 		rdp->dynticks_fqs++;
872 		return 1;
873 	}
874 
875 	/*
876 	 * Check for the CPU being offline, but only if the grace period
877 	 * is old enough.  We don't need to worry about the CPU changing
878 	 * state: If we see it offline even once, it has been through a
879 	 * quiescent state.
880 	 *
881 	 * The reason for insisting that the grace period be at least
882 	 * one jiffy old is that CPUs that are not quite online and that
883 	 * have just gone offline can still execute RCU read-side critical
884 	 * sections.
885 	 */
886 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
887 		return 0;  /* Grace period is not old enough. */
888 	barrier();
889 	if (cpu_is_offline(rdp->cpu)) {
890 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
891 		rdp->offline_fqs++;
892 		return 1;
893 	}
894 
895 	/*
896 	 * There is a possibility that a CPU in adaptive-ticks state
897 	 * might run in the kernel with the scheduling-clock tick disabled
898 	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
899 	 * force the CPU to restart the scheduling-clock tick in this
900 	 * CPU is in this state.
901 	 */
902 	rcu_kick_nohz_cpu(rdp->cpu);
903 
904 	/*
905 	 * Alternatively, the CPU might be running in the kernel
906 	 * for an extended period of time without a quiescent state.
907 	 * Attempt to force the CPU through the scheduler to gain the
908 	 * needed quiescent state, but only if the grace period has gone
909 	 * on for an uncommonly long time.  If there are many stuck CPUs,
910 	 * we will beat on the first one until it gets unstuck, then move
911 	 * to the next.  Only do this for the primary flavor of RCU.
912 	 */
913 	if (rdp->rsp == rcu_state_p &&
914 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
915 		rdp->rsp->jiffies_resched += 5;
916 		resched_cpu(rdp->cpu);
917 	}
918 
919 	return 0;
920 }
921 
922 static void record_gp_stall_check_time(struct rcu_state *rsp)
923 {
924 	unsigned long j = jiffies;
925 	unsigned long j1;
926 
927 	rsp->gp_start = j;
928 	smp_wmb(); /* Record start time before stall time. */
929 	j1 = rcu_jiffies_till_stall_check();
930 	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
931 	rsp->jiffies_resched = j + j1 / 2;
932 }
933 
934 /*
935  * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
936  * for architectures that do not implement trigger_all_cpu_backtrace().
937  * The NMI-triggered stack traces are more accurate because they are
938  * printed by the target CPU.
939  */
940 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
941 {
942 	int cpu;
943 	unsigned long flags;
944 	struct rcu_node *rnp;
945 
946 	rcu_for_each_leaf_node(rsp, rnp) {
947 		raw_spin_lock_irqsave(&rnp->lock, flags);
948 		if (rnp->qsmask != 0) {
949 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
950 				if (rnp->qsmask & (1UL << cpu))
951 					dump_cpu_task(rnp->grplo + cpu);
952 		}
953 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
954 	}
955 }
956 
957 static void print_other_cpu_stall(struct rcu_state *rsp)
958 {
959 	int cpu;
960 	long delta;
961 	unsigned long flags;
962 	int ndetected = 0;
963 	struct rcu_node *rnp = rcu_get_root(rsp);
964 	long totqlen = 0;
965 
966 	/* Only let one CPU complain about others per time interval. */
967 
968 	raw_spin_lock_irqsave(&rnp->lock, flags);
969 	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
970 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
971 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
972 		return;
973 	}
974 	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
975 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
976 
977 	/*
978 	 * OK, time to rat on our buddy...
979 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
980 	 * RCU CPU stall warnings.
981 	 */
982 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
983 	       rsp->name);
984 	print_cpu_stall_info_begin();
985 	rcu_for_each_leaf_node(rsp, rnp) {
986 		raw_spin_lock_irqsave(&rnp->lock, flags);
987 		ndetected += rcu_print_task_stall(rnp);
988 		if (rnp->qsmask != 0) {
989 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
990 				if (rnp->qsmask & (1UL << cpu)) {
991 					print_cpu_stall_info(rsp,
992 							     rnp->grplo + cpu);
993 					ndetected++;
994 				}
995 		}
996 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 	}
998 
999 	/*
1000 	 * Now rat on any tasks that got kicked up to the root rcu_node
1001 	 * due to CPU offlining.
1002 	 */
1003 	rnp = rcu_get_root(rsp);
1004 	raw_spin_lock_irqsave(&rnp->lock, flags);
1005 	ndetected += rcu_print_task_stall(rnp);
1006 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1007 
1008 	print_cpu_stall_info_end();
1009 	for_each_possible_cpu(cpu)
1010 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1011 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1012 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1013 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1014 	if (ndetected == 0)
1015 		pr_err("INFO: Stall ended before state dump start\n");
1016 	else if (!trigger_all_cpu_backtrace())
1017 		rcu_dump_cpu_stacks(rsp);
1018 
1019 	/* Complain about tasks blocking the grace period. */
1020 
1021 	rcu_print_detail_task_stall(rsp);
1022 
1023 	force_quiescent_state(rsp);  /* Kick them all. */
1024 }
1025 
1026 static void print_cpu_stall(struct rcu_state *rsp)
1027 {
1028 	int cpu;
1029 	unsigned long flags;
1030 	struct rcu_node *rnp = rcu_get_root(rsp);
1031 	long totqlen = 0;
1032 
1033 	/*
1034 	 * OK, time to rat on ourselves...
1035 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1036 	 * RCU CPU stall warnings.
1037 	 */
1038 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1039 	print_cpu_stall_info_begin();
1040 	print_cpu_stall_info(rsp, smp_processor_id());
1041 	print_cpu_stall_info_end();
1042 	for_each_possible_cpu(cpu)
1043 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1044 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1045 		jiffies - rsp->gp_start,
1046 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1047 	if (!trigger_all_cpu_backtrace())
1048 		dump_stack();
1049 
1050 	raw_spin_lock_irqsave(&rnp->lock, flags);
1051 	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1052 		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1053 				     3 * rcu_jiffies_till_stall_check() + 3;
1054 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1055 
1056 	/*
1057 	 * Attempt to revive the RCU machinery by forcing a context switch.
1058 	 *
1059 	 * A context switch would normally allow the RCU state machine to make
1060 	 * progress and it could be we're stuck in kernel space without context
1061 	 * switches for an entirely unreasonable amount of time.
1062 	 */
1063 	resched_cpu(smp_processor_id());
1064 }
1065 
1066 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1067 {
1068 	unsigned long completed;
1069 	unsigned long gpnum;
1070 	unsigned long gps;
1071 	unsigned long j;
1072 	unsigned long js;
1073 	struct rcu_node *rnp;
1074 
1075 	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1076 		return;
1077 	j = jiffies;
1078 
1079 	/*
1080 	 * Lots of memory barriers to reject false positives.
1081 	 *
1082 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1083 	 * then rsp->gp_start, and finally rsp->completed.  These values
1084 	 * are updated in the opposite order with memory barriers (or
1085 	 * equivalent) during grace-period initialization and cleanup.
1086 	 * Now, a false positive can occur if we get an new value of
1087 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1088 	 * the memory barriers, the only way that this can happen is if one
1089 	 * grace period ends and another starts between these two fetches.
1090 	 * Detect this by comparing rsp->completed with the previous fetch
1091 	 * from rsp->gpnum.
1092 	 *
1093 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1094 	 * and rsp->gp_start suffice to forestall false positives.
1095 	 */
1096 	gpnum = ACCESS_ONCE(rsp->gpnum);
1097 	smp_rmb(); /* Pick up ->gpnum first... */
1098 	js = ACCESS_ONCE(rsp->jiffies_stall);
1099 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1100 	gps = ACCESS_ONCE(rsp->gp_start);
1101 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1102 	completed = ACCESS_ONCE(rsp->completed);
1103 	if (ULONG_CMP_GE(completed, gpnum) ||
1104 	    ULONG_CMP_LT(j, js) ||
1105 	    ULONG_CMP_GE(gps, js))
1106 		return; /* No stall or GP completed since entering function. */
1107 	rnp = rdp->mynode;
1108 	if (rcu_gp_in_progress(rsp) &&
1109 	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1110 
1111 		/* We haven't checked in, so go dump stack. */
1112 		print_cpu_stall(rsp);
1113 
1114 	} else if (rcu_gp_in_progress(rsp) &&
1115 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1116 
1117 		/* They had a few time units to dump stack, so complain. */
1118 		print_other_cpu_stall(rsp);
1119 	}
1120 }
1121 
1122 /**
1123  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1124  *
1125  * Set the stall-warning timeout way off into the future, thus preventing
1126  * any RCU CPU stall-warning messages from appearing in the current set of
1127  * RCU grace periods.
1128  *
1129  * The caller must disable hard irqs.
1130  */
1131 void rcu_cpu_stall_reset(void)
1132 {
1133 	struct rcu_state *rsp;
1134 
1135 	for_each_rcu_flavor(rsp)
1136 		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1137 }
1138 
1139 /*
1140  * Initialize the specified rcu_data structure's callback list to empty.
1141  */
1142 static void init_callback_list(struct rcu_data *rdp)
1143 {
1144 	int i;
1145 
1146 	if (init_nocb_callback_list(rdp))
1147 		return;
1148 	rdp->nxtlist = NULL;
1149 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1150 		rdp->nxttail[i] = &rdp->nxtlist;
1151 }
1152 
1153 /*
1154  * Determine the value that ->completed will have at the end of the
1155  * next subsequent grace period.  This is used to tag callbacks so that
1156  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1157  * been dyntick-idle for an extended period with callbacks under the
1158  * influence of RCU_FAST_NO_HZ.
1159  *
1160  * The caller must hold rnp->lock with interrupts disabled.
1161  */
1162 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1163 				       struct rcu_node *rnp)
1164 {
1165 	/*
1166 	 * If RCU is idle, we just wait for the next grace period.
1167 	 * But we can only be sure that RCU is idle if we are looking
1168 	 * at the root rcu_node structure -- otherwise, a new grace
1169 	 * period might have started, but just not yet gotten around
1170 	 * to initializing the current non-root rcu_node structure.
1171 	 */
1172 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1173 		return rnp->completed + 1;
1174 
1175 	/*
1176 	 * Otherwise, wait for a possible partial grace period and
1177 	 * then the subsequent full grace period.
1178 	 */
1179 	return rnp->completed + 2;
1180 }
1181 
1182 /*
1183  * Trace-event helper function for rcu_start_future_gp() and
1184  * rcu_nocb_wait_gp().
1185  */
1186 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1187 				unsigned long c, const char *s)
1188 {
1189 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1190 				      rnp->completed, c, rnp->level,
1191 				      rnp->grplo, rnp->grphi, s);
1192 }
1193 
1194 /*
1195  * Start some future grace period, as needed to handle newly arrived
1196  * callbacks.  The required future grace periods are recorded in each
1197  * rcu_node structure's ->need_future_gp field.  Returns true if there
1198  * is reason to awaken the grace-period kthread.
1199  *
1200  * The caller must hold the specified rcu_node structure's ->lock.
1201  */
1202 static bool __maybe_unused
1203 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1204 		    unsigned long *c_out)
1205 {
1206 	unsigned long c;
1207 	int i;
1208 	bool ret = false;
1209 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1210 
1211 	/*
1212 	 * Pick up grace-period number for new callbacks.  If this
1213 	 * grace period is already marked as needed, return to the caller.
1214 	 */
1215 	c = rcu_cbs_completed(rdp->rsp, rnp);
1216 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1217 	if (rnp->need_future_gp[c & 0x1]) {
1218 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * If either this rcu_node structure or the root rcu_node structure
1224 	 * believe that a grace period is in progress, then we must wait
1225 	 * for the one following, which is in "c".  Because our request
1226 	 * will be noticed at the end of the current grace period, we don't
1227 	 * need to explicitly start one.
