xref: /openbmc/linux/kernel/rcu/tree.c (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 /*
72  * In order to export the rcu_state name to the tracing tools, it
73  * needs to be added in the __tracepoint_string section.
74  * This requires defining a separate variable tp_<sname>_varname
75  * that points to the string being used, and this will allow
76  * the tracing userspace tools to be able to decipher the string
77  * address to the matching string.
78  */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88 
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 	.level = { &sname##_state.node[0] }, \
94 	.rda = &sname##_data, \
95 	.call = cr, \
96 	.gp_state = RCU_GP_IDLE, \
97 	.gpnum = 0UL - 300UL, \
98 	.completed = 0UL - 300UL, \
99 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 	.orphan_donetail = &sname##_state.orphan_donelist, \
102 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 	.name = RCU_STATE_NAME(sname), \
104 	.abbr = sabbr, \
105 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 }
108 
109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111 
112 static struct rcu_state *const rcu_state_p;
113 LIST_HEAD(rcu_struct_flavors);
114 
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree;
117 module_param(dump_tree, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 /* panic() on RCU Stall sysctl. */
129 int sysctl_panic_on_rcu_stall __read_mostly;
130 
131 /*
132  * The rcu_scheduler_active variable transitions from zero to one just
133  * before the first task is spawned.  So when this variable is zero, RCU
134  * can assume that there is but one task, allowing RCU to (for example)
135  * optimize synchronize_rcu() to a simple barrier().  When this variable
136  * is one, RCU must actually do all the hard work required to detect real
137  * grace periods.  This variable is also used to suppress boot-time false
138  * positives from lockdep-RCU error checking.
139  */
140 int rcu_scheduler_active __read_mostly;
141 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
142 
143 /*
144  * The rcu_scheduler_fully_active variable transitions from zero to one
145  * during the early_initcall() processing, which is after the scheduler
146  * is capable of creating new tasks.  So RCU processing (for example,
147  * creating tasks for RCU priority boosting) must be delayed until after
148  * rcu_scheduler_fully_active transitions from zero to one.  We also
149  * currently delay invocation of any RCU callbacks until after this point.
150  *
151  * It might later prove better for people registering RCU callbacks during
152  * early boot to take responsibility for these callbacks, but one step at
153  * a time.
154  */
155 static int rcu_scheduler_fully_active __read_mostly;
156 
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162 static void rcu_report_exp_rdp(struct rcu_state *rsp,
163 			       struct rcu_data *rdp, bool wake);
164 static void sync_sched_exp_online_cleanup(int cpu);
165 
166 /* rcuc/rcub kthread realtime priority */
167 #ifdef CONFIG_RCU_KTHREAD_PRIO
168 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
169 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
171 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
172 module_param(kthread_prio, int, 0644);
173 
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
175 
176 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
177 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
178 module_param(gp_preinit_delay, int, 0644);
179 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180 static const int gp_preinit_delay;
181 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
182 
183 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
184 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
185 module_param(gp_init_delay, int, 0644);
186 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187 static const int gp_init_delay;
188 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
189 
190 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
191 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
192 module_param(gp_cleanup_delay, int, 0644);
193 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194 static const int gp_cleanup_delay;
195 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
196 
197 /*
198  * Number of grace periods between delays, normalized by the duration of
199  * the delay.  The longer the the delay, the more the grace periods between
200  * each delay.  The reason for this normalization is that it means that,
201  * for non-zero delays, the overall slowdown of grace periods is constant
202  * regardless of the duration of the delay.  This arrangement balances
203  * the need for long delays to increase some race probabilities with the
204  * need for fast grace periods to increase other race probabilities.
205  */
206 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
207 
208 /*
209  * Track the rcutorture test sequence number and the update version
210  * number within a given test.  The rcutorture_testseq is incremented
211  * on every rcutorture module load and unload, so has an odd value
212  * when a test is running.  The rcutorture_vernum is set to zero
213  * when rcutorture starts and is incremented on each rcutorture update.
214  * These variables enable correlating rcutorture output with the
215  * RCU tracing information.
216  */
217 unsigned long rcutorture_testseq;
218 unsigned long rcutorture_vernum;
219 
220 /*
221  * Compute the mask of online CPUs for the specified rcu_node structure.
222  * This will not be stable unless the rcu_node structure's ->lock is
223  * held, but the bit corresponding to the current CPU will be stable
224  * in most contexts.
225  */
226 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
227 {
228 	return READ_ONCE(rnp->qsmaskinitnext);
229 }
230 
231 /*
232  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
233  * permit this function to be invoked without holding the root rcu_node
234  * structure's ->lock, but of course results can be subject to change.
235  */
236 static int rcu_gp_in_progress(struct rcu_state *rsp)
237 {
238 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
239 }
240 
241 /*
242  * Note a quiescent state.  Because we do not need to know
243  * how many quiescent states passed, just if there was at least
244  * one since the start of the grace period, this just sets a flag.
245  * The caller must have disabled preemption.
246  */
247 void rcu_sched_qs(void)
248 {
249 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
250 		return;
251 	trace_rcu_grace_period(TPS("rcu_sched"),
252 			       __this_cpu_read(rcu_sched_data.gpnum),
253 			       TPS("cpuqs"));
254 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
255 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
256 		return;
257 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
258 	rcu_report_exp_rdp(&rcu_sched_state,
259 			   this_cpu_ptr(&rcu_sched_data), true);
260 }
261 
262 void rcu_bh_qs(void)
263 {
264 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
265 		trace_rcu_grace_period(TPS("rcu_bh"),
266 				       __this_cpu_read(rcu_bh_data.gpnum),
267 				       TPS("cpuqs"));
268 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
269 	}
270 }
271 
272 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
273 
274 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
275 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
276 	.dynticks = ATOMIC_INIT(1),
277 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
278 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
279 	.dynticks_idle = ATOMIC_INIT(1),
280 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
281 };
282 
283 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
284 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
285 
286 /*
287  * Let the RCU core know that this CPU has gone through the scheduler,
288  * which is a quiescent state.  This is called when the need for a
289  * quiescent state is urgent, so we burn an atomic operation and full
290  * memory barriers to let the RCU core know about it, regardless of what
291  * this CPU might (or might not) do in the near future.
292  *
293  * We inform the RCU core by emulating a zero-duration dyntick-idle
294  * period, which we in turn do by incrementing the ->dynticks counter
295  * by two.
296  *
297  * The caller must have disabled interrupts.
298  */
299 static void rcu_momentary_dyntick_idle(void)
300 {
301 	struct rcu_data *rdp;
302 	struct rcu_dynticks *rdtp;
303 	int resched_mask;
304 	struct rcu_state *rsp;
305 
306 	/*
307 	 * Yes, we can lose flag-setting operations.  This is OK, because
308 	 * the flag will be set again after some delay.
309 	 */
310 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
311 	raw_cpu_write(rcu_sched_qs_mask, 0);
312 
313 	/* Find the flavor that needs a quiescent state. */
314 	for_each_rcu_flavor(rsp) {
315 		rdp = raw_cpu_ptr(rsp->rda);
316 		if (!(resched_mask & rsp->flavor_mask))
317 			continue;
318 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
319 		if (READ_ONCE(rdp->mynode->completed) !=
320 		    READ_ONCE(rdp->cond_resched_completed))
321 			continue;
322 
323 		/*
324 		 * Pretend to be momentarily idle for the quiescent state.
325 		 * This allows the grace-period kthread to record the
326 		 * quiescent state, with no need for this CPU to do anything
327 		 * further.
328 		 */
329 		rdtp = this_cpu_ptr(&rcu_dynticks);
330 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
331 		atomic_add(2, &rdtp->dynticks);  /* QS. */
332 		smp_mb__after_atomic(); /* Later stuff after QS. */
333 		break;
334 	}
335 }
336 
337 /*
338  * Note a context switch.  This is a quiescent state for RCU-sched,
339  * and requires special handling for preemptible RCU.
340  * The caller must have disabled interrupts.
341  */
342 void rcu_note_context_switch(void)
343 {
344 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
345 	trace_rcu_utilization(TPS("Start context switch"));
346 	rcu_sched_qs();
347 	rcu_preempt_note_context_switch();
348 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
349 		rcu_momentary_dyntick_idle();
350 	trace_rcu_utilization(TPS("End context switch"));
351 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
352 }
353 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
354 
355 /*
356  * Register a quiescent state for all RCU flavors.  If there is an
357  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
358  * dyntick-idle quiescent state visible to other CPUs (but only for those
359  * RCU flavors in desperate need of a quiescent state, which will normally
360  * be none of them).  Either way, do a lightweight quiescent state for
361  * all RCU flavors.
362  *
363  * The barrier() calls are redundant in the common case when this is
364  * called externally, but just in case this is called from within this
365  * file.
366  *
367  */
368 void rcu_all_qs(void)
369 {
370 	unsigned long flags;
371 
372 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
373 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
374 		local_irq_save(flags);
375 		rcu_momentary_dyntick_idle();
376 		local_irq_restore(flags);
377 	}
378 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
379 		/*
380 		 * Yes, we just checked a per-CPU variable with preemption
381 		 * enabled, so we might be migrated to some other CPU at
382 		 * this point.  That is OK because in that case, the
383 		 * migration will supply the needed quiescent state.
384 		 * We might end up needlessly disabling preemption and
385 		 * invoking rcu_sched_qs() on the destination CPU, but
386 		 * the probability and cost are both quite low, so this
387 		 * should not be a problem in practice.
388 		 */
389 		preempt_disable();
390 		rcu_sched_qs();
391 		preempt_enable();
392 	}
393 	this_cpu_inc(rcu_qs_ctr);
394 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
395 }
396 EXPORT_SYMBOL_GPL(rcu_all_qs);
397 
398 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
399 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
400 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
401 
402 module_param(blimit, long, 0444);
403 module_param(qhimark, long, 0444);
404 module_param(qlowmark, long, 0444);
405 
406 static ulong jiffies_till_first_fqs = ULONG_MAX;
407 static ulong jiffies_till_next_fqs = ULONG_MAX;
408 static bool rcu_kick_kthreads;
409 
410 module_param(jiffies_till_first_fqs, ulong, 0644);
411 module_param(jiffies_till_next_fqs, ulong, 0644);
412 module_param(rcu_kick_kthreads, bool, 0644);
413 
414 /*
415  * How long the grace period must be before we start recruiting
416  * quiescent-state help from rcu_note_context_switch().
417  */
418 static ulong jiffies_till_sched_qs = HZ / 20;
419 module_param(jiffies_till_sched_qs, ulong, 0644);
420 
421 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
422 				  struct rcu_data *rdp);
423 static void force_qs_rnp(struct rcu_state *rsp,
424 			 int (*f)(struct rcu_data *rsp, bool *isidle,
425 				  unsigned long *maxj),
426 			 bool *isidle, unsigned long *maxj);
427 static void force_quiescent_state(struct rcu_state *rsp);
428 static int rcu_pending(void);
429 
430 /*
431  * Return the number of RCU batches started thus far for debug & stats.
432  */
433 unsigned long rcu_batches_started(void)
434 {
435 	return rcu_state_p->gpnum;
436 }
437 EXPORT_SYMBOL_GPL(rcu_batches_started);
438 
439 /*
440  * Return the number of RCU-sched batches started thus far for debug & stats.
441  */
442 unsigned long rcu_batches_started_sched(void)
443 {
444 	return rcu_sched_state.gpnum;
445 }
446 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
447 
448 /*
449  * Return the number of RCU BH batches started thus far for debug & stats.
450  */
451 unsigned long rcu_batches_started_bh(void)
452 {
453 	return rcu_bh_state.gpnum;
454 }
455 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
456 
457 /*
458  * Return the number of RCU batches completed thus far for debug & stats.
459  */
460 unsigned long rcu_batches_completed(void)
461 {
462 	return rcu_state_p->completed;
463 }
464 EXPORT_SYMBOL_GPL(rcu_batches_completed);
465 
466 /*
467  * Return the number of RCU-sched batches completed thus far for debug & stats.
468  */
469 unsigned long rcu_batches_completed_sched(void)
470 {
471 	return rcu_sched_state.completed;
472 }
473 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
474 
475 /*
476  * Return the number of RCU BH batches completed thus far for debug & stats.
477  */
478 unsigned long rcu_batches_completed_bh(void)
479 {
480 	return rcu_bh_state.completed;
481 }
482 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
483 
484 /*
485  * Return the number of RCU expedited batches completed thus far for
486  * debug & stats.  Odd numbers mean that a batch is in progress, even
487  * numbers mean idle.  The value returned will thus be roughly double
488  * the cumulative batches since boot.
489  */
490 unsigned long rcu_exp_batches_completed(void)
491 {
492 	return rcu_state_p->expedited_sequence;
493 }
494 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
495 
496 /*
497  * Return the number of RCU-sched expedited batches completed thus far
498  * for debug & stats.  Similar to rcu_exp_batches_completed().
499  */
500 unsigned long rcu_exp_batches_completed_sched(void)
501 {
502 	return rcu_sched_state.expedited_sequence;
503 }
504 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
505 
506 /*
507  * Force a quiescent state.
508  */
509 void rcu_force_quiescent_state(void)
510 {
511 	force_quiescent_state(rcu_state_p);
512 }
513 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
514 
515 /*
516  * Force a quiescent state for RCU BH.
517  */
518 void rcu_bh_force_quiescent_state(void)
519 {
520 	force_quiescent_state(&rcu_bh_state);
521 }
522 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
523 
524 /*
525  * Force a quiescent state for RCU-sched.
526  */
527 void rcu_sched_force_quiescent_state(void)
528 {
529 	force_quiescent_state(&rcu_sched_state);
530 }
531 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
532 
533 /*
534  * Show the state of the grace-period kthreads.
535  */
536 void show_rcu_gp_kthreads(void)
537 {
538 	struct rcu_state *rsp;
539 
540 	for_each_rcu_flavor(rsp) {
541 		pr_info("%s: wait state: %d ->state: %#lx\n",
542 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
543 		/* sched_show_task(rsp->gp_kthread); */
544 	}
545 }
546 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
547 
548 /*
549  * Record the number of times rcutorture tests have been initiated and
550  * terminated.  This information allows the debugfs tracing stats to be
551  * correlated to the rcutorture messages, even when the rcutorture module
552  * is being repeatedly loaded and unloaded.  In other words, we cannot
553  * store this state in rcutorture itself.
554  */
555 void rcutorture_record_test_transition(void)
556 {
557 	rcutorture_testseq++;
558 	rcutorture_vernum = 0;
559 }
560 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
561 
562 /*
563  * Send along grace-period-related data for rcutorture diagnostics.
564  */
565 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
566 			    unsigned long *gpnum, unsigned long *completed)
567 {
568 	struct rcu_state *rsp = NULL;
569 
570 	switch (test_type) {
571 	case RCU_FLAVOR:
572 		rsp = rcu_state_p;
573 		break;
574 	case RCU_BH_FLAVOR:
575 		rsp = &rcu_bh_state;
576 		break;
577 	case RCU_SCHED_FLAVOR:
578 		rsp = &rcu_sched_state;
579 		break;
580 	default:
581 		break;
582 	}
583 	if (rsp != NULL) {
584 		*flags = READ_ONCE(rsp->gp_flags);
585 		*gpnum = READ_ONCE(rsp->gpnum);
586 		*completed = READ_ONCE(rsp->completed);
587 		return;
588 	}
589 	*flags = 0;
590 	*gpnum = 0;
591 	*completed = 0;
592 }
593 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
594 
595 /*
596  * Record the number of writer passes through the current rcutorture test.
597  * This is also used to correlate debugfs tracing stats with the rcutorture
598  * messages.
599  */
600 void rcutorture_record_progress(unsigned long vernum)
601 {
602 	rcutorture_vernum++;
603 }
604 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
605 
606 /*
607  * Does the CPU have callbacks ready to be invoked?
608  */
609 static int
610 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
611 {
612 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
613 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
614 }
615 
616 /*
617  * Return the root node of the specified rcu_state structure.
618  */
619 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
620 {
621 	return &rsp->node[0];
622 }
623 
624 /*
625  * Is there any need for future grace periods?
626  * Interrupts must be disabled.  If the caller does not hold the root
627  * rnp_node structure's ->lock, the results are advisory only.
628  */
629 static int rcu_future_needs_gp(struct rcu_state *rsp)
630 {
631 	struct rcu_node *rnp = rcu_get_root(rsp);
632 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
633 	int *fp = &rnp->need_future_gp[idx];
634 
635 	return READ_ONCE(*fp);
636 }
637 
638 /*
639  * Does the current CPU require a not-yet-started grace period?
