xref: /openbmc/linux/kernel/rcu/tree.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include "../time/tick-internal.h"
66 
67 #include "tree.h"
68 #include "rcu.h"
69 
70 #ifdef MODULE_PARAM_PREFIX
71 #undef MODULE_PARAM_PREFIX
72 #endif
73 #define MODULE_PARAM_PREFIX "rcutree."
74 
75 /* Data structures. */
76 
77 /*
78  * Steal a bit from the bottom of ->dynticks for idle entry/exit
79  * control.  Initially this is for TLB flushing.
80  */
81 #define RCU_DYNTICK_CTRL_MASK 0x1
82 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
83 
84 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
85 	.dynticks_nesting = 1,
86 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
87 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
88 #ifdef CONFIG_RCU_NOCB_CPU
89 	.cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
90 #endif
91 };
92 static struct rcu_state rcu_state = {
93 	.level = { &rcu_state.node[0] },
94 	.gp_state = RCU_GP_IDLE,
95 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
96 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
97 	.name = RCU_NAME,
98 	.abbr = RCU_ABBR,
99 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
100 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
101 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
102 };
103 
104 /* Dump rcu_node combining tree at boot to verify correct setup. */
105 static bool dump_tree;
106 module_param(dump_tree, bool, 0444);
107 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
108 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
109 #ifndef CONFIG_PREEMPT_RT
110 module_param(use_softirq, bool, 0444);
111 #endif
112 /* Control rcu_node-tree auto-balancing at boot time. */
113 static bool rcu_fanout_exact;
114 module_param(rcu_fanout_exact, bool, 0444);
115 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
116 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
117 module_param(rcu_fanout_leaf, int, 0444);
118 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
119 /* Number of rcu_nodes at specified level. */
120 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
121 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
122 
123 /*
124  * The rcu_scheduler_active variable is initialized to the value
125  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
126  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
127  * RCU can assume that there is but one task, allowing RCU to (for example)
128  * optimize synchronize_rcu() to a simple barrier().  When this variable
129  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
130  * to detect real grace periods.  This variable is also used to suppress
131  * boot-time false positives from lockdep-RCU error checking.  Finally, it
132  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
133  * is fully initialized, including all of its kthreads having been spawned.
134  */
135 int rcu_scheduler_active __read_mostly;
136 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
137 
138 /*
139  * The rcu_scheduler_fully_active variable transitions from zero to one
140  * during the early_initcall() processing, which is after the scheduler
141  * is capable of creating new tasks.  So RCU processing (for example,
142  * creating tasks for RCU priority boosting) must be delayed until after
143  * rcu_scheduler_fully_active transitions from zero to one.  We also
144  * currently delay invocation of any RCU callbacks until after this point.
145  *
146  * It might later prove better for people registering RCU callbacks during
147  * early boot to take responsibility for these callbacks, but one step at
148  * a time.
149  */
150 static int rcu_scheduler_fully_active __read_mostly;
151 
152 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
153 			      unsigned long gps, unsigned long flags);
154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 static void invoke_rcu_core(void);
158 static void rcu_report_exp_rdp(struct rcu_data *rdp);
159 static void sync_sched_exp_online_cleanup(int cpu);
160 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
161 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
162 
163 /* rcuc/rcub kthread realtime priority */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166 
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168 
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175 
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181 
182 /*
183  * This rcu parameter is runtime-read-only. It reflects
184  * a minimum allowed number of objects which can be cached
185  * per-CPU. Object size is equal to one page. This value
186  * can be changed at boot time.
187  */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190 
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201 
202 /* Retrieve RCU kthreads priority for rcutorture */
203 int rcu_get_gp_kthreads_prio(void)
204 {
205 	return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208 
209 /*
210  * Number of grace periods between delays, normalized by the duration of
211  * the delay.  The longer the delay, the more the grace periods between
212  * each delay.  The reason for this normalization is that it means that,
213  * for non-zero delays, the overall slowdown of grace periods is constant
214  * regardless of the duration of the delay.  This arrangement balances
215  * the need for long delays to increase some race probabilities with the
216  * need for fast grace periods to increase other race probabilities.
217  */
218 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
219 
220 /*
221  * Compute the mask of online CPUs for the specified rcu_node structure.
222  * This will not be stable unless the rcu_node structure's ->lock is
223  * held, but the bit corresponding to the current CPU will be stable
224  * in most contexts.
225  */
226 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
227 {
228 	return READ_ONCE(rnp->qsmaskinitnext);
229 }
230 
231 /*
232  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
233  * permit this function to be invoked without holding the root rcu_node
234  * structure's ->lock, but of course results can be subject to change.
235  */
236 static int rcu_gp_in_progress(void)
237 {
238 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
239 }
240 
241 /*
242  * Return the number of callbacks queued on the specified CPU.
243  * Handles both the nocbs and normal cases.
244  */
245 static long rcu_get_n_cbs_cpu(int cpu)
246 {
247 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
248 
249 	if (rcu_segcblist_is_enabled(&rdp->cblist))
250 		return rcu_segcblist_n_cbs(&rdp->cblist);
251 	return 0;
252 }
253 
254 void rcu_softirq_qs(void)
255 {
256 	rcu_qs();
257 	rcu_preempt_deferred_qs(current);
258 	rcu_tasks_qs(current, false);
259 }
260 
261 /*
262  * Record entry into an extended quiescent state.  This is only to be
263  * called when not already in an extended quiescent state, that is,
264  * RCU is watching prior to the call to this function and is no longer
265  * watching upon return.
266  */
267 static noinstr void rcu_dynticks_eqs_enter(void)
268 {
269 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
270 	int seq;
271 
272 	/*
273 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
274 	 * critical sections, and we also must force ordering with the
275 	 * next idle sojourn.
276 	 */
277 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
278 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
279 	// RCU is no longer watching.  Better be in extended quiescent state!
280 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
281 		     (seq & RCU_DYNTICK_CTRL_CTR));
282 	/* Better not have special action (TLB flush) pending! */
283 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
284 		     (seq & RCU_DYNTICK_CTRL_MASK));
285 }
286 
287 /*
288  * Record exit from an extended quiescent state.  This is only to be
289  * called from an extended quiescent state, that is, RCU is not watching
290  * prior to the call to this function and is watching upon return.
291  */
292 static noinstr void rcu_dynticks_eqs_exit(void)
293 {
294 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
295 	int seq;
296 
297 	/*
298 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
299 	 * and we also must force ordering with the next RCU read-side
300 	 * critical section.
301 	 */
302 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
303 	// RCU is now watching.  Better not be in an extended quiescent state!
304 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
305 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 		     !(seq & RCU_DYNTICK_CTRL_CTR));
307 	if (seq & RCU_DYNTICK_CTRL_MASK) {
308 		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
309 		smp_mb__after_atomic(); /* _exit after clearing mask. */
310 	}
311 }
312 
313 /*
314  * Reset the current CPU's ->dynticks counter to indicate that the
315  * newly onlined CPU is no longer in an extended quiescent state.
316  * This will either leave the counter unchanged, or increment it
317  * to the next non-quiescent value.
318  *
319  * The non-atomic test/increment sequence works because the upper bits
320  * of the ->dynticks counter are manipulated only by the corresponding CPU,
321  * or when the corresponding CPU is offline.
322  */
323 static void rcu_dynticks_eqs_online(void)
324 {
325 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
326 
327 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
328 		return;
329 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
330 }
331 
332 /*
333  * Is the current CPU in an extended quiescent state?
334  *
335  * No ordering, as we are sampling CPU-local information.
336  */
337 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
338 {
339 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
340 
341 	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
342 }
343 
344 /*
345  * Snapshot the ->dynticks counter with full ordering so as to allow
346  * stable comparison of this counter with past and future snapshots.
347  */
348 static int rcu_dynticks_snap(struct rcu_data *rdp)
349 {
350 	int snap = atomic_add_return(0, &rdp->dynticks);
351 
352 	return snap & ~RCU_DYNTICK_CTRL_MASK;
353 }
354 
355 /*
356  * Return true if the snapshot returned from rcu_dynticks_snap()
357  * indicates that RCU is in an extended quiescent state.
358  */
359 static bool rcu_dynticks_in_eqs(int snap)
360 {
361 	return !(snap & RCU_DYNTICK_CTRL_CTR);
362 }
363 
364 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
365 bool rcu_is_idle_cpu(int cpu)
366 {
367 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
368 
369 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
370 }
371 
372 /*
373  * Return true if the CPU corresponding to the specified rcu_data
374  * structure has spent some time in an extended quiescent state since
375  * rcu_dynticks_snap() returned the specified snapshot.
376  */
377 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
378 {
379 	return snap != rcu_dynticks_snap(rdp);
380 }
381 
382 /*
383  * Return true if the referenced integer is zero while the specified
384  * CPU remains within a single extended quiescent state.
385  */
386 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
387 {
388 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
389 	int snap;
390 
391 	// If not quiescent, force back to earlier extended quiescent state.
392 	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
393 					       RCU_DYNTICK_CTRL_CTR);
394 
395 	smp_rmb(); // Order ->dynticks and *vp reads.
396 	if (READ_ONCE(*vp))
397 		return false;  // Non-zero, so report failure;
398 	smp_rmb(); // Order *vp read and ->dynticks re-read.
399 
400 	// If still in the same extended quiescent state, we are good!
401 	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
402 }
403 
404 /*
405  * Set the special (bottom) bit of the specified CPU so that it
406  * will take special action (such as flushing its TLB) on the
407  * next exit from an extended quiescent state.  Returns true if
408  * the bit was successfully set, or false if the CPU was not in
409  * an extended quiescent state.
410  */
411 bool rcu_eqs_special_set(int cpu)
412 {
413 	int old;
414 	int new;
415 	int new_old;
416 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
417 
418 	new_old = atomic_read(&rdp->dynticks);
419 	do {
420 		old = new_old;
421 		if (old & RCU_DYNTICK_CTRL_CTR)
422 			return false;
423 		new = old | RCU_DYNTICK_CTRL_MASK;
424 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
425 	} while (new_old != old);
426 	return true;
427 }
428 
429 /*
430  * Let the RCU core know that this CPU has gone through the scheduler,
431  * which is a quiescent state.  This is called when the need for a
432  * quiescent state is urgent, so we burn an atomic operation and full
433  * memory barriers to let the RCU core know about it, regardless of what
434  * this CPU might (or might not) do in the near future.
435  *
436  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
437  *
438  * The caller must have disabled interrupts and must not be idle.
439  */
440 notrace void rcu_momentary_dyntick_idle(void)
441 {
442 	int special;
443 
444 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
445 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
446 				    &this_cpu_ptr(&rcu_data)->dynticks);
447 	/* It is illegal to call this from idle state. */
448 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
449 	rcu_preempt_deferred_qs(current);
450 }
451 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
452 
453 /**
454  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
455  *
456  * If the current CPU is idle and running at a first-level (not nested)
457  * interrupt, or directly, from idle, return true.
458  *
459  * The caller must have at least disabled IRQs.
460  */
461 static int rcu_is_cpu_rrupt_from_idle(void)
462 {
463 	long nesting;
464 
465 	/*
466 	 * Usually called from the tick; but also used from smp_function_call()
467 	 * for expedited grace periods. This latter can result in running from
468 	 * the idle task, instead of an actual IPI.
469 	 */
470 	lockdep_assert_irqs_disabled();
471 
472 	/* Check for counter underflows */
473 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
474 			 "RCU dynticks_nesting counter underflow!");
475 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
476 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
477 
478 	/* Are we at first interrupt nesting level? */
479 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
480 	if (nesting > 1)
481 		return false;
482 
483 	/*
484 	 * If we're not in an interrupt, we must be in the idle task!
485 	 */
486 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
487 
488 	/* Does CPU appear to be idle from an RCU standpoint? */
489 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
490 }
491 
492 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
493 				// Maximum callbacks per rcu_do_batch ...
494 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
495 static long blimit = DEFAULT_RCU_BLIMIT;
496 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
497 static long qhimark = DEFAULT_RCU_QHIMARK;
498 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
499 static long qlowmark = DEFAULT_RCU_QLOMARK;
500 #define DEFAULT_RCU_QOVLD_MULT 2
501 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
502 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
503 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
504 
505 module_param(blimit, long, 0444);
506 module_param(qhimark, long, 0444);
507 module_param(qlowmark, long, 0444);
508 module_param(qovld, long, 0444);
509 
510 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
511 static ulong jiffies_till_next_fqs = ULONG_MAX;
512 static bool rcu_kick_kthreads;
513 static int rcu_divisor = 7;
514 module_param(rcu_divisor, int, 0644);
515 
516 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
517 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
518 module_param(rcu_resched_ns, long, 0644);
519 
520 /*
521  * How long the grace period must be before we start recruiting
522  * quiescent-state help from rcu_note_context_switch().
523  */
524 static ulong jiffies_till_sched_qs = ULONG_MAX;
525 module_param(jiffies_till_sched_qs, ulong, 0444);
526 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
527 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
528 
529 /*
530  * Make sure that we give the grace-period kthread time to detect any
531  * idle CPUs before taking active measures to force quiescent states.
532  * However, don't go below 100 milliseconds, adjusted upwards for really
533  * large systems.
534  */
535 static void adjust_jiffies_till_sched_qs(void)
536 {
537 	unsigned long j;
538 
539 	/* If jiffies_till_sched_qs was specified, respect the request. */
540 	if (jiffies_till_sched_qs != ULONG_MAX) {
541 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
542 		return;
543 	}
544 	/* Otherwise, set to third fqs scan, but bound below on large system. */
545 	j = READ_ONCE(jiffies_till_first_fqs) +
546 		      2 * READ_ONCE(jiffies_till_next_fqs);
547 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
548 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
549 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
550 	WRITE_ONCE(jiffies_to_sched_qs, j);
551 }
552 
553 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
554 {
555 	ulong j;
556 	int ret = kstrtoul(val, 0, &j);
557 
558 	if (!ret) {
559 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
560 		adjust_jiffies_till_sched_qs();
561 	}
562 	return ret;
563 }
564 
565 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
566 {
567 	ulong j;
568 	int ret = kstrtoul(val, 0, &j);
569 
570 	if (!ret) {
571 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
572 		adjust_jiffies_till_sched_qs();
573 	}
574 	return ret;
575 }
576 
577 static const struct kernel_param_ops first_fqs_jiffies_ops = {
578 	.set = param_set_first_fqs_jiffies,
579 	.get = param_get_ulong,
580 };
581 
582 static const struct kernel_param_ops next_fqs_jiffies_ops = {
583 	.set = param_set_next_fqs_jiffies,
584 	.get = param_get_ulong,
585 };
586 
587 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
588 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
589 module_param(rcu_kick_kthreads, bool, 0644);
590 
591 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
592 static int rcu_pending(int user);
593 
594 /*
595  * Return the number of RCU GPs completed thus far for debug & stats.
596  */
597 unsigned long rcu_get_gp_seq(void)
598 {
599 	return READ_ONCE(rcu_state.gp_seq);
600 }
601 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
602 
603 /*
604  * Return the number of RCU expedited batches completed thus far for
605  * debug & stats.  Odd numbers mean that a batch is in progress, even
606  * numbers mean idle.  The value returned will thus be roughly double
607  * the cumulative batches since boot.
608  */
609 unsigned long rcu_exp_batches_completed(void)
610 {
611 	return rcu_state.expedited_sequence;
612 }
613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
614 
615 /*
616  * Return the root node of the rcu_state structure.
617  */
618 static struct rcu_node *rcu_get_root(void)
619 {
620 	return &rcu_state.node[0];
621 }
622 
623 /*
624  * Send along grace-period-related data for rcutorture diagnostics.
625  */
626 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
627 			    unsigned long *gp_seq)
628 {
629 	switch (test_type) {
630 	case RCU_FLAVOR:
631 		*flags = READ_ONCE(rcu_state.gp_flags);
632 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
633 		break;
634 	default:
635 		break;
636 	}
637 }
638 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
639 
640 /*
641  * Enter an RCU extended quiescent state, which can be either the
642  * idle loop or adaptive-tickless usermode execution.
643  *
644  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
645  * the possibility of usermode upcalls having messed up our count
646  * of interrupt nesting level during the prior busy period.
647  */
648 static noinstr void rcu_eqs_enter(bool user)
649 {
650 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
651 
652 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
653 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
654 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
655 		     rdp->dynticks_nesting == 0);
656 	if (rdp->dynticks_nesting != 1) {
657 		// RCU will still be watching, so just do accounting and leave.
658 		rdp->dynticks_nesting--;
659 		return;
660 	}
661 
662 	lockdep_assert_irqs_disabled();
663 	instrumentation_begin();
664 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
665 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
666 	rcu_prepare_for_idle();
667 	rcu_preempt_deferred_qs(current);
668 
669 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
670 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
671 
672 	instrumentation_end();
673 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
674 	// RCU is watching here ...
675 	rcu_dynticks_eqs_enter();
676 	// ... but is no longer watching here.
677 	rcu_dynticks_task_enter();
678 }
679 
680 /**
681  * rcu_idle_enter - inform RCU that current CPU is entering idle
682  *
683  * Enter idle mode, in other words, -leave- the mode in which RCU
684  * read-side critical sections can occur.  (Though RCU read-side
685  * critical sections can occur in irq handlers in idle, a possibility
686  * handled by irq_enter() and irq_exit().)
687  *
688  * If you add or remove a call to rcu_idle_enter(), be sure to test with
689  * CONFIG_RCU_EQS_DEBUG=y.
690  */
691 void rcu_idle_enter(void)
692 {
693 	lockdep_assert_irqs_disabled();
694 	rcu_eqs_enter(false);
695 }
696 EXPORT_SYMBOL_GPL(rcu_idle_enter);
697 
698 #ifdef CONFIG_NO_HZ_FULL
699 
700 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
701 /*
702  * An empty function that will trigger a reschedule on
703  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
704  */
705 static void late_wakeup_func(struct irq_work *work)
706 {
707 }
708 
709 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
710 	IRQ_WORK_INIT(late_wakeup_func);
711 
712 /*
713  * If either:
714  *
715  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
716  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
717  *
718  * In these cases the late RCU wake ups aren't supported in the resched loops and our
719  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
720  * get re-enabled again.
