xref: /openbmc/linux/kernel/rcu/tree.c (revision 9b358af7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64 
65 #include "tree.h"
66 #include "rcu.h"
67 
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72 
73 /* Data structures. */
74 
75 /*
76  * Steal a bit from the bottom of ->dynticks for idle entry/exit
77  * control.  Initially this is for TLB flushing.
78  */
79 #define RCU_DYNTICK_CTRL_MASK 0x1
80 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 #ifdef CONFIG_RCU_NOCB_CPU
87 	.cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
88 #endif
89 };
90 static struct rcu_state rcu_state = {
91 	.level = { &rcu_state.node[0] },
92 	.gp_state = RCU_GP_IDLE,
93 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
94 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
95 	.name = RCU_NAME,
96 	.abbr = RCU_ABBR,
97 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
98 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
99 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
100 };
101 
102 /* Dump rcu_node combining tree at boot to verify correct setup. */
103 static bool dump_tree;
104 module_param(dump_tree, bool, 0444);
105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
107 #ifndef CONFIG_PREEMPT_RT
108 module_param(use_softirq, bool, 0444);
109 #endif
110 /* Control rcu_node-tree auto-balancing at boot time. */
111 static bool rcu_fanout_exact;
112 module_param(rcu_fanout_exact, bool, 0444);
113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
115 module_param(rcu_fanout_leaf, int, 0444);
116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
117 /* Number of rcu_nodes at specified level. */
118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120 
121 /*
122  * The rcu_scheduler_active variable is initialized to the value
123  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
124  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
125  * RCU can assume that there is but one task, allowing RCU to (for example)
126  * optimize synchronize_rcu() to a simple barrier().  When this variable
127  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
128  * to detect real grace periods.  This variable is also used to suppress
129  * boot-time false positives from lockdep-RCU error checking.  Finally, it
130  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
131  * is fully initialized, including all of its kthreads having been spawned.
132  */
133 int rcu_scheduler_active __read_mostly;
134 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
135 
136 /*
137  * The rcu_scheduler_fully_active variable transitions from zero to one
138  * during the early_initcall() processing, which is after the scheduler
139  * is capable of creating new tasks.  So RCU processing (for example,
140  * creating tasks for RCU priority boosting) must be delayed until after
141  * rcu_scheduler_fully_active transitions from zero to one.  We also
142  * currently delay invocation of any RCU callbacks until after this point.
143  *
144  * It might later prove better for people registering RCU callbacks during
145  * early boot to take responsibility for these callbacks, but one step at
146  * a time.
147  */
148 static int rcu_scheduler_fully_active __read_mostly;
149 
150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
151 			      unsigned long gps, unsigned long flags);
152 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
153 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
154 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
155 static void invoke_rcu_core(void);
156 static void rcu_report_exp_rdp(struct rcu_data *rdp);
157 static void sync_sched_exp_online_cleanup(int cpu);
158 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
159 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
160 
161 /* rcuc/rcub kthread realtime priority */
162 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
163 module_param(kthread_prio, int, 0444);
164 
165 /* Delay in jiffies for grace-period initialization delays, debug only. */
166 
167 static int gp_preinit_delay;
168 module_param(gp_preinit_delay, int, 0444);
169 static int gp_init_delay;
170 module_param(gp_init_delay, int, 0444);
171 static int gp_cleanup_delay;
172 module_param(gp_cleanup_delay, int, 0444);
173 
174 // Add delay to rcu_read_unlock() for strict grace periods.
175 static int rcu_unlock_delay;
176 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
177 module_param(rcu_unlock_delay, int, 0444);
178 #endif
179 
180 /*
181  * This rcu parameter is runtime-read-only. It reflects
182  * a minimum allowed number of objects which can be cached
183  * per-CPU. Object size is equal to one page. This value
184  * can be changed at boot time.
185  */
186 static int rcu_min_cached_objs = 5;
187 module_param(rcu_min_cached_objs, int, 0444);
188 
189 /* Retrieve RCU kthreads priority for rcutorture */
190 int rcu_get_gp_kthreads_prio(void)
191 {
192 	return kthread_prio;
193 }
194 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
195 
196 /*
197  * Number of grace periods between delays, normalized by the duration of
198  * the delay.  The longer the delay, the more the grace periods between
199  * each delay.  The reason for this normalization is that it means that,
200  * for non-zero delays, the overall slowdown of grace periods is constant
201  * regardless of the duration of the delay.  This arrangement balances
202  * the need for long delays to increase some race probabilities with the
203  * need for fast grace periods to increase other race probabilities.
204  */
205 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
206 
207 /*
208  * Compute the mask of online CPUs for the specified rcu_node structure.
209  * This will not be stable unless the rcu_node structure's ->lock is
210  * held, but the bit corresponding to the current CPU will be stable
211  * in most contexts.
212  */
213 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
214 {
215 	return READ_ONCE(rnp->qsmaskinitnext);
216 }
217 
218 /*
219  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
220  * permit this function to be invoked without holding the root rcu_node
221  * structure's ->lock, but of course results can be subject to change.
222  */
223 static int rcu_gp_in_progress(void)
224 {
225 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
226 }
227 
228 /*
229  * Return the number of callbacks queued on the specified CPU.
230  * Handles both the nocbs and normal cases.
231  */
232 static long rcu_get_n_cbs_cpu(int cpu)
233 {
234 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
235 
236 	if (rcu_segcblist_is_enabled(&rdp->cblist))
237 		return rcu_segcblist_n_cbs(&rdp->cblist);
238 	return 0;
239 }
240 
241 void rcu_softirq_qs(void)
242 {
243 	rcu_qs();
244 	rcu_preempt_deferred_qs(current);
245 }
246 
247 /*
248  * Record entry into an extended quiescent state.  This is only to be
249  * called when not already in an extended quiescent state, that is,
250  * RCU is watching prior to the call to this function and is no longer
251  * watching upon return.
252  */
253 static noinstr void rcu_dynticks_eqs_enter(void)
254 {
255 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
256 	int seq;
257 
258 	/*
259 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
260 	 * critical sections, and we also must force ordering with the
261 	 * next idle sojourn.
262 	 */
263 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
264 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
265 	// RCU is no longer watching.  Better be in extended quiescent state!
266 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
267 		     (seq & RCU_DYNTICK_CTRL_CTR));
268 	/* Better not have special action (TLB flush) pending! */
269 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
270 		     (seq & RCU_DYNTICK_CTRL_MASK));
271 }
272 
273 /*
274  * Record exit from an extended quiescent state.  This is only to be
275  * called from an extended quiescent state, that is, RCU is not watching
276  * prior to the call to this function and is watching upon return.
277  */
278 static noinstr void rcu_dynticks_eqs_exit(void)
279 {
280 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
281 	int seq;
282 
283 	/*
284 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
285 	 * and we also must force ordering with the next RCU read-side
286 	 * critical section.
287 	 */
288 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
289 	// RCU is now watching.  Better not be in an extended quiescent state!
290 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
291 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
292 		     !(seq & RCU_DYNTICK_CTRL_CTR));
293 	if (seq & RCU_DYNTICK_CTRL_MASK) {
294 		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
295 		smp_mb__after_atomic(); /* _exit after clearing mask. */
296 	}
297 }
298 
299 /*
300  * Reset the current CPU's ->dynticks counter to indicate that the
301  * newly onlined CPU is no longer in an extended quiescent state.
302  * This will either leave the counter unchanged, or increment it
303  * to the next non-quiescent value.
304  *
305  * The non-atomic test/increment sequence works because the upper bits
306  * of the ->dynticks counter are manipulated only by the corresponding CPU,
307  * or when the corresponding CPU is offline.
308  */
309 static void rcu_dynticks_eqs_online(void)
310 {
311 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
312 
313 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
314 		return;
315 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
316 }
317 
318 /*
319  * Is the current CPU in an extended quiescent state?
320  *
321  * No ordering, as we are sampling CPU-local information.
322  */
323 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
324 {
325 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
326 
327 	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
328 }
329 
330 /*
331  * Snapshot the ->dynticks counter with full ordering so as to allow
332  * stable comparison of this counter with past and future snapshots.
333  */
334 static int rcu_dynticks_snap(struct rcu_data *rdp)
335 {
336 	int snap = atomic_add_return(0, &rdp->dynticks);
337 
338 	return snap & ~RCU_DYNTICK_CTRL_MASK;
339 }
340 
341 /*
342  * Return true if the snapshot returned from rcu_dynticks_snap()
343  * indicates that RCU is in an extended quiescent state.
344  */
345 static bool rcu_dynticks_in_eqs(int snap)
346 {
347 	return !(snap & RCU_DYNTICK_CTRL_CTR);
348 }
349 
350 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
351 bool rcu_is_idle_cpu(int cpu)
352 {
353 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
354 
355 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
356 }
357 
358 /*
359  * Return true if the CPU corresponding to the specified rcu_data
360  * structure has spent some time in an extended quiescent state since
361  * rcu_dynticks_snap() returned the specified snapshot.
362  */
363 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
364 {
365 	return snap != rcu_dynticks_snap(rdp);
366 }
367 
368 /*
369  * Return true if the referenced integer is zero while the specified
370  * CPU remains within a single extended quiescent state.
371  */
372 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
373 {
374 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
375 	int snap;
376 
377 	// If not quiescent, force back to earlier extended quiescent state.
378 	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
379 					       RCU_DYNTICK_CTRL_CTR);
380 
381 	smp_rmb(); // Order ->dynticks and *vp reads.
382 	if (READ_ONCE(*vp))
383 		return false;  // Non-zero, so report failure;
384 	smp_rmb(); // Order *vp read and ->dynticks re-read.
385 
386 	// If still in the same extended quiescent state, we are good!
387 	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
388 }
389 
390 /*
391  * Set the special (bottom) bit of the specified CPU so that it
392  * will take special action (such as flushing its TLB) on the
393  * next exit from an extended quiescent state.  Returns true if
394  * the bit was successfully set, or false if the CPU was not in
395  * an extended quiescent state.
396  */
397 bool rcu_eqs_special_set(int cpu)
398 {
399 	int old;
400 	int new;
401 	int new_old;
402 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
403 
404 	new_old = atomic_read(&rdp->dynticks);
405 	do {
406 		old = new_old;
407 		if (old & RCU_DYNTICK_CTRL_CTR)
408 			return false;
409 		new = old | RCU_DYNTICK_CTRL_MASK;
410 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
411 	} while (new_old != old);
412 	return true;
413 }
414 
415 /*
416  * Let the RCU core know that this CPU has gone through the scheduler,
417  * which is a quiescent state.  This is called when the need for a
418  * quiescent state is urgent, so we burn an atomic operation and full
419  * memory barriers to let the RCU core know about it, regardless of what
420  * this CPU might (or might not) do in the near future.
421  *
422  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
423  *
424  * The caller must have disabled interrupts and must not be idle.
425  */
426 notrace void rcu_momentary_dyntick_idle(void)
427 {
428 	int special;
429 
430 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
431 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
432 				    &this_cpu_ptr(&rcu_data)->dynticks);
433 	/* It is illegal to call this from idle state. */
434 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
435 	rcu_preempt_deferred_qs(current);
436 }
437 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
438 
439 /**
440  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
441  *
442  * If the current CPU is idle and running at a first-level (not nested)
443  * interrupt, or directly, from idle, return true.
444  *
445  * The caller must have at least disabled IRQs.
446  */
447 static int rcu_is_cpu_rrupt_from_idle(void)
448 {
449 	long nesting;
450 
451 	/*
452 	 * Usually called from the tick; but also used from smp_function_call()
453 	 * for expedited grace periods. This latter can result in running from
454 	 * the idle task, instead of an actual IPI.
455 	 */
456 	lockdep_assert_irqs_disabled();
457 
458 	/* Check for counter underflows */
459 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
460 			 "RCU dynticks_nesting counter underflow!");
461 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
462 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
463 
464 	/* Are we at first interrupt nesting level? */
465 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
466 	if (nesting > 1)
467 		return false;
468 
469 	/*
470 	 * If we're not in an interrupt, we must be in the idle task!
471 	 */
472 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
473 
474 	/* Does CPU appear to be idle from an RCU standpoint? */
475 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
476 }
477 
478 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
479 				// Maximum callbacks per rcu_do_batch ...
480 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
481 static long blimit = DEFAULT_RCU_BLIMIT;
482 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
483 static long qhimark = DEFAULT_RCU_QHIMARK;
484 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
485 static long qlowmark = DEFAULT_RCU_QLOMARK;
486 #define DEFAULT_RCU_QOVLD_MULT 2
487 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
488 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
489 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
490 
491 module_param(blimit, long, 0444);
492 module_param(qhimark, long, 0444);
493 module_param(qlowmark, long, 0444);
494 module_param(qovld, long, 0444);
495 
496 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
497 static ulong jiffies_till_next_fqs = ULONG_MAX;
498 static bool rcu_kick_kthreads;
499 static int rcu_divisor = 7;
500 module_param(rcu_divisor, int, 0644);
501 
502 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
503 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
504 module_param(rcu_resched_ns, long, 0644);
505 
506 /*
507  * How long the grace period must be before we start recruiting
508  * quiescent-state help from rcu_note_context_switch().
509  */
510 static ulong jiffies_till_sched_qs = ULONG_MAX;
511 module_param(jiffies_till_sched_qs, ulong, 0444);
512 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
513 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
514 
515 /*
516  * Make sure that we give the grace-period kthread time to detect any
517  * idle CPUs before taking active measures to force quiescent states.
518  * However, don't go below 100 milliseconds, adjusted upwards for really
519  * large systems.
520  */
521 static void adjust_jiffies_till_sched_qs(void)
522 {
523 	unsigned long j;
524 
525 	/* If jiffies_till_sched_qs was specified, respect the request. */
526 	if (jiffies_till_sched_qs != ULONG_MAX) {
527 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
528 		return;
529 	}
530 	/* Otherwise, set to third fqs scan, but bound below on large system. */
531 	j = READ_ONCE(jiffies_till_first_fqs) +
532 		      2 * READ_ONCE(jiffies_till_next_fqs);
533 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
534 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
535 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
536 	WRITE_ONCE(jiffies_to_sched_qs, j);
537 }
538 
539 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
540 {
541 	ulong j;
542 	int ret = kstrtoul(val, 0, &j);
543 
544 	if (!ret) {
545 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
546 		adjust_jiffies_till_sched_qs();
547 	}
548 	return ret;
549 }
550 
551 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
552 {
553 	ulong j;
554 	int ret = kstrtoul(val, 0, &j);
555 
556 	if (!ret) {
557 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
558 		adjust_jiffies_till_sched_qs();
559 	}
560 	return ret;
561 }
562 
563 static const struct kernel_param_ops first_fqs_jiffies_ops = {
564 	.set = param_set_first_fqs_jiffies,
565 	.get = param_get_ulong,
566 };
567 
568 static const struct kernel_param_ops next_fqs_jiffies_ops = {
569 	.set = param_set_next_fqs_jiffies,
570 	.get = param_get_ulong,
571 };
572 
573 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
574 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
575 module_param(rcu_kick_kthreads, bool, 0644);
576 
577 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
578 static int rcu_pending(int user);
579 
580 /*
581  * Return the number of RCU GPs completed thus far for debug & stats.
582  */
583 unsigned long rcu_get_gp_seq(void)
584 {
585 	return READ_ONCE(rcu_state.gp_seq);
586 }
587 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
588 
589 /*
590  * Return the number of RCU expedited batches completed thus far for
591  * debug & stats.  Odd numbers mean that a batch is in progress, even
592  * numbers mean idle.  The value returned will thus be roughly double
593  * the cumulative batches since boot.
594  */
595 unsigned long rcu_exp_batches_completed(void)
596 {
597 	return rcu_state.expedited_sequence;
598 }
599 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
600 
601 /*
602  * Return the root node of the rcu_state structure.
603  */
604 static struct rcu_node *rcu_get_root(void)
605 {
606 	return &rcu_state.node[0];
607 }
608 
609 /*
610  * Send along grace-period-related data for rcutorture diagnostics.
611  */
612 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
613 			    unsigned long *gp_seq)
614 {
615 	switch (test_type) {
616 	case RCU_FLAVOR:
617 		*flags = READ_ONCE(rcu_state.gp_flags);
618 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
619 		break;
620 	default:
621 		break;
622 	}
623 }
624 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
625 
626 /*
627  * Enter an RCU extended quiescent state, which can be either the
628  * idle loop or adaptive-tickless usermode execution.
629  *
630  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
631  * the possibility of usermode upcalls having messed up our count
632  * of interrupt nesting level during the prior busy period.
633  */
634 static noinstr void rcu_eqs_enter(bool user)
635 {
636 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
637 
638 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
639 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
640 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
641 		     rdp->dynticks_nesting == 0);
642 	if (rdp->dynticks_nesting != 1) {
643 		// RCU will still be watching, so just do accounting and leave.
644 		rdp->dynticks_nesting--;
645 		return;
646 	}
647 
648 	lockdep_assert_irqs_disabled();
649 	instrumentation_begin();
650 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
651 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
652 	rcu_prepare_for_idle();
653 	rcu_preempt_deferred_qs(current);
654 
655 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
656 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
657 
658 	instrumentation_end();
659 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
660 	// RCU is watching here ...
661 	rcu_dynticks_eqs_enter();
662 	// ... but is no longer watching here.
663 	rcu_dynticks_task_enter();
664 }
665 
666 /**
667  * rcu_idle_enter - inform RCU that current CPU is entering idle
668  *
669  * Enter idle mode, in other words, -leave- the mode in which RCU
670  * read-side critical sections can occur.  (Though RCU read-side
671  * critical sections can occur in irq handlers in idle, a possibility
672  * handled by irq_enter() and irq_exit().)
673  *
674  * If you add or remove a call to rcu_idle_enter(), be sure to test with
675  * CONFIG_RCU_EQS_DEBUG=y.
676  */
677 void rcu_idle_enter(void)
678 {
679 	lockdep_assert_irqs_disabled();
680 	rcu_eqs_enter(false);
681 }
682 EXPORT_SYMBOL_GPL(rcu_idle_enter);
683 
684 #ifdef CONFIG_NO_HZ_FULL
685 
686 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
687 /*
688  * An empty function that will trigger a reschedule on
689  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
690  */
691 static void late_wakeup_func(struct irq_work *work)
692 {
693 }
694 
695 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
696 	IRQ_WORK_INIT(late_wakeup_func);
697 
698 /*
699  * If either:
700  *
701  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
702  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
703  *
704  * In these cases the late RCU wake ups aren't supported in the resched loops and our
705  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
706  * get re-enabled again.