640  * The caller must have disabled interrupts to prevent races with
641  * normal callback registry.
642  */
643 static bool
644 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
645 {
646 	int i;
647 
648 	if (rcu_gp_in_progress(rsp))
649 		return false;  /* No, a grace period is already in progress. */
650 	if (rcu_future_needs_gp(rsp))
651 		return true;  /* Yes, a no-CBs CPU needs one. */
652 	if (!rdp->nxttail[RCU_NEXT_TAIL])
653 		return false;  /* No, this is a no-CBs (or offline) CPU. */
654 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
655 		return true;  /* Yes, CPU has newly registered callbacks. */
656 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
657 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
658 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
659 				 rdp->nxtcompleted[i]))
660 			return true;  /* Yes, CBs for future grace period. */
661 	return false; /* No grace period needed. */
662 }
663 
664 /*
665  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
666  *
667  * If the new value of the ->dynticks_nesting counter now is zero,
668  * we really have entered idle, and must do the appropriate accounting.
669  * The caller must have disabled interrupts.
670  */
671 static void rcu_eqs_enter_common(long long oldval, bool user)
672 {
673 	struct rcu_state *rsp;
674 	struct rcu_data *rdp;
675 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
676 
677 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
678 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
679 	    !user && !is_idle_task(current)) {
680 		struct task_struct *idle __maybe_unused =
681 			idle_task(smp_processor_id());
682 
683 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
684 		rcu_ftrace_dump(DUMP_ORIG);
685 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
686 			  current->pid, current->comm,
687 			  idle->pid, idle->comm); /* must be idle task! */
688 	}
689 	for_each_rcu_flavor(rsp) {
690 		rdp = this_cpu_ptr(rsp->rda);
691 		do_nocb_deferred_wakeup(rdp);
692 	}
693 	rcu_prepare_for_idle();
694 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
695 	smp_mb__before_atomic();  /* See above. */
696 	atomic_inc(&rdtp->dynticks);
697 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
698 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
699 		     atomic_read(&rdtp->dynticks) & 0x1);
700 	rcu_dynticks_task_enter();
701 
702 	/*
703 	 * It is illegal to enter an extended quiescent state while
704 	 * in an RCU read-side critical section.
705 	 */
706 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
707 			 "Illegal idle entry in RCU read-side critical section.");
708 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
709 			 "Illegal idle entry in RCU-bh read-side critical section.");
710 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
711 			 "Illegal idle entry in RCU-sched read-side critical section.");
712 }
713 
714 /*
715  * Enter an RCU extended quiescent state, which can be either the
716  * idle loop or adaptive-tickless usermode execution.
717  */
718 static void rcu_eqs_enter(bool user)
719 {
720 	long long oldval;
721 	struct rcu_dynticks *rdtp;
722 
723 	rdtp = this_cpu_ptr(&rcu_dynticks);
724 	oldval = rdtp->dynticks_nesting;
725 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
726 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
727 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
728 		rdtp->dynticks_nesting = 0;
729 		rcu_eqs_enter_common(oldval, user);
730 	} else {
731 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
732 	}
733 }
734 
735 /**
736  * rcu_idle_enter - inform RCU that current CPU is entering idle
737  *
738  * Enter idle mode, in other words, -leave- the mode in which RCU
739  * read-side critical sections can occur.  (Though RCU read-side
740  * critical sections can occur in irq handlers in idle, a possibility
741  * handled by irq_enter() and irq_exit().)
742  *
743  * We crowbar the ->dynticks_nesting field to zero to allow for
744  * the possibility of usermode upcalls having messed up our count
745  * of interrupt nesting level during the prior busy period.
746  */
747 void rcu_idle_enter(void)
748 {
749 	unsigned long flags;
750 
751 	local_irq_save(flags);
752 	rcu_eqs_enter(false);
753 	rcu_sysidle_enter(0);
754 	local_irq_restore(flags);
755 }
756 EXPORT_SYMBOL_GPL(rcu_idle_enter);
757 
758 #ifdef CONFIG_NO_HZ_FULL
759 /**
760  * rcu_user_enter - inform RCU that we are resuming userspace.
761  *
762  * Enter RCU idle mode right before resuming userspace.  No use of RCU
763  * is permitted between this call and rcu_user_exit(). This way the
764  * CPU doesn't need to maintain the tick for RCU maintenance purposes
765  * when the CPU runs in userspace.
766  */
767 void rcu_user_enter(void)
768 {
769 	rcu_eqs_enter(1);
770 }
771 #endif /* CONFIG_NO_HZ_FULL */
772 
773 /**
774  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
775  *
776  * Exit from an interrupt handler, which might possibly result in entering
777  * idle mode, in other words, leaving the mode in which read-side critical
778  * sections can occur.  The caller must have disabled interrupts.
779  *
780  * This code assumes that the idle loop never does anything that might
781  * result in unbalanced calls to irq_enter() and irq_exit().  If your
782  * architecture violates this assumption, RCU will give you what you
783  * deserve, good and hard.  But very infrequently and irreproducibly.
784  *
785  * Use things like work queues to work around this limitation.
786  *
787  * You have been warned.
788  */
789 void rcu_irq_exit(void)
790 {
791 	long long oldval;
792 	struct rcu_dynticks *rdtp;
793 
794 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
795 	rdtp = this_cpu_ptr(&rcu_dynticks);
796 	oldval = rdtp->dynticks_nesting;
797 	rdtp->dynticks_nesting--;
798 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
799 		     rdtp->dynticks_nesting < 0);
800 	if (rdtp->dynticks_nesting)
801 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
802 	else
803 		rcu_eqs_enter_common(oldval, true);
804 	rcu_sysidle_enter(1);
805 }
806 
807 /*
808  * Wrapper for rcu_irq_exit() where interrupts are enabled.
809  */
810 void rcu_irq_exit_irqson(void)
811 {
812 	unsigned long flags;
813 
814 	local_irq_save(flags);
815 	rcu_irq_exit();
816 	local_irq_restore(flags);
817 }
818 
819 /*
820  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
821  *
822  * If the new value of the ->dynticks_nesting counter was previously zero,
823  * we really have exited idle, and must do the appropriate accounting.
824  * The caller must have disabled interrupts.
825  */
826 static void rcu_eqs_exit_common(long long oldval, int user)
827 {
828 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
829 
830 	rcu_dynticks_task_exit();
831 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
832 	atomic_inc(&rdtp->dynticks);
833 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
834 	smp_mb__after_atomic();  /* See above. */
835 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
836 		     !(atomic_read(&rdtp->dynticks) & 0x1));
837 	rcu_cleanup_after_idle();
838 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
839 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
840 	    !user && !is_idle_task(current)) {
841 		struct task_struct *idle __maybe_unused =
842 			idle_task(smp_processor_id());
843 
844 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
845 				  oldval, rdtp->dynticks_nesting);
846 		rcu_ftrace_dump(DUMP_ORIG);
847 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
848 			  current->pid, current->comm,
849 			  idle->pid, idle->comm); /* must be idle task! */
850 	}
851 }
852 
853 /*
854  * Exit an RCU extended quiescent state, which can be either the
855  * idle loop or adaptive-tickless usermode execution.
856  */
857 static void rcu_eqs_exit(bool user)
858 {
859 	struct rcu_dynticks *rdtp;
860 	long long oldval;
861 
862 	rdtp = this_cpu_ptr(&rcu_dynticks);
863 	oldval = rdtp->dynticks_nesting;
864 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
865 	if (oldval & DYNTICK_TASK_NEST_MASK) {
866 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
867 	} else {
868 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
869 		rcu_eqs_exit_common(oldval, user);
870 	}
871 }
872 
873 /**
874  * rcu_idle_exit - inform RCU that current CPU is leaving idle
875  *
876  * Exit idle mode, in other words, -enter- the mode in which RCU
877  * read-side critical sections can occur.
878  *
879  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
880  * allow for the possibility of usermode upcalls messing up our count
881  * of interrupt nesting level during the busy period that is just
882  * now starting.
883  */
884 void rcu_idle_exit(void)
885 {
886 	unsigned long flags;
887 
888 	local_irq_save(flags);
889 	rcu_eqs_exit(false);
890 	rcu_sysidle_exit(0);
891 	local_irq_restore(flags);
892 }
893 EXPORT_SYMBOL_GPL(rcu_idle_exit);
894 
895 #ifdef CONFIG_NO_HZ_FULL
896 /**
897  * rcu_user_exit - inform RCU that we are exiting userspace.
898  *
899  * Exit RCU idle mode while entering the kernel because it can
900  * run a RCU read side critical section anytime.
901  */
902 void rcu_user_exit(void)
903 {
904 	rcu_eqs_exit(1);
905 }
906 #endif /* CONFIG_NO_HZ_FULL */
907 
908 /**
909  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
910  *
911  * Enter an interrupt handler, which might possibly result in exiting
912  * idle mode, in other words, entering the mode in which read-side critical
913  * sections can occur.  The caller must have disabled interrupts.
914  *
915  * Note that the Linux kernel is fully capable of entering an interrupt
916  * handler that it never exits, for example when doing upcalls to
917  * user mode!  This code assumes that the idle loop never does upcalls to
918  * user mode.  If your architecture does do upcalls from the idle loop (or
919  * does anything else that results in unbalanced calls to the irq_enter()
920  * and irq_exit() functions), RCU will give you what you deserve, good
921  * and hard.  But very infrequently and irreproducibly.
922  *
923  * Use things like work queues to work around this limitation.
924  *
925  * You have been warned.
926  */
927 void rcu_irq_enter(void)
928 {
929 	struct rcu_dynticks *rdtp;
930 	long long oldval;
931 
932 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
933 	rdtp = this_cpu_ptr(&rcu_dynticks);
934 	oldval = rdtp->dynticks_nesting;
935 	rdtp->dynticks_nesting++;
936 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
937 		     rdtp->dynticks_nesting == 0);
938 	if (oldval)
939 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
940 	else
941 		rcu_eqs_exit_common(oldval, true);
942 	rcu_sysidle_exit(1);
943 }
944 
945 /*
946  * Wrapper for rcu_irq_enter() where interrupts are enabled.
947  */
948 void rcu_irq_enter_irqson(void)
949 {
950 	unsigned long flags;
951 
952 	local_irq_save(flags);
953 	rcu_irq_enter();
954 	local_irq_restore(flags);
955 }
956 
957 /**
958  * rcu_nmi_enter - inform RCU of entry to NMI context
959  *
960  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
961  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
962  * that the CPU is active.  This implementation permits nested NMIs, as
963  * long as the nesting level does not overflow an int.  (You will probably
964  * run out of stack space first.)
965  */
966 void rcu_nmi_enter(void)
967 {
968 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
969 	int incby = 2;
970 
971 	/* Complain about underflow. */
972 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
973 
974 	/*
975 	 * If idle from RCU viewpoint, atomically increment ->dynticks
976 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
977 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
978 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
979 	 * to be in the outermost NMI handler that interrupted an RCU-idle
980 	 * period (observation due to Andy Lutomirski).
981 	 */
982 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
983 		smp_mb__before_atomic();  /* Force delay from prior write. */
984 		atomic_inc(&rdtp->dynticks);
985 		/* atomic_inc() before later RCU read-side crit sects */
986 		smp_mb__after_atomic();  /* See above. */
987 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
988 		incby = 1;
989 	}
990 	rdtp->dynticks_nmi_nesting += incby;
991 	barrier();
992 }
993 
994 /**
995  * rcu_nmi_exit - inform RCU of exit from NMI context
996  *
997  * If we are returning from the outermost NMI handler that interrupted an
998  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
999  * to let the RCU grace-period handling know that the CPU is back to
1000  * being RCU-idle.
1001  */
1002 void rcu_nmi_exit(void)
1003 {
1004 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1005 
1006 	/*
1007 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1008 	 * (We are exiting an NMI handler, so RCU better be paying attention
1009 	 * to us!)
1010 	 */
1011 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1012 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1013 
1014 	/*
1015 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1016 	 * leave it in non-RCU-idle state.
1017 	 */
1018 	if (rdtp->dynticks_nmi_nesting != 1) {
1019 		rdtp->dynticks_nmi_nesting -= 2;
1020 		return;
1021 	}
1022 
1023 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1024 	rdtp->dynticks_nmi_nesting = 0;
1025 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1026 	smp_mb__before_atomic();  /* See above. */
1027 	atomic_inc(&rdtp->dynticks);
1028 	smp_mb__after_atomic();  /* Force delay to next write. */
1029 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1030 }
1031 
1032 /**
1033  * __rcu_is_watching - are RCU read-side critical sections safe?
1034  *
1035  * Return true if RCU is watching the running CPU, which means that
1036  * this CPU can safely enter RCU read-side critical sections.  Unlike
1037  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1038  * least disabled preemption.
1039  */
1040 bool notrace __rcu_is_watching(void)
1041 {
1042 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1043 }
1044 
1045 /**
1046  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1047  *
1048  * If the current CPU is in its idle loop and is neither in an interrupt
1049  * or NMI handler, return true.
1050  */
1051 bool notrace rcu_is_watching(void)
1052 {
1053 	bool ret;
1054 
1055 	preempt_disable_notrace();
1056 	ret = __rcu_is_watching();
1057 	preempt_enable_notrace();
1058 	return ret;
1059 }
1060 EXPORT_SYMBOL_GPL(rcu_is_watching);
1061 
1062 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1063 
1064 /*
1065  * Is the current CPU online?  Disable preemption to avoid false positives
1066  * that could otherwise happen due to the current CPU number being sampled,
1067  * this task being preempted, its old CPU being taken offline, resuming
1068  * on some other CPU, then determining that its old CPU is now offline.
1069  * It is OK to use RCU on an offline processor during initial boot, hence
1070  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1071  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1072  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1073  * offline to continue to use RCU for one jiffy after marking itself
1074  * offline in the cpu_online_mask.  This leniency is necessary given the
1075  * non-atomic nature of the online and offline processing, for example,
1076  * the fact that a CPU enters the scheduler after completing the teardown
1077  * of the CPU.
1078  *
1079  * This is also why RCU internally marks CPUs online during in the
1080  * preparation phase and offline after the CPU has been taken down.
1081  *
1082  * Disable checking if in an NMI handler because we cannot safely report
1083  * errors from NMI handlers anyway.
1084  */
1085 bool rcu_lockdep_current_cpu_online(void)
1086 {
1087 	struct rcu_data *rdp;
1088 	struct rcu_node *rnp;
1089 	bool ret;
1090 
1091 	if (in_nmi())
1092 		return true;
1093 	preempt_disable();
1094 	rdp = this_cpu_ptr(&rcu_sched_data);
1095 	rnp = rdp->mynode;
1096 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1097 	      !rcu_scheduler_fully_active;
1098 	preempt_enable();
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1102 
1103 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1104 
1105 /**
1106  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1107  *
1108  * If the current CPU is idle or running at a first-level (not nested)
1109  * interrupt from idle, return true.  The caller must have at least
1110  * disabled preemption.
1111  */
1112 static int rcu_is_cpu_rrupt_from_idle(void)
1113 {
1114 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1115 }
1116 
1117 /*
1118  * Snapshot the specified CPU's dynticks counter so that we can later
1119  * credit them with an implicit quiescent state.  Return 1 if this CPU
1120  * is in dynticks idle mode, which is an extended quiescent state.
1121  */
1122 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1123 					 bool *isidle, unsigned long *maxj)
1124 {
1125 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1126 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1127 	if ((rdp->dynticks_snap & 0x1) == 0) {
1128 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1129 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1130 				 rdp->mynode->gpnum))
1131 			WRITE_ONCE(rdp->gpwrap, true);
1132 		return 1;
1133 	}
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Return true if the specified CPU has passed through a quiescent
1139  * state by virtue of being in or having passed through an dynticks
1140  * idle state since the last call to dyntick_save_progress_counter()
1141  * for this same CPU, or by virtue of having been offline.
1142  */
1143 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1144 				    bool *isidle, unsigned long *maxj)
1145 {
1146 	unsigned int curr;
1147 	int *rcrmp;
1148 	unsigned int snap;
1149 
1150 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1151 	snap = (unsigned int)rdp->dynticks_snap;
1152 
1153 	/*
1154 	 * If the CPU passed through or entered a dynticks idle phase with
1155 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1156 	 * already acknowledged the request to pass through a quiescent
1157 	 * state.  Either way, that CPU cannot possibly be in an RCU
1158 	 * read-side critical section that started before the beginning
1159 	 * of the current RCU grace period.