721  */
722 noinstr static void rcu_irq_work_resched(void)
723 {
724 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
725 
726 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
727 		return;
728 
729 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
730 		return;
731 
732 	instrumentation_begin();
733 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
734 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
735 	}
736 	instrumentation_end();
737 }
738 
739 #else
740 static inline void rcu_irq_work_resched(void) { }
741 #endif
742 
743 /**
744  * rcu_user_enter - inform RCU that we are resuming userspace.
745  *
746  * Enter RCU idle mode right before resuming userspace.  No use of RCU
747  * is permitted between this call and rcu_user_exit(). This way the
748  * CPU doesn't need to maintain the tick for RCU maintenance purposes
749  * when the CPU runs in userspace.
750  *
751  * If you add or remove a call to rcu_user_enter(), be sure to test with
752  * CONFIG_RCU_EQS_DEBUG=y.
753  */
754 noinstr void rcu_user_enter(void)
755 {
756 	lockdep_assert_irqs_disabled();
757 
758 	/*
759 	 * Other than generic entry implementation, we may be past the last
760 	 * rescheduling opportunity in the entry code. Trigger a self IPI
761 	 * that will fire and reschedule once we resume in user/guest mode.
762 	 */
763 	rcu_irq_work_resched();
764 	rcu_eqs_enter(true);
765 }
766 
767 #endif /* CONFIG_NO_HZ_FULL */
768 
769 /**
770  * rcu_nmi_exit - inform RCU of exit from NMI context
771  *
772  * If we are returning from the outermost NMI handler that interrupted an
773  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
774  * to let the RCU grace-period handling know that the CPU is back to
775  * being RCU-idle.
776  *
777  * If you add or remove a call to rcu_nmi_exit(), be sure to test
778  * with CONFIG_RCU_EQS_DEBUG=y.
779  */
780 noinstr void rcu_nmi_exit(void)
781 {
782 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
783 
784 	instrumentation_begin();
785 	/*
786 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
787 	 * (We are exiting an NMI handler, so RCU better be paying attention
788 	 * to us!)
789 	 */
790 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
791 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
792 
793 	/*
794 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
795 	 * leave it in non-RCU-idle state.
796 	 */
797 	if (rdp->dynticks_nmi_nesting != 1) {
798 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
799 				  atomic_read(&rdp->dynticks));
800 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
801 			   rdp->dynticks_nmi_nesting - 2);
802 		instrumentation_end();
803 		return;
804 	}
805 
806 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
807 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
808 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
809 
810 	if (!in_nmi())
811 		rcu_prepare_for_idle();
812 
813 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
814 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
815 	instrumentation_end();
816 
817 	// RCU is watching here ...
818 	rcu_dynticks_eqs_enter();
819 	// ... but is no longer watching here.
820 
821 	if (!in_nmi())
822 		rcu_dynticks_task_enter();
823 }
824 
825 /**
826  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
827  *
828  * Exit from an interrupt handler, which might possibly result in entering
829  * idle mode, in other words, leaving the mode in which read-side critical
830  * sections can occur.  The caller must have disabled interrupts.
831  *
832  * This code assumes that the idle loop never does anything that might
833  * result in unbalanced calls to irq_enter() and irq_exit().  If your
834  * architecture's idle loop violates this assumption, RCU will give you what
835  * you deserve, good and hard.  But very infrequently and irreproducibly.
836  *
837  * Use things like work queues to work around this limitation.
838  *
839  * You have been warned.
840  *
841  * If you add or remove a call to rcu_irq_exit(), be sure to test with
842  * CONFIG_RCU_EQS_DEBUG=y.
843  */
844 void noinstr rcu_irq_exit(void)
845 {
846 	lockdep_assert_irqs_disabled();
847 	rcu_nmi_exit();
848 }
849 
850 #ifdef CONFIG_PROVE_RCU
851 /**
852  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
853  */
854 void rcu_irq_exit_check_preempt(void)
855 {
856 	lockdep_assert_irqs_disabled();
857 
858 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
859 			 "RCU dynticks_nesting counter underflow/zero!");
860 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
861 			 DYNTICK_IRQ_NONIDLE,
862 			 "Bad RCU  dynticks_nmi_nesting counter\n");
863 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
864 			 "RCU in extended quiescent state!");
865 }
866 #endif /* #ifdef CONFIG_PROVE_RCU */
867 
868 /*
869  * Wrapper for rcu_irq_exit() where interrupts are enabled.
870  *
871  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
872  * with CONFIG_RCU_EQS_DEBUG=y.
873  */
874 void rcu_irq_exit_irqson(void)
875 {
876 	unsigned long flags;
877 
878 	local_irq_save(flags);
879 	rcu_irq_exit();
880 	local_irq_restore(flags);
881 }
882 
883 /*
884  * Exit an RCU extended quiescent state, which can be either the
885  * idle loop or adaptive-tickless usermode execution.
886  *
887  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
888  * allow for the possibility of usermode upcalls messing up our count of
889  * interrupt nesting level during the busy period that is just now starting.
890  */
891 static void noinstr rcu_eqs_exit(bool user)
892 {
893 	struct rcu_data *rdp;
894 	long oldval;
895 
896 	lockdep_assert_irqs_disabled();
897 	rdp = this_cpu_ptr(&rcu_data);
898 	oldval = rdp->dynticks_nesting;
899 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
900 	if (oldval) {
901 		// RCU was already watching, so just do accounting and leave.
902 		rdp->dynticks_nesting++;
903 		return;
904 	}
905 	rcu_dynticks_task_exit();
906 	// RCU is not watching here ...
907 	rcu_dynticks_eqs_exit();
908 	// ... but is watching here.
909 	instrumentation_begin();
910 
911 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
912 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
913 
914 	rcu_cleanup_after_idle();
915 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
916 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
917 	WRITE_ONCE(rdp->dynticks_nesting, 1);
918 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
919 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
920 	instrumentation_end();
921 }
922 
923 /**
924  * rcu_idle_exit - inform RCU that current CPU is leaving idle
925  *
926  * Exit idle mode, in other words, -enter- the mode in which RCU
927  * read-side critical sections can occur.
928  *
929  * If you add or remove a call to rcu_idle_exit(), be sure to test with
930  * CONFIG_RCU_EQS_DEBUG=y.
931  */
932 void rcu_idle_exit(void)
933 {
934 	unsigned long flags;
935 
936 	local_irq_save(flags);
937 	rcu_eqs_exit(false);
938 	local_irq_restore(flags);
939 }
940 EXPORT_SYMBOL_GPL(rcu_idle_exit);
941 
942 #ifdef CONFIG_NO_HZ_FULL
943 /**
944  * rcu_user_exit - inform RCU that we are exiting userspace.
945  *
946  * Exit RCU idle mode while entering the kernel because it can
947  * run a RCU read side critical section anytime.
948  *
949  * If you add or remove a call to rcu_user_exit(), be sure to test with
950  * CONFIG_RCU_EQS_DEBUG=y.
951  */
952 void noinstr rcu_user_exit(void)
953 {
954 	rcu_eqs_exit(true);
955 }
956 
957 /**
958  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
959  *
960  * The scheduler tick is not normally enabled when CPUs enter the kernel
961  * from nohz_full userspace execution.  After all, nohz_full userspace
962  * execution is an RCU quiescent state and the time executing in the kernel
963  * is quite short.  Except of course when it isn't.  And it is not hard to
964  * cause a large system to spend tens of seconds or even minutes looping
965  * in the kernel, which can cause a number of problems, include RCU CPU
966  * stall warnings.
967  *
968  * Therefore, if a nohz_full CPU fails to report a quiescent state
969  * in a timely manner, the RCU grace-period kthread sets that CPU's
970  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
971  * exception will invoke this function, which will turn on the scheduler
972  * tick, which will enable RCU to detect that CPU's quiescent states,
973  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
974  * The tick will be disabled once a quiescent state is reported for
975  * this CPU.
976  *
977  * Of course, in carefully tuned systems, there might never be an
978  * interrupt or exception.  In that case, the RCU grace-period kthread
979  * will eventually cause one to happen.  However, in less carefully
980  * controlled environments, this function allows RCU to get what it
981  * needs without creating otherwise useless interruptions.
982  */
983 void __rcu_irq_enter_check_tick(void)
984 {
985 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
986 
987 	// If we're here from NMI there's nothing to do.
988 	if (in_nmi())
989 		return;
990 
991 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
992 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
993 
994 	if (!tick_nohz_full_cpu(rdp->cpu) ||
995 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
996 	    READ_ONCE(rdp->rcu_forced_tick)) {
997 		// RCU doesn't need nohz_full help from this CPU, or it is
998 		// already getting that help.
999 		return;
1000 	}
1001 
1002 	// We get here only when not in an extended quiescent state and
1003 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
1004 	// already watching and (2) The fact that we are in an interrupt
1005 	// handler and that the rcu_node lock is an irq-disabled lock
1006 	// prevents self-deadlock.  So we can safely recheck under the lock.
1007 	// Note that the nohz_full state currently cannot change.
1008 	raw_spin_lock_rcu_node(rdp->mynode);
1009 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
1010 		// A nohz_full CPU is in the kernel and RCU needs a
1011 		// quiescent state.  Turn on the tick!
1012 		WRITE_ONCE(rdp->rcu_forced_tick, true);
1013 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1014 	}
1015 	raw_spin_unlock_rcu_node(rdp->mynode);
1016 }
1017 #endif /* CONFIG_NO_HZ_FULL */
1018 
1019 /**
1020  * rcu_nmi_enter - inform RCU of entry to NMI context
1021  *
1022  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
1023  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
1024  * that the CPU is active.  This implementation permits nested NMIs, as
1025  * long as the nesting level does not overflow an int.  (You will probably
1026  * run out of stack space first.)
1027  *
1028  * If you add or remove a call to rcu_nmi_enter(), be sure to test
1029  * with CONFIG_RCU_EQS_DEBUG=y.
1030  */
1031 noinstr void rcu_nmi_enter(void)
1032 {
1033 	long incby = 2;
1034 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1035 
1036 	/* Complain about underflow. */
1037 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1038 
1039 	/*
1040 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1041 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1042 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1043 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1044 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1045 	 * period (observation due to Andy Lutomirski).
1046 	 */
1047 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1048 
1049 		if (!in_nmi())
1050 			rcu_dynticks_task_exit();
1051 
1052 		// RCU is not watching here ...
1053 		rcu_dynticks_eqs_exit();
1054 		// ... but is watching here.
1055 
1056 		if (!in_nmi()) {
1057 			instrumentation_begin();
1058 			rcu_cleanup_after_idle();
1059 			instrumentation_end();
1060 		}
1061 
1062 		instrumentation_begin();
1063 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1064 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1065 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1066 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1067 
1068 		incby = 1;
1069 	} else if (!in_nmi()) {
1070 		instrumentation_begin();
1071 		rcu_irq_enter_check_tick();
1072 	} else  {
1073 		instrumentation_begin();
1074 	}
1075 
1076 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1077 			  rdp->dynticks_nmi_nesting,
1078 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1079 	instrumentation_end();
1080 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1081 		   rdp->dynticks_nmi_nesting + incby);
1082 	barrier();
1083 }
1084 
1085 /**
1086  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1087  *
1088  * Enter an interrupt handler, which might possibly result in exiting
1089  * idle mode, in other words, entering the mode in which read-side critical
1090  * sections can occur.  The caller must have disabled interrupts.
1091  *
1092  * Note that the Linux kernel is fully capable of entering an interrupt
1093  * handler that it never exits, for example when doing upcalls to user mode!
1094  * This code assumes that the idle loop never does upcalls to user mode.
1095  * If your architecture's idle loop does do upcalls to user mode (or does
1096  * anything else that results in unbalanced calls to the irq_enter() and
1097  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1098  * But very infrequently and irreproducibly.
1099  *
1100  * Use things like work queues to work around this limitation.
1101  *
1102  * You have been warned.
1103  *
1104  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1105  * CONFIG_RCU_EQS_DEBUG=y.
1106  */
1107 noinstr void rcu_irq_enter(void)
1108 {
1109 	lockdep_assert_irqs_disabled();
1110 	rcu_nmi_enter();
1111 }
1112 
1113 /*
1114  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1115  *
1116  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1117  * with CONFIG_RCU_EQS_DEBUG=y.
1118  */
1119 void rcu_irq_enter_irqson(void)
1120 {
1121 	unsigned long flags;
1122 
1123 	local_irq_save(flags);
1124 	rcu_irq_enter();
1125 	local_irq_restore(flags);
1126 }
1127 
1128 /*
1129  * If any sort of urgency was applied to the current CPU (for example,
1130  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1131  * to get to a quiescent state, disable it.
1132  */
1133 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1134 {
1135 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1136 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1137 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1138 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1139 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1140 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1141 	}
1142 }
1143 
1144 /**
1145  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1146  *
1147  * Return true if RCU is watching the running CPU, which means that this
1148  * CPU can safely enter RCU read-side critical sections.  In other words,
1149  * if the current CPU is not in its idle loop or is in an interrupt or
1150  * NMI handler, return true.
1151  *
1152  * Make notrace because it can be called by the internal functions of
1153  * ftrace, and making this notrace removes unnecessary recursion calls.
1154  */
1155 notrace bool rcu_is_watching(void)
1156 {
1157 	bool ret;
1158 
1159 	preempt_disable_notrace();
1160 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1161 	preempt_enable_notrace();
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL_GPL(rcu_is_watching);
1165 
1166 /*
1167  * If a holdout task is actually running, request an urgent quiescent
1168  * state from its CPU.  This is unsynchronized, so migrations can cause
1169  * the request to go to the wrong CPU.  Which is OK, all that will happen
1170  * is that the CPU's next context switch will be a bit slower and next
1171  * time around this task will generate another request.
1172  */
1173 void rcu_request_urgent_qs_task(struct task_struct *t)
1174 {
1175 	int cpu;
1176 
1177 	barrier();
1178 	cpu = task_cpu(t);
1179 	if (!task_curr(t))
1180 		return; /* This task is not running on that CPU. */
1181 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1182 }
1183 
1184 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1185 
1186 /*
1187  * Is the current CPU online as far as RCU is concerned?
1188  *
1189  * Disable preemption to avoid false positives that could otherwise
1190  * happen due to the current CPU number being sampled, this task being
1191  * preempted, its old CPU being taken offline, resuming on some other CPU,
1192  * then determining that its old CPU is now offline.
1193  *
1194  * Disable checking if in an NMI handler because we cannot safely
1195  * report errors from NMI handlers anyway.  In addition, it is OK to use
1196  * RCU on an offline processor during initial boot, hence the check for
1197  * rcu_scheduler_fully_active.
1198  */
1199 bool rcu_lockdep_current_cpu_online(void)
1200 {
1201 	struct rcu_data *rdp;
1202 	struct rcu_node *rnp;
1203 	bool ret = false;
1204 
1205 	if (in_nmi() || !rcu_scheduler_fully_active)
1206 		return true;
1207 	preempt_disable_notrace();
1208 	rdp = this_cpu_ptr(&rcu_data);
1209 	rnp = rdp->mynode;
1210 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1211 		ret = true;
1212 	preempt_enable_notrace();
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1216 
1217 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1218 
1219 /*
1220  * When trying to report a quiescent state on behalf of some other CPU,
1221  * it is our responsibility to check for and handle potential overflow
1222  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1223  * After all, the CPU might be in deep idle state, and thus executing no
1224  * code whatsoever.
1225  */
1226 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1227 {
1228 	raw_lockdep_assert_held_rcu_node(rnp);
1229 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1230 			 rnp->gp_seq))
1231 		WRITE_ONCE(rdp->gpwrap, true);
1232 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1233 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1234 }
1235 
1236 /*
1237  * Snapshot the specified CPU's dynticks counter so that we can later
1238  * credit them with an implicit quiescent state.  Return 1 if this CPU
1239  * is in dynticks idle mode, which is an extended quiescent state.
1240  */
1241 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1242 {
1243 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1244 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1245 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1246 		rcu_gpnum_ovf(rdp->mynode, rdp);
1247 		return 1;
1248 	}
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Return true if the specified CPU has passed through a quiescent
1254  * state by virtue of being in or having passed through an dynticks
1255  * idle state since the last call to dyntick_save_progress_counter()
1256  * for this same CPU, or by virtue of having been offline.
1257  */
1258 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1259 {
1260 	unsigned long jtsq;
1261 	bool *rnhqp;
1262 	bool *ruqp;
1263 	struct rcu_node *rnp = rdp->mynode;
1264 
1265 	/*
1266 	 * If the CPU passed through or entered a dynticks idle phase with
1267 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1268 	 * already acknowledged the request to pass through a quiescent
1269 	 * state.  Either way, that CPU cannot possibly be in an RCU
1270 	 * read-side critical section that started before the beginning
1271 	 * of the current RCU grace period.
1272 	 */
1273 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1274 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1275 		rcu_gpnum_ovf(rnp, rdp);
1276 		return 1;
1277 	}
1278 
1279 	/*
1280 	 * Complain if a CPU that is considered to be offline from RCU's
1281 	 * perspective has not yet reported a quiescent state.  After all,
1282 	 * the offline CPU should have reported a quiescent state during
1283 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1284 	 * if it ran concurrently with either the CPU going offline or the
1285 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1286 	 * critical section while all CPUs corresponding to that structure
1287 	 * are offline.  This added warning detects bugs in any of these
1288 	 * code paths.
1289 	 *
1290 	 * The rcu_node structure's ->lock is held here, which excludes
1291 	 * the relevant portions the CPU-hotplug code, the grace-period
1292 	 * initialization code, and the rcu_read_unlock() code paths.
1293 	 *
1294 	 * For more detail, please refer to the "Hotplug CPU" section
1295 	 * of RCU's Requirements documentation.
1296 	 */
1297 	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1298 		bool onl;
1299 		struct rcu_node *rnp1;
1300 
1301 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1302 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1303 			(long)rnp->gp_seq, (long)rnp->completedqs);
1304 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1305 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1306 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1307 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1308 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1309 			__func__, rdp->cpu, ".o"[onl],
1310 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1311 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1312 		return 1; /* Break things loose after complaining. */
1313 	}
1314 
1315 	/*
1316 	 * A CPU running for an extended time within the kernel can
1317 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1318 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1319 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1320 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1321 	 * variable are safe because the assignments are repeated if this
1322 	 * CPU failed to pass through a quiescent state.  This code
1323 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1324 	 * is set way high.
