xref: /openbmc/linux/kernel/rcu/tree.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include <linux/context_tracking.h>
66 #include "../time/tick-internal.h"
67 
68 #include "tree.h"
69 #include "rcu.h"
70 
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
73 #endif
74 #define MODULE_PARAM_PREFIX "rcutree."
75 
76 /* Data structures. */
77 
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
79 	.gpwrap = true,
80 #ifdef CONFIG_RCU_NOCB_CPU
81 	.cblist.flags = SEGCBLIST_RCU_CORE,
82 #endif
83 };
84 static struct rcu_state rcu_state = {
85 	.level = { &rcu_state.node[0] },
86 	.gp_state = RCU_GP_IDLE,
87 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
88 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
89 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
90 	.name = RCU_NAME,
91 	.abbr = RCU_ABBR,
92 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
95 };
96 
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
104 #endif
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
148 static void invoke_rcu_core(void);
149 static void rcu_report_exp_rdp(struct rcu_data *rdp);
150 static void sync_sched_exp_online_cleanup(int cpu);
151 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
152 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
153 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
154 static bool rcu_init_invoked(void);
155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
157 
158 /*
159  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
160  * real-time priority(enabling/disabling) is controlled by
161  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
162  */
163 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
164 module_param(kthread_prio, int, 0444);
165 
166 /* Delay in jiffies for grace-period initialization delays, debug only. */
167 
168 static int gp_preinit_delay;
169 module_param(gp_preinit_delay, int, 0444);
170 static int gp_init_delay;
171 module_param(gp_init_delay, int, 0444);
172 static int gp_cleanup_delay;
173 module_param(gp_cleanup_delay, int, 0444);
174 
175 // Add delay to rcu_read_unlock() for strict grace periods.
176 static int rcu_unlock_delay;
177 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
178 module_param(rcu_unlock_delay, int, 0444);
179 #endif
180 
181 /*
182  * This rcu parameter is runtime-read-only. It reflects
183  * a minimum allowed number of objects which can be cached
184  * per-CPU. Object size is equal to one page. This value
185  * can be changed at boot time.
186  */
187 static int rcu_min_cached_objs = 5;
188 module_param(rcu_min_cached_objs, int, 0444);
189 
190 // A page shrinker can ask for pages to be freed to make them
191 // available for other parts of the system. This usually happens
192 // under low memory conditions, and in that case we should also
193 // defer page-cache filling for a short time period.
194 //
195 // The default value is 5 seconds, which is long enough to reduce
196 // interference with the shrinker while it asks other systems to
197 // drain their caches.
198 static int rcu_delay_page_cache_fill_msec = 5000;
199 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
200 
201 /* Retrieve RCU kthreads priority for rcutorture */
202 int rcu_get_gp_kthreads_prio(void)
203 {
204 	return kthread_prio;
205 }
206 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
207 
208 /*
209  * Number of grace periods between delays, normalized by the duration of
210  * the delay.  The longer the delay, the more the grace periods between
211  * each delay.  The reason for this normalization is that it means that,
212  * for non-zero delays, the overall slowdown of grace periods is constant
213  * regardless of the duration of the delay.  This arrangement balances
214  * the need for long delays to increase some race probabilities with the
215  * need for fast grace periods to increase other race probabilities.
216  */
217 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
218 
219 /*
220  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
221  * permit this function to be invoked without holding the root rcu_node
222  * structure's ->lock, but of course results can be subject to change.
223  */
224 static int rcu_gp_in_progress(void)
225 {
226 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
227 }
228 
229 /*
230  * Return the number of callbacks queued on the specified CPU.
231  * Handles both the nocbs and normal cases.
232  */
233 static long rcu_get_n_cbs_cpu(int cpu)
234 {
235 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
236 
237 	if (rcu_segcblist_is_enabled(&rdp->cblist))
238 		return rcu_segcblist_n_cbs(&rdp->cblist);
239 	return 0;
240 }
241 
242 void rcu_softirq_qs(void)
243 {
244 	rcu_qs();
245 	rcu_preempt_deferred_qs(current);
246 	rcu_tasks_qs(current, false);
247 }
248 
249 /*
250  * Reset the current CPU's ->dynticks counter to indicate that the
251  * newly onlined CPU is no longer in an extended quiescent state.
252  * This will either leave the counter unchanged, or increment it
253  * to the next non-quiescent value.
254  *
255  * The non-atomic test/increment sequence works because the upper bits
256  * of the ->dynticks counter are manipulated only by the corresponding CPU,
257  * or when the corresponding CPU is offline.
258  */
259 static void rcu_dynticks_eqs_online(void)
260 {
261 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
262 		return;
263 	ct_state_inc(RCU_DYNTICKS_IDX);
264 }
265 
266 /*
267  * Snapshot the ->dynticks counter with full ordering so as to allow
268  * stable comparison of this counter with past and future snapshots.
269  */
270 static int rcu_dynticks_snap(int cpu)
271 {
272 	smp_mb();  // Fundamental RCU ordering guarantee.
273 	return ct_dynticks_cpu_acquire(cpu);
274 }
275 
276 /*
277  * Return true if the snapshot returned from rcu_dynticks_snap()
278  * indicates that RCU is in an extended quiescent state.
279  */
280 static bool rcu_dynticks_in_eqs(int snap)
281 {
282 	return !(snap & RCU_DYNTICKS_IDX);
283 }
284 
285 /*
286  * Return true if the CPU corresponding to the specified rcu_data
287  * structure has spent some time in an extended quiescent state since
288  * rcu_dynticks_snap() returned the specified snapshot.
289  */
290 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
291 {
292 	return snap != rcu_dynticks_snap(rdp->cpu);
293 }
294 
295 /*
296  * Return true if the referenced integer is zero while the specified
297  * CPU remains within a single extended quiescent state.
298  */
299 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
300 {
301 	int snap;
302 
303 	// If not quiescent, force back to earlier extended quiescent state.
304 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
305 	smp_rmb(); // Order ->dynticks and *vp reads.
306 	if (READ_ONCE(*vp))
307 		return false;  // Non-zero, so report failure;
308 	smp_rmb(); // Order *vp read and ->dynticks re-read.
309 
310 	// If still in the same extended quiescent state, we are good!
311 	return snap == ct_dynticks_cpu(cpu);
312 }
313 
314 /*
315  * Let the RCU core know that this CPU has gone through the scheduler,
316  * which is a quiescent state.  This is called when the need for a
317  * quiescent state is urgent, so we burn an atomic operation and full
318  * memory barriers to let the RCU core know about it, regardless of what
319  * this CPU might (or might not) do in the near future.
320  *
321  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
322  *
323  * The caller must have disabled interrupts and must not be idle.
324  */
325 notrace void rcu_momentary_dyntick_idle(void)
326 {
327 	int seq;
328 
329 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
330 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
331 	/* It is illegal to call this from idle state. */
332 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
333 	rcu_preempt_deferred_qs(current);
334 }
335 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
336 
337 /**
338  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
339  *
340  * If the current CPU is idle and running at a first-level (not nested)
341  * interrupt, or directly, from idle, return true.
342  *
343  * The caller must have at least disabled IRQs.
344  */
345 static int rcu_is_cpu_rrupt_from_idle(void)
346 {
347 	long nesting;
348 
349 	/*
350 	 * Usually called from the tick; but also used from smp_function_call()
351 	 * for expedited grace periods. This latter can result in running from
352 	 * the idle task, instead of an actual IPI.
353 	 */
354 	lockdep_assert_irqs_disabled();
355 
356 	/* Check for counter underflows */
357 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
358 			 "RCU dynticks_nesting counter underflow!");
359 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
360 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
361 
362 	/* Are we at first interrupt nesting level? */
363 	nesting = ct_dynticks_nmi_nesting();
364 	if (nesting > 1)
365 		return false;
366 
367 	/*
368 	 * If we're not in an interrupt, we must be in the idle task!
369 	 */
370 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
371 
372 	/* Does CPU appear to be idle from an RCU standpoint? */
373 	return ct_dynticks_nesting() == 0;
374 }
375 
376 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
377 				// Maximum callbacks per rcu_do_batch ...
378 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
379 static long blimit = DEFAULT_RCU_BLIMIT;
380 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
381 static long qhimark = DEFAULT_RCU_QHIMARK;
382 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
383 static long qlowmark = DEFAULT_RCU_QLOMARK;
384 #define DEFAULT_RCU_QOVLD_MULT 2
385 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
386 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
387 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
388 
389 module_param(blimit, long, 0444);
390 module_param(qhimark, long, 0444);
391 module_param(qlowmark, long, 0444);
392 module_param(qovld, long, 0444);
393 
394 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
395 static ulong jiffies_till_next_fqs = ULONG_MAX;
396 static bool rcu_kick_kthreads;
397 static int rcu_divisor = 7;
398 module_param(rcu_divisor, int, 0644);
399 
400 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
401 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
402 module_param(rcu_resched_ns, long, 0644);
403 
404 /*
405  * How long the grace period must be before we start recruiting
406  * quiescent-state help from rcu_note_context_switch().
407  */
408 static ulong jiffies_till_sched_qs = ULONG_MAX;
409 module_param(jiffies_till_sched_qs, ulong, 0444);
410 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
411 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
412 
413 /*
414  * Make sure that we give the grace-period kthread time to detect any
415  * idle CPUs before taking active measures to force quiescent states.
416  * However, don't go below 100 milliseconds, adjusted upwards for really
417  * large systems.
418  */
419 static void adjust_jiffies_till_sched_qs(void)
420 {
421 	unsigned long j;
422 
423 	/* If jiffies_till_sched_qs was specified, respect the request. */
424 	if (jiffies_till_sched_qs != ULONG_MAX) {
425 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
426 		return;
427 	}
428 	/* Otherwise, set to third fqs scan, but bound below on large system. */
429 	j = READ_ONCE(jiffies_till_first_fqs) +
430 		      2 * READ_ONCE(jiffies_till_next_fqs);
431 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
432 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
433 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
434 	WRITE_ONCE(jiffies_to_sched_qs, j);
435 }
436 
437 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
438 {
439 	ulong j;
440 	int ret = kstrtoul(val, 0, &j);
441 
442 	if (!ret) {
443 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
444 		adjust_jiffies_till_sched_qs();
445 	}
446 	return ret;
447 }
448 
449 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
450 {
451 	ulong j;
452 	int ret = kstrtoul(val, 0, &j);
453 
454 	if (!ret) {
455 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
456 		adjust_jiffies_till_sched_qs();
457 	}
458 	return ret;
459 }
460 
461 static const struct kernel_param_ops first_fqs_jiffies_ops = {
462 	.set = param_set_first_fqs_jiffies,
463 	.get = param_get_ulong,
464 };
465 
466 static const struct kernel_param_ops next_fqs_jiffies_ops = {
467 	.set = param_set_next_fqs_jiffies,
468 	.get = param_get_ulong,
469 };
470 
471 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
472 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
473 module_param(rcu_kick_kthreads, bool, 0644);
474 
475 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
476 static int rcu_pending(int user);
477 
478 /*
479  * Return the number of RCU GPs completed thus far for debug & stats.
480  */
481 unsigned long rcu_get_gp_seq(void)
482 {
483 	return READ_ONCE(rcu_state.gp_seq);
484 }
485 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
486 
487 /*
488  * Return the number of RCU expedited batches completed thus far for
489  * debug & stats.  Odd numbers mean that a batch is in progress, even
490  * numbers mean idle.  The value returned will thus be roughly double
491  * the cumulative batches since boot.
492  */
493 unsigned long rcu_exp_batches_completed(void)
494 {
495 	return rcu_state.expedited_sequence;
496 }
497 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
498 
499 /*
500  * Return the root node of the rcu_state structure.
501  */
502 static struct rcu_node *rcu_get_root(void)
503 {
504 	return &rcu_state.node[0];
505 }
506 
507 /*
508  * Send along grace-period-related data for rcutorture diagnostics.
509  */
510 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
511 			    unsigned long *gp_seq)
512 {
513 	switch (test_type) {
514 	case RCU_FLAVOR:
515 		*flags = READ_ONCE(rcu_state.gp_flags);
516 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
517 		break;
518 	default:
519 		break;
520 	}
521 }
522 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
523 
524 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
525 /*
526  * An empty function that will trigger a reschedule on
527  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
528  */
529 static void late_wakeup_func(struct irq_work *work)
530 {
531 }
532 
533 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
534 	IRQ_WORK_INIT(late_wakeup_func);
535 
536 /*
537  * If either:
538  *
539  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
540  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
541  *
542  * In these cases the late RCU wake ups aren't supported in the resched loops and our
543  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
544  * get re-enabled again.
545  */
546 noinstr void rcu_irq_work_resched(void)
547 {
548 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
549 
550 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
551 		return;
552 
553 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
554 		return;
555 
556 	instrumentation_begin();
557 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
558 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
559 	}
560 	instrumentation_end();
561 }
562 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
563 
564 #ifdef CONFIG_PROVE_RCU
565 /**
566  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
567  */
568 void rcu_irq_exit_check_preempt(void)
569 {
570 	lockdep_assert_irqs_disabled();
571 
572 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
573 			 "RCU dynticks_nesting counter underflow/zero!");
574 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
575 			 DYNTICK_IRQ_NONIDLE,
576 			 "Bad RCU  dynticks_nmi_nesting counter\n");
577 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
578 			 "RCU in extended quiescent state!");
579 }
580 #endif /* #ifdef CONFIG_PROVE_RCU */
581 
582 #ifdef CONFIG_NO_HZ_FULL
583 /**
584  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
585  *
586  * The scheduler tick is not normally enabled when CPUs enter the kernel
587  * from nohz_full userspace execution.  After all, nohz_full userspace
588  * execution is an RCU quiescent state and the time executing in the kernel
589  * is quite short.  Except of course when it isn't.  And it is not hard to
590  * cause a large system to spend tens of seconds or even minutes looping
591  * in the kernel, which can cause a number of problems, include RCU CPU
592  * stall warnings.
593  *
594  * Therefore, if a nohz_full CPU fails to report a quiescent state
595  * in a timely manner, the RCU grace-period kthread sets that CPU's
596  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
597  * exception will invoke this function, which will turn on the scheduler
598  * tick, which will enable RCU to detect that CPU's quiescent states,
599  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
600  * The tick will be disabled once a quiescent state is reported for
601  * this CPU.
602  *
603  * Of course, in carefully tuned systems, there might never be an
604  * interrupt or exception.  In that case, the RCU grace-period kthread
605  * will eventually cause one to happen.  However, in less carefully
606  * controlled environments, this function allows RCU to get what it
607  * needs without creating otherwise useless interruptions.
608  */
609 void __rcu_irq_enter_check_tick(void)
610 {
611 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
612 
613 	// If we're here from NMI there's nothing to do.
614 	if (in_nmi())
615 		return;
616 
617 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
618 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
619 
620 	if (!tick_nohz_full_cpu(rdp->cpu) ||
621 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
622 	    READ_ONCE(rdp->rcu_forced_tick)) {
623 		// RCU doesn't need nohz_full help from this CPU, or it is
624 		// already getting that help.
625 		return;
626 	}
627 
628 	// We get here only when not in an extended quiescent state and
629 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
630 	// already watching and (2) The fact that we are in an interrupt
631 	// handler and that the rcu_node lock is an irq-disabled lock
632 	// prevents self-deadlock.  So we can safely recheck under the lock.
633 	// Note that the nohz_full state currently cannot change.
634 	raw_spin_lock_rcu_node(rdp->mynode);
635 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
636 		// A nohz_full CPU is in the kernel and RCU needs a
637 		// quiescent state.  Turn on the tick!
638 		WRITE_ONCE(rdp->rcu_forced_tick, true);
639 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
640 	}
641 	raw_spin_unlock_rcu_node(rdp->mynode);
642 }
643 #endif /* CONFIG_NO_HZ_FULL */
644 
645 /*
646  * Check to see if any future non-offloaded RCU-related work will need
647  * to be done by the current CPU, even if none need be done immediately,
648  * returning 1 if so.  This function is part of the RCU implementation;
649  * it is -not- an exported member of the RCU API.  This is used by
650  * the idle-entry code to figure out whether it is safe to disable the
651  * scheduler-clock interrupt.
652  *
653  * Just check whether or not this CPU has non-offloaded RCU callbacks
654  * queued.
655  */
656 int rcu_needs_cpu(void)
657 {
658 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
659 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
660 }
661 
662 /*
663  * If any sort of urgency was applied to the current CPU (for example,
664  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
665  * to get to a quiescent state, disable it.
666  */
667 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
668 {
669 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
670 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
671 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
672 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
673 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
674 		WRITE_ONCE(rdp->rcu_forced_tick, false);
675 	}
676 }
677 
678 /**
679  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
680  *
681  * Return true if RCU is watching the running CPU, which means that this
682  * CPU can safely enter RCU read-side critical sections.  In other words,
683  * if the current CPU is not in its idle loop or is in an interrupt or
684  * NMI handler, return true.
685  *
686  * Make notrace because it can be called by the internal functions of
687  * ftrace, and making this notrace removes unnecessary recursion calls.
688  */
689 notrace bool rcu_is_watching(void)
690 {
691 	bool ret;
692 
693 	preempt_disable_notrace();
694 	ret = !rcu_dynticks_curr_cpu_in_eqs();
695 	preempt_enable_notrace();
696 	return ret;
697 }
698 EXPORT_SYMBOL_GPL(rcu_is_watching);
699 
700 /*
701  * If a holdout task is actually running, request an urgent quiescent
702  * state from its CPU.  This is unsynchronized, so migrations can cause
703  * the request to go to the wrong CPU.  Which is OK, all that will happen
704  * is that the CPU's next context switch will be a bit slower and next
705  * time around this task will generate another request.
706  */
707 void rcu_request_urgent_qs_task(struct task_struct *t)
708 {
709 	int cpu;
710 
711 	barrier();
712 	cpu = task_cpu(t);
713 	if (!task_curr(t))
714 		return; /* This task is not running on that CPU. */
715 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
716 }
717 
718 /*
719  * When trying to report a quiescent state on behalf of some other CPU,
720  * it is our responsibility to check for and handle potential overflow
721  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
722  * After all, the CPU might be in deep idle state, and thus executing no
723  * code whatsoever.
724  */
725 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
726 {
727 	raw_lockdep_assert_held_rcu_node(rnp);
728 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
729 			 rnp->gp_seq))
730 		WRITE_ONCE(rdp->gpwrap, true);
731 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
732 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
733 }
734 
735 /*
736  * Snapshot the specified CPU's dynticks counter so that we can later
737  * credit them with an implicit quiescent state.  Return 1 if this CPU
738  * is in dynticks idle mode, which is an extended quiescent state.
739  */
740 static int dyntick_save_progress_counter(struct rcu_data *rdp)
741 {
742 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
743 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
744 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
745 		rcu_gpnum_ovf(rdp->mynode, rdp);
746 		return 1;
747 	}
748 	return 0;
749 }
750 
751 /*
752  * Return true if the specified CPU has passed through a quiescent
753  * state by virtue of being in or having passed through an dynticks
754  * idle state since the last call to dyntick_save_progress_counter()
755  * for this same CPU, or by virtue of having been offline.
