xref: /openbmc/linux/kernel/rcu/tree.c (revision 99b7e93c)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73 
74 /*
75  * In order to export the rcu_state name to the tracing tools, it
76  * needs to be added in the __tracepoint_string section.
77  * This requires defining a separate variable tp_<sname>_varname
78  * that points to the string being used, and this will allow
79  * the tracing userspace tools to be able to decipher the string
80  * address to the matching string.
81  */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91 
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95 struct rcu_state sname##_state = { \
96 	.level = { &sname##_state.node[0] }, \
97 	.rda = &sname##_data, \
98 	.call = cr, \
99 	.fqs_state = RCU_GP_IDLE, \
100 	.gpnum = 0UL - 300UL, \
101 	.completed = 0UL - 300UL, \
102 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 	.orphan_donetail = &sname##_state.orphan_donelist, \
105 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106 	.name = RCU_STATE_NAME(sname), \
107 	.abbr = sabbr, \
108 }
109 
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115 
116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118 module_param(rcu_fanout_leaf, int, 0444);
119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120 static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
121 	NUM_RCU_LVL_0,
122 	NUM_RCU_LVL_1,
123 	NUM_RCU_LVL_2,
124 	NUM_RCU_LVL_3,
125 	NUM_RCU_LVL_4,
126 };
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 
129 /*
130  * The rcu_scheduler_active variable transitions from zero to one just
131  * before the first task is spawned.  So when this variable is zero, RCU
132  * can assume that there is but one task, allowing RCU to (for example)
133  * optimize synchronize_sched() to a simple barrier().  When this variable
134  * is one, RCU must actually do all the hard work required to detect real
135  * grace periods.  This variable is also used to suppress boot-time false
136  * positives from lockdep-RCU error checking.
137  */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140 
141 /*
142  * The rcu_scheduler_fully_active variable transitions from zero to one
143  * during the early_initcall() processing, which is after the scheduler
144  * is capable of creating new tasks.  So RCU processing (for example,
145  * creating tasks for RCU priority boosting) must be delayed until after
146  * rcu_scheduler_fully_active transitions from zero to one.  We also
147  * currently delay invocation of any RCU callbacks until after this point.
148  *
149  * It might later prove better for people registering RCU callbacks during
150  * early boot to take responsibility for these callbacks, but one step at
151  * a time.
152  */
153 static int rcu_scheduler_fully_active __read_mostly;
154 
155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158 static void invoke_rcu_core(void);
159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160 
161 /* rcuc/rcub kthread realtime priority */
162 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
163 module_param(kthread_prio, int, 0644);
164 
165 /* Delay in jiffies for grace-period initialization delays, debug only. */
166 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
167 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
168 module_param(gp_init_delay, int, 0644);
169 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
170 static const int gp_init_delay;
171 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
172 #define PER_RCU_NODE_PERIOD 10	/* Number of grace periods between delays. */
173 
174 /*
175  * Track the rcutorture test sequence number and the update version
176  * number within a given test.  The rcutorture_testseq is incremented
177  * on every rcutorture module load and unload, so has an odd value
178  * when a test is running.  The rcutorture_vernum is set to zero
179  * when rcutorture starts and is incremented on each rcutorture update.
180  * These variables enable correlating rcutorture output with the
181  * RCU tracing information.
182  */
183 unsigned long rcutorture_testseq;
184 unsigned long rcutorture_vernum;
185 
186 /*
187  * Compute the mask of online CPUs for the specified rcu_node structure.
188  * This will not be stable unless the rcu_node structure's ->lock is
189  * held, but the bit corresponding to the current CPU will be stable
190  * in most contexts.
191  */
192 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
193 {
194 	return ACCESS_ONCE(rnp->qsmaskinitnext);
195 }
196 
197 /*
198  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
199  * permit this function to be invoked without holding the root rcu_node
200  * structure's ->lock, but of course results can be subject to change.
201  */
202 static int rcu_gp_in_progress(struct rcu_state *rsp)
203 {
204 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
205 }
206 
207 /*
208  * Note a quiescent state.  Because we do not need to know
209  * how many quiescent states passed, just if there was at least
210  * one since the start of the grace period, this just sets a flag.
211  * The caller must have disabled preemption.
212  */
213 void rcu_sched_qs(void)
214 {
215 	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
216 		trace_rcu_grace_period(TPS("rcu_sched"),
217 				       __this_cpu_read(rcu_sched_data.gpnum),
218 				       TPS("cpuqs"));
219 		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
220 	}
221 }
222 
223 void rcu_bh_qs(void)
224 {
225 	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
226 		trace_rcu_grace_period(TPS("rcu_bh"),
227 				       __this_cpu_read(rcu_bh_data.gpnum),
228 				       TPS("cpuqs"));
229 		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
230 	}
231 }
232 
233 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
234 
235 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
236 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
237 	.dynticks = ATOMIC_INIT(1),
238 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
239 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
240 	.dynticks_idle = ATOMIC_INIT(1),
241 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
242 };
243 
244 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
245 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
246 
247 /*
248  * Let the RCU core know that this CPU has gone through the scheduler,
249  * which is a quiescent state.  This is called when the need for a
250  * quiescent state is urgent, so we burn an atomic operation and full
251  * memory barriers to let the RCU core know about it, regardless of what
252  * this CPU might (or might not) do in the near future.
253  *
254  * We inform the RCU core by emulating a zero-duration dyntick-idle
255  * period, which we in turn do by incrementing the ->dynticks counter
256  * by two.
257  */
258 static void rcu_momentary_dyntick_idle(void)
259 {
260 	unsigned long flags;
261 	struct rcu_data *rdp;
262 	struct rcu_dynticks *rdtp;
263 	int resched_mask;
264 	struct rcu_state *rsp;
265 
266 	local_irq_save(flags);
267 
268 	/*
269 	 * Yes, we can lose flag-setting operations.  This is OK, because
270 	 * the flag will be set again after some delay.
271 	 */
272 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
273 	raw_cpu_write(rcu_sched_qs_mask, 0);
274 
275 	/* Find the flavor that needs a quiescent state. */
276 	for_each_rcu_flavor(rsp) {
277 		rdp = raw_cpu_ptr(rsp->rda);
278 		if (!(resched_mask & rsp->flavor_mask))
279 			continue;
280 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
281 		if (ACCESS_ONCE(rdp->mynode->completed) !=
282 		    ACCESS_ONCE(rdp->cond_resched_completed))
283 			continue;
284 
285 		/*
286 		 * Pretend to be momentarily idle for the quiescent state.
287 		 * This allows the grace-period kthread to record the
288 		 * quiescent state, with no need for this CPU to do anything
289 		 * further.
290 		 */
291 		rdtp = this_cpu_ptr(&rcu_dynticks);
292 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
293 		atomic_add(2, &rdtp->dynticks);  /* QS. */
294 		smp_mb__after_atomic(); /* Later stuff after QS. */
295 		break;
296 	}
297 	local_irq_restore(flags);
298 }
299 
300 /*
301  * Note a context switch.  This is a quiescent state for RCU-sched,
302  * and requires special handling for preemptible RCU.
303  * The caller must have disabled preemption.
304  */
305 void rcu_note_context_switch(void)
306 {
307 	trace_rcu_utilization(TPS("Start context switch"));
308 	rcu_sched_qs();
309 	rcu_preempt_note_context_switch();
310 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
311 		rcu_momentary_dyntick_idle();
312 	trace_rcu_utilization(TPS("End context switch"));
313 }
314 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
315 
316 /*
317  * Register a quiescent state for all RCU flavors.  If there is an
318  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
319  * dyntick-idle quiescent state visible to other CPUs (but only for those
320  * RCU flavors in desperate need of a quiescent state, which will normally
321  * be none of them).  Either way, do a lightweight quiescent state for
322  * all RCU flavors.