1325 	 */
1326 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1327 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1328 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1329 	if (!READ_ONCE(*rnhqp) &&
1330 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1331 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1332 	     rcu_state.cbovld)) {
1333 		WRITE_ONCE(*rnhqp, true);
1334 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1335 		smp_store_release(ruqp, true);
1336 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1337 		WRITE_ONCE(*ruqp, true);
1338 	}
1339 
1340 	/*
1341 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1342 	 * The above code handles this, but only for straight cond_resched().
1343 	 * And some in-kernel loops check need_resched() before calling
1344 	 * cond_resched(), which defeats the above code for CPUs that are
1345 	 * running in-kernel with scheduling-clock interrupts disabled.
1346 	 * So hit them over the head with the resched_cpu() hammer!
1347 	 */
1348 	if (tick_nohz_full_cpu(rdp->cpu) &&
1349 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1350 	     rcu_state.cbovld)) {
1351 		WRITE_ONCE(*ruqp, true);
1352 		resched_cpu(rdp->cpu);
1353 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1354 	}
1355 
1356 	/*
1357 	 * If more than halfway to RCU CPU stall-warning time, invoke
1358 	 * resched_cpu() more frequently to try to loosen things up a bit.
1359 	 * Also check to see if the CPU is getting hammered with interrupts,
1360 	 * but only once per grace period, just to keep the IPIs down to
1361 	 * a dull roar.
1362 	 */
1363 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1364 		if (time_after(jiffies,
1365 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1366 			resched_cpu(rdp->cpu);
1367 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1368 		}
1369 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1370 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1371 		    (rnp->ffmask & rdp->grpmask)) {
1372 			rdp->rcu_iw_pending = true;
1373 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1374 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1375 		}
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1382 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1383 			      unsigned long gp_seq_req, const char *s)
1384 {
1385 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1386 				      gp_seq_req, rnp->level,
1387 				      rnp->grplo, rnp->grphi, s);
1388 }
1389 
1390 /*
1391  * rcu_start_this_gp - Request the start of a particular grace period
1392  * @rnp_start: The leaf node of the CPU from which to start.
1393  * @rdp: The rcu_data corresponding to the CPU from which to start.
1394  * @gp_seq_req: The gp_seq of the grace period to start.
1395  *
1396  * Start the specified grace period, as needed to handle newly arrived
1397  * callbacks.  The required future grace periods are recorded in each
1398  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1399  * is reason to awaken the grace-period kthread.
1400  *
1401  * The caller must hold the specified rcu_node structure's ->lock, which
1402  * is why the caller is responsible for waking the grace-period kthread.
1403  *
1404  * Returns true if the GP thread needs to be awakened else false.
1405  */
1406 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1407 			      unsigned long gp_seq_req)
1408 {
1409 	bool ret = false;
1410 	struct rcu_node *rnp;
1411 
1412 	/*
1413 	 * Use funnel locking to either acquire the root rcu_node
1414 	 * structure's lock or bail out if the need for this grace period
1415 	 * has already been recorded -- or if that grace period has in
1416 	 * fact already started.  If there is already a grace period in
1417 	 * progress in a non-leaf node, no recording is needed because the
1418 	 * end of the grace period will scan the leaf rcu_node structures.
1419 	 * Note that rnp_start->lock must not be released.
1420 	 */
1421 	raw_lockdep_assert_held_rcu_node(rnp_start);
1422 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1423 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1424 		if (rnp != rnp_start)
1425 			raw_spin_lock_rcu_node(rnp);
1426 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1427 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1428 		    (rnp != rnp_start &&
1429 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1430 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1431 					  TPS("Prestarted"));
1432 			goto unlock_out;
1433 		}
1434 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1435 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1436 			/*
1437 			 * We just marked the leaf or internal node, and a
1438 			 * grace period is in progress, which means that
1439 			 * rcu_gp_cleanup() will see the marking.  Bail to
1440 			 * reduce contention.
1441 			 */
1442 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1443 					  TPS("Startedleaf"));
1444 			goto unlock_out;
1445 		}
1446 		if (rnp != rnp_start && rnp->parent != NULL)
1447 			raw_spin_unlock_rcu_node(rnp);
1448 		if (!rnp->parent)
1449 			break;  /* At root, and perhaps also leaf. */
1450 	}
1451 
1452 	/* If GP already in progress, just leave, otherwise start one. */
1453 	if (rcu_gp_in_progress()) {
1454 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1455 		goto unlock_out;
1456 	}
1457 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1458 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1459 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1460 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1461 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1462 		goto unlock_out;
1463 	}
1464 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1465 	ret = true;  /* Caller must wake GP kthread. */
1466 unlock_out:
1467 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1468 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1469 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1470 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1471 	}
1472 	if (rnp != rnp_start)
1473 		raw_spin_unlock_rcu_node(rnp);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * Clean up any old requests for the just-ended grace period.  Also return
1479  * whether any additional grace periods have been requested.
1480  */
1481 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1482 {
1483 	bool needmore;
1484 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1485 
1486 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1487 	if (!needmore)
1488 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1489 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1490 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1491 	return needmore;
1492 }
1493 
1494 /*
1495  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1496  * interrupt or softirq handler, in which case we just might immediately
1497  * sleep upon return, resulting in a grace-period hang), and don't bother
1498  * awakening when there is nothing for the grace-period kthread to do
1499  * (as in several CPUs raced to awaken, we lost), and finally don't try
1500  * to awaken a kthread that has not yet been created.  If all those checks
1501  * are passed, track some debug information and awaken.
1502  *
1503  * So why do the self-wakeup when in an interrupt or softirq handler
1504  * in the grace-period kthread's context?  Because the kthread might have
1505  * been interrupted just as it was going to sleep, and just after the final
1506  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1507  * is required, and is therefore supplied.
1508  */
1509 static void rcu_gp_kthread_wake(void)
1510 {
1511 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1512 
1513 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1514 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1515 		return;
1516 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1517 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1518 	swake_up_one(&rcu_state.gp_wq);
1519 }
1520 
1521 /*
1522  * If there is room, assign a ->gp_seq number to any callbacks on this
1523  * CPU that have not already been assigned.  Also accelerate any callbacks
1524  * that were previously assigned a ->gp_seq number that has since proven
1525  * to be too conservative, which can happen if callbacks get assigned a
1526  * ->gp_seq number while RCU is idle, but with reference to a non-root
1527  * rcu_node structure.  This function is idempotent, so it does not hurt
1528  * to call it repeatedly.  Returns an flag saying that we should awaken
1529  * the RCU grace-period kthread.
1530  *
1531  * The caller must hold rnp->lock with interrupts disabled.
1532  */
1533 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1534 {
1535 	unsigned long gp_seq_req;
1536 	bool ret = false;
1537 
1538 	rcu_lockdep_assert_cblist_protected(rdp);
1539 	raw_lockdep_assert_held_rcu_node(rnp);
1540 
1541 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1542 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1543 		return false;
1544 
1545 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1546 
1547 	/*
1548 	 * Callbacks are often registered with incomplete grace-period
1549 	 * information.  Something about the fact that getting exact
1550 	 * information requires acquiring a global lock...  RCU therefore
1551 	 * makes a conservative estimate of the grace period number at which
1552 	 * a given callback will become ready to invoke.	The following
1553 	 * code checks this estimate and improves it when possible, thus
1554 	 * accelerating callback invocation to an earlier grace-period
1555 	 * number.
1556 	 */
1557 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1558 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1559 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1560 
1561 	/* Trace depending on how much we were able to accelerate. */
1562 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1563 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1564 	else
1565 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1566 
1567 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1568 
1569 	return ret;
1570 }
1571 
1572 /*
1573  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1574  * rcu_node structure's ->lock be held.  It consults the cached value
1575  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1576  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1577  * while holding the leaf rcu_node structure's ->lock.
1578  */
1579 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1580 					struct rcu_data *rdp)
1581 {
1582 	unsigned long c;
1583 	bool needwake;
1584 
1585 	rcu_lockdep_assert_cblist_protected(rdp);
1586 	c = rcu_seq_snap(&rcu_state.gp_seq);
1587 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1588 		/* Old request still live, so mark recent callbacks. */
1589 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1590 		return;
1591 	}
1592 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1593 	needwake = rcu_accelerate_cbs(rnp, rdp);
1594 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1595 	if (needwake)
1596 		rcu_gp_kthread_wake();
1597 }
1598 
1599 /*
1600  * Move any callbacks whose grace period has completed to the
1601  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1602  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1603  * sublist.  This function is idempotent, so it does not hurt to
1604  * invoke it repeatedly.  As long as it is not invoked -too- often...
1605  * Returns true if the RCU grace-period kthread needs to be awakened.
1606  *
1607  * The caller must hold rnp->lock with interrupts disabled.
1608  */
1609 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1610 {
1611 	rcu_lockdep_assert_cblist_protected(rdp);
1612 	raw_lockdep_assert_held_rcu_node(rnp);
1613 
1614 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1615 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1616 		return false;
1617 
1618 	/*
1619 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1620 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1621 	 */
1622 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1623 
1624 	/* Classify any remaining callbacks. */
1625 	return rcu_accelerate_cbs(rnp, rdp);
1626 }
1627 
1628 /*
1629  * Move and classify callbacks, but only if doing so won't require
1630  * that the RCU grace-period kthread be awakened.
1631  */
1632 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1633 						  struct rcu_data *rdp)
1634 {
1635 	rcu_lockdep_assert_cblist_protected(rdp);
1636 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1637 	    !raw_spin_trylock_rcu_node(rnp))
1638 		return;
1639 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1640 	raw_spin_unlock_rcu_node(rnp);
1641 }
1642 
1643 /*
1644  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1645  * quiescent state.  This is intended to be invoked when the CPU notices
1646  * a new grace period.
1647  */
1648 static void rcu_strict_gp_check_qs(void)
1649 {
1650 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1651 		rcu_read_lock();
1652 		rcu_read_unlock();
1653 	}
1654 }
1655 
1656 /*
1657  * Update CPU-local rcu_data state to record the beginnings and ends of
1658  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1659  * structure corresponding to the current CPU, and must have irqs disabled.
1660  * Returns true if the grace-period kthread needs to be awakened.
1661  */
1662 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1663 {
1664 	bool ret = false;
1665 	bool need_qs;
1666 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1667 
1668 	raw_lockdep_assert_held_rcu_node(rnp);
1669 
1670 	if (rdp->gp_seq == rnp->gp_seq)
1671 		return false; /* Nothing to do. */
1672 
1673 	/* Handle the ends of any preceding grace periods first. */
1674 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1675 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1676 		if (!offloaded)
1677 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1678 		rdp->core_needs_qs = false;
1679 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1680 	} else {
1681 		if (!offloaded)
1682 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1683 		if (rdp->core_needs_qs)
1684 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1685 	}
1686 
1687 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1688 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1689 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1690 		/*
1691 		 * If the current grace period is waiting for this CPU,
1692 		 * set up to detect a quiescent state, otherwise don't
1693 		 * go looking for one.
1694 		 */
1695 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1696 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1697 		rdp->cpu_no_qs.b.norm = need_qs;
1698 		rdp->core_needs_qs = need_qs;
1699 		zero_cpu_stall_ticks(rdp);
1700 	}
1701 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1702 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1703 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1704 	WRITE_ONCE(rdp->gpwrap, false);
1705 	rcu_gpnum_ovf(rnp, rdp);
1706 	return ret;
1707 }
1708 
1709 static void note_gp_changes(struct rcu_data *rdp)
1710 {
1711 	unsigned long flags;
1712 	bool needwake;
1713 	struct rcu_node *rnp;
1714 
1715 	local_irq_save(flags);
1716 	rnp = rdp->mynode;
1717 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1718 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1719 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1720 		local_irq_restore(flags);
1721 		return;
1722 	}
1723 	needwake = __note_gp_changes(rnp, rdp);
1724 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1725 	rcu_strict_gp_check_qs();
1726 	if (needwake)
1727 		rcu_gp_kthread_wake();
1728 }
1729 
1730 static void rcu_gp_slow(int delay)
1731 {
1732 	if (delay > 0 &&
1733 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1734 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1735 		schedule_timeout_idle(delay);
1736 }
1737 
1738 static unsigned long sleep_duration;
1739 
1740 /* Allow rcutorture to stall the grace-period kthread. */
1741 void rcu_gp_set_torture_wait(int duration)
1742 {
1743 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1744 		WRITE_ONCE(sleep_duration, duration);
1745 }
1746 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1747 
1748 /* Actually implement the aforementioned wait. */
1749 static void rcu_gp_torture_wait(void)
1750 {
1751 	unsigned long duration;
1752 
1753 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1754 		return;
1755 	duration = xchg(&sleep_duration, 0UL);
1756 	if (duration > 0) {
1757 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1758 		schedule_timeout_idle(duration);
1759 		pr_alert("%s: Wait complete\n", __func__);
1760 	}
1761 }
1762 
1763 /*
1764  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1765  * processing.
1766  */
1767 static void rcu_strict_gp_boundary(void *unused)
1768 {
1769 	invoke_rcu_core();
1770 }
1771 
1772 /*
1773  * Initialize a new grace period.  Return false if no grace period required.
1774  */
1775 static bool rcu_gp_init(void)
1776 {
1777 	unsigned long firstseq;
1778 	unsigned long flags;
1779 	unsigned long oldmask;
1780 	unsigned long mask;
1781 	struct rcu_data *rdp;
1782 	struct rcu_node *rnp = rcu_get_root();
1783 
1784 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1785 	raw_spin_lock_irq_rcu_node(rnp);
1786 	if (!READ_ONCE(rcu_state.gp_flags)) {
1787 		/* Spurious wakeup, tell caller to go back to sleep.  */
1788 		raw_spin_unlock_irq_rcu_node(rnp);
1789 		return false;
1790 	}
1791 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1792 
1793 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1794 		/*
1795 		 * Grace period already in progress, don't start another.
1796 		 * Not supposed to be able to happen.
1797 		 */
1798 		raw_spin_unlock_irq_rcu_node(rnp);
1799 		return false;
1800 	}
1801 
1802 	/* Advance to a new grace period and initialize state. */
1803 	record_gp_stall_check_time();
1804 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1805 	rcu_seq_start(&rcu_state.gp_seq);
1806 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1807 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1808 	raw_spin_unlock_irq_rcu_node(rnp);
1809 
1810 	/*
1811 	 * Apply per-leaf buffered online and offline operations to
1812 	 * the rcu_node tree. Note that this new grace period need not
1813 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1814 	 * offlining path, when combined with checks in this function,
1815 	 * will handle CPUs that are currently going offline or that will
1816 	 * go offline later.  Please also refer to "Hotplug CPU" section
1817 	 * of RCU's Requirements documentation.
1818 	 */
1819 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1820 	rcu_for_each_leaf_node(rnp) {
1821 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1822 		firstseq = READ_ONCE(rnp->ofl_seq);
1823 		if (firstseq & 0x1)
1824 			while (firstseq == READ_ONCE(rnp->ofl_seq))
1825 				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1826 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1827 		raw_spin_lock(&rcu_state.ofl_lock);
1828 		raw_spin_lock_irq_rcu_node(rnp);
1829 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1830 		    !rnp->wait_blkd_tasks) {
1831 			/* Nothing to do on this leaf rcu_node structure. */
1832 			raw_spin_unlock_irq_rcu_node(rnp);
1833 			raw_spin_unlock(&rcu_state.ofl_lock);
1834 			continue;
1835 		}
1836 
1837 		/* Record old state, apply changes to ->qsmaskinit field. */
1838 		oldmask = rnp->qsmaskinit;
1839 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1840 
1841 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1842 		if (!oldmask != !rnp->qsmaskinit) {
1843 			if (!oldmask) { /* First online CPU for rcu_node. */
1844 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1845 					rcu_init_new_rnp(rnp);
1846 			} else if (rcu_preempt_has_tasks(rnp)) {
1847 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1848 			} else { /* Last offline CPU and can propagate. */
1849 				rcu_cleanup_dead_rnp(rnp);
1850 			}
1851 		}
1852 
1853 		/*
1854 		 * If all waited-on tasks from prior grace period are
1855 		 * done, and if all this rcu_node structure's CPUs are
1856 		 * still offline, propagate up the rcu_node tree and
1857 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1858 		 * rcu_node structure's CPUs has since come back online,
1859 		 * simply clear ->wait_blkd_tasks.
1860 		 */
1861 		if (rnp->wait_blkd_tasks &&
1862 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1863 			rnp->wait_blkd_tasks = false;
1864 			if (!rnp->qsmaskinit)
1865 				rcu_cleanup_dead_rnp(rnp);
1866 		}
1867 
1868 		raw_spin_unlock_irq_rcu_node(rnp);
1869 		raw_spin_unlock(&rcu_state.ofl_lock);
1870 	}
1871 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1872 
1873 	/*
1874 	 * Set the quiescent-state-needed bits in all the rcu_node
1875 	 * structures for all currently online CPUs in breadth-first
1876 	 * order, starting from the root rcu_node structure, relying on the
1877 	 * layout of the tree within the rcu_state.node[] array.  Note that
1878 	 * other CPUs will access only the leaves of the hierarchy, thus
1879 	 * seeing that no grace period is in progress, at least until the
1880 	 * corresponding leaf node has been initialized.
1881 	 *
1882 	 * The grace period cannot complete until the initialization
1883 	 * process finishes, because this kthread handles both.
1884 	 */
1885 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1886 	rcu_for_each_node_breadth_first(rnp) {
1887 		rcu_gp_slow(gp_init_delay);
1888 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1889 		rdp = this_cpu_ptr(&rcu_data);
1890 		rcu_preempt_check_blocked_tasks(rnp);
1891 		rnp->qsmask = rnp->qsmaskinit;
1892 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1893 		if (rnp == rdp->mynode)
1894 			(void)__note_gp_changes(rnp, rdp);
1895 		rcu_preempt_boost_start_gp(rnp);
1896 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1897 					    rnp->level, rnp->grplo,
1898 					    rnp->grphi, rnp->qsmask);
1899 		/* Quiescent states for tasks on any now-offline CPUs. */
1900 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1901 		rnp->rcu_gp_init_mask = mask;
1902 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1903 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1904 		else
1905 			raw_spin_unlock_irq_rcu_node(rnp);
1906 		cond_resched_tasks_rcu_qs();
1907 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1908 	}
1909 
1910 	// If strict, make all CPUs aware of new grace period.
1911 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1912 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1913 
1914 	return true;
1915 }
1916 
1917 /*
1918  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1919  * time.