1228 	 */
1229 	if (rnp->gpnum != rnp->completed ||
1230 	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1231 		rnp->need_future_gp[c & 0x1]++;
1232 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1233 		goto out;
1234 	}
1235 
1236 	/*
1237 	 * There might be no grace period in progress.  If we don't already
1238 	 * hold it, acquire the root rcu_node structure's lock in order to
1239 	 * start one (if needed).
1240 	 */
1241 	if (rnp != rnp_root) {
1242 		raw_spin_lock(&rnp_root->lock);
1243 		smp_mb__after_unlock_lock();
1244 	}
1245 
1246 	/*
1247 	 * Get a new grace-period number.  If there really is no grace
1248 	 * period in progress, it will be smaller than the one we obtained
1249 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1250 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1251 	 */
1252 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1253 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1254 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1255 			rdp->nxtcompleted[i] = c;
1256 
1257 	/*
1258 	 * If the needed for the required grace period is already
1259 	 * recorded, trace and leave.
1260 	 */
1261 	if (rnp_root->need_future_gp[c & 0x1]) {
1262 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1263 		goto unlock_out;
1264 	}
1265 
1266 	/* Record the need for the future grace period. */
1267 	rnp_root->need_future_gp[c & 0x1]++;
1268 
1269 	/* If a grace period is not already in progress, start one. */
1270 	if (rnp_root->gpnum != rnp_root->completed) {
1271 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1272 	} else {
1273 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1274 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1275 	}
1276 unlock_out:
1277 	if (rnp != rnp_root)
1278 		raw_spin_unlock(&rnp_root->lock);
1279 out:
1280 	if (c_out != NULL)
1281 		*c_out = c;
1282 	return ret;
1283 }
1284 
1285 /*
1286  * Clean up any old requests for the just-ended grace period.  Also return
1287  * whether any additional grace periods have been requested.  Also invoke
1288  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1289  * waiting for this grace period to complete.
1290  */
1291 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1292 {
1293 	int c = rnp->completed;
1294 	int needmore;
1295 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1296 
1297 	rcu_nocb_gp_cleanup(rsp, rnp);
1298 	rnp->need_future_gp[c & 0x1] = 0;
1299 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1300 	trace_rcu_future_gp(rnp, rdp, c,
1301 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1302 	return needmore;
1303 }
1304 
1305 /*
1306  * Awaken the grace-period kthread for the specified flavor of RCU.
1307  * Don't do a self-awaken, and don't bother awakening when there is
1308  * nothing for the grace-period kthread to do (as in several CPUs
1309  * raced to awaken, and we lost), and finally don't try to awaken
1310  * a kthread that has not yet been created.
1311  */
1312 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1313 {
1314 	if (current == rsp->gp_kthread ||
1315 	    !ACCESS_ONCE(rsp->gp_flags) ||
1316 	    !rsp->gp_kthread)
1317 		return;
1318 	wake_up(&rsp->gp_wq);
1319 }
1320 
1321 /*
1322  * If there is room, assign a ->completed number to any callbacks on
1323  * this CPU that have not already been assigned.  Also accelerate any
1324  * callbacks that were previously assigned a ->completed number that has
1325  * since proven to be too conservative, which can happen if callbacks get
1326  * assigned a ->completed number while RCU is idle, but with reference to
1327  * a non-root rcu_node structure.  This function is idempotent, so it does
1328  * not hurt to call it repeatedly.  Returns an flag saying that we should
1329  * awaken the RCU grace-period kthread.
1330  *
1331  * The caller must hold rnp->lock with interrupts disabled.
1332  */
1333 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1334 			       struct rcu_data *rdp)
1335 {
1336 	unsigned long c;
1337 	int i;
1338 	bool ret;
1339 
1340 	/* If the CPU has no callbacks, nothing to do. */
1341 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1342 		return false;
1343 
1344 	/*
1345 	 * Starting from the sublist containing the callbacks most
1346 	 * recently assigned a ->completed number and working down, find the
1347 	 * first sublist that is not assignable to an upcoming grace period.
1348 	 * Such a sublist has something in it (first two tests) and has
1349 	 * a ->completed number assigned that will complete sooner than
1350 	 * the ->completed number for newly arrived callbacks (last test).
1351 	 *
1352 	 * The key point is that any later sublist can be assigned the
1353 	 * same ->completed number as the newly arrived callbacks, which
1354 	 * means that the callbacks in any of these later sublist can be
1355 	 * grouped into a single sublist, whether or not they have already
1356 	 * been assigned a ->completed number.
1357 	 */
1358 	c = rcu_cbs_completed(rsp, rnp);
1359 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1360 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1361 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1362 			break;
1363 
1364 	/*
1365 	 * If there are no sublist for unassigned callbacks, leave.
1366 	 * At the same time, advance "i" one sublist, so that "i" will
1367 	 * index into the sublist where all the remaining callbacks should
1368 	 * be grouped into.
1369 	 */
1370 	if (++i >= RCU_NEXT_TAIL)
1371 		return false;
1372 
1373 	/*
1374 	 * Assign all subsequent callbacks' ->completed number to the next
1375 	 * full grace period and group them all in the sublist initially
1376 	 * indexed by "i".
1377 	 */
1378 	for (; i <= RCU_NEXT_TAIL; i++) {
1379 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1380 		rdp->nxtcompleted[i] = c;
1381 	}
1382 	/* Record any needed additional grace periods. */
1383 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1384 
1385 	/* Trace depending on how much we were able to accelerate. */
1386 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1387 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1388 	else
1389 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1390 	return ret;
1391 }
1392 
1393 /*
1394  * Move any callbacks whose grace period has completed to the
1395  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1396  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1397  * sublist.  This function is idempotent, so it does not hurt to
1398  * invoke it repeatedly.  As long as it is not invoked -too- often...
1399  * Returns true if the RCU grace-period kthread needs to be awakened.
1400  *
1401  * The caller must hold rnp->lock with interrupts disabled.
1402  */
1403 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1404 			    struct rcu_data *rdp)
1405 {
1406 	int i, j;
1407 
1408 	/* If the CPU has no callbacks, nothing to do. */
1409 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1410 		return false;
1411 
1412 	/*
1413 	 * Find all callbacks whose ->completed numbers indicate that they
1414 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1415 	 */
1416 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1417 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1418 			break;
1419 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1420 	}
1421 	/* Clean up any sublist tail pointers that were misordered above. */
1422 	for (j = RCU_WAIT_TAIL; j < i; j++)
1423 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1424 
1425 	/* Copy down callbacks to fill in empty sublists. */
1426 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1427 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1428 			break;
1429 		rdp->nxttail[j] = rdp->nxttail[i];
1430 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1431 	}
1432 
1433 	/* Classify any remaining callbacks. */
1434 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1435 }
1436 
1437 /*
1438  * Update CPU-local rcu_data state to record the beginnings and ends of
1439  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1440  * structure corresponding to the current CPU, and must have irqs disabled.
1441  * Returns true if the grace-period kthread needs to be awakened.
1442  */
1443 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1444 			      struct rcu_data *rdp)
1445 {
1446 	bool ret;
1447 
1448 	/* Handle the ends of any preceding grace periods first. */
1449 	if (rdp->completed == rnp->completed) {
1450 
1451 		/* No grace period end, so just accelerate recent callbacks. */
1452 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1453 
1454 	} else {
1455 
1456 		/* Advance callbacks. */
1457 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1458 
1459 		/* Remember that we saw this grace-period completion. */
1460 		rdp->completed = rnp->completed;
1461 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1462 	}
1463 
1464 	if (rdp->gpnum != rnp->gpnum) {
1465 		/*
1466 		 * If the current grace period is waiting for this CPU,
1467 		 * set up to detect a quiescent state, otherwise don't
1468 		 * go looking for one.
1469 		 */
1470 		rdp->gpnum = rnp->gpnum;
1471 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1472 		rdp->passed_quiesce = 0;
1473 		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1474 		zero_cpu_stall_ticks(rdp);
1475 	}
1476 	return ret;
1477 }
1478 
1479 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1480 {
1481 	unsigned long flags;
1482 	bool needwake;
1483 	struct rcu_node *rnp;
1484 
1485 	local_irq_save(flags);
1486 	rnp = rdp->mynode;
1487 	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1488 	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1489 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1490 		local_irq_restore(flags);
1491 		return;
1492 	}
1493 	smp_mb__after_unlock_lock();
1494 	needwake = __note_gp_changes(rsp, rnp, rdp);
1495 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1496 	if (needwake)
1497 		rcu_gp_kthread_wake(rsp);
1498 }
1499 
1500 /*
1501  * Initialize a new grace period.  Return 0 if no grace period required.
1502  */
1503 static int rcu_gp_init(struct rcu_state *rsp)
1504 {
1505 	struct rcu_data *rdp;
1506 	struct rcu_node *rnp = rcu_get_root(rsp);
1507 
1508 	rcu_bind_gp_kthread();
1509 	raw_spin_lock_irq(&rnp->lock);
1510 	smp_mb__after_unlock_lock();
1511 	if (!ACCESS_ONCE(rsp->gp_flags)) {
1512 		/* Spurious wakeup, tell caller to go back to sleep.  */
1513 		raw_spin_unlock_irq(&rnp->lock);
1514 		return 0;
1515 	}
1516 	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1517 
1518 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1519 		/*
1520 		 * Grace period already in progress, don't start another.
1521 		 * Not supposed to be able to happen.
1522 		 */
1523 		raw_spin_unlock_irq(&rnp->lock);
1524 		return 0;
1525 	}
1526 
1527 	/* Advance to a new grace period and initialize state. */
1528 	record_gp_stall_check_time(rsp);
1529 	/* Record GP times before starting GP, hence smp_store_release(). */
1530 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1531 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1532 	raw_spin_unlock_irq(&rnp->lock);
1533 
1534 	/* Exclude any concurrent CPU-hotplug operations. */
1535 	mutex_lock(&rsp->onoff_mutex);
1536 	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1537 
1538 	/*
1539 	 * Set the quiescent-state-needed bits in all the rcu_node
1540 	 * structures for all currently online CPUs in breadth-first order,
1541 	 * starting from the root rcu_node structure, relying on the layout
1542 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1543 	 * will access only the leaves of the hierarchy, thus seeing that no
1544 	 * grace period is in progress, at least until the corresponding
1545 	 * leaf node has been initialized.  In addition, we have excluded
1546 	 * CPU-hotplug operations.
1547 	 *
1548 	 * The grace period cannot complete until the initialization
1549 	 * process finishes, because this kthread handles both.
1550 	 */
1551 	rcu_for_each_node_breadth_first(rsp, rnp) {
1552 		raw_spin_lock_irq(&rnp->lock);
1553 		smp_mb__after_unlock_lock();
1554 		rdp = this_cpu_ptr(rsp->rda);
1555 		rcu_preempt_check_blocked_tasks(rnp);
1556 		rnp->qsmask = rnp->qsmaskinit;
1557 		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1558 		WARN_ON_ONCE(rnp->completed != rsp->completed);
1559 		ACCESS_ONCE(rnp->completed) = rsp->completed;
1560 		if (rnp == rdp->mynode)
1561 			(void)__note_gp_changes(rsp, rnp, rdp);
1562 		rcu_preempt_boost_start_gp(rnp);
1563 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1564 					    rnp->level, rnp->grplo,
1565 					    rnp->grphi, rnp->qsmask);
1566 		raw_spin_unlock_irq(&rnp->lock);
1567 #ifdef CONFIG_PROVE_RCU_DELAY
1568 		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1569 		    system_state == SYSTEM_RUNNING)
1570 			udelay(200);
1571 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1572 		cond_resched();
1573 	}
1574 
1575 	mutex_unlock(&rsp->onoff_mutex);
1576 	return 1;
1577 }
1578 
1579 /*
1580  * Do one round of quiescent-state forcing.