323  */
324 void rcu_all_qs(void)
325 {
326 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
327 		rcu_momentary_dyntick_idle();
328 	this_cpu_inc(rcu_qs_ctr);
329 }
330 EXPORT_SYMBOL_GPL(rcu_all_qs);
331 
332 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
333 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
334 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
335 
336 module_param(blimit, long, 0444);
337 module_param(qhimark, long, 0444);
338 module_param(qlowmark, long, 0444);
339 
340 static ulong jiffies_till_first_fqs = ULONG_MAX;
341 static ulong jiffies_till_next_fqs = ULONG_MAX;
342 
343 module_param(jiffies_till_first_fqs, ulong, 0644);
344 module_param(jiffies_till_next_fqs, ulong, 0644);
345 
346 /*
347  * How long the grace period must be before we start recruiting
348  * quiescent-state help from rcu_note_context_switch().
349  */
350 static ulong jiffies_till_sched_qs = HZ / 20;
351 module_param(jiffies_till_sched_qs, ulong, 0644);
352 
353 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
354 				  struct rcu_data *rdp);
355 static void force_qs_rnp(struct rcu_state *rsp,
356 			 int (*f)(struct rcu_data *rsp, bool *isidle,
357 				  unsigned long *maxj),
358 			 bool *isidle, unsigned long *maxj);
359 static void force_quiescent_state(struct rcu_state *rsp);
360 static int rcu_pending(void);
361 
362 /*
363  * Return the number of RCU batches started thus far for debug & stats.
364  */
365 unsigned long rcu_batches_started(void)
366 {
367 	return rcu_state_p->gpnum;
368 }
369 EXPORT_SYMBOL_GPL(rcu_batches_started);
370 
371 /*
372  * Return the number of RCU-sched batches started thus far for debug & stats.
373  */
374 unsigned long rcu_batches_started_sched(void)
375 {
376 	return rcu_sched_state.gpnum;
377 }
378 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
379 
380 /*
381  * Return the number of RCU BH batches started thus far for debug & stats.
382  */
383 unsigned long rcu_batches_started_bh(void)
384 {
385 	return rcu_bh_state.gpnum;
386 }
387 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
388 
389 /*
390  * Return the number of RCU batches completed thus far for debug & stats.
391  */
392 unsigned long rcu_batches_completed(void)
393 {
394 	return rcu_state_p->completed;
395 }
396 EXPORT_SYMBOL_GPL(rcu_batches_completed);
397 
398 /*
399  * Return the number of RCU-sched batches completed thus far for debug & stats.
400  */
401 unsigned long rcu_batches_completed_sched(void)
402 {
403 	return rcu_sched_state.completed;
404 }
405 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
406 
407 /*
408  * Return the number of RCU BH batches completed thus far for debug & stats.
409  */
410 unsigned long rcu_batches_completed_bh(void)
411 {
412 	return rcu_bh_state.completed;
413 }
414 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
415 
416 /*
417  * Force a quiescent state.
418  */
419 void rcu_force_quiescent_state(void)
420 {
421 	force_quiescent_state(rcu_state_p);
422 }
423 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
424 
425 /*
426  * Force a quiescent state for RCU BH.
427  */
428 void rcu_bh_force_quiescent_state(void)
429 {
430 	force_quiescent_state(&rcu_bh_state);
431 }
432 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
433 
434 /*
435  * Force a quiescent state for RCU-sched.
436  */
437 void rcu_sched_force_quiescent_state(void)
438 {
439 	force_quiescent_state(&rcu_sched_state);
440 }
441 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
442 
443 /*
444  * Show the state of the grace-period kthreads.
445  */
446 void show_rcu_gp_kthreads(void)
447 {
448 	struct rcu_state *rsp;
449 
450 	for_each_rcu_flavor(rsp) {
451 		pr_info("%s: wait state: %d ->state: %#lx\n",
452 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
453 		/* sched_show_task(rsp->gp_kthread); */
454 	}
455 }
456 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
457 
458 /*
459  * Record the number of times rcutorture tests have been initiated and
460  * terminated.  This information allows the debugfs tracing stats to be
461  * correlated to the rcutorture messages, even when the rcutorture module
462  * is being repeatedly loaded and unloaded.  In other words, we cannot
463  * store this state in rcutorture itself.
464  */
465 void rcutorture_record_test_transition(void)
466 {
467 	rcutorture_testseq++;
468 	rcutorture_vernum = 0;
469 }
470 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
471 
472 /*
473  * Send along grace-period-related data for rcutorture diagnostics.
474  */
475 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
476 			    unsigned long *gpnum, unsigned long *completed)
477 {
478 	struct rcu_state *rsp = NULL;
479 
480 	switch (test_type) {
481 	case RCU_FLAVOR:
482 		rsp = rcu_state_p;
483 		break;
484 	case RCU_BH_FLAVOR:
485 		rsp = &rcu_bh_state;
486 		break;
487 	case RCU_SCHED_FLAVOR:
488 		rsp = &rcu_sched_state;
489 		break;
490 	default:
491 		break;
492 	}
493 	if (rsp != NULL) {
494 		*flags = ACCESS_ONCE(rsp->gp_flags);
495 		*gpnum = ACCESS_ONCE(rsp->gpnum);
496 		*completed = ACCESS_ONCE(rsp->completed);
497 		return;
498 	}
499 	*flags = 0;
500 	*gpnum = 0;
501 	*completed = 0;
502 }
503 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
504 
505 /*
506  * Record the number of writer passes through the current rcutorture test.
507  * This is also used to correlate debugfs tracing stats with the rcutorture
508  * messages.
509  */
510 void rcutorture_record_progress(unsigned long vernum)
511 {
512 	rcutorture_vernum++;
513 }
514 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
515 
516 /*
517  * Does the CPU have callbacks ready to be invoked?
518  */
519 static int
520 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
521 {
522 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
523 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
524 }
525 
526 /*
527  * Return the root node of the specified rcu_state structure.
528  */
529 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
530 {
531 	return &rsp->node[0];
532 }
533 
534 /*
535  * Is there any need for future grace periods?
536  * Interrupts must be disabled.  If the caller does not hold the root
537  * rnp_node structure's ->lock, the results are advisory only.
538  */
539 static int rcu_future_needs_gp(struct rcu_state *rsp)
540 {
541 	struct rcu_node *rnp = rcu_get_root(rsp);
542 	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
543 	int *fp = &rnp->need_future_gp[idx];
544 
545 	return ACCESS_ONCE(*fp);
546 }
547 
548 /*
549  * Does the current CPU require a not-yet-started grace period?
550  * The caller must have disabled interrupts to prevent races with
551  * normal callback registry.
552  */
553 static int
554 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
555 {
556 	int i;
557 
558 	if (rcu_gp_in_progress(rsp))
559 		return 0;  /* No, a grace period is already in progress. */
560 	if (rcu_future_needs_gp(rsp))
561 		return 1;  /* Yes, a no-CBs CPU needs one. */
562 	if (!rdp->nxttail[RCU_NEXT_TAIL])
563 		return 0;  /* No, this is a no-CBs (or offline) CPU. */
564 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
565 		return 1;  /* Yes, this CPU has newly registered callbacks. */
566 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
567 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
568 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
569 				 rdp->nxtcompleted[i]))
570 			return 1;  /* Yes, CBs for future grace period. */
571 	return 0; /* No grace period needed. */
572 }
573 
574 /*
575  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
576  *
577  * If the new value of the ->dynticks_nesting counter now is zero,
578  * we really have entered idle, and must do the appropriate accounting.
579  * The caller must have disabled interrupts.