1160 	 */
1161 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1162 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1163 		rdp->dynticks_fqs++;
1164 		return 1;
1165 	}
1166 
1167 	/*
1168 	 * Check for the CPU being offline, but only if the grace period
1169 	 * is old enough.  We don't need to worry about the CPU changing
1170 	 * state: If we see it offline even once, it has been through a
1171 	 * quiescent state.
1172 	 *
1173 	 * The reason for insisting that the grace period be at least
1174 	 * one jiffy old is that CPUs that are not quite online and that
1175 	 * have just gone offline can still execute RCU read-side critical
1176 	 * sections.
1177 	 */
1178 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1179 		return 0;  /* Grace period is not old enough. */
1180 	barrier();
1181 	if (cpu_is_offline(rdp->cpu)) {
1182 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1183 		rdp->offline_fqs++;
1184 		return 1;
1185 	}
1186 
1187 	/*
1188 	 * A CPU running for an extended time within the kernel can
1189 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1190 	 * even context-switching back and forth between a pair of
1191 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1192 	 * So if the grace period is old enough, make the CPU pay attention.
1193 	 * Note that the unsynchronized assignments to the per-CPU
1194 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1195 	 * bits can be lost, but they will be set again on the next
1196 	 * force-quiescent-state pass.  So lost bit sets do not result
1197 	 * in incorrect behavior, merely in a grace period lasting
1198 	 * a few jiffies longer than it might otherwise.  Because
1199 	 * there are at most four threads involved, and because the
1200 	 * updates are only once every few jiffies, the probability of
1201 	 * lossage (and thus of slight grace-period extension) is
1202 	 * quite low.
1203 	 *
1204 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1205 	 * is set too high, we override with half of the RCU CPU stall
1206 	 * warning delay.
1207 	 */
1208 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1209 	if (ULONG_CMP_GE(jiffies,
1210 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1211 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1212 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1213 			WRITE_ONCE(rdp->cond_resched_completed,
1214 				   READ_ONCE(rdp->mynode->completed));
1215 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1216 			WRITE_ONCE(*rcrmp,
1217 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1218 		}
1219 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1220 	}
1221 
1222 	/* And if it has been a really long time, kick the CPU as well. */
1223 	if (ULONG_CMP_GE(jiffies,
1224 			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1225 	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1226 		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1227 
1228 	return 0;
1229 }
1230 
1231 static void record_gp_stall_check_time(struct rcu_state *rsp)
1232 {
1233 	unsigned long j = jiffies;
1234 	unsigned long j1;
1235 
1236 	rsp->gp_start = j;
1237 	smp_wmb(); /* Record start time before stall time. */
1238 	j1 = rcu_jiffies_till_stall_check();
1239 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1240 	rsp->jiffies_resched = j + j1 / 2;
1241 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1242 }
1243 
1244 /*
1245  * Convert a ->gp_state value to a character string.
1246  */
1247 static const char *gp_state_getname(short gs)
1248 {
1249 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1250 		return "???";
1251 	return gp_state_names[gs];
1252 }
1253 
1254 /*
1255  * Complain about starvation of grace-period kthread.
1256  */
1257 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1258 {
1259 	unsigned long gpa;
1260 	unsigned long j;
1261 
1262 	j = jiffies;
1263 	gpa = READ_ONCE(rsp->gp_activity);
1264 	if (j - gpa > 2 * HZ) {
1265 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1266 		       rsp->name, j - gpa,
1267 		       rsp->gpnum, rsp->completed,
1268 		       rsp->gp_flags,
1269 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1270 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1271 		if (rsp->gp_kthread) {
1272 			sched_show_task(rsp->gp_kthread);
1273 			wake_up_process(rsp->gp_kthread);
1274 		}
1275 	}
1276 }
1277 
1278 /*
1279  * Dump stacks of all tasks running on stalled CPUs.
1280  */
1281 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1282 {
1283 	int cpu;
1284 	unsigned long flags;
1285 	struct rcu_node *rnp;
1286 
1287 	rcu_for_each_leaf_node(rsp, rnp) {
1288 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1289 		if (rnp->qsmask != 0) {
1290 			for_each_leaf_node_possible_cpu(rnp, cpu)
1291 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1292 					dump_cpu_task(cpu);
1293 		}
1294 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1295 	}
1296 }
1297 
1298 /*
1299  * If too much time has passed in the current grace period, and if
1300  * so configured, go kick the relevant kthreads.
1301  */
1302 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1303 {
1304 	unsigned long j;
1305 
1306 	if (!rcu_kick_kthreads)
1307 		return;
1308 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1309 	if (time_after(jiffies, j) && rsp->gp_kthread) {
1310 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1311 		rcu_ftrace_dump(DUMP_ALL);
1312 		wake_up_process(rsp->gp_kthread);
1313 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1314 	}
1315 }
1316 
1317 static inline void panic_on_rcu_stall(void)
1318 {
1319 	if (sysctl_panic_on_rcu_stall)
1320 		panic("RCU Stall\n");
1321 }
1322 
1323 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1324 {
1325 	int cpu;
1326 	long delta;
1327 	unsigned long flags;
1328 	unsigned long gpa;
1329 	unsigned long j;
1330 	int ndetected = 0;
1331 	struct rcu_node *rnp = rcu_get_root(rsp);
1332 	long totqlen = 0;
1333 
1334 	/* Kick and suppress, if so configured. */
1335 	rcu_stall_kick_kthreads(rsp);
1336 	if (rcu_cpu_stall_suppress)
1337 		return;
1338 
1339 	/* Only let one CPU complain about others per time interval. */
1340 
1341 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1342 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1343 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1344 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1345 		return;
1346 	}
1347 	WRITE_ONCE(rsp->jiffies_stall,
1348 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1349 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1350 
1351 	/*
1352 	 * OK, time to rat on our buddy...
1353 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1354 	 * RCU CPU stall warnings.
1355 	 */
1356 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1357 	       rsp->name);
1358 	print_cpu_stall_info_begin();
1359 	rcu_for_each_leaf_node(rsp, rnp) {
1360 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1361 		ndetected += rcu_print_task_stall(rnp);
1362 		if (rnp->qsmask != 0) {
1363 			for_each_leaf_node_possible_cpu(rnp, cpu)
1364 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1365 					print_cpu_stall_info(rsp, cpu);
1366 					ndetected++;
1367 				}
1368 		}
1369 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1370 	}
1371 
1372 	print_cpu_stall_info_end();
1373 	for_each_possible_cpu(cpu)
1374 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1375 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1376 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1377 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1378 	if (ndetected) {
1379 		rcu_dump_cpu_stacks(rsp);
1380 	} else {
1381 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1382 		    READ_ONCE(rsp->completed) == gpnum) {
1383 			pr_err("INFO: Stall ended before state dump start\n");
1384 		} else {
1385 			j = jiffies;
1386 			gpa = READ_ONCE(rsp->gp_activity);
1387 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1388 			       rsp->name, j - gpa, j, gpa,
1389 			       jiffies_till_next_fqs,
1390 			       rcu_get_root(rsp)->qsmask);
1391 			/* In this case, the current CPU might be at fault. */
1392 			sched_show_task(current);
1393 		}
1394 	}
1395 
1396 	/* Complain about tasks blocking the grace period. */
1397 	rcu_print_detail_task_stall(rsp);
1398 
1399 	rcu_check_gp_kthread_starvation(rsp);
1400 
1401 	panic_on_rcu_stall();
1402 
1403 	force_quiescent_state(rsp);  /* Kick them all. */
1404 }
1405 
1406 static void print_cpu_stall(struct rcu_state *rsp)
1407 {
1408 	int cpu;
1409 	unsigned long flags;
1410 	struct rcu_node *rnp = rcu_get_root(rsp);
1411 	long totqlen = 0;
1412 
1413 	/* Kick and suppress, if so configured. */
1414 	rcu_stall_kick_kthreads(rsp);
1415 	if (rcu_cpu_stall_suppress)
1416 		return;
1417 
1418 	/*
1419 	 * OK, time to rat on ourselves...
1420 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1421 	 * RCU CPU stall warnings.
1422 	 */
1423 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1424 	print_cpu_stall_info_begin();
1425 	print_cpu_stall_info(rsp, smp_processor_id());
1426 	print_cpu_stall_info_end();
1427 	for_each_possible_cpu(cpu)
1428 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1429 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1430 		jiffies - rsp->gp_start,
1431 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1432 
1433 	rcu_check_gp_kthread_starvation(rsp);
1434 
1435 	rcu_dump_cpu_stacks(rsp);
1436 
1437 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1438 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1439 		WRITE_ONCE(rsp->jiffies_stall,
1440 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1441 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1442 
1443 	panic_on_rcu_stall();
1444 
1445 	/*
1446 	 * Attempt to revive the RCU machinery by forcing a context switch.
1447 	 *
1448 	 * A context switch would normally allow the RCU state machine to make
1449 	 * progress and it could be we're stuck in kernel space without context
1450 	 * switches for an entirely unreasonable amount of time.
1451 	 */
1452 	resched_cpu(smp_processor_id());
1453 }
1454 
1455 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1456 {
1457 	unsigned long completed;
1458 	unsigned long gpnum;
1459 	unsigned long gps;
1460 	unsigned long j;
1461 	unsigned long js;
1462 	struct rcu_node *rnp;
1463 
1464 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1465 	    !rcu_gp_in_progress(rsp))
1466 		return;
1467 	rcu_stall_kick_kthreads(rsp);
1468 	j = jiffies;
1469 
1470 	/*
1471 	 * Lots of memory barriers to reject false positives.
1472 	 *
1473 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1474 	 * then rsp->gp_start, and finally rsp->completed.  These values
1475 	 * are updated in the opposite order with memory barriers (or
1476 	 * equivalent) during grace-period initialization and cleanup.
1477 	 * Now, a false positive can occur if we get an new value of
1478 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1479 	 * the memory barriers, the only way that this can happen is if one
1480 	 * grace period ends and another starts between these two fetches.
1481 	 * Detect this by comparing rsp->completed with the previous fetch
1482 	 * from rsp->gpnum.
1483 	 *
1484 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1485 	 * and rsp->gp_start suffice to forestall false positives.
1486 	 */
1487 	gpnum = READ_ONCE(rsp->gpnum);
1488 	smp_rmb(); /* Pick up ->gpnum first... */
1489 	js = READ_ONCE(rsp->jiffies_stall);
1490 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1491 	gps = READ_ONCE(rsp->gp_start);
1492 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1493 	completed = READ_ONCE(rsp->completed);
1494 	if (ULONG_CMP_GE(completed, gpnum) ||
1495 	    ULONG_CMP_LT(j, js) ||
1496 	    ULONG_CMP_GE(gps, js))
1497 		return; /* No stall or GP completed since entering function. */
1498 	rnp = rdp->mynode;
1499 	if (rcu_gp_in_progress(rsp) &&
1500 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1501 
1502 		/* We haven't checked in, so go dump stack. */
1503 		print_cpu_stall(rsp);
1504 
1505 	} else if (rcu_gp_in_progress(rsp) &&
1506 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1507 
1508 		/* They had a few time units to dump stack, so complain. */
1509 		print_other_cpu_stall(rsp, gpnum);
1510 	}
1511 }
1512 
1513 /**
1514  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1515  *
1516  * Set the stall-warning timeout way off into the future, thus preventing
1517  * any RCU CPU stall-warning messages from appearing in the current set of
1518  * RCU grace periods.
1519  *
1520  * The caller must disable hard irqs.
1521  */
1522 void rcu_cpu_stall_reset(void)
1523 {
1524 	struct rcu_state *rsp;
1525 
1526 	for_each_rcu_flavor(rsp)
1527 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1528 }
1529 
1530 /*
1531  * Initialize the specified rcu_data structure's default callback list
1532  * to empty.  The default callback list is the one that is not used by
1533  * no-callbacks CPUs.
1534  */
1535 static void init_default_callback_list(struct rcu_data *rdp)
1536 {
1537 	int i;
1538 
1539 	rdp->nxtlist = NULL;
1540 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1541 		rdp->nxttail[i] = &rdp->nxtlist;
1542 }
1543 
1544 /*
1545  * Initialize the specified rcu_data structure's callback list to empty.
1546  */
1547 static void init_callback_list(struct rcu_data *rdp)
1548 {
1549 	if (init_nocb_callback_list(rdp))
1550 		return;
1551 	init_default_callback_list(rdp);
1552 }
1553 
1554 /*
1555  * Determine the value that ->completed will have at the end of the
1556  * next subsequent grace period.  This is used to tag callbacks so that
1557  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1558  * been dyntick-idle for an extended period with callbacks under the
1559  * influence of RCU_FAST_NO_HZ.
1560  *
1561  * The caller must hold rnp->lock with interrupts disabled.
1562  */
1563 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1564 				       struct rcu_node *rnp)
1565 {
1566 	/*
1567 	 * If RCU is idle, we just wait for the next grace period.
1568 	 * But we can only be sure that RCU is idle if we are looking
1569 	 * at the root rcu_node structure -- otherwise, a new grace
1570 	 * period might have started, but just not yet gotten around
1571 	 * to initializing the current non-root rcu_node structure.
1572 	 */
1573 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1574 		return rnp->completed + 1;
1575 
1576 	/*
1577 	 * Otherwise, wait for a possible partial grace period and
1578 	 * then the subsequent full grace period.
1579 	 */
1580 	return rnp->completed + 2;
1581 }
1582 
1583 /*
1584  * Trace-event helper function for rcu_start_future_gp() and
1585  * rcu_nocb_wait_gp().
1586  */
1587 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1588 				unsigned long c, const char *s)
1589 {
1590 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1591 				      rnp->completed, c, rnp->level,
1592 				      rnp->grplo, rnp->grphi, s);
1593 }
1594 
1595 /*
1596  * Start some future grace period, as needed to handle newly arrived
1597  * callbacks.  The required future grace periods are recorded in each
1598  * rcu_node structure's ->need_future_gp field.  Returns true if there
1599  * is reason to awaken the grace-period kthread.
1600  *
1601  * The caller must hold the specified rcu_node structure's ->lock.
1602  */
1603 static bool __maybe_unused
1604 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1605 		    unsigned long *c_out)
1606 {
1607 	unsigned long c;
1608 	int i;
1609 	bool ret = false;
1610 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1611 
1612 	/*
1613 	 * Pick up grace-period number for new callbacks.  If this
1614 	 * grace period is already marked as needed, return to the caller.
1615 	 */
1616 	c = rcu_cbs_completed(rdp->rsp, rnp);
1617 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1618 	if (rnp->need_future_gp[c & 0x1]) {
1619 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1620 		goto out;
1621 	}
1622 
1623 	/*
1624 	 * If either this rcu_node structure or the root rcu_node structure
1625 	 * believe that a grace period is in progress, then we must wait
1626 	 * for the one following, which is in "c".  Because our request
1627 	 * will be noticed at the end of the current grace period, we don't
1628 	 * need to explicitly start one.  We only do the lockless check
1629 	 * of rnp_root's fields if the current rcu_node structure thinks
1630 	 * there is no grace period in flight, and because we hold rnp->lock,
1631 	 * the only possible change is when rnp_root's two fields are
1632 	 * equal, in which case rnp_root->gpnum might be concurrently
1633 	 * incremented.  But that is OK, as it will just result in our
1634 	 * doing some extra useless work.
1635 	 */
1636 	if (rnp->gpnum != rnp->completed ||
1637 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1638 		rnp->need_future_gp[c & 0x1]++;
1639 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1640 		goto out;
1641 	}
1642 
1643 	/*
1644 	 * There might be no grace period in progress.  If we don't already
1645 	 * hold it, acquire the root rcu_node structure's lock in order to
1646 	 * start one (if needed).
1647 	 */
1648 	if (rnp != rnp_root)
1649 		raw_spin_lock_rcu_node(rnp_root);
1650 
1651 	/*
1652 	 * Get a new grace-period number.  If there really is no grace
1653 	 * period in progress, it will be smaller than the one we obtained
1654 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1655 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1656 	 */
1657 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1658 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1659 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1660 			rdp->nxtcompleted[i] = c;
1661 
1662 	/*
1663 	 * If the needed for the required grace period is already
1664 	 * recorded, trace and leave.