756  */
757 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
758 {
759 	unsigned long jtsq;
760 	struct rcu_node *rnp = rdp->mynode;
761 
762 	/*
763 	 * If the CPU passed through or entered a dynticks idle phase with
764 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
765 	 * already acknowledged the request to pass through a quiescent
766 	 * state.  Either way, that CPU cannot possibly be in an RCU
767 	 * read-side critical section that started before the beginning
768 	 * of the current RCU grace period.
769 	 */
770 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
771 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
772 		rcu_gpnum_ovf(rnp, rdp);
773 		return 1;
774 	}
775 
776 	/*
777 	 * Complain if a CPU that is considered to be offline from RCU's
778 	 * perspective has not yet reported a quiescent state.  After all,
779 	 * the offline CPU should have reported a quiescent state during
780 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
781 	 * if it ran concurrently with either the CPU going offline or the
782 	 * last task on a leaf rcu_node structure exiting its RCU read-side
783 	 * critical section while all CPUs corresponding to that structure
784 	 * are offline.  This added warning detects bugs in any of these
785 	 * code paths.
786 	 *
787 	 * The rcu_node structure's ->lock is held here, which excludes
788 	 * the relevant portions the CPU-hotplug code, the grace-period
789 	 * initialization code, and the rcu_read_unlock() code paths.
790 	 *
791 	 * For more detail, please refer to the "Hotplug CPU" section
792 	 * of RCU's Requirements documentation.
793 	 */
794 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
795 		struct rcu_node *rnp1;
796 
797 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
798 			__func__, rnp->grplo, rnp->grphi, rnp->level,
799 			(long)rnp->gp_seq, (long)rnp->completedqs);
800 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
801 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
802 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
803 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
804 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
805 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
806 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
807 		return 1; /* Break things loose after complaining. */
808 	}
809 
810 	/*
811 	 * A CPU running for an extended time within the kernel can
812 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
813 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
814 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
815 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
816 	 * variable are safe because the assignments are repeated if this
817 	 * CPU failed to pass through a quiescent state.  This code
818 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
819 	 * is set way high.
820 	 */
821 	jtsq = READ_ONCE(jiffies_to_sched_qs);
822 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
823 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
824 	     time_after(jiffies, rcu_state.jiffies_resched) ||
825 	     rcu_state.cbovld)) {
826 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
827 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
828 		smp_store_release(&rdp->rcu_urgent_qs, true);
829 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
830 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
831 	}
832 
833 	/*
834 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
835 	 * The above code handles this, but only for straight cond_resched().
836 	 * And some in-kernel loops check need_resched() before calling
837 	 * cond_resched(), which defeats the above code for CPUs that are
838 	 * running in-kernel with scheduling-clock interrupts disabled.
839 	 * So hit them over the head with the resched_cpu() hammer!
840 	 */
841 	if (tick_nohz_full_cpu(rdp->cpu) &&
842 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
843 	     rcu_state.cbovld)) {
844 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
845 		resched_cpu(rdp->cpu);
846 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
847 	}
848 
849 	/*
850 	 * If more than halfway to RCU CPU stall-warning time, invoke
851 	 * resched_cpu() more frequently to try to loosen things up a bit.
852 	 * Also check to see if the CPU is getting hammered with interrupts,
853 	 * but only once per grace period, just to keep the IPIs down to
854 	 * a dull roar.
855 	 */
856 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
857 		if (time_after(jiffies,
858 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
859 			resched_cpu(rdp->cpu);
860 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
861 		}
862 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
863 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
864 		    (rnp->ffmask & rdp->grpmask)) {
865 			rdp->rcu_iw_pending = true;
866 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
867 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
868 		}
869 
870 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
871 			int cpu = rdp->cpu;
872 			struct rcu_snap_record *rsrp;
873 			struct kernel_cpustat *kcsp;
874 
875 			kcsp = &kcpustat_cpu(cpu);
876 
877 			rsrp = &rdp->snap_record;
878 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
879 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
880 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
881 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
882 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
883 			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
884 			rsrp->jiffies = jiffies;
885 			rsrp->gp_seq = rdp->gp_seq;
886 		}
887 	}
888 
889 	return 0;
890 }
891 
892 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
893 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
894 			      unsigned long gp_seq_req, const char *s)
895 {
896 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
897 				      gp_seq_req, rnp->level,
898 				      rnp->grplo, rnp->grphi, s);
899 }
900 
901 /*
902  * rcu_start_this_gp - Request the start of a particular grace period
903  * @rnp_start: The leaf node of the CPU from which to start.
904  * @rdp: The rcu_data corresponding to the CPU from which to start.
905  * @gp_seq_req: The gp_seq of the grace period to start.
906  *
907  * Start the specified grace period, as needed to handle newly arrived
908  * callbacks.  The required future grace periods are recorded in each
909  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
910  * is reason to awaken the grace-period kthread.
911  *
912  * The caller must hold the specified rcu_node structure's ->lock, which
913  * is why the caller is responsible for waking the grace-period kthread.
914  *
915  * Returns true if the GP thread needs to be awakened else false.
916  */
917 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
918 			      unsigned long gp_seq_req)
919 {
920 	bool ret = false;
921 	struct rcu_node *rnp;
922 
923 	/*
924 	 * Use funnel locking to either acquire the root rcu_node
925 	 * structure's lock or bail out if the need for this grace period
926 	 * has already been recorded -- or if that grace period has in
927 	 * fact already started.  If there is already a grace period in
928 	 * progress in a non-leaf node, no recording is needed because the
929 	 * end of the grace period will scan the leaf rcu_node structures.
930 	 * Note that rnp_start->lock must not be released.
931 	 */
932 	raw_lockdep_assert_held_rcu_node(rnp_start);
933 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
934 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
935 		if (rnp != rnp_start)
936 			raw_spin_lock_rcu_node(rnp);
937 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
938 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
939 		    (rnp != rnp_start &&
940 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
941 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
942 					  TPS("Prestarted"));
943 			goto unlock_out;
944 		}
945 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
946 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
947 			/*
948 			 * We just marked the leaf or internal node, and a
949 			 * grace period is in progress, which means that
950 			 * rcu_gp_cleanup() will see the marking.  Bail to
951 			 * reduce contention.
952 			 */
953 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
954 					  TPS("Startedleaf"));
955 			goto unlock_out;
956 		}
957 		if (rnp != rnp_start && rnp->parent != NULL)
958 			raw_spin_unlock_rcu_node(rnp);
959 		if (!rnp->parent)
960 			break;  /* At root, and perhaps also leaf. */
961 	}
962 
963 	/* If GP already in progress, just leave, otherwise start one. */
964 	if (rcu_gp_in_progress()) {
965 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
966 		goto unlock_out;
967 	}
968 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
969 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
970 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
971 	if (!READ_ONCE(rcu_state.gp_kthread)) {
972 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
973 		goto unlock_out;
974 	}
975 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
976 	ret = true;  /* Caller must wake GP kthread. */
977 unlock_out:
978 	/* Push furthest requested GP to leaf node and rcu_data structure. */
979 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
980 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
981 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
982 	}
983 	if (rnp != rnp_start)
984 		raw_spin_unlock_rcu_node(rnp);
985 	return ret;
986 }
987 
988 /*
989  * Clean up any old requests for the just-ended grace period.  Also return
990  * whether any additional grace periods have been requested.
991  */
992 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
993 {
994 	bool needmore;
995 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
996 
997 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
998 	if (!needmore)
999 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1000 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1001 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1002 	return needmore;
1003 }
1004 
1005 /*
1006  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1007  * interrupt or softirq handler, in which case we just might immediately
1008  * sleep upon return, resulting in a grace-period hang), and don't bother
1009  * awakening when there is nothing for the grace-period kthread to do
1010  * (as in several CPUs raced to awaken, we lost), and finally don't try
1011  * to awaken a kthread that has not yet been created.  If all those checks
1012  * are passed, track some debug information and awaken.
1013  *
1014  * So why do the self-wakeup when in an interrupt or softirq handler
1015  * in the grace-period kthread's context?  Because the kthread might have
1016  * been interrupted just as it was going to sleep, and just after the final
1017  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1018  * is required, and is therefore supplied.
1019  */
1020 static void rcu_gp_kthread_wake(void)
1021 {
1022 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1023 
1024 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1025 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1026 		return;
1027 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1028 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1029 	swake_up_one(&rcu_state.gp_wq);
1030 }
1031 
1032 /*
1033  * If there is room, assign a ->gp_seq number to any callbacks on this
1034  * CPU that have not already been assigned.  Also accelerate any callbacks
1035  * that were previously assigned a ->gp_seq number that has since proven
1036  * to be too conservative, which can happen if callbacks get assigned a
1037  * ->gp_seq number while RCU is idle, but with reference to a non-root
1038  * rcu_node structure.  This function is idempotent, so it does not hurt
1039  * to call it repeatedly.  Returns an flag saying that we should awaken
1040  * the RCU grace-period kthread.
1041  *
1042  * The caller must hold rnp->lock with interrupts disabled.
1043  */
1044 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1045 {
1046 	unsigned long gp_seq_req;
1047 	bool ret = false;
1048 
1049 	rcu_lockdep_assert_cblist_protected(rdp);
1050 	raw_lockdep_assert_held_rcu_node(rnp);
1051 
1052 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1053 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1054 		return false;
1055 
1056 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1057 
1058 	/*
1059 	 * Callbacks are often registered with incomplete grace-period
1060 	 * information.  Something about the fact that getting exact
1061 	 * information requires acquiring a global lock...  RCU therefore
1062 	 * makes a conservative estimate of the grace period number at which
1063 	 * a given callback will become ready to invoke.	The following
1064 	 * code checks this estimate and improves it when possible, thus
1065 	 * accelerating callback invocation to an earlier grace-period
1066 	 * number.
1067 	 */
1068 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1069 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1070 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1071 
1072 	/* Trace depending on how much we were able to accelerate. */
1073 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1074 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1075 	else
1076 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1077 
1078 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1079 
1080 	return ret;
1081 }
1082 
1083 /*
1084  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1085  * rcu_node structure's ->lock be held.  It consults the cached value
1086  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1087  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1088  * while holding the leaf rcu_node structure's ->lock.
1089  */
1090 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1091 					struct rcu_data *rdp)
1092 {
1093 	unsigned long c;
1094 	bool needwake;
1095 
1096 	rcu_lockdep_assert_cblist_protected(rdp);
1097 	c = rcu_seq_snap(&rcu_state.gp_seq);
1098 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1099 		/* Old request still live, so mark recent callbacks. */
1100 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1101 		return;
1102 	}
1103 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1104 	needwake = rcu_accelerate_cbs(rnp, rdp);
1105 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1106 	if (needwake)
1107 		rcu_gp_kthread_wake();
1108 }
1109 
1110 /*
1111  * Move any callbacks whose grace period has completed to the
1112  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1113  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1114  * sublist.  This function is idempotent, so it does not hurt to
1115  * invoke it repeatedly.  As long as it is not invoked -too- often...
1116  * Returns true if the RCU grace-period kthread needs to be awakened.
1117  *
1118  * The caller must hold rnp->lock with interrupts disabled.
1119  */
1120 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1121 {
1122 	rcu_lockdep_assert_cblist_protected(rdp);
1123 	raw_lockdep_assert_held_rcu_node(rnp);
1124 
1125 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1126 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1127 		return false;
1128 
1129 	/*
1130 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1131 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1132 	 */
1133 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1134 
1135 	/* Classify any remaining callbacks. */
1136 	return rcu_accelerate_cbs(rnp, rdp);
1137 }
1138 
1139 /*
1140  * Move and classify callbacks, but only if doing so won't require
1141  * that the RCU grace-period kthread be awakened.
1142  */
1143 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1144 						  struct rcu_data *rdp)
1145 {
1146 	rcu_lockdep_assert_cblist_protected(rdp);
1147 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1148 		return;
1149 	// The grace period cannot end while we hold the rcu_node lock.
1150 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1151 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1152 	raw_spin_unlock_rcu_node(rnp);
1153 }
1154 
1155 /*
1156  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1157  * quiescent state.  This is intended to be invoked when the CPU notices
1158  * a new grace period.
1159  */
1160 static void rcu_strict_gp_check_qs(void)
1161 {
1162 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1163 		rcu_read_lock();
1164 		rcu_read_unlock();
1165 	}
1166 }
1167 
1168 /*
1169  * Update CPU-local rcu_data state to record the beginnings and ends of
1170  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1171  * structure corresponding to the current CPU, and must have irqs disabled.
1172  * Returns true if the grace-period kthread needs to be awakened.
1173  */
1174 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1175 {
1176 	bool ret = false;
1177 	bool need_qs;
1178 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1179 
1180 	raw_lockdep_assert_held_rcu_node(rnp);
1181 
1182 	if (rdp->gp_seq == rnp->gp_seq)
1183 		return false; /* Nothing to do. */
1184 
1185 	/* Handle the ends of any preceding grace periods first. */
1186 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1187 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1188 		if (!offloaded)
1189 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1190 		rdp->core_needs_qs = false;
1191 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1192 	} else {
1193 		if (!offloaded)
1194 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1195 		if (rdp->core_needs_qs)
1196 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1197 	}
1198 
1199 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1200 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1201 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1202 		/*
1203 		 * If the current grace period is waiting for this CPU,
1204 		 * set up to detect a quiescent state, otherwise don't
1205 		 * go looking for one.
1206 		 */
1207 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1208 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1209 		rdp->cpu_no_qs.b.norm = need_qs;
1210 		rdp->core_needs_qs = need_qs;
1211 		zero_cpu_stall_ticks(rdp);
1212 	}
1213 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1214 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1215 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1216 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1217 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1218 	WRITE_ONCE(rdp->gpwrap, false);
1219 	rcu_gpnum_ovf(rnp, rdp);
1220 	return ret;
1221 }
1222 
1223 static void note_gp_changes(struct rcu_data *rdp)
1224 {
1225 	unsigned long flags;
1226 	bool needwake;
1227 	struct rcu_node *rnp;
1228 
1229 	local_irq_save(flags);
1230 	rnp = rdp->mynode;
1231 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1232 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1233 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1234 		local_irq_restore(flags);
1235 		return;
1236 	}
1237 	needwake = __note_gp_changes(rnp, rdp);
1238 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1239 	rcu_strict_gp_check_qs();
1240 	if (needwake)
1241 		rcu_gp_kthread_wake();
1242 }
1243 
1244 static atomic_t *rcu_gp_slow_suppress;
1245 
1246 /* Register a counter to suppress debugging grace-period delays. */
1247 void rcu_gp_slow_register(atomic_t *rgssp)
1248 {
1249 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1250 
1251 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1252 }
1253 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1254 
1255 /* Unregister a counter, with NULL for not caring which. */
1256 void rcu_gp_slow_unregister(atomic_t *rgssp)
1257 {
1258 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1259 
1260 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1261 }
1262 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1263 
1264 static bool rcu_gp_slow_is_suppressed(void)
1265 {
1266 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1267 
1268 	return rgssp && atomic_read(rgssp);
1269 }
1270 
1271 static void rcu_gp_slow(int delay)
1272 {
1273 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1274 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1275 		schedule_timeout_idle(delay);
1276 }
1277 
1278 static unsigned long sleep_duration;
1279 
1280 /* Allow rcutorture to stall the grace-period kthread. */
1281 void rcu_gp_set_torture_wait(int duration)
1282 {
1283 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1284 		WRITE_ONCE(sleep_duration, duration);
1285 }
1286 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1287 
1288 /* Actually implement the aforementioned wait. */
1289 static void rcu_gp_torture_wait(void)
1290 {
1291 	unsigned long duration;
1292 
1293 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1294 		return;
1295 	duration = xchg(&sleep_duration, 0UL);
1296 	if (duration > 0) {
1297 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1298 		schedule_timeout_idle(duration);
1299 		pr_alert("%s: Wait complete\n", __func__);
1300 	}
1301 }
1302 
1303 /*
1304  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1305  * processing.
1306  */
1307 static void rcu_strict_gp_boundary(void *unused)
1308 {
1309 	invoke_rcu_core();
1310 }
1311 
1312 // Make the polled API aware of the beginning of a grace period.
1313 static void rcu_poll_gp_seq_start(unsigned long *snap)
1314 {
1315 	struct rcu_node *rnp = rcu_get_root();
1316 
1317 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1318 		raw_lockdep_assert_held_rcu_node(rnp);
1319 
1320 	// If RCU was idle, note beginning of GP.
1321 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1322 		rcu_seq_start(&rcu_state.gp_seq_polled);
1323 
1324 	// Either way, record current state.
1325 	*snap = rcu_state.gp_seq_polled;
1326 }
1327 
1328 // Make the polled API aware of the end of a grace period.
1329 static void rcu_poll_gp_seq_end(unsigned long *snap)
1330 {
1331 	struct rcu_node *rnp = rcu_get_root();
1332 
1333 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1334 		raw_lockdep_assert_held_rcu_node(rnp);
1335 
1336 	// If the previously noted GP is still in effect, record the
1337 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1338 	// problems.
1339 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1340 		rcu_seq_end(&rcu_state.gp_seq_polled);
1341 		rcu_state.gp_seq_polled_snap = 0;
1342 		rcu_state.gp_seq_polled_exp_snap = 0;
1343 	} else {
1344 		*snap = 0;
1345 	}
1346 }
1347 
1348 // Make the polled API aware of the beginning of a grace period, but
1349 // where caller does not hold the root rcu_node structure's lock.
1350 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1351 {
1352 	unsigned long flags;
1353 	struct rcu_node *rnp = rcu_get_root();
1354 
1355 	if (rcu_init_invoked()) {
1356 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1357 			lockdep_assert_irqs_enabled();
1358 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1359 	}
1360 	rcu_poll_gp_seq_start(snap);
1361 	if (rcu_init_invoked())
1362 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1363 }
1364 
1365 // Make the polled API aware of the end of a grace period, but where
1366 // caller does not hold the root rcu_node structure's lock.
1367 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1368 {
1369 	unsigned long flags;
1370 	struct rcu_node *rnp = rcu_get_root();
1371 
1372 	if (rcu_init_invoked()) {
1373 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1374 			lockdep_assert_irqs_enabled();
1375 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1376 	}
1377 	rcu_poll_gp_seq_end(snap);
1378 	if (rcu_init_invoked())
1379 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1380 }
1381 
1382 /*
1383  * Initialize a new grace period.  Return false if no grace period required.
1384  */
1385 static noinline_for_stack bool rcu_gp_init(void)
1386 {
1387 	unsigned long flags;
1388 	unsigned long oldmask;
1389 	unsigned long mask;
1390 	struct rcu_data *rdp;
1391 	struct rcu_node *rnp = rcu_get_root();
1392 
1393 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1394 	raw_spin_lock_irq_rcu_node(rnp);
1395 	if (!READ_ONCE(rcu_state.gp_flags)) {
1396 		/* Spurious wakeup, tell caller to go back to sleep.  */
1397 		raw_spin_unlock_irq_rcu_node(rnp);
1398 		return false;
1399 	}
1400 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1401 
1402 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1403 		/*
1404 		 * Grace period already in progress, don't start another.