580  */
581 static void rcu_eqs_enter_common(long long oldval, bool user)
582 {
583 	struct rcu_state *rsp;
584 	struct rcu_data *rdp;
585 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
586 
587 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
588 	if (!user && !is_idle_task(current)) {
589 		struct task_struct *idle __maybe_unused =
590 			idle_task(smp_processor_id());
591 
592 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
593 		ftrace_dump(DUMP_ORIG);
594 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
595 			  current->pid, current->comm,
596 			  idle->pid, idle->comm); /* must be idle task! */
597 	}
598 	for_each_rcu_flavor(rsp) {
599 		rdp = this_cpu_ptr(rsp->rda);
600 		do_nocb_deferred_wakeup(rdp);
601 	}
602 	rcu_prepare_for_idle();
603 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
604 	smp_mb__before_atomic();  /* See above. */
605 	atomic_inc(&rdtp->dynticks);
606 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
607 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
608 	rcu_dynticks_task_enter();
609 
610 	/*
611 	 * It is illegal to enter an extended quiescent state while
612 	 * in an RCU read-side critical section.
613 	 */
614 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
615 			   "Illegal idle entry in RCU read-side critical section.");
616 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
617 			   "Illegal idle entry in RCU-bh read-side critical section.");
618 	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
619 			   "Illegal idle entry in RCU-sched read-side critical section.");
620 }
621 
622 /*
623  * Enter an RCU extended quiescent state, which can be either the
624  * idle loop or adaptive-tickless usermode execution.
625  */
626 static void rcu_eqs_enter(bool user)
627 {
628 	long long oldval;
629 	struct rcu_dynticks *rdtp;
630 
631 	rdtp = this_cpu_ptr(&rcu_dynticks);
632 	oldval = rdtp->dynticks_nesting;
633 	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
634 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
635 		rdtp->dynticks_nesting = 0;
636 		rcu_eqs_enter_common(oldval, user);
637 	} else {
638 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
639 	}
640 }
641 
642 /**
643  * rcu_idle_enter - inform RCU that current CPU is entering idle
644  *
645  * Enter idle mode, in other words, -leave- the mode in which RCU
646  * read-side critical sections can occur.  (Though RCU read-side
647  * critical sections can occur in irq handlers in idle, a possibility
648  * handled by irq_enter() and irq_exit().)
649  *
650  * We crowbar the ->dynticks_nesting field to zero to allow for
651  * the possibility of usermode upcalls having messed up our count
652  * of interrupt nesting level during the prior busy period.
653  */
654 void rcu_idle_enter(void)
655 {
656 	unsigned long flags;
657 
658 	local_irq_save(flags);
659 	rcu_eqs_enter(false);
660 	rcu_sysidle_enter(0);
661 	local_irq_restore(flags);
662 }
663 EXPORT_SYMBOL_GPL(rcu_idle_enter);
664 
665 #ifdef CONFIG_RCU_USER_QS
666 /**
667  * rcu_user_enter - inform RCU that we are resuming userspace.
668  *
669  * Enter RCU idle mode right before resuming userspace.  No use of RCU
670  * is permitted between this call and rcu_user_exit(). This way the
671  * CPU doesn't need to maintain the tick for RCU maintenance purposes
672  * when the CPU runs in userspace.
673  */
674 void rcu_user_enter(void)
675 {
676 	rcu_eqs_enter(1);
677 }
678 #endif /* CONFIG_RCU_USER_QS */
679 
680 /**
681  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
682  *
683  * Exit from an interrupt handler, which might possibly result in entering
684  * idle mode, in other words, leaving the mode in which read-side critical
685  * sections can occur.
686  *
687  * This code assumes that the idle loop never does anything that might
688  * result in unbalanced calls to irq_enter() and irq_exit().  If your
689  * architecture violates this assumption, RCU will give you what you
690  * deserve, good and hard.  But very infrequently and irreproducibly.
691  *
692  * Use things like work queues to work around this limitation.
693  *
694  * You have been warned.
695  */
696 void rcu_irq_exit(void)
697 {
698 	unsigned long flags;
699 	long long oldval;
700 	struct rcu_dynticks *rdtp;
701 
702 	local_irq_save(flags);
703 	rdtp = this_cpu_ptr(&rcu_dynticks);
704 	oldval = rdtp->dynticks_nesting;
705 	rdtp->dynticks_nesting--;
706 	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
707 	if (rdtp->dynticks_nesting)
708 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
709 	else
710 		rcu_eqs_enter_common(oldval, true);
711 	rcu_sysidle_enter(1);
712 	local_irq_restore(flags);
713 }
714 
715 /*
716  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
717  *
718  * If the new value of the ->dynticks_nesting counter was previously zero,
719  * we really have exited idle, and must do the appropriate accounting.
720  * The caller must have disabled interrupts.
721  */
722 static void rcu_eqs_exit_common(long long oldval, int user)
723 {
724 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
725 
726 	rcu_dynticks_task_exit();
727 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
728 	atomic_inc(&rdtp->dynticks);
729 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
730 	smp_mb__after_atomic();  /* See above. */
731 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
732 	rcu_cleanup_after_idle();
733 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
734 	if (!user && !is_idle_task(current)) {
735 		struct task_struct *idle __maybe_unused =
736 			idle_task(smp_processor_id());
737 
738 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
739 				  oldval, rdtp->dynticks_nesting);
740 		ftrace_dump(DUMP_ORIG);
741 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
742 			  current->pid, current->comm,
743 			  idle->pid, idle->comm); /* must be idle task! */
744 	}
745 }
746 
747 /*
748  * Exit an RCU extended quiescent state, which can be either the
749  * idle loop or adaptive-tickless usermode execution.
750  */
751 static void rcu_eqs_exit(bool user)
752 {
753 	struct rcu_dynticks *rdtp;
754 	long long oldval;
755 
756 	rdtp = this_cpu_ptr(&rcu_dynticks);
757 	oldval = rdtp->dynticks_nesting;
758 	WARN_ON_ONCE(oldval < 0);
759 	if (oldval & DYNTICK_TASK_NEST_MASK) {
760 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
761 	} else {
762 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
763 		rcu_eqs_exit_common(oldval, user);
764 	}
765 }
766 
767 /**
768  * rcu_idle_exit - inform RCU that current CPU is leaving idle
769  *
770  * Exit idle mode, in other words, -enter- the mode in which RCU
771  * read-side critical sections can occur.
772  *
773  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
774  * allow for the possibility of usermode upcalls messing up our count
775  * of interrupt nesting level during the busy period that is just
776  * now starting.
777  */
778 void rcu_idle_exit(void)
779 {
780 	unsigned long flags;
781 
782 	local_irq_save(flags);
783 	rcu_eqs_exit(false);
784 	rcu_sysidle_exit(0);
785 	local_irq_restore(flags);
786 }
787 EXPORT_SYMBOL_GPL(rcu_idle_exit);
788 
789 #ifdef CONFIG_RCU_USER_QS
790 /**
791  * rcu_user_exit - inform RCU that we are exiting userspace.
792  *
793  * Exit RCU idle mode while entering the kernel because it can
794  * run a RCU read side critical section anytime.
795  */
796 void rcu_user_exit(void)
797 {
798 	rcu_eqs_exit(1);
799 }
800 #endif /* CONFIG_RCU_USER_QS */
801 
802 /**
803  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
804  *
805  * Enter an interrupt handler, which might possibly result in exiting
806  * idle mode, in other words, entering the mode in which read-side critical
807  * sections can occur.
808  *
809  * Note that the Linux kernel is fully capable of entering an interrupt
810  * handler that it never exits, for example when doing upcalls to
811  * user mode!  This code assumes that the idle loop never does upcalls to
812  * user mode.  If your architecture does do upcalls from the idle loop (or
813  * does anything else that results in unbalanced calls to the irq_enter()
814  * and irq_exit() functions), RCU will give you what you deserve, good
815  * and hard.  But very infrequently and irreproducibly.
816  *
817  * Use things like work queues to work around this limitation.
818  *
819  * You have been warned.