1665 	 */
1666 	if (rnp_root->need_future_gp[c & 0x1]) {
1667 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1668 		goto unlock_out;
1669 	}
1670 
1671 	/* Record the need for the future grace period. */
1672 	rnp_root->need_future_gp[c & 0x1]++;
1673 
1674 	/* If a grace period is not already in progress, start one. */
1675 	if (rnp_root->gpnum != rnp_root->completed) {
1676 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1677 	} else {
1678 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1679 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1680 	}
1681 unlock_out:
1682 	if (rnp != rnp_root)
1683 		raw_spin_unlock_rcu_node(rnp_root);
1684 out:
1685 	if (c_out != NULL)
1686 		*c_out = c;
1687 	return ret;
1688 }
1689 
1690 /*
1691  * Clean up any old requests for the just-ended grace period.  Also return
1692  * whether any additional grace periods have been requested.  Also invoke
1693  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1694  * waiting for this grace period to complete.
1695  */
1696 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1697 {
1698 	int c = rnp->completed;
1699 	int needmore;
1700 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1701 
1702 	rnp->need_future_gp[c & 0x1] = 0;
1703 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1704 	trace_rcu_future_gp(rnp, rdp, c,
1705 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1706 	return needmore;
1707 }
1708 
1709 /*
1710  * Awaken the grace-period kthread for the specified flavor of RCU.
1711  * Don't do a self-awaken, and don't bother awakening when there is
1712  * nothing for the grace-period kthread to do (as in several CPUs
1713  * raced to awaken, and we lost), and finally don't try to awaken
1714  * a kthread that has not yet been created.
1715  */
1716 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1717 {
1718 	if (current == rsp->gp_kthread ||
1719 	    !READ_ONCE(rsp->gp_flags) ||
1720 	    !rsp->gp_kthread)
1721 		return;
1722 	swake_up(&rsp->gp_wq);
1723 }
1724 
1725 /*
1726  * If there is room, assign a ->completed number to any callbacks on
1727  * this CPU that have not already been assigned.  Also accelerate any
1728  * callbacks that were previously assigned a ->completed number that has
1729  * since proven to be too conservative, which can happen if callbacks get
1730  * assigned a ->completed number while RCU is idle, but with reference to
1731  * a non-root rcu_node structure.  This function is idempotent, so it does
1732  * not hurt to call it repeatedly.  Returns an flag saying that we should
1733  * awaken the RCU grace-period kthread.
1734  *
1735  * The caller must hold rnp->lock with interrupts disabled.
1736  */
1737 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1738 			       struct rcu_data *rdp)
1739 {
1740 	unsigned long c;
1741 	int i;
1742 	bool ret;
1743 
1744 	/* If the CPU has no callbacks, nothing to do. */
1745 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1746 		return false;
1747 
1748 	/*
1749 	 * Starting from the sublist containing the callbacks most
1750 	 * recently assigned a ->completed number and working down, find the
1751 	 * first sublist that is not assignable to an upcoming grace period.
1752 	 * Such a sublist has something in it (first two tests) and has
1753 	 * a ->completed number assigned that will complete sooner than
1754 	 * the ->completed number for newly arrived callbacks (last test).
1755 	 *
1756 	 * The key point is that any later sublist can be assigned the
1757 	 * same ->completed number as the newly arrived callbacks, which
1758 	 * means that the callbacks in any of these later sublist can be
1759 	 * grouped into a single sublist, whether or not they have already
1760 	 * been assigned a ->completed number.
1761 	 */
1762 	c = rcu_cbs_completed(rsp, rnp);
1763 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1764 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1765 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1766 			break;
1767 
1768 	/*
1769 	 * If there are no sublist for unassigned callbacks, leave.
1770 	 * At the same time, advance "i" one sublist, so that "i" will
1771 	 * index into the sublist where all the remaining callbacks should
1772 	 * be grouped into.
1773 	 */
1774 	if (++i >= RCU_NEXT_TAIL)
1775 		return false;
1776 
1777 	/*
1778 	 * Assign all subsequent callbacks' ->completed number to the next
1779 	 * full grace period and group them all in the sublist initially
1780 	 * indexed by "i".
1781 	 */
1782 	for (; i <= RCU_NEXT_TAIL; i++) {
1783 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1784 		rdp->nxtcompleted[i] = c;
1785 	}
1786 	/* Record any needed additional grace periods. */
1787 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1788 
1789 	/* Trace depending on how much we were able to accelerate. */
1790 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1791 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1792 	else
1793 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Move any callbacks whose grace period has completed to the
1799  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1800  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1801  * sublist.  This function is idempotent, so it does not hurt to
1802  * invoke it repeatedly.  As long as it is not invoked -too- often...
1803  * Returns true if the RCU grace-period kthread needs to be awakened.
1804  *
1805  * The caller must hold rnp->lock with interrupts disabled.
1806  */
1807 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1808 			    struct rcu_data *rdp)
1809 {
1810 	int i, j;
1811 
1812 	/* If the CPU has no callbacks, nothing to do. */
1813 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1814 		return false;
1815 
1816 	/*
1817 	 * Find all callbacks whose ->completed numbers indicate that they
1818 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1819 	 */
1820 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1821 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1822 			break;
1823 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1824 	}
1825 	/* Clean up any sublist tail pointers that were misordered above. */
1826 	for (j = RCU_WAIT_TAIL; j < i; j++)
1827 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1828 
1829 	/* Copy down callbacks to fill in empty sublists. */
1830 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1831 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1832 			break;
1833 		rdp->nxttail[j] = rdp->nxttail[i];
1834 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1835 	}
1836 
1837 	/* Classify any remaining callbacks. */
1838 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1839 }
1840 
1841 /*
1842  * Update CPU-local rcu_data state to record the beginnings and ends of
1843  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1844  * structure corresponding to the current CPU, and must have irqs disabled.
1845  * Returns true if the grace-period kthread needs to be awakened.
1846  */
1847 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1848 			      struct rcu_data *rdp)
1849 {
1850 	bool ret;
1851 
1852 	/* Handle the ends of any preceding grace periods first. */
1853 	if (rdp->completed == rnp->completed &&
1854 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1855 
1856 		/* No grace period end, so just accelerate recent callbacks. */
1857 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1858 
1859 	} else {
1860 
1861 		/* Advance callbacks. */
1862 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1863 
1864 		/* Remember that we saw this grace-period completion. */
1865 		rdp->completed = rnp->completed;
1866 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1867 	}
1868 
1869 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1870 		/*
1871 		 * If the current grace period is waiting for this CPU,
1872 		 * set up to detect a quiescent state, otherwise don't
1873 		 * go looking for one.
1874 		 */
1875 		rdp->gpnum = rnp->gpnum;
1876 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1877 		rdp->cpu_no_qs.b.norm = true;
1878 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1879 		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1880 		zero_cpu_stall_ticks(rdp);
1881 		WRITE_ONCE(rdp->gpwrap, false);
1882 	}
1883 	return ret;
1884 }
1885 
1886 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1887 {
1888 	unsigned long flags;
1889 	bool needwake;
1890 	struct rcu_node *rnp;
1891 
1892 	local_irq_save(flags);
1893 	rnp = rdp->mynode;
1894 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1895 	     rdp->completed == READ_ONCE(rnp->completed) &&
1896 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1897 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1898 		local_irq_restore(flags);
1899 		return;
1900 	}
1901 	needwake = __note_gp_changes(rsp, rnp, rdp);
1902 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1903 	if (needwake)
1904 		rcu_gp_kthread_wake(rsp);
1905 }
1906 
1907 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1908 {
1909 	if (delay > 0 &&
1910 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1911 		schedule_timeout_uninterruptible(delay);
1912 }
1913 
1914 /*
1915  * Initialize a new grace period.  Return false if no grace period required.
1916  */
1917 static bool rcu_gp_init(struct rcu_state *rsp)
1918 {
1919 	unsigned long oldmask;
1920 	struct rcu_data *rdp;
1921 	struct rcu_node *rnp = rcu_get_root(rsp);
1922 
1923 	WRITE_ONCE(rsp->gp_activity, jiffies);
1924 	raw_spin_lock_irq_rcu_node(rnp);
1925 	if (!READ_ONCE(rsp->gp_flags)) {
1926 		/* Spurious wakeup, tell caller to go back to sleep.  */
1927 		raw_spin_unlock_irq_rcu_node(rnp);
1928 		return false;
1929 	}
1930 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1931 
1932 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1933 		/*
1934 		 * Grace period already in progress, don't start another.
1935 		 * Not supposed to be able to happen.
1936 		 */
1937 		raw_spin_unlock_irq_rcu_node(rnp);
1938 		return false;
1939 	}
1940 
1941 	/* Advance to a new grace period and initialize state. */
1942 	record_gp_stall_check_time(rsp);
1943 	/* Record GP times before starting GP, hence smp_store_release(). */
1944 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1945 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1946 	raw_spin_unlock_irq_rcu_node(rnp);
1947 
1948 	/*
1949 	 * Apply per-leaf buffered online and offline operations to the
1950 	 * rcu_node tree.  Note that this new grace period need not wait
1951 	 * for subsequent online CPUs, and that quiescent-state forcing
1952 	 * will handle subsequent offline CPUs.
1953 	 */
1954 	rcu_for_each_leaf_node(rsp, rnp) {
1955 		rcu_gp_slow(rsp, gp_preinit_delay);
1956 		raw_spin_lock_irq_rcu_node(rnp);
1957 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1958 		    !rnp->wait_blkd_tasks) {
1959 			/* Nothing to do on this leaf rcu_node structure. */
1960 			raw_spin_unlock_irq_rcu_node(rnp);
1961 			continue;
1962 		}
1963 
1964 		/* Record old state, apply changes to ->qsmaskinit field. */
1965 		oldmask = rnp->qsmaskinit;
1966 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1967 
1968 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1969 		if (!oldmask != !rnp->qsmaskinit) {
1970 			if (!oldmask) /* First online CPU for this rcu_node. */
1971 				rcu_init_new_rnp(rnp);
1972 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1973 				rnp->wait_blkd_tasks = true;
1974 			else /* Last offline CPU and can propagate. */
1975 				rcu_cleanup_dead_rnp(rnp);
1976 		}
1977 
1978 		/*
1979 		 * If all waited-on tasks from prior grace period are
1980 		 * done, and if all this rcu_node structure's CPUs are
1981 		 * still offline, propagate up the rcu_node tree and
1982 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1983 		 * rcu_node structure's CPUs has since come back online,
1984 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1985 		 * checks for this, so just call it unconditionally).
1986 		 */
1987 		if (rnp->wait_blkd_tasks &&
1988 		    (!rcu_preempt_has_tasks(rnp) ||
1989 		     rnp->qsmaskinit)) {
1990 			rnp->wait_blkd_tasks = false;
1991 			rcu_cleanup_dead_rnp(rnp);
1992 		}
1993 
1994 		raw_spin_unlock_irq_rcu_node(rnp);
1995 	}
1996 
1997 	/*
1998 	 * Set the quiescent-state-needed bits in all the rcu_node
1999 	 * structures for all currently online CPUs in breadth-first order,
2000 	 * starting from the root rcu_node structure, relying on the layout
2001 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2002 	 * will access only the leaves of the hierarchy, thus seeing that no
2003 	 * grace period is in progress, at least until the corresponding
2004 	 * leaf node has been initialized.
2005 	 *
2006 	 * The grace period cannot complete until the initialization
2007 	 * process finishes, because this kthread handles both.
2008 	 */
2009 	rcu_for_each_node_breadth_first(rsp, rnp) {
2010 		rcu_gp_slow(rsp, gp_init_delay);
2011 		raw_spin_lock_irq_rcu_node(rnp);
2012 		rdp = this_cpu_ptr(rsp->rda);
2013 		rcu_preempt_check_blocked_tasks(rnp);
2014 		rnp->qsmask = rnp->qsmaskinit;
2015 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2016 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2017 			WRITE_ONCE(rnp->completed, rsp->completed);
2018 		if (rnp == rdp->mynode)
2019 			(void)__note_gp_changes(rsp, rnp, rdp);
2020 		rcu_preempt_boost_start_gp(rnp);
2021 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2022 					    rnp->level, rnp->grplo,
2023 					    rnp->grphi, rnp->qsmask);
2024 		raw_spin_unlock_irq_rcu_node(rnp);
2025 		cond_resched_rcu_qs();
2026 		WRITE_ONCE(rsp->gp_activity, jiffies);
2027 	}
2028 
2029 	return true;
2030 }
2031 
2032 /*
2033  * Helper function for wait_event_interruptible_timeout() wakeup
2034  * at force-quiescent-state time.
2035  */
2036 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2037 {
2038 	struct rcu_node *rnp = rcu_get_root(rsp);
2039 
2040 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2041 	*gfp = READ_ONCE(rsp->gp_flags);
2042 	if (*gfp & RCU_GP_FLAG_FQS)
2043 		return true;
2044 
2045 	/* The current grace period has completed. */
2046 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2047 		return true;
2048 
2049 	return false;
2050 }
2051 
2052 /*
2053  * Do one round of quiescent-state forcing.
2054  */
2055 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2056 {
2057 	bool isidle = false;
2058 	unsigned long maxj;
2059 	struct rcu_node *rnp = rcu_get_root(rsp);
2060 
2061 	WRITE_ONCE(rsp->gp_activity, jiffies);
2062 	rsp->n_force_qs++;
2063 	if (first_time) {
2064 		/* Collect dyntick-idle snapshots. */
2065 		if (is_sysidle_rcu_state(rsp)) {
2066 			isidle = true;
2067 			maxj = jiffies - ULONG_MAX / 4;
2068 		}
2069 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2070 			     &isidle, &maxj);
2071 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2072 	} else {
2073 		/* Handle dyntick-idle and offline CPUs. */
2074 		isidle = true;
2075 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2076 	}
2077 	/* Clear flag to prevent immediate re-entry. */
2078 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2079 		raw_spin_lock_irq_rcu_node(rnp);
2080 		WRITE_ONCE(rsp->gp_flags,
2081 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2082 		raw_spin_unlock_irq_rcu_node(rnp);
2083 	}
2084 }
2085 
2086 /*
2087  * Clean up after the old grace period.
2088  */
2089 static void rcu_gp_cleanup(struct rcu_state *rsp)
2090 {
2091 	unsigned long gp_duration;
2092 	bool needgp = false;
2093 	int nocb = 0;
2094 	struct rcu_data *rdp;
2095 	struct rcu_node *rnp = rcu_get_root(rsp);
2096 	struct swait_queue_head *sq;
2097 
2098 	WRITE_ONCE(rsp->gp_activity, jiffies);
2099 	raw_spin_lock_irq_rcu_node(rnp);
2100 	gp_duration = jiffies - rsp->gp_start;
2101 	if (gp_duration > rsp->gp_max)
2102 		rsp->gp_max = gp_duration;
2103 
2104 	/*
2105 	 * We know the grace period is complete, but to everyone else
2106 	 * it appears to still be ongoing.  But it is also the case
2107 	 * that to everyone else it looks like there is nothing that
2108 	 * they can do to advance the grace period.  It is therefore
2109 	 * safe for us to drop the lock in order to mark the grace
2110 	 * period as completed in all of the rcu_node structures.
2111 	 */
2112 	raw_spin_unlock_irq_rcu_node(rnp);
2113 
2114 	/*
2115 	 * Propagate new ->completed value to rcu_node structures so
2116 	 * that other CPUs don't have to wait until the start of the next
2117 	 * grace period to process their callbacks.  This also avoids
2118 	 * some nasty RCU grace-period initialization races by forcing
2119 	 * the end of the current grace period to be completely recorded in
2120 	 * all of the rcu_node structures before the beginning of the next
2121 	 * grace period is recorded in any of the rcu_node structures.
2122 	 */
2123 	rcu_for_each_node_breadth_first(rsp, rnp) {
2124 		raw_spin_lock_irq_rcu_node(rnp);
2125 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2126 		WARN_ON_ONCE(rnp->qsmask);
2127 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2128 		rdp = this_cpu_ptr(rsp->rda);
2129 		if (rnp == rdp->mynode)
2130 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2131 		/* smp_mb() provided by prior unlock-lock pair. */
2132 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2133 		sq = rcu_nocb_gp_get(rnp);
2134 		raw_spin_unlock_irq_rcu_node(rnp);
2135 		rcu_nocb_gp_cleanup(sq);
2136 		cond_resched_rcu_qs();
2137 		WRITE_ONCE(rsp->gp_activity, jiffies);
2138 		rcu_gp_slow(rsp, gp_cleanup_delay);
2139 	}
2140 	rnp = rcu_get_root(rsp);
2141 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2142 	rcu_nocb_gp_set(rnp, nocb);
2143 
2144 	/* Declare grace period done. */
2145 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2146 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2147 	rsp->gp_state = RCU_GP_IDLE;
2148 	rdp = this_cpu_ptr(rsp->rda);
2149 	/* Advance CBs to reduce false positives below. */
2150 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2151 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2152 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2153 		trace_rcu_grace_period(rsp->name,
2154 				       READ_ONCE(rsp->gpnum),
2155 				       TPS("newreq"));
2156 	}
2157 	raw_spin_unlock_irq_rcu_node(rnp);
2158 }
2159 
2160 /*
2161  * Body of kthread that handles grace periods.