1581  */
1582 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1583 {
1584 	int fqs_state = fqs_state_in;
1585 	bool isidle = false;
1586 	unsigned long maxj;
1587 	struct rcu_node *rnp = rcu_get_root(rsp);
1588 
1589 	rsp->n_force_qs++;
1590 	if (fqs_state == RCU_SAVE_DYNTICK) {
1591 		/* Collect dyntick-idle snapshots. */
1592 		if (is_sysidle_rcu_state(rsp)) {
1593 			isidle = 1;
1594 			maxj = jiffies - ULONG_MAX / 4;
1595 		}
1596 		force_qs_rnp(rsp, dyntick_save_progress_counter,
1597 			     &isidle, &maxj);
1598 		rcu_sysidle_report_gp(rsp, isidle, maxj);
1599 		fqs_state = RCU_FORCE_QS;
1600 	} else {
1601 		/* Handle dyntick-idle and offline CPUs. */
1602 		isidle = 0;
1603 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1604 	}
1605 	/* Clear flag to prevent immediate re-entry. */
1606 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1607 		raw_spin_lock_irq(&rnp->lock);
1608 		smp_mb__after_unlock_lock();
1609 		ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
1610 		raw_spin_unlock_irq(&rnp->lock);
1611 	}
1612 	return fqs_state;
1613 }
1614 
1615 /*
1616  * Clean up after the old grace period.
1617  */
1618 static void rcu_gp_cleanup(struct rcu_state *rsp)
1619 {
1620 	unsigned long gp_duration;
1621 	bool needgp = false;
1622 	int nocb = 0;
1623 	struct rcu_data *rdp;
1624 	struct rcu_node *rnp = rcu_get_root(rsp);
1625 
1626 	raw_spin_lock_irq(&rnp->lock);
1627 	smp_mb__after_unlock_lock();
1628 	gp_duration = jiffies - rsp->gp_start;
1629 	if (gp_duration > rsp->gp_max)
1630 		rsp->gp_max = gp_duration;
1631 
1632 	/*
1633 	 * We know the grace period is complete, but to everyone else
1634 	 * it appears to still be ongoing.  But it is also the case
1635 	 * that to everyone else it looks like there is nothing that
1636 	 * they can do to advance the grace period.  It is therefore
1637 	 * safe for us to drop the lock in order to mark the grace
1638 	 * period as completed in all of the rcu_node structures.
1639 	 */
1640 	raw_spin_unlock_irq(&rnp->lock);
1641 
1642 	/*
1643 	 * Propagate new ->completed value to rcu_node structures so
1644 	 * that other CPUs don't have to wait until the start of the next
1645 	 * grace period to process their callbacks.  This also avoids
1646 	 * some nasty RCU grace-period initialization races by forcing
1647 	 * the end of the current grace period to be completely recorded in
1648 	 * all of the rcu_node structures before the beginning of the next
1649 	 * grace period is recorded in any of the rcu_node structures.
1650 	 */
1651 	rcu_for_each_node_breadth_first(rsp, rnp) {
1652 		raw_spin_lock_irq(&rnp->lock);
1653 		smp_mb__after_unlock_lock();
1654 		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1655 		rdp = this_cpu_ptr(rsp->rda);
1656 		if (rnp == rdp->mynode)
1657 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1658 		/* smp_mb() provided by prior unlock-lock pair. */
1659 		nocb += rcu_future_gp_cleanup(rsp, rnp);
1660 		raw_spin_unlock_irq(&rnp->lock);
1661 		cond_resched();
1662 	}
1663 	rnp = rcu_get_root(rsp);
1664 	raw_spin_lock_irq(&rnp->lock);
1665 	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1666 	rcu_nocb_gp_set(rnp, nocb);
1667 
1668 	/* Declare grace period done. */
1669 	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1670 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1671 	rsp->fqs_state = RCU_GP_IDLE;
1672 	rdp = this_cpu_ptr(rsp->rda);
1673 	/* Advance CBs to reduce false positives below. */
1674 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1675 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1676 		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1677 		trace_rcu_grace_period(rsp->name,
1678 				       ACCESS_ONCE(rsp->gpnum),
1679 				       TPS("newreq"));
1680 	}
1681 	raw_spin_unlock_irq(&rnp->lock);
1682 }
1683 
1684 /*
1685  * Body of kthread that handles grace periods.
1686  */
1687 static int __noreturn rcu_gp_kthread(void *arg)
1688 {
1689 	int fqs_state;
1690 	int gf;
1691 	unsigned long j;
1692 	int ret;
1693 	struct rcu_state *rsp = arg;
1694 	struct rcu_node *rnp = rcu_get_root(rsp);
1695 
1696 	for (;;) {
1697 
1698 		/* Handle grace-period start. */
1699 		for (;;) {
1700 			trace_rcu_grace_period(rsp->name,
1701 					       ACCESS_ONCE(rsp->gpnum),
1702 					       TPS("reqwait"));
1703 			rsp->gp_state = RCU_GP_WAIT_GPS;
1704 			wait_event_interruptible(rsp->gp_wq,
1705 						 ACCESS_ONCE(rsp->gp_flags) &
1706 						 RCU_GP_FLAG_INIT);
1707 			/* Locking provides needed memory barrier. */
1708 			if (rcu_gp_init(rsp))
1709 				break;
1710 			cond_resched();
1711 			flush_signals(current);
1712 			trace_rcu_grace_period(rsp->name,
1713 					       ACCESS_ONCE(rsp->gpnum),
1714 					       TPS("reqwaitsig"));
1715 		}
1716 
1717 		/* Handle quiescent-state forcing. */
1718 		fqs_state = RCU_SAVE_DYNTICK;
1719 		j = jiffies_till_first_fqs;
1720 		if (j > HZ) {
1721 			j = HZ;
1722 			jiffies_till_first_fqs = HZ;
1723 		}
1724 		ret = 0;
1725 		for (;;) {
1726 			if (!ret)
1727 				rsp->jiffies_force_qs = jiffies + j;
1728 			trace_rcu_grace_period(rsp->name,
1729 					       ACCESS_ONCE(rsp->gpnum),
1730 					       TPS("fqswait"));
1731 			rsp->gp_state = RCU_GP_WAIT_FQS;
1732 			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1733 					((gf = ACCESS_ONCE(rsp->gp_flags)) &
1734 					 RCU_GP_FLAG_FQS) ||
1735 					(!ACCESS_ONCE(rnp->qsmask) &&
1736 					 !rcu_preempt_blocked_readers_cgp(rnp)),
1737 					j);
1738 			/* Locking provides needed memory barriers. */
1739 			/* If grace period done, leave loop. */
1740 			if (!ACCESS_ONCE(rnp->qsmask) &&
1741 			    !rcu_preempt_blocked_readers_cgp(rnp))
1742 				break;
1743 			/* If time for quiescent-state forcing, do it. */
1744 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1745 			    (gf & RCU_GP_FLAG_FQS)) {
1746 				trace_rcu_grace_period(rsp->name,
1747 						       ACCESS_ONCE(rsp->gpnum),
1748 						       TPS("fqsstart"));
1749 				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1750 				trace_rcu_grace_period(rsp->name,
1751 						       ACCESS_ONCE(rsp->gpnum),
1752 						       TPS("fqsend"));
1753 				cond_resched();
1754 			} else {
1755 				/* Deal with stray signal. */
1756 				cond_resched();
1757 				flush_signals(current);
1758 				trace_rcu_grace_period(rsp->name,
1759 						       ACCESS_ONCE(rsp->gpnum),
1760 						       TPS("fqswaitsig"));
1761 			}
1762 			j = jiffies_till_next_fqs;
1763 			if (j > HZ) {
1764 				j = HZ;
1765 				jiffies_till_next_fqs = HZ;
1766 			} else if (j < 1) {
1767 				j = 1;
1768 				jiffies_till_next_fqs = 1;
1769 			}
1770 		}
1771 
1772 		/* Handle grace-period end. */
1773 		rcu_gp_cleanup(rsp);
1774 	}
1775 }
1776 
1777 /*
1778  * Start a new RCU grace period if warranted, re-initializing the hierarchy
1779  * in preparation for detecting the next grace period.  The caller must hold
1780  * the root node's ->lock and hard irqs must be disabled.
1781  *
1782  * Note that it is legal for a dying CPU (which is marked as offline) to
1783  * invoke this function.  This can happen when the dying CPU reports its
1784  * quiescent state.
1785  *
1786  * Returns true if the grace-period kthread must be awakened.
1787  */
1788 static bool
1789 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1790 		      struct rcu_data *rdp)
1791 {
1792 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1793 		/*
1794 		 * Either we have not yet spawned the grace-period
1795 		 * task, this CPU does not need another grace period,
1796 		 * or a grace period is already in progress.
1797 		 * Either way, don't start a new grace period.
1798 		 */
1799 		return false;
1800 	}
1801 	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1802 	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1803 			       TPS("newreq"));
1804 
1805 	/*
1806 	 * We can't do wakeups while holding the rnp->lock, as that
1807 	 * could cause possible deadlocks with the rq->lock. Defer
1808 	 * the wakeup to our caller.
1809 	 */
1810 	return true;
1811 }
1812 
1813 /*
1814  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1815  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
1816  * is invoked indirectly from rcu_advance_cbs(), which would result in
1817  * endless recursion -- or would do so if it wasn't for the self-deadlock
1818  * that is encountered beforehand.
1819  *
1820  * Returns true if the grace-period kthread needs to be awakened.
1821  */
1822 static bool rcu_start_gp(struct rcu_state *rsp)
1823 {
1824 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1825 	struct rcu_node *rnp = rcu_get_root(rsp);
1826 	bool ret = false;
1827 
1828 	/*
1829 	 * If there is no grace period in progress right now, any
1830 	 * callbacks we have up to this point will be satisfied by the
1831 	 * next grace period.  Also, advancing the callbacks reduces the
1832 	 * probability of false positives from cpu_needs_another_gp()
1833 	 * resulting in pointless grace periods.  So, advance callbacks
1834 	 * then start the grace period!
1835 	 */
1836 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1837 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1838 	return ret;
1839 }
1840 
1841 /*
1842  * Report a full set of quiescent states to the specified rcu_state
1843  * data structure.  This involves cleaning up after the prior grace
1844  * period and letting rcu_start_gp() start up the next grace period
1845  * if one is needed.  Note that the caller must hold rnp->lock, which
1846  * is released before return.
1847  */
1848 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1849 	__releases(rcu_get_root(rsp)->lock)
1850 {
1851 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1852 	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1853 	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1854 }
1855 
1856 /*
1857  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1858  * Allows quiescent states for a group of CPUs to be reported at one go
1859  * to the specified rcu_node structure, though all the CPUs in the group
1860  * must be represented by the same rcu_node structure (which need not be
1861  * a leaf rcu_node structure, though it often will be).  That structure's
1862  * lock must be held upon entry, and it is released before return.
1863  */
1864 static void
1865 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1866 		  struct rcu_node *rnp, unsigned long flags)
1867 	__releases(rnp->lock)
1868 {
1869 	struct rcu_node *rnp_c;
1870 
1871 	/* Walk up the rcu_node hierarchy. */
1872 	for (;;) {
1873 		if (!(rnp->qsmask & mask)) {
1874 
1875 			/* Our bit has already been cleared, so done. */
1876 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1877 			return;
1878 		}
1879 		rnp->qsmask &= ~mask;
1880 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1881 						 mask, rnp->qsmask, rnp->level,
1882 						 rnp->grplo, rnp->grphi,
1883 						 !!rnp->gp_tasks);
1884 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1885 
1886 			/* Other bits still set at this level, so done. */
1887 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1888 			return;
1889 		}
1890 		mask = rnp->grpmask;
1891 		if (rnp->parent == NULL) {
1892 
1893 			/* No more levels.  Exit loop holding root lock. */
1894 
1895 			break;
1896 		}
1897 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1898 		rnp_c = rnp;
1899 		rnp = rnp->parent;
1900 		raw_spin_lock_irqsave(&rnp->lock, flags);
1901 		smp_mb__after_unlock_lock();
1902 		WARN_ON_ONCE(rnp_c->qsmask);
1903 	}
1904 
1905 	/*
1906 	 * Get here if we are the last CPU to pass through a quiescent
1907 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1908 	 * to clean up and start the next grace period if one is needed.