820  */
821 void rcu_irq_enter(void)
822 {
823 	unsigned long flags;
824 	struct rcu_dynticks *rdtp;
825 	long long oldval;
826 
827 	local_irq_save(flags);
828 	rdtp = this_cpu_ptr(&rcu_dynticks);
829 	oldval = rdtp->dynticks_nesting;
830 	rdtp->dynticks_nesting++;
831 	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
832 	if (oldval)
833 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
834 	else
835 		rcu_eqs_exit_common(oldval, true);
836 	rcu_sysidle_exit(1);
837 	local_irq_restore(flags);
838 }
839 
840 /**
841  * rcu_nmi_enter - inform RCU of entry to NMI context
842  *
843  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
844  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
845  * that the CPU is active.  This implementation permits nested NMIs, as
846  * long as the nesting level does not overflow an int.  (You will probably
847  * run out of stack space first.)
848  */
849 void rcu_nmi_enter(void)
850 {
851 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
852 	int incby = 2;
853 
854 	/* Complain about underflow. */
855 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
856 
857 	/*
858 	 * If idle from RCU viewpoint, atomically increment ->dynticks
859 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
860 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
861 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
862 	 * to be in the outermost NMI handler that interrupted an RCU-idle
863 	 * period (observation due to Andy Lutomirski).
864 	 */
865 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
866 		smp_mb__before_atomic();  /* Force delay from prior write. */
867 		atomic_inc(&rdtp->dynticks);
868 		/* atomic_inc() before later RCU read-side crit sects */
869 		smp_mb__after_atomic();  /* See above. */
870 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
871 		incby = 1;
872 	}
873 	rdtp->dynticks_nmi_nesting += incby;
874 	barrier();
875 }
876 
877 /**
878  * rcu_nmi_exit - inform RCU of exit from NMI context
879  *
880  * If we are returning from the outermost NMI handler that interrupted an
881  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
882  * to let the RCU grace-period handling know that the CPU is back to
883  * being RCU-idle.
884  */
885 void rcu_nmi_exit(void)
886 {
887 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
888 
889 	/*
890 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
891 	 * (We are exiting an NMI handler, so RCU better be paying attention
892 	 * to us!)
893 	 */
894 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
895 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
896 
897 	/*
898 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
899 	 * leave it in non-RCU-idle state.
900 	 */
901 	if (rdtp->dynticks_nmi_nesting != 1) {
902 		rdtp->dynticks_nmi_nesting -= 2;
903 		return;
904 	}
905 
906 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
907 	rdtp->dynticks_nmi_nesting = 0;
908 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
909 	smp_mb__before_atomic();  /* See above. */
910 	atomic_inc(&rdtp->dynticks);
911 	smp_mb__after_atomic();  /* Force delay to next write. */
912 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
913 }
914 
915 /**
916  * __rcu_is_watching - are RCU read-side critical sections safe?
917  *
918  * Return true if RCU is watching the running CPU, which means that
919  * this CPU can safely enter RCU read-side critical sections.  Unlike
920  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
921  * least disabled preemption.
922  */
923 bool notrace __rcu_is_watching(void)
924 {
925 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
926 }
927 
928 /**
929  * rcu_is_watching - see if RCU thinks that the current CPU is idle
930  *
931  * If the current CPU is in its idle loop and is neither in an interrupt
932  * or NMI handler, return true.
933  */
934 bool notrace rcu_is_watching(void)
935 {
936 	bool ret;
937 
938 	preempt_disable();
939 	ret = __rcu_is_watching();
940 	preempt_enable();
941 	return ret;
942 }
943 EXPORT_SYMBOL_GPL(rcu_is_watching);
944 
945 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
946 
947 /*
948  * Is the current CPU online?  Disable preemption to avoid false positives
949  * that could otherwise happen due to the current CPU number being sampled,
950  * this task being preempted, its old CPU being taken offline, resuming
951  * on some other CPU, then determining that its old CPU is now offline.
952  * It is OK to use RCU on an offline processor during initial boot, hence
953  * the check for rcu_scheduler_fully_active.  Note also that it is OK
954  * for a CPU coming online to use RCU for one jiffy prior to marking itself
955  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
956  * offline to continue to use RCU for one jiffy after marking itself
957  * offline in the cpu_online_mask.  This leniency is necessary given the
958  * non-atomic nature of the online and offline processing, for example,
959  * the fact that a CPU enters the scheduler after completing the CPU_DYING
960  * notifiers.
961  *
962  * This is also why RCU internally marks CPUs online during the
963  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
964  *
965  * Disable checking if in an NMI handler because we cannot safely report
966  * errors from NMI handlers anyway.
967  */
968 bool rcu_lockdep_current_cpu_online(void)
969 {
970 	struct rcu_data *rdp;
971 	struct rcu_node *rnp;
972 	bool ret;
973 
974 	if (in_nmi())
975 		return true;
976 	preempt_disable();
977 	rdp = this_cpu_ptr(&rcu_sched_data);
978 	rnp = rdp->mynode;
979 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
980 	      !rcu_scheduler_fully_active;
981 	preempt_enable();
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
985 
986 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
987 
988 /**
989  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
990  *
991  * If the current CPU is idle or running at a first-level (not nested)
992  * interrupt from idle, return true.  The caller must have at least
993  * disabled preemption.
994  */
995 static int rcu_is_cpu_rrupt_from_idle(void)
996 {
997 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
998 }
999 
1000 /*
1001  * Snapshot the specified CPU's dynticks counter so that we can later
1002  * credit them with an implicit quiescent state.  Return 1 if this CPU
1003  * is in dynticks idle mode, which is an extended quiescent state.
1004  */
1005 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1006 					 bool *isidle, unsigned long *maxj)
1007 {
1008 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1009 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1010 	if ((rdp->dynticks_snap & 0x1) == 0) {
1011 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1012 		return 1;
1013 	} else {
1014 		if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1015 				 rdp->mynode->gpnum))
1016 			ACCESS_ONCE(rdp->gpwrap) = true;
1017 		return 0;
1018 	}
1019 }
1020 
1021 /*
1022  * Return true if the specified CPU has passed through a quiescent
1023  * state by virtue of being in or having passed through an dynticks
1024  * idle state since the last call to dyntick_save_progress_counter()
1025  * for this same CPU, or by virtue of having been offline.
1026  */
1027 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1028 				    bool *isidle, unsigned long *maxj)
1029 {
1030 	unsigned int curr;
1031 	int *rcrmp;
1032 	unsigned int snap;
1033 
1034 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1035 	snap = (unsigned int)rdp->dynticks_snap;
1036 
1037 	/*
1038 	 * If the CPU passed through or entered a dynticks idle phase with
1039 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1040 	 * already acknowledged the request to pass through a quiescent
1041 	 * state.  Either way, that CPU cannot possibly be in an RCU
1042 	 * read-side critical section that started before the beginning
1043 	 * of the current RCU grace period.
1044 	 */
1045 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1046 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1047 		rdp->dynticks_fqs++;
1048 		return 1;
1049 	}
1050 
1051 	/*
1052 	 * Check for the CPU being offline, but only if the grace period
1053 	 * is old enough.  We don't need to worry about the CPU changing
1054 	 * state: If we see it offline even once, it has been through a
1055 	 * quiescent state.
1056 	 *
1057 	 * The reason for insisting that the grace period be at least
1058 	 * one jiffy old is that CPUs that are not quite online and that
1059 	 * have just gone offline can still execute RCU read-side critical
1060 	 * sections.
1061 	 */
1062 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1063 		return 0;  /* Grace period is not old enough. */
1064 	barrier();
1065 	if (cpu_is_offline(rdp->cpu)) {
1066 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1067 		rdp->offline_fqs++;
1068 		return 1;
1069 	}
1070 
1071 	/*
1072 	 * A CPU running for an extended time within the kernel can
1073 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1074 	 * even context-switching back and forth between a pair of
1075 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1076 	 * So if the grace period is old enough, make the CPU pay attention.