2162  */
2163 static int __noreturn rcu_gp_kthread(void *arg)
2164 {
2165 	bool first_gp_fqs;
2166 	int gf;
2167 	unsigned long j;
2168 	int ret;
2169 	struct rcu_state *rsp = arg;
2170 	struct rcu_node *rnp = rcu_get_root(rsp);
2171 
2172 	rcu_bind_gp_kthread();
2173 	for (;;) {
2174 
2175 		/* Handle grace-period start. */
2176 		for (;;) {
2177 			trace_rcu_grace_period(rsp->name,
2178 					       READ_ONCE(rsp->gpnum),
2179 					       TPS("reqwait"));
2180 			rsp->gp_state = RCU_GP_WAIT_GPS;
2181 			swait_event_interruptible(rsp->gp_wq,
2182 						 READ_ONCE(rsp->gp_flags) &
2183 						 RCU_GP_FLAG_INIT);
2184 			rsp->gp_state = RCU_GP_DONE_GPS;
2185 			/* Locking provides needed memory barrier. */
2186 			if (rcu_gp_init(rsp))
2187 				break;
2188 			cond_resched_rcu_qs();
2189 			WRITE_ONCE(rsp->gp_activity, jiffies);
2190 			WARN_ON(signal_pending(current));
2191 			trace_rcu_grace_period(rsp->name,
2192 					       READ_ONCE(rsp->gpnum),
2193 					       TPS("reqwaitsig"));
2194 		}
2195 
2196 		/* Handle quiescent-state forcing. */
2197 		first_gp_fqs = true;
2198 		j = jiffies_till_first_fqs;
2199 		if (j > HZ) {
2200 			j = HZ;
2201 			jiffies_till_first_fqs = HZ;
2202 		}
2203 		ret = 0;
2204 		for (;;) {
2205 			if (!ret) {
2206 				rsp->jiffies_force_qs = jiffies + j;
2207 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2208 					   jiffies + 3 * j);
2209 			}
2210 			trace_rcu_grace_period(rsp->name,
2211 					       READ_ONCE(rsp->gpnum),
2212 					       TPS("fqswait"));
2213 			rsp->gp_state = RCU_GP_WAIT_FQS;
2214 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2215 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2216 			rsp->gp_state = RCU_GP_DOING_FQS;
2217 			/* Locking provides needed memory barriers. */
2218 			/* If grace period done, leave loop. */
2219 			if (!READ_ONCE(rnp->qsmask) &&
2220 			    !rcu_preempt_blocked_readers_cgp(rnp))
2221 				break;
2222 			/* If time for quiescent-state forcing, do it. */
2223 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2224 			    (gf & RCU_GP_FLAG_FQS)) {
2225 				trace_rcu_grace_period(rsp->name,
2226 						       READ_ONCE(rsp->gpnum),
2227 						       TPS("fqsstart"));
2228 				rcu_gp_fqs(rsp, first_gp_fqs);
2229 				first_gp_fqs = false;
2230 				trace_rcu_grace_period(rsp->name,
2231 						       READ_ONCE(rsp->gpnum),
2232 						       TPS("fqsend"));
2233 				cond_resched_rcu_qs();
2234 				WRITE_ONCE(rsp->gp_activity, jiffies);
2235 				ret = 0; /* Force full wait till next FQS. */
2236 				j = jiffies_till_next_fqs;
2237 				if (j > HZ) {
2238 					j = HZ;
2239 					jiffies_till_next_fqs = HZ;
2240 				} else if (j < 1) {
2241 					j = 1;
2242 					jiffies_till_next_fqs = 1;
2243 				}
2244 			} else {
2245 				/* Deal with stray signal. */
2246 				cond_resched_rcu_qs();
2247 				WRITE_ONCE(rsp->gp_activity, jiffies);
2248 				WARN_ON(signal_pending(current));
2249 				trace_rcu_grace_period(rsp->name,
2250 						       READ_ONCE(rsp->gpnum),
2251 						       TPS("fqswaitsig"));
2252 				ret = 1; /* Keep old FQS timing. */
2253 				j = jiffies;
2254 				if (time_after(jiffies, rsp->jiffies_force_qs))
2255 					j = 1;
2256 				else
2257 					j = rsp->jiffies_force_qs - j;
2258 			}
2259 		}
2260 
2261 		/* Handle grace-period end. */
2262 		rsp->gp_state = RCU_GP_CLEANUP;
2263 		rcu_gp_cleanup(rsp);
2264 		rsp->gp_state = RCU_GP_CLEANED;
2265 	}
2266 }
2267 
2268 /*
2269  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2270  * in preparation for detecting the next grace period.  The caller must hold
2271  * the root node's ->lock and hard irqs must be disabled.
2272  *
2273  * Note that it is legal for a dying CPU (which is marked as offline) to
2274  * invoke this function.  This can happen when the dying CPU reports its
2275  * quiescent state.
2276  *
2277  * Returns true if the grace-period kthread must be awakened.
2278  */
2279 static bool
2280 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2281 		      struct rcu_data *rdp)
2282 {
2283 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2284 		/*
2285 		 * Either we have not yet spawned the grace-period
2286 		 * task, this CPU does not need another grace period,
2287 		 * or a grace period is already in progress.
2288 		 * Either way, don't start a new grace period.
2289 		 */
2290 		return false;
2291 	}
2292 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2293 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2294 			       TPS("newreq"));
2295 
2296 	/*
2297 	 * We can't do wakeups while holding the rnp->lock, as that
2298 	 * could cause possible deadlocks with the rq->lock. Defer
2299 	 * the wakeup to our caller.
2300 	 */
2301 	return true;
2302 }
2303 
2304 /*
2305  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2306  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2307  * is invoked indirectly from rcu_advance_cbs(), which would result in
2308  * endless recursion -- or would do so if it wasn't for the self-deadlock
2309  * that is encountered beforehand.
2310  *
2311  * Returns true if the grace-period kthread needs to be awakened.
2312  */
2313 static bool rcu_start_gp(struct rcu_state *rsp)
2314 {
2315 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2316 	struct rcu_node *rnp = rcu_get_root(rsp);
2317 	bool ret = false;
2318 
2319 	/*
2320 	 * If there is no grace period in progress right now, any
2321 	 * callbacks we have up to this point will be satisfied by the
2322 	 * next grace period.  Also, advancing the callbacks reduces the
2323 	 * probability of false positives from cpu_needs_another_gp()
2324 	 * resulting in pointless grace periods.  So, advance callbacks
2325 	 * then start the grace period!
2326 	 */
2327 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2328 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2329 	return ret;
2330 }
2331 
2332 /*
2333  * Report a full set of quiescent states to the specified rcu_state data
2334  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2335  * kthread if another grace period is required.  Whether we wake
2336  * the grace-period kthread or it awakens itself for the next round
2337  * of quiescent-state forcing, that kthread will clean up after the
2338  * just-completed grace period.  Note that the caller must hold rnp->lock,
2339  * which is released before return.
2340  */
2341 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2342 	__releases(rcu_get_root(rsp)->lock)
2343 {
2344 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2345 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2346 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2347 	swake_up(&rsp->gp_wq);  /* Memory barrier implied by swake_up() path. */
2348 }
2349 
2350 /*
2351  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2352  * Allows quiescent states for a group of CPUs to be reported at one go
2353  * to the specified rcu_node structure, though all the CPUs in the group
2354  * must be represented by the same rcu_node structure (which need not be a
2355  * leaf rcu_node structure, though it often will be).  The gps parameter
2356  * is the grace-period snapshot, which means that the quiescent states
2357  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2358  * must be held upon entry, and it is released before return.
2359  */
2360 static void
2361 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2362 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2363 	__releases(rnp->lock)
2364 {
2365 	unsigned long oldmask = 0;
2366 	struct rcu_node *rnp_c;
2367 
2368 	/* Walk up the rcu_node hierarchy. */
2369 	for (;;) {
2370 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2371 
2372 			/*
2373 			 * Our bit has already been cleared, or the
2374 			 * relevant grace period is already over, so done.
2375 			 */
2376 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2377 			return;
2378 		}
2379 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2380 		rnp->qsmask &= ~mask;
2381 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2382 						 mask, rnp->qsmask, rnp->level,
2383 						 rnp->grplo, rnp->grphi,
2384 						 !!rnp->gp_tasks);
2385 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2386 
2387 			/* Other bits still set at this level, so done. */
2388 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2389 			return;
2390 		}
2391 		mask = rnp->grpmask;
2392 		if (rnp->parent == NULL) {
2393 
2394 			/* No more levels.  Exit loop holding root lock. */
2395 
2396 			break;
2397 		}
2398 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2399 		rnp_c = rnp;
2400 		rnp = rnp->parent;
2401 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2402 		oldmask = rnp_c->qsmask;
2403 	}
2404 
2405 	/*
2406 	 * Get here if we are the last CPU to pass through a quiescent
2407 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2408 	 * to clean up and start the next grace period if one is needed.
2409 	 */
2410 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2411 }
2412 
2413 /*
2414  * Record a quiescent state for all tasks that were previously queued
2415  * on the specified rcu_node structure and that were blocking the current
2416  * RCU grace period.  The caller must hold the specified rnp->lock with
2417  * irqs disabled, and this lock is released upon return, but irqs remain
2418  * disabled.
2419  */
2420 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2421 				      struct rcu_node *rnp, unsigned long flags)
2422 	__releases(rnp->lock)
2423 {
2424 	unsigned long gps;
2425 	unsigned long mask;
2426 	struct rcu_node *rnp_p;
2427 
2428 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2429 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2430 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2431 		return;  /* Still need more quiescent states! */
2432 	}
2433 
2434 	rnp_p = rnp->parent;
2435 	if (rnp_p == NULL) {
2436 		/*
2437 		 * Only one rcu_node structure in the tree, so don't
2438 		 * try to report up to its nonexistent parent!
2439 		 */
2440 		rcu_report_qs_rsp(rsp, flags);
2441 		return;
2442 	}
2443 
2444 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2445 	gps = rnp->gpnum;
2446 	mask = rnp->grpmask;
2447 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2448 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2449 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2450 }
2451 
2452 /*
2453  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2454  * structure.  This must be called from the specified CPU.
2455  */
2456 static void
2457 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2458 {
2459 	unsigned long flags;
2460 	unsigned long mask;
2461 	bool needwake;
2462 	struct rcu_node *rnp;
2463 
2464 	rnp = rdp->mynode;
2465 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2466 	if ((rdp->cpu_no_qs.b.norm &&
2467 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2468 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2469 	    rdp->gpwrap) {
2470 
2471 		/*
2472 		 * The grace period in which this quiescent state was
2473 		 * recorded has ended, so don't report it upwards.
2474 		 * We will instead need a new quiescent state that lies
2475 		 * within the current grace period.
2476 		 */
2477 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2478 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2479 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2480 		return;
2481 	}
2482 	mask = rdp->grpmask;
2483 	if ((rnp->qsmask & mask) == 0) {
2484 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2485 	} else {
2486 		rdp->core_needs_qs = false;
2487 
2488 		/*
2489 		 * This GP can't end until cpu checks in, so all of our
2490 		 * callbacks can be processed during the next GP.
2491 		 */
2492 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2493 
2494 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2495 		/* ^^^ Released rnp->lock */
2496 		if (needwake)
2497 			rcu_gp_kthread_wake(rsp);
2498 	}
2499 }
2500 
2501 /*
2502  * Check to see if there is a new grace period of which this CPU
2503  * is not yet aware, and if so, set up local rcu_data state for it.
2504  * Otherwise, see if this CPU has just passed through its first
2505  * quiescent state for this grace period, and record that fact if so.
2506  */
2507 static void
2508 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2509 {
2510 	/* Check for grace-period ends and beginnings. */
2511 	note_gp_changes(rsp, rdp);
2512 
2513 	/*
2514 	 * Does this CPU still need to do its part for current grace period?
2515 	 * If no, return and let the other CPUs do their part as well.
2516 	 */
2517 	if (!rdp->core_needs_qs)
2518 		return;
2519 
2520 	/*
2521 	 * Was there a quiescent state since the beginning of the grace
2522 	 * period? If no, then exit and wait for the next call.
2523 	 */
2524 	if (rdp->cpu_no_qs.b.norm &&
2525 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2526 		return;
2527 
2528 	/*
2529 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2530 	 * judge of that).
2531 	 */
2532 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2533 }
2534 
2535 /*
2536  * Send the specified CPU's RCU callbacks to the orphanage.  The
2537  * specified CPU must be offline, and the caller must hold the
2538  * ->orphan_lock.
2539  */
2540 static void
2541 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2542 			  struct rcu_node *rnp, struct rcu_data *rdp)
2543 {
2544 	/* No-CBs CPUs do not have orphanable callbacks. */
2545 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2546 		return;
2547 
2548 	/*
2549 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2550 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2551 	 * cannot be running now.  Thus no memory barrier is required.
2552 	 */
2553 	if (rdp->nxtlist != NULL) {
2554 		rsp->qlen_lazy += rdp->qlen_lazy;
2555 		rsp->qlen += rdp->qlen;
2556 		rdp->n_cbs_orphaned += rdp->qlen;
2557 		rdp->qlen_lazy = 0;
2558 		WRITE_ONCE(rdp->qlen, 0);
2559 	}
2560 
2561 	/*
2562 	 * Next, move those callbacks still needing a grace period to
2563 	 * the orphanage, where some other CPU will pick them up.
2564 	 * Some of the callbacks might have gone partway through a grace
2565 	 * period, but that is too bad.  They get to start over because we
2566 	 * cannot assume that grace periods are synchronized across CPUs.
2567 	 * We don't bother updating the ->nxttail[] array yet, instead
2568 	 * we just reset the whole thing later on.
2569 	 */
2570 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2571 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2572 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2573 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2574 	}
2575 
2576 	/*
2577 	 * Then move the ready-to-invoke callbacks to the orphanage,
2578 	 * where some other CPU will pick them up.  These will not be
2579 	 * required to pass though another grace period: They are done.
2580 	 */
2581 	if (rdp->nxtlist != NULL) {
2582 		*rsp->orphan_donetail = rdp->nxtlist;
2583 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2584 	}
2585 
2586 	/*
2587 	 * Finally, initialize the rcu_data structure's list to empty and
2588 	 * disallow further callbacks on this CPU.
2589 	 */
2590 	init_callback_list(rdp);
2591 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2592 }
2593 
2594 /*
2595  * Adopt the RCU callbacks from the specified rcu_state structure's
2596  * orphanage.  The caller must hold the ->orphan_lock.
2597  */
2598 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2599 {
2600 	int i;
2601 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2602 
2603 	/* No-CBs CPUs are handled specially. */
2604 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2605 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2606 		return;
2607 
2608 	/* Do the accounting first. */
2609 	rdp->qlen_lazy += rsp->qlen_lazy;
2610 	rdp->qlen += rsp->qlen;
2611 	rdp->n_cbs_adopted += rsp->qlen;
2612 	if (rsp->qlen_lazy != rsp->qlen)
2613 		rcu_idle_count_callbacks_posted();
2614 	rsp->qlen_lazy = 0;
2615 	rsp->qlen = 0;
2616 
2617 	/*
2618 	 * We do not need a memory barrier here because the only way we
2619 	 * can get here if there is an rcu_barrier() in flight is if
2620 	 * we are the task doing the rcu_barrier().
2621 	 */
2622 
2623 	/* First adopt the ready-to-invoke callbacks. */
2624 	if (rsp->orphan_donelist != NULL) {
2625 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2626 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2627 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2628 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2629 				rdp->nxttail[i] = rsp->orphan_donetail;
2630 		rsp->orphan_donelist = NULL;
2631 		rsp->orphan_donetail = &rsp->orphan_donelist;
2632 	}
2633 
2634 	/* And then adopt the callbacks that still need a grace period. */
2635 	if (rsp->orphan_nxtlist != NULL) {
2636 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2637 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2638 		rsp->orphan_nxtlist = NULL;
2639 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2640 	}
2641 }
2642 
2643 /*
2644  * Trace the fact that this CPU is going offline.