1909 	 */
1910 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1911 }
1912 
1913 /*
1914  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1915  * structure.  This must be either called from the specified CPU, or
1916  * called when the specified CPU is known to be offline (and when it is
1917  * also known that no other CPU is concurrently trying to help the offline
1918  * CPU).  The lastcomp argument is used to make sure we are still in the
1919  * grace period of interest.  We don't want to end the current grace period
1920  * based on quiescent states detected in an earlier grace period!
1921  */
1922 static void
1923 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1924 {
1925 	unsigned long flags;
1926 	unsigned long mask;
1927 	bool needwake;
1928 	struct rcu_node *rnp;
1929 
1930 	rnp = rdp->mynode;
1931 	raw_spin_lock_irqsave(&rnp->lock, flags);
1932 	smp_mb__after_unlock_lock();
1933 	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1934 	    rnp->completed == rnp->gpnum) {
1935 
1936 		/*
1937 		 * The grace period in which this quiescent state was
1938 		 * recorded has ended, so don't report it upwards.
1939 		 * We will instead need a new quiescent state that lies
1940 		 * within the current grace period.
1941 		 */
1942 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1943 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1944 		return;
1945 	}
1946 	mask = rdp->grpmask;
1947 	if ((rnp->qsmask & mask) == 0) {
1948 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1949 	} else {
1950 		rdp->qs_pending = 0;
1951 
1952 		/*
1953 		 * This GP can't end until cpu checks in, so all of our
1954 		 * callbacks can be processed during the next GP.
1955 		 */
1956 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1957 
1958 		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1959 		if (needwake)
1960 			rcu_gp_kthread_wake(rsp);
1961 	}
1962 }
1963 
1964 /*
1965  * Check to see if there is a new grace period of which this CPU
1966  * is not yet aware, and if so, set up local rcu_data state for it.
1967  * Otherwise, see if this CPU has just passed through its first
1968  * quiescent state for this grace period, and record that fact if so.
1969  */
1970 static void
1971 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1972 {
1973 	/* Check for grace-period ends and beginnings. */
1974 	note_gp_changes(rsp, rdp);
1975 
1976 	/*
1977 	 * Does this CPU still need to do its part for current grace period?
1978 	 * If no, return and let the other CPUs do their part as well.
1979 	 */
1980 	if (!rdp->qs_pending)
1981 		return;
1982 
1983 	/*
1984 	 * Was there a quiescent state since the beginning of the grace
1985 	 * period? If no, then exit and wait for the next call.
1986 	 */
1987 	if (!rdp->passed_quiesce)
1988 		return;
1989 
1990 	/*
1991 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1992 	 * judge of that).
1993 	 */
1994 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1995 }
1996 
1997 #ifdef CONFIG_HOTPLUG_CPU
1998 
1999 /*
2000  * Send the specified CPU's RCU callbacks to the orphanage.  The
2001  * specified CPU must be offline, and the caller must hold the
2002  * ->orphan_lock.
2003  */
2004 static void
2005 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2006 			  struct rcu_node *rnp, struct rcu_data *rdp)
2007 {
2008 	/* No-CBs CPUs do not have orphanable callbacks. */
2009 	if (rcu_is_nocb_cpu(rdp->cpu))
2010 		return;
2011 
2012 	/*
2013 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2014 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2015 	 * cannot be running now.  Thus no memory barrier is required.
2016 	 */
2017 	if (rdp->nxtlist != NULL) {
2018 		rsp->qlen_lazy += rdp->qlen_lazy;
2019 		rsp->qlen += rdp->qlen;
2020 		rdp->n_cbs_orphaned += rdp->qlen;
2021 		rdp->qlen_lazy = 0;
2022 		ACCESS_ONCE(rdp->qlen) = 0;
2023 	}
2024 
2025 	/*
2026 	 * Next, move those callbacks still needing a grace period to
2027 	 * the orphanage, where some other CPU will pick them up.
2028 	 * Some of the callbacks might have gone partway through a grace
2029 	 * period, but that is too bad.  They get to start over because we
2030 	 * cannot assume that grace periods are synchronized across CPUs.
2031 	 * We don't bother updating the ->nxttail[] array yet, instead
2032 	 * we just reset the whole thing later on.
2033 	 */
2034 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2035 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2036 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2037 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2038 	}
2039 
2040 	/*
2041 	 * Then move the ready-to-invoke callbacks to the orphanage,
2042 	 * where some other CPU will pick them up.  These will not be
2043 	 * required to pass though another grace period: They are done.
2044 	 */
2045 	if (rdp->nxtlist != NULL) {
2046 		*rsp->orphan_donetail = rdp->nxtlist;
2047 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2048 	}
2049 
2050 	/* Finally, initialize the rcu_data structure's list to empty.  */
2051 	init_callback_list(rdp);
2052 }
2053 
2054 /*
2055  * Adopt the RCU callbacks from the specified rcu_state structure's
2056  * orphanage.  The caller must hold the ->orphan_lock.
2057  */
2058 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2059 {
2060 	int i;
2061 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2062 
2063 	/* No-CBs CPUs are handled specially. */
2064 	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2065 		return;
2066 
2067 	/* Do the accounting first. */
2068 	rdp->qlen_lazy += rsp->qlen_lazy;
2069 	rdp->qlen += rsp->qlen;
2070 	rdp->n_cbs_adopted += rsp->qlen;
2071 	if (rsp->qlen_lazy != rsp->qlen)
2072 		rcu_idle_count_callbacks_posted();
2073 	rsp->qlen_lazy = 0;
2074 	rsp->qlen = 0;
2075 
2076 	/*
2077 	 * We do not need a memory barrier here because the only way we
2078 	 * can get here if there is an rcu_barrier() in flight is if
2079 	 * we are the task doing the rcu_barrier().
2080 	 */
2081 
2082 	/* First adopt the ready-to-invoke callbacks. */
2083 	if (rsp->orphan_donelist != NULL) {
2084 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2085 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2086 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2087 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2088 				rdp->nxttail[i] = rsp->orphan_donetail;
2089 		rsp->orphan_donelist = NULL;
2090 		rsp->orphan_donetail = &rsp->orphan_donelist;
2091 	}
2092 
2093 	/* And then adopt the callbacks that still need a grace period. */
2094 	if (rsp->orphan_nxtlist != NULL) {
2095 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2096 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2097 		rsp->orphan_nxtlist = NULL;
2098 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2099 	}
2100 }
2101 
2102 /*
2103  * Trace the fact that this CPU is going offline.
2104  */
2105 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2106 {
2107 	RCU_TRACE(unsigned long mask);
2108 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2109 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2110 
2111 	RCU_TRACE(mask = rdp->grpmask);
2112 	trace_rcu_grace_period(rsp->name,
2113 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2114 			       TPS("cpuofl"));
2115 }
2116 
2117 /*
2118  * The CPU has been completely removed, and some other CPU is reporting
2119  * this fact from process context.  Do the remainder of the cleanup,
2120  * including orphaning the outgoing CPU's RCU callbacks, and also
2121  * adopting them.  There can only be one CPU hotplug operation at a time,
2122  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2123  */
2124 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2125 {
2126 	unsigned long flags;
2127 	unsigned long mask;
2128 	int need_report = 0;
2129 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2130 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2131 
2132 	/* Adjust any no-longer-needed kthreads. */
2133 	rcu_boost_kthread_setaffinity(rnp, -1);
2134 
2135 	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2136 
2137 	/* Exclude any attempts to start a new grace period. */
2138 	mutex_lock(&rsp->onoff_mutex);
2139 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2140 
2141 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2142 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2143 	rcu_adopt_orphan_cbs(rsp, flags);
2144 
2145 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2146 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
2147 	do {
2148 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2149 		smp_mb__after_unlock_lock();
2150 		rnp->qsmaskinit &= ~mask;
2151 		if (rnp->qsmaskinit != 0) {
2152 			if (rnp != rdp->mynode)
2153 				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2154 			break;
2155 		}
2156 		if (rnp == rdp->mynode)
2157 			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2158 		else
2159 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2160 		mask = rnp->grpmask;
2161 		rnp = rnp->parent;
2162 	} while (rnp != NULL);
2163 
2164 	/*
2165 	 * We still hold the leaf rcu_node structure lock here, and
2166 	 * irqs are still disabled.  The reason for this subterfuge is
2167 	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2168 	 * held leads to deadlock.
2169 	 */
2170 	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2171 	rnp = rdp->mynode;
2172 	if (need_report & RCU_OFL_TASKS_NORM_GP)
2173 		rcu_report_unblock_qs_rnp(rnp, flags);
2174 	else
2175 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2176 	if (need_report & RCU_OFL_TASKS_EXP_GP)
2177 		rcu_report_exp_rnp(rsp, rnp, true);
2178 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2179 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2180 		  cpu, rdp->qlen, rdp->nxtlist);
2181 	init_callback_list(rdp);
2182 	/* Disallow further callbacks on this CPU. */
2183 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2184 	mutex_unlock(&rsp->onoff_mutex);
2185 }
2186 
2187 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2188 
2189 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2190 {
2191 }
2192 
2193 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2194 {
2195 }
2196 
2197 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2198 
2199 /*
2200  * Invoke any RCU callbacks that have made it to the end of their grace
2201  * period.  Thottle as specified by rdp->blimit.
2202  */
2203 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2204 {
2205 	unsigned long flags;
2206 	struct rcu_head *next, *list, **tail;
2207 	long bl, count, count_lazy;
2208 	int i;
2209 
2210 	/* If no callbacks are ready, just return. */
2211 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2212 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2213 		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2214 				    need_resched(), is_idle_task(current),
2215 				    rcu_is_callbacks_kthread());
2216 		return;
2217 	}
2218 
2219 	/*
2220 	 * Extract the list of ready callbacks, disabling to prevent
2221 	 * races with call_rcu() from interrupt handlers.
2222 	 */
2223 	local_irq_save(flags);
2224 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2225 	bl = rdp->blimit;
2226 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2227 	list = rdp->nxtlist;
2228 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2229 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2230 	tail = rdp->nxttail[RCU_DONE_TAIL];
2231 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2232 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2233 			rdp->nxttail[i] = &rdp->nxtlist;
2234 	local_irq_restore(flags);
2235 
2236 	/* Invoke callbacks. */
2237 	count = count_lazy = 0;
2238 	while (list) {
2239 		next = list->next;
2240 		prefetch(next);
2241 		debug_rcu_head_unqueue(list);
2242 		if (__rcu_reclaim(rsp->name, list))
2243 			count_lazy++;
2244 		list = next;
2245 		/* Stop only if limit reached and CPU has something to do. */
2246 		if (++count >= bl &&
2247 		    (need_resched() ||
2248 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2249 			break;
2250 	}
2251 
2252 	local_irq_save(flags);
2253 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2254 			    is_idle_task(current),
2255 			    rcu_is_callbacks_kthread());
2256 
2257 	/* Update count, and requeue any remaining callbacks. */
2258 	if (list != NULL) {
2259 		*tail = rdp->nxtlist;
2260 		rdp->nxtlist = list;
2261 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2262 			if (&rdp->nxtlist == rdp->nxttail[i])
2263 				rdp->nxttail[i] = tail;
2264 			else
2265 				break;
2266 	}
2267 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2268 	rdp->qlen_lazy -= count_lazy;
2269 	ACCESS_ONCE(rdp->qlen) -= count;
2270 	rdp->n_cbs_invoked += count;
2271 
2272 	/* Reinstate batch limit if we have worked down the excess. */
2273 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2274 		rdp->blimit = blimit;
2275 
2276 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2277 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2278 		rdp->qlen_last_fqs_check = 0;
2279 		rdp->n_force_qs_snap = rsp->n_force_qs;
2280 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2281 		rdp->qlen_last_fqs_check = rdp->qlen;
2282 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2283 
2284 	local_irq_restore(flags);
2285 
2286 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2287 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2288 		invoke_rcu_core();
2289 }
2290 
2291 /*
2292  * Check to see if this CPU is in a non-context-switch quiescent state
2293  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2294  * Also schedule RCU core processing.