1077 	 * Note that the unsynchronized assignments to the per-CPU
1078 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1079 	 * bits can be lost, but they will be set again on the next
1080 	 * force-quiescent-state pass.  So lost bit sets do not result
1081 	 * in incorrect behavior, merely in a grace period lasting
1082 	 * a few jiffies longer than it might otherwise.  Because
1083 	 * there are at most four threads involved, and because the
1084 	 * updates are only once every few jiffies, the probability of
1085 	 * lossage (and thus of slight grace-period extension) is
1086 	 * quite low.
1087 	 *
1088 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1089 	 * is set too high, we override with half of the RCU CPU stall
1090 	 * warning delay.
1091 	 */
1092 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1093 	if (ULONG_CMP_GE(jiffies,
1094 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1095 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1096 		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1097 			ACCESS_ONCE(rdp->cond_resched_completed) =
1098 				ACCESS_ONCE(rdp->mynode->completed);
1099 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1100 			ACCESS_ONCE(*rcrmp) =
1101 				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1102 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1103 			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1104 		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1105 			/* Time to beat on that CPU again! */
1106 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1107 			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1108 		}
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 static void record_gp_stall_check_time(struct rcu_state *rsp)
1115 {
1116 	unsigned long j = jiffies;
1117 	unsigned long j1;
1118 
1119 	rsp->gp_start = j;
1120 	smp_wmb(); /* Record start time before stall time. */
1121 	j1 = rcu_jiffies_till_stall_check();
1122 	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1123 	rsp->jiffies_resched = j + j1 / 2;
1124 	rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1125 }
1126 
1127 /*
1128  * Complain about starvation of grace-period kthread.
1129  */
1130 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1131 {
1132 	unsigned long gpa;
1133 	unsigned long j;
1134 
1135 	j = jiffies;
1136 	gpa = ACCESS_ONCE(rsp->gp_activity);
1137 	if (j - gpa > 2 * HZ)
1138 		pr_err("%s kthread starved for %ld jiffies!\n",
1139 		       rsp->name, j - gpa);
1140 }
1141 
1142 /*
1143  * Dump stacks of all tasks running on stalled CPUs.
1144  */
1145 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1146 {
1147 	int cpu;
1148 	unsigned long flags;
1149 	struct rcu_node *rnp;
1150 
1151 	rcu_for_each_leaf_node(rsp, rnp) {
1152 		raw_spin_lock_irqsave(&rnp->lock, flags);
1153 		if (rnp->qsmask != 0) {
1154 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1155 				if (rnp->qsmask & (1UL << cpu))
1156 					dump_cpu_task(rnp->grplo + cpu);
1157 		}
1158 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1159 	}
1160 }
1161 
1162 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1163 {
1164 	int cpu;
1165 	long delta;
1166 	unsigned long flags;
1167 	unsigned long gpa;
1168 	unsigned long j;
1169 	int ndetected = 0;
1170 	struct rcu_node *rnp = rcu_get_root(rsp);
1171 	long totqlen = 0;
1172 
1173 	/* Only let one CPU complain about others per time interval. */
1174 
1175 	raw_spin_lock_irqsave(&rnp->lock, flags);
1176 	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1177 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1178 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179 		return;
1180 	}
1181 	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1182 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183 
1184 	/*
1185 	 * OK, time to rat on our buddy...
1186 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1187 	 * RCU CPU stall warnings.
1188 	 */
1189 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1190 	       rsp->name);
1191 	print_cpu_stall_info_begin();
1192 	rcu_for_each_leaf_node(rsp, rnp) {
1193 		raw_spin_lock_irqsave(&rnp->lock, flags);
1194 		ndetected += rcu_print_task_stall(rnp);
1195 		if (rnp->qsmask != 0) {
1196 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1197 				if (rnp->qsmask & (1UL << cpu)) {
1198 					print_cpu_stall_info(rsp,
1199 							     rnp->grplo + cpu);
1200 					ndetected++;
1201 				}
1202 		}
1203 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1204 	}
1205 
1206 	print_cpu_stall_info_end();
1207 	for_each_possible_cpu(cpu)
1208 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1209 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1210 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1211 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1212 	if (ndetected) {
1213 		rcu_dump_cpu_stacks(rsp);
1214 	} else {
1215 		if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1216 		    ACCESS_ONCE(rsp->completed) == gpnum) {
1217 			pr_err("INFO: Stall ended before state dump start\n");
1218 		} else {
1219 			j = jiffies;
1220 			gpa = ACCESS_ONCE(rsp->gp_activity);
1221 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1222 			       rsp->name, j - gpa, j, gpa,
1223 			       jiffies_till_next_fqs,
1224 			       rcu_get_root(rsp)->qsmask);
1225 			/* In this case, the current CPU might be at fault. */
1226 			sched_show_task(current);
1227 		}
1228 	}
1229 
1230 	/* Complain about tasks blocking the grace period. */
1231 	rcu_print_detail_task_stall(rsp);
1232 
1233 	rcu_check_gp_kthread_starvation(rsp);
1234 
1235 	force_quiescent_state(rsp);  /* Kick them all. */
1236 }
1237 
1238 static void print_cpu_stall(struct rcu_state *rsp)
1239 {
1240 	int cpu;
1241 	unsigned long flags;
1242 	struct rcu_node *rnp = rcu_get_root(rsp);
1243 	long totqlen = 0;
1244 
1245 	/*
1246 	 * OK, time to rat on ourselves...
1247 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1248 	 * RCU CPU stall warnings.
1249 	 */
1250 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1251 	print_cpu_stall_info_begin();
1252 	print_cpu_stall_info(rsp, smp_processor_id());
1253 	print_cpu_stall_info_end();
1254 	for_each_possible_cpu(cpu)
1255 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1256 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1257 		jiffies - rsp->gp_start,
1258 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1259 
1260 	rcu_check_gp_kthread_starvation(rsp);
1261 
1262 	rcu_dump_cpu_stacks(rsp);
1263 
1264 	raw_spin_lock_irqsave(&rnp->lock, flags);
1265 	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1266 		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1267 				     3 * rcu_jiffies_till_stall_check() + 3;
1268 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1269 
1270 	/*
1271 	 * Attempt to revive the RCU machinery by forcing a context switch.
1272 	 *
1273 	 * A context switch would normally allow the RCU state machine to make
1274 	 * progress and it could be we're stuck in kernel space without context
1275 	 * switches for an entirely unreasonable amount of time.
1276 	 */
1277 	resched_cpu(smp_processor_id());
1278 }
1279 
1280 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1281 {
1282 	unsigned long completed;
1283 	unsigned long gpnum;
1284 	unsigned long gps;
1285 	unsigned long j;
1286 	unsigned long js;
1287 	struct rcu_node *rnp;
1288 
1289 	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1290 		return;
1291 	j = jiffies;
1292 
1293 	/*
1294 	 * Lots of memory barriers to reject false positives.
1295 	 *
1296 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1297 	 * then rsp->gp_start, and finally rsp->completed.  These values
1298 	 * are updated in the opposite order with memory barriers (or
1299 	 * equivalent) during grace-period initialization and cleanup.
1300 	 * Now, a false positive can occur if we get an new value of
1301 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1302 	 * the memory barriers, the only way that this can happen is if one
1303 	 * grace period ends and another starts between these two fetches.
1304 	 * Detect this by comparing rsp->completed with the previous fetch
1305 	 * from rsp->gpnum.
1306 	 *
1307 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1308 	 * and rsp->gp_start suffice to forestall false positives.