2645  */
2646 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2647 {
2648 	RCU_TRACE(unsigned long mask);
2649 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2650 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2651 
2652 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2653 		return;
2654 
2655 	RCU_TRACE(mask = rdp->grpmask);
2656 	trace_rcu_grace_period(rsp->name,
2657 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2658 			       TPS("cpuofl"));
2659 }
2660 
2661 /*
2662  * All CPUs for the specified rcu_node structure have gone offline,
2663  * and all tasks that were preempted within an RCU read-side critical
2664  * section while running on one of those CPUs have since exited their RCU
2665  * read-side critical section.  Some other CPU is reporting this fact with
2666  * the specified rcu_node structure's ->lock held and interrupts disabled.
2667  * This function therefore goes up the tree of rcu_node structures,
2668  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2669  * the leaf rcu_node structure's ->qsmaskinit field has already been
2670  * updated
2671  *
2672  * This function does check that the specified rcu_node structure has
2673  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2674  * prematurely.  That said, invoking it after the fact will cost you
2675  * a needless lock acquisition.  So once it has done its work, don't
2676  * invoke it again.
2677  */
2678 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2679 {
2680 	long mask;
2681 	struct rcu_node *rnp = rnp_leaf;
2682 
2683 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2684 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2685 		return;
2686 	for (;;) {
2687 		mask = rnp->grpmask;
2688 		rnp = rnp->parent;
2689 		if (!rnp)
2690 			break;
2691 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2692 		rnp->qsmaskinit &= ~mask;
2693 		rnp->qsmask &= ~mask;
2694 		if (rnp->qsmaskinit) {
2695 			raw_spin_unlock_rcu_node(rnp);
2696 			/* irqs remain disabled. */
2697 			return;
2698 		}
2699 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2700 	}
2701 }
2702 
2703 /*
2704  * The CPU has been completely removed, and some other CPU is reporting
2705  * this fact from process context.  Do the remainder of the cleanup,
2706  * including orphaning the outgoing CPU's RCU callbacks, and also
2707  * adopting them.  There can only be one CPU hotplug operation at a time,
2708  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2709  */
2710 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2711 {
2712 	unsigned long flags;
2713 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2714 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2715 
2716 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2717 		return;
2718 
2719 	/* Adjust any no-longer-needed kthreads. */
2720 	rcu_boost_kthread_setaffinity(rnp, -1);
2721 
2722 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2723 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2724 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2725 	rcu_adopt_orphan_cbs(rsp, flags);
2726 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2727 
2728 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2729 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2730 		  cpu, rdp->qlen, rdp->nxtlist);
2731 }
2732 
2733 /*
2734  * Invoke any RCU callbacks that have made it to the end of their grace
2735  * period.  Thottle as specified by rdp->blimit.
2736  */
2737 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2738 {
2739 	unsigned long flags;
2740 	struct rcu_head *next, *list, **tail;
2741 	long bl, count, count_lazy;
2742 	int i;
2743 
2744 	/* If no callbacks are ready, just return. */
2745 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2746 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2747 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2748 				    need_resched(), is_idle_task(current),
2749 				    rcu_is_callbacks_kthread());
2750 		return;
2751 	}
2752 
2753 	/*
2754 	 * Extract the list of ready callbacks, disabling to prevent
2755 	 * races with call_rcu() from interrupt handlers.
2756 	 */
2757 	local_irq_save(flags);
2758 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2759 	bl = rdp->blimit;
2760 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2761 	list = rdp->nxtlist;
2762 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2763 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2764 	tail = rdp->nxttail[RCU_DONE_TAIL];
2765 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2766 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2767 			rdp->nxttail[i] = &rdp->nxtlist;
2768 	local_irq_restore(flags);
2769 
2770 	/* Invoke callbacks. */
2771 	count = count_lazy = 0;
2772 	while (list) {
2773 		next = list->next;
2774 		prefetch(next);
2775 		debug_rcu_head_unqueue(list);
2776 		if (__rcu_reclaim(rsp->name, list))
2777 			count_lazy++;
2778 		list = next;
2779 		/* Stop only if limit reached and CPU has something to do. */
2780 		if (++count >= bl &&
2781 		    (need_resched() ||
2782 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2783 			break;
2784 	}
2785 
2786 	local_irq_save(flags);
2787 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2788 			    is_idle_task(current),
2789 			    rcu_is_callbacks_kthread());
2790 
2791 	/* Update count, and requeue any remaining callbacks. */
2792 	if (list != NULL) {
2793 		*tail = rdp->nxtlist;
2794 		rdp->nxtlist = list;
2795 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2796 			if (&rdp->nxtlist == rdp->nxttail[i])
2797 				rdp->nxttail[i] = tail;
2798 			else
2799 				break;
2800 	}
2801 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2802 	rdp->qlen_lazy -= count_lazy;
2803 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2804 	rdp->n_cbs_invoked += count;
2805 
2806 	/* Reinstate batch limit if we have worked down the excess. */
2807 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2808 		rdp->blimit = blimit;
2809 
2810 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2811 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2812 		rdp->qlen_last_fqs_check = 0;
2813 		rdp->n_force_qs_snap = rsp->n_force_qs;
2814 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2815 		rdp->qlen_last_fqs_check = rdp->qlen;
2816 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2817 
2818 	local_irq_restore(flags);
2819 
2820 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2821 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2822 		invoke_rcu_core();
2823 }
2824 
2825 /*
2826  * Check to see if this CPU is in a non-context-switch quiescent state
2827  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2828  * Also schedule RCU core processing.
2829  *
2830  * This function must be called from hardirq context.  It is normally
2831  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2832  * false, there is no point in invoking rcu_check_callbacks().
2833  */
2834 void rcu_check_callbacks(int user)
2835 {
2836 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2837 	increment_cpu_stall_ticks();
2838 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2839 
2840 		/*
2841 		 * Get here if this CPU took its interrupt from user
2842 		 * mode or from the idle loop, and if this is not a
2843 		 * nested interrupt.  In this case, the CPU is in
2844 		 * a quiescent state, so note it.
2845 		 *
2846 		 * No memory barrier is required here because both
2847 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2848 		 * variables that other CPUs neither access nor modify,
2849 		 * at least not while the corresponding CPU is online.
2850 		 */
2851 
2852 		rcu_sched_qs();
2853 		rcu_bh_qs();
2854 
2855 	} else if (!in_softirq()) {
2856 
2857 		/*
2858 		 * Get here if this CPU did not take its interrupt from
2859 		 * softirq, in other words, if it is not interrupting
2860 		 * a rcu_bh read-side critical section.  This is an _bh
2861 		 * critical section, so note it.
2862 		 */
2863 
2864 		rcu_bh_qs();
2865 	}
2866 	rcu_preempt_check_callbacks();
2867 	if (rcu_pending())
2868 		invoke_rcu_core();
2869 	if (user)
2870 		rcu_note_voluntary_context_switch(current);
2871 	trace_rcu_utilization(TPS("End scheduler-tick"));
2872 }
2873 
2874 /*
2875  * Scan the leaf rcu_node structures, processing dyntick state for any that
2876  * have not yet encountered a quiescent state, using the function specified.
2877  * Also initiate boosting for any threads blocked on the root rcu_node.
2878  *
2879  * The caller must have suppressed start of new grace periods.
2880  */
2881 static void force_qs_rnp(struct rcu_state *rsp,
2882 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2883 				  unsigned long *maxj),
2884 			 bool *isidle, unsigned long *maxj)
2885 {
2886 	int cpu;
2887 	unsigned long flags;
2888 	unsigned long mask;
2889 	struct rcu_node *rnp;
2890 
2891 	rcu_for_each_leaf_node(rsp, rnp) {
2892 		cond_resched_rcu_qs();
2893 		mask = 0;
2894 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2895 		if (rnp->qsmask == 0) {
2896 			if (rcu_state_p == &rcu_sched_state ||
2897 			    rsp != rcu_state_p ||
2898 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2899 				/*
2900 				 * No point in scanning bits because they
2901 				 * are all zero.  But we might need to
2902 				 * priority-boost blocked readers.
2903 				 */
2904 				rcu_initiate_boost(rnp, flags);
2905 				/* rcu_initiate_boost() releases rnp->lock */
2906 				continue;
2907 			}
2908 			if (rnp->parent &&
2909 			    (rnp->parent->qsmask & rnp->grpmask)) {
2910 				/*
2911 				 * Race between grace-period
2912 				 * initialization and task exiting RCU
2913 				 * read-side critical section: Report.
2914 				 */
2915 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2916 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2917 				continue;
2918 			}
2919 		}
2920 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2921 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2922 			if ((rnp->qsmask & bit) != 0) {
2923 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2924 					mask |= bit;
2925 			}
2926 		}
2927 		if (mask != 0) {
2928 			/* Idle/offline CPUs, report (releases rnp->lock. */
2929 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2930 		} else {
2931 			/* Nothing to do here, so just drop the lock. */
2932 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2933 		}
2934 	}
2935 }
2936 
2937 /*
2938  * Force quiescent states on reluctant CPUs, and also detect which
2939  * CPUs are in dyntick-idle mode.
2940  */
2941 static void force_quiescent_state(struct rcu_state *rsp)
2942 {
2943 	unsigned long flags;
2944 	bool ret;
2945 	struct rcu_node *rnp;
2946 	struct rcu_node *rnp_old = NULL;
2947 
2948 	/* Funnel through hierarchy to reduce memory contention. */
2949 	rnp = __this_cpu_read(rsp->rda->mynode);
2950 	for (; rnp != NULL; rnp = rnp->parent) {
2951 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2952 		      !raw_spin_trylock(&rnp->fqslock);
2953 		if (rnp_old != NULL)
2954 			raw_spin_unlock(&rnp_old->fqslock);
2955 		if (ret) {
2956 			rsp->n_force_qs_lh++;
2957 			return;
2958 		}
2959 		rnp_old = rnp;
2960 	}
2961 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2962 
2963 	/* Reached the root of the rcu_node tree, acquire lock. */
2964 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2965 	raw_spin_unlock(&rnp_old->fqslock);
2966 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2967 		rsp->n_force_qs_lh++;
2968 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2969 		return;  /* Someone beat us to it. */
2970 	}
2971 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2972 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2973 	swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2974 }
2975 
2976 /*
2977  * This does the RCU core processing work for the specified rcu_state
2978  * and rcu_data structures.  This may be called only from the CPU to
2979  * whom the rdp belongs.
2980  */
2981 static void
2982 __rcu_process_callbacks(struct rcu_state *rsp)
2983 {
2984 	unsigned long flags;
2985 	bool needwake;
2986 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2987 
2988 	WARN_ON_ONCE(rdp->beenonline == 0);
2989 
2990 	/* Update RCU state based on any recent quiescent states. */
2991 	rcu_check_quiescent_state(rsp, rdp);
2992 
2993 	/* Does this CPU require a not-yet-started grace period? */
2994 	local_irq_save(flags);
2995 	if (cpu_needs_another_gp(rsp, rdp)) {
2996 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2997 		needwake = rcu_start_gp(rsp);
2998 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2999 		if (needwake)
3000 			rcu_gp_kthread_wake(rsp);
3001 	} else {
3002 		local_irq_restore(flags);
3003 	}
3004 
3005 	/* If there are callbacks ready, invoke them. */
3006 	if (cpu_has_callbacks_ready_to_invoke(rdp))
3007 		invoke_rcu_callbacks(rsp, rdp);
3008 
3009 	/* Do any needed deferred wakeups of rcuo kthreads. */
3010 	do_nocb_deferred_wakeup(rdp);
3011 }
3012 
3013 /*
3014  * Do RCU core processing for the current CPU.
3015  */
3016 static void rcu_process_callbacks(struct softirq_action *unused)
3017 {
3018 	struct rcu_state *rsp;
3019 
3020 	if (cpu_is_offline(smp_processor_id()))
3021 		return;
3022 	trace_rcu_utilization(TPS("Start RCU core"));
3023 	for_each_rcu_flavor(rsp)
3024 		__rcu_process_callbacks(rsp);
3025 	trace_rcu_utilization(TPS("End RCU core"));
3026 }
3027 
3028 /*
3029  * Schedule RCU callback invocation.  If the specified type of RCU
3030  * does not support RCU priority boosting, just do a direct call,
3031  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3032  * are running on the current CPU with softirqs disabled, the
3033  * rcu_cpu_kthread_task cannot disappear out from under us.
3034  */
3035 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3036 {
3037 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3038 		return;
3039 	if (likely(!rsp->boost)) {
3040 		rcu_do_batch(rsp, rdp);
3041 		return;
3042 	}
3043 	invoke_rcu_callbacks_kthread();
3044 }
3045 
3046 static void invoke_rcu_core(void)
3047 {
3048 	if (cpu_online(smp_processor_id()))
3049 		raise_softirq(RCU_SOFTIRQ);
3050 }
3051 
3052 /*
3053  * Handle any core-RCU processing required by a call_rcu() invocation.
3054  */
3055 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3056 			    struct rcu_head *head, unsigned long flags)
3057 {
3058 	bool needwake;
3059 
3060 	/*
3061 	 * If called from an extended quiescent state, invoke the RCU
3062 	 * core in order to force a re-evaluation of RCU's idleness.
3063 	 */
3064 	if (!rcu_is_watching())
3065 		invoke_rcu_core();
3066 
3067 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3068 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3069 		return;
3070 
3071 	/*
3072 	 * Force the grace period if too many callbacks or too long waiting.
3073 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3074 	 * if some other CPU has recently done so.  Also, don't bother
3075 	 * invoking force_quiescent_state() if the newly enqueued callback
3076 	 * is the only one waiting for a grace period to complete.
3077 	 */
3078 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3079 
3080 		/* Are we ignoring a completed grace period? */
3081 		note_gp_changes(rsp, rdp);
3082 
3083 		/* Start a new grace period if one not already started. */
3084 		if (!rcu_gp_in_progress(rsp)) {
3085 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3086 
3087 			raw_spin_lock_rcu_node(rnp_root);
3088 			needwake = rcu_start_gp(rsp);
3089 			raw_spin_unlock_rcu_node(rnp_root);
3090 			if (needwake)
3091 				rcu_gp_kthread_wake(rsp);
3092 		} else {
3093 			/* Give the grace period a kick. */
3094 			rdp->blimit = LONG_MAX;
3095 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3096 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3097 				force_quiescent_state(rsp);
3098 			rdp->n_force_qs_snap = rsp->n_force_qs;
3099 			rdp->qlen_last_fqs_check = rdp->qlen;
3100 		}
3101 	}
3102 }
3103 
3104 /*
3105  * RCU callback function to leak a callback.
3106  */
3107 static void rcu_leak_callback(struct rcu_head *rhp)
3108 {
3109 }
3110 
3111 /*
3112  * Helper function for call_rcu() and friends.  The cpu argument will
3113  * normally be -1, indicating "currently running CPU".  It may specify
3114  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3115  * is expected to specify a CPU.
3116  */
3117 static void
3118 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3119 	   struct rcu_state *rsp, int cpu, bool lazy)
3120 {
3121 	unsigned long flags;
3122 	struct rcu_data *rdp;
3123 
3124 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3125 	if (debug_rcu_head_queue(head)) {
3126 		/* Probable double call_rcu(), so leak the callback. */
3127 		WRITE_ONCE(head->func, rcu_leak_callback);
3128 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3129 		return;
3130 	}
3131 	head->func = func;
3132 	head->next = NULL;
3133 
3134 	/*
3135 	 * Opportunistically note grace-period endings and beginnings.
3136 	 * Note that we might see a beginning right after we see an
3137 	 * end, but never vice versa, since this CPU has to pass through
3138 	 * a quiescent state betweentimes.
3139 	 */
3140 	local_irq_save(flags);
3141 	rdp = this_cpu_ptr(rsp->rda);
3142 
3143 	/* Add the callback to our list. */
3144 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3145 		int offline;
3146 
3147 		if (cpu != -1)
3148 			rdp = per_cpu_ptr(rsp->rda, cpu);
3149 		if (likely(rdp->mynode)) {
3150 			/* Post-boot, so this should be for a no-CBs CPU. */
3151 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3152 			WARN_ON_ONCE(offline);
3153 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3154 			local_irq_restore(flags);
3155 			return;
3156 		}
3157 		/*
3158 		 * Very early boot, before rcu_init().  Initialize if needed
3159 		 * and then drop through to queue the callback.