1920  */
1921 static bool rcu_gp_fqs_check_wake(int *gfp)
1922 {
1923 	struct rcu_node *rnp = rcu_get_root();
1924 
1925 	// If under overload conditions, force an immediate FQS scan.
1926 	if (*gfp & RCU_GP_FLAG_OVLD)
1927 		return true;
1928 
1929 	// Someone like call_rcu() requested a force-quiescent-state scan.
1930 	*gfp = READ_ONCE(rcu_state.gp_flags);
1931 	if (*gfp & RCU_GP_FLAG_FQS)
1932 		return true;
1933 
1934 	// The current grace period has completed.
1935 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1936 		return true;
1937 
1938 	return false;
1939 }
1940 
1941 /*
1942  * Do one round of quiescent-state forcing.
1943  */
1944 static void rcu_gp_fqs(bool first_time)
1945 {
1946 	struct rcu_node *rnp = rcu_get_root();
1947 
1948 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1949 	rcu_state.n_force_qs++;
1950 	if (first_time) {
1951 		/* Collect dyntick-idle snapshots. */
1952 		force_qs_rnp(dyntick_save_progress_counter);
1953 	} else {
1954 		/* Handle dyntick-idle and offline CPUs. */
1955 		force_qs_rnp(rcu_implicit_dynticks_qs);
1956 	}
1957 	/* Clear flag to prevent immediate re-entry. */
1958 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1959 		raw_spin_lock_irq_rcu_node(rnp);
1960 		WRITE_ONCE(rcu_state.gp_flags,
1961 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1962 		raw_spin_unlock_irq_rcu_node(rnp);
1963 	}
1964 }
1965 
1966 /*
1967  * Loop doing repeated quiescent-state forcing until the grace period ends.
1968  */
1969 static void rcu_gp_fqs_loop(void)
1970 {
1971 	bool first_gp_fqs;
1972 	int gf = 0;
1973 	unsigned long j;
1974 	int ret;
1975 	struct rcu_node *rnp = rcu_get_root();
1976 
1977 	first_gp_fqs = true;
1978 	j = READ_ONCE(jiffies_till_first_fqs);
1979 	if (rcu_state.cbovld)
1980 		gf = RCU_GP_FLAG_OVLD;
1981 	ret = 0;
1982 	for (;;) {
1983 		if (!ret) {
1984 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1985 			/*
1986 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1987 			 * update; required for stall checks.
1988 			 */
1989 			smp_wmb();
1990 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1991 				   jiffies + (j ? 3 * j : 2));
1992 		}
1993 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1994 				       TPS("fqswait"));
1995 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1996 		ret = swait_event_idle_timeout_exclusive(
1997 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1998 		rcu_gp_torture_wait();
1999 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2000 		/* Locking provides needed memory barriers. */
2001 		/* If grace period done, leave loop. */
2002 		if (!READ_ONCE(rnp->qsmask) &&
2003 		    !rcu_preempt_blocked_readers_cgp(rnp))
2004 			break;
2005 		/* If time for quiescent-state forcing, do it. */
2006 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2007 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2008 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2009 					       TPS("fqsstart"));
2010 			rcu_gp_fqs(first_gp_fqs);
2011 			gf = 0;
2012 			if (first_gp_fqs) {
2013 				first_gp_fqs = false;
2014 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2015 			}
2016 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2017 					       TPS("fqsend"));
2018 			cond_resched_tasks_rcu_qs();
2019 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2020 			ret = 0; /* Force full wait till next FQS. */
2021 			j = READ_ONCE(jiffies_till_next_fqs);
2022 		} else {
2023 			/* Deal with stray signal. */
2024 			cond_resched_tasks_rcu_qs();
2025 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2026 			WARN_ON(signal_pending(current));
2027 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2028 					       TPS("fqswaitsig"));
2029 			ret = 1; /* Keep old FQS timing. */
2030 			j = jiffies;
2031 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2032 				j = 1;
2033 			else
2034 				j = rcu_state.jiffies_force_qs - j;
2035 			gf = 0;
2036 		}
2037 	}
2038 }
2039 
2040 /*
2041  * Clean up after the old grace period.
2042  */
2043 static noinline void rcu_gp_cleanup(void)
2044 {
2045 	int cpu;
2046 	bool needgp = false;
2047 	unsigned long gp_duration;
2048 	unsigned long new_gp_seq;
2049 	bool offloaded;
2050 	struct rcu_data *rdp;
2051 	struct rcu_node *rnp = rcu_get_root();
2052 	struct swait_queue_head *sq;
2053 
2054 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2055 	raw_spin_lock_irq_rcu_node(rnp);
2056 	rcu_state.gp_end = jiffies;
2057 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2058 	if (gp_duration > rcu_state.gp_max)
2059 		rcu_state.gp_max = gp_duration;
2060 
2061 	/*
2062 	 * We know the grace period is complete, but to everyone else
2063 	 * it appears to still be ongoing.  But it is also the case
2064 	 * that to everyone else it looks like there is nothing that
2065 	 * they can do to advance the grace period.  It is therefore
2066 	 * safe for us to drop the lock in order to mark the grace
2067 	 * period as completed in all of the rcu_node structures.
2068 	 */
2069 	raw_spin_unlock_irq_rcu_node(rnp);
2070 
2071 	/*
2072 	 * Propagate new ->gp_seq value to rcu_node structures so that
2073 	 * other CPUs don't have to wait until the start of the next grace
2074 	 * period to process their callbacks.  This also avoids some nasty
2075 	 * RCU grace-period initialization races by forcing the end of
2076 	 * the current grace period to be completely recorded in all of
2077 	 * the rcu_node structures before the beginning of the next grace
2078 	 * period is recorded in any of the rcu_node structures.
2079 	 */
2080 	new_gp_seq = rcu_state.gp_seq;
2081 	rcu_seq_end(&new_gp_seq);
2082 	rcu_for_each_node_breadth_first(rnp) {
2083 		raw_spin_lock_irq_rcu_node(rnp);
2084 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2085 			dump_blkd_tasks(rnp, 10);
2086 		WARN_ON_ONCE(rnp->qsmask);
2087 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2088 		rdp = this_cpu_ptr(&rcu_data);
2089 		if (rnp == rdp->mynode)
2090 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2091 		/* smp_mb() provided by prior unlock-lock pair. */
2092 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2093 		// Reset overload indication for CPUs no longer overloaded
2094 		if (rcu_is_leaf_node(rnp))
2095 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2096 				rdp = per_cpu_ptr(&rcu_data, cpu);
2097 				check_cb_ovld_locked(rdp, rnp);
2098 			}
2099 		sq = rcu_nocb_gp_get(rnp);
2100 		raw_spin_unlock_irq_rcu_node(rnp);
2101 		rcu_nocb_gp_cleanup(sq);
2102 		cond_resched_tasks_rcu_qs();
2103 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2104 		rcu_gp_slow(gp_cleanup_delay);
2105 	}
2106 	rnp = rcu_get_root();
2107 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2108 
2109 	/* Declare grace period done, trace first to use old GP number. */
2110 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2111 	rcu_seq_end(&rcu_state.gp_seq);
2112 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2113 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2114 	/* Check for GP requests since above loop. */
2115 	rdp = this_cpu_ptr(&rcu_data);
2116 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2117 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2118 				  TPS("CleanupMore"));
2119 		needgp = true;
2120 	}
2121 	/* Advance CBs to reduce false positives below. */
2122 	offloaded = rcu_rdp_is_offloaded(rdp);
2123 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2124 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2125 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2126 		trace_rcu_grace_period(rcu_state.name,
2127 				       rcu_state.gp_seq,
2128 				       TPS("newreq"));
2129 	} else {
2130 		WRITE_ONCE(rcu_state.gp_flags,
2131 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2132 	}
2133 	raw_spin_unlock_irq_rcu_node(rnp);
2134 
2135 	// If strict, make all CPUs aware of the end of the old grace period.
2136 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2137 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2138 }
2139 
2140 /*
2141  * Body of kthread that handles grace periods.
2142  */
2143 static int __noreturn rcu_gp_kthread(void *unused)
2144 {
2145 	rcu_bind_gp_kthread();
2146 	for (;;) {
2147 
2148 		/* Handle grace-period start. */
2149 		for (;;) {
2150 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2151 					       TPS("reqwait"));
2152 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2153 			swait_event_idle_exclusive(rcu_state.gp_wq,
2154 					 READ_ONCE(rcu_state.gp_flags) &
2155 					 RCU_GP_FLAG_INIT);
2156 			rcu_gp_torture_wait();
2157 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2158 			/* Locking provides needed memory barrier. */
2159 			if (rcu_gp_init())
2160 				break;
2161 			cond_resched_tasks_rcu_qs();
2162 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2163 			WARN_ON(signal_pending(current));
2164 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2165 					       TPS("reqwaitsig"));
2166 		}
2167 
2168 		/* Handle quiescent-state forcing. */
2169 		rcu_gp_fqs_loop();
2170 
2171 		/* Handle grace-period end. */
2172 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2173 		rcu_gp_cleanup();
2174 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2175 	}
2176 }
2177 
2178 /*
2179  * Report a full set of quiescent states to the rcu_state data structure.
2180  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2181  * another grace period is required.  Whether we wake the grace-period
2182  * kthread or it awakens itself for the next round of quiescent-state
2183  * forcing, that kthread will clean up after the just-completed grace
2184  * period.  Note that the caller must hold rnp->lock, which is released
2185  * before return.
2186  */
2187 static void rcu_report_qs_rsp(unsigned long flags)
2188 	__releases(rcu_get_root()->lock)
2189 {
2190 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2191 	WARN_ON_ONCE(!rcu_gp_in_progress());
2192 	WRITE_ONCE(rcu_state.gp_flags,
2193 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2194 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2195 	rcu_gp_kthread_wake();
2196 }
2197 
2198 /*
2199  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2200  * Allows quiescent states for a group of CPUs to be reported at one go
2201  * to the specified rcu_node structure, though all the CPUs in the group
2202  * must be represented by the same rcu_node structure (which need not be a
2203  * leaf rcu_node structure, though it often will be).  The gps parameter
2204  * is the grace-period snapshot, which means that the quiescent states
2205  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2206  * must be held upon entry, and it is released before return.
2207  *
2208  * As a special case, if mask is zero, the bit-already-cleared check is
2209  * disabled.  This allows propagating quiescent state due to resumed tasks
2210  * during grace-period initialization.
2211  */
2212 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2213 			      unsigned long gps, unsigned long flags)
2214 	__releases(rnp->lock)
2215 {
2216 	unsigned long oldmask = 0;
2217 	struct rcu_node *rnp_c;
2218 
2219 	raw_lockdep_assert_held_rcu_node(rnp);
2220 
2221 	/* Walk up the rcu_node hierarchy. */
2222 	for (;;) {
2223 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2224 
2225 			/*
2226 			 * Our bit has already been cleared, or the
2227 			 * relevant grace period is already over, so done.
2228 			 */
2229 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2230 			return;
2231 		}
2232 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2233 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2234 			     rcu_preempt_blocked_readers_cgp(rnp));
2235 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2236 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2237 						 mask, rnp->qsmask, rnp->level,
2238 						 rnp->grplo, rnp->grphi,
2239 						 !!rnp->gp_tasks);
2240 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2241 
2242 			/* Other bits still set at this level, so done. */
2243 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2244 			return;
2245 		}
2246 		rnp->completedqs = rnp->gp_seq;
2247 		mask = rnp->grpmask;
2248 		if (rnp->parent == NULL) {
2249 
2250 			/* No more levels.  Exit loop holding root lock. */
2251 
2252 			break;
2253 		}
2254 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2255 		rnp_c = rnp;
2256 		rnp = rnp->parent;
2257 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2258 		oldmask = READ_ONCE(rnp_c->qsmask);
2259 	}
2260 
2261 	/*
2262 	 * Get here if we are the last CPU to pass through a quiescent
2263 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2264 	 * to clean up and start the next grace period if one is needed.
2265 	 */
2266 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2267 }
2268 
2269 /*
2270  * Record a quiescent state for all tasks that were previously queued
2271  * on the specified rcu_node structure and that were blocking the current
2272  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2273  * irqs disabled, and this lock is released upon return, but irqs remain
2274  * disabled.
2275  */
2276 static void __maybe_unused
2277 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2278 	__releases(rnp->lock)
2279 {
2280 	unsigned long gps;
2281 	unsigned long mask;
2282 	struct rcu_node *rnp_p;
2283 
2284 	raw_lockdep_assert_held_rcu_node(rnp);
2285 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2286 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2287 	    rnp->qsmask != 0) {
2288 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2289 		return;  /* Still need more quiescent states! */
2290 	}
2291 
2292 	rnp->completedqs = rnp->gp_seq;
2293 	rnp_p = rnp->parent;
2294 	if (rnp_p == NULL) {
2295 		/*
2296 		 * Only one rcu_node structure in the tree, so don't
2297 		 * try to report up to its nonexistent parent!
2298 		 */
2299 		rcu_report_qs_rsp(flags);
2300 		return;
2301 	}
2302 
2303 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2304 	gps = rnp->gp_seq;
2305 	mask = rnp->grpmask;
2306 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2307 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2308 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2309 }
2310 
2311 /*
2312  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2313  * structure.  This must be called from the specified CPU.
2314  */
2315 static void
2316 rcu_report_qs_rdp(struct rcu_data *rdp)
2317 {
2318 	unsigned long flags;
2319 	unsigned long mask;
2320 	bool needwake = false;
2321 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2322 	struct rcu_node *rnp;
2323 
2324 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2325 	rnp = rdp->mynode;
2326 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2327 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2328 	    rdp->gpwrap) {
2329 
2330 		/*
2331 		 * The grace period in which this quiescent state was
2332 		 * recorded has ended, so don't report it upwards.
2333 		 * We will instead need a new quiescent state that lies
2334 		 * within the current grace period.
2335 		 */
2336 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2337 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338 		return;
2339 	}
2340 	mask = rdp->grpmask;
2341 	rdp->core_needs_qs = false;
2342 	if ((rnp->qsmask & mask) == 0) {
2343 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2344 	} else {
2345 		/*
2346 		 * This GP can't end until cpu checks in, so all of our
2347 		 * callbacks can be processed during the next GP.
2348 		 */
2349 		if (!offloaded)
2350 			needwake = rcu_accelerate_cbs(rnp, rdp);
2351 
2352 		rcu_disable_urgency_upon_qs(rdp);
2353 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2354 		/* ^^^ Released rnp->lock */
2355 		if (needwake)
2356 			rcu_gp_kthread_wake();
2357 	}
2358 }
2359 
2360 /*
2361  * Check to see if there is a new grace period of which this CPU
2362  * is not yet aware, and if so, set up local rcu_data state for it.
2363  * Otherwise, see if this CPU has just passed through its first
2364  * quiescent state for this grace period, and record that fact if so.
2365  */
2366 static void
2367 rcu_check_quiescent_state(struct rcu_data *rdp)
2368 {
2369 	/* Check for grace-period ends and beginnings. */
2370 	note_gp_changes(rdp);
2371 
2372 	/*
2373 	 * Does this CPU still need to do its part for current grace period?
2374 	 * If no, return and let the other CPUs do their part as well.
2375 	 */
2376 	if (!rdp->core_needs_qs)
2377 		return;
2378 
2379 	/*
2380 	 * Was there a quiescent state since the beginning of the grace
2381 	 * period? If no, then exit and wait for the next call.
2382 	 */
2383 	if (rdp->cpu_no_qs.b.norm)
2384 		return;
2385 
2386 	/*
2387 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2388 	 * judge of that).
2389 	 */
2390 	rcu_report_qs_rdp(rdp);
2391 }
2392 
2393 /*
2394  * Near the end of the offline process.  Trace the fact that this CPU
2395  * is going offline.
2396  */
2397 int rcutree_dying_cpu(unsigned int cpu)
2398 {
2399 	bool blkd;
2400 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2401 	struct rcu_node *rnp = rdp->mynode;
2402 
2403 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2404 		return 0;
2405 
2406 	blkd = !!(rnp->qsmask & rdp->grpmask);
2407 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2408 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2409 	return 0;
2410 }
2411 
2412 /*
2413  * All CPUs for the specified rcu_node structure have gone offline,
2414  * and all tasks that were preempted within an RCU read-side critical
2415  * section while running on one of those CPUs have since exited their RCU
2416  * read-side critical section.  Some other CPU is reporting this fact with
2417  * the specified rcu_node structure's ->lock held and interrupts disabled.
2418  * This function therefore goes up the tree of rcu_node structures,
2419  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2420  * the leaf rcu_node structure's ->qsmaskinit field has already been
2421  * updated.
2422  *
2423  * This function does check that the specified rcu_node structure has
2424  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2425  * prematurely.  That said, invoking it after the fact will cost you
2426  * a needless lock acquisition.  So once it has done its work, don't
2427  * invoke it again.
2428  */
2429 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2430 {
2431 	long mask;
2432 	struct rcu_node *rnp = rnp_leaf;
2433 
2434 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2435 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2436 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2437 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2438 		return;
2439 	for (;;) {
2440 		mask = rnp->grpmask;
2441 		rnp = rnp->parent;
2442 		if (!rnp)
2443 			break;
2444 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2445 		rnp->qsmaskinit &= ~mask;
2446 		/* Between grace periods, so better already be zero! */
2447 		WARN_ON_ONCE(rnp->qsmask);
2448 		if (rnp->qsmaskinit) {
2449 			raw_spin_unlock_rcu_node(rnp);
2450 			/* irqs remain disabled. */
2451 			return;
2452 		}
2453 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2454 	}
2455 }
2456 
2457 /*
2458  * The CPU has been completely removed, and some other CPU is reporting
2459  * this fact from process context.  Do the remainder of the cleanup.
2460  * There can only be one CPU hotplug operation at a time, so no need for
2461  * explicit locking.
2462  */
2463 int rcutree_dead_cpu(unsigned int cpu)
2464 {
2465 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2466 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2467 
2468 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2469 		return 0;
2470 
2471 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2472 	/* Adjust any no-longer-needed kthreads. */
2473 	rcu_boost_kthread_setaffinity(rnp, -1);
2474 	/* Do any needed no-CB deferred wakeups from this CPU. */
2475 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2476 
2477 	// Stop-machine done, so allow nohz_full to disable tick.