2295  *
2296  * This function must be called from hardirq context.  It is normally
2297  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2298  * false, there is no point in invoking rcu_check_callbacks().
2299  */
2300 void rcu_check_callbacks(int cpu, int user)
2301 {
2302 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2303 	increment_cpu_stall_ticks();
2304 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2305 
2306 		/*
2307 		 * Get here if this CPU took its interrupt from user
2308 		 * mode or from the idle loop, and if this is not a
2309 		 * nested interrupt.  In this case, the CPU is in
2310 		 * a quiescent state, so note it.
2311 		 *
2312 		 * No memory barrier is required here because both
2313 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2314 		 * variables that other CPUs neither access nor modify,
2315 		 * at least not while the corresponding CPU is online.
2316 		 */
2317 
2318 		rcu_sched_qs(cpu);
2319 		rcu_bh_qs(cpu);
2320 
2321 	} else if (!in_softirq()) {
2322 
2323 		/*
2324 		 * Get here if this CPU did not take its interrupt from
2325 		 * softirq, in other words, if it is not interrupting
2326 		 * a rcu_bh read-side critical section.  This is an _bh
2327 		 * critical section, so note it.
2328 		 */
2329 
2330 		rcu_bh_qs(cpu);
2331 	}
2332 	rcu_preempt_check_callbacks(cpu);
2333 	if (rcu_pending(cpu))
2334 		invoke_rcu_core();
2335 	trace_rcu_utilization(TPS("End scheduler-tick"));
2336 }
2337 
2338 /*
2339  * Scan the leaf rcu_node structures, processing dyntick state for any that
2340  * have not yet encountered a quiescent state, using the function specified.
2341  * Also initiate boosting for any threads blocked on the root rcu_node.
2342  *
2343  * The caller must have suppressed start of new grace periods.
2344  */
2345 static void force_qs_rnp(struct rcu_state *rsp,
2346 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2347 				  unsigned long *maxj),
2348 			 bool *isidle, unsigned long *maxj)
2349 {
2350 	unsigned long bit;
2351 	int cpu;
2352 	unsigned long flags;
2353 	unsigned long mask;
2354 	struct rcu_node *rnp;
2355 
2356 	rcu_for_each_leaf_node(rsp, rnp) {
2357 		cond_resched();
2358 		mask = 0;
2359 		raw_spin_lock_irqsave(&rnp->lock, flags);
2360 		smp_mb__after_unlock_lock();
2361 		if (!rcu_gp_in_progress(rsp)) {
2362 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2363 			return;
2364 		}
2365 		if (rnp->qsmask == 0) {
2366 			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2367 			continue;
2368 		}
2369 		cpu = rnp->grplo;
2370 		bit = 1;
2371 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2372 			if ((rnp->qsmask & bit) != 0) {
2373 				if ((rnp->qsmaskinit & bit) != 0)
2374 					*isidle = 0;
2375 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2376 					mask |= bit;
2377 			}
2378 		}
2379 		if (mask != 0) {
2380 
2381 			/* rcu_report_qs_rnp() releases rnp->lock. */
2382 			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2383 			continue;
2384 		}
2385 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2386 	}
2387 	rnp = rcu_get_root(rsp);
2388 	if (rnp->qsmask == 0) {
2389 		raw_spin_lock_irqsave(&rnp->lock, flags);
2390 		smp_mb__after_unlock_lock();
2391 		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2392 	}
2393 }
2394 
2395 /*
2396  * Force quiescent states on reluctant CPUs, and also detect which
2397  * CPUs are in dyntick-idle mode.
2398  */
2399 static void force_quiescent_state(struct rcu_state *rsp)
2400 {
2401 	unsigned long flags;
2402 	bool ret;
2403 	struct rcu_node *rnp;
2404 	struct rcu_node *rnp_old = NULL;
2405 
2406 	/* Funnel through hierarchy to reduce memory contention. */
2407 	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2408 	for (; rnp != NULL; rnp = rnp->parent) {
2409 		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2410 		      !raw_spin_trylock(&rnp->fqslock);
2411 		if (rnp_old != NULL)
2412 			raw_spin_unlock(&rnp_old->fqslock);
2413 		if (ret) {
2414 			ACCESS_ONCE(rsp->n_force_qs_lh)++;
2415 			return;
2416 		}
2417 		rnp_old = rnp;
2418 	}
2419 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2420 
2421 	/* Reached the root of the rcu_node tree, acquire lock. */
2422 	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2423 	smp_mb__after_unlock_lock();
2424 	raw_spin_unlock(&rnp_old->fqslock);
2425 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2426 		ACCESS_ONCE(rsp->n_force_qs_lh)++;
2427 		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2428 		return;  /* Someone beat us to it. */
2429 	}
2430 	ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
2431 	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2432 	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2433 }
2434 
2435 /*
2436  * This does the RCU core processing work for the specified rcu_state
2437  * and rcu_data structures.  This may be called only from the CPU to
2438  * whom the rdp belongs.
2439  */
2440 static void
2441 __rcu_process_callbacks(struct rcu_state *rsp)
2442 {
2443 	unsigned long flags;
2444 	bool needwake;
2445 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2446 
2447 	WARN_ON_ONCE(rdp->beenonline == 0);
2448 
2449 	/* Update RCU state based on any recent quiescent states. */
2450 	rcu_check_quiescent_state(rsp, rdp);
2451 
2452 	/* Does this CPU require a not-yet-started grace period? */
2453 	local_irq_save(flags);
2454 	if (cpu_needs_another_gp(rsp, rdp)) {
2455 		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2456 		needwake = rcu_start_gp(rsp);
2457 		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2458 		if (needwake)
2459 			rcu_gp_kthread_wake(rsp);
2460 	} else {
2461 		local_irq_restore(flags);
2462 	}
2463 
2464 	/* If there are callbacks ready, invoke them. */
2465 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2466 		invoke_rcu_callbacks(rsp, rdp);
2467 
2468 	/* Do any needed deferred wakeups of rcuo kthreads. */
2469 	do_nocb_deferred_wakeup(rdp);
2470 }
2471 
2472 /*
2473  * Do RCU core processing for the current CPU.
2474  */
2475 static void rcu_process_callbacks(struct softirq_action *unused)
2476 {
2477 	struct rcu_state *rsp;
2478 
2479 	if (cpu_is_offline(smp_processor_id()))
2480 		return;
2481 	trace_rcu_utilization(TPS("Start RCU core"));
2482 	for_each_rcu_flavor(rsp)
2483 		__rcu_process_callbacks(rsp);
2484 	trace_rcu_utilization(TPS("End RCU core"));
2485 }
2486 
2487 /*
2488  * Schedule RCU callback invocation.  If the specified type of RCU
2489  * does not support RCU priority boosting, just do a direct call,
2490  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2491  * are running on the current CPU with interrupts disabled, the
2492  * rcu_cpu_kthread_task cannot disappear out from under us.
2493  */
2494 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2495 {
2496 	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2497 		return;
2498 	if (likely(!rsp->boost)) {
2499 		rcu_do_batch(rsp, rdp);
2500 		return;
2501 	}
2502 	invoke_rcu_callbacks_kthread();
2503 }
2504 
2505 static void invoke_rcu_core(void)
2506 {
2507 	if (cpu_online(smp_processor_id()))
2508 		raise_softirq(RCU_SOFTIRQ);
2509 }
2510 
2511 /*
2512  * Handle any core-RCU processing required by a call_rcu() invocation.
2513  */
2514 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2515 			    struct rcu_head *head, unsigned long flags)
2516 {
2517 	bool needwake;
2518 
2519 	/*
2520 	 * If called from an extended quiescent state, invoke the RCU
2521 	 * core in order to force a re-evaluation of RCU's idleness.
2522 	 */
2523 	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2524 		invoke_rcu_core();
2525 
2526 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2527 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2528 		return;
2529 
2530 	/*
2531 	 * Force the grace period if too many callbacks or too long waiting.
2532 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2533 	 * if some other CPU has recently done so.  Also, don't bother
2534 	 * invoking force_quiescent_state() if the newly enqueued callback
2535 	 * is the only one waiting for a grace period to complete.
2536 	 */
2537 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2538 
2539 		/* Are we ignoring a completed grace period? */
2540 		note_gp_changes(rsp, rdp);
2541 
2542 		/* Start a new grace period if one not already started. */
2543 		if (!rcu_gp_in_progress(rsp)) {
2544 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2545 
2546 			raw_spin_lock(&rnp_root->lock);
2547 			smp_mb__after_unlock_lock();
2548 			needwake = rcu_start_gp(rsp);
2549 			raw_spin_unlock(&rnp_root->lock);
2550 			if (needwake)
2551 				rcu_gp_kthread_wake(rsp);
2552 		} else {
2553 			/* Give the grace period a kick. */
2554 			rdp->blimit = LONG_MAX;
2555 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2556 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2557 				force_quiescent_state(rsp);
2558 			rdp->n_force_qs_snap = rsp->n_force_qs;
2559 			rdp->qlen_last_fqs_check = rdp->qlen;
2560 		}
2561 	}
2562 }
2563 
2564 /*
2565  * RCU callback function to leak a callback.
2566  */
2567 static void rcu_leak_callback(struct rcu_head *rhp)
2568 {
2569 }
2570 
2571 /*
2572  * Helper function for call_rcu() and friends.  The cpu argument will
2573  * normally be -1, indicating "currently running CPU".  It may specify
2574  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2575  * is expected to specify a CPU.
2576  */
2577 static void
2578 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2579 	   struct rcu_state *rsp, int cpu, bool lazy)
2580 {
2581 	unsigned long flags;
2582 	struct rcu_data *rdp;
2583 
2584 	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2585 	if (debug_rcu_head_queue(head)) {
2586 		/* Probable double call_rcu(), so leak the callback. */
2587 		ACCESS_ONCE(head->func) = rcu_leak_callback;
2588 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2589 		return;
2590 	}
2591 	head->func = func;
2592 	head->next = NULL;
2593 
2594 	/*
2595 	 * Opportunistically note grace-period endings and beginnings.
2596 	 * Note that we might see a beginning right after we see an
2597 	 * end, but never vice versa, since this CPU has to pass through
2598 	 * a quiescent state betweentimes.
2599 	 */
2600 	local_irq_save(flags);
2601 	rdp = this_cpu_ptr(rsp->rda);
2602 
2603 	/* Add the callback to our list. */
2604 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2605 		int offline;
2606 
2607 		if (cpu != -1)
2608 			rdp = per_cpu_ptr(rsp->rda, cpu);
2609 		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2610 		WARN_ON_ONCE(offline);
2611 		/* _call_rcu() is illegal on offline CPU; leak the callback. */
2612 		local_irq_restore(flags);
2613 		return;
2614 	}
2615 	ACCESS_ONCE(rdp->qlen)++;
2616 	if (lazy)
2617 		rdp->qlen_lazy++;
2618 	else
2619 		rcu_idle_count_callbacks_posted();
2620 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
2621 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
2622 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2623 
2624 	if (__is_kfree_rcu_offset((unsigned long)func))
2625 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2626 					 rdp->qlen_lazy, rdp->qlen);
2627 	else
2628 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2629 
2630 	/* Go handle any RCU core processing required. */
2631 	__call_rcu_core(rsp, rdp, head, flags);
2632 	local_irq_restore(flags);
2633 }
2634 
2635 /*
2636  * Queue an RCU-sched callback for invocation after a grace period.
2637  */
2638 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2639 {
2640 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2641 }
2642 EXPORT_SYMBOL_GPL(call_rcu_sched);
2643 
2644 /*
2645  * Queue an RCU callback for invocation after a quicker grace period.
2646  */
2647 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2648 {
2649 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2650 }
2651 EXPORT_SYMBOL_GPL(call_rcu_bh);
2652 
2653 /*
2654  * Queue an RCU callback for lazy invocation after a grace period.