707  */
708 noinstr static void rcu_irq_work_resched(void)
709 {
710 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
711 
712 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
713 		return;
714 
715 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
716 		return;
717 
718 	instrumentation_begin();
719 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
720 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
721 	}
722 	instrumentation_end();
723 }
724 
725 #else
726 static inline void rcu_irq_work_resched(void) { }
727 #endif
728 
729 /**
730  * rcu_user_enter - inform RCU that we are resuming userspace.
731  *
732  * Enter RCU idle mode right before resuming userspace.  No use of RCU
733  * is permitted between this call and rcu_user_exit(). This way the
734  * CPU doesn't need to maintain the tick for RCU maintenance purposes
735  * when the CPU runs in userspace.
736  *
737  * If you add or remove a call to rcu_user_enter(), be sure to test with
738  * CONFIG_RCU_EQS_DEBUG=y.
739  */
740 noinstr void rcu_user_enter(void)
741 {
742 	lockdep_assert_irqs_disabled();
743 
744 	/*
745 	 * Other than generic entry implementation, we may be past the last
746 	 * rescheduling opportunity in the entry code. Trigger a self IPI
747 	 * that will fire and reschedule once we resume in user/guest mode.
748 	 */
749 	rcu_irq_work_resched();
750 	rcu_eqs_enter(true);
751 }
752 
753 #endif /* CONFIG_NO_HZ_FULL */
754 
755 /**
756  * rcu_nmi_exit - inform RCU of exit from NMI context
757  *
758  * If we are returning from the outermost NMI handler that interrupted an
759  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
760  * to let the RCU grace-period handling know that the CPU is back to
761  * being RCU-idle.
762  *
763  * If you add or remove a call to rcu_nmi_exit(), be sure to test
764  * with CONFIG_RCU_EQS_DEBUG=y.
765  */
766 noinstr void rcu_nmi_exit(void)
767 {
768 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
769 
770 	instrumentation_begin();
771 	/*
772 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
773 	 * (We are exiting an NMI handler, so RCU better be paying attention
774 	 * to us!)
775 	 */
776 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
777 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
778 
779 	/*
780 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
781 	 * leave it in non-RCU-idle state.
782 	 */
783 	if (rdp->dynticks_nmi_nesting != 1) {
784 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
785 				  atomic_read(&rdp->dynticks));
786 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
787 			   rdp->dynticks_nmi_nesting - 2);
788 		instrumentation_end();
789 		return;
790 	}
791 
792 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
793 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
794 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
795 
796 	if (!in_nmi())
797 		rcu_prepare_for_idle();
798 
799 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
800 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
801 	instrumentation_end();
802 
803 	// RCU is watching here ...
804 	rcu_dynticks_eqs_enter();
805 	// ... but is no longer watching here.
806 
807 	if (!in_nmi())
808 		rcu_dynticks_task_enter();
809 }
810 
811 /**
812  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
813  *
814  * Exit from an interrupt handler, which might possibly result in entering
815  * idle mode, in other words, leaving the mode in which read-side critical
816  * sections can occur.  The caller must have disabled interrupts.
817  *
818  * This code assumes that the idle loop never does anything that might
819  * result in unbalanced calls to irq_enter() and irq_exit().  If your
820  * architecture's idle loop violates this assumption, RCU will give you what
821  * you deserve, good and hard.  But very infrequently and irreproducibly.
822  *
823  * Use things like work queues to work around this limitation.
824  *
825  * You have been warned.
826  *
827  * If you add or remove a call to rcu_irq_exit(), be sure to test with
828  * CONFIG_RCU_EQS_DEBUG=y.
829  */
830 void noinstr rcu_irq_exit(void)
831 {
832 	lockdep_assert_irqs_disabled();
833 	rcu_nmi_exit();
834 }
835 
836 /**
837  * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
838  *			  towards in kernel preemption
839  *
840  * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
841  * from RCU point of view. Invoked from return from interrupt before kernel
842  * preemption.
843  */
844 void rcu_irq_exit_preempt(void)
845 {
846 	lockdep_assert_irqs_disabled();
847 	rcu_nmi_exit();
848 
849 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
850 			 "RCU dynticks_nesting counter underflow/zero!");
851 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
852 			 DYNTICK_IRQ_NONIDLE,
853 			 "Bad RCU  dynticks_nmi_nesting counter\n");
854 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
855 			 "RCU in extended quiescent state!");
856 }
857 
858 #ifdef CONFIG_PROVE_RCU
859 /**
860  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
861  */
862 void rcu_irq_exit_check_preempt(void)
863 {
864 	lockdep_assert_irqs_disabled();
865 
866 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
867 			 "RCU dynticks_nesting counter underflow/zero!");
868 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
869 			 DYNTICK_IRQ_NONIDLE,
870 			 "Bad RCU  dynticks_nmi_nesting counter\n");
871 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
872 			 "RCU in extended quiescent state!");
873 }
874 #endif /* #ifdef CONFIG_PROVE_RCU */
875 
876 /*
877  * Wrapper for rcu_irq_exit() where interrupts are enabled.
878  *
879  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
880  * with CONFIG_RCU_EQS_DEBUG=y.
881  */
882 void rcu_irq_exit_irqson(void)
883 {
884 	unsigned long flags;
885 
886 	local_irq_save(flags);
887 	rcu_irq_exit();
888 	local_irq_restore(flags);
889 }
890 
891 /*
892  * Exit an RCU extended quiescent state, which can be either the
893  * idle loop or adaptive-tickless usermode execution.
894  *
895  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
896  * allow for the possibility of usermode upcalls messing up our count of
897  * interrupt nesting level during the busy period that is just now starting.
898  */
899 static void noinstr rcu_eqs_exit(bool user)
900 {
901 	struct rcu_data *rdp;
902 	long oldval;
903 
904 	lockdep_assert_irqs_disabled();
905 	rdp = this_cpu_ptr(&rcu_data);
906 	oldval = rdp->dynticks_nesting;
907 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
908 	if (oldval) {
909 		// RCU was already watching, so just do accounting and leave.
910 		rdp->dynticks_nesting++;
911 		return;
912 	}
913 	rcu_dynticks_task_exit();
914 	// RCU is not watching here ...
915 	rcu_dynticks_eqs_exit();
916 	// ... but is watching here.
917 	instrumentation_begin();
918 
919 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
920 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
921 
922 	rcu_cleanup_after_idle();
923 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
924 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
925 	WRITE_ONCE(rdp->dynticks_nesting, 1);
926 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
927 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
928 	instrumentation_end();
929 }
930 
931 /**
932  * rcu_idle_exit - inform RCU that current CPU is leaving idle
933  *
934  * Exit idle mode, in other words, -enter- the mode in which RCU
935  * read-side critical sections can occur.
936  *
937  * If you add or remove a call to rcu_idle_exit(), be sure to test with
938  * CONFIG_RCU_EQS_DEBUG=y.
939  */
940 void rcu_idle_exit(void)
941 {
942 	unsigned long flags;
943 
944 	local_irq_save(flags);
945 	rcu_eqs_exit(false);
946 	local_irq_restore(flags);
947 }
948 EXPORT_SYMBOL_GPL(rcu_idle_exit);
949 
950 #ifdef CONFIG_NO_HZ_FULL
951 /**
952  * rcu_user_exit - inform RCU that we are exiting userspace.
953  *
954  * Exit RCU idle mode while entering the kernel because it can
955  * run a RCU read side critical section anytime.
956  *
957  * If you add or remove a call to rcu_user_exit(), be sure to test with
958  * CONFIG_RCU_EQS_DEBUG=y.
959  */
960 void noinstr rcu_user_exit(void)
961 {
962 	rcu_eqs_exit(1);
963 }
964 
965 /**
966  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
967  *
968  * The scheduler tick is not normally enabled when CPUs enter the kernel
969  * from nohz_full userspace execution.  After all, nohz_full userspace
970  * execution is an RCU quiescent state and the time executing in the kernel
971  * is quite short.  Except of course when it isn't.  And it is not hard to
972  * cause a large system to spend tens of seconds or even minutes looping
973  * in the kernel, which can cause a number of problems, include RCU CPU
974  * stall warnings.
975  *
976  * Therefore, if a nohz_full CPU fails to report a quiescent state
977  * in a timely manner, the RCU grace-period kthread sets that CPU's
978  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
979  * exception will invoke this function, which will turn on the scheduler
980  * tick, which will enable RCU to detect that CPU's quiescent states,
981  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
982  * The tick will be disabled once a quiescent state is reported for
983  * this CPU.
984  *
985  * Of course, in carefully tuned systems, there might never be an
986  * interrupt or exception.  In that case, the RCU grace-period kthread
987  * will eventually cause one to happen.  However, in less carefully
988  * controlled environments, this function allows RCU to get what it
989  * needs without creating otherwise useless interruptions.
990  */
991 void __rcu_irq_enter_check_tick(void)
992 {
993 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
994 
995 	// If we're here from NMI there's nothing to do.
996 	if (in_nmi())
997 		return;
998 
999 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
1000 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
1001 
1002 	if (!tick_nohz_full_cpu(rdp->cpu) ||
1003 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
1004 	    READ_ONCE(rdp->rcu_forced_tick)) {
1005 		// RCU doesn't need nohz_full help from this CPU, or it is
1006 		// already getting that help.
1007 		return;
1008 	}
1009 
1010 	// We get here only when not in an extended quiescent state and
1011 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
1012 	// already watching and (2) The fact that we are in an interrupt
1013 	// handler and that the rcu_node lock is an irq-disabled lock
1014 	// prevents self-deadlock.  So we can safely recheck under the lock.
1015 	// Note that the nohz_full state currently cannot change.
1016 	raw_spin_lock_rcu_node(rdp->mynode);
1017 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
1018 		// A nohz_full CPU is in the kernel and RCU needs a
1019 		// quiescent state.  Turn on the tick!
1020 		WRITE_ONCE(rdp->rcu_forced_tick, true);
1021 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1022 	}
1023 	raw_spin_unlock_rcu_node(rdp->mynode);
1024 }
1025 #endif /* CONFIG_NO_HZ_FULL */
1026 
1027 /**
1028  * rcu_nmi_enter - inform RCU of entry to NMI context
1029  *
1030  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
1031  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
1032  * that the CPU is active.  This implementation permits nested NMIs, as
1033  * long as the nesting level does not overflow an int.  (You will probably
1034  * run out of stack space first.)
1035  *
1036  * If you add or remove a call to rcu_nmi_enter(), be sure to test
1037  * with CONFIG_RCU_EQS_DEBUG=y.
1038  */
1039 noinstr void rcu_nmi_enter(void)
1040 {
1041 	long incby = 2;
1042 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1043 
1044 	/* Complain about underflow. */
1045 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1046 
1047 	/*
1048 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1049 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1050 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1051 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1052 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1053 	 * period (observation due to Andy Lutomirski).
1054 	 */
1055 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1056 
1057 		if (!in_nmi())
1058 			rcu_dynticks_task_exit();
1059 
1060 		// RCU is not watching here ...
1061 		rcu_dynticks_eqs_exit();
1062 		// ... but is watching here.
1063 
1064 		if (!in_nmi()) {
1065 			instrumentation_begin();
1066 			rcu_cleanup_after_idle();
1067 			instrumentation_end();
1068 		}
1069 
1070 		instrumentation_begin();
1071 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1072 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1073 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1074 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1075 
1076 		incby = 1;
1077 	} else if (!in_nmi()) {
1078 		instrumentation_begin();
1079 		rcu_irq_enter_check_tick();
1080 	} else  {
1081 		instrumentation_begin();
1082 	}
1083 
1084 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1085 			  rdp->dynticks_nmi_nesting,
1086 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1087 	instrumentation_end();
1088 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1089 		   rdp->dynticks_nmi_nesting + incby);
1090 	barrier();
1091 }
1092 
1093 /**
1094  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1095  *
1096  * Enter an interrupt handler, which might possibly result in exiting
1097  * idle mode, in other words, entering the mode in which read-side critical
1098  * sections can occur.  The caller must have disabled interrupts.
1099  *
1100  * Note that the Linux kernel is fully capable of entering an interrupt
1101  * handler that it never exits, for example when doing upcalls to user mode!
1102  * This code assumes that the idle loop never does upcalls to user mode.
1103  * If your architecture's idle loop does do upcalls to user mode (or does
1104  * anything else that results in unbalanced calls to the irq_enter() and
1105  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1106  * But very infrequently and irreproducibly.
1107  *
1108  * Use things like work queues to work around this limitation.
1109  *
1110  * You have been warned.
1111  *
1112  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1113  * CONFIG_RCU_EQS_DEBUG=y.
1114  */
1115 noinstr void rcu_irq_enter(void)
1116 {
1117 	lockdep_assert_irqs_disabled();
1118 	rcu_nmi_enter();
1119 }
1120 
1121 /*
1122  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1123  *
1124  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1125  * with CONFIG_RCU_EQS_DEBUG=y.
1126  */
1127 void rcu_irq_enter_irqson(void)
1128 {
1129 	unsigned long flags;
1130 
1131 	local_irq_save(flags);
1132 	rcu_irq_enter();
1133 	local_irq_restore(flags);
1134 }
1135 
1136 /*
1137  * If any sort of urgency was applied to the current CPU (for example,
1138  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1139  * to get to a quiescent state, disable it.
1140  */
1141 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1142 {
1143 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1144 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1145 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1146 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1147 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1148 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1149 	}
1150 }
1151 
1152 /**
1153  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1154  *
1155  * Return true if RCU is watching the running CPU, which means that this
1156  * CPU can safely enter RCU read-side critical sections.  In other words,
1157  * if the current CPU is not in its idle loop or is in an interrupt or
1158  * NMI handler, return true.
1159  *
1160  * Make notrace because it can be called by the internal functions of
1161  * ftrace, and making this notrace removes unnecessary recursion calls.
1162  */
1163 notrace bool rcu_is_watching(void)
1164 {
1165 	bool ret;
1166 
1167 	preempt_disable_notrace();
1168 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1169 	preempt_enable_notrace();
1170 	return ret;
1171 }
1172 EXPORT_SYMBOL_GPL(rcu_is_watching);
1173 
1174 /*
1175  * If a holdout task is actually running, request an urgent quiescent
1176  * state from its CPU.  This is unsynchronized, so migrations can cause
1177  * the request to go to the wrong CPU.  Which is OK, all that will happen
1178  * is that the CPU's next context switch will be a bit slower and next
1179  * time around this task will generate another request.
1180  */
1181 void rcu_request_urgent_qs_task(struct task_struct *t)
1182 {
1183 	int cpu;
1184 
1185 	barrier();
1186 	cpu = task_cpu(t);
1187 	if (!task_curr(t))
1188 		return; /* This task is not running on that CPU. */
1189 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1190 }
1191 
1192 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1193 
1194 /*
1195  * Is the current CPU online as far as RCU is concerned?
1196  *
1197  * Disable preemption to avoid false positives that could otherwise
1198  * happen due to the current CPU number being sampled, this task being
1199  * preempted, its old CPU being taken offline, resuming on some other CPU,
1200  * then determining that its old CPU is now offline.
1201  *
1202  * Disable checking if in an NMI handler because we cannot safely
1203  * report errors from NMI handlers anyway.  In addition, it is OK to use
1204  * RCU on an offline processor during initial boot, hence the check for
1205  * rcu_scheduler_fully_active.
1206  */
1207 bool rcu_lockdep_current_cpu_online(void)
1208 {
1209 	struct rcu_data *rdp;
1210 	struct rcu_node *rnp;
1211 	bool ret = false;
1212 
1213 	if (in_nmi() || !rcu_scheduler_fully_active)
1214 		return true;
1215 	preempt_disable_notrace();
1216 	rdp = this_cpu_ptr(&rcu_data);
1217 	rnp = rdp->mynode;
1218 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1219 		ret = true;
1220 	preempt_enable_notrace();
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1224 
1225 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1226 
1227 /*
1228  * We are reporting a quiescent state on behalf of some other CPU, so
1229  * it is our responsibility to check for and handle potential overflow
1230  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1231  * After all, the CPU might be in deep idle state, and thus executing no
1232  * code whatsoever.
1233  */
1234 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1235 {
1236 	raw_lockdep_assert_held_rcu_node(rnp);
1237 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1238 			 rnp->gp_seq))
1239 		WRITE_ONCE(rdp->gpwrap, true);
1240 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1241 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1242 }
1243 
1244 /*
1245  * Snapshot the specified CPU's dynticks counter so that we can later
1246  * credit them with an implicit quiescent state.  Return 1 if this CPU
1247  * is in dynticks idle mode, which is an extended quiescent state.
1248  */
1249 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1250 {
1251 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1252 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1253 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1254 		rcu_gpnum_ovf(rdp->mynode, rdp);
1255 		return 1;
1256 	}
1257 	return 0;
1258 }
1259 
1260 /*
1261  * Return true if the specified CPU has passed through a quiescent
1262  * state by virtue of being in or having passed through an dynticks
1263  * idle state since the last call to dyntick_save_progress_counter()
1264  * for this same CPU, or by virtue of having been offline.
1265  */
1266 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1267 {
1268 	unsigned long jtsq;
1269 	bool *rnhqp;
1270 	bool *ruqp;
1271 	struct rcu_node *rnp = rdp->mynode;
1272 
1273 	/*
1274 	 * If the CPU passed through or entered a dynticks idle phase with
1275 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1276 	 * already acknowledged the request to pass through a quiescent
1277 	 * state.  Either way, that CPU cannot possibly be in an RCU
1278 	 * read-side critical section that started before the beginning
1279 	 * of the current RCU grace period.
1280 	 */
1281 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1282 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1283 		rcu_gpnum_ovf(rnp, rdp);
1284 		return 1;
1285 	}
1286 
1287 	/*
1288 	 * Complain if a CPU that is considered to be offline from RCU's
1289 	 * perspective has not yet reported a quiescent state.  After all,
1290 	 * the offline CPU should have reported a quiescent state during
1291 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1292 	 * if it ran concurrently with either the CPU going offline or the
1293 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1294 	 * critical section while all CPUs corresponding to that structure
1295 	 * are offline.  This added warning detects bugs in any of these
1296 	 * code paths.