2478 	tick_dep_clear(TICK_DEP_BIT_RCU);
2479 	return 0;
2480 }
2481 
2482 /*
2483  * Invoke any RCU callbacks that have made it to the end of their grace
2484  * period.  Throttle as specified by rdp->blimit.
2485  */
2486 static void rcu_do_batch(struct rcu_data *rdp)
2487 {
2488 	int div;
2489 	bool __maybe_unused empty;
2490 	unsigned long flags;
2491 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2492 	struct rcu_head *rhp;
2493 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2494 	long bl, count = 0;
2495 	long pending, tlimit = 0;
2496 
2497 	/* If no callbacks are ready, just return. */
2498 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2499 		trace_rcu_batch_start(rcu_state.name,
2500 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2501 		trace_rcu_batch_end(rcu_state.name, 0,
2502 				    !rcu_segcblist_empty(&rdp->cblist),
2503 				    need_resched(), is_idle_task(current),
2504 				    rcu_is_callbacks_kthread());
2505 		return;
2506 	}
2507 
2508 	/*
2509 	 * Extract the list of ready callbacks, disabling to prevent
2510 	 * races with call_rcu() from interrupt handlers.  Leave the
2511 	 * callback counts, as rcu_barrier() needs to be conservative.
2512 	 */
2513 	local_irq_save(flags);
2514 	rcu_nocb_lock(rdp);
2515 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2516 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2517 	div = READ_ONCE(rcu_divisor);
2518 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2519 	bl = max(rdp->blimit, pending >> div);
2520 	if (unlikely(bl > 100)) {
2521 		long rrn = READ_ONCE(rcu_resched_ns);
2522 
2523 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2524 		tlimit = local_clock() + rrn;
2525 	}
2526 	trace_rcu_batch_start(rcu_state.name,
2527 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2528 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2529 	if (offloaded)
2530 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2531 
2532 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2533 	rcu_nocb_unlock_irqrestore(rdp, flags);
2534 
2535 	/* Invoke callbacks. */
2536 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2537 	rhp = rcu_cblist_dequeue(&rcl);
2538 
2539 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2540 		rcu_callback_t f;
2541 
2542 		count++;
2543 		debug_rcu_head_unqueue(rhp);
2544 
2545 		rcu_lock_acquire(&rcu_callback_map);
2546 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2547 
2548 		f = rhp->func;
2549 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2550 		f(rhp);
2551 
2552 		rcu_lock_release(&rcu_callback_map);
2553 
2554 		/*
2555 		 * Stop only if limit reached and CPU has something to do.
2556 		 */
2557 		if (count >= bl && !offloaded &&
2558 		    (need_resched() ||
2559 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2560 			break;
2561 		if (unlikely(tlimit)) {
2562 			/* only call local_clock() every 32 callbacks */
2563 			if (likely((count & 31) || local_clock() < tlimit))
2564 				continue;
2565 			/* Exceeded the time limit, so leave. */
2566 			break;
2567 		}
2568 		if (!in_serving_softirq()) {
2569 			local_bh_enable();
2570 			lockdep_assert_irqs_enabled();
2571 			cond_resched_tasks_rcu_qs();
2572 			lockdep_assert_irqs_enabled();
2573 			local_bh_disable();
2574 		}
2575 	}
2576 
2577 	local_irq_save(flags);
2578 	rcu_nocb_lock(rdp);
2579 	rdp->n_cbs_invoked += count;
2580 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2581 			    is_idle_task(current), rcu_is_callbacks_kthread());
2582 
2583 	/* Update counts and requeue any remaining callbacks. */
2584 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2585 	rcu_segcblist_add_len(&rdp->cblist, -count);
2586 
2587 	/* Reinstate batch limit if we have worked down the excess. */
2588 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2589 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2590 		rdp->blimit = blimit;
2591 
2592 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2593 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2594 		rdp->qlen_last_fqs_check = 0;
2595 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2596 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2597 		rdp->qlen_last_fqs_check = count;
2598 
2599 	/*
2600 	 * The following usually indicates a double call_rcu().  To track
2601 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2602 	 */
2603 	empty = rcu_segcblist_empty(&rdp->cblist);
2604 	WARN_ON_ONCE(count == 0 && !empty);
2605 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606 		     count != 0 && empty);
2607 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2608 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2609 
2610 	rcu_nocb_unlock_irqrestore(rdp, flags);
2611 
2612 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2613 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2614 		invoke_rcu_core();
2615 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2616 }
2617 
2618 /*
2619  * This function is invoked from each scheduling-clock interrupt,
2620  * and checks to see if this CPU is in a non-context-switch quiescent
2621  * state, for example, user mode or idle loop.  It also schedules RCU
2622  * core processing.  If the current grace period has gone on too long,
2623  * it will ask the scheduler to manufacture a context switch for the sole
2624  * purpose of providing the needed quiescent state.
2625  */
2626 void rcu_sched_clock_irq(int user)
2627 {
2628 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2629 	lockdep_assert_irqs_disabled();
2630 	raw_cpu_inc(rcu_data.ticks_this_gp);
2631 	/* The load-acquire pairs with the store-release setting to true. */
2632 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2633 		/* Idle and userspace execution already are quiescent states. */
2634 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2635 			set_tsk_need_resched(current);
2636 			set_preempt_need_resched();
2637 		}
2638 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2639 	}
2640 	rcu_flavor_sched_clock_irq(user);
2641 	if (rcu_pending(user))
2642 		invoke_rcu_core();
2643 	lockdep_assert_irqs_disabled();
2644 
2645 	trace_rcu_utilization(TPS("End scheduler-tick"));
2646 }
2647 
2648 /*
2649  * Scan the leaf rcu_node structures.  For each structure on which all
2650  * CPUs have reported a quiescent state and on which there are tasks
2651  * blocking the current grace period, initiate RCU priority boosting.
2652  * Otherwise, invoke the specified function to check dyntick state for
2653  * each CPU that has not yet reported a quiescent state.
2654  */
2655 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2656 {
2657 	int cpu;
2658 	unsigned long flags;
2659 	unsigned long mask;
2660 	struct rcu_data *rdp;
2661 	struct rcu_node *rnp;
2662 
2663 	rcu_state.cbovld = rcu_state.cbovldnext;
2664 	rcu_state.cbovldnext = false;
2665 	rcu_for_each_leaf_node(rnp) {
2666 		cond_resched_tasks_rcu_qs();
2667 		mask = 0;
2668 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2669 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2670 		if (rnp->qsmask == 0) {
2671 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2672 				/*
2673 				 * No point in scanning bits because they
2674 				 * are all zero.  But we might need to
2675 				 * priority-boost blocked readers.
2676 				 */
2677 				rcu_initiate_boost(rnp, flags);
2678 				/* rcu_initiate_boost() releases rnp->lock */
2679 				continue;
2680 			}
2681 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2682 			continue;
2683 		}
2684 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2685 			rdp = per_cpu_ptr(&rcu_data, cpu);
2686 			if (f(rdp)) {
2687 				mask |= rdp->grpmask;
2688 				rcu_disable_urgency_upon_qs(rdp);
2689 			}
2690 		}
2691 		if (mask != 0) {
2692 			/* Idle/offline CPUs, report (releases rnp->lock). */
2693 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2694 		} else {
2695 			/* Nothing to do here, so just drop the lock. */
2696 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2697 		}
2698 	}
2699 }
2700 
2701 /*
2702  * Force quiescent states on reluctant CPUs, and also detect which
2703  * CPUs are in dyntick-idle mode.
2704  */
2705 void rcu_force_quiescent_state(void)
2706 {
2707 	unsigned long flags;
2708 	bool ret;
2709 	struct rcu_node *rnp;
2710 	struct rcu_node *rnp_old = NULL;
2711 
2712 	/* Funnel through hierarchy to reduce memory contention. */
2713 	rnp = __this_cpu_read(rcu_data.mynode);
2714 	for (; rnp != NULL; rnp = rnp->parent) {
2715 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2716 		       !raw_spin_trylock(&rnp->fqslock);
2717 		if (rnp_old != NULL)
2718 			raw_spin_unlock(&rnp_old->fqslock);
2719 		if (ret)
2720 			return;
2721 		rnp_old = rnp;
2722 	}
2723 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2724 
2725 	/* Reached the root of the rcu_node tree, acquire lock. */
2726 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2727 	raw_spin_unlock(&rnp_old->fqslock);
2728 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2729 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2730 		return;  /* Someone beat us to it. */
2731 	}
2732 	WRITE_ONCE(rcu_state.gp_flags,
2733 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2734 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2735 	rcu_gp_kthread_wake();
2736 }
2737 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2738 
2739 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2740 // grace periods.
2741 static void strict_work_handler(struct work_struct *work)
2742 {
2743 	rcu_read_lock();
2744 	rcu_read_unlock();
2745 }
2746 
2747 /* Perform RCU core processing work for the current CPU.  */
2748 static __latent_entropy void rcu_core(void)
2749 {
2750 	unsigned long flags;
2751 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2752 	struct rcu_node *rnp = rdp->mynode;
2753 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2754 
2755 	if (cpu_is_offline(smp_processor_id()))
2756 		return;
2757 	trace_rcu_utilization(TPS("Start RCU core"));
2758 	WARN_ON_ONCE(!rdp->beenonline);
2759 
2760 	/* Report any deferred quiescent states if preemption enabled. */
2761 	if (!(preempt_count() & PREEMPT_MASK)) {
2762 		rcu_preempt_deferred_qs(current);
2763 	} else if (rcu_preempt_need_deferred_qs(current)) {
2764 		set_tsk_need_resched(current);
2765 		set_preempt_need_resched();
2766 	}
2767 
2768 	/* Update RCU state based on any recent quiescent states. */
2769 	rcu_check_quiescent_state(rdp);
2770 
2771 	/* No grace period and unregistered callbacks? */
2772 	if (!rcu_gp_in_progress() &&
2773 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2774 		rcu_nocb_lock_irqsave(rdp, flags);
2775 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2776 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2777 		rcu_nocb_unlock_irqrestore(rdp, flags);
2778 	}
2779 
2780 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2781 
2782 	/* If there are callbacks ready, invoke them. */
2783 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2784 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2785 		rcu_do_batch(rdp);
2786 
2787 	/* Do any needed deferred wakeups of rcuo kthreads. */
2788 	do_nocb_deferred_wakeup(rdp);
2789 	trace_rcu_utilization(TPS("End RCU core"));
2790 
2791 	// If strict GPs, schedule an RCU reader in a clean environment.
2792 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2793 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2794 }
2795 
2796 static void rcu_core_si(struct softirq_action *h)
2797 {
2798 	rcu_core();
2799 }
2800 
2801 static void rcu_wake_cond(struct task_struct *t, int status)
2802 {
2803 	/*
2804 	 * If the thread is yielding, only wake it when this
2805 	 * is invoked from idle
2806 	 */
2807 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2808 		wake_up_process(t);
2809 }
2810 
2811 static void invoke_rcu_core_kthread(void)
2812 {
2813 	struct task_struct *t;
2814 	unsigned long flags;
2815 
2816 	local_irq_save(flags);
2817 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2818 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2819 	if (t != NULL && t != current)
2820 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2821 	local_irq_restore(flags);
2822 }
2823 
2824 /*
2825  * Wake up this CPU's rcuc kthread to do RCU core processing.
2826  */
2827 static void invoke_rcu_core(void)
2828 {
2829 	if (!cpu_online(smp_processor_id()))
2830 		return;
2831 	if (use_softirq)
2832 		raise_softirq(RCU_SOFTIRQ);
2833 	else
2834 		invoke_rcu_core_kthread();
2835 }
2836 
2837 static void rcu_cpu_kthread_park(unsigned int cpu)
2838 {
2839 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2840 }
2841 
2842 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2843 {
2844 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2845 }
2846 
2847 /*
2848  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2849  * the RCU softirq used in configurations of RCU that do not support RCU
2850  * priority boosting.
2851  */
2852 static void rcu_cpu_kthread(unsigned int cpu)
2853 {
2854 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2855 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2856 	int spincnt;
2857 
2858 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2859 	for (spincnt = 0; spincnt < 10; spincnt++) {
2860 		local_bh_disable();
2861 		*statusp = RCU_KTHREAD_RUNNING;
2862 		local_irq_disable();
2863 		work = *workp;
2864 		*workp = 0;
2865 		local_irq_enable();
2866 		if (work)
2867 			rcu_core();
2868 		local_bh_enable();
2869 		if (*workp == 0) {
2870 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2871 			*statusp = RCU_KTHREAD_WAITING;
2872 			return;
2873 		}
2874 	}
2875 	*statusp = RCU_KTHREAD_YIELDING;
2876 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2877 	schedule_timeout_idle(2);
2878 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2879 	*statusp = RCU_KTHREAD_WAITING;
2880 }
2881 
2882 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2883 	.store			= &rcu_data.rcu_cpu_kthread_task,
2884 	.thread_should_run	= rcu_cpu_kthread_should_run,
2885 	.thread_fn		= rcu_cpu_kthread,
2886 	.thread_comm		= "rcuc/%u",
2887 	.setup			= rcu_cpu_kthread_setup,
2888 	.park			= rcu_cpu_kthread_park,
2889 };
2890 
2891 /*
2892  * Spawn per-CPU RCU core processing kthreads.
2893  */
2894 static int __init rcu_spawn_core_kthreads(void)
2895 {
2896 	int cpu;
2897 
2898 	for_each_possible_cpu(cpu)
2899 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2900 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2901 		return 0;
2902 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2903 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2904 	return 0;
2905 }
2906 
2907 /*
2908  * Handle any core-RCU processing required by a call_rcu() invocation.
2909  */
2910 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2911 			    unsigned long flags)
2912 {
2913 	/*
2914 	 * If called from an extended quiescent state, invoke the RCU
2915 	 * core in order to force a re-evaluation of RCU's idleness.
2916 	 */
2917 	if (!rcu_is_watching())
2918 		invoke_rcu_core();
2919 
2920 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2921 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2922 		return;
2923 
2924 	/*
2925 	 * Force the grace period if too many callbacks or too long waiting.
2926 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2927 	 * if some other CPU has recently done so.  Also, don't bother
2928 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2929 	 * is the only one waiting for a grace period to complete.
2930 	 */
2931 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2932 		     rdp->qlen_last_fqs_check + qhimark)) {
2933 
2934 		/* Are we ignoring a completed grace period? */
2935 		note_gp_changes(rdp);
2936 
2937 		/* Start a new grace period if one not already started. */
2938 		if (!rcu_gp_in_progress()) {
2939 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2940 		} else {
2941 			/* Give the grace period a kick. */
2942 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2943 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2944 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2945 				rcu_force_quiescent_state();
2946 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2947 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2948 		}
2949 	}
2950 }
2951 
2952 /*
2953  * RCU callback function to leak a callback.
2954  */
2955 static void rcu_leak_callback(struct rcu_head *rhp)
2956 {
2957 }
2958 
2959 /*
2960  * Check and if necessary update the leaf rcu_node structure's
2961  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2962  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2963  * structure's ->lock.
2964  */
2965 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2966 {
2967 	raw_lockdep_assert_held_rcu_node(rnp);
2968 	if (qovld_calc <= 0)
2969 		return; // Early boot and wildcard value set.
2970 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2971 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2972 	else
2973 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2974 }
2975 
2976 /*
2977  * Check and if necessary update the leaf rcu_node structure's
2978  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2979  * number of queued RCU callbacks.  No locks need be held, but the
2980  * caller must have disabled interrupts.
2981  *
2982  * Note that this function ignores the possibility that there are a lot
2983  * of callbacks all of which have already seen the end of their respective
2984  * grace periods.  This omission is due to the need for no-CBs CPUs to
2985  * be holding ->nocb_lock to do this check, which is too heavy for a
2986  * common-case operation.
2987  */
2988 static void check_cb_ovld(struct rcu_data *rdp)
2989 {
2990 	struct rcu_node *const rnp = rdp->mynode;
2991 
2992 	if (qovld_calc <= 0 ||
2993 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2994 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2995 		return; // Early boot wildcard value or already set correctly.
2996 	raw_spin_lock_rcu_node(rnp);
2997 	check_cb_ovld_locked(rdp, rnp);
2998 	raw_spin_unlock_rcu_node(rnp);
2999 }
3000 
3001 /* Helper function for call_rcu() and friends.  */
3002 static void
3003 __call_rcu(struct rcu_head *head, rcu_callback_t func)
3004 {
3005 	static atomic_t doublefrees;
3006 	unsigned long flags;
3007 	struct rcu_data *rdp;
3008 	bool was_alldone;
3009 
3010 	/* Misaligned rcu_head! */
3011 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3012 
3013 	if (debug_rcu_head_queue(head)) {
3014 		/*
3015 		 * Probable double call_rcu(), so leak the callback.
3016 		 * Use rcu:rcu_callback trace event to find the previous
3017 		 * time callback was passed to __call_rcu().
3018 		 */
3019 		if (atomic_inc_return(&doublefrees) < 4) {
3020 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3021 			mem_dump_obj(head);
3022 		}
3023 		WRITE_ONCE(head->func, rcu_leak_callback);
3024 		return;
3025 	}
3026 	head->func = func;
3027 	head->next = NULL;
3028 	local_irq_save(flags);
3029 	kasan_record_aux_stack(head);
3030 	rdp = this_cpu_ptr(&rcu_data);
3031 
3032 	/* Add the callback to our list. */
3033 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3034 		// This can trigger due to call_rcu() from offline CPU:
3035 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3036 		WARN_ON_ONCE(!rcu_is_watching());
3037 		// Very early boot, before rcu_init().  Initialize if needed
3038 		// and then drop through to queue the callback.
3039 		if (rcu_segcblist_empty(&rdp->cblist))
3040 			rcu_segcblist_init(&rdp->cblist);
3041 	}
3042 
3043 	check_cb_ovld(rdp);
3044 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3045 		return; // Enqueued onto ->nocb_bypass, so just leave.
3046 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3047 	rcu_segcblist_enqueue(&rdp->cblist, head);
3048 	if (__is_kvfree_rcu_offset((unsigned long)func))
3049 		trace_rcu_kvfree_callback(rcu_state.name, head,
3050 					 (unsigned long)func,
3051 					 rcu_segcblist_n_cbs(&rdp->cblist));
3052 	else
3053 		trace_rcu_callback(rcu_state.name, head,
3054 				   rcu_segcblist_n_cbs(&rdp->cblist));
3055 
3056 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3057 
3058 	/* Go handle any RCU core processing required. */
3059 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3060 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3061 	} else {
3062 		__call_rcu_core(rdp, head, flags);
3063 		local_irq_restore(flags);
3064 	}
3065 }
3066 
3067 /**
3068  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3069  * @head: structure to be used for queueing the RCU updates.