1405 		 * Not supposed to be able to happen.
1406 		 */
1407 		raw_spin_unlock_irq_rcu_node(rnp);
1408 		return false;
1409 	}
1410 
1411 	/* Advance to a new grace period and initialize state. */
1412 	record_gp_stall_check_time();
1413 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1414 	rcu_seq_start(&rcu_state.gp_seq);
1415 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1416 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1417 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1418 	raw_spin_unlock_irq_rcu_node(rnp);
1419 
1420 	/*
1421 	 * Apply per-leaf buffered online and offline operations to
1422 	 * the rcu_node tree. Note that this new grace period need not
1423 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1424 	 * offlining path, when combined with checks in this function,
1425 	 * will handle CPUs that are currently going offline or that will
1426 	 * go offline later.  Please also refer to "Hotplug CPU" section
1427 	 * of RCU's Requirements documentation.
1428 	 */
1429 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1430 	/* Exclude CPU hotplug operations. */
1431 	rcu_for_each_leaf_node(rnp) {
1432 		local_irq_save(flags);
1433 		arch_spin_lock(&rcu_state.ofl_lock);
1434 		raw_spin_lock_rcu_node(rnp);
1435 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1436 		    !rnp->wait_blkd_tasks) {
1437 			/* Nothing to do on this leaf rcu_node structure. */
1438 			raw_spin_unlock_rcu_node(rnp);
1439 			arch_spin_unlock(&rcu_state.ofl_lock);
1440 			local_irq_restore(flags);
1441 			continue;
1442 		}
1443 
1444 		/* Record old state, apply changes to ->qsmaskinit field. */
1445 		oldmask = rnp->qsmaskinit;
1446 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1447 
1448 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1449 		if (!oldmask != !rnp->qsmaskinit) {
1450 			if (!oldmask) { /* First online CPU for rcu_node. */
1451 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1452 					rcu_init_new_rnp(rnp);
1453 			} else if (rcu_preempt_has_tasks(rnp)) {
1454 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1455 			} else { /* Last offline CPU and can propagate. */
1456 				rcu_cleanup_dead_rnp(rnp);
1457 			}
1458 		}
1459 
1460 		/*
1461 		 * If all waited-on tasks from prior grace period are
1462 		 * done, and if all this rcu_node structure's CPUs are
1463 		 * still offline, propagate up the rcu_node tree and
1464 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1465 		 * rcu_node structure's CPUs has since come back online,
1466 		 * simply clear ->wait_blkd_tasks.
1467 		 */
1468 		if (rnp->wait_blkd_tasks &&
1469 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1470 			rnp->wait_blkd_tasks = false;
1471 			if (!rnp->qsmaskinit)
1472 				rcu_cleanup_dead_rnp(rnp);
1473 		}
1474 
1475 		raw_spin_unlock_rcu_node(rnp);
1476 		arch_spin_unlock(&rcu_state.ofl_lock);
1477 		local_irq_restore(flags);
1478 	}
1479 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1480 
1481 	/*
1482 	 * Set the quiescent-state-needed bits in all the rcu_node
1483 	 * structures for all currently online CPUs in breadth-first
1484 	 * order, starting from the root rcu_node structure, relying on the
1485 	 * layout of the tree within the rcu_state.node[] array.  Note that
1486 	 * other CPUs will access only the leaves of the hierarchy, thus
1487 	 * seeing that no grace period is in progress, at least until the
1488 	 * corresponding leaf node has been initialized.
1489 	 *
1490 	 * The grace period cannot complete until the initialization
1491 	 * process finishes, because this kthread handles both.
1492 	 */
1493 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1494 	rcu_for_each_node_breadth_first(rnp) {
1495 		rcu_gp_slow(gp_init_delay);
1496 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1497 		rdp = this_cpu_ptr(&rcu_data);
1498 		rcu_preempt_check_blocked_tasks(rnp);
1499 		rnp->qsmask = rnp->qsmaskinit;
1500 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1501 		if (rnp == rdp->mynode)
1502 			(void)__note_gp_changes(rnp, rdp);
1503 		rcu_preempt_boost_start_gp(rnp);
1504 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1505 					    rnp->level, rnp->grplo,
1506 					    rnp->grphi, rnp->qsmask);
1507 		/* Quiescent states for tasks on any now-offline CPUs. */
1508 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1509 		rnp->rcu_gp_init_mask = mask;
1510 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1511 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1512 		else
1513 			raw_spin_unlock_irq_rcu_node(rnp);
1514 		cond_resched_tasks_rcu_qs();
1515 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1516 	}
1517 
1518 	// If strict, make all CPUs aware of new grace period.
1519 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1520 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1521 
1522 	return true;
1523 }
1524 
1525 /*
1526  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1527  * time.
1528  */
1529 static bool rcu_gp_fqs_check_wake(int *gfp)
1530 {
1531 	struct rcu_node *rnp = rcu_get_root();
1532 
1533 	// If under overload conditions, force an immediate FQS scan.
1534 	if (*gfp & RCU_GP_FLAG_OVLD)
1535 		return true;
1536 
1537 	// Someone like call_rcu() requested a force-quiescent-state scan.
1538 	*gfp = READ_ONCE(rcu_state.gp_flags);
1539 	if (*gfp & RCU_GP_FLAG_FQS)
1540 		return true;
1541 
1542 	// The current grace period has completed.
1543 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1544 		return true;
1545 
1546 	return false;
1547 }
1548 
1549 /*
1550  * Do one round of quiescent-state forcing.
1551  */
1552 static void rcu_gp_fqs(bool first_time)
1553 {
1554 	struct rcu_node *rnp = rcu_get_root();
1555 
1556 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1557 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1558 	if (first_time) {
1559 		/* Collect dyntick-idle snapshots. */
1560 		force_qs_rnp(dyntick_save_progress_counter);
1561 	} else {
1562 		/* Handle dyntick-idle and offline CPUs. */
1563 		force_qs_rnp(rcu_implicit_dynticks_qs);
1564 	}
1565 	/* Clear flag to prevent immediate re-entry. */
1566 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1567 		raw_spin_lock_irq_rcu_node(rnp);
1568 		WRITE_ONCE(rcu_state.gp_flags,
1569 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1570 		raw_spin_unlock_irq_rcu_node(rnp);
1571 	}
1572 }
1573 
1574 /*
1575  * Loop doing repeated quiescent-state forcing until the grace period ends.
1576  */
1577 static noinline_for_stack void rcu_gp_fqs_loop(void)
1578 {
1579 	bool first_gp_fqs = true;
1580 	int gf = 0;
1581 	unsigned long j;
1582 	int ret;
1583 	struct rcu_node *rnp = rcu_get_root();
1584 
1585 	j = READ_ONCE(jiffies_till_first_fqs);
1586 	if (rcu_state.cbovld)
1587 		gf = RCU_GP_FLAG_OVLD;
1588 	ret = 0;
1589 	for (;;) {
1590 		if (rcu_state.cbovld) {
1591 			j = (j + 2) / 3;
1592 			if (j <= 0)
1593 				j = 1;
1594 		}
1595 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1596 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1597 			/*
1598 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1599 			 * update; required for stall checks.
1600 			 */
1601 			smp_wmb();
1602 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1603 				   jiffies + (j ? 3 * j : 2));
1604 		}
1605 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1606 				       TPS("fqswait"));
1607 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1608 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1609 				 rcu_gp_fqs_check_wake(&gf), j);
1610 		rcu_gp_torture_wait();
1611 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1612 		/* Locking provides needed memory barriers. */
1613 		/*
1614 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1615 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1616 		 * is required only for single-node rcu_node trees because readers blocking
1617 		 * the current grace period are queued only on leaf rcu_node structures.
1618 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1619 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1620 		 * the corresponding leaf nodes have passed through their quiescent state.
1621 		 */
1622 		if (!READ_ONCE(rnp->qsmask) &&
1623 		    !rcu_preempt_blocked_readers_cgp(rnp))
1624 			break;
1625 		/* If time for quiescent-state forcing, do it. */
1626 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1627 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1628 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1629 					       TPS("fqsstart"));
1630 			rcu_gp_fqs(first_gp_fqs);
1631 			gf = 0;
1632 			if (first_gp_fqs) {
1633 				first_gp_fqs = false;
1634 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1635 			}
1636 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1637 					       TPS("fqsend"));
1638 			cond_resched_tasks_rcu_qs();
1639 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1640 			ret = 0; /* Force full wait till next FQS. */
1641 			j = READ_ONCE(jiffies_till_next_fqs);
1642 		} else {
1643 			/* Deal with stray signal. */
1644 			cond_resched_tasks_rcu_qs();
1645 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1646 			WARN_ON(signal_pending(current));
1647 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1648 					       TPS("fqswaitsig"));
1649 			ret = 1; /* Keep old FQS timing. */
1650 			j = jiffies;
1651 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1652 				j = 1;
1653 			else
1654 				j = rcu_state.jiffies_force_qs - j;
1655 			gf = 0;
1656 		}
1657 	}
1658 }
1659 
1660 /*
1661  * Clean up after the old grace period.
1662  */
1663 static noinline void rcu_gp_cleanup(void)
1664 {
1665 	int cpu;
1666 	bool needgp = false;
1667 	unsigned long gp_duration;
1668 	unsigned long new_gp_seq;
1669 	bool offloaded;
1670 	struct rcu_data *rdp;
1671 	struct rcu_node *rnp = rcu_get_root();
1672 	struct swait_queue_head *sq;
1673 
1674 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1675 	raw_spin_lock_irq_rcu_node(rnp);
1676 	rcu_state.gp_end = jiffies;
1677 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1678 	if (gp_duration > rcu_state.gp_max)
1679 		rcu_state.gp_max = gp_duration;
1680 
1681 	/*
1682 	 * We know the grace period is complete, but to everyone else
1683 	 * it appears to still be ongoing.  But it is also the case
1684 	 * that to everyone else it looks like there is nothing that
1685 	 * they can do to advance the grace period.  It is therefore
1686 	 * safe for us to drop the lock in order to mark the grace
1687 	 * period as completed in all of the rcu_node structures.
1688 	 */
1689 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1690 	raw_spin_unlock_irq_rcu_node(rnp);
1691 
1692 	/*
1693 	 * Propagate new ->gp_seq value to rcu_node structures so that
1694 	 * other CPUs don't have to wait until the start of the next grace
1695 	 * period to process their callbacks.  This also avoids some nasty
1696 	 * RCU grace-period initialization races by forcing the end of
1697 	 * the current grace period to be completely recorded in all of
1698 	 * the rcu_node structures before the beginning of the next grace
1699 	 * period is recorded in any of the rcu_node structures.
1700 	 */
1701 	new_gp_seq = rcu_state.gp_seq;
1702 	rcu_seq_end(&new_gp_seq);
1703 	rcu_for_each_node_breadth_first(rnp) {
1704 		raw_spin_lock_irq_rcu_node(rnp);
1705 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1706 			dump_blkd_tasks(rnp, 10);
1707 		WARN_ON_ONCE(rnp->qsmask);
1708 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1709 		if (!rnp->parent)
1710 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1711 		rdp = this_cpu_ptr(&rcu_data);
1712 		if (rnp == rdp->mynode)
1713 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1714 		/* smp_mb() provided by prior unlock-lock pair. */
1715 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1716 		// Reset overload indication for CPUs no longer overloaded
1717 		if (rcu_is_leaf_node(rnp))
1718 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1719 				rdp = per_cpu_ptr(&rcu_data, cpu);
1720 				check_cb_ovld_locked(rdp, rnp);
1721 			}
1722 		sq = rcu_nocb_gp_get(rnp);
1723 		raw_spin_unlock_irq_rcu_node(rnp);
1724 		rcu_nocb_gp_cleanup(sq);
1725 		cond_resched_tasks_rcu_qs();
1726 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1727 		rcu_gp_slow(gp_cleanup_delay);
1728 	}
1729 	rnp = rcu_get_root();
1730 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1731 
1732 	/* Declare grace period done, trace first to use old GP number. */
1733 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1734 	rcu_seq_end(&rcu_state.gp_seq);
1735 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1736 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1737 	/* Check for GP requests since above loop. */
1738 	rdp = this_cpu_ptr(&rcu_data);
1739 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1740 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1741 				  TPS("CleanupMore"));
1742 		needgp = true;
1743 	}
1744 	/* Advance CBs to reduce false positives below. */
1745 	offloaded = rcu_rdp_is_offloaded(rdp);
1746 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1747 
1748 		// We get here if a grace period was needed (“needgp”)
1749 		// and the above call to rcu_accelerate_cbs() did not set
1750 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1751 		// the need for another grace period).  The purpose
1752 		// of the “offloaded” check is to avoid invoking
1753 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1754 		// hold the ->nocb_lock needed to safely access an offloaded
1755 		// ->cblist.  We do not want to acquire that lock because
1756 		// it can be heavily contended during callback floods.
1757 
1758 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1759 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1760 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1761 	} else {
1762 
1763 		// We get here either if there is no need for an
1764 		// additional grace period or if rcu_accelerate_cbs() has
1765 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1766 		// So all we need to do is to clear all of the other
1767 		// ->gp_flags bits.
1768 
1769 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1770 	}
1771 	raw_spin_unlock_irq_rcu_node(rnp);
1772 
1773 	// If strict, make all CPUs aware of the end of the old grace period.
1774 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1775 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1776 }
1777 
1778 /*
1779  * Body of kthread that handles grace periods.
1780  */
1781 static int __noreturn rcu_gp_kthread(void *unused)
1782 {
1783 	rcu_bind_gp_kthread();
1784 	for (;;) {
1785 
1786 		/* Handle grace-period start. */
1787 		for (;;) {
1788 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1789 					       TPS("reqwait"));
1790 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1791 			swait_event_idle_exclusive(rcu_state.gp_wq,
1792 					 READ_ONCE(rcu_state.gp_flags) &
1793 					 RCU_GP_FLAG_INIT);
1794 			rcu_gp_torture_wait();
1795 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1796 			/* Locking provides needed memory barrier. */
1797 			if (rcu_gp_init())
1798 				break;
1799 			cond_resched_tasks_rcu_qs();
1800 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1801 			WARN_ON(signal_pending(current));
1802 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1803 					       TPS("reqwaitsig"));
1804 		}
1805 
1806 		/* Handle quiescent-state forcing. */
1807 		rcu_gp_fqs_loop();
1808 
1809 		/* Handle grace-period end. */
1810 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1811 		rcu_gp_cleanup();
1812 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1813 	}
1814 }
1815 
1816 /*
1817  * Report a full set of quiescent states to the rcu_state data structure.
1818  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1819  * another grace period is required.  Whether we wake the grace-period
1820  * kthread or it awakens itself for the next round of quiescent-state
1821  * forcing, that kthread will clean up after the just-completed grace
1822  * period.  Note that the caller must hold rnp->lock, which is released
1823  * before return.
1824  */
1825 static void rcu_report_qs_rsp(unsigned long flags)
1826 	__releases(rcu_get_root()->lock)
1827 {
1828 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1829 	WARN_ON_ONCE(!rcu_gp_in_progress());
1830 	WRITE_ONCE(rcu_state.gp_flags,
1831 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1832 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1833 	rcu_gp_kthread_wake();
1834 }
1835 
1836 /*
1837  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1838  * Allows quiescent states for a group of CPUs to be reported at one go
1839  * to the specified rcu_node structure, though all the CPUs in the group
1840  * must be represented by the same rcu_node structure (which need not be a
1841  * leaf rcu_node structure, though it often will be).  The gps parameter
1842  * is the grace-period snapshot, which means that the quiescent states
1843  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1844  * must be held upon entry, and it is released before return.
1845  *
1846  * As a special case, if mask is zero, the bit-already-cleared check is
1847  * disabled.  This allows propagating quiescent state due to resumed tasks
1848  * during grace-period initialization.
1849  */
1850 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1851 			      unsigned long gps, unsigned long flags)
1852 	__releases(rnp->lock)
1853 {
1854 	unsigned long oldmask = 0;
1855 	struct rcu_node *rnp_c;
1856 
1857 	raw_lockdep_assert_held_rcu_node(rnp);
1858 
1859 	/* Walk up the rcu_node hierarchy. */
1860 	for (;;) {
1861 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1862 
1863 			/*
1864 			 * Our bit has already been cleared, or the
1865 			 * relevant grace period is already over, so done.
1866 			 */
1867 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1868 			return;
1869 		}
1870 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1871 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1872 			     rcu_preempt_blocked_readers_cgp(rnp));
1873 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1874 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1875 						 mask, rnp->qsmask, rnp->level,
1876 						 rnp->grplo, rnp->grphi,
1877 						 !!rnp->gp_tasks);
1878 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1879 
1880 			/* Other bits still set at this level, so done. */
1881 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1882 			return;
1883 		}
1884 		rnp->completedqs = rnp->gp_seq;
1885 		mask = rnp->grpmask;
1886 		if (rnp->parent == NULL) {
1887 
1888 			/* No more levels.  Exit loop holding root lock. */
1889 
1890 			break;
1891 		}
1892 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1893 		rnp_c = rnp;
1894 		rnp = rnp->parent;
1895 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1896 		oldmask = READ_ONCE(rnp_c->qsmask);
1897 	}
1898 
1899 	/*
1900 	 * Get here if we are the last CPU to pass through a quiescent
1901 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1902 	 * to clean up and start the next grace period if one is needed.
1903 	 */
1904 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1905 }
1906 
1907 /*
1908  * Record a quiescent state for all tasks that were previously queued
1909  * on the specified rcu_node structure and that were blocking the current
1910  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1911  * irqs disabled, and this lock is released upon return, but irqs remain
1912  * disabled.
1913  */
1914 static void __maybe_unused
1915 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1916 	__releases(rnp->lock)
1917 {
1918 	unsigned long gps;
1919 	unsigned long mask;
1920 	struct rcu_node *rnp_p;
1921 
1922 	raw_lockdep_assert_held_rcu_node(rnp);
1923 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1924 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1925 	    rnp->qsmask != 0) {
1926 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1927 		return;  /* Still need more quiescent states! */
1928 	}
1929 
1930 	rnp->completedqs = rnp->gp_seq;
1931 	rnp_p = rnp->parent;
1932 	if (rnp_p == NULL) {
1933 		/*
1934 		 * Only one rcu_node structure in the tree, so don't
1935 		 * try to report up to its nonexistent parent!
1936 		 */
1937 		rcu_report_qs_rsp(flags);
1938 		return;
1939 	}
1940 
1941 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1942 	gps = rnp->gp_seq;
1943 	mask = rnp->grpmask;
1944 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1945 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1946 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1947 }
1948 
1949 /*
1950  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1951  * structure.  This must be called from the specified CPU.
1952  */
1953 static void
1954 rcu_report_qs_rdp(struct rcu_data *rdp)
1955 {
1956 	unsigned long flags;
1957 	unsigned long mask;
1958 	bool needwake = false;
1959 	bool needacc = false;
1960 	struct rcu_node *rnp;
1961 
1962 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
1963 	rnp = rdp->mynode;
1964 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1965 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1966 	    rdp->gpwrap) {
1967 
1968 		/*
1969 		 * The grace period in which this quiescent state was
1970 		 * recorded has ended, so don't report it upwards.
