1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/trace_events.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 /* 72 * In order to export the rcu_state name to the tracing tools, it 73 * needs to be added in the __tracepoint_string section. 74 * This requires defining a separate variable tp_<sname>_varname 75 * that points to the string being used, and this will allow 76 * the tracing userspace tools to be able to decipher the string 77 * address to the matching string. 78 */ 79 #ifdef CONFIG_TRACING 80 # define DEFINE_RCU_TPS(sname) \ 81 static char sname##_varname[] = #sname; \ 82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 83 # define RCU_STATE_NAME(sname) sname##_varname 84 #else 85 # define DEFINE_RCU_TPS(sname) 86 # define RCU_STATE_NAME(sname) __stringify(sname) 87 #endif 88 89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 90 DEFINE_RCU_TPS(sname) \ 91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 92 struct rcu_state sname##_state = { \ 93 .level = { &sname##_state.node[0] }, \ 94 .rda = &sname##_data, \ 95 .call = cr, \ 96 .gp_state = RCU_GP_IDLE, \ 97 .gpnum = 0UL - 300UL, \ 98 .completed = 0UL - 300UL, \ 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 101 .orphan_donetail = &sname##_state.orphan_donelist, \ 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 103 .name = RCU_STATE_NAME(sname), \ 104 .abbr = sabbr, \ 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 107 } 108 109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 111 112 static struct rcu_state *const rcu_state_p; 113 LIST_HEAD(rcu_struct_flavors); 114 115 /* Dump rcu_node combining tree at boot to verify correct setup. */ 116 static bool dump_tree; 117 module_param(dump_tree, bool, 0444); 118 /* Control rcu_node-tree auto-balancing at boot time. */ 119 static bool rcu_fanout_exact; 120 module_param(rcu_fanout_exact, bool, 0444); 121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 123 module_param(rcu_fanout_leaf, int, 0444); 124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 125 /* Number of rcu_nodes at specified level. */ 126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 128 /* panic() on RCU Stall sysctl. */ 129 int sysctl_panic_on_rcu_stall __read_mostly; 130 131 /* 132 * The rcu_scheduler_active variable transitions from zero to one just 133 * before the first task is spawned. So when this variable is zero, RCU 134 * can assume that there is but one task, allowing RCU to (for example) 135 * optimize synchronize_rcu() to a simple barrier(). When this variable 136 * is one, RCU must actually do all the hard work required to detect real 137 * grace periods. This variable is also used to suppress boot-time false 138 * positives from lockdep-RCU error checking. 139 */ 140 int rcu_scheduler_active __read_mostly; 141 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 142 143 /* 144 * The rcu_scheduler_fully_active variable transitions from zero to one 145 * during the early_initcall() processing, which is after the scheduler 146 * is capable of creating new tasks. So RCU processing (for example, 147 * creating tasks for RCU priority boosting) must be delayed until after 148 * rcu_scheduler_fully_active transitions from zero to one. We also 149 * currently delay invocation of any RCU callbacks until after this point. 150 * 151 * It might later prove better for people registering RCU callbacks during 152 * early boot to take responsibility for these callbacks, but one step at 153 * a time. 154 */ 155 static int rcu_scheduler_fully_active __read_mostly; 156 157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 158 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 160 static void invoke_rcu_core(void); 161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 162 static void rcu_report_exp_rdp(struct rcu_state *rsp, 163 struct rcu_data *rdp, bool wake); 164 static void sync_sched_exp_online_cleanup(int cpu); 165 166 /* rcuc/rcub kthread realtime priority */ 167 #ifdef CONFIG_RCU_KTHREAD_PRIO 168 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 169 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 170 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 171 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 172 module_param(kthread_prio, int, 0644); 173 174 /* Delay in jiffies for grace-period initialization delays, debug only. */ 175 176 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 177 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 178 module_param(gp_preinit_delay, int, 0644); 179 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 180 static const int gp_preinit_delay; 181 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 182 183 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 184 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 185 module_param(gp_init_delay, int, 0644); 186 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 187 static const int gp_init_delay; 188 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 189 190 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 191 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 192 module_param(gp_cleanup_delay, int, 0644); 193 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 194 static const int gp_cleanup_delay; 195 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 196 197 /* 198 * Number of grace periods between delays, normalized by the duration of 199 * the delay. The longer the the delay, the more the grace periods between 200 * each delay. The reason for this normalization is that it means that, 201 * for non-zero delays, the overall slowdown of grace periods is constant 202 * regardless of the duration of the delay. This arrangement balances 203 * the need for long delays to increase some race probabilities with the 204 * need for fast grace periods to increase other race probabilities. 205 */ 206 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 207 208 /* 209 * Track the rcutorture test sequence number and the update version 210 * number within a given test. The rcutorture_testseq is incremented 211 * on every rcutorture module load and unload, so has an odd value 212 * when a test is running. The rcutorture_vernum is set to zero 213 * when rcutorture starts and is incremented on each rcutorture update. 214 * These variables enable correlating rcutorture output with the 215 * RCU tracing information. 216 */ 217 unsigned long rcutorture_testseq; 218 unsigned long rcutorture_vernum; 219 220 /* 221 * Compute the mask of online CPUs for the specified rcu_node structure. 222 * This will not be stable unless the rcu_node structure's ->lock is 223 * held, but the bit corresponding to the current CPU will be stable 224 * in most contexts. 225 */ 226 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 227 { 228 return READ_ONCE(rnp->qsmaskinitnext); 229 } 230 231 /* 232 * Return true if an RCU grace period is in progress. The READ_ONCE()s 233 * permit this function to be invoked without holding the root rcu_node 234 * structure's ->lock, but of course results can be subject to change. 235 */ 236 static int rcu_gp_in_progress(struct rcu_state *rsp) 237 { 238 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 239 } 240 241 /* 242 * Note a quiescent state. Because we do not need to know 243 * how many quiescent states passed, just if there was at least 244 * one since the start of the grace period, this just sets a flag. 245 * The caller must have disabled preemption. 246 */ 247 void rcu_sched_qs(void) 248 { 249 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 250 return; 251 trace_rcu_grace_period(TPS("rcu_sched"), 252 __this_cpu_read(rcu_sched_data.gpnum), 253 TPS("cpuqs")); 254 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 255 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 256 return; 257 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 258 rcu_report_exp_rdp(&rcu_sched_state, 259 this_cpu_ptr(&rcu_sched_data), true); 260 } 261 262 void rcu_bh_qs(void) 263 { 264 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 265 trace_rcu_grace_period(TPS("rcu_bh"), 266 __this_cpu_read(rcu_bh_data.gpnum), 267 TPS("cpuqs")); 268 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 269 } 270 } 271 272 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 273 274 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 275 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 276 .dynticks = ATOMIC_INIT(1), 277 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 278 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 279 .dynticks_idle = ATOMIC_INIT(1), 280 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 281 }; 282 283 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 284 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 285 286 /* 287 * Let the RCU core know that this CPU has gone through the scheduler, 288 * which is a quiescent state. This is called when the need for a 289 * quiescent state is urgent, so we burn an atomic operation and full 290 * memory barriers to let the RCU core know about it, regardless of what 291 * this CPU might (or might not) do in the near future. 292 * 293 * We inform the RCU core by emulating a zero-duration dyntick-idle 294 * period, which we in turn do by incrementing the ->dynticks counter 295 * by two. 296 * 297 * The caller must have disabled interrupts. 298 */ 299 static void rcu_momentary_dyntick_idle(void) 300 { 301 struct rcu_data *rdp; 302 struct rcu_dynticks *rdtp; 303 int resched_mask; 304 struct rcu_state *rsp; 305 306 /* 307 * Yes, we can lose flag-setting operations. This is OK, because 308 * the flag will be set again after some delay. 309 */ 310 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 311 raw_cpu_write(rcu_sched_qs_mask, 0); 312 313 /* Find the flavor that needs a quiescent state. */ 314 for_each_rcu_flavor(rsp) { 315 rdp = raw_cpu_ptr(rsp->rda); 316 if (!(resched_mask & rsp->flavor_mask)) 317 continue; 318 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 319 if (READ_ONCE(rdp->mynode->completed) != 320 READ_ONCE(rdp->cond_resched_completed)) 321 continue; 322 323 /* 324 * Pretend to be momentarily idle for the quiescent state. 325 * This allows the grace-period kthread to record the 326 * quiescent state, with no need for this CPU to do anything 327 * further. 328 */ 329 rdtp = this_cpu_ptr(&rcu_dynticks); 330 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 331 atomic_add(2, &rdtp->dynticks); /* QS. */ 332 smp_mb__after_atomic(); /* Later stuff after QS. */ 333 break; 334 } 335 } 336 337 /* 338 * Note a context switch. This is a quiescent state for RCU-sched, 339 * and requires special handling for preemptible RCU. 340 * The caller must have disabled interrupts. 341 */ 342 void rcu_note_context_switch(void) 343 { 344 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 345 trace_rcu_utilization(TPS("Start context switch")); 346 rcu_sched_qs(); 347 rcu_preempt_note_context_switch(); 348 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 349 rcu_momentary_dyntick_idle(); 350 trace_rcu_utilization(TPS("End context switch")); 351 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 352 } 353 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 354 355 /* 356 * Register a quiescent state for all RCU flavors. If there is an 357 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 358 * dyntick-idle quiescent state visible to other CPUs (but only for those 359 * RCU flavors in desperate need of a quiescent state, which will normally 360 * be none of them). Either way, do a lightweight quiescent state for 361 * all RCU flavors. 362 * 363 * The barrier() calls are redundant in the common case when this is 364 * called externally, but just in case this is called from within this 365 * file. 366 * 367 */ 368 void rcu_all_qs(void) 369 { 370 unsigned long flags; 371 372 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 373 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) { 374 local_irq_save(flags); 375 rcu_momentary_dyntick_idle(); 376 local_irq_restore(flags); 377 } 378 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) { 379 /* 380 * Yes, we just checked a per-CPU variable with preemption 381 * enabled, so we might be migrated to some other CPU at 382 * this point. That is OK because in that case, the 383 * migration will supply the needed quiescent state. 384 * We might end up needlessly disabling preemption and 385 * invoking rcu_sched_qs() on the destination CPU, but 386 * the probability and cost are both quite low, so this 387 * should not be a problem in practice. 388 */ 389 preempt_disable(); 390 rcu_sched_qs(); 391 preempt_enable(); 392 } 393 this_cpu_inc(rcu_qs_ctr); 394 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 395 } 396 EXPORT_SYMBOL_GPL(rcu_all_qs); 397 398 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 399 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 400 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 401 402 module_param(blimit, long, 0444); 403 module_param(qhimark, long, 0444); 404 module_param(qlowmark, long, 0444); 405 406 static ulong jiffies_till_first_fqs = ULONG_MAX; 407 static ulong jiffies_till_next_fqs = ULONG_MAX; 408 static bool rcu_kick_kthreads; 409 410 module_param(jiffies_till_first_fqs, ulong, 0644); 411 module_param(jiffies_till_next_fqs, ulong, 0644); 412 module_param(rcu_kick_kthreads, bool, 0644); 413 414 /* 415 * How long the grace period must be before we start recruiting 416 * quiescent-state help from rcu_note_context_switch(). 417 */ 418 static ulong jiffies_till_sched_qs = HZ / 20; 419 module_param(jiffies_till_sched_qs, ulong, 0644); 420 421 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 422 struct rcu_data *rdp); 423 static void force_qs_rnp(struct rcu_state *rsp, 424 int (*f)(struct rcu_data *rsp, bool *isidle, 425 unsigned long *maxj), 426 bool *isidle, unsigned long *maxj); 427 static void force_quiescent_state(struct rcu_state *rsp); 428 static int rcu_pending(void); 429 430 /* 431 * Return the number of RCU batches started thus far for debug & stats. 432 */ 433 unsigned long rcu_batches_started(void) 434 { 435 return rcu_state_p->gpnum; 436 } 437 EXPORT_SYMBOL_GPL(rcu_batches_started); 438 439 /* 440 * Return the number of RCU-sched batches started thus far for debug & stats. 441 */ 442 unsigned long rcu_batches_started_sched(void) 443 { 444 return rcu_sched_state.gpnum; 445 } 446 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 447 448 /* 449 * Return the number of RCU BH batches started thus far for debug & stats. 450 */ 451 unsigned long rcu_batches_started_bh(void) 452 { 453 return rcu_bh_state.gpnum; 454 } 455 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 456 457 /* 458 * Return the number of RCU batches completed thus far for debug & stats. 459 */ 460 unsigned long rcu_batches_completed(void) 461 { 462 return rcu_state_p->completed; 463 } 464 EXPORT_SYMBOL_GPL(rcu_batches_completed); 465 466 /* 467 * Return the number of RCU-sched batches completed thus far for debug & stats. 468 */ 469 unsigned long rcu_batches_completed_sched(void) 470 { 471 return rcu_sched_state.completed; 472 } 473 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 474 475 /* 476 * Return the number of RCU BH batches completed thus far for debug & stats. 477 */ 478 unsigned long rcu_batches_completed_bh(void) 479 { 480 return rcu_bh_state.completed; 481 } 482 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 483 484 /* 485 * Return the number of RCU expedited batches completed thus far for 486 * debug & stats. Odd numbers mean that a batch is in progress, even 487 * numbers mean idle. The value returned will thus be roughly double 488 * the cumulative batches since boot. 489 */ 490 unsigned long rcu_exp_batches_completed(void) 491 { 492 return rcu_state_p->expedited_sequence; 493 } 494 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 495 496 /* 497 * Return the number of RCU-sched expedited batches completed thus far 498 * for debug & stats. Similar to rcu_exp_batches_completed(). 499 */ 500 unsigned long rcu_exp_batches_completed_sched(void) 501 { 502 return rcu_sched_state.expedited_sequence; 503 } 504 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 505 506 /* 507 * Force a quiescent state. 508 */ 509 void rcu_force_quiescent_state(void) 510 { 511 force_quiescent_state(rcu_state_p); 512 } 513 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 514 515 /* 516 * Force a quiescent state for RCU BH. 517 */ 518 void rcu_bh_force_quiescent_state(void) 519 { 520 force_quiescent_state(&rcu_bh_state); 521 } 522 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 523 524 /* 525 * Force a quiescent state for RCU-sched. 526 */ 527 void rcu_sched_force_quiescent_state(void) 528 { 529 force_quiescent_state(&rcu_sched_state); 530 } 531 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 532 533 /* 534 * Show the state of the grace-period kthreads. 535 */ 536 void show_rcu_gp_kthreads(void) 537 { 538 struct rcu_state *rsp; 539 540 for_each_rcu_flavor(rsp) { 541 pr_info("%s: wait state: %d ->state: %#lx\n", 542 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 543 /* sched_show_task(rsp->gp_kthread); */ 544 } 545 } 546 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 547 548 /* 549 * Record the number of times rcutorture tests have been initiated and 550 * terminated. This information allows the debugfs tracing stats to be 551 * correlated to the rcutorture messages, even when the rcutorture module 552 * is being repeatedly loaded and unloaded. In other words, we cannot 553 * store this state in rcutorture itself. 