3070  * @func: actual callback function to be invoked after the grace period
3071  *
3072  * The callback function will be invoked some time after a full grace
3073  * period elapses, in other words after all pre-existing RCU read-side
3074  * critical sections have completed.  However, the callback function
3075  * might well execute concurrently with RCU read-side critical sections
3076  * that started after call_rcu() was invoked.
3077  *
3078  * RCU read-side critical sections are delimited by rcu_read_lock()
3079  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3080  * v5.0 and later, regions of code across which interrupts, preemption,
3081  * or softirqs have been disabled also serve as RCU read-side critical
3082  * sections.  This includes hardware interrupt handlers, softirq handlers,
3083  * and NMI handlers.
3084  *
3085  * Note that all CPUs must agree that the grace period extended beyond
3086  * all pre-existing RCU read-side critical section.  On systems with more
3087  * than one CPU, this means that when "func()" is invoked, each CPU is
3088  * guaranteed to have executed a full memory barrier since the end of its
3089  * last RCU read-side critical section whose beginning preceded the call
3090  * to call_rcu().  It also means that each CPU executing an RCU read-side
3091  * critical section that continues beyond the start of "func()" must have
3092  * executed a memory barrier after the call_rcu() but before the beginning
3093  * of that RCU read-side critical section.  Note that these guarantees
3094  * include CPUs that are offline, idle, or executing in user mode, as
3095  * well as CPUs that are executing in the kernel.
3096  *
3097  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3098  * resulting RCU callback function "func()", then both CPU A and CPU B are
3099  * guaranteed to execute a full memory barrier during the time interval
3100  * between the call to call_rcu() and the invocation of "func()" -- even
3101  * if CPU A and CPU B are the same CPU (but again only if the system has
3102  * more than one CPU).
3103  *
3104  * Implementation of these memory-ordering guarantees is described here:
3105  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3106  */
3107 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3108 {
3109 	__call_rcu(head, func);
3110 }
3111 EXPORT_SYMBOL_GPL(call_rcu);
3112 
3113 
3114 /* Maximum number of jiffies to wait before draining a batch. */
3115 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3116 #define KFREE_N_BATCHES 2
3117 #define FREE_N_CHANNELS 2
3118 
3119 /**
3120  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3121  * @nr_records: Number of active pointers in the array
3122  * @next: Next bulk object in the block chain
3123  * @records: Array of the kvfree_rcu() pointers
3124  */
3125 struct kvfree_rcu_bulk_data {
3126 	unsigned long nr_records;
3127 	struct kvfree_rcu_bulk_data *next;
3128 	void *records[];
3129 };
3130 
3131 /*
3132  * This macro defines how many entries the "records" array
3133  * will contain. It is based on the fact that the size of
3134  * kvfree_rcu_bulk_data structure becomes exactly one page.
3135  */
3136 #define KVFREE_BULK_MAX_ENTR \
3137 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3138 
3139 /**
3140  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3141  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3142  * @head_free: List of kfree_rcu() objects waiting for a grace period
3143  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3144  * @krcp: Pointer to @kfree_rcu_cpu structure
3145  */
3146 
3147 struct kfree_rcu_cpu_work {
3148 	struct rcu_work rcu_work;
3149 	struct rcu_head *head_free;
3150 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3151 	struct kfree_rcu_cpu *krcp;
3152 };
3153 
3154 /**
3155  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3156  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3157  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3158  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3159  * @lock: Synchronize access to this structure
3160  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3161  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3162  * @initialized: The @rcu_work fields have been initialized
3163  * @count: Number of objects for which GP not started
3164  * @bkvcache:
3165  *	A simple cache list that contains objects for reuse purpose.
3166  *	In order to save some per-cpu space the list is singular.
3167  *	Even though it is lockless an access has to be protected by the
3168  *	per-cpu lock.
3169  * @page_cache_work: A work to refill the cache when it is empty
3170  * @backoff_page_cache_fill: Delay cache refills
3171  * @work_in_progress: Indicates that page_cache_work is running
3172  * @hrtimer: A hrtimer for scheduling a page_cache_work
3173  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3174  *
3175  * This is a per-CPU structure.  The reason that it is not included in
3176  * the rcu_data structure is to permit this code to be extracted from
3177  * the RCU files.  Such extraction could allow further optimization of
3178  * the interactions with the slab allocators.
3179  */
3180 struct kfree_rcu_cpu {
3181 	struct rcu_head *head;
3182 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3183 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3184 	raw_spinlock_t lock;
3185 	struct delayed_work monitor_work;
3186 	bool monitor_todo;
3187 	bool initialized;
3188 	int count;
3189 
3190 	struct delayed_work page_cache_work;
3191 	atomic_t backoff_page_cache_fill;
3192 	atomic_t work_in_progress;
3193 	struct hrtimer hrtimer;
3194 
3195 	struct llist_head bkvcache;
3196 	int nr_bkv_objs;
3197 };
3198 
3199 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3200 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3201 };
3202 
3203 static __always_inline void
3204 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3205 {
3206 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3207 	int i;
3208 
3209 	for (i = 0; i < bhead->nr_records; i++)
3210 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3211 #endif
3212 }
3213 
3214 static inline struct kfree_rcu_cpu *
3215 krc_this_cpu_lock(unsigned long *flags)
3216 {
3217 	struct kfree_rcu_cpu *krcp;
3218 
3219 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3220 	krcp = this_cpu_ptr(&krc);
3221 	raw_spin_lock(&krcp->lock);
3222 
3223 	return krcp;
3224 }
3225 
3226 static inline void
3227 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3228 {
3229 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3230 }
3231 
3232 static inline struct kvfree_rcu_bulk_data *
3233 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3234 {
3235 	if (!krcp->nr_bkv_objs)
3236 		return NULL;
3237 
3238 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3239 	return (struct kvfree_rcu_bulk_data *)
3240 		llist_del_first(&krcp->bkvcache);
3241 }
3242 
3243 static inline bool
3244 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3245 	struct kvfree_rcu_bulk_data *bnode)
3246 {
3247 	// Check the limit.
3248 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3249 		return false;
3250 
3251 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3252 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3253 	return true;
3254 }
3255 
3256 static int
3257 drain_page_cache(struct kfree_rcu_cpu *krcp)
3258 {
3259 	unsigned long flags;
3260 	struct llist_node *page_list, *pos, *n;
3261 	int freed = 0;
3262 
3263 	raw_spin_lock_irqsave(&krcp->lock, flags);
3264 	page_list = llist_del_all(&krcp->bkvcache);
3265 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3266 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3267 
3268 	llist_for_each_safe(pos, n, page_list) {
3269 		free_page((unsigned long)pos);
3270 		freed++;
3271 	}
3272 
3273 	return freed;
3274 }
3275 
3276 /*
3277  * This function is invoked in workqueue context after a grace period.
3278  * It frees all the objects queued on ->bkvhead_free or ->head_free.
3279  */
3280 static void kfree_rcu_work(struct work_struct *work)
3281 {
3282 	unsigned long flags;
3283 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3284 	struct rcu_head *head, *next;
3285 	struct kfree_rcu_cpu *krcp;
3286 	struct kfree_rcu_cpu_work *krwp;
3287 	int i, j;
3288 
3289 	krwp = container_of(to_rcu_work(work),
3290 			    struct kfree_rcu_cpu_work, rcu_work);
3291 	krcp = krwp->krcp;
3292 
3293 	raw_spin_lock_irqsave(&krcp->lock, flags);
3294 	// Channels 1 and 2.
3295 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3296 		bkvhead[i] = krwp->bkvhead_free[i];
3297 		krwp->bkvhead_free[i] = NULL;
3298 	}
3299 
3300 	// Channel 3.
3301 	head = krwp->head_free;
3302 	krwp->head_free = NULL;
3303 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3304 
3305 	// Handle the first two channels.
3306 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3307 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3308 			bnext = bkvhead[i]->next;
3309 			debug_rcu_bhead_unqueue(bkvhead[i]);
3310 
3311 			rcu_lock_acquire(&rcu_callback_map);
3312 			if (i == 0) { // kmalloc() / kfree().
3313 				trace_rcu_invoke_kfree_bulk_callback(
3314 					rcu_state.name, bkvhead[i]->nr_records,
3315 					bkvhead[i]->records);
3316 
3317 				kfree_bulk(bkvhead[i]->nr_records,
3318 					bkvhead[i]->records);
3319 			} else { // vmalloc() / vfree().
3320 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3321 					trace_rcu_invoke_kvfree_callback(
3322 						rcu_state.name,
3323 						bkvhead[i]->records[j], 0);
3324 
3325 					vfree(bkvhead[i]->records[j]);
3326 				}
3327 			}
3328 			rcu_lock_release(&rcu_callback_map);
3329 
3330 			raw_spin_lock_irqsave(&krcp->lock, flags);
3331 			if (put_cached_bnode(krcp, bkvhead[i]))
3332 				bkvhead[i] = NULL;
3333 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3334 
3335 			if (bkvhead[i])
3336 				free_page((unsigned long) bkvhead[i]);
3337 
3338 			cond_resched_tasks_rcu_qs();
3339 		}
3340 	}
3341 
3342 	/*
3343 	 * This is used when the "bulk" path can not be used for the
3344 	 * double-argument of kvfree_rcu().  This happens when the
3345 	 * page-cache is empty, which means that objects are instead
3346 	 * queued on a linked list through their rcu_head structures.
3347 	 * This list is named "Channel 3".
3348 	 */
3349 	for (; head; head = next) {
3350 		unsigned long offset = (unsigned long)head->func;
3351 		void *ptr = (void *)head - offset;
3352 
3353 		next = head->next;
3354 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3355 		rcu_lock_acquire(&rcu_callback_map);
3356 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3357 
3358 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3359 			kvfree(ptr);
3360 
3361 		rcu_lock_release(&rcu_callback_map);
3362 		cond_resched_tasks_rcu_qs();
3363 	}
3364 }
3365 
3366 /*
3367  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3368  */
3369 static void kfree_rcu_monitor(struct work_struct *work)
3370 {
3371 	struct kfree_rcu_cpu *krcp = container_of(work,
3372 		struct kfree_rcu_cpu, monitor_work.work);
3373 	unsigned long flags;
3374 	int i, j;
3375 
3376 	raw_spin_lock_irqsave(&krcp->lock, flags);
3377 
3378 	// Attempt to start a new batch.
3379 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3380 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3381 
3382 		// Try to detach bkvhead or head and attach it over any
3383 		// available corresponding free channel. It can be that
3384 		// a previous RCU batch is in progress, it means that
3385 		// immediately to queue another one is not possible so
3386 		// in that case the monitor work is rearmed.
3387 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3388 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3389 				(krcp->head && !krwp->head_free)) {
3390 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3391 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3392 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3393 				if (!krwp->bkvhead_free[j]) {
3394 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3395 					krcp->bkvhead[j] = NULL;
3396 				}
3397 			}
3398 
3399 			// Channel 3 corresponds to both SLAB and vmalloc
3400 			// objects queued on the linked list.
3401 			if (!krwp->head_free) {
3402 				krwp->head_free = krcp->head;
3403 				krcp->head = NULL;
3404 			}
3405 
3406 			WRITE_ONCE(krcp->count, 0);
3407 
3408 			// One work is per one batch, so there are three
3409 			// "free channels", the batch can handle. It can
3410 			// be that the work is in the pending state when
3411 			// channels have been detached following by each
3412 			// other.
3413 			queue_rcu_work(system_wq, &krwp->rcu_work);
3414 		}
3415 	}
3416 
3417 	// If there is nothing to detach, it means that our job is
3418 	// successfully done here. In case of having at least one
3419 	// of the channels that is still busy we should rearm the
3420 	// work to repeat an attempt. Because previous batches are
3421 	// still in progress.
3422 	if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3423 		krcp->monitor_todo = false;
3424 	else
3425 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3426 
3427 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3428 }
3429 
3430 static enum hrtimer_restart
3431 schedule_page_work_fn(struct hrtimer *t)
3432 {
3433 	struct kfree_rcu_cpu *krcp =
3434 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3435 
3436 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3437 	return HRTIMER_NORESTART;
3438 }
3439 
3440 static void fill_page_cache_func(struct work_struct *work)
3441 {
3442 	struct kvfree_rcu_bulk_data *bnode;
3443 	struct kfree_rcu_cpu *krcp =
3444 		container_of(work, struct kfree_rcu_cpu,
3445 			page_cache_work.work);
3446 	unsigned long flags;
3447 	int nr_pages;
3448 	bool pushed;
3449 	int i;
3450 
3451 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3452 		1 : rcu_min_cached_objs;
3453 
3454 	for (i = 0; i < nr_pages; i++) {
3455 		bnode = (struct kvfree_rcu_bulk_data *)
3456 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3457 
3458 		if (bnode) {
3459 			raw_spin_lock_irqsave(&krcp->lock, flags);
3460 			pushed = put_cached_bnode(krcp, bnode);
3461 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3462 
3463 			if (!pushed) {
3464 				free_page((unsigned long) bnode);
3465 				break;
3466 			}
3467 		}
3468 	}
3469 
3470 	atomic_set(&krcp->work_in_progress, 0);
3471 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3472 }
3473 
3474 static void
3475 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3476 {
3477 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3478 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3479 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3480 			queue_delayed_work(system_wq,
3481 				&krcp->page_cache_work,
3482 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3483 		} else {
3484 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3485 			krcp->hrtimer.function = schedule_page_work_fn;
3486 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3487 		}
3488 	}
3489 }
3490 
3491 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3492 // state specified by flags.  If can_alloc is true, the caller must
3493 // be schedulable and not be holding any locks or mutexes that might be
3494 // acquired by the memory allocator or anything that it might invoke.
3495 // Returns true if ptr was successfully recorded, else the caller must
3496 // use a fallback.
3497 static inline bool
3498 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3499 	unsigned long *flags, void *ptr, bool can_alloc)
3500 {
3501 	struct kvfree_rcu_bulk_data *bnode;
3502 	int idx;
3503 
3504 	*krcp = krc_this_cpu_lock(flags);
3505 	if (unlikely(!(*krcp)->initialized))
3506 		return false;
3507 
3508 	idx = !!is_vmalloc_addr(ptr);
3509 
3510 	/* Check if a new block is required. */
3511 	if (!(*krcp)->bkvhead[idx] ||
3512 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3513 		bnode = get_cached_bnode(*krcp);
3514 		if (!bnode && can_alloc) {
3515 			krc_this_cpu_unlock(*krcp, *flags);
3516 
3517 			// __GFP_NORETRY - allows a light-weight direct reclaim
3518 			// what is OK from minimizing of fallback hitting point of
3519 			// view. Apart of that it forbids any OOM invoking what is
3520 			// also beneficial since we are about to release memory soon.
3521 			//
3522 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3523 			// memory reserves. Please note we have a fallback path.
3524 			//
3525 			// __GFP_NOWARN - it is supposed that an allocation can
3526 			// be failed under low memory or high memory pressure
3527 			// scenarios.
3528 			bnode = (struct kvfree_rcu_bulk_data *)
3529 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3530 			*krcp = krc_this_cpu_lock(flags);
3531 		}
3532 
3533 		if (!bnode)
3534 			return false;
3535 
3536 		/* Initialize the new block. */
3537 		bnode->nr_records = 0;
3538 		bnode->next = (*krcp)->bkvhead[idx];
3539 
3540 		/* Attach it to the head. */
3541 		(*krcp)->bkvhead[idx] = bnode;
3542 	}
3543 
3544 	/* Finally insert. */
3545 	(*krcp)->bkvhead[idx]->records
3546 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3547 
3548 	return true;
3549 }
3550 
3551 /*
3552  * Queue a request for lazy invocation of the appropriate free routine
3553  * after a grace period.  Please note that three paths are maintained,
3554  * two for the common case using arrays of pointers and a third one that
3555  * is used only when the main paths cannot be used, for example, due to
3556  * memory pressure.
3557  *
3558  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3559  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3560  * be free'd in workqueue context. This allows us to: batch requests together to
3561  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3562  */
3563 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3564 {
3565 	unsigned long flags;
3566 	struct kfree_rcu_cpu *krcp;
3567 	bool success;
3568 	void *ptr;
3569 
3570 	if (head) {
3571 		ptr = (void *) head - (unsigned long) func;
3572 	} else {
3573 		/*
3574 		 * Please note there is a limitation for the head-less
3575 		 * variant, that is why there is a clear rule for such
3576 		 * objects: it can be used from might_sleep() context
3577 		 * only. For other places please embed an rcu_head to
3578 		 * your data.
3579 		 */
3580 		might_sleep();
3581 		ptr = (unsigned long *) func;
3582 	}
3583 
3584 	// Queue the object but don't yet schedule the batch.
3585 	if (debug_rcu_head_queue(ptr)) {
3586 		// Probable double kfree_rcu(), just leak.
3587 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3588 			  __func__, head);
3589 
3590 		// Mark as success and leave.
3591 		return;
3592 	}
3593 
3594 	kasan_record_aux_stack(ptr);
3595 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3596 	if (!success) {
3597 		run_page_cache_worker(krcp);
3598 
3599 		if (head == NULL)
3600 			// Inline if kvfree_rcu(one_arg) call.
3601 			goto unlock_return;
3602 
3603 		head->func = func;
3604 		head->next = krcp->head;
3605 		krcp->head = head;
3606 		success = true;
3607 	}
3608 
3609 	WRITE_ONCE(krcp->count, krcp->count + 1);
3610 
3611 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3612 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3613 	    !krcp->monitor_todo) {
3614 		krcp->monitor_todo = true;
3615 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3616 	}
3617 
3618 unlock_return:
3619 	krc_this_cpu_unlock(krcp, flags);
3620 
3621 	/*
3622 	 * Inline kvfree() after synchronize_rcu(). We can do
3623 	 * it from might_sleep() context only, so the current
3624 	 * CPU can pass the QS state.