2655  * This will likely be later named something like "call_rcu_lazy()",
2656  * but this change will require some way of tagging the lazy RCU
2657  * callbacks in the list of pending callbacks. Until then, this
2658  * function may only be called from __kfree_rcu().
2659  */
2660 void kfree_call_rcu(struct rcu_head *head,
2661 		    void (*func)(struct rcu_head *rcu))
2662 {
2663 	__call_rcu(head, func, rcu_state_p, -1, 1);
2664 }
2665 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2666 
2667 /*
2668  * Because a context switch is a grace period for RCU-sched and RCU-bh,
2669  * any blocking grace-period wait automatically implies a grace period
2670  * if there is only one CPU online at any point time during execution
2671  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
2672  * occasionally incorrectly indicate that there are multiple CPUs online
2673  * when there was in fact only one the whole time, as this just adds
2674  * some overhead: RCU still operates correctly.
2675  */
2676 static inline int rcu_blocking_is_gp(void)
2677 {
2678 	int ret;
2679 
2680 	might_sleep();  /* Check for RCU read-side critical section. */
2681 	preempt_disable();
2682 	ret = num_online_cpus() <= 1;
2683 	preempt_enable();
2684 	return ret;
2685 }
2686 
2687 /**
2688  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2689  *
2690  * Control will return to the caller some time after a full rcu-sched
2691  * grace period has elapsed, in other words after all currently executing
2692  * rcu-sched read-side critical sections have completed.   These read-side
2693  * critical sections are delimited by rcu_read_lock_sched() and
2694  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
2695  * local_irq_disable(), and so on may be used in place of
2696  * rcu_read_lock_sched().
2697  *
2698  * This means that all preempt_disable code sequences, including NMI and
2699  * non-threaded hardware-interrupt handlers, in progress on entry will
2700  * have completed before this primitive returns.  However, this does not
2701  * guarantee that softirq handlers will have completed, since in some
2702  * kernels, these handlers can run in process context, and can block.
2703  *
2704  * Note that this guarantee implies further memory-ordering guarantees.
2705  * On systems with more than one CPU, when synchronize_sched() returns,
2706  * each CPU is guaranteed to have executed a full memory barrier since the
2707  * end of its last RCU-sched read-side critical section whose beginning
2708  * preceded the call to synchronize_sched().  In addition, each CPU having
2709  * an RCU read-side critical section that extends beyond the return from
2710  * synchronize_sched() is guaranteed to have executed a full memory barrier
2711  * after the beginning of synchronize_sched() and before the beginning of
2712  * that RCU read-side critical section.  Note that these guarantees include
2713  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2714  * that are executing in the kernel.
2715  *
2716  * Furthermore, if CPU A invoked synchronize_sched(), which returned
2717  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2718  * to have executed a full memory barrier during the execution of
2719  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2720  * again only if the system has more than one CPU).
2721  *
2722  * This primitive provides the guarantees made by the (now removed)
2723  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2724  * guarantees that rcu_read_lock() sections will have completed.
2725  * In "classic RCU", these two guarantees happen to be one and
2726  * the same, but can differ in realtime RCU implementations.
2727  */
2728 void synchronize_sched(void)
2729 {
2730 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2731 			   !lock_is_held(&rcu_lock_map) &&
2732 			   !lock_is_held(&rcu_sched_lock_map),
2733 			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2734 	if (rcu_blocking_is_gp())
2735 		return;
2736 	if (rcu_expedited)
2737 		synchronize_sched_expedited();
2738 	else
2739 		wait_rcu_gp(call_rcu_sched);
2740 }
2741 EXPORT_SYMBOL_GPL(synchronize_sched);
2742 
2743 /**
2744  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2745  *
2746  * Control will return to the caller some time after a full rcu_bh grace
2747  * period has elapsed, in other words after all currently executing rcu_bh
2748  * read-side critical sections have completed.  RCU read-side critical
2749  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2750  * and may be nested.
2751  *
2752  * See the description of synchronize_sched() for more detailed information
2753  * on memory ordering guarantees.
2754  */
2755 void synchronize_rcu_bh(void)
2756 {
2757 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2758 			   !lock_is_held(&rcu_lock_map) &&
2759 			   !lock_is_held(&rcu_sched_lock_map),
2760 			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2761 	if (rcu_blocking_is_gp())
2762 		return;
2763 	if (rcu_expedited)
2764 		synchronize_rcu_bh_expedited();
2765 	else
2766 		wait_rcu_gp(call_rcu_bh);
2767 }
2768 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2769 
2770 /**
2771  * get_state_synchronize_rcu - Snapshot current RCU state
2772  *
2773  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2774  * to determine whether or not a full grace period has elapsed in the
2775  * meantime.
2776  */
2777 unsigned long get_state_synchronize_rcu(void)
2778 {
2779 	/*
2780 	 * Any prior manipulation of RCU-protected data must happen
2781 	 * before the load from ->gpnum.
2782 	 */
2783 	smp_mb();  /* ^^^ */
2784 
2785 	/*
2786 	 * Make sure this load happens before the purportedly
2787 	 * time-consuming work between get_state_synchronize_rcu()
2788 	 * and cond_synchronize_rcu().
2789 	 */
2790 	return smp_load_acquire(&rcu_state_p->gpnum);
2791 }
2792 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2793 
2794 /**
2795  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2796  *
2797  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2798  *
2799  * If a full RCU grace period has elapsed since the earlier call to
2800  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2801  * synchronize_rcu() to wait for a full grace period.
2802  *
2803  * Yes, this function does not take counter wrap into account.  But
2804  * counter wrap is harmless.  If the counter wraps, we have waited for
2805  * more than 2 billion grace periods (and way more on a 64-bit system!),
2806  * so waiting for one additional grace period should be just fine.
2807  */
2808 void cond_synchronize_rcu(unsigned long oldstate)
2809 {
2810 	unsigned long newstate;
2811 
2812 	/*
2813 	 * Ensure that this load happens before any RCU-destructive
2814 	 * actions the caller might carry out after we return.
2815 	 */
2816 	newstate = smp_load_acquire(&rcu_state_p->completed);
2817 	if (ULONG_CMP_GE(oldstate, newstate))
2818 		synchronize_rcu();
2819 }
2820 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2821 
2822 static int synchronize_sched_expedited_cpu_stop(void *data)
2823 {
2824 	/*
2825 	 * There must be a full memory barrier on each affected CPU
2826 	 * between the time that try_stop_cpus() is called and the
2827 	 * time that it returns.
2828 	 *
2829 	 * In the current initial implementation of cpu_stop, the
2830 	 * above condition is already met when the control reaches
2831 	 * this point and the following smp_mb() is not strictly
2832 	 * necessary.  Do smp_mb() anyway for documentation and
2833 	 * robustness against future implementation changes.
2834 	 */
2835 	smp_mb(); /* See above comment block. */
2836 	return 0;
2837 }
2838 
2839 /**
2840  * synchronize_sched_expedited - Brute-force RCU-sched grace period
2841  *
2842  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2843  * approach to force the grace period to end quickly.  This consumes
2844  * significant time on all CPUs and is unfriendly to real-time workloads,
2845  * so is thus not recommended for any sort of common-case code.  In fact,
2846  * if you are using synchronize_sched_expedited() in a loop, please
2847  * restructure your code to batch your updates, and then use a single
2848  * synchronize_sched() instead.
2849  *
2850  * Note that it is illegal to call this function while holding any lock
2851  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
2852  * to call this function from a CPU-hotplug notifier.  Failing to observe
2853  * these restriction will result in deadlock.
2854  *
2855  * This implementation can be thought of as an application of ticket
2856  * locking to RCU, with sync_sched_expedited_started and
2857  * sync_sched_expedited_done taking on the roles of the halves
2858  * of the ticket-lock word.  Each task atomically increments
2859  * sync_sched_expedited_started upon entry, snapshotting the old value,
2860  * then attempts to stop all the CPUs.  If this succeeds, then each
2861  * CPU will have executed a context switch, resulting in an RCU-sched
2862  * grace period.  We are then done, so we use atomic_cmpxchg() to
2863  * update sync_sched_expedited_done to match our snapshot -- but
2864  * only if someone else has not already advanced past our snapshot.
2865  *
2866  * On the other hand, if try_stop_cpus() fails, we check the value
2867  * of sync_sched_expedited_done.  If it has advanced past our
2868  * initial snapshot, then someone else must have forced a grace period
2869  * some time after we took our snapshot.  In this case, our work is
2870  * done for us, and we can simply return.  Otherwise, we try again,
2871  * but keep our initial snapshot for purposes of checking for someone
2872  * doing our work for us.
2873  *
2874  * If we fail too many times in a row, we fall back to synchronize_sched().
2875  */
2876 void synchronize_sched_expedited(void)
2877 {
2878 	long firstsnap, s, snap;
2879 	int trycount = 0;
2880 	struct rcu_state *rsp = &rcu_sched_state;
2881 
2882 	/*
2883 	 * If we are in danger of counter wrap, just do synchronize_sched().
2884 	 * By allowing sync_sched_expedited_started to advance no more than
2885 	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2886 	 * that more than 3.5 billion CPUs would be required to force a
2887 	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
2888 	 * course be required on a 64-bit system.
2889 	 */
2890 	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2891 			 (ulong)atomic_long_read(&rsp->expedited_done) +
2892 			 ULONG_MAX / 8)) {
2893 		synchronize_sched();
2894 		atomic_long_inc(&rsp->expedited_wrap);
2895 		return;
2896 	}
2897 
2898 	/*
2899 	 * Take a ticket.  Note that atomic_inc_return() implies a
2900 	 * full memory barrier.
2901 	 */
2902 	snap = atomic_long_inc_return(&rsp->expedited_start);
2903 	firstsnap = snap;
2904 	get_online_cpus();
2905 	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2906 
2907 	/*
2908 	 * Each pass through the following loop attempts to force a
2909 	 * context switch on each CPU.
2910 	 */
2911 	while (try_stop_cpus(cpu_online_mask,
2912 			     synchronize_sched_expedited_cpu_stop,
2913 			     NULL) == -EAGAIN) {
2914 		put_online_cpus();
2915 		atomic_long_inc(&rsp->expedited_tryfail);
2916 
2917 		/* Check to see if someone else did our work for us. */
2918 		s = atomic_long_read(&rsp->expedited_done);
2919 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2920 			/* ensure test happens before caller kfree */
2921 			smp_mb__before_atomic(); /* ^^^ */
2922 			atomic_long_inc(&rsp->expedited_workdone1);
2923 			return;
2924 		}
2925 
2926 		/* No joy, try again later.  Or just synchronize_sched(). */
2927 		if (trycount++ < 10) {
2928 			udelay(trycount * num_online_cpus());
2929 		} else {
2930 			wait_rcu_gp(call_rcu_sched);
2931 			atomic_long_inc(&rsp->expedited_normal);
2932 			return;
2933 		}
2934 
2935 		/* Recheck to see if someone else did our work for us. */
2936 		s = atomic_long_read(&rsp->expedited_done);
2937 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2938 			/* ensure test happens before caller kfree */
2939 			smp_mb__before_atomic(); /* ^^^ */
2940 			atomic_long_inc(&rsp->expedited_workdone2);
2941 			return;
2942 		}
2943 
2944 		/*
2945 		 * Refetching sync_sched_expedited_started allows later
2946 		 * callers to piggyback on our grace period.  We retry
2947 		 * after they started, so our grace period works for them,
2948 		 * and they started after our first try, so their grace
2949 		 * period works for us.
2950 		 */
2951 		get_online_cpus();
2952 		snap = atomic_long_read(&rsp->expedited_start);
2953 		smp_mb(); /* ensure read is before try_stop_cpus(). */
2954 	}
2955 	atomic_long_inc(&rsp->expedited_stoppedcpus);
2956 
2957 	/*
2958 	 * Everyone up to our most recent fetch is covered by our grace
2959 	 * period.  Update the counter, but only if our work is still
2960 	 * relevant -- which it won't be if someone who started later
2961 	 * than we did already did their update.