554 */ 555 void rcutorture_record_test_transition(void) 556 { 557 rcutorture_testseq++; 558 rcutorture_vernum = 0; 559 } 560 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 561 562 /* 563 * Send along grace-period-related data for rcutorture diagnostics. 564 */ 565 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 566 unsigned long *gpnum, unsigned long *completed) 567 { 568 struct rcu_state *rsp = NULL; 569 570 switch (test_type) { 571 case RCU_FLAVOR: 572 rsp = rcu_state_p; 573 break; 574 case RCU_BH_FLAVOR: 575 rsp = &rcu_bh_state; 576 break; 577 case RCU_SCHED_FLAVOR: 578 rsp = &rcu_sched_state; 579 break; 580 default: 581 break; 582 } 583 if (rsp != NULL) { 584 *flags = READ_ONCE(rsp->gp_flags); 585 *gpnum = READ_ONCE(rsp->gpnum); 586 *completed = READ_ONCE(rsp->completed); 587 return; 588 } 589 *flags = 0; 590 *gpnum = 0; 591 *completed = 0; 592 } 593 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 594 595 /* 596 * Record the number of writer passes through the current rcutorture test. 597 * This is also used to correlate debugfs tracing stats with the rcutorture 598 * messages. 599 */ 600 void rcutorture_record_progress(unsigned long vernum) 601 { 602 rcutorture_vernum++; 603 } 604 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 605 606 /* 607 * Does the CPU have callbacks ready to be invoked? 608 */ 609 static int 610 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 611 { 612 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 613 rdp->nxttail[RCU_DONE_TAIL] != NULL; 614 } 615 616 /* 617 * Return the root node of the specified rcu_state structure. 618 */ 619 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 620 { 621 return &rsp->node[0]; 622 } 623 624 /* 625 * Is there any need for future grace periods? 626 * Interrupts must be disabled. If the caller does not hold the root 627 * rnp_node structure's ->lock, the results are advisory only. 628 */ 629 static int rcu_future_needs_gp(struct rcu_state *rsp) 630 { 631 struct rcu_node *rnp = rcu_get_root(rsp); 632 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 633 int *fp = &rnp->need_future_gp[idx]; 634 635 return READ_ONCE(*fp); 636 } 637 638 /* 639 * Does the current CPU require a not-yet-started grace period? 640 * The caller must have disabled interrupts to prevent races with 641 * normal callback registry. 642 */ 643 static bool 644 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 645 { 646 int i; 647 648 if (rcu_gp_in_progress(rsp)) 649 return false; /* No, a grace period is already in progress. */ 650 if (rcu_future_needs_gp(rsp)) 651 return true; /* Yes, a no-CBs CPU needs one. */ 652 if (!rdp->nxttail[RCU_NEXT_TAIL]) 653 return false; /* No, this is a no-CBs (or offline) CPU. */ 654 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 655 return true; /* Yes, CPU has newly registered callbacks. */ 656 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 657 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 658 ULONG_CMP_LT(READ_ONCE(rsp->completed), 659 rdp->nxtcompleted[i])) 660 return true; /* Yes, CBs for future grace period. */ 661 return false; /* No grace period needed. */ 662 } 663 664 /* 665 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 666 * 667 * If the new value of the ->dynticks_nesting counter now is zero, 668 * we really have entered idle, and must do the appropriate accounting. 669 * The caller must have disabled interrupts. 670 */ 671 static void rcu_eqs_enter_common(long long oldval, bool user) 672 { 673 struct rcu_state *rsp; 674 struct rcu_data *rdp; 675 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 676 677 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 678 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 679 !user && !is_idle_task(current)) { 680 struct task_struct *idle __maybe_unused = 681 idle_task(smp_processor_id()); 682 683 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 684 rcu_ftrace_dump(DUMP_ORIG); 685 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 686 current->pid, current->comm, 687 idle->pid, idle->comm); /* must be idle task! */ 688 } 689 for_each_rcu_flavor(rsp) { 690 rdp = this_cpu_ptr(rsp->rda); 691 do_nocb_deferred_wakeup(rdp); 692 } 693 rcu_prepare_for_idle(); 694 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 695 smp_mb__before_atomic(); /* See above. */ 696 atomic_inc(&rdtp->dynticks); 697 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 698 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 699 atomic_read(&rdtp->dynticks) & 0x1); 700 rcu_dynticks_task_enter(); 701 702 /* 703 * It is illegal to enter an extended quiescent state while 704 * in an RCU read-side critical section. 705 */ 706 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 707 "Illegal idle entry in RCU read-side critical section."); 708 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 709 "Illegal idle entry in RCU-bh read-side critical section."); 710 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 711 "Illegal idle entry in RCU-sched read-side critical section."); 712 } 713 714 /* 715 * Enter an RCU extended quiescent state, which can be either the 716 * idle loop or adaptive-tickless usermode execution. 717 */ 718 static void rcu_eqs_enter(bool user) 719 { 720 long long oldval; 721 struct rcu_dynticks *rdtp; 722 723 rdtp = this_cpu_ptr(&rcu_dynticks); 724 oldval = rdtp->dynticks_nesting; 725 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 726 (oldval & DYNTICK_TASK_NEST_MASK) == 0); 727 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 728 rdtp->dynticks_nesting = 0; 729 rcu_eqs_enter_common(oldval, user); 730 } else { 731 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 732 } 733 } 734 735 /** 736 * rcu_idle_enter - inform RCU that current CPU is entering idle 737 * 738 * Enter idle mode, in other words, -leave- the mode in which RCU 739 * read-side critical sections can occur. (Though RCU read-side 740 * critical sections can occur in irq handlers in idle, a possibility 741 * handled by irq_enter() and irq_exit().) 742 * 743 * We crowbar the ->dynticks_nesting field to zero to allow for 744 * the possibility of usermode upcalls having messed up our count 745 * of interrupt nesting level during the prior busy period. 746 */ 747 void rcu_idle_enter(void) 748 { 749 unsigned long flags; 750 751 local_irq_save(flags); 752 rcu_eqs_enter(false); 753 rcu_sysidle_enter(0); 754 local_irq_restore(flags); 755 } 756 EXPORT_SYMBOL_GPL(rcu_idle_enter); 757 758 #ifdef CONFIG_NO_HZ_FULL 759 /** 760 * rcu_user_enter - inform RCU that we are resuming userspace. 761 * 762 * Enter RCU idle mode right before resuming userspace. No use of RCU 763 * is permitted between this call and rcu_user_exit(). This way the 764 * CPU doesn't need to maintain the tick for RCU maintenance purposes 765 * when the CPU runs in userspace. 766 */ 767 void rcu_user_enter(void) 768 { 769 rcu_eqs_enter(1); 770 } 771 #endif /* CONFIG_NO_HZ_FULL */ 772 773 /** 774 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 775 * 776 * Exit from an interrupt handler, which might possibly result in entering 777 * idle mode, in other words, leaving the mode in which read-side critical 778 * sections can occur. The caller must have disabled interrupts. 779 * 780 * This code assumes that the idle loop never does anything that might 781 * result in unbalanced calls to irq_enter() and irq_exit(). If your 782 * architecture violates this assumption, RCU will give you what you 783 * deserve, good and hard. But very infrequently and irreproducibly. 784 * 785 * Use things like work queues to work around this limitation. 786 * 787 * You have been warned. 788 */ 789 void rcu_irq_exit(void) 790 { 791 long long oldval; 792 struct rcu_dynticks *rdtp; 793 794 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 795 rdtp = this_cpu_ptr(&rcu_dynticks); 796 oldval = rdtp->dynticks_nesting; 797 rdtp->dynticks_nesting--; 798 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 799 rdtp->dynticks_nesting < 0); 800 if (rdtp->dynticks_nesting) 801 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 802 else 803 rcu_eqs_enter_common(oldval, true); 804 rcu_sysidle_enter(1); 805 } 806 807 /* 808 * Wrapper for rcu_irq_exit() where interrupts are enabled. 809 */ 810 void rcu_irq_exit_irqson(void) 811 { 812 unsigned long flags; 813 814 local_irq_save(flags); 815 rcu_irq_exit(); 816 local_irq_restore(flags); 817 } 818 819 /* 820 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 821 * 822 * If the new value of the ->dynticks_nesting counter was previously zero, 823 * we really have exited idle, and must do the appropriate accounting. 824 * The caller must have disabled interrupts. 825 */ 826 static void rcu_eqs_exit_common(long long oldval, int user) 827 { 828 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 829 830 rcu_dynticks_task_exit(); 831 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 832 atomic_inc(&rdtp->dynticks); 833 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 834 smp_mb__after_atomic(); /* See above. */ 835 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 836 !(atomic_read(&rdtp->dynticks) & 0x1)); 837 rcu_cleanup_after_idle(); 838 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 839 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 840 !user && !is_idle_task(current)) { 841 struct task_struct *idle __maybe_unused = 842 idle_task(smp_processor_id()); 843 844 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 845 oldval, rdtp->dynticks_nesting); 846 rcu_ftrace_dump(DUMP_ORIG); 847 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 848 current->pid, current->comm, 849 idle->pid, idle->comm); /* must be idle task! */ 850 } 851 } 852 853 /* 854 * Exit an RCU extended quiescent state, which can be either the 855 * idle loop or adaptive-tickless usermode execution. 856 */ 857 static void rcu_eqs_exit(bool user) 858 { 859 struct rcu_dynticks *rdtp; 860 long long oldval; 861 862 rdtp = this_cpu_ptr(&rcu_dynticks); 863 oldval = rdtp->dynticks_nesting; 864 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 865 if (oldval & DYNTICK_TASK_NEST_MASK) { 866 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 867 } else { 868 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 869 rcu_eqs_exit_common(oldval, user); 870 } 871 } 872 873 /** 874 * rcu_idle_exit - inform RCU that current CPU is leaving idle 875 * 876 * Exit idle mode, in other words, -enter- the mode in which RCU 877 * read-side critical sections can occur. 878 * 879 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 880 * allow for the possibility of usermode upcalls messing up our count 881 * of interrupt nesting level during the busy period that is just 882 * now starting. 883 */ 884 void rcu_idle_exit(void) 885 { 886 unsigned long flags; 887 888 local_irq_save(flags); 889 rcu_eqs_exit(false); 890 rcu_sysidle_exit(0); 891 local_irq_restore(flags); 892 } 893 EXPORT_SYMBOL_GPL(rcu_idle_exit); 894 895 #ifdef CONFIG_NO_HZ_FULL 896 /** 897 * rcu_user_exit - inform RCU that we are exiting userspace. 898 * 899 * Exit RCU idle mode while entering the kernel because it can 900 * run a RCU read side critical section anytime. 901 */ 902 void rcu_user_exit(void) 903 { 904 rcu_eqs_exit(1); 905 } 906 #endif /* CONFIG_NO_HZ_FULL */ 907 908 /** 909 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 910 * 911 * Enter an interrupt handler, which might possibly result in exiting 912 * idle mode, in other words, entering the mode in which read-side critical 913 * sections can occur. The caller must have disabled interrupts. 914 * 915 * Note that the Linux kernel is fully capable of entering an interrupt 916 * handler that it never exits, for example when doing upcalls to 917 * user mode! This code assumes that the idle loop never does upcalls to 918 * user mode. If your architecture does do upcalls from the idle loop (or 919 * does anything else that results in unbalanced calls to the irq_enter() 920 * and irq_exit() functions), RCU will give you what you deserve, good 921 * and hard. But very infrequently and irreproducibly. 922 * 923 * Use things like work queues to work around this limitation. 924 * 925 * You have been warned. 926 */ 927 void rcu_irq_enter(void) 928 { 929 struct rcu_dynticks *rdtp; 930 long long oldval; 931 932 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 933 rdtp = this_cpu_ptr(&rcu_dynticks); 934 oldval = rdtp->dynticks_nesting; 935 rdtp->dynticks_nesting++; 936 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 937 rdtp->dynticks_nesting == 0); 938 if (oldval) 939 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 940 else 941 rcu_eqs_exit_common(oldval, true); 942 rcu_sysidle_exit(1); 943 } 944 945 /* 946 * Wrapper for rcu_irq_enter() where interrupts are enabled. 947 */ 948 void rcu_irq_enter_irqson(void) 949 { 950 unsigned long flags; 951 952 local_irq_save(flags); 953 rcu_irq_enter(); 954 local_irq_restore(flags); 955 } 956 957 /** 958 * rcu_nmi_enter - inform RCU of entry to NMI context 959 * 960 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 961 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 962 * that the CPU is active. This implementation permits nested NMIs, as 963 * long as the nesting level does not overflow an int. (You will probably 964 * run out of stack space first.) 965 */ 966 void rcu_nmi_enter(void) 967 { 968 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 969 int incby = 2; 970 971 /* Complain about underflow. */ 972 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 973 974 /* 975 * If idle from RCU viewpoint, atomically increment ->dynticks 976 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 977 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 978 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 979 * to be in the outermost NMI handler that interrupted an RCU-idle 980 * period (observation due to Andy Lutomirski). 981 */ 982 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 983 smp_mb__before_atomic(); /* Force delay from prior write. */ 984 atomic_inc(&rdtp->dynticks); 985 /* atomic_inc() before later RCU read-side crit sects */ 986 smp_mb__after_atomic(); /* See above. */ 987 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 988 incby = 1; 989 } 990 rdtp->dynticks_nmi_nesting += incby; 991 barrier(); 992 } 993 994 /** 995 * rcu_nmi_exit - inform RCU of exit from NMI context 996 * 997 * If we are returning from the outermost NMI handler that interrupted an 998 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 999 * to let the RCU grace-period handling know that the CPU is back to 1000 * being RCU-idle. 1001 */ 1002 void rcu_nmi_exit(void) 1003 { 1004 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1005 1006 /* 1007 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1008 * (We are exiting an NMI handler, so RCU better be paying attention 1009 * to us!) 1010 */ 1011 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1012 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 1013 1014 /* 1015 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1016 * leave it in non-RCU-idle state. 1017 */ 1018 if (rdtp->dynticks_nmi_nesting != 1) { 1019 rdtp->dynticks_nmi_nesting -= 2; 1020 return; 1021 } 1022 1023 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1024 rdtp->dynticks_nmi_nesting = 0; 1025 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 1026 smp_mb__before_atomic(); /* See above. */ 1027 atomic_inc(&rdtp->dynticks); 1028 smp_mb__after_atomic(); /* Force delay to next write. */ 1029 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 1030 } 1031 1032 /** 1033 * __rcu_is_watching - are RCU read-side critical sections safe? 1034 * 1035 * Return true if RCU is watching the running CPU, which means that 1036 * this CPU can safely enter RCU read-side critical sections. Unlike 1037 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 1038 * least disabled preemption. 1039 */ 1040 bool notrace __rcu_is_watching(void) 1041 { 1042 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 1043 } 1044 1045 /** 1046 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1047 * 1048 * If the current CPU is in its idle loop and is neither in an interrupt 1049 * or NMI handler, return true. 1050 */ 1051 bool notrace rcu_is_watching(void) 1052 { 1053 bool ret; 1054 1055 preempt_disable_notrace(); 1056 ret = __rcu_is_watching(); 1057 preempt_enable_notrace(); 1058 return ret; 1059 } 1060 EXPORT_SYMBOL_GPL(rcu_is_watching); 1061 1062 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1063 1064 /* 1065 * Is the current CPU online? Disable preemption to avoid false positives 1066 * that could otherwise happen due to the current CPU number being sampled, 1067 * this task being preempted, its old CPU being taken offline, resuming 1068 * on some other CPU, then determining that its old CPU is now offline. 1069 * It is OK to use RCU on an offline processor during initial boot, hence 1070 * the check for rcu_scheduler_fully_active. Note also that it is OK 1071 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1072 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1073 * offline to continue to use RCU for one jiffy after marking itself 1074 * offline in the cpu_online_mask. This leniency is necessary given the 1075 * non-atomic nature of the online and offline processing, for example, 1076 * the fact that a CPU enters the scheduler after completing the teardown 1077 * of the CPU. 1078 * 1079 * This is also why RCU internally marks CPUs online during in the 1080 * preparation phase and offline after the CPU has been taken down. 1081 * 1082 * Disable checking if in an NMI handler because we cannot safely report 1083 * errors from NMI handlers anyway. 