1297 	 *
1298 	 * The rcu_node structure's ->lock is held here, which excludes
1299 	 * the relevant portions the CPU-hotplug code, the grace-period
1300 	 * initialization code, and the rcu_read_unlock() code paths.
1301 	 *
1302 	 * For more detail, please refer to the "Hotplug CPU" section
1303 	 * of RCU's Requirements documentation.
1304 	 */
1305 	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1306 		bool onl;
1307 		struct rcu_node *rnp1;
1308 
1309 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1310 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1311 			(long)rnp->gp_seq, (long)rnp->completedqs);
1312 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1313 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1314 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1315 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1316 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1317 			__func__, rdp->cpu, ".o"[onl],
1318 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1319 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1320 		return 1; /* Break things loose after complaining. */
1321 	}
1322 
1323 	/*
1324 	 * A CPU running for an extended time within the kernel can
1325 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1326 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1327 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1328 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1329 	 * variable are safe because the assignments are repeated if this
1330 	 * CPU failed to pass through a quiescent state.  This code
1331 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1332 	 * is set way high.
1333 	 */
1334 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1335 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1336 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1337 	if (!READ_ONCE(*rnhqp) &&
1338 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1339 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1340 	     rcu_state.cbovld)) {
1341 		WRITE_ONCE(*rnhqp, true);
1342 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1343 		smp_store_release(ruqp, true);
1344 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1345 		WRITE_ONCE(*ruqp, true);
1346 	}
1347 
1348 	/*
1349 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1350 	 * The above code handles this, but only for straight cond_resched().
1351 	 * And some in-kernel loops check need_resched() before calling
1352 	 * cond_resched(), which defeats the above code for CPUs that are
1353 	 * running in-kernel with scheduling-clock interrupts disabled.
1354 	 * So hit them over the head with the resched_cpu() hammer!
1355 	 */
1356 	if (tick_nohz_full_cpu(rdp->cpu) &&
1357 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1358 	     rcu_state.cbovld)) {
1359 		WRITE_ONCE(*ruqp, true);
1360 		resched_cpu(rdp->cpu);
1361 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1362 	}
1363 
1364 	/*
1365 	 * If more than halfway to RCU CPU stall-warning time, invoke
1366 	 * resched_cpu() more frequently to try to loosen things up a bit.
1367 	 * Also check to see if the CPU is getting hammered with interrupts,
1368 	 * but only once per grace period, just to keep the IPIs down to
1369 	 * a dull roar.
1370 	 */
1371 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1372 		if (time_after(jiffies,
1373 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1374 			resched_cpu(rdp->cpu);
1375 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1376 		}
1377 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1378 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1379 		    (rnp->ffmask & rdp->grpmask)) {
1380 			rdp->rcu_iw_pending = true;
1381 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1382 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1390 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1391 			      unsigned long gp_seq_req, const char *s)
1392 {
1393 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1394 				      gp_seq_req, rnp->level,
1395 				      rnp->grplo, rnp->grphi, s);
1396 }
1397 
1398 /*
1399  * rcu_start_this_gp - Request the start of a particular grace period
1400  * @rnp_start: The leaf node of the CPU from which to start.
1401  * @rdp: The rcu_data corresponding to the CPU from which to start.
1402  * @gp_seq_req: The gp_seq of the grace period to start.
1403  *
1404  * Start the specified grace period, as needed to handle newly arrived
1405  * callbacks.  The required future grace periods are recorded in each
1406  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1407  * is reason to awaken the grace-period kthread.
1408  *
1409  * The caller must hold the specified rcu_node structure's ->lock, which
1410  * is why the caller is responsible for waking the grace-period kthread.
1411  *
1412  * Returns true if the GP thread needs to be awakened else false.
1413  */
1414 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1415 			      unsigned long gp_seq_req)
1416 {
1417 	bool ret = false;
1418 	struct rcu_node *rnp;
1419 
1420 	/*
1421 	 * Use funnel locking to either acquire the root rcu_node
1422 	 * structure's lock or bail out if the need for this grace period
1423 	 * has already been recorded -- or if that grace period has in
1424 	 * fact already started.  If there is already a grace period in
1425 	 * progress in a non-leaf node, no recording is needed because the
1426 	 * end of the grace period will scan the leaf rcu_node structures.
1427 	 * Note that rnp_start->lock must not be released.
1428 	 */
1429 	raw_lockdep_assert_held_rcu_node(rnp_start);
1430 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1431 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1432 		if (rnp != rnp_start)
1433 			raw_spin_lock_rcu_node(rnp);
1434 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1435 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1436 		    (rnp != rnp_start &&
1437 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1438 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1439 					  TPS("Prestarted"));
1440 			goto unlock_out;
1441 		}
1442 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1443 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1444 			/*
1445 			 * We just marked the leaf or internal node, and a
1446 			 * grace period is in progress, which means that
1447 			 * rcu_gp_cleanup() will see the marking.  Bail to
1448 			 * reduce contention.
1449 			 */
1450 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1451 					  TPS("Startedleaf"));
1452 			goto unlock_out;
1453 		}
1454 		if (rnp != rnp_start && rnp->parent != NULL)
1455 			raw_spin_unlock_rcu_node(rnp);
1456 		if (!rnp->parent)
1457 			break;  /* At root, and perhaps also leaf. */
1458 	}
1459 
1460 	/* If GP already in progress, just leave, otherwise start one. */
1461 	if (rcu_gp_in_progress()) {
1462 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1463 		goto unlock_out;
1464 	}
1465 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1466 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1467 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1468 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1469 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1470 		goto unlock_out;
1471 	}
1472 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1473 	ret = true;  /* Caller must wake GP kthread. */
1474 unlock_out:
1475 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1476 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1477 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1478 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1479 	}
1480 	if (rnp != rnp_start)
1481 		raw_spin_unlock_rcu_node(rnp);
1482 	return ret;
1483 }
1484 
1485 /*
1486  * Clean up any old requests for the just-ended grace period.  Also return
1487  * whether any additional grace periods have been requested.
1488  */
1489 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1490 {
1491 	bool needmore;
1492 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1493 
1494 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1495 	if (!needmore)
1496 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1497 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1498 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1499 	return needmore;
1500 }
1501 
1502 /*
1503  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1504  * interrupt or softirq handler, in which case we just might immediately
1505  * sleep upon return, resulting in a grace-period hang), and don't bother
1506  * awakening when there is nothing for the grace-period kthread to do
1507  * (as in several CPUs raced to awaken, we lost), and finally don't try
1508  * to awaken a kthread that has not yet been created.  If all those checks
1509  * are passed, track some debug information and awaken.
1510  *
1511  * So why do the self-wakeup when in an interrupt or softirq handler
1512  * in the grace-period kthread's context?  Because the kthread might have
1513  * been interrupted just as it was going to sleep, and just after the final
1514  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1515  * is required, and is therefore supplied.
1516  */
1517 static void rcu_gp_kthread_wake(void)
1518 {
1519 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1520 
1521 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1522 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1523 		return;
1524 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1525 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1526 	swake_up_one(&rcu_state.gp_wq);
1527 }
1528 
1529 /*
1530  * If there is room, assign a ->gp_seq number to any callbacks on this
1531  * CPU that have not already been assigned.  Also accelerate any callbacks
1532  * that were previously assigned a ->gp_seq number that has since proven
1533  * to be too conservative, which can happen if callbacks get assigned a
1534  * ->gp_seq number while RCU is idle, but with reference to a non-root
1535  * rcu_node structure.  This function is idempotent, so it does not hurt
1536  * to call it repeatedly.  Returns an flag saying that we should awaken
1537  * the RCU grace-period kthread.
1538  *
1539  * The caller must hold rnp->lock with interrupts disabled.
1540  */
1541 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1542 {
1543 	unsigned long gp_seq_req;
1544 	bool ret = false;
1545 
1546 	rcu_lockdep_assert_cblist_protected(rdp);
1547 	raw_lockdep_assert_held_rcu_node(rnp);
1548 
1549 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1550 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1551 		return false;
1552 
1553 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1554 
1555 	/*
1556 	 * Callbacks are often registered with incomplete grace-period
1557 	 * information.  Something about the fact that getting exact
1558 	 * information requires acquiring a global lock...  RCU therefore
1559 	 * makes a conservative estimate of the grace period number at which
1560 	 * a given callback will become ready to invoke.	The following
1561 	 * code checks this estimate and improves it when possible, thus
1562 	 * accelerating callback invocation to an earlier grace-period
1563 	 * number.
1564 	 */
1565 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1566 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1567 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1568 
1569 	/* Trace depending on how much we were able to accelerate. */
1570 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1571 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1572 	else
1573 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1574 
1575 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1576 
1577 	return ret;
1578 }
1579 
1580 /*
1581  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1582  * rcu_node structure's ->lock be held.  It consults the cached value
1583  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1584  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1585  * while holding the leaf rcu_node structure's ->lock.
1586  */
1587 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1588 					struct rcu_data *rdp)
1589 {
1590 	unsigned long c;
1591 	bool needwake;
1592 
1593 	rcu_lockdep_assert_cblist_protected(rdp);
1594 	c = rcu_seq_snap(&rcu_state.gp_seq);
1595 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1596 		/* Old request still live, so mark recent callbacks. */
1597 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1598 		return;
1599 	}
1600 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1601 	needwake = rcu_accelerate_cbs(rnp, rdp);
1602 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1603 	if (needwake)
1604 		rcu_gp_kthread_wake();
1605 }
1606 
1607 /*
1608  * Move any callbacks whose grace period has completed to the
1609  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1610  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1611  * sublist.  This function is idempotent, so it does not hurt to
1612  * invoke it repeatedly.  As long as it is not invoked -too- often...
1613  * Returns true if the RCU grace-period kthread needs to be awakened.
1614  *
1615  * The caller must hold rnp->lock with interrupts disabled.
1616  */
1617 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1618 {
1619 	rcu_lockdep_assert_cblist_protected(rdp);
1620 	raw_lockdep_assert_held_rcu_node(rnp);
1621 
1622 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1623 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1624 		return false;
1625 
1626 	/*
1627 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1628 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1629 	 */
1630 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1631 
1632 	/* Classify any remaining callbacks. */
1633 	return rcu_accelerate_cbs(rnp, rdp);
1634 }
1635 
1636 /*
1637  * Move and classify callbacks, but only if doing so won't require
1638  * that the RCU grace-period kthread be awakened.
1639  */
1640 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1641 						  struct rcu_data *rdp)
1642 {
1643 	rcu_lockdep_assert_cblist_protected(rdp);
1644 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1645 	    !raw_spin_trylock_rcu_node(rnp))
1646 		return;
1647 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1648 	raw_spin_unlock_rcu_node(rnp);
1649 }
1650 
1651 /*
1652  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1653  * quiescent state.  This is intended to be invoked when the CPU notices
1654  * a new grace period.
1655  */
1656 static void rcu_strict_gp_check_qs(void)
1657 {
1658 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1659 		rcu_read_lock();
1660 		rcu_read_unlock();
1661 	}
1662 }
1663 
1664 /*
1665  * Update CPU-local rcu_data state to record the beginnings and ends of
1666  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1667  * structure corresponding to the current CPU, and must have irqs disabled.
1668  * Returns true if the grace-period kthread needs to be awakened.
1669  */
1670 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1671 {
1672 	bool ret = false;
1673 	bool need_qs;
1674 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1675 
1676 	raw_lockdep_assert_held_rcu_node(rnp);
1677 
1678 	if (rdp->gp_seq == rnp->gp_seq)
1679 		return false; /* Nothing to do. */
1680 
1681 	/* Handle the ends of any preceding grace periods first. */
1682 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1683 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1684 		if (!offloaded)
1685 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1686 		rdp->core_needs_qs = false;
1687 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1688 	} else {
1689 		if (!offloaded)
1690 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1691 		if (rdp->core_needs_qs)
1692 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1693 	}
1694 
1695 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1696 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1697 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1698 		/*
1699 		 * If the current grace period is waiting for this CPU,
1700 		 * set up to detect a quiescent state, otherwise don't
1701 		 * go looking for one.
1702 		 */
1703 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1704 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1705 		rdp->cpu_no_qs.b.norm = need_qs;
1706 		rdp->core_needs_qs = need_qs;
1707 		zero_cpu_stall_ticks(rdp);
1708 	}
1709 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1710 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1711 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1712 	WRITE_ONCE(rdp->gpwrap, false);
1713 	rcu_gpnum_ovf(rnp, rdp);
1714 	return ret;
1715 }
1716 
1717 static void note_gp_changes(struct rcu_data *rdp)
1718 {
1719 	unsigned long flags;
1720 	bool needwake;
1721 	struct rcu_node *rnp;
1722 
1723 	local_irq_save(flags);
1724 	rnp = rdp->mynode;
1725 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1726 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1727 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1728 		local_irq_restore(flags);
1729 		return;
1730 	}
1731 	needwake = __note_gp_changes(rnp, rdp);
1732 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1733 	rcu_strict_gp_check_qs();
1734 	if (needwake)
1735 		rcu_gp_kthread_wake();
1736 }
1737 
1738 static void rcu_gp_slow(int delay)
1739 {
1740 	if (delay > 0 &&
1741 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1742 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1743 		schedule_timeout_idle(delay);
1744 }
1745 
1746 static unsigned long sleep_duration;
1747 
1748 /* Allow rcutorture to stall the grace-period kthread. */
1749 void rcu_gp_set_torture_wait(int duration)
1750 {
1751 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1752 		WRITE_ONCE(sleep_duration, duration);
1753 }
1754 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1755 
1756 /* Actually implement the aforementioned wait. */
1757 static void rcu_gp_torture_wait(void)
1758 {
1759 	unsigned long duration;
1760 
1761 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1762 		return;
1763 	duration = xchg(&sleep_duration, 0UL);
1764 	if (duration > 0) {
1765 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1766 		schedule_timeout_idle(duration);
1767 		pr_alert("%s: Wait complete\n", __func__);
1768 	}
1769 }
1770 
1771 /*
1772  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1773  * processing.
1774  */
1775 static void rcu_strict_gp_boundary(void *unused)
1776 {
1777 	invoke_rcu_core();
1778 }
1779 
1780 /*
1781  * Initialize a new grace period.  Return false if no grace period required.
1782  */
1783 static bool rcu_gp_init(void)
1784 {
1785 	unsigned long firstseq;
1786 	unsigned long flags;
1787 	unsigned long oldmask;
1788 	unsigned long mask;
1789 	struct rcu_data *rdp;
1790 	struct rcu_node *rnp = rcu_get_root();
1791 
1792 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1793 	raw_spin_lock_irq_rcu_node(rnp);
1794 	if (!READ_ONCE(rcu_state.gp_flags)) {
1795 		/* Spurious wakeup, tell caller to go back to sleep.  */
1796 		raw_spin_unlock_irq_rcu_node(rnp);
1797 		return false;
1798 	}
1799 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1800 
1801 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1802 		/*
1803 		 * Grace period already in progress, don't start another.
1804 		 * Not supposed to be able to happen.
1805 		 */
1806 		raw_spin_unlock_irq_rcu_node(rnp);
1807 		return false;
1808 	}
1809 
1810 	/* Advance to a new grace period and initialize state. */
1811 	record_gp_stall_check_time();
1812 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1813 	rcu_seq_start(&rcu_state.gp_seq);
1814 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1815 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1816 	raw_spin_unlock_irq_rcu_node(rnp);
1817 
1818 	/*
1819 	 * Apply per-leaf buffered online and offline operations to
1820 	 * the rcu_node tree. Note that this new grace period need not
1821 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1822 	 * offlining path, when combined with checks in this function,
1823 	 * will handle CPUs that are currently going offline or that will
1824 	 * go offline later.  Please also refer to "Hotplug CPU" section
1825 	 * of RCU's Requirements documentation.
1826 	 */
1827 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1828 	rcu_for_each_leaf_node(rnp) {
1829 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1830 		firstseq = READ_ONCE(rnp->ofl_seq);
1831 		if (firstseq & 0x1)
1832 			while (firstseq == READ_ONCE(rnp->ofl_seq))
1833 				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1834 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1835 		raw_spin_lock(&rcu_state.ofl_lock);
1836 		raw_spin_lock_irq_rcu_node(rnp);
1837 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1838 		    !rnp->wait_blkd_tasks) {
1839 			/* Nothing to do on this leaf rcu_node structure. */
1840 			raw_spin_unlock_irq_rcu_node(rnp);
1841 			raw_spin_unlock(&rcu_state.ofl_lock);
1842 			continue;
1843 		}
1844 
1845 		/* Record old state, apply changes to ->qsmaskinit field. */
1846 		oldmask = rnp->qsmaskinit;
1847 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1848 
1849 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1850 		if (!oldmask != !rnp->qsmaskinit) {
1851 			if (!oldmask) { /* First online CPU for rcu_node. */
1852 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1853 					rcu_init_new_rnp(rnp);
1854 			} else if (rcu_preempt_has_tasks(rnp)) {
1855 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1856 			} else { /* Last offline CPU and can propagate. */
1857 				rcu_cleanup_dead_rnp(rnp);
1858 			}
1859 		}
1860 
1861 		/*
1862 		 * If all waited-on tasks from prior grace period are
1863 		 * done, and if all this rcu_node structure's CPUs are
1864 		 * still offline, propagate up the rcu_node tree and
1865 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1866 		 * rcu_node structure's CPUs has since come back online,
1867 		 * simply clear ->wait_blkd_tasks.
1868 		 */
1869 		if (rnp->wait_blkd_tasks &&
1870 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1871 			rnp->wait_blkd_tasks = false;
1872 			if (!rnp->qsmaskinit)
1873 				rcu_cleanup_dead_rnp(rnp);
1874 		}
1875 
1876 		raw_spin_unlock_irq_rcu_node(rnp);
1877 		raw_spin_unlock(&rcu_state.ofl_lock);
1878 	}
1879 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1880 
1881 	/*
1882 	 * Set the quiescent-state-needed bits in all the rcu_node
1883 	 * structures for all currently online CPUs in breadth-first
1884 	 * order, starting from the root rcu_node structure, relying on the
1885 	 * layout of the tree within the rcu_state.node[] array.  Note that
1886 	 * other CPUs will access only the leaves of the hierarchy, thus
1887 	 * seeing that no grace period is in progress, at least until the
1888 	 * corresponding leaf node has been initialized.