1971 		 * We will instead need a new quiescent state that lies
1972 		 * within the current grace period.
1973 		 */
1974 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1975 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1976 		return;
1977 	}
1978 	mask = rdp->grpmask;
1979 	rdp->core_needs_qs = false;
1980 	if ((rnp->qsmask & mask) == 0) {
1981 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1982 	} else {
1983 		/*
1984 		 * This GP can't end until cpu checks in, so all of our
1985 		 * callbacks can be processed during the next GP.
1986 		 *
1987 		 * NOCB kthreads have their own way to deal with that...
1988 		 */
1989 		if (!rcu_rdp_is_offloaded(rdp)) {
1990 			needwake = rcu_accelerate_cbs(rnp, rdp);
1991 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
1992 			/*
1993 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
1994 			 * if in the middle of a (de-)offloading process.
1995 			 */
1996 			needacc = true;
1997 		}
1998 
1999 		rcu_disable_urgency_upon_qs(rdp);
2000 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2001 		/* ^^^ Released rnp->lock */
2002 		if (needwake)
2003 			rcu_gp_kthread_wake();
2004 
2005 		if (needacc) {
2006 			rcu_nocb_lock_irqsave(rdp, flags);
2007 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2008 			rcu_nocb_unlock_irqrestore(rdp, flags);
2009 		}
2010 	}
2011 }
2012 
2013 /*
2014  * Check to see if there is a new grace period of which this CPU
2015  * is not yet aware, and if so, set up local rcu_data state for it.
2016  * Otherwise, see if this CPU has just passed through its first
2017  * quiescent state for this grace period, and record that fact if so.
2018  */
2019 static void
2020 rcu_check_quiescent_state(struct rcu_data *rdp)
2021 {
2022 	/* Check for grace-period ends and beginnings. */
2023 	note_gp_changes(rdp);
2024 
2025 	/*
2026 	 * Does this CPU still need to do its part for current grace period?
2027 	 * If no, return and let the other CPUs do their part as well.
2028 	 */
2029 	if (!rdp->core_needs_qs)
2030 		return;
2031 
2032 	/*
2033 	 * Was there a quiescent state since the beginning of the grace
2034 	 * period? If no, then exit and wait for the next call.
2035 	 */
2036 	if (rdp->cpu_no_qs.b.norm)
2037 		return;
2038 
2039 	/*
2040 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2041 	 * judge of that).
2042 	 */
2043 	rcu_report_qs_rdp(rdp);
2044 }
2045 
2046 /*
2047  * Invoke any RCU callbacks that have made it to the end of their grace
2048  * period.  Throttle as specified by rdp->blimit.
2049  */
2050 static void rcu_do_batch(struct rcu_data *rdp)
2051 {
2052 	int div;
2053 	bool __maybe_unused empty;
2054 	unsigned long flags;
2055 	struct rcu_head *rhp;
2056 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2057 	long bl, count = 0;
2058 	long pending, tlimit = 0;
2059 
2060 	/* If no callbacks are ready, just return. */
2061 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2062 		trace_rcu_batch_start(rcu_state.name,
2063 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2064 		trace_rcu_batch_end(rcu_state.name, 0,
2065 				    !rcu_segcblist_empty(&rdp->cblist),
2066 				    need_resched(), is_idle_task(current),
2067 				    rcu_is_callbacks_kthread(rdp));
2068 		return;
2069 	}
2070 
2071 	/*
2072 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2073 	 * races with call_rcu() from interrupt handlers.  Leave the
2074 	 * callback counts, as rcu_barrier() needs to be conservative.
2075 	 */
2076 	rcu_nocb_lock_irqsave(rdp, flags);
2077 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2078 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2079 	div = READ_ONCE(rcu_divisor);
2080 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2081 	bl = max(rdp->blimit, pending >> div);
2082 	if (in_serving_softirq() && unlikely(bl > 100)) {
2083 		long rrn = READ_ONCE(rcu_resched_ns);
2084 
2085 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2086 		tlimit = local_clock() + rrn;
2087 	}
2088 	trace_rcu_batch_start(rcu_state.name,
2089 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2090 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2091 	if (rcu_rdp_is_offloaded(rdp))
2092 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2093 
2094 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2095 	rcu_nocb_unlock_irqrestore(rdp, flags);
2096 
2097 	/* Invoke callbacks. */
2098 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2099 	rhp = rcu_cblist_dequeue(&rcl);
2100 
2101 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2102 		rcu_callback_t f;
2103 
2104 		count++;
2105 		debug_rcu_head_unqueue(rhp);
2106 
2107 		rcu_lock_acquire(&rcu_callback_map);
2108 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2109 
2110 		f = rhp->func;
2111 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2112 		f(rhp);
2113 
2114 		rcu_lock_release(&rcu_callback_map);
2115 
2116 		/*
2117 		 * Stop only if limit reached and CPU has something to do.
2118 		 */
2119 		if (in_serving_softirq()) {
2120 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2121 				break;
2122 			/*
2123 			 * Make sure we don't spend too much time here and deprive other
2124 			 * softirq vectors of CPU cycles.
2125 			 */
2126 			if (unlikely(tlimit)) {
2127 				/* only call local_clock() every 32 callbacks */
2128 				if (likely((count & 31) || local_clock() < tlimit))
2129 					continue;
2130 				/* Exceeded the time limit, so leave. */
2131 				break;
2132 			}
2133 		} else {
2134 			local_bh_enable();
2135 			lockdep_assert_irqs_enabled();
2136 			cond_resched_tasks_rcu_qs();
2137 			lockdep_assert_irqs_enabled();
2138 			local_bh_disable();
2139 		}
2140 	}
2141 
2142 	rcu_nocb_lock_irqsave(rdp, flags);
2143 	rdp->n_cbs_invoked += count;
2144 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2145 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2146 
2147 	/* Update counts and requeue any remaining callbacks. */
2148 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2149 	rcu_segcblist_add_len(&rdp->cblist, -count);
2150 
2151 	/* Reinstate batch limit if we have worked down the excess. */
2152 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2153 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2154 		rdp->blimit = blimit;
2155 
2156 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2157 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2158 		rdp->qlen_last_fqs_check = 0;
2159 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2160 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2161 		rdp->qlen_last_fqs_check = count;
2162 
2163 	/*
2164 	 * The following usually indicates a double call_rcu().  To track
2165 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2166 	 */
2167 	empty = rcu_segcblist_empty(&rdp->cblist);
2168 	WARN_ON_ONCE(count == 0 && !empty);
2169 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2170 		     count != 0 && empty);
2171 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2172 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2173 
2174 	rcu_nocb_unlock_irqrestore(rdp, flags);
2175 
2176 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2177 }
2178 
2179 /*
2180  * This function is invoked from each scheduling-clock interrupt,
2181  * and checks to see if this CPU is in a non-context-switch quiescent
2182  * state, for example, user mode or idle loop.  It also schedules RCU
2183  * core processing.  If the current grace period has gone on too long,
2184  * it will ask the scheduler to manufacture a context switch for the sole
2185  * purpose of providing the needed quiescent state.
2186  */
2187 void rcu_sched_clock_irq(int user)
2188 {
2189 	unsigned long j;
2190 
2191 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2192 		j = jiffies;
2193 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2194 		__this_cpu_write(rcu_data.last_sched_clock, j);
2195 	}
2196 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2197 	lockdep_assert_irqs_disabled();
2198 	raw_cpu_inc(rcu_data.ticks_this_gp);
2199 	/* The load-acquire pairs with the store-release setting to true. */
2200 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2201 		/* Idle and userspace execution already are quiescent states. */
2202 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2203 			set_tsk_need_resched(current);
2204 			set_preempt_need_resched();
2205 		}
2206 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2207 	}
2208 	rcu_flavor_sched_clock_irq(user);
2209 	if (rcu_pending(user))
2210 		invoke_rcu_core();
2211 	if (user || rcu_is_cpu_rrupt_from_idle())
2212 		rcu_note_voluntary_context_switch(current);
2213 	lockdep_assert_irqs_disabled();
2214 
2215 	trace_rcu_utilization(TPS("End scheduler-tick"));
2216 }
2217 
2218 /*
2219  * Scan the leaf rcu_node structures.  For each structure on which all
2220  * CPUs have reported a quiescent state and on which there are tasks
2221  * blocking the current grace period, initiate RCU priority boosting.
2222  * Otherwise, invoke the specified function to check dyntick state for
2223  * each CPU that has not yet reported a quiescent state.
2224  */
2225 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2226 {
2227 	int cpu;
2228 	unsigned long flags;
2229 	unsigned long mask;
2230 	struct rcu_data *rdp;
2231 	struct rcu_node *rnp;
2232 
2233 	rcu_state.cbovld = rcu_state.cbovldnext;
2234 	rcu_state.cbovldnext = false;
2235 	rcu_for_each_leaf_node(rnp) {
2236 		cond_resched_tasks_rcu_qs();
2237 		mask = 0;
2238 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2239 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2240 		if (rnp->qsmask == 0) {
2241 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2242 				/*
2243 				 * No point in scanning bits because they
2244 				 * are all zero.  But we might need to
2245 				 * priority-boost blocked readers.
2246 				 */
2247 				rcu_initiate_boost(rnp, flags);
2248 				/* rcu_initiate_boost() releases rnp->lock */
2249 				continue;
2250 			}
2251 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2252 			continue;
2253 		}
2254 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2255 			rdp = per_cpu_ptr(&rcu_data, cpu);
2256 			if (f(rdp)) {
2257 				mask |= rdp->grpmask;
2258 				rcu_disable_urgency_upon_qs(rdp);
2259 			}
2260 		}
2261 		if (mask != 0) {
2262 			/* Idle/offline CPUs, report (releases rnp->lock). */
2263 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2264 		} else {
2265 			/* Nothing to do here, so just drop the lock. */
2266 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2267 		}
2268 	}
2269 }
2270 
2271 /*
2272  * Force quiescent states on reluctant CPUs, and also detect which
2273  * CPUs are in dyntick-idle mode.
2274  */
2275 void rcu_force_quiescent_state(void)
2276 {
2277 	unsigned long flags;
2278 	bool ret;
2279 	struct rcu_node *rnp;
2280 	struct rcu_node *rnp_old = NULL;
2281 
2282 	/* Funnel through hierarchy to reduce memory contention. */
2283 	rnp = raw_cpu_read(rcu_data.mynode);
2284 	for (; rnp != NULL; rnp = rnp->parent) {
2285 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2286 		       !raw_spin_trylock(&rnp->fqslock);
2287 		if (rnp_old != NULL)
2288 			raw_spin_unlock(&rnp_old->fqslock);
2289 		if (ret)
2290 			return;
2291 		rnp_old = rnp;
2292 	}
2293 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2294 
2295 	/* Reached the root of the rcu_node tree, acquire lock. */
2296 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2297 	raw_spin_unlock(&rnp_old->fqslock);
2298 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2299 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2300 		return;  /* Someone beat us to it. */
2301 	}
2302 	WRITE_ONCE(rcu_state.gp_flags,
2303 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2304 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2305 	rcu_gp_kthread_wake();
2306 }
2307 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2308 
2309 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2310 // grace periods.
2311 static void strict_work_handler(struct work_struct *work)
2312 {
2313 	rcu_read_lock();
2314 	rcu_read_unlock();
2315 }
2316 
2317 /* Perform RCU core processing work for the current CPU.  */
2318 static __latent_entropy void rcu_core(void)
2319 {
2320 	unsigned long flags;
2321 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2322 	struct rcu_node *rnp = rdp->mynode;
2323 	/*
2324 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2325 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2326 	 * on this CPU and the below condition must be considered volatile.
2327 	 * However if we race with:
2328 	 *
2329 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2330 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2331 	 *                 call rcu_nocb_lock() if that happens.
2332 	 *
2333 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2334 	 *                 processing. This is fine because the early stage
2335 	 *                 of deoffloading invokes rcu_core() after setting
2336 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2337 	 *                 what could have been dismissed without the need to wait
2338 	 *                 for the next rcu_pending() check in the next jiffy.
2339 	 */
2340 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2341 
2342 	if (cpu_is_offline(smp_processor_id()))
2343 		return;
2344 	trace_rcu_utilization(TPS("Start RCU core"));
2345 	WARN_ON_ONCE(!rdp->beenonline);
2346 
2347 	/* Report any deferred quiescent states if preemption enabled. */
2348 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2349 		rcu_preempt_deferred_qs(current);
2350 	} else if (rcu_preempt_need_deferred_qs(current)) {
2351 		set_tsk_need_resched(current);
2352 		set_preempt_need_resched();
2353 	}
2354 
2355 	/* Update RCU state based on any recent quiescent states. */
2356 	rcu_check_quiescent_state(rdp);
2357 
2358 	/* No grace period and unregistered callbacks? */
2359 	if (!rcu_gp_in_progress() &&
2360 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2361 		rcu_nocb_lock_irqsave(rdp, flags);
2362 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2363 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2364 		rcu_nocb_unlock_irqrestore(rdp, flags);
2365 	}
2366 
2367 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2368 
2369 	/* If there are callbacks ready, invoke them. */
2370 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2371 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2372 		rcu_do_batch(rdp);
2373 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2374 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2375 			invoke_rcu_core();
2376 	}
2377 
2378 	/* Do any needed deferred wakeups of rcuo kthreads. */
2379 	do_nocb_deferred_wakeup(rdp);
2380 	trace_rcu_utilization(TPS("End RCU core"));
2381 
2382 	// If strict GPs, schedule an RCU reader in a clean environment.
2383 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2384 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2385 }
2386 
2387 static void rcu_core_si(struct softirq_action *h)
2388 {
2389 	rcu_core();
2390 }
2391 
2392 static void rcu_wake_cond(struct task_struct *t, int status)
2393 {
2394 	/*
2395 	 * If the thread is yielding, only wake it when this
2396 	 * is invoked from idle
2397 	 */
2398 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2399 		wake_up_process(t);
2400 }
2401 
2402 static void invoke_rcu_core_kthread(void)
2403 {
2404 	struct task_struct *t;
2405 	unsigned long flags;
2406 
2407 	local_irq_save(flags);
2408 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2409 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2410 	if (t != NULL && t != current)
2411 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2412 	local_irq_restore(flags);
2413 }
2414 
2415 /*
2416  * Wake up this CPU's rcuc kthread to do RCU core processing.
2417  */
2418 static void invoke_rcu_core(void)
2419 {
2420 	if (!cpu_online(smp_processor_id()))
2421 		return;
2422 	if (use_softirq)
2423 		raise_softirq(RCU_SOFTIRQ);
2424 	else
2425 		invoke_rcu_core_kthread();
2426 }
2427 
2428 static void rcu_cpu_kthread_park(unsigned int cpu)
2429 {
2430 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2431 }
2432 
2433 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2434 {
2435 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2436 }
2437 
2438 /*
2439  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2440  * the RCU softirq used in configurations of RCU that do not support RCU
2441  * priority boosting.
2442  */
2443 static void rcu_cpu_kthread(unsigned int cpu)
2444 {
2445 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2446 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2447 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2448 	int spincnt;
2449 
2450 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2451 	for (spincnt = 0; spincnt < 10; spincnt++) {
2452 		WRITE_ONCE(*j, jiffies);
2453 		local_bh_disable();
2454 		*statusp = RCU_KTHREAD_RUNNING;
2455 		local_irq_disable();
2456 		work = *workp;
2457 		*workp = 0;
2458 		local_irq_enable();
2459 		if (work)
2460 			rcu_core();
2461 		local_bh_enable();
2462 		if (*workp == 0) {
2463 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2464 			*statusp = RCU_KTHREAD_WAITING;
2465 			return;
2466 		}
2467 	}
2468 	*statusp = RCU_KTHREAD_YIELDING;
2469 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2470 	schedule_timeout_idle(2);
2471 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2472 	*statusp = RCU_KTHREAD_WAITING;
2473 	WRITE_ONCE(*j, jiffies);
2474 }
2475 
2476 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2477 	.store			= &rcu_data.rcu_cpu_kthread_task,
2478 	.thread_should_run	= rcu_cpu_kthread_should_run,
2479 	.thread_fn		= rcu_cpu_kthread,
2480 	.thread_comm		= "rcuc/%u",
2481 	.setup			= rcu_cpu_kthread_setup,
2482 	.park			= rcu_cpu_kthread_park,
2483 };
2484 
2485 /*
2486  * Spawn per-CPU RCU core processing kthreads.
2487  */
2488 static int __init rcu_spawn_core_kthreads(void)
2489 {
2490 	int cpu;
2491 
2492 	for_each_possible_cpu(cpu)
2493 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2494 	if (use_softirq)
2495 		return 0;
2496 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2497 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2498 	return 0;
2499 }
2500 
2501 /*
2502  * Handle any core-RCU processing required by a call_rcu() invocation.
2503  */
2504 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2505 			    unsigned long flags)
2506 {
2507 	/*
2508 	 * If called from an extended quiescent state, invoke the RCU
2509 	 * core in order to force a re-evaluation of RCU's idleness.
2510 	 */
2511 	if (!rcu_is_watching())
2512 		invoke_rcu_core();
2513 
2514 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2515 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2516 		return;
2517 
2518 	/*
2519 	 * Force the grace period if too many callbacks or too long waiting.
2520 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2521 	 * if some other CPU has recently done so.  Also, don't bother
2522 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2523 	 * is the only one waiting for a grace period to complete.
2524 	 */
2525 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2526 		     rdp->qlen_last_fqs_check + qhimark)) {
2527 
2528 		/* Are we ignoring a completed grace period? */
2529 		note_gp_changes(rdp);
2530 
2531 		/* Start a new grace period if one not already started. */
2532 		if (!rcu_gp_in_progress()) {
2533 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2534 		} else {
2535 			/* Give the grace period a kick. */
2536 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2537 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2538 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2539 				rcu_force_quiescent_state();
2540 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2541 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2542 		}
2543 	}
2544 }
2545 
2546 /*
2547  * RCU callback function to leak a callback.
2548  */
2549 static void rcu_leak_callback(struct rcu_head *rhp)
2550 {
2551 }
2552 
2553 /*
2554  * Check and if necessary update the leaf rcu_node structure's
2555  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2556  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2557  * structure's ->lock.
2558  */
2559 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2560 {
2561 	raw_lockdep_assert_held_rcu_node(rnp);
2562 	if (qovld_calc <= 0)
2563 		return; // Early boot and wildcard value set.
2564 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2565 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2566 	else
2567 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2568 }
2569 
2570 /*
2571  * Check and if necessary update the leaf rcu_node structure's
2572  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2573  * number of queued RCU callbacks.  No locks need be held, but the
2574  * caller must have disabled interrupts.
2575  *
2576  * Note that this function ignores the possibility that there are a lot
2577  * of callbacks all of which have already seen the end of their respective
2578  * grace periods.  This omission is due to the need for no-CBs CPUs to
2579  * be holding ->nocb_lock to do this check, which is too heavy for a
2580  * common-case operation.