1084 */ 1085 bool rcu_lockdep_current_cpu_online(void) 1086 { 1087 struct rcu_data *rdp; 1088 struct rcu_node *rnp; 1089 bool ret; 1090 1091 if (in_nmi()) 1092 return true; 1093 preempt_disable(); 1094 rdp = this_cpu_ptr(&rcu_sched_data); 1095 rnp = rdp->mynode; 1096 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1097 !rcu_scheduler_fully_active; 1098 preempt_enable(); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1102 1103 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1104 1105 /** 1106 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1107 * 1108 * If the current CPU is idle or running at a first-level (not nested) 1109 * interrupt from idle, return true. The caller must have at least 1110 * disabled preemption. 1111 */ 1112 static int rcu_is_cpu_rrupt_from_idle(void) 1113 { 1114 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1115 } 1116 1117 /* 1118 * Snapshot the specified CPU's dynticks counter so that we can later 1119 * credit them with an implicit quiescent state. Return 1 if this CPU 1120 * is in dynticks idle mode, which is an extended quiescent state. 1121 */ 1122 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1123 bool *isidle, unsigned long *maxj) 1124 { 1125 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 1126 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1127 if ((rdp->dynticks_snap & 0x1) == 0) { 1128 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1129 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1130 rdp->mynode->gpnum)) 1131 WRITE_ONCE(rdp->gpwrap, true); 1132 return 1; 1133 } 1134 return 0; 1135 } 1136 1137 /* 1138 * Return true if the specified CPU has passed through a quiescent 1139 * state by virtue of being in or having passed through an dynticks 1140 * idle state since the last call to dyntick_save_progress_counter() 1141 * for this same CPU, or by virtue of having been offline. 1142 */ 1143 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1144 bool *isidle, unsigned long *maxj) 1145 { 1146 unsigned int curr; 1147 int *rcrmp; 1148 unsigned int snap; 1149 1150 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1151 snap = (unsigned int)rdp->dynticks_snap; 1152 1153 /* 1154 * If the CPU passed through or entered a dynticks idle phase with 1155 * no active irq/NMI handlers, then we can safely pretend that the CPU 1156 * already acknowledged the request to pass through a quiescent 1157 * state. Either way, that CPU cannot possibly be in an RCU 1158 * read-side critical section that started before the beginning 1159 * of the current RCU grace period. 1160 */ 1161 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1162 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1163 rdp->dynticks_fqs++; 1164 return 1; 1165 } 1166 1167 /* 1168 * Check for the CPU being offline, but only if the grace period 1169 * is old enough. We don't need to worry about the CPU changing 1170 * state: If we see it offline even once, it has been through a 1171 * quiescent state. 1172 * 1173 * The reason for insisting that the grace period be at least 1174 * one jiffy old is that CPUs that are not quite online and that 1175 * have just gone offline can still execute RCU read-side critical 1176 * sections. 1177 */ 1178 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1179 return 0; /* Grace period is not old enough. */ 1180 barrier(); 1181 if (cpu_is_offline(rdp->cpu)) { 1182 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1183 rdp->offline_fqs++; 1184 return 1; 1185 } 1186 1187 /* 1188 * A CPU running for an extended time within the kernel can 1189 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1190 * even context-switching back and forth between a pair of 1191 * in-kernel CPU-bound tasks cannot advance grace periods. 1192 * So if the grace period is old enough, make the CPU pay attention. 1193 * Note that the unsynchronized assignments to the per-CPU 1194 * rcu_sched_qs_mask variable are safe. Yes, setting of 1195 * bits can be lost, but they will be set again on the next 1196 * force-quiescent-state pass. So lost bit sets do not result 1197 * in incorrect behavior, merely in a grace period lasting 1198 * a few jiffies longer than it might otherwise. Because 1199 * there are at most four threads involved, and because the 1200 * updates are only once every few jiffies, the probability of 1201 * lossage (and thus of slight grace-period extension) is 1202 * quite low. 1203 * 1204 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1205 * is set too high, we override with half of the RCU CPU stall 1206 * warning delay. 1207 */ 1208 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1209 if (ULONG_CMP_GE(jiffies, 1210 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1211 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1212 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1213 WRITE_ONCE(rdp->cond_resched_completed, 1214 READ_ONCE(rdp->mynode->completed)); 1215 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1216 WRITE_ONCE(*rcrmp, 1217 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); 1218 } 1219 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1220 } 1221 1222 /* And if it has been a really long time, kick the CPU as well. */ 1223 if (ULONG_CMP_GE(jiffies, 1224 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) || 1225 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs)) 1226 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1227 1228 return 0; 1229 } 1230 1231 static void record_gp_stall_check_time(struct rcu_state *rsp) 1232 { 1233 unsigned long j = jiffies; 1234 unsigned long j1; 1235 1236 rsp->gp_start = j; 1237 smp_wmb(); /* Record start time before stall time. */ 1238 j1 = rcu_jiffies_till_stall_check(); 1239 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1240 rsp->jiffies_resched = j + j1 / 2; 1241 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1242 } 1243 1244 /* 1245 * Convert a ->gp_state value to a character string. 1246 */ 1247 static const char *gp_state_getname(short gs) 1248 { 1249 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1250 return "???"; 1251 return gp_state_names[gs]; 1252 } 1253 1254 /* 1255 * Complain about starvation of grace-period kthread. 1256 */ 1257 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1258 { 1259 unsigned long gpa; 1260 unsigned long j; 1261 1262 j = jiffies; 1263 gpa = READ_ONCE(rsp->gp_activity); 1264 if (j - gpa > 2 * HZ) { 1265 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1266 rsp->name, j - gpa, 1267 rsp->gpnum, rsp->completed, 1268 rsp->gp_flags, 1269 gp_state_getname(rsp->gp_state), rsp->gp_state, 1270 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1271 if (rsp->gp_kthread) { 1272 sched_show_task(rsp->gp_kthread); 1273 wake_up_process(rsp->gp_kthread); 1274 } 1275 } 1276 } 1277 1278 /* 1279 * Dump stacks of all tasks running on stalled CPUs. 1280 */ 1281 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1282 { 1283 int cpu; 1284 unsigned long flags; 1285 struct rcu_node *rnp; 1286 1287 rcu_for_each_leaf_node(rsp, rnp) { 1288 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1289 if (rnp->qsmask != 0) { 1290 for_each_leaf_node_possible_cpu(rnp, cpu) 1291 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1292 dump_cpu_task(cpu); 1293 } 1294 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1295 } 1296 } 1297 1298 /* 1299 * If too much time has passed in the current grace period, and if 1300 * so configured, go kick the relevant kthreads. 1301 */ 1302 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1303 { 1304 unsigned long j; 1305 1306 if (!rcu_kick_kthreads) 1307 return; 1308 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1309 if (time_after(jiffies, j) && rsp->gp_kthread) { 1310 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1311 rcu_ftrace_dump(DUMP_ALL); 1312 wake_up_process(rsp->gp_kthread); 1313 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1314 } 1315 } 1316 1317 static inline void panic_on_rcu_stall(void) 1318 { 1319 if (sysctl_panic_on_rcu_stall) 1320 panic("RCU Stall\n"); 1321 } 1322 1323 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1324 { 1325 int cpu; 1326 long delta; 1327 unsigned long flags; 1328 unsigned long gpa; 1329 unsigned long j; 1330 int ndetected = 0; 1331 struct rcu_node *rnp = rcu_get_root(rsp); 1332 long totqlen = 0; 1333 1334 /* Kick and suppress, if so configured. */ 1335 rcu_stall_kick_kthreads(rsp); 1336 if (rcu_cpu_stall_suppress) 1337 return; 1338 1339 /* Only let one CPU complain about others per time interval. */ 1340 1341 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1342 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1343 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1344 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1345 return; 1346 } 1347 WRITE_ONCE(rsp->jiffies_stall, 1348 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1349 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1350 1351 /* 1352 * OK, time to rat on our buddy... 1353 * See Documentation/RCU/stallwarn.txt for info on how to debug 1354 * RCU CPU stall warnings. 1355 */ 1356 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1357 rsp->name); 1358 print_cpu_stall_info_begin(); 1359 rcu_for_each_leaf_node(rsp, rnp) { 1360 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1361 ndetected += rcu_print_task_stall(rnp); 1362 if (rnp->qsmask != 0) { 1363 for_each_leaf_node_possible_cpu(rnp, cpu) 1364 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1365 print_cpu_stall_info(rsp, cpu); 1366 ndetected++; 1367 } 1368 } 1369 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1370 } 1371 1372 print_cpu_stall_info_end(); 1373 for_each_possible_cpu(cpu) 1374 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1375 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1376 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1377 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1378 if (ndetected) { 1379 rcu_dump_cpu_stacks(rsp); 1380 } else { 1381 if (READ_ONCE(rsp->gpnum) != gpnum || 1382 READ_ONCE(rsp->completed) == gpnum) { 1383 pr_err("INFO: Stall ended before state dump start\n"); 1384 } else { 1385 j = jiffies; 1386 gpa = READ_ONCE(rsp->gp_activity); 1387 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1388 rsp->name, j - gpa, j, gpa, 1389 jiffies_till_next_fqs, 1390 rcu_get_root(rsp)->qsmask); 1391 /* In this case, the current CPU might be at fault. */ 1392 sched_show_task(current); 1393 } 1394 } 1395 1396 /* Complain about tasks blocking the grace period. */ 1397 rcu_print_detail_task_stall(rsp); 1398 1399 rcu_check_gp_kthread_starvation(rsp); 1400 1401 panic_on_rcu_stall(); 1402 1403 force_quiescent_state(rsp); /* Kick them all. */ 1404 } 1405 1406 static void print_cpu_stall(struct rcu_state *rsp) 1407 { 1408 int cpu; 1409 unsigned long flags; 1410 struct rcu_node *rnp = rcu_get_root(rsp); 1411 long totqlen = 0; 1412 1413 /* Kick and suppress, if so configured. */ 1414 rcu_stall_kick_kthreads(rsp); 1415 if (rcu_cpu_stall_suppress) 1416 return; 1417 1418 /* 1419 * OK, time to rat on ourselves... 1420 * See Documentation/RCU/stallwarn.txt for info on how to debug 1421 * RCU CPU stall warnings. 1422 */ 1423 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1424 print_cpu_stall_info_begin(); 1425 print_cpu_stall_info(rsp, smp_processor_id()); 1426 print_cpu_stall_info_end(); 1427 for_each_possible_cpu(cpu) 1428 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1429 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1430 jiffies - rsp->gp_start, 1431 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1432 1433 rcu_check_gp_kthread_starvation(rsp); 1434 1435 rcu_dump_cpu_stacks(rsp); 1436 1437 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1438 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1439 WRITE_ONCE(rsp->jiffies_stall, 1440 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1441 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1442 1443 panic_on_rcu_stall(); 1444 1445 /* 1446 * Attempt to revive the RCU machinery by forcing a context switch. 1447 * 1448 * A context switch would normally allow the RCU state machine to make 1449 * progress and it could be we're stuck in kernel space without context 1450 * switches for an entirely unreasonable amount of time. 1451 */ 1452 resched_cpu(smp_processor_id()); 1453 } 1454 1455 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1456 { 1457 unsigned long completed; 1458 unsigned long gpnum; 1459 unsigned long gps; 1460 unsigned long j; 1461 unsigned long js; 1462 struct rcu_node *rnp; 1463 1464 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1465 !rcu_gp_in_progress(rsp)) 1466 return; 1467 rcu_stall_kick_kthreads(rsp); 1468 j = jiffies; 1469 1470 /* 1471 * Lots of memory barriers to reject false positives. 1472 * 1473 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1474 * then rsp->gp_start, and finally rsp->completed. These values 1475 * are updated in the opposite order with memory barriers (or 1476 * equivalent) during grace-period initialization and cleanup. 1477 * Now, a false positive can occur if we get an new value of 1478 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1479 * the memory barriers, the only way that this can happen is if one 1480 * grace period ends and another starts between these two fetches. 1481 * Detect this by comparing rsp->completed with the previous fetch 1482 * from rsp->gpnum. 1483 * 1484 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1485 * and rsp->gp_start suffice to forestall false positives. 1486 */ 1487 gpnum = READ_ONCE(rsp->gpnum); 1488 smp_rmb(); /* Pick up ->gpnum first... */ 1489 js = READ_ONCE(rsp->jiffies_stall); 1490 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1491 gps = READ_ONCE(rsp->gp_start); 1492 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1493 completed = READ_ONCE(rsp->completed); 1494 if (ULONG_CMP_GE(completed, gpnum) || 1495 ULONG_CMP_LT(j, js) || 1496 ULONG_CMP_GE(gps, js)) 1497 return; /* No stall or GP completed since entering function. */ 1498 rnp = rdp->mynode; 1499 if (rcu_gp_in_progress(rsp) && 1500 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1501 1502 /* We haven't checked in, so go dump stack. */ 1503 print_cpu_stall(rsp); 1504 1505 } else if (rcu_gp_in_progress(rsp) && 1506 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1507 1508 /* They had a few time units to dump stack, so complain. */ 1509 print_other_cpu_stall(rsp, gpnum); 1510 } 1511 } 1512 1513 /** 1514 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1515 * 1516 * Set the stall-warning timeout way off into the future, thus preventing 1517 * any RCU CPU stall-warning messages from appearing in the current set of 1518 * RCU grace periods. 1519 * 1520 * The caller must disable hard irqs. 1521 */ 1522 void rcu_cpu_stall_reset(void) 1523 { 1524 struct rcu_state *rsp; 1525 1526 for_each_rcu_flavor(rsp) 1527 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1528 } 1529 1530 /* 1531 * Initialize the specified rcu_data structure's default callback list 1532 * to empty. The default callback list is the one that is not used by 1533 * no-callbacks CPUs. 1534 */ 1535 static void init_default_callback_list(struct rcu_data *rdp) 1536 { 1537 int i; 1538 1539 rdp->nxtlist = NULL; 1540 for (i = 0; i < RCU_NEXT_SIZE; i++) 1541 rdp->nxttail[i] = &rdp->nxtlist; 1542 } 1543 1544 /* 1545 * Initialize the specified rcu_data structure's callback list to empty. 1546 */ 1547 static void init_callback_list(struct rcu_data *rdp) 1548 { 1549 if (init_nocb_callback_list(rdp)) 1550 return; 1551 init_default_callback_list(rdp); 1552 } 1553 1554 /* 1555 * Determine the value that ->completed will have at the end of the 1556 * next subsequent grace period. This is used to tag callbacks so that 1557 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1558 * been dyntick-idle for an extended period with callbacks under the 1559 * influence of RCU_FAST_NO_HZ. 1560 * 1561 * The caller must hold rnp->lock with interrupts disabled. 1562 */ 1563 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1564 struct rcu_node *rnp) 1565 { 1566 /* 1567 * If RCU is idle, we just wait for the next grace period. 1568 * But we can only be sure that RCU is idle if we are looking 1569 * at the root rcu_node structure -- otherwise, a new grace 1570 * period might have started, but just not yet gotten around 1571 * to initializing the current non-root rcu_node structure. 1572 */ 1573 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1574 return rnp->completed + 1; 1575 1576 /* 1577 * Otherwise, wait for a possible partial grace period and 1578 * then the subsequent full grace period. 1579 */ 1580 return rnp->completed + 2; 1581 } 1582 1583 /* 1584 * Trace-event helper function for rcu_start_future_gp() and 1585 * rcu_nocb_wait_gp(). 1586 */ 1587 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1588 unsigned long c, const char *s) 1589 { 1590 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1591 rnp->completed, c, rnp->level, 1592 rnp->grplo, rnp->grphi, s); 1593 } 1594 1595 /* 1596 * Start some future grace period, as needed to handle newly arrived 1597 * callbacks. The required future grace periods are recorded in each 1598 * rcu_node structure's ->need_future_gp field. Returns true if there 1599 * is reason to awaken the grace-period kthread. 1600 * 1601 * The caller must hold the specified rcu_node structure's ->lock. 1602 */ 1603 static bool __maybe_unused 1604 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1605 unsigned long *c_out) 1606 { 1607 unsigned long c; 1608 int i; 1609 bool ret = false; 1610 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1611 1612 /* 1613 * Pick up grace-period number for new callbacks. If this 1614 * grace period is already marked as needed, return to the caller. 