1889 	 *
1890 	 * The grace period cannot complete until the initialization
1891 	 * process finishes, because this kthread handles both.
1892 	 */
1893 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1894 	rcu_for_each_node_breadth_first(rnp) {
1895 		rcu_gp_slow(gp_init_delay);
1896 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1897 		rdp = this_cpu_ptr(&rcu_data);
1898 		rcu_preempt_check_blocked_tasks(rnp);
1899 		rnp->qsmask = rnp->qsmaskinit;
1900 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1901 		if (rnp == rdp->mynode)
1902 			(void)__note_gp_changes(rnp, rdp);
1903 		rcu_preempt_boost_start_gp(rnp);
1904 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1905 					    rnp->level, rnp->grplo,
1906 					    rnp->grphi, rnp->qsmask);
1907 		/* Quiescent states for tasks on any now-offline CPUs. */
1908 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1909 		rnp->rcu_gp_init_mask = mask;
1910 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1911 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1912 		else
1913 			raw_spin_unlock_irq_rcu_node(rnp);
1914 		cond_resched_tasks_rcu_qs();
1915 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1916 	}
1917 
1918 	// If strict, make all CPUs aware of new grace period.
1919 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1920 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1921 
1922 	return true;
1923 }
1924 
1925 /*
1926  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1927  * time.
1928  */
1929 static bool rcu_gp_fqs_check_wake(int *gfp)
1930 {
1931 	struct rcu_node *rnp = rcu_get_root();
1932 
1933 	// If under overload conditions, force an immediate FQS scan.
1934 	if (*gfp & RCU_GP_FLAG_OVLD)
1935 		return true;
1936 
1937 	// Someone like call_rcu() requested a force-quiescent-state scan.
1938 	*gfp = READ_ONCE(rcu_state.gp_flags);
1939 	if (*gfp & RCU_GP_FLAG_FQS)
1940 		return true;
1941 
1942 	// The current grace period has completed.
1943 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1944 		return true;
1945 
1946 	return false;
1947 }
1948 
1949 /*
1950  * Do one round of quiescent-state forcing.
1951  */
1952 static void rcu_gp_fqs(bool first_time)
1953 {
1954 	struct rcu_node *rnp = rcu_get_root();
1955 
1956 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1957 	rcu_state.n_force_qs++;
1958 	if (first_time) {
1959 		/* Collect dyntick-idle snapshots. */
1960 		force_qs_rnp(dyntick_save_progress_counter);
1961 	} else {
1962 		/* Handle dyntick-idle and offline CPUs. */
1963 		force_qs_rnp(rcu_implicit_dynticks_qs);
1964 	}
1965 	/* Clear flag to prevent immediate re-entry. */
1966 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1967 		raw_spin_lock_irq_rcu_node(rnp);
1968 		WRITE_ONCE(rcu_state.gp_flags,
1969 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1970 		raw_spin_unlock_irq_rcu_node(rnp);
1971 	}
1972 }
1973 
1974 /*
1975  * Loop doing repeated quiescent-state forcing until the grace period ends.
1976  */
1977 static void rcu_gp_fqs_loop(void)
1978 {
1979 	bool first_gp_fqs;
1980 	int gf = 0;
1981 	unsigned long j;
1982 	int ret;
1983 	struct rcu_node *rnp = rcu_get_root();
1984 
1985 	first_gp_fqs = true;
1986 	j = READ_ONCE(jiffies_till_first_fqs);
1987 	if (rcu_state.cbovld)
1988 		gf = RCU_GP_FLAG_OVLD;
1989 	ret = 0;
1990 	for (;;) {
1991 		if (!ret) {
1992 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1993 			/*
1994 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1995 			 * update; required for stall checks.
1996 			 */
1997 			smp_wmb();
1998 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1999 				   jiffies + (j ? 3 * j : 2));
2000 		}
2001 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2002 				       TPS("fqswait"));
2003 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2004 		ret = swait_event_idle_timeout_exclusive(
2005 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
2006 		rcu_gp_torture_wait();
2007 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2008 		/* Locking provides needed memory barriers. */
2009 		/* If grace period done, leave loop. */
2010 		if (!READ_ONCE(rnp->qsmask) &&
2011 		    !rcu_preempt_blocked_readers_cgp(rnp))
2012 			break;
2013 		/* If time for quiescent-state forcing, do it. */
2014 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2015 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2016 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2017 					       TPS("fqsstart"));
2018 			rcu_gp_fqs(first_gp_fqs);
2019 			gf = 0;
2020 			if (first_gp_fqs) {
2021 				first_gp_fqs = false;
2022 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2023 			}
2024 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2025 					       TPS("fqsend"));
2026 			cond_resched_tasks_rcu_qs();
2027 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2028 			ret = 0; /* Force full wait till next FQS. */
2029 			j = READ_ONCE(jiffies_till_next_fqs);
2030 		} else {
2031 			/* Deal with stray signal. */
2032 			cond_resched_tasks_rcu_qs();
2033 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2034 			WARN_ON(signal_pending(current));
2035 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2036 					       TPS("fqswaitsig"));
2037 			ret = 1; /* Keep old FQS timing. */
2038 			j = jiffies;
2039 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2040 				j = 1;
2041 			else
2042 				j = rcu_state.jiffies_force_qs - j;
2043 			gf = 0;
2044 		}
2045 	}
2046 }
2047 
2048 /*
2049  * Clean up after the old grace period.
2050  */
2051 static void rcu_gp_cleanup(void)
2052 {
2053 	int cpu;
2054 	bool needgp = false;
2055 	unsigned long gp_duration;
2056 	unsigned long new_gp_seq;
2057 	bool offloaded;
2058 	struct rcu_data *rdp;
2059 	struct rcu_node *rnp = rcu_get_root();
2060 	struct swait_queue_head *sq;
2061 
2062 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2063 	raw_spin_lock_irq_rcu_node(rnp);
2064 	rcu_state.gp_end = jiffies;
2065 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2066 	if (gp_duration > rcu_state.gp_max)
2067 		rcu_state.gp_max = gp_duration;
2068 
2069 	/*
2070 	 * We know the grace period is complete, but to everyone else
2071 	 * it appears to still be ongoing.  But it is also the case
2072 	 * that to everyone else it looks like there is nothing that
2073 	 * they can do to advance the grace period.  It is therefore
2074 	 * safe for us to drop the lock in order to mark the grace
2075 	 * period as completed in all of the rcu_node structures.
2076 	 */
2077 	raw_spin_unlock_irq_rcu_node(rnp);
2078 
2079 	/*
2080 	 * Propagate new ->gp_seq value to rcu_node structures so that
2081 	 * other CPUs don't have to wait until the start of the next grace
2082 	 * period to process their callbacks.  This also avoids some nasty
2083 	 * RCU grace-period initialization races by forcing the end of
2084 	 * the current grace period to be completely recorded in all of
2085 	 * the rcu_node structures before the beginning of the next grace
2086 	 * period is recorded in any of the rcu_node structures.
2087 	 */
2088 	new_gp_seq = rcu_state.gp_seq;
2089 	rcu_seq_end(&new_gp_seq);
2090 	rcu_for_each_node_breadth_first(rnp) {
2091 		raw_spin_lock_irq_rcu_node(rnp);
2092 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2093 			dump_blkd_tasks(rnp, 10);
2094 		WARN_ON_ONCE(rnp->qsmask);
2095 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2096 		rdp = this_cpu_ptr(&rcu_data);
2097 		if (rnp == rdp->mynode)
2098 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2099 		/* smp_mb() provided by prior unlock-lock pair. */
2100 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2101 		// Reset overload indication for CPUs no longer overloaded
2102 		if (rcu_is_leaf_node(rnp))
2103 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2104 				rdp = per_cpu_ptr(&rcu_data, cpu);
2105 				check_cb_ovld_locked(rdp, rnp);
2106 			}
2107 		sq = rcu_nocb_gp_get(rnp);
2108 		raw_spin_unlock_irq_rcu_node(rnp);
2109 		rcu_nocb_gp_cleanup(sq);
2110 		cond_resched_tasks_rcu_qs();
2111 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2112 		rcu_gp_slow(gp_cleanup_delay);
2113 	}
2114 	rnp = rcu_get_root();
2115 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2116 
2117 	/* Declare grace period done, trace first to use old GP number. */
2118 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2119 	rcu_seq_end(&rcu_state.gp_seq);
2120 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2121 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2122 	/* Check for GP requests since above loop. */
2123 	rdp = this_cpu_ptr(&rcu_data);
2124 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2125 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2126 				  TPS("CleanupMore"));
2127 		needgp = true;
2128 	}
2129 	/* Advance CBs to reduce false positives below. */
2130 	offloaded = rcu_rdp_is_offloaded(rdp);
2131 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2132 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2133 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2134 		trace_rcu_grace_period(rcu_state.name,
2135 				       rcu_state.gp_seq,
2136 				       TPS("newreq"));
2137 	} else {
2138 		WRITE_ONCE(rcu_state.gp_flags,
2139 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2140 	}
2141 	raw_spin_unlock_irq_rcu_node(rnp);
2142 
2143 	// If strict, make all CPUs aware of the end of the old grace period.
2144 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2145 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2146 }
2147 
2148 /*
2149  * Body of kthread that handles grace periods.
2150  */
2151 static int __noreturn rcu_gp_kthread(void *unused)
2152 {
2153 	rcu_bind_gp_kthread();
2154 	for (;;) {
2155 
2156 		/* Handle grace-period start. */
2157 		for (;;) {
2158 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2159 					       TPS("reqwait"));
2160 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2161 			swait_event_idle_exclusive(rcu_state.gp_wq,
2162 					 READ_ONCE(rcu_state.gp_flags) &
2163 					 RCU_GP_FLAG_INIT);
2164 			rcu_gp_torture_wait();
2165 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2166 			/* Locking provides needed memory barrier. */
2167 			if (rcu_gp_init())
2168 				break;
2169 			cond_resched_tasks_rcu_qs();
2170 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2171 			WARN_ON(signal_pending(current));
2172 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2173 					       TPS("reqwaitsig"));
2174 		}
2175 
2176 		/* Handle quiescent-state forcing. */
2177 		rcu_gp_fqs_loop();
2178 
2179 		/* Handle grace-period end. */
2180 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2181 		rcu_gp_cleanup();
2182 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2183 	}
2184 }
2185 
2186 /*
2187  * Report a full set of quiescent states to the rcu_state data structure.
2188  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2189  * another grace period is required.  Whether we wake the grace-period
2190  * kthread or it awakens itself for the next round of quiescent-state
2191  * forcing, that kthread will clean up after the just-completed grace
2192  * period.  Note that the caller must hold rnp->lock, which is released
2193  * before return.
2194  */
2195 static void rcu_report_qs_rsp(unsigned long flags)
2196 	__releases(rcu_get_root()->lock)
2197 {
2198 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2199 	WARN_ON_ONCE(!rcu_gp_in_progress());
2200 	WRITE_ONCE(rcu_state.gp_flags,
2201 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2202 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2203 	rcu_gp_kthread_wake();
2204 }
2205 
2206 /*
2207  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2208  * Allows quiescent states for a group of CPUs to be reported at one go
2209  * to the specified rcu_node structure, though all the CPUs in the group
2210  * must be represented by the same rcu_node structure (which need not be a
2211  * leaf rcu_node structure, though it often will be).  The gps parameter
2212  * is the grace-period snapshot, which means that the quiescent states
2213  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2214  * must be held upon entry, and it is released before return.
2215  *
2216  * As a special case, if mask is zero, the bit-already-cleared check is
2217  * disabled.  This allows propagating quiescent state due to resumed tasks
2218  * during grace-period initialization.
2219  */
2220 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2221 			      unsigned long gps, unsigned long flags)
2222 	__releases(rnp->lock)
2223 {
2224 	unsigned long oldmask = 0;
2225 	struct rcu_node *rnp_c;
2226 
2227 	raw_lockdep_assert_held_rcu_node(rnp);
2228 
2229 	/* Walk up the rcu_node hierarchy. */
2230 	for (;;) {
2231 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2232 
2233 			/*
2234 			 * Our bit has already been cleared, or the
2235 			 * relevant grace period is already over, so done.
2236 			 */
2237 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2238 			return;
2239 		}
2240 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2241 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2242 			     rcu_preempt_blocked_readers_cgp(rnp));
2243 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2244 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2245 						 mask, rnp->qsmask, rnp->level,
2246 						 rnp->grplo, rnp->grphi,
2247 						 !!rnp->gp_tasks);
2248 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2249 
2250 			/* Other bits still set at this level, so done. */
2251 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2252 			return;
2253 		}
2254 		rnp->completedqs = rnp->gp_seq;
2255 		mask = rnp->grpmask;
2256 		if (rnp->parent == NULL) {
2257 
2258 			/* No more levels.  Exit loop holding root lock. */
2259 
2260 			break;
2261 		}
2262 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2263 		rnp_c = rnp;
2264 		rnp = rnp->parent;
2265 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2266 		oldmask = READ_ONCE(rnp_c->qsmask);
2267 	}
2268 
2269 	/*
2270 	 * Get here if we are the last CPU to pass through a quiescent
2271 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2272 	 * to clean up and start the next grace period if one is needed.
2273 	 */
2274 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2275 }
2276 
2277 /*
2278  * Record a quiescent state for all tasks that were previously queued
2279  * on the specified rcu_node structure and that were blocking the current
2280  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2281  * irqs disabled, and this lock is released upon return, but irqs remain
2282  * disabled.
2283  */
2284 static void __maybe_unused
2285 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2286 	__releases(rnp->lock)
2287 {
2288 	unsigned long gps;
2289 	unsigned long mask;
2290 	struct rcu_node *rnp_p;
2291 
2292 	raw_lockdep_assert_held_rcu_node(rnp);
2293 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2294 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2295 	    rnp->qsmask != 0) {
2296 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2297 		return;  /* Still need more quiescent states! */
2298 	}
2299 
2300 	rnp->completedqs = rnp->gp_seq;
2301 	rnp_p = rnp->parent;
2302 	if (rnp_p == NULL) {
2303 		/*
2304 		 * Only one rcu_node structure in the tree, so don't
2305 		 * try to report up to its nonexistent parent!
2306 		 */
2307 		rcu_report_qs_rsp(flags);
2308 		return;
2309 	}
2310 
2311 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2312 	gps = rnp->gp_seq;
2313 	mask = rnp->grpmask;
2314 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2315 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2316 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2317 }
2318 
2319 /*
2320  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2321  * structure.  This must be called from the specified CPU.
2322  */
2323 static void
2324 rcu_report_qs_rdp(struct rcu_data *rdp)
2325 {
2326 	unsigned long flags;
2327 	unsigned long mask;
2328 	bool needwake = false;
2329 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2330 	struct rcu_node *rnp;
2331 
2332 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2333 	rnp = rdp->mynode;
2334 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2335 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2336 	    rdp->gpwrap) {
2337 
2338 		/*
2339 		 * The grace period in which this quiescent state was
2340 		 * recorded has ended, so don't report it upwards.
2341 		 * We will instead need a new quiescent state that lies
2342 		 * within the current grace period.
2343 		 */
2344 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2345 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2346 		return;
2347 	}
2348 	mask = rdp->grpmask;
2349 	rdp->core_needs_qs = false;
2350 	if ((rnp->qsmask & mask) == 0) {
2351 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2352 	} else {
2353 		/*
2354 		 * This GP can't end until cpu checks in, so all of our
2355 		 * callbacks can be processed during the next GP.
2356 		 */
2357 		if (!offloaded)
2358 			needwake = rcu_accelerate_cbs(rnp, rdp);
2359 
2360 		rcu_disable_urgency_upon_qs(rdp);
2361 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2362 		/* ^^^ Released rnp->lock */
2363 		if (needwake)
2364 			rcu_gp_kthread_wake();
2365 	}
2366 }
2367 
2368 /*
2369  * Check to see if there is a new grace period of which this CPU
2370  * is not yet aware, and if so, set up local rcu_data state for it.
2371  * Otherwise, see if this CPU has just passed through its first
2372  * quiescent state for this grace period, and record that fact if so.
2373  */
2374 static void
2375 rcu_check_quiescent_state(struct rcu_data *rdp)
2376 {
2377 	/* Check for grace-period ends and beginnings. */
2378 	note_gp_changes(rdp);
2379 
2380 	/*
2381 	 * Does this CPU still need to do its part for current grace period?
2382 	 * If no, return and let the other CPUs do their part as well.
2383 	 */
2384 	if (!rdp->core_needs_qs)
2385 		return;
2386 
2387 	/*
2388 	 * Was there a quiescent state since the beginning of the grace
2389 	 * period? If no, then exit and wait for the next call.
2390 	 */
2391 	if (rdp->cpu_no_qs.b.norm)
2392 		return;
2393 
2394 	/*
2395 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2396 	 * judge of that).
2397 	 */
2398 	rcu_report_qs_rdp(rdp);
2399 }
2400 
2401 /*
2402  * Near the end of the offline process.  Trace the fact that this CPU
2403  * is going offline.
2404  */
2405 int rcutree_dying_cpu(unsigned int cpu)
2406 {
2407 	bool blkd;
2408 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2409 	struct rcu_node *rnp = rdp->mynode;
2410 
2411 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2412 		return 0;
2413 
2414 	blkd = !!(rnp->qsmask & rdp->grpmask);
2415 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2416 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2417 	return 0;
2418 }
2419 
2420 /*
2421  * All CPUs for the specified rcu_node structure have gone offline,
2422  * and all tasks that were preempted within an RCU read-side critical
2423  * section while running on one of those CPUs have since exited their RCU
2424  * read-side critical section.  Some other CPU is reporting this fact with
2425  * the specified rcu_node structure's ->lock held and interrupts disabled.
2426  * This function therefore goes up the tree of rcu_node structures,
2427  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2428  * the leaf rcu_node structure's ->qsmaskinit field has already been
2429  * updated.
2430  *
2431  * This function does check that the specified rcu_node structure has
2432  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2433  * prematurely.  That said, invoking it after the fact will cost you
2434  * a needless lock acquisition.  So once it has done its work, don't
2435  * invoke it again.