3160 		 */
3161 		BUG_ON(cpu != -1);
3162 		WARN_ON_ONCE(!rcu_is_watching());
3163 		if (!likely(rdp->nxtlist))
3164 			init_default_callback_list(rdp);
3165 	}
3166 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3167 	if (lazy)
3168 		rdp->qlen_lazy++;
3169 	else
3170 		rcu_idle_count_callbacks_posted();
3171 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3172 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3173 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3174 
3175 	if (__is_kfree_rcu_offset((unsigned long)func))
3176 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3177 					 rdp->qlen_lazy, rdp->qlen);
3178 	else
3179 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3180 
3181 	/* Go handle any RCU core processing required. */
3182 	__call_rcu_core(rsp, rdp, head, flags);
3183 	local_irq_restore(flags);
3184 }
3185 
3186 /*
3187  * Queue an RCU-sched callback for invocation after a grace period.
3188  */
3189 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3190 {
3191 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3192 }
3193 EXPORT_SYMBOL_GPL(call_rcu_sched);
3194 
3195 /*
3196  * Queue an RCU callback for invocation after a quicker grace period.
3197  */
3198 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3199 {
3200 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3201 }
3202 EXPORT_SYMBOL_GPL(call_rcu_bh);
3203 
3204 /*
3205  * Queue an RCU callback for lazy invocation after a grace period.
3206  * This will likely be later named something like "call_rcu_lazy()",
3207  * but this change will require some way of tagging the lazy RCU
3208  * callbacks in the list of pending callbacks. Until then, this
3209  * function may only be called from __kfree_rcu().
3210  */
3211 void kfree_call_rcu(struct rcu_head *head,
3212 		    rcu_callback_t func)
3213 {
3214 	__call_rcu(head, func, rcu_state_p, -1, 1);
3215 }
3216 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3217 
3218 /*
3219  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3220  * any blocking grace-period wait automatically implies a grace period
3221  * if there is only one CPU online at any point time during execution
3222  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3223  * occasionally incorrectly indicate that there are multiple CPUs online
3224  * when there was in fact only one the whole time, as this just adds
3225  * some overhead: RCU still operates correctly.
3226  */
3227 static inline int rcu_blocking_is_gp(void)
3228 {
3229 	int ret;
3230 
3231 	might_sleep();  /* Check for RCU read-side critical section. */
3232 	preempt_disable();
3233 	ret = num_online_cpus() <= 1;
3234 	preempt_enable();
3235 	return ret;
3236 }
3237 
3238 /**
3239  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3240  *
3241  * Control will return to the caller some time after a full rcu-sched
3242  * grace period has elapsed, in other words after all currently executing
3243  * rcu-sched read-side critical sections have completed.   These read-side
3244  * critical sections are delimited by rcu_read_lock_sched() and
3245  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3246  * local_irq_disable(), and so on may be used in place of
3247  * rcu_read_lock_sched().
3248  *
3249  * This means that all preempt_disable code sequences, including NMI and
3250  * non-threaded hardware-interrupt handlers, in progress on entry will
3251  * have completed before this primitive returns.  However, this does not
3252  * guarantee that softirq handlers will have completed, since in some
3253  * kernels, these handlers can run in process context, and can block.
3254  *
3255  * Note that this guarantee implies further memory-ordering guarantees.
3256  * On systems with more than one CPU, when synchronize_sched() returns,
3257  * each CPU is guaranteed to have executed a full memory barrier since the
3258  * end of its last RCU-sched read-side critical section whose beginning
3259  * preceded the call to synchronize_sched().  In addition, each CPU having
3260  * an RCU read-side critical section that extends beyond the return from
3261  * synchronize_sched() is guaranteed to have executed a full memory barrier
3262  * after the beginning of synchronize_sched() and before the beginning of
3263  * that RCU read-side critical section.  Note that these guarantees include
3264  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3265  * that are executing in the kernel.
3266  *
3267  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3268  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3269  * to have executed a full memory barrier during the execution of
3270  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3271  * again only if the system has more than one CPU).
3272  *
3273  * This primitive provides the guarantees made by the (now removed)
3274  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3275  * guarantees that rcu_read_lock() sections will have completed.
3276  * In "classic RCU", these two guarantees happen to be one and
3277  * the same, but can differ in realtime RCU implementations.
3278  */
3279 void synchronize_sched(void)
3280 {
3281 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3282 			 lock_is_held(&rcu_lock_map) ||
3283 			 lock_is_held(&rcu_sched_lock_map),
3284 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3285 	if (rcu_blocking_is_gp())
3286 		return;
3287 	if (rcu_gp_is_expedited())
3288 		synchronize_sched_expedited();
3289 	else
3290 		wait_rcu_gp(call_rcu_sched);
3291 }
3292 EXPORT_SYMBOL_GPL(synchronize_sched);
3293 
3294 /**
3295  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3296  *
3297  * Control will return to the caller some time after a full rcu_bh grace
3298  * period has elapsed, in other words after all currently executing rcu_bh
3299  * read-side critical sections have completed.  RCU read-side critical
3300  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3301  * and may be nested.
3302  *
3303  * See the description of synchronize_sched() for more detailed information
3304  * on memory ordering guarantees.
3305  */
3306 void synchronize_rcu_bh(void)
3307 {
3308 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3309 			 lock_is_held(&rcu_lock_map) ||
3310 			 lock_is_held(&rcu_sched_lock_map),
3311 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3312 	if (rcu_blocking_is_gp())
3313 		return;
3314 	if (rcu_gp_is_expedited())
3315 		synchronize_rcu_bh_expedited();
3316 	else
3317 		wait_rcu_gp(call_rcu_bh);
3318 }
3319 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3320 
3321 /**
3322  * get_state_synchronize_rcu - Snapshot current RCU state
3323  *
3324  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3325  * to determine whether or not a full grace period has elapsed in the
3326  * meantime.
3327  */
3328 unsigned long get_state_synchronize_rcu(void)
3329 {
3330 	/*
3331 	 * Any prior manipulation of RCU-protected data must happen
3332 	 * before the load from ->gpnum.
3333 	 */
3334 	smp_mb();  /* ^^^ */
3335 
3336 	/*
3337 	 * Make sure this load happens before the purportedly
3338 	 * time-consuming work between get_state_synchronize_rcu()
3339 	 * and cond_synchronize_rcu().
3340 	 */
3341 	return smp_load_acquire(&rcu_state_p->gpnum);
3342 }
3343 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3344 
3345 /**
3346  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3347  *
3348  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3349  *
3350  * If a full RCU grace period has elapsed since the earlier call to
3351  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3352  * synchronize_rcu() to wait for a full grace period.
3353  *
3354  * Yes, this function does not take counter wrap into account.  But
3355  * counter wrap is harmless.  If the counter wraps, we have waited for
3356  * more than 2 billion grace periods (and way more on a 64-bit system!),
3357  * so waiting for one additional grace period should be just fine.
3358  */
3359 void cond_synchronize_rcu(unsigned long oldstate)
3360 {
3361 	unsigned long newstate;
3362 
3363 	/*
3364 	 * Ensure that this load happens before any RCU-destructive
3365 	 * actions the caller might carry out after we return.
3366 	 */
3367 	newstate = smp_load_acquire(&rcu_state_p->completed);
3368 	if (ULONG_CMP_GE(oldstate, newstate))
3369 		synchronize_rcu();
3370 }
3371 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3372 
3373 /**
3374  * get_state_synchronize_sched - Snapshot current RCU-sched state
3375  *
3376  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3377  * to determine whether or not a full grace period has elapsed in the
3378  * meantime.
3379  */
3380 unsigned long get_state_synchronize_sched(void)
3381 {
3382 	/*
3383 	 * Any prior manipulation of RCU-protected data must happen
3384 	 * before the load from ->gpnum.
3385 	 */
3386 	smp_mb();  /* ^^^ */
3387 
3388 	/*
3389 	 * Make sure this load happens before the purportedly
3390 	 * time-consuming work between get_state_synchronize_sched()
3391 	 * and cond_synchronize_sched().
3392 	 */
3393 	return smp_load_acquire(&rcu_sched_state.gpnum);
3394 }
3395 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3396 
3397 /**
3398  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3399  *
3400  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3401  *
3402  * If a full RCU-sched grace period has elapsed since the earlier call to
3403  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3404  * synchronize_sched() to wait for a full grace period.
3405  *
3406  * Yes, this function does not take counter wrap into account.  But
3407  * counter wrap is harmless.  If the counter wraps, we have waited for
3408  * more than 2 billion grace periods (and way more on a 64-bit system!),
3409  * so waiting for one additional grace period should be just fine.
3410  */
3411 void cond_synchronize_sched(unsigned long oldstate)
3412 {
3413 	unsigned long newstate;
3414 
3415 	/*
3416 	 * Ensure that this load happens before any RCU-destructive
3417 	 * actions the caller might carry out after we return.
3418 	 */
3419 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3420 	if (ULONG_CMP_GE(oldstate, newstate))
3421 		synchronize_sched();
3422 }
3423 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3424 
3425 /* Adjust sequence number for start of update-side operation. */
3426 static void rcu_seq_start(unsigned long *sp)
3427 {
3428 	WRITE_ONCE(*sp, *sp + 1);
3429 	smp_mb(); /* Ensure update-side operation after counter increment. */
3430 	WARN_ON_ONCE(!(*sp & 0x1));
3431 }
3432 
3433 /* Adjust sequence number for end of update-side operation. */
3434 static void rcu_seq_end(unsigned long *sp)
3435 {
3436 	smp_mb(); /* Ensure update-side operation before counter increment. */
3437 	WRITE_ONCE(*sp, *sp + 1);
3438 	WARN_ON_ONCE(*sp & 0x1);
3439 }
3440 
3441 /* Take a snapshot of the update side's sequence number. */
3442 static unsigned long rcu_seq_snap(unsigned long *sp)
3443 {
3444 	unsigned long s;
3445 
3446 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3447 	smp_mb(); /* Above access must not bleed into critical section. */
3448 	return s;
3449 }
3450 
3451 /*
3452  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3453  * full update-side operation has occurred.
3454  */
3455 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3456 {
3457 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3458 }
3459 
3460 /*
3461  * Check to see if there is any immediate RCU-related work to be done
3462  * by the current CPU, for the specified type of RCU, returning 1 if so.
3463  * The checks are in order of increasing expense: checks that can be
3464  * carried out against CPU-local state are performed first.  However,
3465  * we must check for CPU stalls first, else we might not get a chance.
3466  */
3467 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3468 {
3469 	struct rcu_node *rnp = rdp->mynode;
3470 
3471 	rdp->n_rcu_pending++;
3472 
3473 	/* Check for CPU stalls, if enabled. */
3474 	check_cpu_stall(rsp, rdp);
3475 
3476 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3477 	if (rcu_nohz_full_cpu(rsp))
3478 		return 0;
3479 
3480 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3481 	if (rcu_scheduler_fully_active &&
3482 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3483 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3484 		rdp->n_rp_core_needs_qs++;
3485 	} else if (rdp->core_needs_qs &&
3486 		   (!rdp->cpu_no_qs.b.norm ||
3487 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3488 		rdp->n_rp_report_qs++;
3489 		return 1;
3490 	}
3491 
3492 	/* Does this CPU have callbacks ready to invoke? */
3493 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3494 		rdp->n_rp_cb_ready++;
3495 		return 1;
3496 	}
3497 
3498 	/* Has RCU gone idle with this CPU needing another grace period? */
3499 	if (cpu_needs_another_gp(rsp, rdp)) {
3500 		rdp->n_rp_cpu_needs_gp++;
3501 		return 1;
3502 	}
3503 
3504 	/* Has another RCU grace period completed?  */
3505 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3506 		rdp->n_rp_gp_completed++;
3507 		return 1;
3508 	}
3509 
3510 	/* Has a new RCU grace period started? */
3511 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3512 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3513 		rdp->n_rp_gp_started++;
3514 		return 1;
3515 	}
3516 
3517 	/* Does this CPU need a deferred NOCB wakeup? */
3518 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3519 		rdp->n_rp_nocb_defer_wakeup++;
3520 		return 1;
3521 	}
3522 
3523 	/* nothing to do */
3524 	rdp->n_rp_need_nothing++;
3525 	return 0;
3526 }
3527 
3528 /*
3529  * Check to see if there is any immediate RCU-related work to be done
3530  * by the current CPU, returning 1 if so.  This function is part of the
3531  * RCU implementation; it is -not- an exported member of the RCU API.
3532  */
3533 static int rcu_pending(void)
3534 {
3535 	struct rcu_state *rsp;
3536 
3537 	for_each_rcu_flavor(rsp)
3538 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3539 			return 1;
3540 	return 0;
3541 }
3542 
3543 /*
3544  * Return true if the specified CPU has any callback.  If all_lazy is
3545  * non-NULL, store an indication of whether all callbacks are lazy.
3546  * (If there are no callbacks, all of them are deemed to be lazy.)
3547  */
3548 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3549 {
3550 	bool al = true;
3551 	bool hc = false;
3552 	struct rcu_data *rdp;
3553 	struct rcu_state *rsp;
3554 
3555 	for_each_rcu_flavor(rsp) {
3556 		rdp = this_cpu_ptr(rsp->rda);
3557 		if (!rdp->nxtlist)
3558 			continue;
3559 		hc = true;
3560 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3561 			al = false;
3562 			break;
3563 		}
3564 	}
3565 	if (all_lazy)
3566 		*all_lazy = al;
3567 	return hc;
3568 }
3569 
3570 /*
3571  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3572  * the compiler is expected to optimize this away.
3573  */
3574 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3575 			       int cpu, unsigned long done)
3576 {
3577 	trace_rcu_barrier(rsp->name, s, cpu,
3578 			  atomic_read(&rsp->barrier_cpu_count), done);
3579 }
3580 
3581 /*
3582  * RCU callback function for _rcu_barrier().  If we are last, wake
3583  * up the task executing _rcu_barrier().
3584  */
3585 static void rcu_barrier_callback(struct rcu_head *rhp)
3586 {
3587 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3588 	struct rcu_state *rsp = rdp->rsp;
3589 
3590 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3591 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3592 		complete(&rsp->barrier_completion);
3593 	} else {
3594 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3595 	}
3596 }
3597 
3598 /*
3599  * Called with preemption disabled, and from cross-cpu IRQ context.
3600  */
3601 static void rcu_barrier_func(void *type)
3602 {
3603 	struct rcu_state *rsp = type;
3604 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3605 
3606 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3607 	atomic_inc(&rsp->barrier_cpu_count);
3608 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3609 }
3610 
3611 /*
3612  * Orchestrate the specified type of RCU barrier, waiting for all
3613  * RCU callbacks of the specified type to complete.
3614  */
3615 static void _rcu_barrier(struct rcu_state *rsp)
3616 {
3617 	int cpu;
3618 	struct rcu_data *rdp;
3619 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3620 
3621 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3622 
3623 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3624 	mutex_lock(&rsp->barrier_mutex);
3625 
3626 	/* Did someone else do our work for us? */
3627 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3628 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3629 		smp_mb(); /* caller's subsequent code after above check. */
3630 		mutex_unlock(&rsp->barrier_mutex);
3631 		return;
3632 	}
3633 
3634 	/* Mark the start of the barrier operation. */
3635 	rcu_seq_start(&rsp->barrier_sequence);
3636 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3637 
3638 	/*
3639 	 * Initialize the count to one rather than to zero in order to
3640 	 * avoid a too-soon return to zero in case of a short grace period
3641 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3642 	 * to ensure that no offline CPU has callbacks queued.
3643 	 */
3644 	init_completion(&rsp->barrier_completion);
3645 	atomic_set(&rsp->barrier_cpu_count, 1);
3646 	get_online_cpus();
3647 
3648 	/*
3649 	 * Force each CPU with callbacks to register a new callback.
3650 	 * When that callback is invoked, we will know that all of the
3651 	 * corresponding CPU's preceding callbacks have been invoked.
3652 	 */
3653 	for_each_possible_cpu(cpu) {
3654 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3655 			continue;
3656 		rdp = per_cpu_ptr(rsp->rda, cpu);
3657 		if (rcu_is_nocb_cpu(cpu)) {
3658 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3659 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3660 						   rsp->barrier_sequence);
3661 			} else {
3662 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3663 						   rsp->barrier_sequence);
3664 				smp_mb__before_atomic();
3665 				atomic_inc(&rsp->barrier_cpu_count);
3666 				__call_rcu(&rdp->barrier_head,
3667 					   rcu_barrier_callback, rsp, cpu, 0);
3668 			}
3669 		} else if (READ_ONCE(rdp->qlen)) {
3670 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3671 					   rsp->barrier_sequence);
3672 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3673 		} else {
3674 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3675 					   rsp->barrier_sequence);
3676 		}
3677 	}
3678 	put_online_cpus();
3679 
3680 	/*
3681 	 * Now that we have an rcu_barrier_callback() callback on each
3682 	 * CPU, and thus each counted, remove the initial count.