3625 	 */
3626 	if (!success) {
3627 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3628 		synchronize_rcu();
3629 		kvfree(ptr);
3630 	}
3631 }
3632 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3633 
3634 static unsigned long
3635 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3636 {
3637 	int cpu;
3638 	unsigned long count = 0;
3639 
3640 	/* Snapshot count of all CPUs */
3641 	for_each_possible_cpu(cpu) {
3642 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3643 
3644 		count += READ_ONCE(krcp->count);
3645 		count += READ_ONCE(krcp->nr_bkv_objs);
3646 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3647 	}
3648 
3649 	return count;
3650 }
3651 
3652 static unsigned long
3653 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3654 {
3655 	int cpu, freed = 0;
3656 
3657 	for_each_possible_cpu(cpu) {
3658 		int count;
3659 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3660 
3661 		count = krcp->count;
3662 		count += drain_page_cache(krcp);
3663 		kfree_rcu_monitor(&krcp->monitor_work.work);
3664 
3665 		sc->nr_to_scan -= count;
3666 		freed += count;
3667 
3668 		if (sc->nr_to_scan <= 0)
3669 			break;
3670 	}
3671 
3672 	return freed == 0 ? SHRINK_STOP : freed;
3673 }
3674 
3675 static struct shrinker kfree_rcu_shrinker = {
3676 	.count_objects = kfree_rcu_shrink_count,
3677 	.scan_objects = kfree_rcu_shrink_scan,
3678 	.batch = 0,
3679 	.seeks = DEFAULT_SEEKS,
3680 };
3681 
3682 void __init kfree_rcu_scheduler_running(void)
3683 {
3684 	int cpu;
3685 	unsigned long flags;
3686 
3687 	for_each_possible_cpu(cpu) {
3688 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3689 
3690 		raw_spin_lock_irqsave(&krcp->lock, flags);
3691 		if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3692 				krcp->monitor_todo) {
3693 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3694 			continue;
3695 		}
3696 		krcp->monitor_todo = true;
3697 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3698 					 KFREE_DRAIN_JIFFIES);
3699 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3700 	}
3701 }
3702 
3703 /*
3704  * During early boot, any blocking grace-period wait automatically
3705  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3706  *
3707  * However, because a context switch is a grace period for !PREEMPTION, any
3708  * blocking grace-period wait automatically implies a grace period if
3709  * there is only one CPU online at any point time during execution of
3710  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3711  * occasionally incorrectly indicate that there are multiple CPUs online
3712  * when there was in fact only one the whole time, as this just adds some
3713  * overhead: RCU still operates correctly.
3714  */
3715 static int rcu_blocking_is_gp(void)
3716 {
3717 	int ret;
3718 
3719 	if (IS_ENABLED(CONFIG_PREEMPTION))
3720 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3721 	might_sleep();  /* Check for RCU read-side critical section. */
3722 	preempt_disable();
3723 	/*
3724 	 * If the rcu_state.n_online_cpus counter is equal to one,
3725 	 * there is only one CPU, and that CPU sees all prior accesses
3726 	 * made by any CPU that was online at the time of its access.
3727 	 * Furthermore, if this counter is equal to one, its value cannot
3728 	 * change until after the preempt_enable() below.
3729 	 *
3730 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3731 	 * all later CPUs (both this one and any that come online later
3732 	 * on) are guaranteed to see all accesses prior to this point
3733 	 * in the code, without the need for additional memory barriers.
3734 	 * Those memory barriers are provided by CPU-hotplug code.
3735 	 */
3736 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3737 	preempt_enable();
3738 	return ret;
3739 }
3740 
3741 /**
3742  * synchronize_rcu - wait until a grace period has elapsed.
3743  *
3744  * Control will return to the caller some time after a full grace
3745  * period has elapsed, in other words after all currently executing RCU
3746  * read-side critical sections have completed.  Note, however, that
3747  * upon return from synchronize_rcu(), the caller might well be executing
3748  * concurrently with new RCU read-side critical sections that began while
3749  * synchronize_rcu() was waiting.
3750  *
3751  * RCU read-side critical sections are delimited by rcu_read_lock()
3752  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3753  * v5.0 and later, regions of code across which interrupts, preemption,
3754  * or softirqs have been disabled also serve as RCU read-side critical
3755  * sections.  This includes hardware interrupt handlers, softirq handlers,
3756  * and NMI handlers.
3757  *
3758  * Note that this guarantee implies further memory-ordering guarantees.
3759  * On systems with more than one CPU, when synchronize_rcu() returns,
3760  * each CPU is guaranteed to have executed a full memory barrier since
3761  * the end of its last RCU read-side critical section whose beginning
3762  * preceded the call to synchronize_rcu().  In addition, each CPU having
3763  * an RCU read-side critical section that extends beyond the return from
3764  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3765  * after the beginning of synchronize_rcu() and before the beginning of
3766  * that RCU read-side critical section.  Note that these guarantees include
3767  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3768  * that are executing in the kernel.
3769  *
3770  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3771  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3772  * to have executed a full memory barrier during the execution of
3773  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3774  * again only if the system has more than one CPU).
3775  *
3776  * Implementation of these memory-ordering guarantees is described here:
3777  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3778  */
3779 void synchronize_rcu(void)
3780 {
3781 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3782 			 lock_is_held(&rcu_lock_map) ||
3783 			 lock_is_held(&rcu_sched_lock_map),
3784 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3785 	if (rcu_blocking_is_gp())
3786 		return;  // Context allows vacuous grace periods.
3787 	if (rcu_gp_is_expedited())
3788 		synchronize_rcu_expedited();
3789 	else
3790 		wait_rcu_gp(call_rcu);
3791 }
3792 EXPORT_SYMBOL_GPL(synchronize_rcu);
3793 
3794 /**
3795  * get_state_synchronize_rcu - Snapshot current RCU state
3796  *
3797  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3798  * or poll_state_synchronize_rcu() to determine whether or not a full
3799  * grace period has elapsed in the meantime.
3800  */
3801 unsigned long get_state_synchronize_rcu(void)
3802 {
3803 	/*
3804 	 * Any prior manipulation of RCU-protected data must happen
3805 	 * before the load from ->gp_seq.
3806 	 */
3807 	smp_mb();  /* ^^^ */
3808 	return rcu_seq_snap(&rcu_state.gp_seq);
3809 }
3810 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3811 
3812 /**
3813  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3814  *
3815  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3816  * or poll_state_synchronize_rcu() to determine whether or not a full
3817  * grace period has elapsed in the meantime.  If the needed grace period
3818  * is not already slated to start, notifies RCU core of the need for that
3819  * grace period.
3820  *
3821  * Interrupts must be enabled for the case where it is necessary to awaken
3822  * the grace-period kthread.
3823  */
3824 unsigned long start_poll_synchronize_rcu(void)
3825 {
3826 	unsigned long flags;
3827 	unsigned long gp_seq = get_state_synchronize_rcu();
3828 	bool needwake;
3829 	struct rcu_data *rdp;
3830 	struct rcu_node *rnp;
3831 
3832 	lockdep_assert_irqs_enabled();
3833 	local_irq_save(flags);
3834 	rdp = this_cpu_ptr(&rcu_data);
3835 	rnp = rdp->mynode;
3836 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3837 	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3838 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3839 	if (needwake)
3840 		rcu_gp_kthread_wake();
3841 	return gp_seq;
3842 }
3843 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3844 
3845 /**
3846  * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3847  *
3848  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3849  *
3850  * If a full RCU grace period has elapsed since the earlier call from
3851  * which oldstate was obtained, return @true, otherwise return @false.
3852  * If @false is returned, it is the caller's responsibility to invoke this
3853  * function later on until it does return @true.  Alternatively, the caller
3854  * can explicitly wait for a grace period, for example, by passing @oldstate
3855  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3856  *
3857  * Yes, this function does not take counter wrap into account.
3858  * But counter wrap is harmless.  If the counter wraps, we have waited for
3859  * more than 2 billion grace periods (and way more on a 64-bit system!).
3860  * Those needing to keep oldstate values for very long time periods
3861  * (many hours even on 32-bit systems) should check them occasionally
3862  * and either refresh them or set a flag indicating that the grace period
3863  * has completed.
3864  *
3865  * This function provides the same memory-ordering guarantees that
3866  * would be provided by a synchronize_rcu() that was invoked at the call
3867  * to the function that provided @oldstate, and that returned at the end
3868  * of this function.
3869  */
3870 bool poll_state_synchronize_rcu(unsigned long oldstate)
3871 {
3872 	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3873 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3874 		return true;
3875 	}
3876 	return false;
3877 }
3878 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3879 
3880 /**
3881  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3882  *
3883  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3884  *
3885  * If a full RCU grace period has elapsed since the earlier call to
3886  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3887  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3888  *
3889  * Yes, this function does not take counter wrap into account.  But
3890  * counter wrap is harmless.  If the counter wraps, we have waited for
3891  * more than 2 billion grace periods (and way more on a 64-bit system!),
3892  * so waiting for one additional grace period should be just fine.
3893  *
3894  * This function provides the same memory-ordering guarantees that
3895  * would be provided by a synchronize_rcu() that was invoked at the call
3896  * to the function that provided @oldstate, and that returned at the end
3897  * of this function.
3898  */
3899 void cond_synchronize_rcu(unsigned long oldstate)
3900 {
3901 	if (!poll_state_synchronize_rcu(oldstate))
3902 		synchronize_rcu();
3903 }
3904 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3905 
3906 /*
3907  * Check to see if there is any immediate RCU-related work to be done by
3908  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3909  * in order of increasing expense: checks that can be carried out against
3910  * CPU-local state are performed first.  However, we must check for CPU
3911  * stalls first, else we might not get a chance.
3912  */
3913 static int rcu_pending(int user)
3914 {
3915 	bool gp_in_progress;
3916 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3917 	struct rcu_node *rnp = rdp->mynode;
3918 
3919 	lockdep_assert_irqs_disabled();
3920 
3921 	/* Check for CPU stalls, if enabled. */
3922 	check_cpu_stall(rdp);
3923 
3924 	/* Does this CPU need a deferred NOCB wakeup? */
3925 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3926 		return 1;
3927 
3928 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3929 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3930 		return 0;
3931 
3932 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3933 	gp_in_progress = rcu_gp_in_progress();
3934 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3935 		return 1;
3936 
3937 	/* Does this CPU have callbacks ready to invoke? */
3938 	if (!rcu_rdp_is_offloaded(rdp) &&
3939 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3940 		return 1;
3941 
3942 	/* Has RCU gone idle with this CPU needing another grace period? */
3943 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3944 	    !rcu_rdp_is_offloaded(rdp) &&
3945 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3946 		return 1;
3947 
3948 	/* Have RCU grace period completed or started?  */
3949 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3950 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3951 		return 1;
3952 
3953 	/* nothing to do */
3954 	return 0;
3955 }
3956 
3957 /*
3958  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3959  * the compiler is expected to optimize this away.
3960  */
3961 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3962 {
3963 	trace_rcu_barrier(rcu_state.name, s, cpu,
3964 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3965 }
3966 
3967 /*
3968  * RCU callback function for rcu_barrier().  If we are last, wake
3969  * up the task executing rcu_barrier().
3970  *
3971  * Note that the value of rcu_state.barrier_sequence must be captured
3972  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3973  * other CPUs might count the value down to zero before this CPU gets
3974  * around to invoking rcu_barrier_trace(), which might result in bogus
3975  * data from the next instance of rcu_barrier().
3976  */
3977 static void rcu_barrier_callback(struct rcu_head *rhp)
3978 {
3979 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3980 
3981 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3982 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3983 		complete(&rcu_state.barrier_completion);
3984 	} else {
3985 		rcu_barrier_trace(TPS("CB"), -1, s);
3986 	}
3987 }
3988 
3989 /*
3990  * Called with preemption disabled, and from cross-cpu IRQ context.
3991  */
3992 static void rcu_barrier_func(void *cpu_in)
3993 {
3994 	uintptr_t cpu = (uintptr_t)cpu_in;
3995 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3996 
3997 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3998 	rdp->barrier_head.func = rcu_barrier_callback;
3999 	debug_rcu_head_queue(&rdp->barrier_head);
4000 	rcu_nocb_lock(rdp);
4001 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
4002 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4003 		atomic_inc(&rcu_state.barrier_cpu_count);
4004 	} else {
4005 		debug_rcu_head_unqueue(&rdp->barrier_head);
4006 		rcu_barrier_trace(TPS("IRQNQ"), -1,
4007 				  rcu_state.barrier_sequence);
4008 	}
4009 	rcu_nocb_unlock(rdp);
4010 }
4011 
4012 /**
4013  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4014  *
4015  * Note that this primitive does not necessarily wait for an RCU grace period
4016  * to complete.  For example, if there are no RCU callbacks queued anywhere
4017  * in the system, then rcu_barrier() is within its rights to return
4018  * immediately, without waiting for anything, much less an RCU grace period.
4019  */
4020 void rcu_barrier(void)
4021 {
4022 	uintptr_t cpu;
4023 	struct rcu_data *rdp;
4024 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4025 
4026 	rcu_barrier_trace(TPS("Begin"), -1, s);
4027 
4028 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4029 	mutex_lock(&rcu_state.barrier_mutex);
4030 
4031 	/* Did someone else do our work for us? */
4032 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4033 		rcu_barrier_trace(TPS("EarlyExit"), -1,
4034 				  rcu_state.barrier_sequence);
4035 		smp_mb(); /* caller's subsequent code after above check. */
4036 		mutex_unlock(&rcu_state.barrier_mutex);
4037 		return;
4038 	}
4039 
4040 	/* Mark the start of the barrier operation. */
4041 	rcu_seq_start(&rcu_state.barrier_sequence);
4042 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4043 
4044 	/*
4045 	 * Initialize the count to two rather than to zero in order
4046 	 * to avoid a too-soon return to zero in case of an immediate
4047 	 * invocation of the just-enqueued callback (or preemption of
4048 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4049 	 * offline non-offloaded CPU has callbacks queued.
4050 	 */
4051 	init_completion(&rcu_state.barrier_completion);
4052 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4053 	get_online_cpus();
4054 
4055 	/*
4056 	 * Force each CPU with callbacks to register a new callback.
4057 	 * When that callback is invoked, we will know that all of the
4058 	 * corresponding CPU's preceding callbacks have been invoked.
4059 	 */
4060 	for_each_possible_cpu(cpu) {
4061 		rdp = per_cpu_ptr(&rcu_data, cpu);
4062 		if (cpu_is_offline(cpu) &&
4063 		    !rcu_rdp_is_offloaded(rdp))
4064 			continue;
4065 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4066 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
4067 					  rcu_state.barrier_sequence);
4068 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4069 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4070 			   cpu_is_offline(cpu)) {
4071 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4072 					  rcu_state.barrier_sequence);
4073 			local_irq_disable();
4074 			rcu_barrier_func((void *)cpu);
4075 			local_irq_enable();
4076 		} else if (cpu_is_offline(cpu)) {
4077 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4078 					  rcu_state.barrier_sequence);
4079 		} else {
4080 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4081 					  rcu_state.barrier_sequence);
4082 		}
4083 	}
4084 	put_online_cpus();
4085 
4086 	/*
4087 	 * Now that we have an rcu_barrier_callback() callback on each
4088 	 * CPU, and thus each counted, remove the initial count.
4089 	 */
4090 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4091 		complete(&rcu_state.barrier_completion);
4092 
4093 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4094 	wait_for_completion(&rcu_state.barrier_completion);
4095 
4096 	/* Mark the end of the barrier operation. */
4097 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4098 	rcu_seq_end(&rcu_state.barrier_sequence);
4099 
4100 	/* Other rcu_barrier() invocations can now safely proceed. */
4101 	mutex_unlock(&rcu_state.barrier_mutex);
4102 }
4103 EXPORT_SYMBOL_GPL(rcu_barrier);
4104 
4105 /*
4106  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4107  * first CPU in a given leaf rcu_node structure coming online.  The caller
4108  * must hold the corresponding leaf rcu_node ->lock with interrupts
4109  * disabled.
4110  */
4111 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4112 {
4113 	long mask;
4114 	long oldmask;
4115 	struct rcu_node *rnp = rnp_leaf;
4116 
4117 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4118 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4119 	for (;;) {
4120 		mask = rnp->grpmask;
4121 		rnp = rnp->parent;
4122 		if (rnp == NULL)
4123 			return;
4124 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4125 		oldmask = rnp->qsmaskinit;
4126 		rnp->qsmaskinit |= mask;
4127 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4128 		if (oldmask)
4129 			return;
4130 	}
4131 }
4132 
4133 /*
4134  * Do boot-time initialization of a CPU's per-CPU RCU data.
4135  */
4136 static void __init
4137 rcu_boot_init_percpu_data(int cpu)
4138 {
4139 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4140 
4141 	/* Set up local state, ensuring consistent view of global state. */
4142 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4143 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4144 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4145 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4146 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4147 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4148 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4149 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4150 	rdp->cpu = cpu;
4151 	rcu_boot_init_nocb_percpu_data(rdp);
4152 }
4153 
4154 /*
4155  * Invoked early in the CPU-online process, when pretty much all services
4156  * are available.  The incoming CPU is not present.
4157  *
4158  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4159  * offline event can be happening at a given time.  Note also that we can
4160  * accept some slop in the rsp->gp_seq access due to the fact that this
4161  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4162  * And any offloaded callbacks are being numbered elsewhere.
4163  */
4164 int rcutree_prepare_cpu(unsigned int cpu)
4165 {
4166 	unsigned long flags;
4167 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4168 	struct rcu_node *rnp = rcu_get_root();
4169 
4170 	/* Set up local state, ensuring consistent view of global state. */
4171 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4172 	rdp->qlen_last_fqs_check = 0;
4173 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
4174 	rdp->blimit = blimit;
4175 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4176 	rcu_dynticks_eqs_online();
4177 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4178 
4179 	/*
4180 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4181 	 * (re-)initialized.
4182 	 */
4183 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4184 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4185 
4186 	/*
4187 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4188 	 * propagation up the rcu_node tree will happen at the beginning
4189 	 * of the next grace period.