1615 */ 1616 c = rcu_cbs_completed(rdp->rsp, rnp); 1617 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1618 if (rnp->need_future_gp[c & 0x1]) { 1619 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1620 goto out; 1621 } 1622 1623 /* 1624 * If either this rcu_node structure or the root rcu_node structure 1625 * believe that a grace period is in progress, then we must wait 1626 * for the one following, which is in "c". Because our request 1627 * will be noticed at the end of the current grace period, we don't 1628 * need to explicitly start one. We only do the lockless check 1629 * of rnp_root's fields if the current rcu_node structure thinks 1630 * there is no grace period in flight, and because we hold rnp->lock, 1631 * the only possible change is when rnp_root's two fields are 1632 * equal, in which case rnp_root->gpnum might be concurrently 1633 * incremented. But that is OK, as it will just result in our 1634 * doing some extra useless work. 1635 */ 1636 if (rnp->gpnum != rnp->completed || 1637 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1638 rnp->need_future_gp[c & 0x1]++; 1639 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1640 goto out; 1641 } 1642 1643 /* 1644 * There might be no grace period in progress. If we don't already 1645 * hold it, acquire the root rcu_node structure's lock in order to 1646 * start one (if needed). 1647 */ 1648 if (rnp != rnp_root) 1649 raw_spin_lock_rcu_node(rnp_root); 1650 1651 /* 1652 * Get a new grace-period number. If there really is no grace 1653 * period in progress, it will be smaller than the one we obtained 1654 * earlier. Adjust callbacks as needed. Note that even no-CBs 1655 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1656 */ 1657 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1658 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1659 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1660 rdp->nxtcompleted[i] = c; 1661 1662 /* 1663 * If the needed for the required grace period is already 1664 * recorded, trace and leave. 1665 */ 1666 if (rnp_root->need_future_gp[c & 0x1]) { 1667 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1668 goto unlock_out; 1669 } 1670 1671 /* Record the need for the future grace period. */ 1672 rnp_root->need_future_gp[c & 0x1]++; 1673 1674 /* If a grace period is not already in progress, start one. */ 1675 if (rnp_root->gpnum != rnp_root->completed) { 1676 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1677 } else { 1678 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1679 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1680 } 1681 unlock_out: 1682 if (rnp != rnp_root) 1683 raw_spin_unlock_rcu_node(rnp_root); 1684 out: 1685 if (c_out != NULL) 1686 *c_out = c; 1687 return ret; 1688 } 1689 1690 /* 1691 * Clean up any old requests for the just-ended grace period. Also return 1692 * whether any additional grace periods have been requested. Also invoke 1693 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1694 * waiting for this grace period to complete. 1695 */ 1696 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1697 { 1698 int c = rnp->completed; 1699 int needmore; 1700 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1701 1702 rnp->need_future_gp[c & 0x1] = 0; 1703 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1704 trace_rcu_future_gp(rnp, rdp, c, 1705 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1706 return needmore; 1707 } 1708 1709 /* 1710 * Awaken the grace-period kthread for the specified flavor of RCU. 1711 * Don't do a self-awaken, and don't bother awakening when there is 1712 * nothing for the grace-period kthread to do (as in several CPUs 1713 * raced to awaken, and we lost), and finally don't try to awaken 1714 * a kthread that has not yet been created. 1715 */ 1716 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1717 { 1718 if (current == rsp->gp_kthread || 1719 !READ_ONCE(rsp->gp_flags) || 1720 !rsp->gp_kthread) 1721 return; 1722 swake_up(&rsp->gp_wq); 1723 } 1724 1725 /* 1726 * If there is room, assign a ->completed number to any callbacks on 1727 * this CPU that have not already been assigned. Also accelerate any 1728 * callbacks that were previously assigned a ->completed number that has 1729 * since proven to be too conservative, which can happen if callbacks get 1730 * assigned a ->completed number while RCU is idle, but with reference to 1731 * a non-root rcu_node structure. This function is idempotent, so it does 1732 * not hurt to call it repeatedly. Returns an flag saying that we should 1733 * awaken the RCU grace-period kthread. 1734 * 1735 * The caller must hold rnp->lock with interrupts disabled. 1736 */ 1737 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1738 struct rcu_data *rdp) 1739 { 1740 unsigned long c; 1741 int i; 1742 bool ret; 1743 1744 /* If the CPU has no callbacks, nothing to do. */ 1745 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1746 return false; 1747 1748 /* 1749 * Starting from the sublist containing the callbacks most 1750 * recently assigned a ->completed number and working down, find the 1751 * first sublist that is not assignable to an upcoming grace period. 1752 * Such a sublist has something in it (first two tests) and has 1753 * a ->completed number assigned that will complete sooner than 1754 * the ->completed number for newly arrived callbacks (last test). 1755 * 1756 * The key point is that any later sublist can be assigned the 1757 * same ->completed number as the newly arrived callbacks, which 1758 * means that the callbacks in any of these later sublist can be 1759 * grouped into a single sublist, whether or not they have already 1760 * been assigned a ->completed number. 1761 */ 1762 c = rcu_cbs_completed(rsp, rnp); 1763 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1764 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1765 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1766 break; 1767 1768 /* 1769 * If there are no sublist for unassigned callbacks, leave. 1770 * At the same time, advance "i" one sublist, so that "i" will 1771 * index into the sublist where all the remaining callbacks should 1772 * be grouped into. 1773 */ 1774 if (++i >= RCU_NEXT_TAIL) 1775 return false; 1776 1777 /* 1778 * Assign all subsequent callbacks' ->completed number to the next 1779 * full grace period and group them all in the sublist initially 1780 * indexed by "i". 1781 */ 1782 for (; i <= RCU_NEXT_TAIL; i++) { 1783 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1784 rdp->nxtcompleted[i] = c; 1785 } 1786 /* Record any needed additional grace periods. */ 1787 ret = rcu_start_future_gp(rnp, rdp, NULL); 1788 1789 /* Trace depending on how much we were able to accelerate. */ 1790 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1791 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1792 else 1793 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1794 return ret; 1795 } 1796 1797 /* 1798 * Move any callbacks whose grace period has completed to the 1799 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1800 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1801 * sublist. This function is idempotent, so it does not hurt to 1802 * invoke it repeatedly. As long as it is not invoked -too- often... 1803 * Returns true if the RCU grace-period kthread needs to be awakened. 1804 * 1805 * The caller must hold rnp->lock with interrupts disabled. 1806 */ 1807 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1808 struct rcu_data *rdp) 1809 { 1810 int i, j; 1811 1812 /* If the CPU has no callbacks, nothing to do. */ 1813 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1814 return false; 1815 1816 /* 1817 * Find all callbacks whose ->completed numbers indicate that they 1818 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1819 */ 1820 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1821 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1822 break; 1823 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1824 } 1825 /* Clean up any sublist tail pointers that were misordered above. */ 1826 for (j = RCU_WAIT_TAIL; j < i; j++) 1827 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1828 1829 /* Copy down callbacks to fill in empty sublists. */ 1830 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1831 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1832 break; 1833 rdp->nxttail[j] = rdp->nxttail[i]; 1834 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1835 } 1836 1837 /* Classify any remaining callbacks. */ 1838 return rcu_accelerate_cbs(rsp, rnp, rdp); 1839 } 1840 1841 /* 1842 * Update CPU-local rcu_data state to record the beginnings and ends of 1843 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1844 * structure corresponding to the current CPU, and must have irqs disabled. 1845 * Returns true if the grace-period kthread needs to be awakened. 1846 */ 1847 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1848 struct rcu_data *rdp) 1849 { 1850 bool ret; 1851 1852 /* Handle the ends of any preceding grace periods first. */ 1853 if (rdp->completed == rnp->completed && 1854 !unlikely(READ_ONCE(rdp->gpwrap))) { 1855 1856 /* No grace period end, so just accelerate recent callbacks. */ 1857 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1858 1859 } else { 1860 1861 /* Advance callbacks. */ 1862 ret = rcu_advance_cbs(rsp, rnp, rdp); 1863 1864 /* Remember that we saw this grace-period completion. */ 1865 rdp->completed = rnp->completed; 1866 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1867 } 1868 1869 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1870 /* 1871 * If the current grace period is waiting for this CPU, 1872 * set up to detect a quiescent state, otherwise don't 1873 * go looking for one. 1874 */ 1875 rdp->gpnum = rnp->gpnum; 1876 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1877 rdp->cpu_no_qs.b.norm = true; 1878 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1879 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1880 zero_cpu_stall_ticks(rdp); 1881 WRITE_ONCE(rdp->gpwrap, false); 1882 } 1883 return ret; 1884 } 1885 1886 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1887 { 1888 unsigned long flags; 1889 bool needwake; 1890 struct rcu_node *rnp; 1891 1892 local_irq_save(flags); 1893 rnp = rdp->mynode; 1894 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1895 rdp->completed == READ_ONCE(rnp->completed) && 1896 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1897 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1898 local_irq_restore(flags); 1899 return; 1900 } 1901 needwake = __note_gp_changes(rsp, rnp, rdp); 1902 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1903 if (needwake) 1904 rcu_gp_kthread_wake(rsp); 1905 } 1906 1907 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1908 { 1909 if (delay > 0 && 1910 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1911 schedule_timeout_uninterruptible(delay); 1912 } 1913 1914 /* 1915 * Initialize a new grace period. Return false if no grace period required. 1916 */ 1917 static bool rcu_gp_init(struct rcu_state *rsp) 1918 { 1919 unsigned long oldmask; 1920 struct rcu_data *rdp; 1921 struct rcu_node *rnp = rcu_get_root(rsp); 1922 1923 WRITE_ONCE(rsp->gp_activity, jiffies); 1924 raw_spin_lock_irq_rcu_node(rnp); 1925 if (!READ_ONCE(rsp->gp_flags)) { 1926 /* Spurious wakeup, tell caller to go back to sleep. */ 1927 raw_spin_unlock_irq_rcu_node(rnp); 1928 return false; 1929 } 1930 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1931 1932 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1933 /* 1934 * Grace period already in progress, don't start another. 1935 * Not supposed to be able to happen. 1936 */ 1937 raw_spin_unlock_irq_rcu_node(rnp); 1938 return false; 1939 } 1940 1941 /* Advance to a new grace period and initialize state. */ 1942 record_gp_stall_check_time(rsp); 1943 /* Record GP times before starting GP, hence smp_store_release(). */ 1944 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1945 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1946 raw_spin_unlock_irq_rcu_node(rnp); 1947 1948 /* 1949 * Apply per-leaf buffered online and offline operations to the 1950 * rcu_node tree. Note that this new grace period need not wait 1951 * for subsequent online CPUs, and that quiescent-state forcing 1952 * will handle subsequent offline CPUs. 1953 */ 1954 rcu_for_each_leaf_node(rsp, rnp) { 1955 rcu_gp_slow(rsp, gp_preinit_delay); 1956 raw_spin_lock_irq_rcu_node(rnp); 1957 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1958 !rnp->wait_blkd_tasks) { 1959 /* Nothing to do on this leaf rcu_node structure. */ 1960 raw_spin_unlock_irq_rcu_node(rnp); 1961 continue; 1962 } 1963 1964 /* Record old state, apply changes to ->qsmaskinit field. */ 1965 oldmask = rnp->qsmaskinit; 1966 rnp->qsmaskinit = rnp->qsmaskinitnext; 1967 1968 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1969 if (!oldmask != !rnp->qsmaskinit) { 1970 if (!oldmask) /* First online CPU for this rcu_node. */ 1971 rcu_init_new_rnp(rnp); 1972 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1973 rnp->wait_blkd_tasks = true; 1974 else /* Last offline CPU and can propagate. */ 1975 rcu_cleanup_dead_rnp(rnp); 1976 } 1977 1978 /* 1979 * If all waited-on tasks from prior grace period are 1980 * done, and if all this rcu_node structure's CPUs are 1981 * still offline, propagate up the rcu_node tree and 1982 * clear ->wait_blkd_tasks. Otherwise, if one of this 1983 * rcu_node structure's CPUs has since come back online, 1984 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1985 * checks for this, so just call it unconditionally). 1986 */ 1987 if (rnp->wait_blkd_tasks && 1988 (!rcu_preempt_has_tasks(rnp) || 1989 rnp->qsmaskinit)) { 1990 rnp->wait_blkd_tasks = false; 1991 rcu_cleanup_dead_rnp(rnp); 1992 } 1993 1994 raw_spin_unlock_irq_rcu_node(rnp); 1995 } 1996 1997 /* 1998 * Set the quiescent-state-needed bits in all the rcu_node 1999 * structures for all currently online CPUs in breadth-first order, 2000 * starting from the root rcu_node structure, relying on the layout 2001 * of the tree within the rsp->node[] array. Note that other CPUs 2002 * will access only the leaves of the hierarchy, thus seeing that no 2003 * grace period is in progress, at least until the corresponding 2004 * leaf node has been initialized. 2005 * 2006 * The grace period cannot complete until the initialization 2007 * process finishes, because this kthread handles both. 2008 */ 2009 rcu_for_each_node_breadth_first(rsp, rnp) { 2010 rcu_gp_slow(rsp, gp_init_delay); 2011 raw_spin_lock_irq_rcu_node(rnp); 2012 rdp = this_cpu_ptr(rsp->rda); 2013 rcu_preempt_check_blocked_tasks(rnp); 2014 rnp->qsmask = rnp->qsmaskinit; 2015 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2016 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2017 WRITE_ONCE(rnp->completed, rsp->completed); 2018 if (rnp == rdp->mynode) 2019 (void)__note_gp_changes(rsp, rnp, rdp); 2020 rcu_preempt_boost_start_gp(rnp); 2021 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2022 rnp->level, rnp->grplo, 2023 rnp->grphi, rnp->qsmask); 2024 raw_spin_unlock_irq_rcu_node(rnp); 2025 cond_resched_rcu_qs(); 2026 WRITE_ONCE(rsp->gp_activity, jiffies); 2027 } 2028 2029 return true; 2030 } 2031 2032 /* 2033 * Helper function for wait_event_interruptible_timeout() wakeup 2034 * at force-quiescent-state time. 2035 */ 2036 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2037 { 2038 struct rcu_node *rnp = rcu_get_root(rsp); 2039 2040 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2041 *gfp = READ_ONCE(rsp->gp_flags); 2042 if (*gfp & RCU_GP_FLAG_FQS) 2043 return true; 2044 2045 /* The current grace period has completed. */ 2046 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2047 return true; 2048 2049 return false; 2050 } 2051 2052 /* 2053 * Do one round of quiescent-state forcing. 2054 */ 2055 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2056 { 2057 bool isidle = false; 2058 unsigned long maxj; 2059 struct rcu_node *rnp = rcu_get_root(rsp); 2060 2061 WRITE_ONCE(rsp->gp_activity, jiffies); 2062 rsp->n_force_qs++; 2063 if (first_time) { 2064 /* Collect dyntick-idle snapshots. */ 2065 if (is_sysidle_rcu_state(rsp)) { 2066 isidle = true; 2067 maxj = jiffies - ULONG_MAX / 4; 2068 } 2069 force_qs_rnp(rsp, dyntick_save_progress_counter, 2070 &isidle, &maxj); 2071 rcu_sysidle_report_gp(rsp, isidle, maxj); 2072 } else { 2073 /* Handle dyntick-idle and offline CPUs. */ 2074 isidle = true; 2075 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 2076 } 2077 /* Clear flag to prevent immediate re-entry. */ 2078 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2079 raw_spin_lock_irq_rcu_node(rnp); 2080 WRITE_ONCE(rsp->gp_flags, 2081 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2082 raw_spin_unlock_irq_rcu_node(rnp); 2083 } 2084 } 2085 2086 /* 2087 * Clean up after the old grace period. 2088 */ 2089 static void rcu_gp_cleanup(struct rcu_state *rsp) 2090 { 2091 unsigned long gp_duration; 2092 bool needgp = false; 2093 int nocb = 0; 2094 struct rcu_data *rdp; 2095 struct rcu_node *rnp = rcu_get_root(rsp); 2096 struct swait_queue_head *sq; 2097 2098 WRITE_ONCE(rsp->gp_activity, jiffies); 2099 raw_spin_lock_irq_rcu_node(rnp); 2100 gp_duration = jiffies - rsp->gp_start; 2101 if (gp_duration > rsp->gp_max) 2102 rsp->gp_max = gp_duration; 2103 2104 /* 2105 * We know the grace period is complete, but to everyone else 2106 * it appears to still be ongoing. But it is also the case 2107 * that to everyone else it looks like there is nothing that 2108 * they can do to advance the grace period. It is therefore 2109 * safe for us to drop the lock in order to mark the grace 2110 * period as completed in all of the rcu_node structures. 