1309 	 */
1310 	gpnum = ACCESS_ONCE(rsp->gpnum);
1311 	smp_rmb(); /* Pick up ->gpnum first... */
1312 	js = ACCESS_ONCE(rsp->jiffies_stall);
1313 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1314 	gps = ACCESS_ONCE(rsp->gp_start);
1315 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1316 	completed = ACCESS_ONCE(rsp->completed);
1317 	if (ULONG_CMP_GE(completed, gpnum) ||
1318 	    ULONG_CMP_LT(j, js) ||
1319 	    ULONG_CMP_GE(gps, js))
1320 		return; /* No stall or GP completed since entering function. */
1321 	rnp = rdp->mynode;
1322 	if (rcu_gp_in_progress(rsp) &&
1323 	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1324 
1325 		/* We haven't checked in, so go dump stack. */
1326 		print_cpu_stall(rsp);
1327 
1328 	} else if (rcu_gp_in_progress(rsp) &&
1329 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1330 
1331 		/* They had a few time units to dump stack, so complain. */
1332 		print_other_cpu_stall(rsp, gpnum);
1333 	}
1334 }
1335 
1336 /**
1337  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1338  *
1339  * Set the stall-warning timeout way off into the future, thus preventing
1340  * any RCU CPU stall-warning messages from appearing in the current set of
1341  * RCU grace periods.
1342  *
1343  * The caller must disable hard irqs.
1344  */
1345 void rcu_cpu_stall_reset(void)
1346 {
1347 	struct rcu_state *rsp;
1348 
1349 	for_each_rcu_flavor(rsp)
1350 		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1351 }
1352 
1353 /*
1354  * Initialize the specified rcu_data structure's default callback list
1355  * to empty.  The default callback list is the one that is not used by
1356  * no-callbacks CPUs.
1357  */
1358 static void init_default_callback_list(struct rcu_data *rdp)
1359 {
1360 	int i;
1361 
1362 	rdp->nxtlist = NULL;
1363 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1364 		rdp->nxttail[i] = &rdp->nxtlist;
1365 }
1366 
1367 /*
1368  * Initialize the specified rcu_data structure's callback list to empty.
1369  */
1370 static void init_callback_list(struct rcu_data *rdp)
1371 {
1372 	if (init_nocb_callback_list(rdp))
1373 		return;
1374 	init_default_callback_list(rdp);
1375 }
1376 
1377 /*
1378  * Determine the value that ->completed will have at the end of the
1379  * next subsequent grace period.  This is used to tag callbacks so that
1380  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1381  * been dyntick-idle for an extended period with callbacks under the
1382  * influence of RCU_FAST_NO_HZ.
1383  *
1384  * The caller must hold rnp->lock with interrupts disabled.
1385  */
1386 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1387 				       struct rcu_node *rnp)
1388 {
1389 	/*
1390 	 * If RCU is idle, we just wait for the next grace period.
1391 	 * But we can only be sure that RCU is idle if we are looking
1392 	 * at the root rcu_node structure -- otherwise, a new grace
1393 	 * period might have started, but just not yet gotten around
1394 	 * to initializing the current non-root rcu_node structure.
1395 	 */
1396 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1397 		return rnp->completed + 1;
1398 
1399 	/*
1400 	 * Otherwise, wait for a possible partial grace period and
1401 	 * then the subsequent full grace period.
1402 	 */
1403 	return rnp->completed + 2;
1404 }
1405 
1406 /*
1407  * Trace-event helper function for rcu_start_future_gp() and
1408  * rcu_nocb_wait_gp().
1409  */
1410 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1411 				unsigned long c, const char *s)
1412 {
1413 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1414 				      rnp->completed, c, rnp->level,
1415 				      rnp->grplo, rnp->grphi, s);
1416 }
1417 
1418 /*
1419  * Start some future grace period, as needed to handle newly arrived
1420  * callbacks.  The required future grace periods are recorded in each
1421  * rcu_node structure's ->need_future_gp field.  Returns true if there
1422  * is reason to awaken the grace-period kthread.
1423  *
1424  * The caller must hold the specified rcu_node structure's ->lock.
1425  */
1426 static bool __maybe_unused
1427 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1428 		    unsigned long *c_out)
1429 {
1430 	unsigned long c;
1431 	int i;
1432 	bool ret = false;
1433 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1434 
1435 	/*
1436 	 * Pick up grace-period number for new callbacks.  If this
1437 	 * grace period is already marked as needed, return to the caller.
1438 	 */
1439 	c = rcu_cbs_completed(rdp->rsp, rnp);
1440 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1441 	if (rnp->need_future_gp[c & 0x1]) {
1442 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1443 		goto out;
1444 	}
1445 
1446 	/*
1447 	 * If either this rcu_node structure or the root rcu_node structure
1448 	 * believe that a grace period is in progress, then we must wait
1449 	 * for the one following, which is in "c".  Because our request
1450 	 * will be noticed at the end of the current grace period, we don't
1451 	 * need to explicitly start one.  We only do the lockless check
1452 	 * of rnp_root's fields if the current rcu_node structure thinks
1453 	 * there is no grace period in flight, and because we hold rnp->lock,
1454 	 * the only possible change is when rnp_root's two fields are
1455 	 * equal, in which case rnp_root->gpnum might be concurrently
1456 	 * incremented.  But that is OK, as it will just result in our
1457 	 * doing some extra useless work.
1458 	 */
1459 	if (rnp->gpnum != rnp->completed ||
1460 	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1461 		rnp->need_future_gp[c & 0x1]++;
1462 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1463 		goto out;
1464 	}
1465 
1466 	/*
1467 	 * There might be no grace period in progress.  If we don't already
1468 	 * hold it, acquire the root rcu_node structure's lock in order to
1469 	 * start one (if needed).
1470 	 */
1471 	if (rnp != rnp_root) {
1472 		raw_spin_lock(&rnp_root->lock);
1473 		smp_mb__after_unlock_lock();
1474 	}
1475 
1476 	/*
1477 	 * Get a new grace-period number.  If there really is no grace
1478 	 * period in progress, it will be smaller than the one we obtained
1479 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1480 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1481 	 */
1482 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1483 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1484 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1485 			rdp->nxtcompleted[i] = c;
1486 
1487 	/*
1488 	 * If the needed for the required grace period is already
1489 	 * recorded, trace and leave.
1490 	 */
1491 	if (rnp_root->need_future_gp[c & 0x1]) {
1492 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1493 		goto unlock_out;
1494 	}
1495 
1496 	/* Record the need for the future grace period. */
1497 	rnp_root->need_future_gp[c & 0x1]++;
1498 
1499 	/* If a grace period is not already in progress, start one. */
1500 	if (rnp_root->gpnum != rnp_root->completed) {
1501 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1502 	} else {
1503 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1504 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1505 	}
1506 unlock_out:
1507 	if (rnp != rnp_root)
1508 		raw_spin_unlock(&rnp_root->lock);
1509 out:
1510 	if (c_out != NULL)
1511 		*c_out = c;
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Clean up any old requests for the just-ended grace period.  Also return
1517  * whether any additional grace periods have been requested.  Also invoke
1518  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1519  * waiting for this grace period to complete.
1520  */
1521 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1522 {
1523 	int c = rnp->completed;
1524 	int needmore;
1525 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1526 
1527 	rcu_nocb_gp_cleanup(rsp, rnp);
1528 	rnp->need_future_gp[c & 0x1] = 0;
1529 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1530 	trace_rcu_future_gp(rnp, rdp, c,
1531 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1532 	return needmore;
1533 }
1534 
1535 /*
1536  * Awaken the grace-period kthread for the specified flavor of RCU.
1537  * Don't do a self-awaken, and don't bother awakening when there is
1538  * nothing for the grace-period kthread to do (as in several CPUs
1539  * raced to awaken, and we lost), and finally don't try to awaken
1540  * a kthread that has not yet been created.