2962 	 */
2963 	do {
2964 		atomic_long_inc(&rsp->expedited_done_tries);
2965 		s = atomic_long_read(&rsp->expedited_done);
2966 		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2967 			/* ensure test happens before caller kfree */
2968 			smp_mb__before_atomic(); /* ^^^ */
2969 			atomic_long_inc(&rsp->expedited_done_lost);
2970 			break;
2971 		}
2972 	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2973 	atomic_long_inc(&rsp->expedited_done_exit);
2974 
2975 	put_online_cpus();
2976 }
2977 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2978 
2979 /*
2980  * Check to see if there is any immediate RCU-related work to be done
2981  * by the current CPU, for the specified type of RCU, returning 1 if so.
2982  * The checks are in order of increasing expense: checks that can be
2983  * carried out against CPU-local state are performed first.  However,
2984  * we must check for CPU stalls first, else we might not get a chance.
2985  */
2986 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2987 {
2988 	struct rcu_node *rnp = rdp->mynode;
2989 
2990 	rdp->n_rcu_pending++;
2991 
2992 	/* Check for CPU stalls, if enabled. */
2993 	check_cpu_stall(rsp, rdp);
2994 
2995 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2996 	if (rcu_nohz_full_cpu(rsp))
2997 		return 0;
2998 
2999 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3000 	if (rcu_scheduler_fully_active &&
3001 	    rdp->qs_pending && !rdp->passed_quiesce) {
3002 		rdp->n_rp_qs_pending++;
3003 	} else if (rdp->qs_pending && rdp->passed_quiesce) {
3004 		rdp->n_rp_report_qs++;
3005 		return 1;
3006 	}
3007 
3008 	/* Does this CPU have callbacks ready to invoke? */
3009 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3010 		rdp->n_rp_cb_ready++;
3011 		return 1;
3012 	}
3013 
3014 	/* Has RCU gone idle with this CPU needing another grace period? */
3015 	if (cpu_needs_another_gp(rsp, rdp)) {
3016 		rdp->n_rp_cpu_needs_gp++;
3017 		return 1;
3018 	}
3019 
3020 	/* Has another RCU grace period completed?  */
3021 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3022 		rdp->n_rp_gp_completed++;
3023 		return 1;
3024 	}
3025 
3026 	/* Has a new RCU grace period started? */
3027 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
3028 		rdp->n_rp_gp_started++;
3029 		return 1;
3030 	}
3031 
3032 	/* Does this CPU need a deferred NOCB wakeup? */
3033 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3034 		rdp->n_rp_nocb_defer_wakeup++;
3035 		return 1;
3036 	}
3037 
3038 	/* nothing to do */
3039 	rdp->n_rp_need_nothing++;
3040 	return 0;
3041 }
3042 
3043 /*
3044  * Check to see if there is any immediate RCU-related work to be done
3045  * by the current CPU, returning 1 if so.  This function is part of the
3046  * RCU implementation; it is -not- an exported member of the RCU API.
3047  */
3048 static int rcu_pending(int cpu)
3049 {
3050 	struct rcu_state *rsp;
3051 
3052 	for_each_rcu_flavor(rsp)
3053 		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3054 			return 1;
3055 	return 0;
3056 }
3057 
3058 /*
3059  * Return true if the specified CPU has any callback.  If all_lazy is
3060  * non-NULL, store an indication of whether all callbacks are lazy.
3061  * (If there are no callbacks, all of them are deemed to be lazy.)
3062  */
3063 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
3064 {
3065 	bool al = true;
3066 	bool hc = false;
3067 	struct rcu_data *rdp;
3068 	struct rcu_state *rsp;
3069 
3070 	for_each_rcu_flavor(rsp) {
3071 		rdp = per_cpu_ptr(rsp->rda, cpu);
3072 		if (!rdp->nxtlist)
3073 			continue;
3074 		hc = true;
3075 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3076 			al = false;
3077 			break;
3078 		}
3079 	}
3080 	if (all_lazy)
3081 		*all_lazy = al;
3082 	return hc;
3083 }
3084 
3085 /*
3086  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3087  * the compiler is expected to optimize this away.
3088  */
3089 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3090 			       int cpu, unsigned long done)
3091 {
3092 	trace_rcu_barrier(rsp->name, s, cpu,
3093 			  atomic_read(&rsp->barrier_cpu_count), done);
3094 }
3095 
3096 /*
3097  * RCU callback function for _rcu_barrier().  If we are last, wake
3098  * up the task executing _rcu_barrier().
3099  */
3100 static void rcu_barrier_callback(struct rcu_head *rhp)
3101 {
3102 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3103 	struct rcu_state *rsp = rdp->rsp;
3104 
3105 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3106 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3107 		complete(&rsp->barrier_completion);
3108 	} else {
3109 		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3110 	}
3111 }
3112 
3113 /*
3114  * Called with preemption disabled, and from cross-cpu IRQ context.
3115  */
3116 static void rcu_barrier_func(void *type)
3117 {
3118 	struct rcu_state *rsp = type;
3119 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3120 
3121 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3122 	atomic_inc(&rsp->barrier_cpu_count);
3123 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3124 }
3125 
3126 /*
3127  * Orchestrate the specified type of RCU barrier, waiting for all
3128  * RCU callbacks of the specified type to complete.
3129  */
3130 static void _rcu_barrier(struct rcu_state *rsp)
3131 {
3132 	int cpu;
3133 	struct rcu_data *rdp;
3134 	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3135 	unsigned long snap_done;
3136 
3137 	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3138 
3139 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3140 	mutex_lock(&rsp->barrier_mutex);
3141 
3142 	/*
3143 	 * Ensure that all prior references, including to ->n_barrier_done,
3144 	 * are ordered before the _rcu_barrier() machinery.
3145 	 */
3146 	smp_mb();  /* See above block comment. */
3147 
3148 	/*
3149 	 * Recheck ->n_barrier_done to see if others did our work for us.
3150 	 * This means checking ->n_barrier_done for an even-to-odd-to-even
3151 	 * transition.  The "if" expression below therefore rounds the old
3152 	 * value up to the next even number and adds two before comparing.
3153 	 */
3154 	snap_done = rsp->n_barrier_done;
3155 	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3156 
3157 	/*
3158 	 * If the value in snap is odd, we needed to wait for the current
3159 	 * rcu_barrier() to complete, then wait for the next one, in other
3160 	 * words, we need the value of snap_done to be three larger than
3161 	 * the value of snap.  On the other hand, if the value in snap is
3162 	 * even, we only had to wait for the next rcu_barrier() to complete,
3163 	 * in other words, we need the value of snap_done to be only two
3164 	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3165 	 * this for us (thank you, Linus!).
3166 	 */
3167 	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3168 		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3169 		smp_mb(); /* caller's subsequent code after above check. */
3170 		mutex_unlock(&rsp->barrier_mutex);
3171 		return;
3172 	}
3173 
3174 	/*
3175 	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3176 	 * ACCESS_ONCE() to prevent the compiler from speculating
3177 	 * the increment to precede the early-exit check.
3178 	 */
3179 	ACCESS_ONCE(rsp->n_barrier_done)++;
3180 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3181 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3182 	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3183 
3184 	/*
3185 	 * Initialize the count to one rather than to zero in order to
3186 	 * avoid a too-soon return to zero in case of a short grace period
3187 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3188 	 * to ensure that no offline CPU has callbacks queued.
3189 	 */
3190 	init_completion(&rsp->barrier_completion);
3191 	atomic_set(&rsp->barrier_cpu_count, 1);
3192 	get_online_cpus();
3193 
3194 	/*
3195 	 * Force each CPU with callbacks to register a new callback.
3196 	 * When that callback is invoked, we will know that all of the
3197 	 * corresponding CPU's preceding callbacks have been invoked.
3198 	 */
3199 	for_each_possible_cpu(cpu) {
3200 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3201 			continue;
3202 		rdp = per_cpu_ptr(rsp->rda, cpu);
3203 		if (rcu_is_nocb_cpu(cpu)) {
3204 			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3205 					   rsp->n_barrier_done);
3206 			atomic_inc(&rsp->barrier_cpu_count);
3207 			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3208 				   rsp, cpu, 0);
3209 		} else if (ACCESS_ONCE(rdp->qlen)) {
3210 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3211 					   rsp->n_barrier_done);
3212 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3213 		} else {
3214 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3215 					   rsp->n_barrier_done);
3216 		}
3217 	}
3218 	put_online_cpus();
3219 
3220 	/*
3221 	 * Now that we have an rcu_barrier_callback() callback on each
3222 	 * CPU, and thus each counted, remove the initial count.
3223 	 */
3224 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3225 		complete(&rsp->barrier_completion);
3226 
3227 	/* Increment ->n_barrier_done to prevent duplicate work. */
3228 	smp_mb(); /* Keep increment after above mechanism. */
3229 	ACCESS_ONCE(rsp->n_barrier_done)++;
3230 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3231 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3232 	smp_mb(); /* Keep increment before caller's subsequent code. */
3233 
3234 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3235 	wait_for_completion(&rsp->barrier_completion);
3236 
3237 	/* Other rcu_barrier() invocations can now safely proceed. */
3238 	mutex_unlock(&rsp->barrier_mutex);
3239 }
3240 
3241 /**
3242  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3243  */
3244 void rcu_barrier_bh(void)
3245 {
3246 	_rcu_barrier(&rcu_bh_state);
3247 }
3248 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3249 
3250 /**
3251  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3252  */
3253 void rcu_barrier_sched(void)
3254 {
3255 	_rcu_barrier(&rcu_sched_state);
3256 }
3257 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3258 
3259 /*
3260  * Do boot-time initialization of a CPU's per-CPU RCU data.
3261  */
3262 static void __init
3263 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3264 {
3265 	unsigned long flags;
3266 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3267 	struct rcu_node *rnp = rcu_get_root(rsp);
3268 
3269 	/* Set up local state, ensuring consistent view of global state. */
3270 	raw_spin_lock_irqsave(&rnp->lock, flags);
3271 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3272 	init_callback_list(rdp);
3273 	rdp->qlen_lazy = 0;
3274 	ACCESS_ONCE(rdp->qlen) = 0;
3275 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3276 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3277 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3278 	rdp->cpu = cpu;
3279 	rdp->rsp = rsp;
3280 	rcu_boot_init_nocb_percpu_data(rdp);
3281 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3282 }
3283 
3284 /*
3285  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3286  * offline event can be happening at a given time.  Note also that we
3287  * can accept some slop in the rsp->completed access due to the fact
3288  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3289  */
3290 static void
3291 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3292 {
3293 	unsigned long flags;
3294 	unsigned long mask;
3295 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3296 	struct rcu_node *rnp = rcu_get_root(rsp);
3297 
3298 	/* Exclude new grace periods. */
3299 	mutex_lock(&rsp->onoff_mutex);
3300 
3301 	/* Set up local state, ensuring consistent view of global state. */
3302 	raw_spin_lock_irqsave(&rnp->lock, flags);
3303 	rdp->beenonline = 1;	 /* We have now been online. */
3304 	rdp->qlen_last_fqs_check = 0;
3305 	rdp->n_force_qs_snap = rsp->n_force_qs;
3306 	rdp->blimit = blimit;
3307 	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3308 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3309 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3310 	atomic_set(&rdp->dynticks->dynticks,
3311 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3312 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3313 
3314 	/* Add CPU to rcu_node bitmasks. */
3315 	rnp = rdp->mynode;
3316 	mask = rdp->grpmask;
3317 	do {
3318 		/* Exclude any attempts to start a new GP on small systems. */
3319 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3320 		rnp->qsmaskinit |= mask;
3321 		mask = rnp->grpmask;
3322 		if (rnp == rdp->mynode) {
3323 			/*
3324 			 * If there is a grace period in progress, we will
3325 			 * set up to wait for it next time we run the
3326 			 * RCU core code.