2111 */ 2112 raw_spin_unlock_irq_rcu_node(rnp); 2113 2114 /* 2115 * Propagate new ->completed value to rcu_node structures so 2116 * that other CPUs don't have to wait until the start of the next 2117 * grace period to process their callbacks. This also avoids 2118 * some nasty RCU grace-period initialization races by forcing 2119 * the end of the current grace period to be completely recorded in 2120 * all of the rcu_node structures before the beginning of the next 2121 * grace period is recorded in any of the rcu_node structures. 2122 */ 2123 rcu_for_each_node_breadth_first(rsp, rnp) { 2124 raw_spin_lock_irq_rcu_node(rnp); 2125 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2126 WARN_ON_ONCE(rnp->qsmask); 2127 WRITE_ONCE(rnp->completed, rsp->gpnum); 2128 rdp = this_cpu_ptr(rsp->rda); 2129 if (rnp == rdp->mynode) 2130 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2131 /* smp_mb() provided by prior unlock-lock pair. */ 2132 nocb += rcu_future_gp_cleanup(rsp, rnp); 2133 sq = rcu_nocb_gp_get(rnp); 2134 raw_spin_unlock_irq_rcu_node(rnp); 2135 rcu_nocb_gp_cleanup(sq); 2136 cond_resched_rcu_qs(); 2137 WRITE_ONCE(rsp->gp_activity, jiffies); 2138 rcu_gp_slow(rsp, gp_cleanup_delay); 2139 } 2140 rnp = rcu_get_root(rsp); 2141 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2142 rcu_nocb_gp_set(rnp, nocb); 2143 2144 /* Declare grace period done. */ 2145 WRITE_ONCE(rsp->completed, rsp->gpnum); 2146 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2147 rsp->gp_state = RCU_GP_IDLE; 2148 rdp = this_cpu_ptr(rsp->rda); 2149 /* Advance CBs to reduce false positives below. */ 2150 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2151 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2152 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2153 trace_rcu_grace_period(rsp->name, 2154 READ_ONCE(rsp->gpnum), 2155 TPS("newreq")); 2156 } 2157 raw_spin_unlock_irq_rcu_node(rnp); 2158 } 2159 2160 /* 2161 * Body of kthread that handles grace periods. 2162 */ 2163 static int __noreturn rcu_gp_kthread(void *arg) 2164 { 2165 bool first_gp_fqs; 2166 int gf; 2167 unsigned long j; 2168 int ret; 2169 struct rcu_state *rsp = arg; 2170 struct rcu_node *rnp = rcu_get_root(rsp); 2171 2172 rcu_bind_gp_kthread(); 2173 for (;;) { 2174 2175 /* Handle grace-period start. */ 2176 for (;;) { 2177 trace_rcu_grace_period(rsp->name, 2178 READ_ONCE(rsp->gpnum), 2179 TPS("reqwait")); 2180 rsp->gp_state = RCU_GP_WAIT_GPS; 2181 swait_event_interruptible(rsp->gp_wq, 2182 READ_ONCE(rsp->gp_flags) & 2183 RCU_GP_FLAG_INIT); 2184 rsp->gp_state = RCU_GP_DONE_GPS; 2185 /* Locking provides needed memory barrier. */ 2186 if (rcu_gp_init(rsp)) 2187 break; 2188 cond_resched_rcu_qs(); 2189 WRITE_ONCE(rsp->gp_activity, jiffies); 2190 WARN_ON(signal_pending(current)); 2191 trace_rcu_grace_period(rsp->name, 2192 READ_ONCE(rsp->gpnum), 2193 TPS("reqwaitsig")); 2194 } 2195 2196 /* Handle quiescent-state forcing. */ 2197 first_gp_fqs = true; 2198 j = jiffies_till_first_fqs; 2199 if (j > HZ) { 2200 j = HZ; 2201 jiffies_till_first_fqs = HZ; 2202 } 2203 ret = 0; 2204 for (;;) { 2205 if (!ret) { 2206 rsp->jiffies_force_qs = jiffies + j; 2207 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2208 jiffies + 3 * j); 2209 } 2210 trace_rcu_grace_period(rsp->name, 2211 READ_ONCE(rsp->gpnum), 2212 TPS("fqswait")); 2213 rsp->gp_state = RCU_GP_WAIT_FQS; 2214 ret = swait_event_interruptible_timeout(rsp->gp_wq, 2215 rcu_gp_fqs_check_wake(rsp, &gf), j); 2216 rsp->gp_state = RCU_GP_DOING_FQS; 2217 /* Locking provides needed memory barriers. */ 2218 /* If grace period done, leave loop. */ 2219 if (!READ_ONCE(rnp->qsmask) && 2220 !rcu_preempt_blocked_readers_cgp(rnp)) 2221 break; 2222 /* If time for quiescent-state forcing, do it. */ 2223 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2224 (gf & RCU_GP_FLAG_FQS)) { 2225 trace_rcu_grace_period(rsp->name, 2226 READ_ONCE(rsp->gpnum), 2227 TPS("fqsstart")); 2228 rcu_gp_fqs(rsp, first_gp_fqs); 2229 first_gp_fqs = false; 2230 trace_rcu_grace_period(rsp->name, 2231 READ_ONCE(rsp->gpnum), 2232 TPS("fqsend")); 2233 cond_resched_rcu_qs(); 2234 WRITE_ONCE(rsp->gp_activity, jiffies); 2235 ret = 0; /* Force full wait till next FQS. */ 2236 j = jiffies_till_next_fqs; 2237 if (j > HZ) { 2238 j = HZ; 2239 jiffies_till_next_fqs = HZ; 2240 } else if (j < 1) { 2241 j = 1; 2242 jiffies_till_next_fqs = 1; 2243 } 2244 } else { 2245 /* Deal with stray signal. */ 2246 cond_resched_rcu_qs(); 2247 WRITE_ONCE(rsp->gp_activity, jiffies); 2248 WARN_ON(signal_pending(current)); 2249 trace_rcu_grace_period(rsp->name, 2250 READ_ONCE(rsp->gpnum), 2251 TPS("fqswaitsig")); 2252 ret = 1; /* Keep old FQS timing. */ 2253 j = jiffies; 2254 if (time_after(jiffies, rsp->jiffies_force_qs)) 2255 j = 1; 2256 else 2257 j = rsp->jiffies_force_qs - j; 2258 } 2259 } 2260 2261 /* Handle grace-period end. */ 2262 rsp->gp_state = RCU_GP_CLEANUP; 2263 rcu_gp_cleanup(rsp); 2264 rsp->gp_state = RCU_GP_CLEANED; 2265 } 2266 } 2267 2268 /* 2269 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2270 * in preparation for detecting the next grace period. The caller must hold 2271 * the root node's ->lock and hard irqs must be disabled. 2272 * 2273 * Note that it is legal for a dying CPU (which is marked as offline) to 2274 * invoke this function. This can happen when the dying CPU reports its 2275 * quiescent state. 2276 * 2277 * Returns true if the grace-period kthread must be awakened. 2278 */ 2279 static bool 2280 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2281 struct rcu_data *rdp) 2282 { 2283 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2284 /* 2285 * Either we have not yet spawned the grace-period 2286 * task, this CPU does not need another grace period, 2287 * or a grace period is already in progress. 2288 * Either way, don't start a new grace period. 2289 */ 2290 return false; 2291 } 2292 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2293 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2294 TPS("newreq")); 2295 2296 /* 2297 * We can't do wakeups while holding the rnp->lock, as that 2298 * could cause possible deadlocks with the rq->lock. Defer 2299 * the wakeup to our caller. 2300 */ 2301 return true; 2302 } 2303 2304 /* 2305 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2306 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2307 * is invoked indirectly from rcu_advance_cbs(), which would result in 2308 * endless recursion -- or would do so if it wasn't for the self-deadlock 2309 * that is encountered beforehand. 2310 * 2311 * Returns true if the grace-period kthread needs to be awakened. 2312 */ 2313 static bool rcu_start_gp(struct rcu_state *rsp) 2314 { 2315 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2316 struct rcu_node *rnp = rcu_get_root(rsp); 2317 bool ret = false; 2318 2319 /* 2320 * If there is no grace period in progress right now, any 2321 * callbacks we have up to this point will be satisfied by the 2322 * next grace period. Also, advancing the callbacks reduces the 2323 * probability of false positives from cpu_needs_another_gp() 2324 * resulting in pointless grace periods. So, advance callbacks 2325 * then start the grace period! 2326 */ 2327 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2328 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2329 return ret; 2330 } 2331 2332 /* 2333 * Report a full set of quiescent states to the specified rcu_state data 2334 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2335 * kthread if another grace period is required. Whether we wake 2336 * the grace-period kthread or it awakens itself for the next round 2337 * of quiescent-state forcing, that kthread will clean up after the 2338 * just-completed grace period. Note that the caller must hold rnp->lock, 2339 * which is released before return. 2340 */ 2341 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2342 __releases(rcu_get_root(rsp)->lock) 2343 { 2344 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2345 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2346 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2347 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */ 2348 } 2349 2350 /* 2351 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2352 * Allows quiescent states for a group of CPUs to be reported at one go 2353 * to the specified rcu_node structure, though all the CPUs in the group 2354 * must be represented by the same rcu_node structure (which need not be a 2355 * leaf rcu_node structure, though it often will be). The gps parameter 2356 * is the grace-period snapshot, which means that the quiescent states 2357 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2358 * must be held upon entry, and it is released before return. 2359 */ 2360 static void 2361 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2362 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2363 __releases(rnp->lock) 2364 { 2365 unsigned long oldmask = 0; 2366 struct rcu_node *rnp_c; 2367 2368 /* Walk up the rcu_node hierarchy. */ 2369 for (;;) { 2370 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2371 2372 /* 2373 * Our bit has already been cleared, or the 2374 * relevant grace period is already over, so done. 2375 */ 2376 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2377 return; 2378 } 2379 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2380 rnp->qsmask &= ~mask; 2381 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2382 mask, rnp->qsmask, rnp->level, 2383 rnp->grplo, rnp->grphi, 2384 !!rnp->gp_tasks); 2385 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2386 2387 /* Other bits still set at this level, so done. */ 2388 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2389 return; 2390 } 2391 mask = rnp->grpmask; 2392 if (rnp->parent == NULL) { 2393 2394 /* No more levels. Exit loop holding root lock. */ 2395 2396 break; 2397 } 2398 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2399 rnp_c = rnp; 2400 rnp = rnp->parent; 2401 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2402 oldmask = rnp_c->qsmask; 2403 } 2404 2405 /* 2406 * Get here if we are the last CPU to pass through a quiescent 2407 * state for this grace period. Invoke rcu_report_qs_rsp() 2408 * to clean up and start the next grace period if one is needed. 2409 */ 2410 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2411 } 2412 2413 /* 2414 * Record a quiescent state for all tasks that were previously queued 2415 * on the specified rcu_node structure and that were blocking the current 2416 * RCU grace period. The caller must hold the specified rnp->lock with 2417 * irqs disabled, and this lock is released upon return, but irqs remain 2418 * disabled. 2419 */ 2420 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2421 struct rcu_node *rnp, unsigned long flags) 2422 __releases(rnp->lock) 2423 { 2424 unsigned long gps; 2425 unsigned long mask; 2426 struct rcu_node *rnp_p; 2427 2428 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2429 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2431 return; /* Still need more quiescent states! */ 2432 } 2433 2434 rnp_p = rnp->parent; 2435 if (rnp_p == NULL) { 2436 /* 2437 * Only one rcu_node structure in the tree, so don't 2438 * try to report up to its nonexistent parent! 2439 */ 2440 rcu_report_qs_rsp(rsp, flags); 2441 return; 2442 } 2443 2444 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2445 gps = rnp->gpnum; 2446 mask = rnp->grpmask; 2447 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2448 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2449 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2450 } 2451 2452 /* 2453 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2454 * structure. This must be called from the specified CPU. 2455 */ 2456 static void 2457 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2458 { 2459 unsigned long flags; 2460 unsigned long mask; 2461 bool needwake; 2462 struct rcu_node *rnp; 2463 2464 rnp = rdp->mynode; 2465 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2466 if ((rdp->cpu_no_qs.b.norm && 2467 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2468 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2469 rdp->gpwrap) { 2470 2471 /* 2472 * The grace period in which this quiescent state was 2473 * recorded has ended, so don't report it upwards. 2474 * We will instead need a new quiescent state that lies 2475 * within the current grace period. 2476 */ 2477 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2478 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2479 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2480 return; 2481 } 2482 mask = rdp->grpmask; 2483 if ((rnp->qsmask & mask) == 0) { 2484 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2485 } else { 2486 rdp->core_needs_qs = false; 2487 2488 /* 2489 * This GP can't end until cpu checks in, so all of our 2490 * callbacks can be processed during the next GP. 2491 */ 2492 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2493 2494 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2495 /* ^^^ Released rnp->lock */ 2496 if (needwake) 2497 rcu_gp_kthread_wake(rsp); 2498 } 2499 } 2500 2501 /* 2502 * Check to see if there is a new grace period of which this CPU 2503 * is not yet aware, and if so, set up local rcu_data state for it. 2504 * Otherwise, see if this CPU has just passed through its first 2505 * quiescent state for this grace period, and record that fact if so. 2506 */ 2507 static void 2508 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2509 { 2510 /* Check for grace-period ends and beginnings. */ 2511 note_gp_changes(rsp, rdp); 2512 2513 /* 2514 * Does this CPU still need to do its part for current grace period? 2515 * If no, return and let the other CPUs do their part as well. 2516 */ 2517 if (!rdp->core_needs_qs) 2518 return; 2519 2520 /* 2521 * Was there a quiescent state since the beginning of the grace 2522 * period? If no, then exit and wait for the next call. 2523 */ 2524 if (rdp->cpu_no_qs.b.norm && 2525 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2526 return; 2527 2528 /* 2529 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2530 * judge of that). 2531 */ 2532 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2533 } 2534 2535 /* 2536 * Send the specified CPU's RCU callbacks to the orphanage. The 2537 * specified CPU must be offline, and the caller must hold the 2538 * ->orphan_lock. 2539 */ 2540 static void 2541 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2542 struct rcu_node *rnp, struct rcu_data *rdp) 2543 { 2544 /* No-CBs CPUs do not have orphanable callbacks. */ 2545 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2546 return; 2547 2548 /* 2549 * Orphan the callbacks. First adjust the counts. This is safe 2550 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2551 * cannot be running now. Thus no memory barrier is required. 2552 */ 2553 if (rdp->nxtlist != NULL) { 2554 rsp->qlen_lazy += rdp->qlen_lazy; 2555 rsp->qlen += rdp->qlen; 2556 rdp->n_cbs_orphaned += rdp->qlen; 2557 rdp->qlen_lazy = 0; 2558 WRITE_ONCE(rdp->qlen, 0); 2559 } 2560 2561 /* 2562 * Next, move those callbacks still needing a grace period to 2563 * the orphanage, where some other CPU will pick them up. 2564 * Some of the callbacks might have gone partway through a grace 2565 * period, but that is too bad. They get to start over because we 2566 * cannot assume that grace periods are synchronized across CPUs. 2567 * We don't bother updating the ->nxttail[] array yet, instead 2568 * we just reset the whole thing later on. 2569 */ 2570 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2571 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2572 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2573 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2574 } 2575 2576 /* 2577 * Then move the ready-to-invoke callbacks to the orphanage, 2578 * where some other CPU will pick them up. These will not be 2579 * required to pass though another grace period: They are done. 2580 */ 2581 if (rdp->nxtlist != NULL) { 2582 *rsp->orphan_donetail = rdp->nxtlist; 2583 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2584 } 2585 2586 /* 2587 * Finally, initialize the rcu_data structure's list to empty and 2588 * disallow further callbacks on this CPU. 2589 */ 2590 init_callback_list(rdp); 2591 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2592 } 2593 2594 /* 2595 * Adopt the RCU callbacks from the specified rcu_state structure's 2596 * orphanage. The caller must hold the ->orphan_lock. 2597 */ 2598 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2599 { 2600 int i; 2601 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2602 2603 /* No-CBs CPUs are handled specially. */ 2604 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2605 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2606 return; 2607 2608 /* Do the accounting first. */ 2609 rdp->qlen_lazy += rsp->qlen_lazy; 2610 rdp->qlen += rsp->qlen; 2611 rdp->n_cbs_adopted += rsp->qlen; 2612 if (rsp->qlen_lazy != rsp->qlen) 2613 rcu_idle_count_callbacks_posted(); 2614 rsp->qlen_lazy = 0; 2615 rsp->qlen = 0; 2616 2617 /* 2618 * We do not need a memory barrier here because the only way we 2619 * can get here if there is an rcu_barrier() in flight is if 2620 * we are the task doing the rcu_barrier(). 