1541  */
1542 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1543 {
1544 	if (current == rsp->gp_kthread ||
1545 	    !ACCESS_ONCE(rsp->gp_flags) ||
1546 	    !rsp->gp_kthread)
1547 		return;
1548 	wake_up(&rsp->gp_wq);
1549 }
1550 
1551 /*
1552  * If there is room, assign a ->completed number to any callbacks on
1553  * this CPU that have not already been assigned.  Also accelerate any
1554  * callbacks that were previously assigned a ->completed number that has
1555  * since proven to be too conservative, which can happen if callbacks get
1556  * assigned a ->completed number while RCU is idle, but with reference to
1557  * a non-root rcu_node structure.  This function is idempotent, so it does
1558  * not hurt to call it repeatedly.  Returns an flag saying that we should
1559  * awaken the RCU grace-period kthread.
1560  *
1561  * The caller must hold rnp->lock with interrupts disabled.
1562  */
1563 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1564 			       struct rcu_data *rdp)
1565 {
1566 	unsigned long c;
1567 	int i;
1568 	bool ret;
1569 
1570 	/* If the CPU has no callbacks, nothing to do. */
1571 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1572 		return false;
1573 
1574 	/*
1575 	 * Starting from the sublist containing the callbacks most
1576 	 * recently assigned a ->completed number and working down, find the
1577 	 * first sublist that is not assignable to an upcoming grace period.
1578 	 * Such a sublist has something in it (first two tests) and has
1579 	 * a ->completed number assigned that will complete sooner than
1580 	 * the ->completed number for newly arrived callbacks (last test).
1581 	 *
1582 	 * The key point is that any later sublist can be assigned the
1583 	 * same ->completed number as the newly arrived callbacks, which
1584 	 * means that the callbacks in any of these later sublist can be
1585 	 * grouped into a single sublist, whether or not they have already
1586 	 * been assigned a ->completed number.
1587 	 */
1588 	c = rcu_cbs_completed(rsp, rnp);
1589 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1590 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1591 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1592 			break;
1593 
1594 	/*
1595 	 * If there are no sublist for unassigned callbacks, leave.
1596 	 * At the same time, advance "i" one sublist, so that "i" will
1597 	 * index into the sublist where all the remaining callbacks should
1598 	 * be grouped into.
1599 	 */
1600 	if (++i >= RCU_NEXT_TAIL)
1601 		return false;
1602 
1603 	/*
1604 	 * Assign all subsequent callbacks' ->completed number to the next
1605 	 * full grace period and group them all in the sublist initially
1606 	 * indexed by "i".
1607 	 */
1608 	for (; i <= RCU_NEXT_TAIL; i++) {
1609 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1610 		rdp->nxtcompleted[i] = c;
1611 	}
1612 	/* Record any needed additional grace periods. */
1613 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1614 
1615 	/* Trace depending on how much we were able to accelerate. */
1616 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1617 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1618 	else
1619 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1620 	return ret;
1621 }
1622 
1623 /*
1624  * Move any callbacks whose grace period has completed to the
1625  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1626  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1627  * sublist.  This function is idempotent, so it does not hurt to
1628  * invoke it repeatedly.  As long as it is not invoked -too- often...
1629  * Returns true if the RCU grace-period kthread needs to be awakened.
1630  *
1631  * The caller must hold rnp->lock with interrupts disabled.
1632  */
1633 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1634 			    struct rcu_data *rdp)
1635 {
1636 	int i, j;
1637 
1638 	/* If the CPU has no callbacks, nothing to do. */
1639 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1640 		return false;
1641 
1642 	/*
1643 	 * Find all callbacks whose ->completed numbers indicate that they
1644 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1645 	 */
1646 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1647 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1648 			break;
1649 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1650 	}
1651 	/* Clean up any sublist tail pointers that were misordered above. */
1652 	for (j = RCU_WAIT_TAIL; j < i; j++)
1653 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1654 
1655 	/* Copy down callbacks to fill in empty sublists. */
1656 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1657 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1658 			break;
1659 		rdp->nxttail[j] = rdp->nxttail[i];
1660 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1661 	}
1662 
1663 	/* Classify any remaining callbacks. */
1664 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1665 }
1666 
1667 /*
1668  * Update CPU-local rcu_data state to record the beginnings and ends of
1669  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1670  * structure corresponding to the current CPU, and must have irqs disabled.
1671  * Returns true if the grace-period kthread needs to be awakened.
1672  */
1673 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1674 			      struct rcu_data *rdp)
1675 {
1676 	bool ret;
1677 
1678 	/* Handle the ends of any preceding grace periods first. */
1679 	if (rdp->completed == rnp->completed &&
1680 	    !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1681 
1682 		/* No grace period end, so just accelerate recent callbacks. */
1683 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1684 
1685 	} else {
1686 
1687 		/* Advance callbacks. */
1688 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1689 
1690 		/* Remember that we saw this grace-period completion. */
1691 		rdp->completed = rnp->completed;
1692 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1693 	}
1694 
1695 	if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1696 		/*
1697 		 * If the current grace period is waiting for this CPU,
1698 		 * set up to detect a quiescent state, otherwise don't
1699 		 * go looking for one.
1700 		 */
1701 		rdp->gpnum = rnp->gpnum;
1702 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1703 		rdp->passed_quiesce = 0;
1704 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1705 		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1706 		zero_cpu_stall_ticks(rdp);
1707 		ACCESS_ONCE(rdp->gpwrap) = false;
1708 	}
1709 	return ret;
1710 }
1711 
1712 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1713 {
1714 	unsigned long flags;
1715 	bool needwake;
1716 	struct rcu_node *rnp;
1717 
1718 	local_irq_save(flags);
1719 	rnp = rdp->mynode;
1720 	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1721 	     rdp->completed == ACCESS_ONCE(rnp->completed) &&
1722 	     !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1723 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1724 		local_irq_restore(flags);
1725 		return;
1726 	}
1727 	smp_mb__after_unlock_lock();
1728 	needwake = __note_gp_changes(rsp, rnp, rdp);
1729 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1730 	if (needwake)
1731 		rcu_gp_kthread_wake(rsp);
1732 }
1733 
1734 /*
1735  * Initialize a new grace period.  Return 0 if no grace period required.
1736  */
1737 static int rcu_gp_init(struct rcu_state *rsp)
1738 {
1739 	unsigned long oldmask;
1740 	struct rcu_data *rdp;
1741 	struct rcu_node *rnp = rcu_get_root(rsp);
1742 
1743 	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1744 	raw_spin_lock_irq(&rnp->lock);
1745 	smp_mb__after_unlock_lock();
1746 	if (!ACCESS_ONCE(rsp->gp_flags)) {
1747 		/* Spurious wakeup, tell caller to go back to sleep.  */
1748 		raw_spin_unlock_irq(&rnp->lock);
1749 		return 0;
1750 	}
1751 	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1752 
1753 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1754 		/*
1755 		 * Grace period already in progress, don't start another.
1756 		 * Not supposed to be able to happen.
1757 		 */
1758 		raw_spin_unlock_irq(&rnp->lock);
1759 		return 0;
1760 	}
1761 
1762 	/* Advance to a new grace period and initialize state. */
1763 	record_gp_stall_check_time(rsp);
1764 	/* Record GP times before starting GP, hence smp_store_release(). */
1765 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1766 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1767 	raw_spin_unlock_irq(&rnp->lock);
1768 
1769 	/*
1770 	 * Apply per-leaf buffered online and offline operations to the
1771 	 * rcu_node tree.  Note that this new grace period need not wait
1772 	 * for subsequent online CPUs, and that quiescent-state forcing
1773 	 * will handle subsequent offline CPUs.