2436  */
2437 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2438 {
2439 	long mask;
2440 	struct rcu_node *rnp = rnp_leaf;
2441 
2442 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2443 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2444 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2445 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2446 		return;
2447 	for (;;) {
2448 		mask = rnp->grpmask;
2449 		rnp = rnp->parent;
2450 		if (!rnp)
2451 			break;
2452 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2453 		rnp->qsmaskinit &= ~mask;
2454 		/* Between grace periods, so better already be zero! */
2455 		WARN_ON_ONCE(rnp->qsmask);
2456 		if (rnp->qsmaskinit) {
2457 			raw_spin_unlock_rcu_node(rnp);
2458 			/* irqs remain disabled. */
2459 			return;
2460 		}
2461 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2462 	}
2463 }
2464 
2465 /*
2466  * The CPU has been completely removed, and some other CPU is reporting
2467  * this fact from process context.  Do the remainder of the cleanup.
2468  * There can only be one CPU hotplug operation at a time, so no need for
2469  * explicit locking.
2470  */
2471 int rcutree_dead_cpu(unsigned int cpu)
2472 {
2473 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2474 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2475 
2476 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2477 		return 0;
2478 
2479 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2480 	/* Adjust any no-longer-needed kthreads. */
2481 	rcu_boost_kthread_setaffinity(rnp, -1);
2482 	/* Do any needed no-CB deferred wakeups from this CPU. */
2483 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2484 
2485 	// Stop-machine done, so allow nohz_full to disable tick.
2486 	tick_dep_clear(TICK_DEP_BIT_RCU);
2487 	return 0;
2488 }
2489 
2490 /*
2491  * Invoke any RCU callbacks that have made it to the end of their grace
2492  * period.  Thottle as specified by rdp->blimit.
2493  */
2494 static void rcu_do_batch(struct rcu_data *rdp)
2495 {
2496 	int div;
2497 	bool __maybe_unused empty;
2498 	unsigned long flags;
2499 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2500 	struct rcu_head *rhp;
2501 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2502 	long bl, count = 0;
2503 	long pending, tlimit = 0;
2504 
2505 	/* If no callbacks are ready, just return. */
2506 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2507 		trace_rcu_batch_start(rcu_state.name,
2508 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2509 		trace_rcu_batch_end(rcu_state.name, 0,
2510 				    !rcu_segcblist_empty(&rdp->cblist),
2511 				    need_resched(), is_idle_task(current),
2512 				    rcu_is_callbacks_kthread());
2513 		return;
2514 	}
2515 
2516 	/*
2517 	 * Extract the list of ready callbacks, disabling to prevent
2518 	 * races with call_rcu() from interrupt handlers.  Leave the
2519 	 * callback counts, as rcu_barrier() needs to be conservative.
2520 	 */
2521 	local_irq_save(flags);
2522 	rcu_nocb_lock(rdp);
2523 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2524 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2525 	div = READ_ONCE(rcu_divisor);
2526 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2527 	bl = max(rdp->blimit, pending >> div);
2528 	if (unlikely(bl > 100)) {
2529 		long rrn = READ_ONCE(rcu_resched_ns);
2530 
2531 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2532 		tlimit = local_clock() + rrn;
2533 	}
2534 	trace_rcu_batch_start(rcu_state.name,
2535 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2536 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2537 	if (offloaded)
2538 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2539 
2540 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2541 	rcu_nocb_unlock_irqrestore(rdp, flags);
2542 
2543 	/* Invoke callbacks. */
2544 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2545 	rhp = rcu_cblist_dequeue(&rcl);
2546 
2547 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2548 		rcu_callback_t f;
2549 
2550 		count++;
2551 		debug_rcu_head_unqueue(rhp);
2552 
2553 		rcu_lock_acquire(&rcu_callback_map);
2554 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2555 
2556 		f = rhp->func;
2557 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2558 		f(rhp);
2559 
2560 		rcu_lock_release(&rcu_callback_map);
2561 
2562 		/*
2563 		 * Stop only if limit reached and CPU has something to do.
2564 		 */
2565 		if (count >= bl && !offloaded &&
2566 		    (need_resched() ||
2567 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2568 			break;
2569 		if (unlikely(tlimit)) {
2570 			/* only call local_clock() every 32 callbacks */
2571 			if (likely((count & 31) || local_clock() < tlimit))
2572 				continue;
2573 			/* Exceeded the time limit, so leave. */
2574 			break;
2575 		}
2576 		if (!in_serving_softirq()) {
2577 			local_bh_enable();
2578 			lockdep_assert_irqs_enabled();
2579 			cond_resched_tasks_rcu_qs();
2580 			lockdep_assert_irqs_enabled();
2581 			local_bh_disable();
2582 		}
2583 	}
2584 
2585 	local_irq_save(flags);
2586 	rcu_nocb_lock(rdp);
2587 	rdp->n_cbs_invoked += count;
2588 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2589 			    is_idle_task(current), rcu_is_callbacks_kthread());
2590 
2591 	/* Update counts and requeue any remaining callbacks. */
2592 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2593 	rcu_segcblist_add_len(&rdp->cblist, -count);
2594 
2595 	/* Reinstate batch limit if we have worked down the excess. */
2596 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2597 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2598 		rdp->blimit = blimit;
2599 
2600 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2601 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2602 		rdp->qlen_last_fqs_check = 0;
2603 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2604 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2605 		rdp->qlen_last_fqs_check = count;
2606 
2607 	/*
2608 	 * The following usually indicates a double call_rcu().  To track
2609 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2610 	 */
2611 	empty = rcu_segcblist_empty(&rdp->cblist);
2612 	WARN_ON_ONCE(count == 0 && !empty);
2613 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2614 		     count != 0 && empty);
2615 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2616 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2617 
2618 	rcu_nocb_unlock_irqrestore(rdp, flags);
2619 
2620 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2621 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2622 		invoke_rcu_core();
2623 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2624 }
2625 
2626 /*
2627  * This function is invoked from each scheduling-clock interrupt,
2628  * and checks to see if this CPU is in a non-context-switch quiescent
2629  * state, for example, user mode or idle loop.  It also schedules RCU
2630  * core processing.  If the current grace period has gone on too long,
2631  * it will ask the scheduler to manufacture a context switch for the sole
2632  * purpose of providing a providing the needed quiescent state.
2633  */
2634 void rcu_sched_clock_irq(int user)
2635 {
2636 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2637 	lockdep_assert_irqs_disabled();
2638 	raw_cpu_inc(rcu_data.ticks_this_gp);
2639 	/* The load-acquire pairs with the store-release setting to true. */
2640 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2641 		/* Idle and userspace execution already are quiescent states. */
2642 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2643 			set_tsk_need_resched(current);
2644 			set_preempt_need_resched();
2645 		}
2646 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2647 	}
2648 	rcu_flavor_sched_clock_irq(user);
2649 	if (rcu_pending(user))
2650 		invoke_rcu_core();
2651 	lockdep_assert_irqs_disabled();
2652 
2653 	trace_rcu_utilization(TPS("End scheduler-tick"));
2654 }
2655 
2656 /*
2657  * Scan the leaf rcu_node structures.  For each structure on which all
2658  * CPUs have reported a quiescent state and on which there are tasks
2659  * blocking the current grace period, initiate RCU priority boosting.
2660  * Otherwise, invoke the specified function to check dyntick state for
2661  * each CPU that has not yet reported a quiescent state.
2662  */
2663 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2664 {
2665 	int cpu;
2666 	unsigned long flags;
2667 	unsigned long mask;
2668 	struct rcu_data *rdp;
2669 	struct rcu_node *rnp;
2670 
2671 	rcu_state.cbovld = rcu_state.cbovldnext;
2672 	rcu_state.cbovldnext = false;
2673 	rcu_for_each_leaf_node(rnp) {
2674 		cond_resched_tasks_rcu_qs();
2675 		mask = 0;
2676 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2677 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2678 		if (rnp->qsmask == 0) {
2679 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2680 				/*
2681 				 * No point in scanning bits because they
2682 				 * are all zero.  But we might need to
2683 				 * priority-boost blocked readers.
2684 				 */
2685 				rcu_initiate_boost(rnp, flags);
2686 				/* rcu_initiate_boost() releases rnp->lock */
2687 				continue;
2688 			}
2689 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2690 			continue;
2691 		}
2692 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2693 			rdp = per_cpu_ptr(&rcu_data, cpu);
2694 			if (f(rdp)) {
2695 				mask |= rdp->grpmask;
2696 				rcu_disable_urgency_upon_qs(rdp);
2697 			}
2698 		}
2699 		if (mask != 0) {
2700 			/* Idle/offline CPUs, report (releases rnp->lock). */
2701 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2702 		} else {
2703 			/* Nothing to do here, so just drop the lock. */
2704 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2705 		}
2706 	}
2707 }
2708 
2709 /*
2710  * Force quiescent states on reluctant CPUs, and also detect which
2711  * CPUs are in dyntick-idle mode.
2712  */
2713 void rcu_force_quiescent_state(void)
2714 {
2715 	unsigned long flags;
2716 	bool ret;
2717 	struct rcu_node *rnp;
2718 	struct rcu_node *rnp_old = NULL;
2719 
2720 	/* Funnel through hierarchy to reduce memory contention. */
2721 	rnp = __this_cpu_read(rcu_data.mynode);
2722 	for (; rnp != NULL; rnp = rnp->parent) {
2723 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2724 		       !raw_spin_trylock(&rnp->fqslock);
2725 		if (rnp_old != NULL)
2726 			raw_spin_unlock(&rnp_old->fqslock);
2727 		if (ret)
2728 			return;
2729 		rnp_old = rnp;
2730 	}
2731 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2732 
2733 	/* Reached the root of the rcu_node tree, acquire lock. */
2734 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2735 	raw_spin_unlock(&rnp_old->fqslock);
2736 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2737 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2738 		return;  /* Someone beat us to it. */
2739 	}
2740 	WRITE_ONCE(rcu_state.gp_flags,
2741 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2742 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2743 	rcu_gp_kthread_wake();
2744 }
2745 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2746 
2747 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2748 // grace periods.
2749 static void strict_work_handler(struct work_struct *work)
2750 {
2751 	rcu_read_lock();
2752 	rcu_read_unlock();
2753 }
2754 
2755 /* Perform RCU core processing work for the current CPU.  */
2756 static __latent_entropy void rcu_core(void)
2757 {
2758 	unsigned long flags;
2759 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2760 	struct rcu_node *rnp = rdp->mynode;
2761 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2762 
2763 	if (cpu_is_offline(smp_processor_id()))
2764 		return;
2765 	trace_rcu_utilization(TPS("Start RCU core"));
2766 	WARN_ON_ONCE(!rdp->beenonline);
2767 
2768 	/* Report any deferred quiescent states if preemption enabled. */
2769 	if (!(preempt_count() & PREEMPT_MASK)) {
2770 		rcu_preempt_deferred_qs(current);
2771 	} else if (rcu_preempt_need_deferred_qs(current)) {
2772 		set_tsk_need_resched(current);
2773 		set_preempt_need_resched();
2774 	}
2775 
2776 	/* Update RCU state based on any recent quiescent states. */
2777 	rcu_check_quiescent_state(rdp);
2778 
2779 	/* No grace period and unregistered callbacks? */
2780 	if (!rcu_gp_in_progress() &&
2781 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2782 		rcu_nocb_lock_irqsave(rdp, flags);
2783 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2784 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2785 		rcu_nocb_unlock_irqrestore(rdp, flags);
2786 	}
2787 
2788 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2789 
2790 	/* If there are callbacks ready, invoke them. */
2791 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2792 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2793 		rcu_do_batch(rdp);
2794 
2795 	/* Do any needed deferred wakeups of rcuo kthreads. */
2796 	do_nocb_deferred_wakeup(rdp);
2797 	trace_rcu_utilization(TPS("End RCU core"));
2798 
2799 	// If strict GPs, schedule an RCU reader in a clean environment.
2800 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2801 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2802 }
2803 
2804 static void rcu_core_si(struct softirq_action *h)
2805 {
2806 	rcu_core();
2807 }
2808 
2809 static void rcu_wake_cond(struct task_struct *t, int status)
2810 {
2811 	/*
2812 	 * If the thread is yielding, only wake it when this
2813 	 * is invoked from idle
2814 	 */
2815 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2816 		wake_up_process(t);
2817 }
2818 
2819 static void invoke_rcu_core_kthread(void)
2820 {
2821 	struct task_struct *t;
2822 	unsigned long flags;
2823 
2824 	local_irq_save(flags);
2825 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2826 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2827 	if (t != NULL && t != current)
2828 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2829 	local_irq_restore(flags);
2830 }
2831 
2832 /*
2833  * Wake up this CPU's rcuc kthread to do RCU core processing.
2834  */
2835 static void invoke_rcu_core(void)
2836 {
2837 	if (!cpu_online(smp_processor_id()))
2838 		return;
2839 	if (use_softirq)
2840 		raise_softirq(RCU_SOFTIRQ);
2841 	else
2842 		invoke_rcu_core_kthread();
2843 }
2844 
2845 static void rcu_cpu_kthread_park(unsigned int cpu)
2846 {
2847 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2848 }
2849 
2850 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2851 {
2852 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2853 }
2854 
2855 /*
2856  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2857  * the RCU softirq used in configurations of RCU that do not support RCU
2858  * priority boosting.
2859  */
2860 static void rcu_cpu_kthread(unsigned int cpu)
2861 {
2862 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2863 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2864 	int spincnt;
2865 
2866 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2867 	for (spincnt = 0; spincnt < 10; spincnt++) {
2868 		local_bh_disable();
2869 		*statusp = RCU_KTHREAD_RUNNING;
2870 		local_irq_disable();
2871 		work = *workp;
2872 		*workp = 0;
2873 		local_irq_enable();
2874 		if (work)
2875 			rcu_core();
2876 		local_bh_enable();
2877 		if (*workp == 0) {
2878 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2879 			*statusp = RCU_KTHREAD_WAITING;
2880 			return;
2881 		}
2882 	}
2883 	*statusp = RCU_KTHREAD_YIELDING;
2884 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2885 	schedule_timeout_idle(2);
2886 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2887 	*statusp = RCU_KTHREAD_WAITING;
2888 }
2889 
2890 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2891 	.store			= &rcu_data.rcu_cpu_kthread_task,
2892 	.thread_should_run	= rcu_cpu_kthread_should_run,
2893 	.thread_fn		= rcu_cpu_kthread,
2894 	.thread_comm		= "rcuc/%u",
2895 	.setup			= rcu_cpu_kthread_setup,
2896 	.park			= rcu_cpu_kthread_park,
2897 };
2898 
2899 /*
2900  * Spawn per-CPU RCU core processing kthreads.
2901  */
2902 static int __init rcu_spawn_core_kthreads(void)
2903 {
2904 	int cpu;
2905 
2906 	for_each_possible_cpu(cpu)
2907 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2908 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2909 		return 0;
2910 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2911 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2912 	return 0;
2913 }
2914 early_initcall(rcu_spawn_core_kthreads);
2915 
2916 /*
2917  * Handle any core-RCU processing required by a call_rcu() invocation.
2918  */
2919 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2920 			    unsigned long flags)
2921 {
2922 	/*
2923 	 * If called from an extended quiescent state, invoke the RCU
2924 	 * core in order to force a re-evaluation of RCU's idleness.
2925 	 */
2926 	if (!rcu_is_watching())
2927 		invoke_rcu_core();
2928 
2929 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2930 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2931 		return;
2932 
2933 	/*
2934 	 * Force the grace period if too many callbacks or too long waiting.
2935 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2936 	 * if some other CPU has recently done so.  Also, don't bother
2937 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2938 	 * is the only one waiting for a grace period to complete.
2939 	 */
2940 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2941 		     rdp->qlen_last_fqs_check + qhimark)) {
2942 
2943 		/* Are we ignoring a completed grace period? */
2944 		note_gp_changes(rdp);
2945 
2946 		/* Start a new grace period if one not already started. */
2947 		if (!rcu_gp_in_progress()) {
2948 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2949 		} else {
2950 			/* Give the grace period a kick. */
2951 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2952 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2953 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2954 				rcu_force_quiescent_state();
2955 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2956 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2957 		}
2958 	}
2959 }
2960 
2961 /*
2962  * RCU callback function to leak a callback.
2963  */
2964 static void rcu_leak_callback(struct rcu_head *rhp)
2965 {
2966 }
2967 
2968 /*
2969  * Check and if necessary update the leaf rcu_node structure's
2970  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2971  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2972  * structure's ->lock.
2973  */
2974 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2975 {
2976 	raw_lockdep_assert_held_rcu_node(rnp);
2977 	if (qovld_calc <= 0)
2978 		return; // Early boot and wildcard value set.
2979 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2980 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2981 	else
2982 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2983 }
2984 
2985 /*
2986  * Check and if necessary update the leaf rcu_node structure's
2987  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2988  * number of queued RCU callbacks.  No locks need be held, but the
2989  * caller must have disabled interrupts.
2990  *
2991  * Note that this function ignores the possibility that there are a lot
2992  * of callbacks all of which have already seen the end of their respective
2993  * grace periods.  This omission is due to the need for no-CBs CPUs to
2994  * be holding ->nocb_lock to do this check, which is too heavy for a
2995  * common-case operation.
2996  */
2997 static void check_cb_ovld(struct rcu_data *rdp)
2998 {
2999 	struct rcu_node *const rnp = rdp->mynode;
3000 
3001 	if (qovld_calc <= 0 ||
3002 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3003 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3004 		return; // Early boot wildcard value or already set correctly.
3005 	raw_spin_lock_rcu_node(rnp);
3006 	check_cb_ovld_locked(rdp, rnp);
3007 	raw_spin_unlock_rcu_node(rnp);
3008 }
3009 
3010 /* Helper function for call_rcu() and friends.  */
3011 static void
3012 __call_rcu(struct rcu_head *head, rcu_callback_t func)
3013 {
3014 	static atomic_t doublefrees;
3015 	unsigned long flags;
3016 	struct rcu_data *rdp;
3017 	bool was_alldone;
3018 
3019 	/* Misaligned rcu_head! */
3020 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3021 
3022 	if (debug_rcu_head_queue(head)) {
3023 		/*
3024 		 * Probable double call_rcu(), so leak the callback.
3025 		 * Use rcu:rcu_callback trace event to find the previous
3026 		 * time callback was passed to __call_rcu().