2581  */
2582 static void check_cb_ovld(struct rcu_data *rdp)
2583 {
2584 	struct rcu_node *const rnp = rdp->mynode;
2585 
2586 	if (qovld_calc <= 0 ||
2587 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2588 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2589 		return; // Early boot wildcard value or already set correctly.
2590 	raw_spin_lock_rcu_node(rnp);
2591 	check_cb_ovld_locked(rdp, rnp);
2592 	raw_spin_unlock_rcu_node(rnp);
2593 }
2594 
2595 static void
2596 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2597 {
2598 	static atomic_t doublefrees;
2599 	unsigned long flags;
2600 	bool lazy;
2601 	struct rcu_data *rdp;
2602 	bool was_alldone;
2603 
2604 	/* Misaligned rcu_head! */
2605 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2606 
2607 	if (debug_rcu_head_queue(head)) {
2608 		/*
2609 		 * Probable double call_rcu(), so leak the callback.
2610 		 * Use rcu:rcu_callback trace event to find the previous
2611 		 * time callback was passed to call_rcu().
2612 		 */
2613 		if (atomic_inc_return(&doublefrees) < 4) {
2614 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2615 			mem_dump_obj(head);
2616 		}
2617 		WRITE_ONCE(head->func, rcu_leak_callback);
2618 		return;
2619 	}
2620 	head->func = func;
2621 	head->next = NULL;
2622 	kasan_record_aux_stack_noalloc(head);
2623 	local_irq_save(flags);
2624 	rdp = this_cpu_ptr(&rcu_data);
2625 	lazy = lazy_in && !rcu_async_should_hurry();
2626 
2627 	/* Add the callback to our list. */
2628 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2629 		// This can trigger due to call_rcu() from offline CPU:
2630 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2631 		WARN_ON_ONCE(!rcu_is_watching());
2632 		// Very early boot, before rcu_init().  Initialize if needed
2633 		// and then drop through to queue the callback.
2634 		if (rcu_segcblist_empty(&rdp->cblist))
2635 			rcu_segcblist_init(&rdp->cblist);
2636 	}
2637 
2638 	check_cb_ovld(rdp);
2639 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2640 		return; // Enqueued onto ->nocb_bypass, so just leave.
2641 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2642 	rcu_segcblist_enqueue(&rdp->cblist, head);
2643 	if (__is_kvfree_rcu_offset((unsigned long)func))
2644 		trace_rcu_kvfree_callback(rcu_state.name, head,
2645 					 (unsigned long)func,
2646 					 rcu_segcblist_n_cbs(&rdp->cblist));
2647 	else
2648 		trace_rcu_callback(rcu_state.name, head,
2649 				   rcu_segcblist_n_cbs(&rdp->cblist));
2650 
2651 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2652 
2653 	/* Go handle any RCU core processing required. */
2654 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2655 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2656 	} else {
2657 		__call_rcu_core(rdp, head, flags);
2658 		local_irq_restore(flags);
2659 	}
2660 }
2661 
2662 #ifdef CONFIG_RCU_LAZY
2663 /**
2664  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2665  * flush all lazy callbacks (including the new one) to the main ->cblist while
2666  * doing so.
2667  *
2668  * @head: structure to be used for queueing the RCU updates.
2669  * @func: actual callback function to be invoked after the grace period
2670  *
2671  * The callback function will be invoked some time after a full grace
2672  * period elapses, in other words after all pre-existing RCU read-side
2673  * critical sections have completed.
2674  *
2675  * Use this API instead of call_rcu() if you don't want the callback to be
2676  * invoked after very long periods of time, which can happen on systems without
2677  * memory pressure and on systems which are lightly loaded or mostly idle.
2678  * This function will cause callbacks to be invoked sooner than later at the
2679  * expense of extra power. Other than that, this function is identical to, and
2680  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2681  * ordering and other functionality.
2682  */
2683 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2684 {
2685 	return __call_rcu_common(head, func, false);
2686 }
2687 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2688 #endif
2689 
2690 /**
2691  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2692  * By default the callbacks are 'lazy' and are kept hidden from the main
2693  * ->cblist to prevent starting of grace periods too soon.
2694  * If you desire grace periods to start very soon, use call_rcu_hurry().
2695  *
2696  * @head: structure to be used for queueing the RCU updates.
2697  * @func: actual callback function to be invoked after the grace period
2698  *
2699  * The callback function will be invoked some time after a full grace
2700  * period elapses, in other words after all pre-existing RCU read-side
2701  * critical sections have completed.  However, the callback function
2702  * might well execute concurrently with RCU read-side critical sections
2703  * that started after call_rcu() was invoked.
2704  *
2705  * RCU read-side critical sections are delimited by rcu_read_lock()
2706  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2707  * v5.0 and later, regions of code across which interrupts, preemption,
2708  * or softirqs have been disabled also serve as RCU read-side critical
2709  * sections.  This includes hardware interrupt handlers, softirq handlers,
2710  * and NMI handlers.
2711  *
2712  * Note that all CPUs must agree that the grace period extended beyond
2713  * all pre-existing RCU read-side critical section.  On systems with more
2714  * than one CPU, this means that when "func()" is invoked, each CPU is
2715  * guaranteed to have executed a full memory barrier since the end of its
2716  * last RCU read-side critical section whose beginning preceded the call
2717  * to call_rcu().  It also means that each CPU executing an RCU read-side
2718  * critical section that continues beyond the start of "func()" must have
2719  * executed a memory barrier after the call_rcu() but before the beginning
2720  * of that RCU read-side critical section.  Note that these guarantees
2721  * include CPUs that are offline, idle, or executing in user mode, as
2722  * well as CPUs that are executing in the kernel.
2723  *
2724  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2725  * resulting RCU callback function "func()", then both CPU A and CPU B are
2726  * guaranteed to execute a full memory barrier during the time interval
2727  * between the call to call_rcu() and the invocation of "func()" -- even
2728  * if CPU A and CPU B are the same CPU (but again only if the system has
2729  * more than one CPU).
2730  *
2731  * Implementation of these memory-ordering guarantees is described here:
2732  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2733  */
2734 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2735 {
2736 	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2737 }
2738 EXPORT_SYMBOL_GPL(call_rcu);
2739 
2740 /* Maximum number of jiffies to wait before draining a batch. */
2741 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2742 #define KFREE_N_BATCHES 2
2743 #define FREE_N_CHANNELS 2
2744 
2745 /**
2746  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2747  * @list: List node. All blocks are linked between each other
2748  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2749  * @nr_records: Number of active pointers in the array
2750  * @records: Array of the kvfree_rcu() pointers
2751  */
2752 struct kvfree_rcu_bulk_data {
2753 	struct list_head list;
2754 	unsigned long gp_snap;
2755 	unsigned long nr_records;
2756 	void *records[];
2757 };
2758 
2759 /*
2760  * This macro defines how many entries the "records" array
2761  * will contain. It is based on the fact that the size of
2762  * kvfree_rcu_bulk_data structure becomes exactly one page.
2763  */
2764 #define KVFREE_BULK_MAX_ENTR \
2765 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2766 
2767 /**
2768  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2769  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2770  * @head_free: List of kfree_rcu() objects waiting for a grace period
2771  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2772  * @krcp: Pointer to @kfree_rcu_cpu structure
2773  */
2774 
2775 struct kfree_rcu_cpu_work {
2776 	struct rcu_work rcu_work;
2777 	struct rcu_head *head_free;
2778 	struct list_head bulk_head_free[FREE_N_CHANNELS];
2779 	struct kfree_rcu_cpu *krcp;
2780 };
2781 
2782 /**
2783  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2784  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2785  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2786  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2787  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2788  * @lock: Synchronize access to this structure
2789  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2790  * @initialized: The @rcu_work fields have been initialized
2791  * @head_count: Number of objects in rcu_head singular list
2792  * @bulk_count: Number of objects in bulk-list
2793  * @bkvcache:
2794  *	A simple cache list that contains objects for reuse purpose.
2795  *	In order to save some per-cpu space the list is singular.
2796  *	Even though it is lockless an access has to be protected by the
2797  *	per-cpu lock.
2798  * @page_cache_work: A work to refill the cache when it is empty
2799  * @backoff_page_cache_fill: Delay cache refills
2800  * @work_in_progress: Indicates that page_cache_work is running
2801  * @hrtimer: A hrtimer for scheduling a page_cache_work
2802  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2803  *
2804  * This is a per-CPU structure.  The reason that it is not included in
2805  * the rcu_data structure is to permit this code to be extracted from
2806  * the RCU files.  Such extraction could allow further optimization of
2807  * the interactions with the slab allocators.
2808  */
2809 struct kfree_rcu_cpu {
2810 	// Objects queued on a linked list
2811 	// through their rcu_head structures.
2812 	struct rcu_head *head;
2813 	unsigned long head_gp_snap;
2814 	atomic_t head_count;
2815 
2816 	// Objects queued on a bulk-list.
2817 	struct list_head bulk_head[FREE_N_CHANNELS];
2818 	atomic_t bulk_count[FREE_N_CHANNELS];
2819 
2820 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2821 	raw_spinlock_t lock;
2822 	struct delayed_work monitor_work;
2823 	bool initialized;
2824 
2825 	struct delayed_work page_cache_work;
2826 	atomic_t backoff_page_cache_fill;
2827 	atomic_t work_in_progress;
2828 	struct hrtimer hrtimer;
2829 
2830 	struct llist_head bkvcache;
2831 	int nr_bkv_objs;
2832 };
2833 
2834 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2835 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2836 };
2837 
2838 static __always_inline void
2839 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2840 {
2841 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2842 	int i;
2843 
2844 	for (i = 0; i < bhead->nr_records; i++)
2845 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2846 #endif
2847 }
2848 
2849 static inline struct kfree_rcu_cpu *
2850 krc_this_cpu_lock(unsigned long *flags)
2851 {
2852 	struct kfree_rcu_cpu *krcp;
2853 
2854 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2855 	krcp = this_cpu_ptr(&krc);
2856 	raw_spin_lock(&krcp->lock);
2857 
2858 	return krcp;
2859 }
2860 
2861 static inline void
2862 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2863 {
2864 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2865 }
2866 
2867 static inline struct kvfree_rcu_bulk_data *
2868 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2869 {
2870 	if (!krcp->nr_bkv_objs)
2871 		return NULL;
2872 
2873 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2874 	return (struct kvfree_rcu_bulk_data *)
2875 		llist_del_first(&krcp->bkvcache);
2876 }
2877 
2878 static inline bool
2879 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2880 	struct kvfree_rcu_bulk_data *bnode)
2881 {
2882 	// Check the limit.
2883 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2884 		return false;
2885 
2886 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2887 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2888 	return true;
2889 }
2890 
2891 static int
2892 drain_page_cache(struct kfree_rcu_cpu *krcp)
2893 {
2894 	unsigned long flags;
2895 	struct llist_node *page_list, *pos, *n;
2896 	int freed = 0;
2897 
2898 	raw_spin_lock_irqsave(&krcp->lock, flags);
2899 	page_list = llist_del_all(&krcp->bkvcache);
2900 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
2901 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2902 
2903 	llist_for_each_safe(pos, n, page_list) {
2904 		free_page((unsigned long)pos);
2905 		freed++;
2906 	}
2907 
2908 	return freed;
2909 }
2910 
2911 static void
2912 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
2913 	struct kvfree_rcu_bulk_data *bnode, int idx)
2914 {
2915 	unsigned long flags;
2916 	int i;
2917 
2918 	debug_rcu_bhead_unqueue(bnode);
2919 
2920 	rcu_lock_acquire(&rcu_callback_map);
2921 	if (idx == 0) { // kmalloc() / kfree().
2922 		trace_rcu_invoke_kfree_bulk_callback(
2923 			rcu_state.name, bnode->nr_records,
2924 			bnode->records);
2925 
2926 		kfree_bulk(bnode->nr_records, bnode->records);
2927 	} else { // vmalloc() / vfree().
2928 		for (i = 0; i < bnode->nr_records; i++) {
2929 			trace_rcu_invoke_kvfree_callback(
2930 				rcu_state.name, bnode->records[i], 0);
2931 
2932 			vfree(bnode->records[i]);
2933 		}
2934 	}
2935 	rcu_lock_release(&rcu_callback_map);
2936 
2937 	raw_spin_lock_irqsave(&krcp->lock, flags);
2938 	if (put_cached_bnode(krcp, bnode))
2939 		bnode = NULL;
2940 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2941 
2942 	if (bnode)
2943 		free_page((unsigned long) bnode);
2944 
2945 	cond_resched_tasks_rcu_qs();
2946 }
2947 
2948 static void
2949 kvfree_rcu_list(struct rcu_head *head)
2950 {
2951 	struct rcu_head *next;
2952 
2953 	for (; head; head = next) {
2954 		void *ptr = (void *) head->func;
2955 		unsigned long offset = (void *) head - ptr;
2956 
2957 		next = head->next;
2958 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
2959 		rcu_lock_acquire(&rcu_callback_map);
2960 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
2961 
2962 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
2963 			kvfree(ptr);
2964 
2965 		rcu_lock_release(&rcu_callback_map);
2966 		cond_resched_tasks_rcu_qs();
2967 	}
2968 }
2969 
2970 /*
2971  * This function is invoked in workqueue context after a grace period.
2972  * It frees all the objects queued on ->bulk_head_free or ->head_free.
2973  */
2974 static void kfree_rcu_work(struct work_struct *work)
2975 {
2976 	unsigned long flags;
2977 	struct kvfree_rcu_bulk_data *bnode, *n;
2978 	struct list_head bulk_head[FREE_N_CHANNELS];
2979 	struct rcu_head *head;
2980 	struct kfree_rcu_cpu *krcp;
2981 	struct kfree_rcu_cpu_work *krwp;
2982 	int i;
2983 
2984 	krwp = container_of(to_rcu_work(work),
2985 		struct kfree_rcu_cpu_work, rcu_work);
2986 	krcp = krwp->krcp;
2987 
2988 	raw_spin_lock_irqsave(&krcp->lock, flags);
2989 	// Channels 1 and 2.
2990 	for (i = 0; i < FREE_N_CHANNELS; i++)
2991 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
2992 
2993 	// Channel 3.
2994 	head = krwp->head_free;
2995 	krwp->head_free = NULL;
2996 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2997 
2998 	// Handle the first two channels.
2999 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3000 		// Start from the tail page, so a GP is likely passed for it.
3001 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3002 			kvfree_rcu_bulk(krcp, bnode, i);
3003 	}
3004 
3005 	/*
3006 	 * This is used when the "bulk" path can not be used for the
3007 	 * double-argument of kvfree_rcu().  This happens when the
3008 	 * page-cache is empty, which means that objects are instead
3009 	 * queued on a linked list through their rcu_head structures.
3010 	 * This list is named "Channel 3".
3011 	 */
3012 	kvfree_rcu_list(head);
3013 }
3014 
3015 static bool
3016 need_offload_krc(struct kfree_rcu_cpu *krcp)
3017 {
3018 	int i;
3019 
3020 	for (i = 0; i < FREE_N_CHANNELS; i++)
3021 		if (!list_empty(&krcp->bulk_head[i]))
3022 			return true;
3023 
3024 	return !!READ_ONCE(krcp->head);
3025 }
3026 
3027 static int krc_count(struct kfree_rcu_cpu *krcp)
3028 {
3029 	int sum = atomic_read(&krcp->head_count);
3030 	int i;
3031 
3032 	for (i = 0; i < FREE_N_CHANNELS; i++)
3033 		sum += atomic_read(&krcp->bulk_count[i]);
3034 
3035 	return sum;
3036 }
3037 
3038 static void
3039 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3040 {
3041 	long delay, delay_left;
3042 
3043 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3044 	if (delayed_work_pending(&krcp->monitor_work)) {
3045 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3046 		if (delay < delay_left)
3047 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3048 		return;
3049 	}
3050 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3051 }
3052 
3053 static void
3054 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3055 {
3056 	struct list_head bulk_ready[FREE_N_CHANNELS];
3057 	struct kvfree_rcu_bulk_data *bnode, *n;
3058 	struct rcu_head *head_ready = NULL;
3059 	unsigned long flags;
3060 	int i;
3061 
3062 	raw_spin_lock_irqsave(&krcp->lock, flags);
3063 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3064 		INIT_LIST_HEAD(&bulk_ready[i]);
3065 
3066 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3067 			if (!poll_state_synchronize_rcu(bnode->gp_snap))
3068 				break;
3069 
3070 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3071 			list_move(&bnode->list, &bulk_ready[i]);
3072 		}
3073 	}
3074 
3075 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3076 		head_ready = krcp->head;
3077 		atomic_set(&krcp->head_count, 0);
3078 		WRITE_ONCE(krcp->head, NULL);
3079 	}
3080 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3081 
3082 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3083 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3084 			kvfree_rcu_bulk(krcp, bnode, i);
3085 	}
3086 
3087 	if (head_ready)
3088 		kvfree_rcu_list(head_ready);
3089 }
3090 
3091 /*
3092  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3093  */
3094 static void kfree_rcu_monitor(struct work_struct *work)
3095 {
3096 	struct kfree_rcu_cpu *krcp = container_of(work,
3097 		struct kfree_rcu_cpu, monitor_work.work);
3098 	unsigned long flags;
3099 	int i, j;
3100 
3101 	// Drain ready for reclaim.
3102 	kvfree_rcu_drain_ready(krcp);
3103 
3104 	raw_spin_lock_irqsave(&krcp->lock, flags);
3105 
3106 	// Attempt to start a new batch.
3107 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3108 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3109 
3110 		// Try to detach bulk_head or head and attach it over any
3111 		// available corresponding free channel. It can be that
3112 		// a previous RCU batch is in progress, it means that
3113 		// immediately to queue another one is not possible so
3114 		// in that case the monitor work is rearmed.
3115 		if ((!list_empty(&krcp->bulk_head[0]) && list_empty(&krwp->bulk_head_free[0])) ||
3116 			(!list_empty(&krcp->bulk_head[1]) && list_empty(&krwp->bulk_head_free[1])) ||
3117 				(READ_ONCE(krcp->head) && !krwp->head_free)) {
3118 
3119 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3120 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3121 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3122 				if (list_empty(&krwp->bulk_head_free[j])) {
3123 					atomic_set(&krcp->bulk_count[j], 0);
3124 					list_replace_init(&krcp->bulk_head[j],
3125 						&krwp->bulk_head_free[j]);
3126 				}
3127 			}
3128 
3129 			// Channel 3 corresponds to both SLAB and vmalloc
3130 			// objects queued on the linked list.
3131 			if (!krwp->head_free) {
3132 				krwp->head_free = krcp->head;
3133 				atomic_set(&krcp->head_count, 0);
3134 				WRITE_ONCE(krcp->head, NULL);
3135 			}
3136 
3137 			// One work is per one batch, so there are three
3138 			// "free channels", the batch can handle. It can
3139 			// be that the work is in the pending state when
3140 			// channels have been detached following by each
3141 			// other.
3142 			queue_rcu_work(system_wq, &krwp->rcu_work);
3143 		}
3144 	}
3145 
3146 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3147 
3148 	// If there is nothing to detach, it means that our job is
3149 	// successfully done here. In case of having at least one
3150 	// of the channels that is still busy we should rearm the
3151 	// work to repeat an attempt. Because previous batches are
3152 	// still in progress.