2621 */ 2622 2623 /* First adopt the ready-to-invoke callbacks. */ 2624 if (rsp->orphan_donelist != NULL) { 2625 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2626 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2627 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2628 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2629 rdp->nxttail[i] = rsp->orphan_donetail; 2630 rsp->orphan_donelist = NULL; 2631 rsp->orphan_donetail = &rsp->orphan_donelist; 2632 } 2633 2634 /* And then adopt the callbacks that still need a grace period. */ 2635 if (rsp->orphan_nxtlist != NULL) { 2636 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2637 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2638 rsp->orphan_nxtlist = NULL; 2639 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2640 } 2641 } 2642 2643 /* 2644 * Trace the fact that this CPU is going offline. 2645 */ 2646 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2647 { 2648 RCU_TRACE(unsigned long mask); 2649 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2650 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2651 2652 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2653 return; 2654 2655 RCU_TRACE(mask = rdp->grpmask); 2656 trace_rcu_grace_period(rsp->name, 2657 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2658 TPS("cpuofl")); 2659 } 2660 2661 /* 2662 * All CPUs for the specified rcu_node structure have gone offline, 2663 * and all tasks that were preempted within an RCU read-side critical 2664 * section while running on one of those CPUs have since exited their RCU 2665 * read-side critical section. Some other CPU is reporting this fact with 2666 * the specified rcu_node structure's ->lock held and interrupts disabled. 2667 * This function therefore goes up the tree of rcu_node structures, 2668 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2669 * the leaf rcu_node structure's ->qsmaskinit field has already been 2670 * updated 2671 * 2672 * This function does check that the specified rcu_node structure has 2673 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2674 * prematurely. That said, invoking it after the fact will cost you 2675 * a needless lock acquisition. So once it has done its work, don't 2676 * invoke it again. 2677 */ 2678 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2679 { 2680 long mask; 2681 struct rcu_node *rnp = rnp_leaf; 2682 2683 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2684 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2685 return; 2686 for (;;) { 2687 mask = rnp->grpmask; 2688 rnp = rnp->parent; 2689 if (!rnp) 2690 break; 2691 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2692 rnp->qsmaskinit &= ~mask; 2693 rnp->qsmask &= ~mask; 2694 if (rnp->qsmaskinit) { 2695 raw_spin_unlock_rcu_node(rnp); 2696 /* irqs remain disabled. */ 2697 return; 2698 } 2699 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2700 } 2701 } 2702 2703 /* 2704 * The CPU has been completely removed, and some other CPU is reporting 2705 * this fact from process context. Do the remainder of the cleanup, 2706 * including orphaning the outgoing CPU's RCU callbacks, and also 2707 * adopting them. There can only be one CPU hotplug operation at a time, 2708 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2709 */ 2710 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2711 { 2712 unsigned long flags; 2713 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2714 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2715 2716 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2717 return; 2718 2719 /* Adjust any no-longer-needed kthreads. */ 2720 rcu_boost_kthread_setaffinity(rnp, -1); 2721 2722 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2723 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2724 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2725 rcu_adopt_orphan_cbs(rsp, flags); 2726 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2727 2728 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2729 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2730 cpu, rdp->qlen, rdp->nxtlist); 2731 } 2732 2733 /* 2734 * Invoke any RCU callbacks that have made it to the end of their grace 2735 * period. Thottle as specified by rdp->blimit. 2736 */ 2737 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2738 { 2739 unsigned long flags; 2740 struct rcu_head *next, *list, **tail; 2741 long bl, count, count_lazy; 2742 int i; 2743 2744 /* If no callbacks are ready, just return. */ 2745 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2746 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2747 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist), 2748 need_resched(), is_idle_task(current), 2749 rcu_is_callbacks_kthread()); 2750 return; 2751 } 2752 2753 /* 2754 * Extract the list of ready callbacks, disabling to prevent 2755 * races with call_rcu() from interrupt handlers. 2756 */ 2757 local_irq_save(flags); 2758 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2759 bl = rdp->blimit; 2760 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2761 list = rdp->nxtlist; 2762 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2763 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2764 tail = rdp->nxttail[RCU_DONE_TAIL]; 2765 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2766 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2767 rdp->nxttail[i] = &rdp->nxtlist; 2768 local_irq_restore(flags); 2769 2770 /* Invoke callbacks. */ 2771 count = count_lazy = 0; 2772 while (list) { 2773 next = list->next; 2774 prefetch(next); 2775 debug_rcu_head_unqueue(list); 2776 if (__rcu_reclaim(rsp->name, list)) 2777 count_lazy++; 2778 list = next; 2779 /* Stop only if limit reached and CPU has something to do. */ 2780 if (++count >= bl && 2781 (need_resched() || 2782 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2783 break; 2784 } 2785 2786 local_irq_save(flags); 2787 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2788 is_idle_task(current), 2789 rcu_is_callbacks_kthread()); 2790 2791 /* Update count, and requeue any remaining callbacks. */ 2792 if (list != NULL) { 2793 *tail = rdp->nxtlist; 2794 rdp->nxtlist = list; 2795 for (i = 0; i < RCU_NEXT_SIZE; i++) 2796 if (&rdp->nxtlist == rdp->nxttail[i]) 2797 rdp->nxttail[i] = tail; 2798 else 2799 break; 2800 } 2801 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2802 rdp->qlen_lazy -= count_lazy; 2803 WRITE_ONCE(rdp->qlen, rdp->qlen - count); 2804 rdp->n_cbs_invoked += count; 2805 2806 /* Reinstate batch limit if we have worked down the excess. */ 2807 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2808 rdp->blimit = blimit; 2809 2810 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2811 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2812 rdp->qlen_last_fqs_check = 0; 2813 rdp->n_force_qs_snap = rsp->n_force_qs; 2814 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2815 rdp->qlen_last_fqs_check = rdp->qlen; 2816 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2817 2818 local_irq_restore(flags); 2819 2820 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2821 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2822 invoke_rcu_core(); 2823 } 2824 2825 /* 2826 * Check to see if this CPU is in a non-context-switch quiescent state 2827 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2828 * Also schedule RCU core processing. 2829 * 2830 * This function must be called from hardirq context. It is normally 2831 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2832 * false, there is no point in invoking rcu_check_callbacks(). 2833 */ 2834 void rcu_check_callbacks(int user) 2835 { 2836 trace_rcu_utilization(TPS("Start scheduler-tick")); 2837 increment_cpu_stall_ticks(); 2838 if (user || rcu_is_cpu_rrupt_from_idle()) { 2839 2840 /* 2841 * Get here if this CPU took its interrupt from user 2842 * mode or from the idle loop, and if this is not a 2843 * nested interrupt. In this case, the CPU is in 2844 * a quiescent state, so note it. 2845 * 2846 * No memory barrier is required here because both 2847 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2848 * variables that other CPUs neither access nor modify, 2849 * at least not while the corresponding CPU is online. 2850 */ 2851 2852 rcu_sched_qs(); 2853 rcu_bh_qs(); 2854 2855 } else if (!in_softirq()) { 2856 2857 /* 2858 * Get here if this CPU did not take its interrupt from 2859 * softirq, in other words, if it is not interrupting 2860 * a rcu_bh read-side critical section. This is an _bh 2861 * critical section, so note it. 2862 */ 2863 2864 rcu_bh_qs(); 2865 } 2866 rcu_preempt_check_callbacks(); 2867 if (rcu_pending()) 2868 invoke_rcu_core(); 2869 if (user) 2870 rcu_note_voluntary_context_switch(current); 2871 trace_rcu_utilization(TPS("End scheduler-tick")); 2872 } 2873 2874 /* 2875 * Scan the leaf rcu_node structures, processing dyntick state for any that 2876 * have not yet encountered a quiescent state, using the function specified. 2877 * Also initiate boosting for any threads blocked on the root rcu_node. 2878 * 2879 * The caller must have suppressed start of new grace periods. 2880 */ 2881 static void force_qs_rnp(struct rcu_state *rsp, 2882 int (*f)(struct rcu_data *rsp, bool *isidle, 2883 unsigned long *maxj), 2884 bool *isidle, unsigned long *maxj) 2885 { 2886 int cpu; 2887 unsigned long flags; 2888 unsigned long mask; 2889 struct rcu_node *rnp; 2890 2891 rcu_for_each_leaf_node(rsp, rnp) { 2892 cond_resched_rcu_qs(); 2893 mask = 0; 2894 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2895 if (rnp->qsmask == 0) { 2896 if (rcu_state_p == &rcu_sched_state || 2897 rsp != rcu_state_p || 2898 rcu_preempt_blocked_readers_cgp(rnp)) { 2899 /* 2900 * No point in scanning bits because they 2901 * are all zero. But we might need to 2902 * priority-boost blocked readers. 2903 */ 2904 rcu_initiate_boost(rnp, flags); 2905 /* rcu_initiate_boost() releases rnp->lock */ 2906 continue; 2907 } 2908 if (rnp->parent && 2909 (rnp->parent->qsmask & rnp->grpmask)) { 2910 /* 2911 * Race between grace-period 2912 * initialization and task exiting RCU 2913 * read-side critical section: Report. 2914 */ 2915 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2916 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2917 continue; 2918 } 2919 } 2920 for_each_leaf_node_possible_cpu(rnp, cpu) { 2921 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2922 if ((rnp->qsmask & bit) != 0) { 2923 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2924 mask |= bit; 2925 } 2926 } 2927 if (mask != 0) { 2928 /* Idle/offline CPUs, report (releases rnp->lock. */ 2929 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2930 } else { 2931 /* Nothing to do here, so just drop the lock. */ 2932 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2933 } 2934 } 2935 } 2936 2937 /* 2938 * Force quiescent states on reluctant CPUs, and also detect which 2939 * CPUs are in dyntick-idle mode. 2940 */ 2941 static void force_quiescent_state(struct rcu_state *rsp) 2942 { 2943 unsigned long flags; 2944 bool ret; 2945 struct rcu_node *rnp; 2946 struct rcu_node *rnp_old = NULL; 2947 2948 /* Funnel through hierarchy to reduce memory contention. */ 2949 rnp = __this_cpu_read(rsp->rda->mynode); 2950 for (; rnp != NULL; rnp = rnp->parent) { 2951 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2952 !raw_spin_trylock(&rnp->fqslock); 2953 if (rnp_old != NULL) 2954 raw_spin_unlock(&rnp_old->fqslock); 2955 if (ret) { 2956 rsp->n_force_qs_lh++; 2957 return; 2958 } 2959 rnp_old = rnp; 2960 } 2961 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2962 2963 /* Reached the root of the rcu_node tree, acquire lock. */ 2964 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2965 raw_spin_unlock(&rnp_old->fqslock); 2966 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2967 rsp->n_force_qs_lh++; 2968 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2969 return; /* Someone beat us to it. */ 2970 } 2971 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2972 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2973 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */ 2974 } 2975 2976 /* 2977 * This does the RCU core processing work for the specified rcu_state 2978 * and rcu_data structures. This may be called only from the CPU to 2979 * whom the rdp belongs. 2980 */ 2981 static void 2982 __rcu_process_callbacks(struct rcu_state *rsp) 2983 { 2984 unsigned long flags; 2985 bool needwake; 2986 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2987 2988 WARN_ON_ONCE(rdp->beenonline == 0); 2989 2990 /* Update RCU state based on any recent quiescent states. */ 2991 rcu_check_quiescent_state(rsp, rdp); 2992 2993 /* Does this CPU require a not-yet-started grace period? */ 2994 local_irq_save(flags); 2995 if (cpu_needs_another_gp(rsp, rdp)) { 2996 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 2997 needwake = rcu_start_gp(rsp); 2998 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2999 if (needwake) 3000 rcu_gp_kthread_wake(rsp); 3001 } else { 3002 local_irq_restore(flags); 3003 } 3004 3005 /* If there are callbacks ready, invoke them. */ 3006 if (cpu_has_callbacks_ready_to_invoke(rdp)) 3007 invoke_rcu_callbacks(rsp, rdp); 3008 3009 /* Do any needed deferred wakeups of rcuo kthreads. */ 3010 do_nocb_deferred_wakeup(rdp); 3011 } 3012 3013 /* 3014 * Do RCU core processing for the current CPU. 3015 */ 3016 static void rcu_process_callbacks(struct softirq_action *unused) 3017 { 3018 struct rcu_state *rsp; 3019 3020 if (cpu_is_offline(smp_processor_id())) 3021 return; 3022 trace_rcu_utilization(TPS("Start RCU core")); 3023 for_each_rcu_flavor(rsp) 3024 __rcu_process_callbacks(rsp); 3025 trace_rcu_utilization(TPS("End RCU core")); 3026 } 3027 3028 /* 3029 * Schedule RCU callback invocation. If the specified type of RCU 3030 * does not support RCU priority boosting, just do a direct call, 3031 * otherwise wake up the per-CPU kernel kthread. Note that because we 3032 * are running on the current CPU with softirqs disabled, the 3033 * rcu_cpu_kthread_task cannot disappear out from under us. 3034 */ 3035 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3036 { 3037 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3038 return; 3039 if (likely(!rsp->boost)) { 3040 rcu_do_batch(rsp, rdp); 3041 return; 3042 } 3043 invoke_rcu_callbacks_kthread(); 3044 } 3045 3046 static void invoke_rcu_core(void) 3047 { 3048 if (cpu_online(smp_processor_id())) 3049 raise_softirq(RCU_SOFTIRQ); 3050 } 3051 3052 /* 3053 * Handle any core-RCU processing required by a call_rcu() invocation. 3054 */ 3055 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3056 struct rcu_head *head, unsigned long flags) 3057 { 3058 bool needwake; 3059 3060 /* 3061 * If called from an extended quiescent state, invoke the RCU 3062 * core in order to force a re-evaluation of RCU's idleness. 3063 */ 3064 if (!rcu_is_watching()) 3065 invoke_rcu_core(); 3066 3067 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3068 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3069 return; 3070 3071 /* 3072 * Force the grace period if too many callbacks or too long waiting. 3073 * Enforce hysteresis, and don't invoke force_quiescent_state() 3074 * if some other CPU has recently done so. Also, don't bother 3075 * invoking force_quiescent_state() if the newly enqueued callback 3076 * is the only one waiting for a grace period to complete. 3077 */ 3078 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 3079 3080 /* Are we ignoring a completed grace period? */ 3081 note_gp_changes(rsp, rdp); 3082 3083 /* Start a new grace period if one not already started. */ 3084 if (!rcu_gp_in_progress(rsp)) { 3085 struct rcu_node *rnp_root = rcu_get_root(rsp); 3086 3087 raw_spin_lock_rcu_node(rnp_root); 3088 needwake = rcu_start_gp(rsp); 3089 raw_spin_unlock_rcu_node(rnp_root); 3090 if (needwake) 3091 rcu_gp_kthread_wake(rsp); 3092 } else { 3093 /* Give the grace period a kick. */ 3094 rdp->blimit = LONG_MAX; 3095 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3096 *rdp->nxttail[RCU_DONE_TAIL] != head) 3097 force_quiescent_state(rsp); 3098 rdp->n_force_qs_snap = rsp->n_force_qs; 3099 rdp->qlen_last_fqs_check = rdp->qlen; 3100 } 3101 } 3102 } 3103 3104 /* 3105 * RCU callback function to leak a callback. 3106 */ 3107 static void rcu_leak_callback(struct rcu_head *rhp) 3108 { 3109 } 3110 3111 /* 3112 * Helper function for call_rcu() and friends. The cpu argument will 3113 * normally be -1, indicating "currently running CPU". It may specify 3114 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3115 * is expected to specify a CPU. 3116 */ 3117 static void 3118 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3119 struct rcu_state *rsp, int cpu, bool lazy) 3120 { 3121 unsigned long flags; 3122 struct rcu_data *rdp; 3123 3124 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 3125 if (debug_rcu_head_queue(head)) { 3126 /* Probable double call_rcu(), so leak the callback. */ 3127 WRITE_ONCE(head->func, rcu_leak_callback); 3128 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3129 return; 3130 } 3131 head->func = func; 3132 head->next = NULL; 3133 3134 /* 3135 * Opportunistically note grace-period endings and beginnings. 3136 * Note that we might see a beginning right after we see an 3137 * end, but never vice versa, since this CPU has to pass through 3138 * a quiescent state betweentimes. 3139 */ 3140 local_irq_save(flags); 3141 rdp = this_cpu_ptr(rsp->rda); 3142 3143 /* Add the callback to our list. */ 3144 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 3145 int offline; 3146 3147 if (cpu != -1) 3148 rdp = per_cpu_ptr(rsp->rda, cpu); 3149 if (likely(rdp->mynode)) { 3150 /* Post-boot, so this should be for a no-CBs CPU. */ 3151 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3152 WARN_ON_ONCE(offline); 3153 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3154 local_irq_restore(flags); 3155 return; 3156 } 3157 /* 3158 * Very early boot, before rcu_init(). Initialize if needed 3159 * and then drop through to queue the callback. 