3027 		 */
3028 		if (atomic_inc_return(&doublefrees) < 4) {
3029 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3030 			mem_dump_obj(head);
3031 		}
3032 		WRITE_ONCE(head->func, rcu_leak_callback);
3033 		return;
3034 	}
3035 	head->func = func;
3036 	head->next = NULL;
3037 	local_irq_save(flags);
3038 	kasan_record_aux_stack(head);
3039 	rdp = this_cpu_ptr(&rcu_data);
3040 
3041 	/* Add the callback to our list. */
3042 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3043 		// This can trigger due to call_rcu() from offline CPU:
3044 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3045 		WARN_ON_ONCE(!rcu_is_watching());
3046 		// Very early boot, before rcu_init().  Initialize if needed
3047 		// and then drop through to queue the callback.
3048 		if (rcu_segcblist_empty(&rdp->cblist))
3049 			rcu_segcblist_init(&rdp->cblist);
3050 	}
3051 
3052 	check_cb_ovld(rdp);
3053 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3054 		return; // Enqueued onto ->nocb_bypass, so just leave.
3055 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3056 	rcu_segcblist_enqueue(&rdp->cblist, head);
3057 	if (__is_kvfree_rcu_offset((unsigned long)func))
3058 		trace_rcu_kvfree_callback(rcu_state.name, head,
3059 					 (unsigned long)func,
3060 					 rcu_segcblist_n_cbs(&rdp->cblist));
3061 	else
3062 		trace_rcu_callback(rcu_state.name, head,
3063 				   rcu_segcblist_n_cbs(&rdp->cblist));
3064 
3065 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3066 
3067 	/* Go handle any RCU core processing required. */
3068 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3069 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3070 	} else {
3071 		__call_rcu_core(rdp, head, flags);
3072 		local_irq_restore(flags);
3073 	}
3074 }
3075 
3076 /**
3077  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3078  * @head: structure to be used for queueing the RCU updates.
3079  * @func: actual callback function to be invoked after the grace period
3080  *
3081  * The callback function will be invoked some time after a full grace
3082  * period elapses, in other words after all pre-existing RCU read-side
3083  * critical sections have completed.  However, the callback function
3084  * might well execute concurrently with RCU read-side critical sections
3085  * that started after call_rcu() was invoked.  RCU read-side critical
3086  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3087  * may be nested.  In addition, regions of code across which interrupts,
3088  * preemption, or softirqs have been disabled also serve as RCU read-side
3089  * critical sections.  This includes hardware interrupt handlers, softirq
3090  * handlers, and NMI handlers.
3091  *
3092  * Note that all CPUs must agree that the grace period extended beyond
3093  * all pre-existing RCU read-side critical section.  On systems with more
3094  * than one CPU, this means that when "func()" is invoked, each CPU is
3095  * guaranteed to have executed a full memory barrier since the end of its
3096  * last RCU read-side critical section whose beginning preceded the call
3097  * to call_rcu().  It also means that each CPU executing an RCU read-side
3098  * critical section that continues beyond the start of "func()" must have
3099  * executed a memory barrier after the call_rcu() but before the beginning
3100  * of that RCU read-side critical section.  Note that these guarantees
3101  * include CPUs that are offline, idle, or executing in user mode, as
3102  * well as CPUs that are executing in the kernel.
3103  *
3104  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3105  * resulting RCU callback function "func()", then both CPU A and CPU B are
3106  * guaranteed to execute a full memory barrier during the time interval
3107  * between the call to call_rcu() and the invocation of "func()" -- even
3108  * if CPU A and CPU B are the same CPU (but again only if the system has
3109  * more than one CPU).
3110  */
3111 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3112 {
3113 	__call_rcu(head, func);
3114 }
3115 EXPORT_SYMBOL_GPL(call_rcu);
3116 
3117 
3118 /* Maximum number of jiffies to wait before draining a batch. */
3119 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3120 #define KFREE_N_BATCHES 2
3121 #define FREE_N_CHANNELS 2
3122 
3123 /**
3124  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3125  * @nr_records: Number of active pointers in the array
3126  * @next: Next bulk object in the block chain
3127  * @records: Array of the kvfree_rcu() pointers
3128  */
3129 struct kvfree_rcu_bulk_data {
3130 	unsigned long nr_records;
3131 	struct kvfree_rcu_bulk_data *next;
3132 	void *records[];
3133 };
3134 
3135 /*
3136  * This macro defines how many entries the "records" array
3137  * will contain. It is based on the fact that the size of
3138  * kvfree_rcu_bulk_data structure becomes exactly one page.
3139  */
3140 #define KVFREE_BULK_MAX_ENTR \
3141 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3142 
3143 /**
3144  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3145  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3146  * @head_free: List of kfree_rcu() objects waiting for a grace period
3147  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3148  * @krcp: Pointer to @kfree_rcu_cpu structure
3149  */
3150 
3151 struct kfree_rcu_cpu_work {
3152 	struct rcu_work rcu_work;
3153 	struct rcu_head *head_free;
3154 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3155 	struct kfree_rcu_cpu *krcp;
3156 };
3157 
3158 /**
3159  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3160  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3161  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3162  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3163  * @lock: Synchronize access to this structure
3164  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3165  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3166  * @initialized: The @rcu_work fields have been initialized
3167  * @count: Number of objects for which GP not started
3168  * @bkvcache:
3169  *	A simple cache list that contains objects for reuse purpose.
3170  *	In order to save some per-cpu space the list is singular.
3171  *	Even though it is lockless an access has to be protected by the
3172  *	per-cpu lock.
3173  * @page_cache_work: A work to refill the cache when it is empty
3174  * @work_in_progress: Indicates that page_cache_work is running
3175  * @hrtimer: A hrtimer for scheduling a page_cache_work
3176  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3177  *
3178  * This is a per-CPU structure.  The reason that it is not included in
3179  * the rcu_data structure is to permit this code to be extracted from
3180  * the RCU files.  Such extraction could allow further optimization of
3181  * the interactions with the slab allocators.
3182  */
3183 struct kfree_rcu_cpu {
3184 	struct rcu_head *head;
3185 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3186 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3187 	raw_spinlock_t lock;
3188 	struct delayed_work monitor_work;
3189 	bool monitor_todo;
3190 	bool initialized;
3191 	int count;
3192 
3193 	struct work_struct page_cache_work;
3194 	atomic_t work_in_progress;
3195 	struct hrtimer hrtimer;
3196 
3197 	struct llist_head bkvcache;
3198 	int nr_bkv_objs;
3199 };
3200 
3201 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3202 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3203 };
3204 
3205 static __always_inline void
3206 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3207 {
3208 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3209 	int i;
3210 
3211 	for (i = 0; i < bhead->nr_records; i++)
3212 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3213 #endif
3214 }
3215 
3216 static inline struct kfree_rcu_cpu *
3217 krc_this_cpu_lock(unsigned long *flags)
3218 {
3219 	struct kfree_rcu_cpu *krcp;
3220 
3221 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3222 	krcp = this_cpu_ptr(&krc);
3223 	raw_spin_lock(&krcp->lock);
3224 
3225 	return krcp;
3226 }
3227 
3228 static inline void
3229 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3230 {
3231 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3232 }
3233 
3234 static inline struct kvfree_rcu_bulk_data *
3235 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3236 {
3237 	if (!krcp->nr_bkv_objs)
3238 		return NULL;
3239 
3240 	krcp->nr_bkv_objs--;
3241 	return (struct kvfree_rcu_bulk_data *)
3242 		llist_del_first(&krcp->bkvcache);
3243 }
3244 
3245 static inline bool
3246 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3247 	struct kvfree_rcu_bulk_data *bnode)
3248 {
3249 	// Check the limit.
3250 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3251 		return false;
3252 
3253 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3254 	krcp->nr_bkv_objs++;
3255 	return true;
3256 
3257 }
3258 
3259 /*
3260  * This function is invoked in workqueue context after a grace period.
3261  * It frees all the objects queued on ->bhead_free or ->head_free.
3262  */
3263 static void kfree_rcu_work(struct work_struct *work)
3264 {
3265 	unsigned long flags;
3266 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3267 	struct rcu_head *head, *next;
3268 	struct kfree_rcu_cpu *krcp;
3269 	struct kfree_rcu_cpu_work *krwp;
3270 	int i, j;
3271 
3272 	krwp = container_of(to_rcu_work(work),
3273 			    struct kfree_rcu_cpu_work, rcu_work);
3274 	krcp = krwp->krcp;
3275 
3276 	raw_spin_lock_irqsave(&krcp->lock, flags);
3277 	// Channels 1 and 2.
3278 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3279 		bkvhead[i] = krwp->bkvhead_free[i];
3280 		krwp->bkvhead_free[i] = NULL;
3281 	}
3282 
3283 	// Channel 3.
3284 	head = krwp->head_free;
3285 	krwp->head_free = NULL;
3286 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3287 
3288 	// Handle two first channels.
3289 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3290 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3291 			bnext = bkvhead[i]->next;
3292 			debug_rcu_bhead_unqueue(bkvhead[i]);
3293 
3294 			rcu_lock_acquire(&rcu_callback_map);
3295 			if (i == 0) { // kmalloc() / kfree().
3296 				trace_rcu_invoke_kfree_bulk_callback(
3297 					rcu_state.name, bkvhead[i]->nr_records,
3298 					bkvhead[i]->records);
3299 
3300 				kfree_bulk(bkvhead[i]->nr_records,
3301 					bkvhead[i]->records);
3302 			} else { // vmalloc() / vfree().
3303 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3304 					trace_rcu_invoke_kvfree_callback(
3305 						rcu_state.name,
3306 						bkvhead[i]->records[j], 0);
3307 
3308 					vfree(bkvhead[i]->records[j]);
3309 				}
3310 			}
3311 			rcu_lock_release(&rcu_callback_map);
3312 
3313 			raw_spin_lock_irqsave(&krcp->lock, flags);
3314 			if (put_cached_bnode(krcp, bkvhead[i]))
3315 				bkvhead[i] = NULL;
3316 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3317 
3318 			if (bkvhead[i])
3319 				free_page((unsigned long) bkvhead[i]);
3320 
3321 			cond_resched_tasks_rcu_qs();
3322 		}
3323 	}
3324 
3325 	/*
3326 	 * Emergency case only. It can happen under low memory
3327 	 * condition when an allocation gets failed, so the "bulk"
3328 	 * path can not be temporary maintained.
3329 	 */
3330 	for (; head; head = next) {
3331 		unsigned long offset = (unsigned long)head->func;
3332 		void *ptr = (void *)head - offset;
3333 
3334 		next = head->next;
3335 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3336 		rcu_lock_acquire(&rcu_callback_map);
3337 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3338 
3339 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3340 			kvfree(ptr);
3341 
3342 		rcu_lock_release(&rcu_callback_map);
3343 		cond_resched_tasks_rcu_qs();
3344 	}
3345 }
3346 
3347 /*
3348  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3349  *
3350  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3351  * timeout has been reached.
3352  */
3353 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3354 {
3355 	struct kfree_rcu_cpu_work *krwp;
3356 	bool repeat = false;
3357 	int i, j;
3358 
3359 	lockdep_assert_held(&krcp->lock);
3360 
3361 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3362 		krwp = &(krcp->krw_arr[i]);
3363 
3364 		/*
3365 		 * Try to detach bkvhead or head and attach it over any
3366 		 * available corresponding free channel. It can be that
3367 		 * a previous RCU batch is in progress, it means that
3368 		 * immediately to queue another one is not possible so
3369 		 * return false to tell caller to retry.
3370 		 */
3371 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3372 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3373 				(krcp->head && !krwp->head_free)) {
3374 			// Channel 1 corresponds to SLAB ptrs.
3375 			// Channel 2 corresponds to vmalloc ptrs.
3376 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3377 				if (!krwp->bkvhead_free[j]) {
3378 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3379 					krcp->bkvhead[j] = NULL;
3380 				}
3381 			}
3382 
3383 			// Channel 3 corresponds to emergency path.
3384 			if (!krwp->head_free) {
3385 				krwp->head_free = krcp->head;
3386 				krcp->head = NULL;
3387 			}
3388 
3389 			WRITE_ONCE(krcp->count, 0);
3390 
3391 			/*
3392 			 * One work is per one batch, so there are three
3393 			 * "free channels", the batch can handle. It can
3394 			 * be that the work is in the pending state when
3395 			 * channels have been detached following by each
3396 			 * other.
3397 			 */
3398 			queue_rcu_work(system_wq, &krwp->rcu_work);
3399 		}
3400 
3401 		// Repeat if any "free" corresponding channel is still busy.
3402 		if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3403 			repeat = true;
3404 	}
3405 
3406 	return !repeat;
3407 }
3408 
3409 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3410 					  unsigned long flags)
3411 {
3412 	// Attempt to start a new batch.
3413 	krcp->monitor_todo = false;
3414 	if (queue_kfree_rcu_work(krcp)) {
3415 		// Success! Our job is done here.
3416 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3417 		return;
3418 	}
3419 
3420 	// Previous RCU batch still in progress, try again later.
3421 	krcp->monitor_todo = true;
3422 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3423 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3424 }
3425 
3426 /*
3427  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3428  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3429  */
3430 static void kfree_rcu_monitor(struct work_struct *work)
3431 {
3432 	unsigned long flags;
3433 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3434 						 monitor_work.work);
3435 
3436 	raw_spin_lock_irqsave(&krcp->lock, flags);
3437 	if (krcp->monitor_todo)
3438 		kfree_rcu_drain_unlock(krcp, flags);
3439 	else
3440 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3441 }
3442 
3443 static enum hrtimer_restart
3444 schedule_page_work_fn(struct hrtimer *t)
3445 {
3446 	struct kfree_rcu_cpu *krcp =
3447 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3448 
3449 	queue_work(system_highpri_wq, &krcp->page_cache_work);
3450 	return HRTIMER_NORESTART;
3451 }
3452 
3453 static void fill_page_cache_func(struct work_struct *work)
3454 {
3455 	struct kvfree_rcu_bulk_data *bnode;
3456 	struct kfree_rcu_cpu *krcp =
3457 		container_of(work, struct kfree_rcu_cpu,
3458 			page_cache_work);
3459 	unsigned long flags;
3460 	bool pushed;
3461 	int i;
3462 
3463 	for (i = 0; i < rcu_min_cached_objs; i++) {
3464 		bnode = (struct kvfree_rcu_bulk_data *)
3465 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3466 
3467 		if (bnode) {
3468 			raw_spin_lock_irqsave(&krcp->lock, flags);
3469 			pushed = put_cached_bnode(krcp, bnode);
3470 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3471 
3472 			if (!pushed) {
3473 				free_page((unsigned long) bnode);
3474 				break;
3475 			}
3476 		}
3477 	}
3478 
3479 	atomic_set(&krcp->work_in_progress, 0);
3480 }
3481 
3482 static void
3483 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3484 {
3485 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3486 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3487 		hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3488 			HRTIMER_MODE_REL);
3489 		krcp->hrtimer.function = schedule_page_work_fn;
3490 		hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3491 	}
3492 }
3493 
3494 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3495 // state specified by flags.  If can_alloc is true, the caller must
3496 // be schedulable and not be holding any locks or mutexes that might be
3497 // acquired by the memory allocator or anything that it might invoke.
3498 // Returns true if ptr was successfully recorded, else the caller must
3499 // use a fallback.
3500 static inline bool
3501 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3502 	unsigned long *flags, void *ptr, bool can_alloc)
3503 {
3504 	struct kvfree_rcu_bulk_data *bnode;
3505 	int idx;
3506 
3507 	*krcp = krc_this_cpu_lock(flags);
3508 	if (unlikely(!(*krcp)->initialized))
3509 		return false;
3510 
3511 	idx = !!is_vmalloc_addr(ptr);
3512 
3513 	/* Check if a new block is required. */
3514 	if (!(*krcp)->bkvhead[idx] ||
3515 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3516 		bnode = get_cached_bnode(*krcp);
3517 		if (!bnode && can_alloc) {
3518 			krc_this_cpu_unlock(*krcp, *flags);
3519 
3520 			// __GFP_NORETRY - allows a light-weight direct reclaim
3521 			// what is OK from minimizing of fallback hitting point of
3522 			// view. Apart of that it forbids any OOM invoking what is
3523 			// also beneficial since we are about to release memory soon.
3524 			//
3525 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3526 			// memory reserves. Please note we have a fallback path.
3527 			//
3528 			// __GFP_NOWARN - it is supposed that an allocation can
3529 			// be failed under low memory or high memory pressure
3530 			// scenarios.
3531 			bnode = (struct kvfree_rcu_bulk_data *)
3532 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3533 			*krcp = krc_this_cpu_lock(flags);
3534 		}
3535 
3536 		if (!bnode)
3537 			return false;
3538 
3539 		/* Initialize the new block. */
3540 		bnode->nr_records = 0;
3541 		bnode->next = (*krcp)->bkvhead[idx];
3542 
3543 		/* Attach it to the head. */
3544 		(*krcp)->bkvhead[idx] = bnode;
3545 	}
3546 
3547 	/* Finally insert. */
3548 	(*krcp)->bkvhead[idx]->records
3549 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3550 
3551 	return true;
3552 }
3553 
3554 /*
3555  * Queue a request for lazy invocation of appropriate free routine after a
3556  * grace period. Please note there are three paths are maintained, two are the
3557  * main ones that use array of pointers interface and third one is emergency
3558  * one, that is used only when the main path can not be maintained temporary,
3559  * due to memory pressure.
3560  *
3561  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3562  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3563  * be free'd in workqueue context. This allows us to: batch requests together to
3564  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3565  */
3566 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3567 {
3568 	unsigned long flags;
3569 	struct kfree_rcu_cpu *krcp;
3570 	bool success;
3571 	void *ptr;
3572 
3573 	if (head) {
3574 		ptr = (void *) head - (unsigned long) func;
3575 	} else {
3576 		/*
3577 		 * Please note there is a limitation for the head-less
3578 		 * variant, that is why there is a clear rule for such
3579 		 * objects: it can be used from might_sleep() context
3580 		 * only. For other places please embed an rcu_head to
3581 		 * your data.
3582 		 */
3583 		might_sleep();
3584 		ptr = (unsigned long *) func;
3585 	}
3586 
3587 	// Queue the object but don't yet schedule the batch.
3588 	if (debug_rcu_head_queue(ptr)) {
3589 		// Probable double kfree_rcu(), just leak.