3153 	if (need_offload_krc(krcp))
3154 		schedule_delayed_monitor_work(krcp);
3155 }
3156 
3157 static enum hrtimer_restart
3158 schedule_page_work_fn(struct hrtimer *t)
3159 {
3160 	struct kfree_rcu_cpu *krcp =
3161 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3162 
3163 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3164 	return HRTIMER_NORESTART;
3165 }
3166 
3167 static void fill_page_cache_func(struct work_struct *work)
3168 {
3169 	struct kvfree_rcu_bulk_data *bnode;
3170 	struct kfree_rcu_cpu *krcp =
3171 		container_of(work, struct kfree_rcu_cpu,
3172 			page_cache_work.work);
3173 	unsigned long flags;
3174 	int nr_pages;
3175 	bool pushed;
3176 	int i;
3177 
3178 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3179 		1 : rcu_min_cached_objs;
3180 
3181 	for (i = 0; i < nr_pages; i++) {
3182 		bnode = (struct kvfree_rcu_bulk_data *)
3183 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3184 
3185 		if (!bnode)
3186 			break;
3187 
3188 		raw_spin_lock_irqsave(&krcp->lock, flags);
3189 		pushed = put_cached_bnode(krcp, bnode);
3190 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3191 
3192 		if (!pushed) {
3193 			free_page((unsigned long) bnode);
3194 			break;
3195 		}
3196 	}
3197 
3198 	atomic_set(&krcp->work_in_progress, 0);
3199 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3200 }
3201 
3202 static void
3203 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3204 {
3205 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3206 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3207 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3208 			queue_delayed_work(system_wq,
3209 				&krcp->page_cache_work,
3210 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3211 		} else {
3212 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3213 			krcp->hrtimer.function = schedule_page_work_fn;
3214 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3215 		}
3216 	}
3217 }
3218 
3219 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3220 // state specified by flags.  If can_alloc is true, the caller must
3221 // be schedulable and not be holding any locks or mutexes that might be
3222 // acquired by the memory allocator or anything that it might invoke.
3223 // Returns true if ptr was successfully recorded, else the caller must
3224 // use a fallback.
3225 static inline bool
3226 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3227 	unsigned long *flags, void *ptr, bool can_alloc)
3228 {
3229 	struct kvfree_rcu_bulk_data *bnode;
3230 	int idx;
3231 
3232 	*krcp = krc_this_cpu_lock(flags);
3233 	if (unlikely(!(*krcp)->initialized))
3234 		return false;
3235 
3236 	idx = !!is_vmalloc_addr(ptr);
3237 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3238 		struct kvfree_rcu_bulk_data, list);
3239 
3240 	/* Check if a new block is required. */
3241 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3242 		bnode = get_cached_bnode(*krcp);
3243 		if (!bnode && can_alloc) {
3244 			krc_this_cpu_unlock(*krcp, *flags);
3245 
3246 			// __GFP_NORETRY - allows a light-weight direct reclaim
3247 			// what is OK from minimizing of fallback hitting point of
3248 			// view. Apart of that it forbids any OOM invoking what is
3249 			// also beneficial since we are about to release memory soon.
3250 			//
3251 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3252 			// memory reserves. Please note we have a fallback path.
3253 			//
3254 			// __GFP_NOWARN - it is supposed that an allocation can
3255 			// be failed under low memory or high memory pressure
3256 			// scenarios.
3257 			bnode = (struct kvfree_rcu_bulk_data *)
3258 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3259 			*krcp = krc_this_cpu_lock(flags);
3260 		}
3261 
3262 		if (!bnode)
3263 			return false;
3264 
3265 		// Initialize the new block and attach it.
3266 		bnode->nr_records = 0;
3267 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3268 	}
3269 
3270 	// Finally insert and update the GP for this page.
3271 	bnode->records[bnode->nr_records++] = ptr;
3272 	bnode->gp_snap = get_state_synchronize_rcu();
3273 	atomic_inc(&(*krcp)->bulk_count[idx]);
3274 
3275 	return true;
3276 }
3277 
3278 /*
3279  * Queue a request for lazy invocation of the appropriate free routine
3280  * after a grace period.  Please note that three paths are maintained,
3281  * two for the common case using arrays of pointers and a third one that
3282  * is used only when the main paths cannot be used, for example, due to
3283  * memory pressure.
3284  *
3285  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3286  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3287  * be free'd in workqueue context. This allows us to: batch requests together to
3288  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3289  */
3290 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3291 {
3292 	unsigned long flags;
3293 	struct kfree_rcu_cpu *krcp;
3294 	bool success;
3295 
3296 	/*
3297 	 * Please note there is a limitation for the head-less
3298 	 * variant, that is why there is a clear rule for such
3299 	 * objects: it can be used from might_sleep() context
3300 	 * only. For other places please embed an rcu_head to
3301 	 * your data.
3302 	 */
3303 	if (!head)
3304 		might_sleep();
3305 
3306 	// Queue the object but don't yet schedule the batch.
3307 	if (debug_rcu_head_queue(ptr)) {
3308 		// Probable double kfree_rcu(), just leak.
3309 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3310 			  __func__, head);
3311 
3312 		// Mark as success and leave.
3313 		return;
3314 	}
3315 
3316 	kasan_record_aux_stack_noalloc(ptr);
3317 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3318 	if (!success) {
3319 		run_page_cache_worker(krcp);
3320 
3321 		if (head == NULL)
3322 			// Inline if kvfree_rcu(one_arg) call.
3323 			goto unlock_return;
3324 
3325 		head->func = ptr;
3326 		head->next = krcp->head;
3327 		WRITE_ONCE(krcp->head, head);
3328 		atomic_inc(&krcp->head_count);
3329 
3330 		// Take a snapshot for this krcp.
3331 		krcp->head_gp_snap = get_state_synchronize_rcu();
3332 		success = true;
3333 	}
3334 
3335 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3336 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3337 		schedule_delayed_monitor_work(krcp);
3338 
3339 unlock_return:
3340 	krc_this_cpu_unlock(krcp, flags);
3341 
3342 	/*
3343 	 * Inline kvfree() after synchronize_rcu(). We can do
3344 	 * it from might_sleep() context only, so the current
3345 	 * CPU can pass the QS state.
3346 	 */
3347 	if (!success) {
3348 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3349 		synchronize_rcu();
3350 		kvfree(ptr);
3351 	}
3352 }
3353 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3354 
3355 static unsigned long
3356 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3357 {
3358 	int cpu;
3359 	unsigned long count = 0;
3360 
3361 	/* Snapshot count of all CPUs */
3362 	for_each_possible_cpu(cpu) {
3363 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3364 
3365 		count += krc_count(krcp);
3366 		count += READ_ONCE(krcp->nr_bkv_objs);
3367 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3368 	}
3369 
3370 	return count == 0 ? SHRINK_EMPTY : count;
3371 }
3372 
3373 static unsigned long
3374 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3375 {
3376 	int cpu, freed = 0;
3377 
3378 	for_each_possible_cpu(cpu) {
3379 		int count;
3380 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3381 
3382 		count = krc_count(krcp);
3383 		count += drain_page_cache(krcp);
3384 		kfree_rcu_monitor(&krcp->monitor_work.work);
3385 
3386 		sc->nr_to_scan -= count;
3387 		freed += count;
3388 
3389 		if (sc->nr_to_scan <= 0)
3390 			break;
3391 	}
3392 
3393 	return freed == 0 ? SHRINK_STOP : freed;
3394 }
3395 
3396 static struct shrinker kfree_rcu_shrinker = {
3397 	.count_objects = kfree_rcu_shrink_count,
3398 	.scan_objects = kfree_rcu_shrink_scan,
3399 	.batch = 0,
3400 	.seeks = DEFAULT_SEEKS,
3401 };
3402 
3403 void __init kfree_rcu_scheduler_running(void)
3404 {
3405 	int cpu;
3406 
3407 	for_each_possible_cpu(cpu) {
3408 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3409 
3410 		if (need_offload_krc(krcp))
3411 			schedule_delayed_monitor_work(krcp);
3412 	}
3413 }
3414 
3415 /*
3416  * During early boot, any blocking grace-period wait automatically
3417  * implies a grace period.
3418  *
3419  * Later on, this could in theory be the case for kernels built with
3420  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3421  * is not a common case.  Furthermore, this optimization would cause
3422  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3423  * grace-period optimization is ignored once the scheduler is running.
3424  */
3425 static int rcu_blocking_is_gp(void)
3426 {
3427 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3428 		might_sleep();
3429 		return false;
3430 	}
3431 	return true;
3432 }
3433 
3434 /**
3435  * synchronize_rcu - wait until a grace period has elapsed.
3436  *
3437  * Control will return to the caller some time after a full grace
3438  * period has elapsed, in other words after all currently executing RCU
3439  * read-side critical sections have completed.  Note, however, that
3440  * upon return from synchronize_rcu(), the caller might well be executing
3441  * concurrently with new RCU read-side critical sections that began while
3442  * synchronize_rcu() was waiting.
3443  *
3444  * RCU read-side critical sections are delimited by rcu_read_lock()
3445  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3446  * v5.0 and later, regions of code across which interrupts, preemption,
3447  * or softirqs have been disabled also serve as RCU read-side critical
3448  * sections.  This includes hardware interrupt handlers, softirq handlers,
3449  * and NMI handlers.
3450  *
3451  * Note that this guarantee implies further memory-ordering guarantees.
3452  * On systems with more than one CPU, when synchronize_rcu() returns,
3453  * each CPU is guaranteed to have executed a full memory barrier since
3454  * the end of its last RCU read-side critical section whose beginning
3455  * preceded the call to synchronize_rcu().  In addition, each CPU having
3456  * an RCU read-side critical section that extends beyond the return from
3457  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3458  * after the beginning of synchronize_rcu() and before the beginning of
3459  * that RCU read-side critical section.  Note that these guarantees include
3460  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3461  * that are executing in the kernel.
3462  *
3463  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3464  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3465  * to have executed a full memory barrier during the execution of
3466  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3467  * again only if the system has more than one CPU).
3468  *
3469  * Implementation of these memory-ordering guarantees is described here:
3470  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3471  */
3472 void synchronize_rcu(void)
3473 {
3474 	unsigned long flags;
3475 	struct rcu_node *rnp;
3476 
3477 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3478 			 lock_is_held(&rcu_lock_map) ||
3479 			 lock_is_held(&rcu_sched_lock_map),
3480 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3481 	if (!rcu_blocking_is_gp()) {
3482 		if (rcu_gp_is_expedited())
3483 			synchronize_rcu_expedited();
3484 		else
3485 			wait_rcu_gp(call_rcu_hurry);
3486 		return;
3487 	}
3488 
3489 	// Context allows vacuous grace periods.
3490 	// Note well that this code runs with !PREEMPT && !SMP.
3491 	// In addition, all code that advances grace periods runs at
3492 	// process level.  Therefore, this normal GP overlaps with other
3493 	// normal GPs only by being fully nested within them, which allows
3494 	// reuse of ->gp_seq_polled_snap.
3495 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3496 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3497 
3498 	// Update the normal grace-period counters to record
3499 	// this grace period, but only those used by the boot CPU.
3500 	// The rcu_scheduler_starting() will take care of the rest of
3501 	// these counters.
3502 	local_irq_save(flags);
3503 	WARN_ON_ONCE(num_online_cpus() > 1);
3504 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3505 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3506 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3507 	local_irq_restore(flags);
3508 }
3509 EXPORT_SYMBOL_GPL(synchronize_rcu);
3510 
3511 /**
3512  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3513  * @rgosp: Place to put state cookie
3514  *
3515  * Stores into @rgosp a value that will always be treated by functions
3516  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3517  * has already completed.
3518  */
3519 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3520 {
3521 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3522 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3523 }
3524 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3525 
3526 /**
3527  * get_state_synchronize_rcu - Snapshot current RCU state
3528  *
3529  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3530  * or poll_state_synchronize_rcu() to determine whether or not a full
3531  * grace period has elapsed in the meantime.
3532  */
3533 unsigned long get_state_synchronize_rcu(void)
3534 {
3535 	/*
3536 	 * Any prior manipulation of RCU-protected data must happen
3537 	 * before the load from ->gp_seq.
3538 	 */
3539 	smp_mb();  /* ^^^ */
3540 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3541 }
3542 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3543 
3544 /**
3545  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3546  * @rgosp: location to place combined normal/expedited grace-period state
3547  *
3548  * Places the normal and expedited grace-period states in @rgosp.  This
3549  * state value can be passed to a later call to cond_synchronize_rcu_full()
3550  * or poll_state_synchronize_rcu_full() to determine whether or not a
3551  * grace period (whether normal or expedited) has elapsed in the meantime.
3552  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3553  * long, but is guaranteed to see all grace periods.  In contrast, the
3554  * combined state occupies less memory, but can sometimes fail to take
3555  * grace periods into account.
3556  *
3557  * This does not guarantee that the needed grace period will actually
3558  * start.
3559  */
3560 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3561 {
3562 	struct rcu_node *rnp = rcu_get_root();
3563 
3564 	/*
3565 	 * Any prior manipulation of RCU-protected data must happen
3566 	 * before the loads from ->gp_seq and ->expedited_sequence.
3567 	 */
3568 	smp_mb();  /* ^^^ */
3569 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3570 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3571 }
3572 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3573 
3574 /*
3575  * Helper function for start_poll_synchronize_rcu() and
3576  * start_poll_synchronize_rcu_full().
3577  */
3578 static void start_poll_synchronize_rcu_common(void)
3579 {
3580 	unsigned long flags;
3581 	bool needwake;
3582 	struct rcu_data *rdp;
3583 	struct rcu_node *rnp;
3584 
3585 	lockdep_assert_irqs_enabled();
3586 	local_irq_save(flags);
3587 	rdp = this_cpu_ptr(&rcu_data);
3588 	rnp = rdp->mynode;
3589 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3590 	// Note it is possible for a grace period to have elapsed between
3591 	// the above call to get_state_synchronize_rcu() and the below call
3592 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3593 	// get a grace period that no one needed.  These accesses are ordered
3594 	// by smp_mb(), and we are accessing them in the opposite order
3595 	// from which they are updated at grace-period start, as required.
3596 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3597 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3598 	if (needwake)
3599 		rcu_gp_kthread_wake();
3600 }
3601 
3602 /**
3603  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3604  *
3605  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3606  * or poll_state_synchronize_rcu() to determine whether or not a full
3607  * grace period has elapsed in the meantime.  If the needed grace period
3608  * is not already slated to start, notifies RCU core of the need for that
3609  * grace period.
3610  *
3611  * Interrupts must be enabled for the case where it is necessary to awaken
3612  * the grace-period kthread.
3613  */
3614 unsigned long start_poll_synchronize_rcu(void)
3615 {
3616 	unsigned long gp_seq = get_state_synchronize_rcu();
3617 
3618 	start_poll_synchronize_rcu_common();
3619 	return gp_seq;
3620 }
3621 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3622 
3623 /**
3624  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3625  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3626  *
3627  * Places the normal and expedited grace-period states in *@rgos.  This
3628  * state value can be passed to a later call to cond_synchronize_rcu_full()
3629  * or poll_state_synchronize_rcu_full() to determine whether or not a
3630  * grace period (whether normal or expedited) has elapsed in the meantime.
3631  * If the needed grace period is not already slated to start, notifies
3632  * RCU core of the need for that grace period.
3633  *
3634  * Interrupts must be enabled for the case where it is necessary to awaken
3635  * the grace-period kthread.
3636  */
3637 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3638 {
3639 	get_state_synchronize_rcu_full(rgosp);
3640 
3641 	start_poll_synchronize_rcu_common();
3642 }
3643 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3644 
3645 /**
3646  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3647  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3648  *
3649  * If a full RCU grace period has elapsed since the earlier call from
3650  * which @oldstate was obtained, return @true, otherwise return @false.
3651  * If @false is returned, it is the caller's responsibility to invoke this
3652  * function later on until it does return @true.  Alternatively, the caller
3653  * can explicitly wait for a grace period, for example, by passing @oldstate
3654  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3655  * on the one hand or by directly invoking either synchronize_rcu() or
3656  * synchronize_rcu_expedited() on the other.
3657  *
3658  * Yes, this function does not take counter wrap into account.
3659  * But counter wrap is harmless.  If the counter wraps, we have waited for
3660  * more than a billion grace periods (and way more on a 64-bit system!).
3661  * Those needing to keep old state values for very long time periods
3662  * (many hours even on 32-bit systems) should check them occasionally and
3663  * either refresh them or set a flag indicating that the grace period has
3664  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3665  * to get a guaranteed-completed grace-period state.
3666  *
3667  * In addition, because oldstate compresses the grace-period state for
3668  * both normal and expedited grace periods into a single unsigned long,
3669  * it can miss a grace period when synchronize_rcu() runs concurrently
3670  * with synchronize_rcu_expedited().  If this is unacceptable, please
3671  * instead use the _full() variant of these polling APIs.
3672  *
3673  * This function provides the same memory-ordering guarantees that
3674  * would be provided by a synchronize_rcu() that was invoked at the call
3675  * to the function that provided @oldstate, and that returned at the end
3676  * of this function.
3677  */
3678 bool poll_state_synchronize_rcu(unsigned long oldstate)
3679 {
3680 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3681 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3682 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3683 		return true;
3684 	}
3685 	return false;
3686 }
3687 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3688 
3689 /**
3690  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3691  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3692  *
3693  * If a full RCU grace period has elapsed since the earlier call from
3694  * which *rgosp was obtained, return @true, otherwise return @false.
3695  * If @false is returned, it is the caller's responsibility to invoke this
3696  * function later on until it does return @true.  Alternatively, the caller
3697  * can explicitly wait for a grace period, for example, by passing @rgosp
3698  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3699  *
3700  * Yes, this function does not take counter wrap into account.
3701  * But counter wrap is harmless.  If the counter wraps, we have waited
3702  * for more than a billion grace periods (and way more on a 64-bit
3703  * system!).  Those needing to keep rcu_gp_oldstate values for very
3704  * long time periods (many hours even on 32-bit systems) should check
3705  * them occasionally and either refresh them or set a flag indicating
3706  * that the grace period has completed.  Alternatively, they can use
3707  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3708  * grace-period state.
3709  *
3710  * This function provides the same memory-ordering guarantees that would
3711  * be provided by a synchronize_rcu() that was invoked at the call to
3712  * the function that provided @rgosp, and that returned at the end of this
3713  * function.  And this guarantee requires that the root rcu_node structure's
3714  * ->gp_seq field be checked instead of that of the rcu_state structure.
3715  * The problem is that the just-ending grace-period's callbacks can be
3716  * invoked between the time that the root rcu_node structure's ->gp_seq
3717  * field is updated and the time that the rcu_state structure's ->gp_seq
3718  * field is updated.  Therefore, if a single synchronize_rcu() is to
3719  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3720  * then the root rcu_node structure is the one that needs to be polled.