3160 */ 3161 BUG_ON(cpu != -1); 3162 WARN_ON_ONCE(!rcu_is_watching()); 3163 if (!likely(rdp->nxtlist)) 3164 init_default_callback_list(rdp); 3165 } 3166 WRITE_ONCE(rdp->qlen, rdp->qlen + 1); 3167 if (lazy) 3168 rdp->qlen_lazy++; 3169 else 3170 rcu_idle_count_callbacks_posted(); 3171 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3172 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3173 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3174 3175 if (__is_kfree_rcu_offset((unsigned long)func)) 3176 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3177 rdp->qlen_lazy, rdp->qlen); 3178 else 3179 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3180 3181 /* Go handle any RCU core processing required. */ 3182 __call_rcu_core(rsp, rdp, head, flags); 3183 local_irq_restore(flags); 3184 } 3185 3186 /* 3187 * Queue an RCU-sched callback for invocation after a grace period. 3188 */ 3189 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3190 { 3191 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3192 } 3193 EXPORT_SYMBOL_GPL(call_rcu_sched); 3194 3195 /* 3196 * Queue an RCU callback for invocation after a quicker grace period. 3197 */ 3198 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3199 { 3200 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3201 } 3202 EXPORT_SYMBOL_GPL(call_rcu_bh); 3203 3204 /* 3205 * Queue an RCU callback for lazy invocation after a grace period. 3206 * This will likely be later named something like "call_rcu_lazy()", 3207 * but this change will require some way of tagging the lazy RCU 3208 * callbacks in the list of pending callbacks. Until then, this 3209 * function may only be called from __kfree_rcu(). 3210 */ 3211 void kfree_call_rcu(struct rcu_head *head, 3212 rcu_callback_t func) 3213 { 3214 __call_rcu(head, func, rcu_state_p, -1, 1); 3215 } 3216 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3217 3218 /* 3219 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3220 * any blocking grace-period wait automatically implies a grace period 3221 * if there is only one CPU online at any point time during execution 3222 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3223 * occasionally incorrectly indicate that there are multiple CPUs online 3224 * when there was in fact only one the whole time, as this just adds 3225 * some overhead: RCU still operates correctly. 3226 */ 3227 static inline int rcu_blocking_is_gp(void) 3228 { 3229 int ret; 3230 3231 might_sleep(); /* Check for RCU read-side critical section. */ 3232 preempt_disable(); 3233 ret = num_online_cpus() <= 1; 3234 preempt_enable(); 3235 return ret; 3236 } 3237 3238 /** 3239 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3240 * 3241 * Control will return to the caller some time after a full rcu-sched 3242 * grace period has elapsed, in other words after all currently executing 3243 * rcu-sched read-side critical sections have completed. These read-side 3244 * critical sections are delimited by rcu_read_lock_sched() and 3245 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3246 * local_irq_disable(), and so on may be used in place of 3247 * rcu_read_lock_sched(). 3248 * 3249 * This means that all preempt_disable code sequences, including NMI and 3250 * non-threaded hardware-interrupt handlers, in progress on entry will 3251 * have completed before this primitive returns. However, this does not 3252 * guarantee that softirq handlers will have completed, since in some 3253 * kernels, these handlers can run in process context, and can block. 3254 * 3255 * Note that this guarantee implies further memory-ordering guarantees. 3256 * On systems with more than one CPU, when synchronize_sched() returns, 3257 * each CPU is guaranteed to have executed a full memory barrier since the 3258 * end of its last RCU-sched read-side critical section whose beginning 3259 * preceded the call to synchronize_sched(). In addition, each CPU having 3260 * an RCU read-side critical section that extends beyond the return from 3261 * synchronize_sched() is guaranteed to have executed a full memory barrier 3262 * after the beginning of synchronize_sched() and before the beginning of 3263 * that RCU read-side critical section. Note that these guarantees include 3264 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3265 * that are executing in the kernel. 3266 * 3267 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3268 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3269 * to have executed a full memory barrier during the execution of 3270 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3271 * again only if the system has more than one CPU). 3272 * 3273 * This primitive provides the guarantees made by the (now removed) 3274 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3275 * guarantees that rcu_read_lock() sections will have completed. 3276 * In "classic RCU", these two guarantees happen to be one and 3277 * the same, but can differ in realtime RCU implementations. 3278 */ 3279 void synchronize_sched(void) 3280 { 3281 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3282 lock_is_held(&rcu_lock_map) || 3283 lock_is_held(&rcu_sched_lock_map), 3284 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3285 if (rcu_blocking_is_gp()) 3286 return; 3287 if (rcu_gp_is_expedited()) 3288 synchronize_sched_expedited(); 3289 else 3290 wait_rcu_gp(call_rcu_sched); 3291 } 3292 EXPORT_SYMBOL_GPL(synchronize_sched); 3293 3294 /** 3295 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3296 * 3297 * Control will return to the caller some time after a full rcu_bh grace 3298 * period has elapsed, in other words after all currently executing rcu_bh 3299 * read-side critical sections have completed. RCU read-side critical 3300 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3301 * and may be nested. 3302 * 3303 * See the description of synchronize_sched() for more detailed information 3304 * on memory ordering guarantees. 3305 */ 3306 void synchronize_rcu_bh(void) 3307 { 3308 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3309 lock_is_held(&rcu_lock_map) || 3310 lock_is_held(&rcu_sched_lock_map), 3311 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3312 if (rcu_blocking_is_gp()) 3313 return; 3314 if (rcu_gp_is_expedited()) 3315 synchronize_rcu_bh_expedited(); 3316 else 3317 wait_rcu_gp(call_rcu_bh); 3318 } 3319 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3320 3321 /** 3322 * get_state_synchronize_rcu - Snapshot current RCU state 3323 * 3324 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3325 * to determine whether or not a full grace period has elapsed in the 3326 * meantime. 3327 */ 3328 unsigned long get_state_synchronize_rcu(void) 3329 { 3330 /* 3331 * Any prior manipulation of RCU-protected data must happen 3332 * before the load from ->gpnum. 3333 */ 3334 smp_mb(); /* ^^^ */ 3335 3336 /* 3337 * Make sure this load happens before the purportedly 3338 * time-consuming work between get_state_synchronize_rcu() 3339 * and cond_synchronize_rcu(). 3340 */ 3341 return smp_load_acquire(&rcu_state_p->gpnum); 3342 } 3343 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3344 3345 /** 3346 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3347 * 3348 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3349 * 3350 * If a full RCU grace period has elapsed since the earlier call to 3351 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3352 * synchronize_rcu() to wait for a full grace period. 3353 * 3354 * Yes, this function does not take counter wrap into account. But 3355 * counter wrap is harmless. If the counter wraps, we have waited for 3356 * more than 2 billion grace periods (and way more on a 64-bit system!), 3357 * so waiting for one additional grace period should be just fine. 3358 */ 3359 void cond_synchronize_rcu(unsigned long oldstate) 3360 { 3361 unsigned long newstate; 3362 3363 /* 3364 * Ensure that this load happens before any RCU-destructive 3365 * actions the caller might carry out after we return. 3366 */ 3367 newstate = smp_load_acquire(&rcu_state_p->completed); 3368 if (ULONG_CMP_GE(oldstate, newstate)) 3369 synchronize_rcu(); 3370 } 3371 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3372 3373 /** 3374 * get_state_synchronize_sched - Snapshot current RCU-sched state 3375 * 3376 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3377 * to determine whether or not a full grace period has elapsed in the 3378 * meantime. 3379 */ 3380 unsigned long get_state_synchronize_sched(void) 3381 { 3382 /* 3383 * Any prior manipulation of RCU-protected data must happen 3384 * before the load from ->gpnum. 3385 */ 3386 smp_mb(); /* ^^^ */ 3387 3388 /* 3389 * Make sure this load happens before the purportedly 3390 * time-consuming work between get_state_synchronize_sched() 3391 * and cond_synchronize_sched(). 3392 */ 3393 return smp_load_acquire(&rcu_sched_state.gpnum); 3394 } 3395 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3396 3397 /** 3398 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3399 * 3400 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3401 * 3402 * If a full RCU-sched grace period has elapsed since the earlier call to 3403 * get_state_synchronize_sched(), just return. Otherwise, invoke 3404 * synchronize_sched() to wait for a full grace period. 3405 * 3406 * Yes, this function does not take counter wrap into account. But 3407 * counter wrap is harmless. If the counter wraps, we have waited for 3408 * more than 2 billion grace periods (and way more on a 64-bit system!), 3409 * so waiting for one additional grace period should be just fine. 3410 */ 3411 void cond_synchronize_sched(unsigned long oldstate) 3412 { 3413 unsigned long newstate; 3414 3415 /* 3416 * Ensure that this load happens before any RCU-destructive 3417 * actions the caller might carry out after we return. 3418 */ 3419 newstate = smp_load_acquire(&rcu_sched_state.completed); 3420 if (ULONG_CMP_GE(oldstate, newstate)) 3421 synchronize_sched(); 3422 } 3423 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3424 3425 /* Adjust sequence number for start of update-side operation. */ 3426 static void rcu_seq_start(unsigned long *sp) 3427 { 3428 WRITE_ONCE(*sp, *sp + 1); 3429 smp_mb(); /* Ensure update-side operation after counter increment. */ 3430 WARN_ON_ONCE(!(*sp & 0x1)); 3431 } 3432 3433 /* Adjust sequence number for end of update-side operation. */ 3434 static void rcu_seq_end(unsigned long *sp) 3435 { 3436 smp_mb(); /* Ensure update-side operation before counter increment. */ 3437 WRITE_ONCE(*sp, *sp + 1); 3438 WARN_ON_ONCE(*sp & 0x1); 3439 } 3440 3441 /* Take a snapshot of the update side's sequence number. */ 3442 static unsigned long rcu_seq_snap(unsigned long *sp) 3443 { 3444 unsigned long s; 3445 3446 s = (READ_ONCE(*sp) + 3) & ~0x1; 3447 smp_mb(); /* Above access must not bleed into critical section. */ 3448 return s; 3449 } 3450 3451 /* 3452 * Given a snapshot from rcu_seq_snap(), determine whether or not a 3453 * full update-side operation has occurred. 3454 */ 3455 static bool rcu_seq_done(unsigned long *sp, unsigned long s) 3456 { 3457 return ULONG_CMP_GE(READ_ONCE(*sp), s); 3458 } 3459 3460 /* 3461 * Check to see if there is any immediate RCU-related work to be done 3462 * by the current CPU, for the specified type of RCU, returning 1 if so. 3463 * The checks are in order of increasing expense: checks that can be 3464 * carried out against CPU-local state are performed first. However, 3465 * we must check for CPU stalls first, else we might not get a chance. 3466 */ 3467 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3468 { 3469 struct rcu_node *rnp = rdp->mynode; 3470 3471 rdp->n_rcu_pending++; 3472 3473 /* Check for CPU stalls, if enabled. */ 3474 check_cpu_stall(rsp, rdp); 3475 3476 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3477 if (rcu_nohz_full_cpu(rsp)) 3478 return 0; 3479 3480 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3481 if (rcu_scheduler_fully_active && 3482 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3483 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3484 rdp->n_rp_core_needs_qs++; 3485 } else if (rdp->core_needs_qs && 3486 (!rdp->cpu_no_qs.b.norm || 3487 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 3488 rdp->n_rp_report_qs++; 3489 return 1; 3490 } 3491 3492 /* Does this CPU have callbacks ready to invoke? */ 3493 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3494 rdp->n_rp_cb_ready++; 3495 return 1; 3496 } 3497 3498 /* Has RCU gone idle with this CPU needing another grace period? */ 3499 if (cpu_needs_another_gp(rsp, rdp)) { 3500 rdp->n_rp_cpu_needs_gp++; 3501 return 1; 3502 } 3503 3504 /* Has another RCU grace period completed? */ 3505 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3506 rdp->n_rp_gp_completed++; 3507 return 1; 3508 } 3509 3510 /* Has a new RCU grace period started? */ 3511 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3512 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3513 rdp->n_rp_gp_started++; 3514 return 1; 3515 } 3516 3517 /* Does this CPU need a deferred NOCB wakeup? */ 3518 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3519 rdp->n_rp_nocb_defer_wakeup++; 3520 return 1; 3521 } 3522 3523 /* nothing to do */ 3524 rdp->n_rp_need_nothing++; 3525 return 0; 3526 } 3527 3528 /* 3529 * Check to see if there is any immediate RCU-related work to be done 3530 * by the current CPU, returning 1 if so. This function is part of the 3531 * RCU implementation; it is -not- an exported member of the RCU API. 3532 */ 3533 static int rcu_pending(void) 3534 { 3535 struct rcu_state *rsp; 3536 3537 for_each_rcu_flavor(rsp) 3538 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3539 return 1; 3540 return 0; 3541 } 3542 3543 /* 3544 * Return true if the specified CPU has any callback. If all_lazy is 3545 * non-NULL, store an indication of whether all callbacks are lazy. 3546 * (If there are no callbacks, all of them are deemed to be lazy.) 3547 */ 3548 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3549 { 3550 bool al = true; 3551 bool hc = false; 3552 struct rcu_data *rdp; 3553 struct rcu_state *rsp; 3554 3555 for_each_rcu_flavor(rsp) { 3556 rdp = this_cpu_ptr(rsp->rda); 3557 if (!rdp->nxtlist) 3558 continue; 3559 hc = true; 3560 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3561 al = false; 3562 break; 3563 } 3564 } 3565 if (all_lazy) 3566 *all_lazy = al; 3567 return hc; 3568 } 3569 3570 /* 3571 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3572 * the compiler is expected to optimize this away. 3573 */ 3574 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3575 int cpu, unsigned long done) 3576 { 3577 trace_rcu_barrier(rsp->name, s, cpu, 3578 atomic_read(&rsp->barrier_cpu_count), done); 3579 } 3580 3581 /* 3582 * RCU callback function for _rcu_barrier(). If we are last, wake 3583 * up the task executing _rcu_barrier(). 3584 */ 3585 static void rcu_barrier_callback(struct rcu_head *rhp) 3586 { 3587 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3588 struct rcu_state *rsp = rdp->rsp; 3589 3590 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3591 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 3592 complete(&rsp->barrier_completion); 3593 } else { 3594 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 3595 } 3596 } 3597 3598 /* 3599 * Called with preemption disabled, and from cross-cpu IRQ context. 3600 */ 3601 static void rcu_barrier_func(void *type) 3602 { 3603 struct rcu_state *rsp = type; 3604 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3605 3606 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 3607 atomic_inc(&rsp->barrier_cpu_count); 3608 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3609 } 3610 3611 /* 3612 * Orchestrate the specified type of RCU barrier, waiting for all 3613 * RCU callbacks of the specified type to complete. 3614 */ 3615 static void _rcu_barrier(struct rcu_state *rsp) 3616 { 3617 int cpu; 3618 struct rcu_data *rdp; 3619 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3620 3621 _rcu_barrier_trace(rsp, "Begin", -1, s); 3622 3623 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3624 mutex_lock(&rsp->barrier_mutex); 3625 3626 /* Did someone else do our work for us? */ 3627 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3628 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 3629 smp_mb(); /* caller's subsequent code after above check. */ 3630 mutex_unlock(&rsp->barrier_mutex); 3631 return; 3632 } 3633 3634 /* Mark the start of the barrier operation. */ 3635 rcu_seq_start(&rsp->barrier_sequence); 3636 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 3637 3638 /* 3639 * Initialize the count to one rather than to zero in order to 3640 * avoid a too-soon return to zero in case of a short grace period 3641 * (or preemption of this task). Exclude CPU-hotplug operations 3642 * to ensure that no offline CPU has callbacks queued. 3643 */ 3644 init_completion(&rsp->barrier_completion); 3645 atomic_set(&rsp->barrier_cpu_count, 1); 3646 get_online_cpus(); 3647 3648 /* 3649 * Force each CPU with callbacks to register a new callback. 3650 * When that callback is invoked, we will know that all of the 3651 * corresponding CPU's preceding callbacks have been invoked. 