3683 	 */
3684 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3685 		complete(&rsp->barrier_completion);
3686 
3687 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3688 	wait_for_completion(&rsp->barrier_completion);
3689 
3690 	/* Mark the end of the barrier operation. */
3691 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3692 	rcu_seq_end(&rsp->barrier_sequence);
3693 
3694 	/* Other rcu_barrier() invocations can now safely proceed. */
3695 	mutex_unlock(&rsp->barrier_mutex);
3696 }
3697 
3698 /**
3699  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3700  */
3701 void rcu_barrier_bh(void)
3702 {
3703 	_rcu_barrier(&rcu_bh_state);
3704 }
3705 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3706 
3707 /**
3708  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3709  */
3710 void rcu_barrier_sched(void)
3711 {
3712 	_rcu_barrier(&rcu_sched_state);
3713 }
3714 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3715 
3716 /*
3717  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3718  * first CPU in a given leaf rcu_node structure coming online.  The caller
3719  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3720  * disabled.
3721  */
3722 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3723 {
3724 	long mask;
3725 	struct rcu_node *rnp = rnp_leaf;
3726 
3727 	for (;;) {
3728 		mask = rnp->grpmask;
3729 		rnp = rnp->parent;
3730 		if (rnp == NULL)
3731 			return;
3732 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3733 		rnp->qsmaskinit |= mask;
3734 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3735 	}
3736 }
3737 
3738 /*
3739  * Do boot-time initialization of a CPU's per-CPU RCU data.
3740  */
3741 static void __init
3742 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3743 {
3744 	unsigned long flags;
3745 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3746 	struct rcu_node *rnp = rcu_get_root(rsp);
3747 
3748 	/* Set up local state, ensuring consistent view of global state. */
3749 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3750 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3751 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3752 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3753 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3754 	rdp->cpu = cpu;
3755 	rdp->rsp = rsp;
3756 	rcu_boot_init_nocb_percpu_data(rdp);
3757 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3758 }
3759 
3760 /*
3761  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3762  * offline event can be happening at a given time.  Note also that we
3763  * can accept some slop in the rsp->completed access due to the fact
3764  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3765  */
3766 static void
3767 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3768 {
3769 	unsigned long flags;
3770 	unsigned long mask;
3771 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3772 	struct rcu_node *rnp = rcu_get_root(rsp);
3773 
3774 	/* Set up local state, ensuring consistent view of global state. */
3775 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3776 	rdp->qlen_last_fqs_check = 0;
3777 	rdp->n_force_qs_snap = rsp->n_force_qs;
3778 	rdp->blimit = blimit;
3779 	if (!rdp->nxtlist)
3780 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3781 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3782 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3783 	atomic_set(&rdp->dynticks->dynticks,
3784 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3785 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3786 
3787 	/*
3788 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3789 	 * propagation up the rcu_node tree will happen at the beginning
3790 	 * of the next grace period.
3791 	 */
3792 	rnp = rdp->mynode;
3793 	mask = rdp->grpmask;
3794 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3795 	rnp->qsmaskinitnext |= mask;
3796 	rnp->expmaskinitnext |= mask;
3797 	if (!rdp->beenonline)
3798 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3799 	rdp->beenonline = true;	 /* We have now been online. */
3800 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3801 	rdp->completed = rnp->completed;
3802 	rdp->cpu_no_qs.b.norm = true;
3803 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3804 	rdp->core_needs_qs = false;
3805 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3806 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3807 }
3808 
3809 int rcutree_prepare_cpu(unsigned int cpu)
3810 {
3811 	struct rcu_state *rsp;
3812 
3813 	for_each_rcu_flavor(rsp)
3814 		rcu_init_percpu_data(cpu, rsp);
3815 
3816 	rcu_prepare_kthreads(cpu);
3817 	rcu_spawn_all_nocb_kthreads(cpu);
3818 
3819 	return 0;
3820 }
3821 
3822 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3823 {
3824 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3825 
3826 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3827 }
3828 
3829 int rcutree_online_cpu(unsigned int cpu)
3830 {
3831 	sync_sched_exp_online_cleanup(cpu);
3832 	rcutree_affinity_setting(cpu, -1);
3833 	return 0;
3834 }
3835 
3836 int rcutree_offline_cpu(unsigned int cpu)
3837 {
3838 	rcutree_affinity_setting(cpu, cpu);
3839 	return 0;
3840 }
3841 
3842 
3843 int rcutree_dying_cpu(unsigned int cpu)
3844 {
3845 	struct rcu_state *rsp;
3846 
3847 	for_each_rcu_flavor(rsp)
3848 		rcu_cleanup_dying_cpu(rsp);
3849 	return 0;
3850 }
3851 
3852 int rcutree_dead_cpu(unsigned int cpu)
3853 {
3854 	struct rcu_state *rsp;
3855 
3856 	for_each_rcu_flavor(rsp) {
3857 		rcu_cleanup_dead_cpu(cpu, rsp);
3858 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3859 	}
3860 	return 0;
3861 }
3862 
3863 #ifdef CONFIG_HOTPLUG_CPU
3864 /*
3865  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3866  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3867  * bit masks.
3868  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3869  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3870  * bit masks.
3871  */
3872 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3873 {
3874 	unsigned long flags;
3875 	unsigned long mask;
3876 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3877 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3878 
3879 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3880 	mask = rdp->grpmask;
3881 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3882 	rnp->qsmaskinitnext &= ~mask;
3883 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3884 }
3885 
3886 void rcu_report_dead(unsigned int cpu)
3887 {
3888 	struct rcu_state *rsp;
3889 
3890 	/* QS for any half-done expedited RCU-sched GP. */
3891 	preempt_disable();
3892 	rcu_report_exp_rdp(&rcu_sched_state,
3893 			   this_cpu_ptr(rcu_sched_state.rda), true);
3894 	preempt_enable();
3895 	for_each_rcu_flavor(rsp)
3896 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3897 }
3898 #endif
3899 
3900 static int rcu_pm_notify(struct notifier_block *self,
3901 			 unsigned long action, void *hcpu)
3902 {
3903 	switch (action) {
3904 	case PM_HIBERNATION_PREPARE:
3905 	case PM_SUSPEND_PREPARE:
3906 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3907 			rcu_expedite_gp();
3908 		break;
3909 	case PM_POST_HIBERNATION:
3910 	case PM_POST_SUSPEND:
3911 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3912 			rcu_unexpedite_gp();
3913 		break;
3914 	default:
3915 		break;
3916 	}
3917 	return NOTIFY_OK;
3918 }
3919 
3920 /*
3921  * Spawn the kthreads that handle each RCU flavor's grace periods.
3922  */
3923 static int __init rcu_spawn_gp_kthread(void)
3924 {
3925 	unsigned long flags;
3926 	int kthread_prio_in = kthread_prio;
3927 	struct rcu_node *rnp;
3928 	struct rcu_state *rsp;
3929 	struct sched_param sp;
3930 	struct task_struct *t;
3931 
3932 	/* Force priority into range. */
3933 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3934 		kthread_prio = 1;
3935 	else if (kthread_prio < 0)
3936 		kthread_prio = 0;
3937 	else if (kthread_prio > 99)
3938 		kthread_prio = 99;
3939 	if (kthread_prio != kthread_prio_in)
3940 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3941 			 kthread_prio, kthread_prio_in);
3942 
3943 	rcu_scheduler_fully_active = 1;
3944 	for_each_rcu_flavor(rsp) {
3945 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3946 		BUG_ON(IS_ERR(t));
3947 		rnp = rcu_get_root(rsp);
3948 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3949 		rsp->gp_kthread = t;
3950 		if (kthread_prio) {
3951 			sp.sched_priority = kthread_prio;
3952 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3953 		}
3954 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3955 		wake_up_process(t);
3956 	}
3957 	rcu_spawn_nocb_kthreads();
3958 	rcu_spawn_boost_kthreads();
3959 	return 0;
3960 }
3961 early_initcall(rcu_spawn_gp_kthread);
3962 
3963 /*
3964  * This function is invoked towards the end of the scheduler's initialization
3965  * process.  Before this is called, the idle task might contain
3966  * RCU read-side critical sections (during which time, this idle
3967  * task is booting the system).  After this function is called, the
3968  * idle tasks are prohibited from containing RCU read-side critical
3969  * sections.  This function also enables RCU lockdep checking.
3970  */
3971 void rcu_scheduler_starting(void)
3972 {
3973 	WARN_ON(num_online_cpus() != 1);
3974 	WARN_ON(nr_context_switches() > 0);
3975 	rcu_scheduler_active = 1;
3976 }
3977 
3978 /*
3979  * Compute the per-level fanout, either using the exact fanout specified
3980  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3981  */
3982 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
3983 {
3984 	int i;
3985 
3986 	if (rcu_fanout_exact) {
3987 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3988 		for (i = rcu_num_lvls - 2; i >= 0; i--)
3989 			levelspread[i] = RCU_FANOUT;
3990 	} else {
3991 		int ccur;
3992 		int cprv;
3993 
3994 		cprv = nr_cpu_ids;
3995 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
3996 			ccur = levelcnt[i];
3997 			levelspread[i] = (cprv + ccur - 1) / ccur;
3998 			cprv = ccur;
3999 		}
4000 	}
4001 }
4002 
4003 /*
4004  * Helper function for rcu_init() that initializes one rcu_state structure.
4005  */
4006 static void __init rcu_init_one(struct rcu_state *rsp)
4007 {
4008 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4009 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4010 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4011 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4012 	static u8 fl_mask = 0x1;
4013 
4014 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4015 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4016 	int cpustride = 1;
4017 	int i;
4018 	int j;
4019 	struct rcu_node *rnp;
4020 
4021 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4022 
4023 	/* Silence gcc 4.8 false positive about array index out of range. */
4024 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4025 		panic("rcu_init_one: rcu_num_lvls out of range");
4026 
4027 	/* Initialize the level-tracking arrays. */
4028 
4029 	for (i = 0; i < rcu_num_lvls; i++)
4030 		levelcnt[i] = num_rcu_lvl[i];
4031 	for (i = 1; i < rcu_num_lvls; i++)
4032 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4033 	rcu_init_levelspread(levelspread, levelcnt);
4034 	rsp->flavor_mask = fl_mask;
4035 	fl_mask <<= 1;
4036 
4037 	/* Initialize the elements themselves, starting from the leaves. */
4038 
4039 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4040 		cpustride *= levelspread[i];
4041 		rnp = rsp->level[i];
4042 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4043 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4044 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4045 						   &rcu_node_class[i], buf[i]);
4046 			raw_spin_lock_init(&rnp->fqslock);
4047 			lockdep_set_class_and_name(&rnp->fqslock,
4048 						   &rcu_fqs_class[i], fqs[i]);
4049 			rnp->gpnum = rsp->gpnum;
4050 			rnp->completed = rsp->completed;
4051 			rnp->qsmask = 0;
4052 			rnp->qsmaskinit = 0;
4053 			rnp->grplo = j * cpustride;
4054 			rnp->grphi = (j + 1) * cpustride - 1;
4055 			if (rnp->grphi >= nr_cpu_ids)
4056 				rnp->grphi = nr_cpu_ids - 1;
4057 			if (i == 0) {
4058 				rnp->grpnum = 0;
4059 				rnp->grpmask = 0;
4060 				rnp->parent = NULL;
4061 			} else {
4062 				rnp->grpnum = j % levelspread[i - 1];
4063 				rnp->grpmask = 1UL << rnp->grpnum;
4064 				rnp->parent = rsp->level[i - 1] +
4065 					      j / levelspread[i - 1];
4066 			}
4067 			rnp->level = i;
4068 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4069 			rcu_init_one_nocb(rnp);
4070 			init_waitqueue_head(&rnp->exp_wq[0]);
4071 			init_waitqueue_head(&rnp->exp_wq[1]);
4072 			init_waitqueue_head(&rnp->exp_wq[2]);
4073 			init_waitqueue_head(&rnp->exp_wq[3]);
4074 			spin_lock_init(&rnp->exp_lock);
4075 		}
4076 	}
4077 
4078 	init_swait_queue_head(&rsp->gp_wq);
4079 	init_swait_queue_head(&rsp->expedited_wq);
4080 	rnp = rsp->level[rcu_num_lvls - 1];
4081 	for_each_possible_cpu(i) {
4082 		while (i > rnp->grphi)
4083 			rnp++;
4084 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4085 		rcu_boot_init_percpu_data(i, rsp);
4086 	}
4087 	list_add(&rsp->flavors, &rcu_struct_flavors);
4088 }
4089 
4090 /*
4091  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4092  * replace the definitions in tree.h because those are needed to size
4093  * the ->node array in the rcu_state structure.
4094  */
4095 static void __init rcu_init_geometry(void)
4096 {
4097 	ulong d;
4098 	int i;
4099 	int rcu_capacity[RCU_NUM_LVLS];
4100 
4101 	/*
4102 	 * Initialize any unspecified boot parameters.
4103 	 * The default values of jiffies_till_first_fqs and
4104 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4105 	 * value, which is a function of HZ, then adding one for each
4106 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4107 	 */
4108 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4109 	if (jiffies_till_first_fqs == ULONG_MAX)
4110 		jiffies_till_first_fqs = d;
4111 	if (jiffies_till_next_fqs == ULONG_MAX)
4112 		jiffies_till_next_fqs = d;
4113 
4114 	/* If the compile-time values are accurate, just leave. */
4115 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4116 	    nr_cpu_ids == NR_CPUS)
4117 		return;
4118 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4119 		rcu_fanout_leaf, nr_cpu_ids);
4120 
4121 	/*
4122 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4123 	 * and cannot exceed the number of bits in the rcu_node masks.
4124 	 * Complain and fall back to the compile-time values if this
4125 	 * limit is exceeded.
4126 	 */
4127 	if (rcu_fanout_leaf < 2 ||
4128 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4129 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4130 		WARN_ON(1);
4131 		return;
4132 	}
4133 
4134 	/*
4135 	 * Compute number of nodes that can be handled an rcu_node tree
4136 	 * with the given number of levels.
4137 	 */
4138 	rcu_capacity[0] = rcu_fanout_leaf;
4139 	for (i = 1; i < RCU_NUM_LVLS; i++)
4140 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4141 
4142 	/*
4143 	 * The tree must be able to accommodate the configured number of CPUs.
4144 	 * If this limit is exceeded, fall back to the compile-time values.
4145 	 */
4146 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4147 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4148 		WARN_ON(1);
4149 		return;
4150 	}
4151 
4152 	/* Calculate the number of levels in the tree. */
4153 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4154 	}
4155 	rcu_num_lvls = i + 1;
4156 
4157 	/* Calculate the number of rcu_nodes at each level of the tree. */
4158 	for (i = 0; i < rcu_num_lvls; i++) {
4159 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4160 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4161 	}
4162 
4163 	/* Calculate the total number of rcu_node structures. */
4164 	rcu_num_nodes = 0;
4165 	for (i = 0; i < rcu_num_lvls; i++)
4166 		rcu_num_nodes += num_rcu_lvl[i];
4167 }
4168 
4169 /*
4170  * Dump out the structure of the rcu_node combining tree associated
4171  * with the rcu_state structure referenced by rsp.
4172  */
4173 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4174 {
4175 	int level = 0;
4176 	struct rcu_node *rnp;
4177 
4178 	pr_info("rcu_node tree layout dump\n");
4179 	pr_info(" ");
4180 	rcu_for_each_node_breadth_first(rsp, rnp) {
4181 		if (rnp->level != level) {
4182 			pr_cont("\n");
4183 			pr_info(" ");
4184 			level = rnp->level;
4185 		}
4186 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4187 	}
4188 	pr_cont("\n");
4189 }
4190 
4191 void __init rcu_init(void)
4192 {
4193 	int cpu;
4194 
4195 	rcu_early_boot_tests();
4196 
4197 	rcu_bootup_announce();
4198 	rcu_init_geometry();
4199 	rcu_init_one(&rcu_bh_state);
4200 	rcu_init_one(&rcu_sched_state);
4201 	if (dump_tree)
4202 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4203 	__rcu_init_preempt();
4204 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4205 
4206 	/*
4207 	 * We don't need protection against CPU-hotplug here because
4208 	 * this is called early in boot, before either interrupts
4209 	 * or the scheduler are operational.
4210 	 */
4211 	pm_notifier(rcu_pm_notify, 0);
4212 	for_each_online_cpu(cpu)
4213 		rcutree_prepare_cpu(cpu);
4214 }
4215 
4216 #include "tree_exp.h"
4217 #include "tree_plugin.h"
4218