3721  */
3722 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3723 {
3724 	struct rcu_node *rnp = rcu_get_root();
3725 
3726 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3727 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3728 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3729 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3730 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3731 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3732 		return true;
3733 	}
3734 	return false;
3735 }
3736 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3737 
3738 /**
3739  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3740  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3741  *
3742  * If a full RCU grace period has elapsed since the earlier call to
3743  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3744  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3745  *
3746  * Yes, this function does not take counter wrap into account.
3747  * But counter wrap is harmless.  If the counter wraps, we have waited for
3748  * more than 2 billion grace periods (and way more on a 64-bit system!),
3749  * so waiting for a couple of additional grace periods should be just fine.
3750  *
3751  * This function provides the same memory-ordering guarantees that
3752  * would be provided by a synchronize_rcu() that was invoked at the call
3753  * to the function that provided @oldstate and that returned at the end
3754  * of this function.
3755  */
3756 void cond_synchronize_rcu(unsigned long oldstate)
3757 {
3758 	if (!poll_state_synchronize_rcu(oldstate))
3759 		synchronize_rcu();
3760 }
3761 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3762 
3763 /**
3764  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3765  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3766  *
3767  * If a full RCU grace period has elapsed since the call to
3768  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3769  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3770  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3771  * for a full grace period.
3772  *
3773  * Yes, this function does not take counter wrap into account.
3774  * But counter wrap is harmless.  If the counter wraps, we have waited for
3775  * more than 2 billion grace periods (and way more on a 64-bit system!),
3776  * so waiting for a couple of additional grace periods should be just fine.
3777  *
3778  * This function provides the same memory-ordering guarantees that
3779  * would be provided by a synchronize_rcu() that was invoked at the call
3780  * to the function that provided @rgosp and that returned at the end of
3781  * this function.
3782  */
3783 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3784 {
3785 	if (!poll_state_synchronize_rcu_full(rgosp))
3786 		synchronize_rcu();
3787 }
3788 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3789 
3790 /*
3791  * Check to see if there is any immediate RCU-related work to be done by
3792  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3793  * in order of increasing expense: checks that can be carried out against
3794  * CPU-local state are performed first.  However, we must check for CPU
3795  * stalls first, else we might not get a chance.
3796  */
3797 static int rcu_pending(int user)
3798 {
3799 	bool gp_in_progress;
3800 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3801 	struct rcu_node *rnp = rdp->mynode;
3802 
3803 	lockdep_assert_irqs_disabled();
3804 
3805 	/* Check for CPU stalls, if enabled. */
3806 	check_cpu_stall(rdp);
3807 
3808 	/* Does this CPU need a deferred NOCB wakeup? */
3809 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3810 		return 1;
3811 
3812 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3813 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3814 		return 0;
3815 
3816 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3817 	gp_in_progress = rcu_gp_in_progress();
3818 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3819 		return 1;
3820 
3821 	/* Does this CPU have callbacks ready to invoke? */
3822 	if (!rcu_rdp_is_offloaded(rdp) &&
3823 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3824 		return 1;
3825 
3826 	/* Has RCU gone idle with this CPU needing another grace period? */
3827 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3828 	    !rcu_rdp_is_offloaded(rdp) &&
3829 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3830 		return 1;
3831 
3832 	/* Have RCU grace period completed or started?  */
3833 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3834 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3835 		return 1;
3836 
3837 	/* nothing to do */
3838 	return 0;
3839 }
3840 
3841 /*
3842  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3843  * the compiler is expected to optimize this away.
3844  */
3845 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3846 {
3847 	trace_rcu_barrier(rcu_state.name, s, cpu,
3848 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3849 }
3850 
3851 /*
3852  * RCU callback function for rcu_barrier().  If we are last, wake
3853  * up the task executing rcu_barrier().
3854  *
3855  * Note that the value of rcu_state.barrier_sequence must be captured
3856  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3857  * other CPUs might count the value down to zero before this CPU gets
3858  * around to invoking rcu_barrier_trace(), which might result in bogus
3859  * data from the next instance of rcu_barrier().
3860  */
3861 static void rcu_barrier_callback(struct rcu_head *rhp)
3862 {
3863 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3864 
3865 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3866 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3867 		complete(&rcu_state.barrier_completion);
3868 	} else {
3869 		rcu_barrier_trace(TPS("CB"), -1, s);
3870 	}
3871 }
3872 
3873 /*
3874  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3875  */
3876 static void rcu_barrier_entrain(struct rcu_data *rdp)
3877 {
3878 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3879 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3880 	bool wake_nocb = false;
3881 	bool was_alldone = false;
3882 
3883 	lockdep_assert_held(&rcu_state.barrier_lock);
3884 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3885 		return;
3886 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3887 	rdp->barrier_head.func = rcu_barrier_callback;
3888 	debug_rcu_head_queue(&rdp->barrier_head);
3889 	rcu_nocb_lock(rdp);
3890 	/*
3891 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3892 	 * queue. This way we don't wait for bypass timer that can reach seconds
3893 	 * if it's fully lazy.
3894 	 */
3895 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3896 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3897 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3898 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3899 		atomic_inc(&rcu_state.barrier_cpu_count);
3900 	} else {
3901 		debug_rcu_head_unqueue(&rdp->barrier_head);
3902 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3903 	}
3904 	rcu_nocb_unlock(rdp);
3905 	if (wake_nocb)
3906 		wake_nocb_gp(rdp, false);
3907 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3908 }
3909 
3910 /*
3911  * Called with preemption disabled, and from cross-cpu IRQ context.
3912  */
3913 static void rcu_barrier_handler(void *cpu_in)
3914 {
3915 	uintptr_t cpu = (uintptr_t)cpu_in;
3916 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3917 
3918 	lockdep_assert_irqs_disabled();
3919 	WARN_ON_ONCE(cpu != rdp->cpu);
3920 	WARN_ON_ONCE(cpu != smp_processor_id());
3921 	raw_spin_lock(&rcu_state.barrier_lock);
3922 	rcu_barrier_entrain(rdp);
3923 	raw_spin_unlock(&rcu_state.barrier_lock);
3924 }
3925 
3926 /**
3927  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3928  *
3929  * Note that this primitive does not necessarily wait for an RCU grace period
3930  * to complete.  For example, if there are no RCU callbacks queued anywhere
3931  * in the system, then rcu_barrier() is within its rights to return
3932  * immediately, without waiting for anything, much less an RCU grace period.
3933  */
3934 void rcu_barrier(void)
3935 {
3936 	uintptr_t cpu;
3937 	unsigned long flags;
3938 	unsigned long gseq;
3939 	struct rcu_data *rdp;
3940 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3941 
3942 	rcu_barrier_trace(TPS("Begin"), -1, s);
3943 
3944 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3945 	mutex_lock(&rcu_state.barrier_mutex);
3946 
3947 	/* Did someone else do our work for us? */
3948 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3949 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
3950 		smp_mb(); /* caller's subsequent code after above check. */
3951 		mutex_unlock(&rcu_state.barrier_mutex);
3952 		return;
3953 	}
3954 
3955 	/* Mark the start of the barrier operation. */
3956 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3957 	rcu_seq_start(&rcu_state.barrier_sequence);
3958 	gseq = rcu_state.barrier_sequence;
3959 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3960 
3961 	/*
3962 	 * Initialize the count to two rather than to zero in order
3963 	 * to avoid a too-soon return to zero in case of an immediate
3964 	 * invocation of the just-enqueued callback (or preemption of
3965 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3966 	 * offline non-offloaded CPU has callbacks queued.
3967 	 */
3968 	init_completion(&rcu_state.barrier_completion);
3969 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3970 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3971 
3972 	/*
3973 	 * Force each CPU with callbacks to register a new callback.
3974 	 * When that callback is invoked, we will know that all of the
3975 	 * corresponding CPU's preceding callbacks have been invoked.
3976 	 */
3977 	for_each_possible_cpu(cpu) {
3978 		rdp = per_cpu_ptr(&rcu_data, cpu);
3979 retry:
3980 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
3981 			continue;
3982 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3983 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
3984 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3985 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3986 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
3987 			continue;
3988 		}
3989 		if (!rcu_rdp_cpu_online(rdp)) {
3990 			rcu_barrier_entrain(rdp);
3991 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3992 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3993 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
3994 			continue;
3995 		}
3996 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3997 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
3998 			schedule_timeout_uninterruptible(1);
3999 			goto retry;
4000 		}
4001 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4002 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4003 	}
4004 
4005 	/*
4006 	 * Now that we have an rcu_barrier_callback() callback on each
4007 	 * CPU, and thus each counted, remove the initial count.
4008 	 */
4009 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4010 		complete(&rcu_state.barrier_completion);
4011 
4012 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4013 	wait_for_completion(&rcu_state.barrier_completion);
4014 
4015 	/* Mark the end of the barrier operation. */
4016 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4017 	rcu_seq_end(&rcu_state.barrier_sequence);
4018 	gseq = rcu_state.barrier_sequence;
4019 	for_each_possible_cpu(cpu) {
4020 		rdp = per_cpu_ptr(&rcu_data, cpu);
4021 
4022 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4023 	}
4024 
4025 	/* Other rcu_barrier() invocations can now safely proceed. */
4026 	mutex_unlock(&rcu_state.barrier_mutex);
4027 }
4028 EXPORT_SYMBOL_GPL(rcu_barrier);
4029 
4030 /*
4031  * Compute the mask of online CPUs for the specified rcu_node structure.
4032  * This will not be stable unless the rcu_node structure's ->lock is
4033  * held, but the bit corresponding to the current CPU will be stable
4034  * in most contexts.
4035  */
4036 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4037 {
4038 	return READ_ONCE(rnp->qsmaskinitnext);
4039 }
4040 
4041 /*
4042  * Is the CPU corresponding to the specified rcu_data structure online
4043  * from RCU's perspective?  This perspective is given by that structure's
4044  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4045  */
4046 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4047 {
4048 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4049 }
4050 
4051 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4052 
4053 /*
4054  * Is the current CPU online as far as RCU is concerned?
4055  *
4056  * Disable preemption to avoid false positives that could otherwise
4057  * happen due to the current CPU number being sampled, this task being
4058  * preempted, its old CPU being taken offline, resuming on some other CPU,
4059  * then determining that its old CPU is now offline.
4060  *
4061  * Disable checking if in an NMI handler because we cannot safely
4062  * report errors from NMI handlers anyway.  In addition, it is OK to use
4063  * RCU on an offline processor during initial boot, hence the check for
4064  * rcu_scheduler_fully_active.
4065  */
4066 bool rcu_lockdep_current_cpu_online(void)
4067 {
4068 	struct rcu_data *rdp;
4069 	bool ret = false;
4070 
4071 	if (in_nmi() || !rcu_scheduler_fully_active)
4072 		return true;
4073 	preempt_disable_notrace();
4074 	rdp = this_cpu_ptr(&rcu_data);
4075 	/*
4076 	 * Strictly, we care here about the case where the current CPU is
4077 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4078 	 * not being up to date. So arch_spin_is_locked() might have a
4079 	 * false positive if it's held by some *other* CPU, but that's
4080 	 * OK because that just means a false *negative* on the warning.
4081 	 */
4082 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4083 		ret = true;
4084 	preempt_enable_notrace();
4085 	return ret;
4086 }
4087 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4088 
4089 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4090 
4091 // Has rcu_init() been invoked?  This is used (for example) to determine
4092 // whether spinlocks may be acquired safely.
4093 static bool rcu_init_invoked(void)
4094 {
4095 	return !!rcu_state.n_online_cpus;
4096 }
4097 
4098 /*
4099  * Near the end of the offline process.  Trace the fact that this CPU
4100  * is going offline.
4101  */
4102 int rcutree_dying_cpu(unsigned int cpu)
4103 {
4104 	bool blkd;
4105 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4106 	struct rcu_node *rnp = rdp->mynode;
4107 
4108 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4109 		return 0;
4110 
4111 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4112 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4113 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4114 	return 0;
4115 }
4116 
4117 /*
4118  * All CPUs for the specified rcu_node structure have gone offline,
4119  * and all tasks that were preempted within an RCU read-side critical
4120  * section while running on one of those CPUs have since exited their RCU
4121  * read-side critical section.  Some other CPU is reporting this fact with
4122  * the specified rcu_node structure's ->lock held and interrupts disabled.
4123  * This function therefore goes up the tree of rcu_node structures,
4124  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4125  * the leaf rcu_node structure's ->qsmaskinit field has already been
4126  * updated.
4127  *
4128  * This function does check that the specified rcu_node structure has
4129  * all CPUs offline and no blocked tasks, so it is OK to invoke it
4130  * prematurely.  That said, invoking it after the fact will cost you
4131  * a needless lock acquisition.  So once it has done its work, don't
4132  * invoke it again.
4133  */
4134 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4135 {
4136 	long mask;
4137 	struct rcu_node *rnp = rnp_leaf;
4138 
4139 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4140 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4141 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4142 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4143 		return;
4144 	for (;;) {
4145 		mask = rnp->grpmask;
4146 		rnp = rnp->parent;
4147 		if (!rnp)
4148 			break;
4149 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4150 		rnp->qsmaskinit &= ~mask;
4151 		/* Between grace periods, so better already be zero! */
4152 		WARN_ON_ONCE(rnp->qsmask);
4153 		if (rnp->qsmaskinit) {
4154 			raw_spin_unlock_rcu_node(rnp);
4155 			/* irqs remain disabled. */
4156 			return;
4157 		}
4158 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4159 	}
4160 }
4161 
4162 /*
4163  * The CPU has been completely removed, and some other CPU is reporting
4164  * this fact from process context.  Do the remainder of the cleanup.
4165  * There can only be one CPU hotplug operation at a time, so no need for
4166  * explicit locking.
4167  */
4168 int rcutree_dead_cpu(unsigned int cpu)
4169 {
4170 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4171 		return 0;
4172 
4173 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4174 	// Stop-machine done, so allow nohz_full to disable tick.
4175 	tick_dep_clear(TICK_DEP_BIT_RCU);
4176 	return 0;
4177 }
4178 
4179 /*
4180  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4181  * first CPU in a given leaf rcu_node structure coming online.  The caller
4182  * must hold the corresponding leaf rcu_node ->lock with interrupts
4183  * disabled.
4184  */
4185 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4186 {
4187 	long mask;
4188 	long oldmask;
4189 	struct rcu_node *rnp = rnp_leaf;
4190 
4191 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4192 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4193 	for (;;) {
4194 		mask = rnp->grpmask;
4195 		rnp = rnp->parent;
4196 		if (rnp == NULL)
4197 			return;
4198 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4199 		oldmask = rnp->qsmaskinit;
4200 		rnp->qsmaskinit |= mask;
4201 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4202 		if (oldmask)
4203 			return;
4204 	}
4205 }
4206 
4207 /*
4208  * Do boot-time initialization of a CPU's per-CPU RCU data.
4209  */
4210 static void __init
4211 rcu_boot_init_percpu_data(int cpu)
4212 {
4213 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4214 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4215 
4216 	/* Set up local state, ensuring consistent view of global state. */
4217 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4218 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4219 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4220 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4221 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4222 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4223 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4224 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4225 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4226 	rdp->last_sched_clock = jiffies;
4227 	rdp->cpu = cpu;
4228 	rcu_boot_init_nocb_percpu_data(rdp);
4229 }
4230 
4231 /*
4232  * Invoked early in the CPU-online process, when pretty much all services
4233  * are available.  The incoming CPU is not present.
4234  *
4235  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4236  * offline event can be happening at a given time.  Note also that we can
4237  * accept some slop in the rsp->gp_seq access due to the fact that this
4238  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4239  * And any offloaded callbacks are being numbered elsewhere.
4240  */
4241 int rcutree_prepare_cpu(unsigned int cpu)
4242 {
4243 	unsigned long flags;
4244 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4245 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4246 	struct rcu_node *rnp = rcu_get_root();
4247 
4248 	/* Set up local state, ensuring consistent view of global state. */
4249 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4250 	rdp->qlen_last_fqs_check = 0;
4251 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4252 	rdp->blimit = blimit;
4253 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4254 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4255 
4256 	/*
4257 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4258 	 * (re-)initialized.
4259 	 */
4260 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4261 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4262 
4263 	/*
4264 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4265 	 * propagation up the rcu_node tree will happen at the beginning
4266 	 * of the next grace period.
4267 	 */
4268 	rnp = rdp->mynode;
4269 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4270 	rdp->beenonline = true;	 /* We have now been online. */
4271 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4272 	rdp->gp_seq_needed = rdp->gp_seq;
4273 	rdp->cpu_no_qs.b.norm = true;
4274 	rdp->core_needs_qs = false;
4275 	rdp->rcu_iw_pending = false;
4276 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4277 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4278 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4279 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4280 	rcu_spawn_one_boost_kthread(rnp);
4281 	rcu_spawn_cpu_nocb_kthread(cpu);
4282 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4283 
4284 	return 0;
4285 }
4286 
4287 /*
4288  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4289  */
4290 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4291 {
4292 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4293 
4294 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4295 }
4296 
4297 /*
4298  * Near the end of the CPU-online process.  Pretty much all services
4299  * enabled, and the CPU is now very much alive.
4300  */
4301 int rcutree_online_cpu(unsigned int cpu)
4302 {
4303 	unsigned long flags;
4304 	struct rcu_data *rdp;
4305 	struct rcu_node *rnp;
4306 
4307 	rdp = per_cpu_ptr(&rcu_data, cpu);
4308 	rnp = rdp->mynode;
4309 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4310 	rnp->ffmask |= rdp->grpmask;
4311 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4312 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4313 		return 0; /* Too early in boot for scheduler work. */
4314 	sync_sched_exp_online_cleanup(cpu);
4315 	rcutree_affinity_setting(cpu, -1);
4316 
4317 	// Stop-machine done, so allow nohz_full to disable tick.
4318 	tick_dep_clear(TICK_DEP_BIT_RCU);
4319 	return 0;
4320 }
4321 
4322 /*
4323  * Near the beginning of the process.  The CPU is still very much alive
4324  * with pretty much all services enabled.
4325  */
4326 int rcutree_offline_cpu(unsigned int cpu)
4327 {
4328 	unsigned long flags;
4329 	struct rcu_data *rdp;
4330 	struct rcu_node *rnp;
4331 
4332 	rdp = per_cpu_ptr(&rcu_data, cpu);
4333 	rnp = rdp->mynode;
4334 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4335 	rnp->ffmask &= ~rdp->grpmask;
4336 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4337 
4338 	rcutree_affinity_setting(cpu, cpu);
4339 
4340 	// nohz_full CPUs need the tick for stop-machine to work quickly
4341 	tick_dep_set(TICK_DEP_BIT_RCU);
4342 	return 0;
4343 }
4344 
4345 /*
4346  * Mark the specified CPU as being online so that subsequent grace periods
4347  * (both expedited and normal) will wait on it.  Note that this means that
4348  * incoming CPUs are not allowed to use RCU read-side critical sections
4349  * until this function is called.  Failing to observe this restriction
4350  * will result in lockdep splats.
4351  *
4352  * Note that this function is special in that it is invoked directly
4353  * from the incoming CPU rather than from the cpuhp_step mechanism.
4354  * This is because this function must be invoked at a precise location.