3652 */ 3653 for_each_possible_cpu(cpu) { 3654 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3655 continue; 3656 rdp = per_cpu_ptr(rsp->rda, cpu); 3657 if (rcu_is_nocb_cpu(cpu)) { 3658 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3659 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3660 rsp->barrier_sequence); 3661 } else { 3662 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3663 rsp->barrier_sequence); 3664 smp_mb__before_atomic(); 3665 atomic_inc(&rsp->barrier_cpu_count); 3666 __call_rcu(&rdp->barrier_head, 3667 rcu_barrier_callback, rsp, cpu, 0); 3668 } 3669 } else if (READ_ONCE(rdp->qlen)) { 3670 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3671 rsp->barrier_sequence); 3672 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3673 } else { 3674 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3675 rsp->barrier_sequence); 3676 } 3677 } 3678 put_online_cpus(); 3679 3680 /* 3681 * Now that we have an rcu_barrier_callback() callback on each 3682 * CPU, and thus each counted, remove the initial count. 3683 */ 3684 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3685 complete(&rsp->barrier_completion); 3686 3687 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3688 wait_for_completion(&rsp->barrier_completion); 3689 3690 /* Mark the end of the barrier operation. */ 3691 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 3692 rcu_seq_end(&rsp->barrier_sequence); 3693 3694 /* Other rcu_barrier() invocations can now safely proceed. */ 3695 mutex_unlock(&rsp->barrier_mutex); 3696 } 3697 3698 /** 3699 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3700 */ 3701 void rcu_barrier_bh(void) 3702 { 3703 _rcu_barrier(&rcu_bh_state); 3704 } 3705 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3706 3707 /** 3708 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3709 */ 3710 void rcu_barrier_sched(void) 3711 { 3712 _rcu_barrier(&rcu_sched_state); 3713 } 3714 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3715 3716 /* 3717 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3718 * first CPU in a given leaf rcu_node structure coming online. The caller 3719 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3720 * disabled. 3721 */ 3722 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3723 { 3724 long mask; 3725 struct rcu_node *rnp = rnp_leaf; 3726 3727 for (;;) { 3728 mask = rnp->grpmask; 3729 rnp = rnp->parent; 3730 if (rnp == NULL) 3731 return; 3732 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3733 rnp->qsmaskinit |= mask; 3734 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3735 } 3736 } 3737 3738 /* 3739 * Do boot-time initialization of a CPU's per-CPU RCU data. 3740 */ 3741 static void __init 3742 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3743 { 3744 unsigned long flags; 3745 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3746 struct rcu_node *rnp = rcu_get_root(rsp); 3747 3748 /* Set up local state, ensuring consistent view of global state. */ 3749 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3750 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3751 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3752 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3753 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3754 rdp->cpu = cpu; 3755 rdp->rsp = rsp; 3756 rcu_boot_init_nocb_percpu_data(rdp); 3757 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3758 } 3759 3760 /* 3761 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3762 * offline event can be happening at a given time. Note also that we 3763 * can accept some slop in the rsp->completed access due to the fact 3764 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3765 */ 3766 static void 3767 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3768 { 3769 unsigned long flags; 3770 unsigned long mask; 3771 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3772 struct rcu_node *rnp = rcu_get_root(rsp); 3773 3774 /* Set up local state, ensuring consistent view of global state. */ 3775 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3776 rdp->qlen_last_fqs_check = 0; 3777 rdp->n_force_qs_snap = rsp->n_force_qs; 3778 rdp->blimit = blimit; 3779 if (!rdp->nxtlist) 3780 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3781 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3782 rcu_sysidle_init_percpu_data(rdp->dynticks); 3783 atomic_set(&rdp->dynticks->dynticks, 3784 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3785 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3786 3787 /* 3788 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3789 * propagation up the rcu_node tree will happen at the beginning 3790 * of the next grace period. 3791 */ 3792 rnp = rdp->mynode; 3793 mask = rdp->grpmask; 3794 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3795 rnp->qsmaskinitnext |= mask; 3796 rnp->expmaskinitnext |= mask; 3797 if (!rdp->beenonline) 3798 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 3799 rdp->beenonline = true; /* We have now been online. */ 3800 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3801 rdp->completed = rnp->completed; 3802 rdp->cpu_no_qs.b.norm = true; 3803 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); 3804 rdp->core_needs_qs = false; 3805 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3806 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3807 } 3808 3809 int rcutree_prepare_cpu(unsigned int cpu) 3810 { 3811 struct rcu_state *rsp; 3812 3813 for_each_rcu_flavor(rsp) 3814 rcu_init_percpu_data(cpu, rsp); 3815 3816 rcu_prepare_kthreads(cpu); 3817 rcu_spawn_all_nocb_kthreads(cpu); 3818 3819 return 0; 3820 } 3821 3822 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3823 { 3824 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3825 3826 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3827 } 3828 3829 int rcutree_online_cpu(unsigned int cpu) 3830 { 3831 sync_sched_exp_online_cleanup(cpu); 3832 rcutree_affinity_setting(cpu, -1); 3833 return 0; 3834 } 3835 3836 int rcutree_offline_cpu(unsigned int cpu) 3837 { 3838 rcutree_affinity_setting(cpu, cpu); 3839 return 0; 3840 } 3841 3842 3843 int rcutree_dying_cpu(unsigned int cpu) 3844 { 3845 struct rcu_state *rsp; 3846 3847 for_each_rcu_flavor(rsp) 3848 rcu_cleanup_dying_cpu(rsp); 3849 return 0; 3850 } 3851 3852 int rcutree_dead_cpu(unsigned int cpu) 3853 { 3854 struct rcu_state *rsp; 3855 3856 for_each_rcu_flavor(rsp) { 3857 rcu_cleanup_dead_cpu(cpu, rsp); 3858 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3859 } 3860 return 0; 3861 } 3862 3863 #ifdef CONFIG_HOTPLUG_CPU 3864 /* 3865 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3866 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3867 * bit masks. 3868 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3869 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3870 * bit masks. 3871 */ 3872 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3873 { 3874 unsigned long flags; 3875 unsigned long mask; 3876 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3877 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3878 3879 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3880 mask = rdp->grpmask; 3881 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3882 rnp->qsmaskinitnext &= ~mask; 3883 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3884 } 3885 3886 void rcu_report_dead(unsigned int cpu) 3887 { 3888 struct rcu_state *rsp; 3889 3890 /* QS for any half-done expedited RCU-sched GP. */ 3891 preempt_disable(); 3892 rcu_report_exp_rdp(&rcu_sched_state, 3893 this_cpu_ptr(rcu_sched_state.rda), true); 3894 preempt_enable(); 3895 for_each_rcu_flavor(rsp) 3896 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3897 } 3898 #endif 3899 3900 static int rcu_pm_notify(struct notifier_block *self, 3901 unsigned long action, void *hcpu) 3902 { 3903 switch (action) { 3904 case PM_HIBERNATION_PREPARE: 3905 case PM_SUSPEND_PREPARE: 3906 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3907 rcu_expedite_gp(); 3908 break; 3909 case PM_POST_HIBERNATION: 3910 case PM_POST_SUSPEND: 3911 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3912 rcu_unexpedite_gp(); 3913 break; 3914 default: 3915 break; 3916 } 3917 return NOTIFY_OK; 3918 } 3919 3920 /* 3921 * Spawn the kthreads that handle each RCU flavor's grace periods. 3922 */ 3923 static int __init rcu_spawn_gp_kthread(void) 3924 { 3925 unsigned long flags; 3926 int kthread_prio_in = kthread_prio; 3927 struct rcu_node *rnp; 3928 struct rcu_state *rsp; 3929 struct sched_param sp; 3930 struct task_struct *t; 3931 3932 /* Force priority into range. */ 3933 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3934 kthread_prio = 1; 3935 else if (kthread_prio < 0) 3936 kthread_prio = 0; 3937 else if (kthread_prio > 99) 3938 kthread_prio = 99; 3939 if (kthread_prio != kthread_prio_in) 3940 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3941 kthread_prio, kthread_prio_in); 3942 3943 rcu_scheduler_fully_active = 1; 3944 for_each_rcu_flavor(rsp) { 3945 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3946 BUG_ON(IS_ERR(t)); 3947 rnp = rcu_get_root(rsp); 3948 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3949 rsp->gp_kthread = t; 3950 if (kthread_prio) { 3951 sp.sched_priority = kthread_prio; 3952 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3953 } 3954 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3955 wake_up_process(t); 3956 } 3957 rcu_spawn_nocb_kthreads(); 3958 rcu_spawn_boost_kthreads(); 3959 return 0; 3960 } 3961 early_initcall(rcu_spawn_gp_kthread); 3962 3963 /* 3964 * This function is invoked towards the end of the scheduler's initialization 3965 * process. Before this is called, the idle task might contain 3966 * RCU read-side critical sections (during which time, this idle 3967 * task is booting the system). After this function is called, the 3968 * idle tasks are prohibited from containing RCU read-side critical 3969 * sections. This function also enables RCU lockdep checking. 3970 */ 3971 void rcu_scheduler_starting(void) 3972 { 3973 WARN_ON(num_online_cpus() != 1); 3974 WARN_ON(nr_context_switches() > 0); 3975 rcu_scheduler_active = 1; 3976 } 3977 3978 /* 3979 * Compute the per-level fanout, either using the exact fanout specified 3980 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 3981 */ 3982 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt) 3983 { 3984 int i; 3985 3986 if (rcu_fanout_exact) { 3987 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3988 for (i = rcu_num_lvls - 2; i >= 0; i--) 3989 levelspread[i] = RCU_FANOUT; 3990 } else { 3991 int ccur; 3992 int cprv; 3993 3994 cprv = nr_cpu_ids; 3995 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3996 ccur = levelcnt[i]; 3997 levelspread[i] = (cprv + ccur - 1) / ccur; 3998 cprv = ccur; 3999 } 4000 } 4001 } 4002 4003 /* 4004 * Helper function for rcu_init() that initializes one rcu_state structure. 4005 */ 4006 static void __init rcu_init_one(struct rcu_state *rsp) 4007 { 4008 static const char * const buf[] = RCU_NODE_NAME_INIT; 4009 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4010 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4011 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4012 static u8 fl_mask = 0x1; 4013 4014 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */ 4015 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4016 int cpustride = 1; 4017 int i; 4018 int j; 4019 struct rcu_node *rnp; 4020 4021 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4022 4023 /* Silence gcc 4.8 false positive about array index out of range. */ 4024 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4025 panic("rcu_init_one: rcu_num_lvls out of range"); 4026 4027 /* Initialize the level-tracking arrays. */ 4028 4029 for (i = 0; i < rcu_num_lvls; i++) 4030 levelcnt[i] = num_rcu_lvl[i]; 4031 for (i = 1; i < rcu_num_lvls; i++) 4032 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1]; 4033 rcu_init_levelspread(levelspread, levelcnt); 4034 rsp->flavor_mask = fl_mask; 4035 fl_mask <<= 1; 4036 4037 /* Initialize the elements themselves, starting from the leaves. */ 4038 4039 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4040 cpustride *= levelspread[i]; 4041 rnp = rsp->level[i]; 4042 for (j = 0; j < levelcnt[i]; j++, rnp++) { 4043 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4044 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4045 &rcu_node_class[i], buf[i]); 4046 raw_spin_lock_init(&rnp->fqslock); 4047 lockdep_set_class_and_name(&rnp->fqslock, 4048 &rcu_fqs_class[i], fqs[i]); 4049 rnp->gpnum = rsp->gpnum; 4050 rnp->completed = rsp->completed; 4051 rnp->qsmask = 0; 4052 rnp->qsmaskinit = 0; 4053 rnp->grplo = j * cpustride; 4054 rnp->grphi = (j + 1) * cpustride - 1; 4055 if (rnp->grphi >= nr_cpu_ids) 4056 rnp->grphi = nr_cpu_ids - 1; 4057 if (i == 0) { 4058 rnp->grpnum = 0; 4059 rnp->grpmask = 0; 4060 rnp->parent = NULL; 4061 } else { 4062 rnp->grpnum = j % levelspread[i - 1]; 4063 rnp->grpmask = 1UL << rnp->grpnum; 4064 rnp->parent = rsp->level[i - 1] + 4065 j / levelspread[i - 1]; 4066 } 4067 rnp->level = i; 4068 INIT_LIST_HEAD(&rnp->blkd_tasks); 4069 rcu_init_one_nocb(rnp); 4070 init_waitqueue_head(&rnp->exp_wq[0]); 4071 init_waitqueue_head(&rnp->exp_wq[1]); 4072 init_waitqueue_head(&rnp->exp_wq[2]); 4073 init_waitqueue_head(&rnp->exp_wq[3]); 4074 spin_lock_init(&rnp->exp_lock); 4075 } 4076 } 4077 4078 init_swait_queue_head(&rsp->gp_wq); 4079 init_swait_queue_head(&rsp->expedited_wq); 4080 rnp = rsp->level[rcu_num_lvls - 1]; 4081 for_each_possible_cpu(i) { 4082 while (i > rnp->grphi) 4083 rnp++; 4084 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4085 rcu_boot_init_percpu_data(i, rsp); 4086 } 4087 list_add(&rsp->flavors, &rcu_struct_flavors); 4088 } 4089 4090 /* 4091 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4092 * replace the definitions in tree.h because those are needed to size 4093 * the ->node array in the rcu_state structure. 4094 */ 4095 static void __init rcu_init_geometry(void) 4096 { 4097 ulong d; 4098 int i; 4099 int rcu_capacity[RCU_NUM_LVLS]; 4100 4101 /* 4102 * Initialize any unspecified boot parameters. 4103 * The default values of jiffies_till_first_fqs and 4104 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4105 * value, which is a function of HZ, then adding one for each 4106 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4107 */ 4108 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4109 if (jiffies_till_first_fqs == ULONG_MAX) 4110 jiffies_till_first_fqs = d; 4111 if (jiffies_till_next_fqs == ULONG_MAX) 4112 jiffies_till_next_fqs = d; 4113 4114 /* If the compile-time values are accurate, just leave. */ 4115 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4116 nr_cpu_ids == NR_CPUS) 4117 return; 4118 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4119 rcu_fanout_leaf, nr_cpu_ids); 4120 4121 /* 4122 * The boot-time rcu_fanout_leaf parameter must be at least two 4123 * and cannot exceed the number of bits in the rcu_node masks. 4124 * Complain and fall back to the compile-time values if this 4125 * limit is exceeded. 4126 */ 4127 if (rcu_fanout_leaf < 2 || 4128 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4129 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4130 WARN_ON(1); 4131 return; 4132 } 4133 4134 /* 4135 * Compute number of nodes that can be handled an rcu_node tree 4136 * with the given number of levels. 4137 */ 4138 rcu_capacity[0] = rcu_fanout_leaf; 4139 for (i = 1; i < RCU_NUM_LVLS; i++) 4140 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4141 4142 /* 4143 * The tree must be able to accommodate the configured number of CPUs. 4144 * If this limit is exceeded, fall back to the compile-time values. 4145 */ 4146 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4147 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4148 WARN_ON(1); 4149 return; 4150 } 4151 4152 /* Calculate the number of levels in the tree. */ 4153 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4154 } 4155 rcu_num_lvls = i + 1; 4156 4157 /* Calculate the number of rcu_nodes at each level of the tree. */ 4158 for (i = 0; i < rcu_num_lvls; i++) { 4159 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4160 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4161 } 4162 4163 /* Calculate the total number of rcu_node structures. */ 4164 rcu_num_nodes = 0; 4165 for (i = 0; i < rcu_num_lvls; i++) 4166 rcu_num_nodes += num_rcu_lvl[i]; 4167 } 4168 4169 /* 4170 * Dump out the structure of the rcu_node combining tree associated 4171 * with the rcu_state structure referenced by rsp. 4172 */ 4173 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4174 { 4175 int level = 0; 4176 struct rcu_node *rnp; 4177 4178 pr_info("rcu_node tree layout dump\n"); 4179 pr_info(" "); 4180 rcu_for_each_node_breadth_first(rsp, rnp) { 4181 if (rnp->level != level) { 4182 pr_cont("\n"); 4183 pr_info(" "); 4184 level = rnp->level; 4185 } 4186 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4187 } 4188 pr_cont("\n"); 4189 } 4190 4191 void __init rcu_init(void) 4192 { 4193 int cpu; 4194 4195 rcu_early_boot_tests(); 4196 4197 rcu_bootup_announce(); 4198 rcu_init_geometry(); 4199 rcu_init_one(&rcu_bh_state); 4200 rcu_init_one(&rcu_sched_state); 4201 if (dump_tree) 4202 rcu_dump_rcu_node_tree(&rcu_sched_state); 4203 __rcu_init_preempt(); 4204 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4205 4206 /* 4207 * We don't need protection against CPU-hotplug here because 4208 * this is called early in boot, before either interrupts 4209 * or the scheduler are operational. 4210 */ 4211 pm_notifier(rcu_pm_notify, 0); 4212 for_each_online_cpu(cpu) 4213 rcutree_prepare_cpu(cpu); 4214 } 4215 4216 #include "tree_exp.h" 4217 #include "tree_plugin.h" 4218