3590 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3591 			  __func__, head);
3592 
3593 		// Mark as success and leave.
3594 		return;
3595 	}
3596 
3597 	kasan_record_aux_stack(ptr);
3598 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3599 	if (!success) {
3600 		run_page_cache_worker(krcp);
3601 
3602 		if (head == NULL)
3603 			// Inline if kvfree_rcu(one_arg) call.
3604 			goto unlock_return;
3605 
3606 		head->func = func;
3607 		head->next = krcp->head;
3608 		krcp->head = head;
3609 		success = true;
3610 	}
3611 
3612 	WRITE_ONCE(krcp->count, krcp->count + 1);
3613 
3614 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3615 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3616 	    !krcp->monitor_todo) {
3617 		krcp->monitor_todo = true;
3618 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3619 	}
3620 
3621 unlock_return:
3622 	krc_this_cpu_unlock(krcp, flags);
3623 
3624 	/*
3625 	 * Inline kvfree() after synchronize_rcu(). We can do
3626 	 * it from might_sleep() context only, so the current
3627 	 * CPU can pass the QS state.
3628 	 */
3629 	if (!success) {
3630 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3631 		synchronize_rcu();
3632 		kvfree(ptr);
3633 	}
3634 }
3635 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3636 
3637 static unsigned long
3638 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3639 {
3640 	int cpu;
3641 	unsigned long count = 0;
3642 
3643 	/* Snapshot count of all CPUs */
3644 	for_each_possible_cpu(cpu) {
3645 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3646 
3647 		count += READ_ONCE(krcp->count);
3648 	}
3649 
3650 	return count;
3651 }
3652 
3653 static unsigned long
3654 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3655 {
3656 	int cpu, freed = 0;
3657 	unsigned long flags;
3658 
3659 	for_each_possible_cpu(cpu) {
3660 		int count;
3661 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3662 
3663 		count = krcp->count;
3664 		raw_spin_lock_irqsave(&krcp->lock, flags);
3665 		if (krcp->monitor_todo)
3666 			kfree_rcu_drain_unlock(krcp, flags);
3667 		else
3668 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3669 
3670 		sc->nr_to_scan -= count;
3671 		freed += count;
3672 
3673 		if (sc->nr_to_scan <= 0)
3674 			break;
3675 	}
3676 
3677 	return freed == 0 ? SHRINK_STOP : freed;
3678 }
3679 
3680 static struct shrinker kfree_rcu_shrinker = {
3681 	.count_objects = kfree_rcu_shrink_count,
3682 	.scan_objects = kfree_rcu_shrink_scan,
3683 	.batch = 0,
3684 	.seeks = DEFAULT_SEEKS,
3685 };
3686 
3687 void __init kfree_rcu_scheduler_running(void)
3688 {
3689 	int cpu;
3690 	unsigned long flags;
3691 
3692 	for_each_possible_cpu(cpu) {
3693 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3694 
3695 		raw_spin_lock_irqsave(&krcp->lock, flags);
3696 		if (!krcp->head || krcp->monitor_todo) {
3697 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3698 			continue;
3699 		}
3700 		krcp->monitor_todo = true;
3701 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3702 					 KFREE_DRAIN_JIFFIES);
3703 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3704 	}
3705 }
3706 
3707 /*
3708  * During early boot, any blocking grace-period wait automatically
3709  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3710  *
3711  * However, because a context switch is a grace period for !PREEMPTION, any
3712  * blocking grace-period wait automatically implies a grace period if
3713  * there is only one CPU online at any point time during execution of
3714  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3715  * occasionally incorrectly indicate that there are multiple CPUs online
3716  * when there was in fact only one the whole time, as this just adds some
3717  * overhead: RCU still operates correctly.
3718  */
3719 static int rcu_blocking_is_gp(void)
3720 {
3721 	int ret;
3722 
3723 	if (IS_ENABLED(CONFIG_PREEMPTION))
3724 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3725 	might_sleep();  /* Check for RCU read-side critical section. */
3726 	preempt_disable();
3727 	/*
3728 	 * If the rcu_state.n_online_cpus counter is equal to one,
3729 	 * there is only one CPU, and that CPU sees all prior accesses
3730 	 * made by any CPU that was online at the time of its access.
3731 	 * Furthermore, if this counter is equal to one, its value cannot
3732 	 * change until after the preempt_enable() below.
3733 	 *
3734 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3735 	 * all later CPUs (both this one and any that come online later
3736 	 * on) are guaranteed to see all accesses prior to this point
3737 	 * in the code, without the need for additional memory barriers.
3738 	 * Those memory barriers are provided by CPU-hotplug code.
3739 	 */
3740 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3741 	preempt_enable();
3742 	return ret;
3743 }
3744 
3745 /**
3746  * synchronize_rcu - wait until a grace period has elapsed.
3747  *
3748  * Control will return to the caller some time after a full grace
3749  * period has elapsed, in other words after all currently executing RCU
3750  * read-side critical sections have completed.  Note, however, that
3751  * upon return from synchronize_rcu(), the caller might well be executing
3752  * concurrently with new RCU read-side critical sections that began while
3753  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3754  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3755  * In addition, regions of code across which interrupts, preemption, or
3756  * softirqs have been disabled also serve as RCU read-side critical
3757  * sections.  This includes hardware interrupt handlers, softirq handlers,
3758  * and NMI handlers.
3759  *
3760  * Note that this guarantee implies further memory-ordering guarantees.
3761  * On systems with more than one CPU, when synchronize_rcu() returns,
3762  * each CPU is guaranteed to have executed a full memory barrier since
3763  * the end of its last RCU read-side critical section whose beginning
3764  * preceded the call to synchronize_rcu().  In addition, each CPU having
3765  * an RCU read-side critical section that extends beyond the return from
3766  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3767  * after the beginning of synchronize_rcu() and before the beginning of
3768  * that RCU read-side critical section.  Note that these guarantees include
3769  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3770  * that are executing in the kernel.
3771  *
3772  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3773  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3774  * to have executed a full memory barrier during the execution of
3775  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3776  * again only if the system has more than one CPU).
3777  */
3778 void synchronize_rcu(void)
3779 {
3780 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3781 			 lock_is_held(&rcu_lock_map) ||
3782 			 lock_is_held(&rcu_sched_lock_map),
3783 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3784 	if (rcu_blocking_is_gp())
3785 		return;  // Context allows vacuous grace periods.
3786 	if (rcu_gp_is_expedited())
3787 		synchronize_rcu_expedited();
3788 	else
3789 		wait_rcu_gp(call_rcu);
3790 }
3791 EXPORT_SYMBOL_GPL(synchronize_rcu);
3792 
3793 /**
3794  * get_state_synchronize_rcu - Snapshot current RCU state
3795  *
3796  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3797  * or poll_state_synchronize_rcu() to determine whether or not a full
3798  * grace period has elapsed in the meantime.
3799  */
3800 unsigned long get_state_synchronize_rcu(void)
3801 {
3802 	/*
3803 	 * Any prior manipulation of RCU-protected data must happen
3804 	 * before the load from ->gp_seq.
3805 	 */
3806 	smp_mb();  /* ^^^ */
3807 	return rcu_seq_snap(&rcu_state.gp_seq);
3808 }
3809 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3810 
3811 /**
3812  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3813  *
3814  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3815  * or poll_state_synchronize_rcu() to determine whether or not a full
3816  * grace period has elapsed in the meantime.  If the needed grace period
3817  * is not already slated to start, notifies RCU core of the need for that
3818  * grace period.
3819  *
3820  * Interrupts must be enabled for the case where it is necessary to awaken
3821  * the grace-period kthread.
3822  */
3823 unsigned long start_poll_synchronize_rcu(void)
3824 {
3825 	unsigned long flags;
3826 	unsigned long gp_seq = get_state_synchronize_rcu();
3827 	bool needwake;
3828 	struct rcu_data *rdp;
3829 	struct rcu_node *rnp;
3830 
3831 	lockdep_assert_irqs_enabled();
3832 	local_irq_save(flags);
3833 	rdp = this_cpu_ptr(&rcu_data);
3834 	rnp = rdp->mynode;
3835 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3836 	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3837 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3838 	if (needwake)
3839 		rcu_gp_kthread_wake();
3840 	return gp_seq;
3841 }
3842 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3843 
3844 /**
3845  * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3846  *
3847  * @oldstate: return from call to get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3848  *
3849  * If a full RCU grace period has elapsed since the earlier call from
3850  * which oldstate was obtained, return @true, otherwise return @false.
3851  * If @false is returned, it is the caller's responsibilty to invoke this
3852  * function later on until it does return @true.  Alternatively, the caller
3853  * can explicitly wait for a grace period, for example, by passing @oldstate
3854  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3855  *
3856  * Yes, this function does not take counter wrap into account.
3857  * But counter wrap is harmless.  If the counter wraps, we have waited for
3858  * more than 2 billion grace periods (and way more on a 64-bit system!).
3859  * Those needing to keep oldstate values for very long time periods
3860  * (many hours even on 32-bit systems) should check them occasionally
3861  * and either refresh them or set a flag indicating that the grace period
3862  * has completed.
3863  */
3864 bool poll_state_synchronize_rcu(unsigned long oldstate)
3865 {
3866 	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3867 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3868 		return true;
3869 	}
3870 	return false;
3871 }
3872 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3873 
3874 /**
3875  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3876  *
3877  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3878  *
3879  * If a full RCU grace period has elapsed since the earlier call to
3880  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3881  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3882  *
3883  * Yes, this function does not take counter wrap into account.  But
3884  * counter wrap is harmless.  If the counter wraps, we have waited for
3885  * more than 2 billion grace periods (and way more on a 64-bit system!),
3886  * so waiting for one additional grace period should be just fine.
3887  */
3888 void cond_synchronize_rcu(unsigned long oldstate)
3889 {
3890 	if (!poll_state_synchronize_rcu(oldstate))
3891 		synchronize_rcu();
3892 }
3893 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3894 
3895 /*
3896  * Check to see if there is any immediate RCU-related work to be done by
3897  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3898  * in order of increasing expense: checks that can be carried out against
3899  * CPU-local state are performed first.  However, we must check for CPU
3900  * stalls first, else we might not get a chance.
3901  */
3902 static int rcu_pending(int user)
3903 {
3904 	bool gp_in_progress;
3905 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3906 	struct rcu_node *rnp = rdp->mynode;
3907 
3908 	lockdep_assert_irqs_disabled();
3909 
3910 	/* Check for CPU stalls, if enabled. */
3911 	check_cpu_stall(rdp);
3912 
3913 	/* Does this CPU need a deferred NOCB wakeup? */
3914 	if (rcu_nocb_need_deferred_wakeup(rdp))
3915 		return 1;
3916 
3917 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3918 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3919 		return 0;
3920 
3921 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3922 	gp_in_progress = rcu_gp_in_progress();
3923 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3924 		return 1;
3925 
3926 	/* Does this CPU have callbacks ready to invoke? */
3927 	if (!rcu_rdp_is_offloaded(rdp) &&
3928 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3929 		return 1;
3930 
3931 	/* Has RCU gone idle with this CPU needing another grace period? */
3932 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3933 	    !rcu_rdp_is_offloaded(rdp) &&
3934 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3935 		return 1;
3936 
3937 	/* Have RCU grace period completed or started?  */
3938 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3939 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3940 		return 1;
3941 
3942 	/* nothing to do */
3943 	return 0;
3944 }
3945 
3946 /*
3947  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3948  * the compiler is expected to optimize this away.
3949  */
3950 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3951 {
3952 	trace_rcu_barrier(rcu_state.name, s, cpu,
3953 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3954 }
3955 
3956 /*
3957  * RCU callback function for rcu_barrier().  If we are last, wake
3958  * up the task executing rcu_barrier().
3959  *
3960  * Note that the value of rcu_state.barrier_sequence must be captured
3961  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3962  * other CPUs might count the value down to zero before this CPU gets
3963  * around to invoking rcu_barrier_trace(), which might result in bogus
3964  * data from the next instance of rcu_barrier().
3965  */
3966 static void rcu_barrier_callback(struct rcu_head *rhp)
3967 {
3968 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3969 
3970 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3971 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3972 		complete(&rcu_state.barrier_completion);
3973 	} else {
3974 		rcu_barrier_trace(TPS("CB"), -1, s);
3975 	}
3976 }
3977 
3978 /*
3979  * Called with preemption disabled, and from cross-cpu IRQ context.
3980  */
3981 static void rcu_barrier_func(void *cpu_in)
3982 {
3983 	uintptr_t cpu = (uintptr_t)cpu_in;
3984 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3985 
3986 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3987 	rdp->barrier_head.func = rcu_barrier_callback;
3988 	debug_rcu_head_queue(&rdp->barrier_head);
3989 	rcu_nocb_lock(rdp);
3990 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3991 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3992 		atomic_inc(&rcu_state.barrier_cpu_count);
3993 	} else {
3994 		debug_rcu_head_unqueue(&rdp->barrier_head);
3995 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3996 				  rcu_state.barrier_sequence);
3997 	}
3998 	rcu_nocb_unlock(rdp);
3999 }
4000 
4001 /**
4002  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4003  *
4004  * Note that this primitive does not necessarily wait for an RCU grace period
4005  * to complete.  For example, if there are no RCU callbacks queued anywhere
4006  * in the system, then rcu_barrier() is within its rights to return
4007  * immediately, without waiting for anything, much less an RCU grace period.
4008  */
4009 void rcu_barrier(void)
4010 {
4011 	uintptr_t cpu;
4012 	struct rcu_data *rdp;
4013 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4014 
4015 	rcu_barrier_trace(TPS("Begin"), -1, s);
4016 
4017 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4018 	mutex_lock(&rcu_state.barrier_mutex);
4019 
4020 	/* Did someone else do our work for us? */
4021 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4022 		rcu_barrier_trace(TPS("EarlyExit"), -1,
4023 				  rcu_state.barrier_sequence);
4024 		smp_mb(); /* caller's subsequent code after above check. */
4025 		mutex_unlock(&rcu_state.barrier_mutex);
4026 		return;
4027 	}
4028 
4029 	/* Mark the start of the barrier operation. */
4030 	rcu_seq_start(&rcu_state.barrier_sequence);
4031 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4032 
4033 	/*
4034 	 * Initialize the count to two rather than to zero in order
4035 	 * to avoid a too-soon return to zero in case of an immediate
4036 	 * invocation of the just-enqueued callback (or preemption of
4037 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4038 	 * offline non-offloaded CPU has callbacks queued.
4039 	 */
4040 	init_completion(&rcu_state.barrier_completion);
4041 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4042 	get_online_cpus();
4043 
4044 	/*
4045 	 * Force each CPU with callbacks to register a new callback.
4046 	 * When that callback is invoked, we will know that all of the
4047 	 * corresponding CPU's preceding callbacks have been invoked.
4048 	 */
4049 	for_each_possible_cpu(cpu) {
4050 		rdp = per_cpu_ptr(&rcu_data, cpu);
4051 		if (cpu_is_offline(cpu) &&
4052 		    !rcu_rdp_is_offloaded(rdp))
4053 			continue;
4054 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4055 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
4056 					  rcu_state.barrier_sequence);
4057 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4058 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4059 			   cpu_is_offline(cpu)) {
4060 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4061 					  rcu_state.barrier_sequence);
4062 			local_irq_disable();
4063 			rcu_barrier_func((void *)cpu);
4064 			local_irq_enable();
4065 		} else if (cpu_is_offline(cpu)) {
4066 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4067 					  rcu_state.barrier_sequence);
4068 		} else {
4069 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4070 					  rcu_state.barrier_sequence);
4071 		}
4072 	}
4073 	put_online_cpus();
4074 
4075 	/*
4076 	 * Now that we have an rcu_barrier_callback() callback on each
4077 	 * CPU, and thus each counted, remove the initial count.
4078 	 */
4079 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4080 		complete(&rcu_state.barrier_completion);
4081 
4082 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4083 	wait_for_completion(&rcu_state.barrier_completion);
4084 
4085 	/* Mark the end of the barrier operation. */
4086 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4087 	rcu_seq_end(&rcu_state.barrier_sequence);
4088 
4089 	/* Other rcu_barrier() invocations can now safely proceed. */
4090 	mutex_unlock(&rcu_state.barrier_mutex);
4091 }
4092 EXPORT_SYMBOL_GPL(rcu_barrier);
4093 
4094 /*
4095  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4096  * first CPU in a given leaf rcu_node structure coming online.  The caller
4097  * must hold the corresponding leaf rcu_node ->lock with interrrupts
4098  * disabled.
4099  */
4100 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4101 {
4102 	long mask;
4103 	long oldmask;
4104 	struct rcu_node *rnp = rnp_leaf;
4105 
4106 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4107 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4108 	for (;;) {
4109 		mask = rnp->grpmask;
4110 		rnp = rnp->parent;
4111 		if (rnp == NULL)
4112 			return;
4113 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4114 		oldmask = rnp->qsmaskinit;
4115 		rnp->qsmaskinit |= mask;
4116 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4117 		if (oldmask)
4118 			return;
4119 	}
4120 }
4121 
4122 /*
4123  * Do boot-time initialization of a CPU's per-CPU RCU data.
4124  */
4125 static void __init
4126 rcu_boot_init_percpu_data(int cpu)
4127 {
4128 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4129 
4130 	/* Set up local state, ensuring consistent view of global state. */
4131 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4132 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4133 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4134 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4135 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4136 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4137 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4138 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4139 	rdp->cpu = cpu;
4140 	rcu_boot_init_nocb_percpu_data(rdp);
4141 }
4142 
4143 /*
4144  * Invoked early in the CPU-online process, when pretty much all services
4145  * are available.  The incoming CPU is not present.
4146  *
4147  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4148  * offline event can be happening at a given time.  Note also that we can
4149  * accept some slop in the rsp->gp_seq access due to the fact that this
4150  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4151  * And any offloaded callbacks are being numbered elsewhere.
4152  */
4153 int rcutree_prepare_cpu(unsigned int cpu)
4154 {
4155 	unsigned long flags;
4156 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4157 	struct rcu_node *rnp = rcu_get_root();
4158 
4159 	/* Set up local state, ensuring consistent view of global state. */
4160 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4161 	rdp->qlen_last_fqs_check = 0;
4162 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
4163 	rdp->blimit = blimit;
4164 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4165 	rcu_dynticks_eqs_online();
4166 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4167 
4168 	/*
4169 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4170 	 * (re-)initialized.