4355  */
4356 void rcu_cpu_starting(unsigned int cpu)
4357 {
4358 	unsigned long flags;
4359 	unsigned long mask;
4360 	struct rcu_data *rdp;
4361 	struct rcu_node *rnp;
4362 	bool newcpu;
4363 
4364 	rdp = per_cpu_ptr(&rcu_data, cpu);
4365 	if (rdp->cpu_started)
4366 		return;
4367 	rdp->cpu_started = true;
4368 
4369 	rnp = rdp->mynode;
4370 	mask = rdp->grpmask;
4371 	local_irq_save(flags);
4372 	arch_spin_lock(&rcu_state.ofl_lock);
4373 	rcu_dynticks_eqs_online();
4374 	raw_spin_lock(&rcu_state.barrier_lock);
4375 	raw_spin_lock_rcu_node(rnp);
4376 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4377 	raw_spin_unlock(&rcu_state.barrier_lock);
4378 	newcpu = !(rnp->expmaskinitnext & mask);
4379 	rnp->expmaskinitnext |= mask;
4380 	/* Allow lockless access for expedited grace periods. */
4381 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4382 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4383 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4384 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4385 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4386 
4387 	/* An incoming CPU should never be blocking a grace period. */
4388 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4389 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4390 		unsigned long flags2;
4391 
4392 		local_irq_save(flags2);
4393 		rcu_disable_urgency_upon_qs(rdp);
4394 		/* Report QS -after- changing ->qsmaskinitnext! */
4395 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4396 	} else {
4397 		raw_spin_unlock_rcu_node(rnp);
4398 	}
4399 	arch_spin_unlock(&rcu_state.ofl_lock);
4400 	local_irq_restore(flags);
4401 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4402 }
4403 
4404 /*
4405  * The outgoing function has no further need of RCU, so remove it from
4406  * the rcu_node tree's ->qsmaskinitnext bit masks.
4407  *
4408  * Note that this function is special in that it is invoked directly
4409  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4410  * This is because this function must be invoked at a precise location.
4411  */
4412 void rcu_report_dead(unsigned int cpu)
4413 {
4414 	unsigned long flags, seq_flags;
4415 	unsigned long mask;
4416 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4417 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4418 
4419 	// Do any dangling deferred wakeups.
4420 	do_nocb_deferred_wakeup(rdp);
4421 
4422 	rcu_preempt_deferred_qs(current);
4423 
4424 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4425 	mask = rdp->grpmask;
4426 	local_irq_save(seq_flags);
4427 	arch_spin_lock(&rcu_state.ofl_lock);
4428 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4429 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4430 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4431 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4432 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4433 		rcu_disable_urgency_upon_qs(rdp);
4434 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4435 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4436 	}
4437 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4438 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4439 	arch_spin_unlock(&rcu_state.ofl_lock);
4440 	local_irq_restore(seq_flags);
4441 
4442 	rdp->cpu_started = false;
4443 }
4444 
4445 #ifdef CONFIG_HOTPLUG_CPU
4446 /*
4447  * The outgoing CPU has just passed through the dying-idle state, and we
4448  * are being invoked from the CPU that was IPIed to continue the offline
4449  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4450  */
4451 void rcutree_migrate_callbacks(int cpu)
4452 {
4453 	unsigned long flags;
4454 	struct rcu_data *my_rdp;
4455 	struct rcu_node *my_rnp;
4456 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4457 	bool needwake;
4458 
4459 	if (rcu_rdp_is_offloaded(rdp) ||
4460 	    rcu_segcblist_empty(&rdp->cblist))
4461 		return;  /* No callbacks to migrate. */
4462 
4463 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4464 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4465 	rcu_barrier_entrain(rdp);
4466 	my_rdp = this_cpu_ptr(&rcu_data);
4467 	my_rnp = my_rdp->mynode;
4468 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4469 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4470 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4471 	/* Leverage recent GPs and set GP for new callbacks. */
4472 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4473 		   rcu_advance_cbs(my_rnp, my_rdp);
4474 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4475 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4476 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4477 	rcu_segcblist_disable(&rdp->cblist);
4478 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4479 	check_cb_ovld_locked(my_rdp, my_rnp);
4480 	if (rcu_rdp_is_offloaded(my_rdp)) {
4481 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4482 		__call_rcu_nocb_wake(my_rdp, true, flags);
4483 	} else {
4484 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4485 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4486 	}
4487 	if (needwake)
4488 		rcu_gp_kthread_wake();
4489 	lockdep_assert_irqs_enabled();
4490 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4491 		  !rcu_segcblist_empty(&rdp->cblist),
4492 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4493 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4494 		  rcu_segcblist_first_cb(&rdp->cblist));
4495 }
4496 #endif
4497 
4498 /*
4499  * On non-huge systems, use expedited RCU grace periods to make suspend
4500  * and hibernation run faster.
4501  */
4502 static int rcu_pm_notify(struct notifier_block *self,
4503 			 unsigned long action, void *hcpu)
4504 {
4505 	switch (action) {
4506 	case PM_HIBERNATION_PREPARE:
4507 	case PM_SUSPEND_PREPARE:
4508 		rcu_async_hurry();
4509 		rcu_expedite_gp();
4510 		break;
4511 	case PM_POST_HIBERNATION:
4512 	case PM_POST_SUSPEND:
4513 		rcu_unexpedite_gp();
4514 		rcu_async_relax();
4515 		break;
4516 	default:
4517 		break;
4518 	}
4519 	return NOTIFY_OK;
4520 }
4521 
4522 #ifdef CONFIG_RCU_EXP_KTHREAD
4523 struct kthread_worker *rcu_exp_gp_kworker;
4524 struct kthread_worker *rcu_exp_par_gp_kworker;
4525 
4526 static void __init rcu_start_exp_gp_kworkers(void)
4527 {
4528 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4529 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4530 	struct sched_param param = { .sched_priority = kthread_prio };
4531 
4532 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4533 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4534 		pr_err("Failed to create %s!\n", gp_kworker_name);
4535 		return;
4536 	}
4537 
4538 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4539 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4540 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4541 		kthread_destroy_worker(rcu_exp_gp_kworker);
4542 		return;
4543 	}
4544 
4545 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4546 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4547 				   &param);
4548 }
4549 
4550 static inline void rcu_alloc_par_gp_wq(void)
4551 {
4552 }
4553 #else /* !CONFIG_RCU_EXP_KTHREAD */
4554 struct workqueue_struct *rcu_par_gp_wq;
4555 
4556 static void __init rcu_start_exp_gp_kworkers(void)
4557 {
4558 }
4559 
4560 static inline void rcu_alloc_par_gp_wq(void)
4561 {
4562 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4563 	WARN_ON(!rcu_par_gp_wq);
4564 }
4565 #endif /* CONFIG_RCU_EXP_KTHREAD */
4566 
4567 /*
4568  * Spawn the kthreads that handle RCU's grace periods.
4569  */
4570 static int __init rcu_spawn_gp_kthread(void)
4571 {
4572 	unsigned long flags;
4573 	struct rcu_node *rnp;
4574 	struct sched_param sp;
4575 	struct task_struct *t;
4576 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4577 
4578 	rcu_scheduler_fully_active = 1;
4579 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4580 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4581 		return 0;
4582 	if (kthread_prio) {
4583 		sp.sched_priority = kthread_prio;
4584 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4585 	}
4586 	rnp = rcu_get_root();
4587 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4588 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4589 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4590 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4591 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4592 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4593 	wake_up_process(t);
4594 	/* This is a pre-SMP initcall, we expect a single CPU */
4595 	WARN_ON(num_online_cpus() > 1);
4596 	/*
4597 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4598 	 * due to rcu_scheduler_fully_active.
4599 	 */
4600 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4601 	rcu_spawn_one_boost_kthread(rdp->mynode);
4602 	rcu_spawn_core_kthreads();
4603 	/* Create kthread worker for expedited GPs */
4604 	rcu_start_exp_gp_kworkers();
4605 	return 0;
4606 }
4607 early_initcall(rcu_spawn_gp_kthread);
4608 
4609 /*
4610  * This function is invoked towards the end of the scheduler's
4611  * initialization process.  Before this is called, the idle task might
4612  * contain synchronous grace-period primitives (during which time, this idle
4613  * task is booting the system, and such primitives are no-ops).  After this
4614  * function is called, any synchronous grace-period primitives are run as
4615  * expedited, with the requesting task driving the grace period forward.
4616  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4617  * runtime RCU functionality.
4618  */
4619 void rcu_scheduler_starting(void)
4620 {
4621 	unsigned long flags;
4622 	struct rcu_node *rnp;
4623 
4624 	WARN_ON(num_online_cpus() != 1);
4625 	WARN_ON(nr_context_switches() > 0);
4626 	rcu_test_sync_prims();
4627 
4628 	// Fix up the ->gp_seq counters.
4629 	local_irq_save(flags);
4630 	rcu_for_each_node_breadth_first(rnp)
4631 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4632 	local_irq_restore(flags);
4633 
4634 	// Switch out of early boot mode.
4635 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4636 	rcu_test_sync_prims();
4637 }
4638 
4639 /*
4640  * Helper function for rcu_init() that initializes the rcu_state structure.
4641  */
4642 static void __init rcu_init_one(void)
4643 {
4644 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4645 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4646 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4647 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4648 
4649 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4650 	int cpustride = 1;
4651 	int i;
4652 	int j;
4653 	struct rcu_node *rnp;
4654 
4655 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4656 
4657 	/* Silence gcc 4.8 false positive about array index out of range. */
4658 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4659 		panic("rcu_init_one: rcu_num_lvls out of range");
4660 
4661 	/* Initialize the level-tracking arrays. */
4662 
4663 	for (i = 1; i < rcu_num_lvls; i++)
4664 		rcu_state.level[i] =
4665 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4666 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4667 
4668 	/* Initialize the elements themselves, starting from the leaves. */
4669 
4670 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4671 		cpustride *= levelspread[i];
4672 		rnp = rcu_state.level[i];
4673 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4674 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4675 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4676 						   &rcu_node_class[i], buf[i]);
4677 			raw_spin_lock_init(&rnp->fqslock);
4678 			lockdep_set_class_and_name(&rnp->fqslock,
4679 						   &rcu_fqs_class[i], fqs[i]);
4680 			rnp->gp_seq = rcu_state.gp_seq;
4681 			rnp->gp_seq_needed = rcu_state.gp_seq;
4682 			rnp->completedqs = rcu_state.gp_seq;
4683 			rnp->qsmask = 0;
4684 			rnp->qsmaskinit = 0;
4685 			rnp->grplo = j * cpustride;
4686 			rnp->grphi = (j + 1) * cpustride - 1;
4687 			if (rnp->grphi >= nr_cpu_ids)
4688 				rnp->grphi = nr_cpu_ids - 1;
4689 			if (i == 0) {
4690 				rnp->grpnum = 0;
4691 				rnp->grpmask = 0;
4692 				rnp->parent = NULL;
4693 			} else {
4694 				rnp->grpnum = j % levelspread[i - 1];
4695 				rnp->grpmask = BIT(rnp->grpnum);
4696 				rnp->parent = rcu_state.level[i - 1] +
4697 					      j / levelspread[i - 1];
4698 			}
4699 			rnp->level = i;
4700 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4701 			rcu_init_one_nocb(rnp);
4702 			init_waitqueue_head(&rnp->exp_wq[0]);
4703 			init_waitqueue_head(&rnp->exp_wq[1]);
4704 			init_waitqueue_head(&rnp->exp_wq[2]);
4705 			init_waitqueue_head(&rnp->exp_wq[3]);
4706 			spin_lock_init(&rnp->exp_lock);
4707 			mutex_init(&rnp->boost_kthread_mutex);
4708 			raw_spin_lock_init(&rnp->exp_poll_lock);
4709 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4710 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4711 		}
4712 	}
4713 
4714 	init_swait_queue_head(&rcu_state.gp_wq);
4715 	init_swait_queue_head(&rcu_state.expedited_wq);
4716 	rnp = rcu_first_leaf_node();
4717 	for_each_possible_cpu(i) {
4718 		while (i > rnp->grphi)
4719 			rnp++;
4720 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4721 		rcu_boot_init_percpu_data(i);
4722 	}
4723 }
4724 
4725 /*
4726  * Force priority from the kernel command-line into range.
4727  */
4728 static void __init sanitize_kthread_prio(void)
4729 {
4730 	int kthread_prio_in = kthread_prio;
4731 
4732 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4733 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4734 		kthread_prio = 2;
4735 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4736 		kthread_prio = 1;
4737 	else if (kthread_prio < 0)
4738 		kthread_prio = 0;
4739 	else if (kthread_prio > 99)
4740 		kthread_prio = 99;
4741 
4742 	if (kthread_prio != kthread_prio_in)
4743 		pr_alert("%s: Limited prio to %d from %d\n",
4744 			 __func__, kthread_prio, kthread_prio_in);
4745 }
4746 
4747 /*
4748  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4749  * replace the definitions in tree.h because those are needed to size
4750  * the ->node array in the rcu_state structure.
4751  */
4752 void rcu_init_geometry(void)
4753 {
4754 	ulong d;
4755 	int i;
4756 	static unsigned long old_nr_cpu_ids;
4757 	int rcu_capacity[RCU_NUM_LVLS];
4758 	static bool initialized;
4759 
4760 	if (initialized) {
4761 		/*
4762 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4763 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4764 		 */
4765 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4766 		return;
4767 	}
4768 
4769 	old_nr_cpu_ids = nr_cpu_ids;
4770 	initialized = true;
4771 
4772 	/*
4773 	 * Initialize any unspecified boot parameters.
4774 	 * The default values of jiffies_till_first_fqs and
4775 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4776 	 * value, which is a function of HZ, then adding one for each
4777 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4778 	 */
4779 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4780 	if (jiffies_till_first_fqs == ULONG_MAX)
4781 		jiffies_till_first_fqs = d;
4782 	if (jiffies_till_next_fqs == ULONG_MAX)
4783 		jiffies_till_next_fqs = d;
4784 	adjust_jiffies_till_sched_qs();
4785 
4786 	/* If the compile-time values are accurate, just leave. */
4787 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4788 	    nr_cpu_ids == NR_CPUS)
4789 		return;
4790 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4791 		rcu_fanout_leaf, nr_cpu_ids);
4792 
4793 	/*
4794 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4795 	 * and cannot exceed the number of bits in the rcu_node masks.
4796 	 * Complain and fall back to the compile-time values if this
4797 	 * limit is exceeded.
4798 	 */
4799 	if (rcu_fanout_leaf < 2 ||
4800 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4801 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4802 		WARN_ON(1);
4803 		return;
4804 	}
4805 
4806 	/*
4807 	 * Compute number of nodes that can be handled an rcu_node tree
4808 	 * with the given number of levels.
4809 	 */
4810 	rcu_capacity[0] = rcu_fanout_leaf;
4811 	for (i = 1; i < RCU_NUM_LVLS; i++)
4812 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4813 
4814 	/*
4815 	 * The tree must be able to accommodate the configured number of CPUs.
4816 	 * If this limit is exceeded, fall back to the compile-time values.
4817 	 */
4818 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4819 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4820 		WARN_ON(1);
4821 		return;
4822 	}
4823 
4824 	/* Calculate the number of levels in the tree. */
4825 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4826 	}
4827 	rcu_num_lvls = i + 1;
4828 
4829 	/* Calculate the number of rcu_nodes at each level of the tree. */
4830 	for (i = 0; i < rcu_num_lvls; i++) {
4831 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4832 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4833 	}
4834 
4835 	/* Calculate the total number of rcu_node structures. */
4836 	rcu_num_nodes = 0;
4837 	for (i = 0; i < rcu_num_lvls; i++)
4838 		rcu_num_nodes += num_rcu_lvl[i];
4839 }
4840 
4841 /*
4842  * Dump out the structure of the rcu_node combining tree associated
4843  * with the rcu_state structure.
4844  */
4845 static void __init rcu_dump_rcu_node_tree(void)
4846 {
4847 	int level = 0;
4848 	struct rcu_node *rnp;
4849 
4850 	pr_info("rcu_node tree layout dump\n");
4851 	pr_info(" ");
4852 	rcu_for_each_node_breadth_first(rnp) {
4853 		if (rnp->level != level) {
4854 			pr_cont("\n");
4855 			pr_info(" ");
4856 			level = rnp->level;
4857 		}
4858 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4859 	}
4860 	pr_cont("\n");
4861 }
4862 
4863 struct workqueue_struct *rcu_gp_wq;
4864 
4865 static void __init kfree_rcu_batch_init(void)
4866 {
4867 	int cpu;
4868 	int i, j;
4869 
4870 	/* Clamp it to [0:100] seconds interval. */
4871 	if (rcu_delay_page_cache_fill_msec < 0 ||
4872 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4873 
4874 		rcu_delay_page_cache_fill_msec =
4875 			clamp(rcu_delay_page_cache_fill_msec, 0,
4876 				(int) (100 * MSEC_PER_SEC));
4877 
4878 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4879 			rcu_delay_page_cache_fill_msec);
4880 	}
4881 
4882 	for_each_possible_cpu(cpu) {
4883 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4884 
4885 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4886 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4887 			krcp->krw_arr[i].krcp = krcp;
4888 
4889 			for (j = 0; j < FREE_N_CHANNELS; j++)
4890 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
4891 		}
4892 
4893 		for (i = 0; i < FREE_N_CHANNELS; i++)
4894 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
4895 
4896 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4897 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4898 		krcp->initialized = true;
4899 	}
4900 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4901 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4902 }
4903 
4904 void __init rcu_init(void)
4905 {
4906 	int cpu = smp_processor_id();
4907 
4908 	rcu_early_boot_tests();
4909 
4910 	kfree_rcu_batch_init();
4911 	rcu_bootup_announce();
4912 	sanitize_kthread_prio();
4913 	rcu_init_geometry();
4914 	rcu_init_one();
4915 	if (dump_tree)
4916 		rcu_dump_rcu_node_tree();
4917 	if (use_softirq)
4918 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4919 
4920 	/*
4921 	 * We don't need protection against CPU-hotplug here because
4922 	 * this is called early in boot, before either interrupts
4923 	 * or the scheduler are operational.
4924 	 */
4925 	pm_notifier(rcu_pm_notify, 0);
4926 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4927 	rcutree_prepare_cpu(cpu);
4928 	rcu_cpu_starting(cpu);
4929 	rcutree_online_cpu(cpu);
4930 
4931 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4932 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4933 	WARN_ON(!rcu_gp_wq);
4934 	rcu_alloc_par_gp_wq();
4935 
4936 	/* Fill in default value for rcutree.qovld boot parameter. */
4937 	/* -After- the rcu_node ->lock fields are initialized! */
4938 	if (qovld < 0)
4939 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4940 	else
4941 		qovld_calc = qovld;
4942 
4943 	// Kick-start any polled grace periods that started early.
4944 	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4945 		(void)start_poll_synchronize_rcu_expedited();
4946 
4947 	rcu_test_sync_prims();
4948 }
4949 
4950 #include "tree_stall.h"
4951 #include "tree_exp.h"
4952 #include "tree_nocb.h"
4953 #include "tree_plugin.h"
4954