3327 			 */
3328 			rdp->gpnum = rnp->completed;
3329 			rdp->completed = rnp->completed;
3330 			rdp->passed_quiesce = 0;
3331 			rdp->qs_pending = 0;
3332 			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3333 		}
3334 		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3335 		rnp = rnp->parent;
3336 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3337 	local_irq_restore(flags);
3338 
3339 	mutex_unlock(&rsp->onoff_mutex);
3340 }
3341 
3342 static void rcu_prepare_cpu(int cpu)
3343 {
3344 	struct rcu_state *rsp;
3345 
3346 	for_each_rcu_flavor(rsp)
3347 		rcu_init_percpu_data(cpu, rsp);
3348 }
3349 
3350 /*
3351  * Handle CPU online/offline notification events.
3352  */
3353 static int rcu_cpu_notify(struct notifier_block *self,
3354 				    unsigned long action, void *hcpu)
3355 {
3356 	long cpu = (long)hcpu;
3357 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3358 	struct rcu_node *rnp = rdp->mynode;
3359 	struct rcu_state *rsp;
3360 
3361 	trace_rcu_utilization(TPS("Start CPU hotplug"));
3362 	switch (action) {
3363 	case CPU_UP_PREPARE:
3364 	case CPU_UP_PREPARE_FROZEN:
3365 		rcu_prepare_cpu(cpu);
3366 		rcu_prepare_kthreads(cpu);
3367 		break;
3368 	case CPU_ONLINE:
3369 	case CPU_DOWN_FAILED:
3370 		rcu_boost_kthread_setaffinity(rnp, -1);
3371 		break;
3372 	case CPU_DOWN_PREPARE:
3373 		rcu_boost_kthread_setaffinity(rnp, cpu);
3374 		break;
3375 	case CPU_DYING:
3376 	case CPU_DYING_FROZEN:
3377 		for_each_rcu_flavor(rsp)
3378 			rcu_cleanup_dying_cpu(rsp);
3379 		break;
3380 	case CPU_DEAD:
3381 	case CPU_DEAD_FROZEN:
3382 	case CPU_UP_CANCELED:
3383 	case CPU_UP_CANCELED_FROZEN:
3384 		for_each_rcu_flavor(rsp)
3385 			rcu_cleanup_dead_cpu(cpu, rsp);
3386 		break;
3387 	default:
3388 		break;
3389 	}
3390 	trace_rcu_utilization(TPS("End CPU hotplug"));
3391 	return NOTIFY_OK;
3392 }
3393 
3394 static int rcu_pm_notify(struct notifier_block *self,
3395 			 unsigned long action, void *hcpu)
3396 {
3397 	switch (action) {
3398 	case PM_HIBERNATION_PREPARE:
3399 	case PM_SUSPEND_PREPARE:
3400 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3401 			rcu_expedited = 1;
3402 		break;
3403 	case PM_POST_HIBERNATION:
3404 	case PM_POST_SUSPEND:
3405 		rcu_expedited = 0;
3406 		break;
3407 	default:
3408 		break;
3409 	}
3410 	return NOTIFY_OK;
3411 }
3412 
3413 /*
3414  * Spawn the kthread that handles this RCU flavor's grace periods.
3415  */
3416 static int __init rcu_spawn_gp_kthread(void)
3417 {
3418 	unsigned long flags;
3419 	struct rcu_node *rnp;
3420 	struct rcu_state *rsp;
3421 	struct task_struct *t;
3422 
3423 	for_each_rcu_flavor(rsp) {
3424 		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3425 		BUG_ON(IS_ERR(t));
3426 		rnp = rcu_get_root(rsp);
3427 		raw_spin_lock_irqsave(&rnp->lock, flags);
3428 		rsp->gp_kthread = t;
3429 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3430 		rcu_spawn_nocb_kthreads(rsp);
3431 	}
3432 	return 0;
3433 }
3434 early_initcall(rcu_spawn_gp_kthread);
3435 
3436 /*
3437  * This function is invoked towards the end of the scheduler's initialization
3438  * process.  Before this is called, the idle task might contain
3439  * RCU read-side critical sections (during which time, this idle
3440  * task is booting the system).  After this function is called, the
3441  * idle tasks are prohibited from containing RCU read-side critical
3442  * sections.  This function also enables RCU lockdep checking.
3443  */
3444 void rcu_scheduler_starting(void)
3445 {
3446 	WARN_ON(num_online_cpus() != 1);
3447 	WARN_ON(nr_context_switches() > 0);
3448 	rcu_scheduler_active = 1;
3449 }
3450 
3451 /*
3452  * Compute the per-level fanout, either using the exact fanout specified
3453  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3454  */
3455 #ifdef CONFIG_RCU_FANOUT_EXACT
3456 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3457 {
3458 	int i;
3459 
3460 	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3461 	for (i = rcu_num_lvls - 2; i >= 0; i--)
3462 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3463 }
3464 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3465 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3466 {
3467 	int ccur;
3468 	int cprv;
3469 	int i;
3470 
3471 	cprv = nr_cpu_ids;
3472 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3473 		ccur = rsp->levelcnt[i];
3474 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3475 		cprv = ccur;
3476 	}
3477 }
3478 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3479 
3480 /*
3481  * Helper function for rcu_init() that initializes one rcu_state structure.
3482  */
3483 static void __init rcu_init_one(struct rcu_state *rsp,
3484 		struct rcu_data __percpu *rda)
3485 {
3486 	static char *buf[] = { "rcu_node_0",
3487 			       "rcu_node_1",
3488 			       "rcu_node_2",
3489 			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
3490 	static char *fqs[] = { "rcu_node_fqs_0",
3491 			       "rcu_node_fqs_1",
3492 			       "rcu_node_fqs_2",
3493 			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3494 	int cpustride = 1;
3495 	int i;
3496 	int j;
3497 	struct rcu_node *rnp;
3498 
3499 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3500 
3501 	/* Silence gcc 4.8 warning about array index out of range. */
3502 	if (rcu_num_lvls > RCU_NUM_LVLS)
3503 		panic("rcu_init_one: rcu_num_lvls overflow");
3504 
3505 	/* Initialize the level-tracking arrays. */
3506 
3507 	for (i = 0; i < rcu_num_lvls; i++)
3508 		rsp->levelcnt[i] = num_rcu_lvl[i];
3509 	for (i = 1; i < rcu_num_lvls; i++)
3510 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3511 	rcu_init_levelspread(rsp);
3512 
3513 	/* Initialize the elements themselves, starting from the leaves. */
3514 
3515 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3516 		cpustride *= rsp->levelspread[i];
3517 		rnp = rsp->level[i];
3518 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3519 			raw_spin_lock_init(&rnp->lock);
3520 			lockdep_set_class_and_name(&rnp->lock,
3521 						   &rcu_node_class[i], buf[i]);
3522 			raw_spin_lock_init(&rnp->fqslock);
3523 			lockdep_set_class_and_name(&rnp->fqslock,
3524 						   &rcu_fqs_class[i], fqs[i]);
3525 			rnp->gpnum = rsp->gpnum;
3526 			rnp->completed = rsp->completed;
3527 			rnp->qsmask = 0;
3528 			rnp->qsmaskinit = 0;
3529 			rnp->grplo = j * cpustride;
3530 			rnp->grphi = (j + 1) * cpustride - 1;
3531 			if (rnp->grphi >= nr_cpu_ids)
3532 				rnp->grphi = nr_cpu_ids - 1;
3533 			if (i == 0) {
3534 				rnp->grpnum = 0;
3535 				rnp->grpmask = 0;
3536 				rnp->parent = NULL;
3537 			} else {
3538 				rnp->grpnum = j % rsp->levelspread[i - 1];
3539 				rnp->grpmask = 1UL << rnp->grpnum;
3540 				rnp->parent = rsp->level[i - 1] +
3541 					      j / rsp->levelspread[i - 1];
3542 			}
3543 			rnp->level = i;
3544 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3545 			rcu_init_one_nocb(rnp);
3546 		}
3547 	}
3548 
3549 	rsp->rda = rda;
3550 	init_waitqueue_head(&rsp->gp_wq);
3551 	rnp = rsp->level[rcu_num_lvls - 1];
3552 	for_each_possible_cpu(i) {
3553 		while (i > rnp->grphi)
3554 			rnp++;
3555 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3556 		rcu_boot_init_percpu_data(i, rsp);
3557 	}
3558 	list_add(&rsp->flavors, &rcu_struct_flavors);
3559 }
3560 
3561 /*
3562  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3563  * replace the definitions in tree.h because those are needed to size
3564  * the ->node array in the rcu_state structure.
3565  */
3566 static void __init rcu_init_geometry(void)
3567 {
3568 	ulong d;
3569 	int i;
3570 	int j;
3571 	int n = nr_cpu_ids;
3572 	int rcu_capacity[MAX_RCU_LVLS + 1];
3573 
3574 	/*
3575 	 * Initialize any unspecified boot parameters.
3576 	 * The default values of jiffies_till_first_fqs and
3577 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3578 	 * value, which is a function of HZ, then adding one for each
3579 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3580 	 */
3581 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3582 	if (jiffies_till_first_fqs == ULONG_MAX)
3583 		jiffies_till_first_fqs = d;
3584 	if (jiffies_till_next_fqs == ULONG_MAX)
3585 		jiffies_till_next_fqs = d;
3586 
3587 	/* If the compile-time values are accurate, just leave. */
3588 	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3589 	    nr_cpu_ids == NR_CPUS)
3590 		return;
3591 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3592 		rcu_fanout_leaf, nr_cpu_ids);
3593 
3594 	/*
3595 	 * Compute number of nodes that can be handled an rcu_node tree
3596 	 * with the given number of levels.  Setting rcu_capacity[0] makes
3597 	 * some of the arithmetic easier.
3598 	 */
3599 	rcu_capacity[0] = 1;
3600 	rcu_capacity[1] = rcu_fanout_leaf;
3601 	for (i = 2; i <= MAX_RCU_LVLS; i++)
3602 		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3603 
3604 	/*
3605 	 * The boot-time rcu_fanout_leaf parameter is only permitted
3606 	 * to increase the leaf-level fanout, not decrease it.  Of course,
3607 	 * the leaf-level fanout cannot exceed the number of bits in
3608 	 * the rcu_node masks.  Finally, the tree must be able to accommodate
3609 	 * the configured number of CPUs.  Complain and fall back to the
3610 	 * compile-time values if these limits are exceeded.
3611 	 */
3612 	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3613 	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3614 	    n > rcu_capacity[MAX_RCU_LVLS]) {
3615 		WARN_ON(1);
3616 		return;
3617 	}
3618 
3619 	/* Calculate the number of rcu_nodes at each level of the tree. */
3620 	for (i = 1; i <= MAX_RCU_LVLS; i++)
3621 		if (n <= rcu_capacity[i]) {
3622 			for (j = 0; j <= i; j++)
3623 				num_rcu_lvl[j] =
3624 					DIV_ROUND_UP(n, rcu_capacity[i - j]);
3625 			rcu_num_lvls = i;
3626 			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3627 				num_rcu_lvl[j] = 0;
3628 			break;
3629 		}
3630 
3631 	/* Calculate the total number of rcu_node structures. */
3632 	rcu_num_nodes = 0;
3633 	for (i = 0; i <= MAX_RCU_LVLS; i++)
3634 		rcu_num_nodes += num_rcu_lvl[i];
3635 	rcu_num_nodes -= n;
3636 }
3637 
3638 void __init rcu_init(void)
3639 {
3640 	int cpu;
3641 
3642 	rcu_bootup_announce();
3643 	rcu_init_geometry();
3644 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3645 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3646 	__rcu_init_preempt();
3647 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3648 
3649 	/*
3650 	 * We don't need protection against CPU-hotplug here because
3651 	 * this is called early in boot, before either interrupts
3652 	 * or the scheduler are operational.
3653 	 */
3654 	cpu_notifier(rcu_cpu_notify, 0);
3655 	pm_notifier(rcu_pm_notify, 0);
3656 	for_each_online_cpu(cpu)
3657 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3658 }
3659 
3660 #include "tree_plugin.h"
3661