4190 	 */
4191 	rnp = rdp->mynode;
4192 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4193 	rdp->beenonline = true;	 /* We have now been online. */
4194 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4195 	rdp->gp_seq_needed = rdp->gp_seq;
4196 	rdp->cpu_no_qs.b.norm = true;
4197 	rdp->core_needs_qs = false;
4198 	rdp->rcu_iw_pending = false;
4199 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4200 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4201 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4202 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4203 	rcu_spawn_one_boost_kthread(rnp);
4204 	rcu_spawn_cpu_nocb_kthread(cpu);
4205 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4206 
4207 	return 0;
4208 }
4209 
4210 /*
4211  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4212  */
4213 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4214 {
4215 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4216 
4217 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4218 }
4219 
4220 /*
4221  * Near the end of the CPU-online process.  Pretty much all services
4222  * enabled, and the CPU is now very much alive.
4223  */
4224 int rcutree_online_cpu(unsigned int cpu)
4225 {
4226 	unsigned long flags;
4227 	struct rcu_data *rdp;
4228 	struct rcu_node *rnp;
4229 
4230 	rdp = per_cpu_ptr(&rcu_data, cpu);
4231 	rnp = rdp->mynode;
4232 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4233 	rnp->ffmask |= rdp->grpmask;
4234 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4235 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4236 		return 0; /* Too early in boot for scheduler work. */
4237 	sync_sched_exp_online_cleanup(cpu);
4238 	rcutree_affinity_setting(cpu, -1);
4239 
4240 	// Stop-machine done, so allow nohz_full to disable tick.
4241 	tick_dep_clear(TICK_DEP_BIT_RCU);
4242 	return 0;
4243 }
4244 
4245 /*
4246  * Near the beginning of the process.  The CPU is still very much alive
4247  * with pretty much all services enabled.
4248  */
4249 int rcutree_offline_cpu(unsigned int cpu)
4250 {
4251 	unsigned long flags;
4252 	struct rcu_data *rdp;
4253 	struct rcu_node *rnp;
4254 
4255 	rdp = per_cpu_ptr(&rcu_data, cpu);
4256 	rnp = rdp->mynode;
4257 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4258 	rnp->ffmask &= ~rdp->grpmask;
4259 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4260 
4261 	rcutree_affinity_setting(cpu, cpu);
4262 
4263 	// nohz_full CPUs need the tick for stop-machine to work quickly
4264 	tick_dep_set(TICK_DEP_BIT_RCU);
4265 	return 0;
4266 }
4267 
4268 /*
4269  * Mark the specified CPU as being online so that subsequent grace periods
4270  * (both expedited and normal) will wait on it.  Note that this means that
4271  * incoming CPUs are not allowed to use RCU read-side critical sections
4272  * until this function is called.  Failing to observe this restriction
4273  * will result in lockdep splats.
4274  *
4275  * Note that this function is special in that it is invoked directly
4276  * from the incoming CPU rather than from the cpuhp_step mechanism.
4277  * This is because this function must be invoked at a precise location.
4278  */
4279 void rcu_cpu_starting(unsigned int cpu)
4280 {
4281 	unsigned long flags;
4282 	unsigned long mask;
4283 	struct rcu_data *rdp;
4284 	struct rcu_node *rnp;
4285 	bool newcpu;
4286 
4287 	rdp = per_cpu_ptr(&rcu_data, cpu);
4288 	if (rdp->cpu_started)
4289 		return;
4290 	rdp->cpu_started = true;
4291 
4292 	rnp = rdp->mynode;
4293 	mask = rdp->grpmask;
4294 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4295 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4296 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4297 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4298 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4299 	newcpu = !(rnp->expmaskinitnext & mask);
4300 	rnp->expmaskinitnext |= mask;
4301 	/* Allow lockless access for expedited grace periods. */
4302 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4303 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4304 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4305 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4306 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4307 
4308 	/* An incoming CPU should never be blocking a grace period. */
4309 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4310 		rcu_disable_urgency_upon_qs(rdp);
4311 		/* Report QS -after- changing ->qsmaskinitnext! */
4312 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4313 	} else {
4314 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4315 	}
4316 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4317 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4318 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4319 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4320 }
4321 
4322 /*
4323  * The outgoing function has no further need of RCU, so remove it from
4324  * the rcu_node tree's ->qsmaskinitnext bit masks.
4325  *
4326  * Note that this function is special in that it is invoked directly
4327  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4328  * This is because this function must be invoked at a precise location.
4329  */
4330 void rcu_report_dead(unsigned int cpu)
4331 {
4332 	unsigned long flags;
4333 	unsigned long mask;
4334 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4335 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4336 
4337 	// Do any dangling deferred wakeups.
4338 	do_nocb_deferred_wakeup(rdp);
4339 
4340 	/* QS for any half-done expedited grace period. */
4341 	preempt_disable();
4342 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4343 	preempt_enable();
4344 	rcu_preempt_deferred_qs(current);
4345 
4346 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4347 	mask = rdp->grpmask;
4348 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4349 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4350 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4351 	raw_spin_lock(&rcu_state.ofl_lock);
4352 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4353 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4354 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4355 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4356 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4357 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4358 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4359 	}
4360 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4361 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4362 	raw_spin_unlock(&rcu_state.ofl_lock);
4363 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4364 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4365 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4366 
4367 	rdp->cpu_started = false;
4368 }
4369 
4370 #ifdef CONFIG_HOTPLUG_CPU
4371 /*
4372  * The outgoing CPU has just passed through the dying-idle state, and we
4373  * are being invoked from the CPU that was IPIed to continue the offline
4374  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4375  */
4376 void rcutree_migrate_callbacks(int cpu)
4377 {
4378 	unsigned long flags;
4379 	struct rcu_data *my_rdp;
4380 	struct rcu_node *my_rnp;
4381 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4382 	bool needwake;
4383 
4384 	if (rcu_rdp_is_offloaded(rdp) ||
4385 	    rcu_segcblist_empty(&rdp->cblist))
4386 		return;  /* No callbacks to migrate. */
4387 
4388 	local_irq_save(flags);
4389 	my_rdp = this_cpu_ptr(&rcu_data);
4390 	my_rnp = my_rdp->mynode;
4391 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4392 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4393 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4394 	/* Leverage recent GPs and set GP for new callbacks. */
4395 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4396 		   rcu_advance_cbs(my_rnp, my_rdp);
4397 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4398 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4399 	rcu_segcblist_disable(&rdp->cblist);
4400 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4401 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4402 	if (rcu_rdp_is_offloaded(my_rdp)) {
4403 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4404 		__call_rcu_nocb_wake(my_rdp, true, flags);
4405 	} else {
4406 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4407 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4408 	}
4409 	if (needwake)
4410 		rcu_gp_kthread_wake();
4411 	lockdep_assert_irqs_enabled();
4412 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4413 		  !rcu_segcblist_empty(&rdp->cblist),
4414 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4415 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4416 		  rcu_segcblist_first_cb(&rdp->cblist));
4417 }
4418 #endif
4419 
4420 /*
4421  * On non-huge systems, use expedited RCU grace periods to make suspend
4422  * and hibernation run faster.
4423  */
4424 static int rcu_pm_notify(struct notifier_block *self,
4425 			 unsigned long action, void *hcpu)
4426 {
4427 	switch (action) {
4428 	case PM_HIBERNATION_PREPARE:
4429 	case PM_SUSPEND_PREPARE:
4430 		rcu_expedite_gp();
4431 		break;
4432 	case PM_POST_HIBERNATION:
4433 	case PM_POST_SUSPEND:
4434 		rcu_unexpedite_gp();
4435 		break;
4436 	default:
4437 		break;
4438 	}
4439 	return NOTIFY_OK;
4440 }
4441 
4442 /*
4443  * Spawn the kthreads that handle RCU's grace periods.
4444  */
4445 static int __init rcu_spawn_gp_kthread(void)
4446 {
4447 	unsigned long flags;
4448 	int kthread_prio_in = kthread_prio;
4449 	struct rcu_node *rnp;
4450 	struct sched_param sp;
4451 	struct task_struct *t;
4452 
4453 	/* Force priority into range. */
4454 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4455 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4456 		kthread_prio = 2;
4457 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4458 		kthread_prio = 1;
4459 	else if (kthread_prio < 0)
4460 		kthread_prio = 0;
4461 	else if (kthread_prio > 99)
4462 		kthread_prio = 99;
4463 
4464 	if (kthread_prio != kthread_prio_in)
4465 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4466 			 kthread_prio, kthread_prio_in);
4467 
4468 	rcu_scheduler_fully_active = 1;
4469 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4470 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4471 		return 0;
4472 	if (kthread_prio) {
4473 		sp.sched_priority = kthread_prio;
4474 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4475 	}
4476 	rnp = rcu_get_root();
4477 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4478 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4479 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4480 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4481 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4482 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4483 	wake_up_process(t);
4484 	rcu_spawn_nocb_kthreads();
4485 	rcu_spawn_boost_kthreads();
4486 	rcu_spawn_core_kthreads();
4487 	return 0;
4488 }
4489 early_initcall(rcu_spawn_gp_kthread);
4490 
4491 /*
4492  * This function is invoked towards the end of the scheduler's
4493  * initialization process.  Before this is called, the idle task might
4494  * contain synchronous grace-period primitives (during which time, this idle
4495  * task is booting the system, and such primitives are no-ops).  After this
4496  * function is called, any synchronous grace-period primitives are run as
4497  * expedited, with the requesting task driving the grace period forward.
4498  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4499  * runtime RCU functionality.
4500  */
4501 void rcu_scheduler_starting(void)
4502 {
4503 	WARN_ON(num_online_cpus() != 1);
4504 	WARN_ON(nr_context_switches() > 0);
4505 	rcu_test_sync_prims();
4506 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4507 	rcu_test_sync_prims();
4508 }
4509 
4510 /*
4511  * Helper function for rcu_init() that initializes the rcu_state structure.
4512  */
4513 static void __init rcu_init_one(void)
4514 {
4515 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4516 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4517 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4518 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4519 
4520 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4521 	int cpustride = 1;
4522 	int i;
4523 	int j;
4524 	struct rcu_node *rnp;
4525 
4526 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4527 
4528 	/* Silence gcc 4.8 false positive about array index out of range. */
4529 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4530 		panic("rcu_init_one: rcu_num_lvls out of range");
4531 
4532 	/* Initialize the level-tracking arrays. */
4533 
4534 	for (i = 1; i < rcu_num_lvls; i++)
4535 		rcu_state.level[i] =
4536 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4537 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4538 
4539 	/* Initialize the elements themselves, starting from the leaves. */
4540 
4541 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4542 		cpustride *= levelspread[i];
4543 		rnp = rcu_state.level[i];
4544 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4545 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4546 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4547 						   &rcu_node_class[i], buf[i]);
4548 			raw_spin_lock_init(&rnp->fqslock);
4549 			lockdep_set_class_and_name(&rnp->fqslock,
4550 						   &rcu_fqs_class[i], fqs[i]);
4551 			rnp->gp_seq = rcu_state.gp_seq;
4552 			rnp->gp_seq_needed = rcu_state.gp_seq;
4553 			rnp->completedqs = rcu_state.gp_seq;
4554 			rnp->qsmask = 0;
4555 			rnp->qsmaskinit = 0;
4556 			rnp->grplo = j * cpustride;
4557 			rnp->grphi = (j + 1) * cpustride - 1;
4558 			if (rnp->grphi >= nr_cpu_ids)
4559 				rnp->grphi = nr_cpu_ids - 1;
4560 			if (i == 0) {
4561 				rnp->grpnum = 0;
4562 				rnp->grpmask = 0;
4563 				rnp->parent = NULL;
4564 			} else {
4565 				rnp->grpnum = j % levelspread[i - 1];
4566 				rnp->grpmask = BIT(rnp->grpnum);
4567 				rnp->parent = rcu_state.level[i - 1] +
4568 					      j / levelspread[i - 1];
4569 			}
4570 			rnp->level = i;
4571 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4572 			rcu_init_one_nocb(rnp);
4573 			init_waitqueue_head(&rnp->exp_wq[0]);
4574 			init_waitqueue_head(&rnp->exp_wq[1]);
4575 			init_waitqueue_head(&rnp->exp_wq[2]);
4576 			init_waitqueue_head(&rnp->exp_wq[3]);
4577 			spin_lock_init(&rnp->exp_lock);
4578 		}
4579 	}
4580 
4581 	init_swait_queue_head(&rcu_state.gp_wq);
4582 	init_swait_queue_head(&rcu_state.expedited_wq);
4583 	rnp = rcu_first_leaf_node();
4584 	for_each_possible_cpu(i) {
4585 		while (i > rnp->grphi)
4586 			rnp++;
4587 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4588 		rcu_boot_init_percpu_data(i);
4589 	}
4590 }
4591 
4592 /*
4593  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4594  * replace the definitions in tree.h because those are needed to size
4595  * the ->node array in the rcu_state structure.
4596  */
4597 void rcu_init_geometry(void)
4598 {
4599 	ulong d;
4600 	int i;
4601 	static unsigned long old_nr_cpu_ids;
4602 	int rcu_capacity[RCU_NUM_LVLS];
4603 	static bool initialized;
4604 
4605 	if (initialized) {
4606 		/*
4607 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4608 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4609 		 */
4610 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4611 		return;
4612 	}
4613 
4614 	old_nr_cpu_ids = nr_cpu_ids;
4615 	initialized = true;
4616 
4617 	/*
4618 	 * Initialize any unspecified boot parameters.
4619 	 * The default values of jiffies_till_first_fqs and
4620 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4621 	 * value, which is a function of HZ, then adding one for each
4622 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4623 	 */
4624 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4625 	if (jiffies_till_first_fqs == ULONG_MAX)
4626 		jiffies_till_first_fqs = d;
4627 	if (jiffies_till_next_fqs == ULONG_MAX)
4628 		jiffies_till_next_fqs = d;
4629 	adjust_jiffies_till_sched_qs();
4630 
4631 	/* If the compile-time values are accurate, just leave. */
4632 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4633 	    nr_cpu_ids == NR_CPUS)
4634 		return;
4635 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4636 		rcu_fanout_leaf, nr_cpu_ids);
4637 
4638 	/*
4639 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4640 	 * and cannot exceed the number of bits in the rcu_node masks.
4641 	 * Complain and fall back to the compile-time values if this
4642 	 * limit is exceeded.
4643 	 */
4644 	if (rcu_fanout_leaf < 2 ||
4645 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4646 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4647 		WARN_ON(1);
4648 		return;
4649 	}
4650 
4651 	/*
4652 	 * Compute number of nodes that can be handled an rcu_node tree
4653 	 * with the given number of levels.
4654 	 */
4655 	rcu_capacity[0] = rcu_fanout_leaf;
4656 	for (i = 1; i < RCU_NUM_LVLS; i++)
4657 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4658 
4659 	/*
4660 	 * The tree must be able to accommodate the configured number of CPUs.
4661 	 * If this limit is exceeded, fall back to the compile-time values.
4662 	 */
4663 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4664 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4665 		WARN_ON(1);
4666 		return;
4667 	}
4668 
4669 	/* Calculate the number of levels in the tree. */
4670 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4671 	}
4672 	rcu_num_lvls = i + 1;
4673 
4674 	/* Calculate the number of rcu_nodes at each level of the tree. */
4675 	for (i = 0; i < rcu_num_lvls; i++) {
4676 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4677 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4678 	}
4679 
4680 	/* Calculate the total number of rcu_node structures. */
4681 	rcu_num_nodes = 0;
4682 	for (i = 0; i < rcu_num_lvls; i++)
4683 		rcu_num_nodes += num_rcu_lvl[i];
4684 }
4685 
4686 /*
4687  * Dump out the structure of the rcu_node combining tree associated
4688  * with the rcu_state structure.
4689  */
4690 static void __init rcu_dump_rcu_node_tree(void)
4691 {
4692 	int level = 0;
4693 	struct rcu_node *rnp;
4694 
4695 	pr_info("rcu_node tree layout dump\n");
4696 	pr_info(" ");
4697 	rcu_for_each_node_breadth_first(rnp) {
4698 		if (rnp->level != level) {
4699 			pr_cont("\n");
4700 			pr_info(" ");
4701 			level = rnp->level;
4702 		}
4703 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4704 	}
4705 	pr_cont("\n");
4706 }
4707 
4708 struct workqueue_struct *rcu_gp_wq;
4709 struct workqueue_struct *rcu_par_gp_wq;
4710 
4711 static void __init kfree_rcu_batch_init(void)
4712 {
4713 	int cpu;
4714 	int i;
4715 
4716 	/* Clamp it to [0:100] seconds interval. */
4717 	if (rcu_delay_page_cache_fill_msec < 0 ||
4718 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4719 
4720 		rcu_delay_page_cache_fill_msec =
4721 			clamp(rcu_delay_page_cache_fill_msec, 0,
4722 				(int) (100 * MSEC_PER_SEC));
4723 
4724 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4725 			rcu_delay_page_cache_fill_msec);
4726 	}
4727 
4728 	for_each_possible_cpu(cpu) {
4729 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4730 
4731 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4732 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4733 			krcp->krw_arr[i].krcp = krcp;
4734 		}
4735 
4736 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4737 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4738 		krcp->initialized = true;
4739 	}
4740 	if (register_shrinker(&kfree_rcu_shrinker))
4741 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4742 }
4743 
4744 void __init rcu_init(void)
4745 {
4746 	int cpu;
4747 
4748 	rcu_early_boot_tests();
4749 
4750 	kfree_rcu_batch_init();
4751 	rcu_bootup_announce();
4752 	rcu_init_geometry();
4753 	rcu_init_one();
4754 	if (dump_tree)
4755 		rcu_dump_rcu_node_tree();
4756 	if (use_softirq)
4757 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4758 
4759 	/*
4760 	 * We don't need protection against CPU-hotplug here because
4761 	 * this is called early in boot, before either interrupts
4762 	 * or the scheduler are operational.
4763 	 */
4764 	pm_notifier(rcu_pm_notify, 0);
4765 	for_each_online_cpu(cpu) {
4766 		rcutree_prepare_cpu(cpu);
4767 		rcu_cpu_starting(cpu);
4768 		rcutree_online_cpu(cpu);
4769 	}
4770 
4771 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4772 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4773 	WARN_ON(!rcu_gp_wq);
4774 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4775 	WARN_ON(!rcu_par_gp_wq);
4776 
4777 	/* Fill in default value for rcutree.qovld boot parameter. */
4778 	/* -After- the rcu_node ->lock fields are initialized! */
4779 	if (qovld < 0)
4780 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4781 	else
4782 		qovld_calc = qovld;
4783 }
4784 
4785 #include "tree_stall.h"
4786 #include "tree_exp.h"
4787 #include "tree_plugin.h"
4788