4171 	 */
4172 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4173 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4174 
4175 	/*
4176 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4177 	 * propagation up the rcu_node tree will happen at the beginning
4178 	 * of the next grace period.
4179 	 */
4180 	rnp = rdp->mynode;
4181 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4182 	rdp->beenonline = true;	 /* We have now been online. */
4183 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4184 	rdp->gp_seq_needed = rdp->gp_seq;
4185 	rdp->cpu_no_qs.b.norm = true;
4186 	rdp->core_needs_qs = false;
4187 	rdp->rcu_iw_pending = false;
4188 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4189 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4190 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4191 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4192 	rcu_prepare_kthreads(cpu);
4193 	rcu_spawn_cpu_nocb_kthread(cpu);
4194 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4195 
4196 	return 0;
4197 }
4198 
4199 /*
4200  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4201  */
4202 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4203 {
4204 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4205 
4206 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4207 }
4208 
4209 /*
4210  * Near the end of the CPU-online process.  Pretty much all services
4211  * enabled, and the CPU is now very much alive.
4212  */
4213 int rcutree_online_cpu(unsigned int cpu)
4214 {
4215 	unsigned long flags;
4216 	struct rcu_data *rdp;
4217 	struct rcu_node *rnp;
4218 
4219 	rdp = per_cpu_ptr(&rcu_data, cpu);
4220 	rnp = rdp->mynode;
4221 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4222 	rnp->ffmask |= rdp->grpmask;
4223 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4224 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4225 		return 0; /* Too early in boot for scheduler work. */
4226 	sync_sched_exp_online_cleanup(cpu);
4227 	rcutree_affinity_setting(cpu, -1);
4228 
4229 	// Stop-machine done, so allow nohz_full to disable tick.
4230 	tick_dep_clear(TICK_DEP_BIT_RCU);
4231 	return 0;
4232 }
4233 
4234 /*
4235  * Near the beginning of the process.  The CPU is still very much alive
4236  * with pretty much all services enabled.
4237  */
4238 int rcutree_offline_cpu(unsigned int cpu)
4239 {
4240 	unsigned long flags;
4241 	struct rcu_data *rdp;
4242 	struct rcu_node *rnp;
4243 
4244 	rdp = per_cpu_ptr(&rcu_data, cpu);
4245 	rnp = rdp->mynode;
4246 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4247 	rnp->ffmask &= ~rdp->grpmask;
4248 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4249 
4250 	rcutree_affinity_setting(cpu, cpu);
4251 
4252 	// nohz_full CPUs need the tick for stop-machine to work quickly
4253 	tick_dep_set(TICK_DEP_BIT_RCU);
4254 	return 0;
4255 }
4256 
4257 /*
4258  * Mark the specified CPU as being online so that subsequent grace periods
4259  * (both expedited and normal) will wait on it.  Note that this means that
4260  * incoming CPUs are not allowed to use RCU read-side critical sections
4261  * until this function is called.  Failing to observe this restriction
4262  * will result in lockdep splats.
4263  *
4264  * Note that this function is special in that it is invoked directly
4265  * from the incoming CPU rather than from the cpuhp_step mechanism.
4266  * This is because this function must be invoked at a precise location.
4267  */
4268 void rcu_cpu_starting(unsigned int cpu)
4269 {
4270 	unsigned long flags;
4271 	unsigned long mask;
4272 	struct rcu_data *rdp;
4273 	struct rcu_node *rnp;
4274 	bool newcpu;
4275 
4276 	rdp = per_cpu_ptr(&rcu_data, cpu);
4277 	if (rdp->cpu_started)
4278 		return;
4279 	rdp->cpu_started = true;
4280 
4281 	rnp = rdp->mynode;
4282 	mask = rdp->grpmask;
4283 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4284 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4285 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4286 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4287 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4288 	newcpu = !(rnp->expmaskinitnext & mask);
4289 	rnp->expmaskinitnext |= mask;
4290 	/* Allow lockless access for expedited grace periods. */
4291 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4292 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4293 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4294 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4295 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4296 
4297 	/* An incoming CPU should never be blocking a grace period. */
4298 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4299 		rcu_disable_urgency_upon_qs(rdp);
4300 		/* Report QS -after- changing ->qsmaskinitnext! */
4301 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4302 	} else {
4303 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4304 	}
4305 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4306 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4307 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4308 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4309 }
4310 
4311 /*
4312  * The outgoing function has no further need of RCU, so remove it from
4313  * the rcu_node tree's ->qsmaskinitnext bit masks.
4314  *
4315  * Note that this function is special in that it is invoked directly
4316  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4317  * This is because this function must be invoked at a precise location.
4318  */
4319 void rcu_report_dead(unsigned int cpu)
4320 {
4321 	unsigned long flags;
4322 	unsigned long mask;
4323 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4324 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4325 
4326 	// Do any dangling deferred wakeups.
4327 	do_nocb_deferred_wakeup(rdp);
4328 
4329 	/* QS for any half-done expedited grace period. */
4330 	preempt_disable();
4331 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4332 	preempt_enable();
4333 	rcu_preempt_deferred_qs(current);
4334 
4335 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4336 	mask = rdp->grpmask;
4337 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4338 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4339 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4340 	raw_spin_lock(&rcu_state.ofl_lock);
4341 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4342 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4343 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4344 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4345 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4346 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4347 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4348 	}
4349 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4350 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4351 	raw_spin_unlock(&rcu_state.ofl_lock);
4352 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4353 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4354 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4355 
4356 	rdp->cpu_started = false;
4357 }
4358 
4359 #ifdef CONFIG_HOTPLUG_CPU
4360 /*
4361  * The outgoing CPU has just passed through the dying-idle state, and we
4362  * are being invoked from the CPU that was IPIed to continue the offline
4363  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4364  */
4365 void rcutree_migrate_callbacks(int cpu)
4366 {
4367 	unsigned long flags;
4368 	struct rcu_data *my_rdp;
4369 	struct rcu_node *my_rnp;
4370 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4371 	bool needwake;
4372 
4373 	if (rcu_rdp_is_offloaded(rdp) ||
4374 	    rcu_segcblist_empty(&rdp->cblist))
4375 		return;  /* No callbacks to migrate. */
4376 
4377 	local_irq_save(flags);
4378 	my_rdp = this_cpu_ptr(&rcu_data);
4379 	my_rnp = my_rdp->mynode;
4380 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4381 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4382 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4383 	/* Leverage recent GPs and set GP for new callbacks. */
4384 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4385 		   rcu_advance_cbs(my_rnp, my_rdp);
4386 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4387 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4388 	rcu_segcblist_disable(&rdp->cblist);
4389 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4390 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4391 	if (rcu_rdp_is_offloaded(my_rdp)) {
4392 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4393 		__call_rcu_nocb_wake(my_rdp, true, flags);
4394 	} else {
4395 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4396 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4397 	}
4398 	if (needwake)
4399 		rcu_gp_kthread_wake();
4400 	lockdep_assert_irqs_enabled();
4401 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4402 		  !rcu_segcblist_empty(&rdp->cblist),
4403 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4404 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4405 		  rcu_segcblist_first_cb(&rdp->cblist));
4406 }
4407 #endif
4408 
4409 /*
4410  * On non-huge systems, use expedited RCU grace periods to make suspend
4411  * and hibernation run faster.
4412  */
4413 static int rcu_pm_notify(struct notifier_block *self,
4414 			 unsigned long action, void *hcpu)
4415 {
4416 	switch (action) {
4417 	case PM_HIBERNATION_PREPARE:
4418 	case PM_SUSPEND_PREPARE:
4419 		rcu_expedite_gp();
4420 		break;
4421 	case PM_POST_HIBERNATION:
4422 	case PM_POST_SUSPEND:
4423 		rcu_unexpedite_gp();
4424 		break;
4425 	default:
4426 		break;
4427 	}
4428 	return NOTIFY_OK;
4429 }
4430 
4431 /*
4432  * Spawn the kthreads that handle RCU's grace periods.
4433  */
4434 static int __init rcu_spawn_gp_kthread(void)
4435 {
4436 	unsigned long flags;
4437 	int kthread_prio_in = kthread_prio;
4438 	struct rcu_node *rnp;
4439 	struct sched_param sp;
4440 	struct task_struct *t;
4441 
4442 	/* Force priority into range. */
4443 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4444 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4445 		kthread_prio = 2;
4446 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4447 		kthread_prio = 1;
4448 	else if (kthread_prio < 0)
4449 		kthread_prio = 0;
4450 	else if (kthread_prio > 99)
4451 		kthread_prio = 99;
4452 
4453 	if (kthread_prio != kthread_prio_in)
4454 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4455 			 kthread_prio, kthread_prio_in);
4456 
4457 	rcu_scheduler_fully_active = 1;
4458 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4459 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4460 		return 0;
4461 	if (kthread_prio) {
4462 		sp.sched_priority = kthread_prio;
4463 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4464 	}
4465 	rnp = rcu_get_root();
4466 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4467 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4468 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4469 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4470 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4471 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4472 	wake_up_process(t);
4473 	rcu_spawn_nocb_kthreads();
4474 	rcu_spawn_boost_kthreads();
4475 	return 0;
4476 }
4477 early_initcall(rcu_spawn_gp_kthread);
4478 
4479 /*
4480  * This function is invoked towards the end of the scheduler's
4481  * initialization process.  Before this is called, the idle task might
4482  * contain synchronous grace-period primitives (during which time, this idle
4483  * task is booting the system, and such primitives are no-ops).  After this
4484  * function is called, any synchronous grace-period primitives are run as
4485  * expedited, with the requesting task driving the grace period forward.
4486  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4487  * runtime RCU functionality.
4488  */
4489 void rcu_scheduler_starting(void)
4490 {
4491 	WARN_ON(num_online_cpus() != 1);
4492 	WARN_ON(nr_context_switches() > 0);
4493 	rcu_test_sync_prims();
4494 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4495 	rcu_test_sync_prims();
4496 }
4497 
4498 /*
4499  * Helper function for rcu_init() that initializes the rcu_state structure.
4500  */
4501 static void __init rcu_init_one(void)
4502 {
4503 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4504 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4505 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4506 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4507 
4508 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4509 	int cpustride = 1;
4510 	int i;
4511 	int j;
4512 	struct rcu_node *rnp;
4513 
4514 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4515 
4516 	/* Silence gcc 4.8 false positive about array index out of range. */
4517 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4518 		panic("rcu_init_one: rcu_num_lvls out of range");
4519 
4520 	/* Initialize the level-tracking arrays. */
4521 
4522 	for (i = 1; i < rcu_num_lvls; i++)
4523 		rcu_state.level[i] =
4524 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4525 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4526 
4527 	/* Initialize the elements themselves, starting from the leaves. */
4528 
4529 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4530 		cpustride *= levelspread[i];
4531 		rnp = rcu_state.level[i];
4532 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4533 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4534 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4535 						   &rcu_node_class[i], buf[i]);
4536 			raw_spin_lock_init(&rnp->fqslock);
4537 			lockdep_set_class_and_name(&rnp->fqslock,
4538 						   &rcu_fqs_class[i], fqs[i]);
4539 			rnp->gp_seq = rcu_state.gp_seq;
4540 			rnp->gp_seq_needed = rcu_state.gp_seq;
4541 			rnp->completedqs = rcu_state.gp_seq;
4542 			rnp->qsmask = 0;
4543 			rnp->qsmaskinit = 0;
4544 			rnp->grplo = j * cpustride;
4545 			rnp->grphi = (j + 1) * cpustride - 1;
4546 			if (rnp->grphi >= nr_cpu_ids)
4547 				rnp->grphi = nr_cpu_ids - 1;
4548 			if (i == 0) {
4549 				rnp->grpnum = 0;
4550 				rnp->grpmask = 0;
4551 				rnp->parent = NULL;
4552 			} else {
4553 				rnp->grpnum = j % levelspread[i - 1];
4554 				rnp->grpmask = BIT(rnp->grpnum);
4555 				rnp->parent = rcu_state.level[i - 1] +
4556 					      j / levelspread[i - 1];
4557 			}
4558 			rnp->level = i;
4559 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4560 			rcu_init_one_nocb(rnp);
4561 			init_waitqueue_head(&rnp->exp_wq[0]);
4562 			init_waitqueue_head(&rnp->exp_wq[1]);
4563 			init_waitqueue_head(&rnp->exp_wq[2]);
4564 			init_waitqueue_head(&rnp->exp_wq[3]);
4565 			spin_lock_init(&rnp->exp_lock);
4566 		}
4567 	}
4568 
4569 	init_swait_queue_head(&rcu_state.gp_wq);
4570 	init_swait_queue_head(&rcu_state.expedited_wq);
4571 	rnp = rcu_first_leaf_node();
4572 	for_each_possible_cpu(i) {
4573 		while (i > rnp->grphi)
4574 			rnp++;
4575 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4576 		rcu_boot_init_percpu_data(i);
4577 	}
4578 }
4579 
4580 /*
4581  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4582  * replace the definitions in tree.h because those are needed to size
4583  * the ->node array in the rcu_state structure.
4584  */
4585 static void __init rcu_init_geometry(void)
4586 {
4587 	ulong d;
4588 	int i;
4589 	int rcu_capacity[RCU_NUM_LVLS];
4590 
4591 	/*
4592 	 * Initialize any unspecified boot parameters.
4593 	 * The default values of jiffies_till_first_fqs and
4594 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4595 	 * value, which is a function of HZ, then adding one for each
4596 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4597 	 */
4598 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4599 	if (jiffies_till_first_fqs == ULONG_MAX)
4600 		jiffies_till_first_fqs = d;
4601 	if (jiffies_till_next_fqs == ULONG_MAX)
4602 		jiffies_till_next_fqs = d;
4603 	adjust_jiffies_till_sched_qs();
4604 
4605 	/* If the compile-time values are accurate, just leave. */
4606 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4607 	    nr_cpu_ids == NR_CPUS)
4608 		return;
4609 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4610 		rcu_fanout_leaf, nr_cpu_ids);
4611 
4612 	/*
4613 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4614 	 * and cannot exceed the number of bits in the rcu_node masks.
4615 	 * Complain and fall back to the compile-time values if this
4616 	 * limit is exceeded.
4617 	 */
4618 	if (rcu_fanout_leaf < 2 ||
4619 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4620 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4621 		WARN_ON(1);
4622 		return;
4623 	}
4624 
4625 	/*
4626 	 * Compute number of nodes that can be handled an rcu_node tree
4627 	 * with the given number of levels.
4628 	 */
4629 	rcu_capacity[0] = rcu_fanout_leaf;
4630 	for (i = 1; i < RCU_NUM_LVLS; i++)
4631 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4632 
4633 	/*
4634 	 * The tree must be able to accommodate the configured number of CPUs.
4635 	 * If this limit is exceeded, fall back to the compile-time values.
4636 	 */
4637 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4638 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4639 		WARN_ON(1);
4640 		return;
4641 	}
4642 
4643 	/* Calculate the number of levels in the tree. */
4644 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4645 	}
4646 	rcu_num_lvls = i + 1;
4647 
4648 	/* Calculate the number of rcu_nodes at each level of the tree. */
4649 	for (i = 0; i < rcu_num_lvls; i++) {
4650 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4651 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4652 	}
4653 
4654 	/* Calculate the total number of rcu_node structures. */
4655 	rcu_num_nodes = 0;
4656 	for (i = 0; i < rcu_num_lvls; i++)
4657 		rcu_num_nodes += num_rcu_lvl[i];
4658 }
4659 
4660 /*
4661  * Dump out the structure of the rcu_node combining tree associated
4662  * with the rcu_state structure.
4663  */
4664 static void __init rcu_dump_rcu_node_tree(void)
4665 {
4666 	int level = 0;
4667 	struct rcu_node *rnp;
4668 
4669 	pr_info("rcu_node tree layout dump\n");
4670 	pr_info(" ");
4671 	rcu_for_each_node_breadth_first(rnp) {
4672 		if (rnp->level != level) {
4673 			pr_cont("\n");
4674 			pr_info(" ");
4675 			level = rnp->level;
4676 		}
4677 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4678 	}
4679 	pr_cont("\n");
4680 }
4681 
4682 struct workqueue_struct *rcu_gp_wq;
4683 struct workqueue_struct *rcu_par_gp_wq;
4684 
4685 static void __init kfree_rcu_batch_init(void)
4686 {
4687 	int cpu;
4688 	int i;
4689 
4690 	for_each_possible_cpu(cpu) {
4691 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4692 
4693 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4694 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4695 			krcp->krw_arr[i].krcp = krcp;
4696 		}
4697 
4698 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4699 		INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4700 		krcp->initialized = true;
4701 	}
4702 	if (register_shrinker(&kfree_rcu_shrinker))
4703 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4704 }
4705 
4706 void __init rcu_init(void)
4707 {
4708 	int cpu;
4709 
4710 	rcu_early_boot_tests();
4711 
4712 	kfree_rcu_batch_init();
4713 	rcu_bootup_announce();
4714 	rcu_init_geometry();
4715 	rcu_init_one();
4716 	if (dump_tree)
4717 		rcu_dump_rcu_node_tree();
4718 	if (use_softirq)
4719 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4720 
4721 	/*
4722 	 * We don't need protection against CPU-hotplug here because
4723 	 * this is called early in boot, before either interrupts
4724 	 * or the scheduler are operational.
4725 	 */
4726 	pm_notifier(rcu_pm_notify, 0);
4727 	for_each_online_cpu(cpu) {
4728 		rcutree_prepare_cpu(cpu);
4729 		rcu_cpu_starting(cpu);
4730 		rcutree_online_cpu(cpu);
4731 	}
4732 
4733 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4734 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4735 	WARN_ON(!rcu_gp_wq);
4736 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4737 	WARN_ON(!rcu_par_gp_wq);
4738 	srcu_init();
4739 
4740 	/* Fill in default value for rcutree.qovld boot parameter. */
4741 	/* -After- the rcu_node ->lock fields are initialized! */
4742 	if (qovld < 0)
4743 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4744 	else
4745 		qovld_calc = qovld;
4746 }
4747 
4748 #include "tree_stall.h"
4749 #include "tree_exp.h"
4750 #include "tree_plugin.h"
4751