1774 	 */
1775 	rcu_for_each_leaf_node(rsp, rnp) {
1776 		raw_spin_lock_irq(&rnp->lock);
1777 		smp_mb__after_unlock_lock();
1778 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1779 		    !rnp->wait_blkd_tasks) {
1780 			/* Nothing to do on this leaf rcu_node structure. */
1781 			raw_spin_unlock_irq(&rnp->lock);
1782 			continue;
1783 		}
1784 
1785 		/* Record old state, apply changes to ->qsmaskinit field. */
1786 		oldmask = rnp->qsmaskinit;
1787 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1788 
1789 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1790 		if (!oldmask != !rnp->qsmaskinit) {
1791 			if (!oldmask) /* First online CPU for this rcu_node. */
1792 				rcu_init_new_rnp(rnp);
1793 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1794 				rnp->wait_blkd_tasks = true;
1795 			else /* Last offline CPU and can propagate. */
1796 				rcu_cleanup_dead_rnp(rnp);
1797 		}
1798 
1799 		/*
1800 		 * If all waited-on tasks from prior grace period are
1801 		 * done, and if all this rcu_node structure's CPUs are
1802 		 * still offline, propagate up the rcu_node tree and
1803 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1804 		 * rcu_node structure's CPUs has since come back online,
1805 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1806 		 * checks for this, so just call it unconditionally).
1807 		 */
1808 		if (rnp->wait_blkd_tasks &&
1809 		    (!rcu_preempt_has_tasks(rnp) ||
1810 		     rnp->qsmaskinit)) {
1811 			rnp->wait_blkd_tasks = false;
1812 			rcu_cleanup_dead_rnp(rnp);
1813 		}
1814 
1815 		raw_spin_unlock_irq(&rnp->lock);
1816 	}
1817 
1818 	/*
1819 	 * Set the quiescent-state-needed bits in all the rcu_node
1820 	 * structures for all currently online CPUs in breadth-first order,
1821 	 * starting from the root rcu_node structure, relying on the layout
1822 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1823 	 * will access only the leaves of the hierarchy, thus seeing that no
1824 	 * grace period is in progress, at least until the corresponding
1825 	 * leaf node has been initialized.  In addition, we have excluded
1826 	 * CPU-hotplug operations.
1827 	 *
1828 	 * The grace period cannot complete until the initialization
1829 	 * process finishes, because this kthread handles both.
1830 	 */
1831 	rcu_for_each_node_breadth_first(rsp, rnp) {
1832 		raw_spin_lock_irq(&rnp->lock);
1833 		smp_mb__after_unlock_lock();
1834 		rdp = this_cpu_ptr(rsp->rda);
1835 		rcu_preempt_check_blocked_tasks(rnp);
1836 		rnp->qsmask = rnp->qsmaskinit;
1837 		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1838 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1839 			ACCESS_ONCE(rnp->completed) = rsp->completed;
1840 		if (rnp == rdp->mynode)
1841 			(void)__note_gp_changes(rsp, rnp, rdp);
1842 		rcu_preempt_boost_start_gp(rnp);
1843 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1844 					    rnp->level, rnp->grplo,
1845 					    rnp->grphi, rnp->qsmask);
1846 		raw_spin_unlock_irq(&rnp->lock);
1847 		cond_resched_rcu_qs();
1848 		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1849 		if (gp_init_delay > 0 &&
1850 		    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD)))
1851 			schedule_timeout_uninterruptible(gp_init_delay);
1852 	}
1853 
1854 	return 1;
1855 }
1856 
1857 /*
1858  * Do one round of quiescent-state forcing.
1859  */
1860 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1861 {
1862 	int fqs_state = fqs_state_in;
1863 	bool isidle = false;
1864 	unsigned long maxj;
1865 	struct rcu_node *rnp = rcu_get_root(rsp);
1866 
1867 	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1868 	rsp->n_force_qs++;
1869 	if (fqs_state == RCU_SAVE_DYNTICK) {
1870 		/* Collect dyntick-idle snapshots. */
1871 		if (is_sysidle_rcu_state(rsp)) {
1872 			isidle = true;
1873 			maxj = jiffies - ULONG_MAX / 4;
1874 		}
1875 		force_qs_rnp(rsp, dyntick_save_progress_counter,
1876 			     &isidle, &maxj);
1877 		rcu_sysidle_report_gp(rsp, isidle, maxj);
1878 		fqs_state = RCU_FORCE_QS;
1879 	} else {
1880 		/* Handle dyntick-idle and offline CPUs. */
1881 		isidle = true;
1882 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1883 	}
1884 	/* Clear flag to prevent immediate re-entry. */
1885 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1886 		raw_spin_lock_irq(&rnp->lock);
1887 		smp_mb__after_unlock_lock();
1888 		ACCESS_ONCE(rsp->gp_flags) =
1889 			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1890 		raw_spin_unlock_irq(&rnp->lock);
1891 	}
1892 	return fqs_state;
1893 }
1894 
1895 /*
1896  * Clean up after the old grace period.
1897  */
1898 static void rcu_gp_cleanup(struct rcu_state *rsp)
1899 {
1900 	unsigned long gp_duration;
1901 	bool needgp = false;
1902 	int nocb = 0;
1903 	struct rcu_data *rdp;
1904 	struct rcu_node *rnp = rcu_get_root(rsp);
1905 
1906 	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1907 	raw_spin_lock_irq(&rnp->lock);
1908 	smp_mb__after_unlock_lock();
1909 	gp_duration = jiffies - rsp->gp_start;
1910 	if (gp_duration > rsp->gp_max)
1911 		rsp->gp_max = gp_duration;
1912 
1913 	/*
1914 	 * We know the grace period is complete, but to everyone else
1915 	 * it appears to still be ongoing.  But it is also the case
1916 	 * that to everyone else it looks like there is nothing that
1917 	 * they can do to advance the grace period.  It is therefore
1918 	 * safe for us to drop the lock in order to mark the grace
1919 	 * period as completed in all of the rcu_node structures.
1920 	 */
1921 	raw_spin_unlock_irq(&rnp->lock);
1922 
1923 	/*
1924 	 * Propagate new ->completed value to rcu_node structures so
1925 	 * that other CPUs don't have to wait until the start of the next
1926 	 * grace period to process their callbacks.  This also avoids
1927 	 * some nasty RCU grace-period initialization races by forcing
1928 	 * the end of the current grace period to be completely recorded in
1929 	 * all of the rcu_node structures before the beginning of the next
1930 	 * grace period is recorded in any of the rcu_node structures.
1931 	 */
1932 	rcu_for_each_node_breadth_first(rsp, rnp) {
1933 		raw_spin_lock_irq(&rnp->lock);
1934 		smp_mb__after_unlock_lock();
1935 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1936 		WARN_ON_ONCE(rnp->qsmask);
1937 		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1938 		rdp = this_cpu_ptr(rsp->rda);
1939 		if (rnp == rdp->mynode)
1940 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1941 		/* smp_mb() provided by prior unlock-lock pair. */
1942 		nocb += rcu_future_gp_cleanup(rsp, rnp);
1943 		raw_spin_unlock_irq(&rnp->lock);
1944 		cond_resched_rcu_qs();
1945 		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1946 	}
1947 	rnp = rcu_get_root(rsp);
1948 	raw_spin_lock_irq(&rnp->lock);
1949 	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1950 	rcu_nocb_gp_set(rnp, nocb);
1951 
1952 	/* Declare grace period done. */
1953 	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1954 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1955 	rsp->fqs_state = RCU_GP_IDLE;
1956 	rdp = this_cpu_ptr(rsp->rda);
1957 	/* Advance CBs to reduce false positives below. */
1958 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1959 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1960 		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1961 		trace_rcu_grace_period(rsp->name,
1962 				       ACCESS_ONCE(rsp->gpnum),
1963 				       TPS("newreq"));
1964 	}
1965 	raw_spin_unlock_irq(&rnp->lock);
1966 }
1967 
1968 /*
1969  * Body of kthread that handles grace periods.
1970  */
1971 static int __noreturn rcu_gp_kthread(void *arg)
1972 {
1973 	int fqs_state;
1974 	int gf;
1975 	unsigned long j;
1976 	int ret;
1977 	struct rcu_state *rsp = arg;
1978 	struct rcu_node *rnp = rcu_get_root(rsp);
1979 
1980 	rcu_bind_gp_kthread();
1981 	for (;;) {
1982 
1983 		/* Handle grace-period start. */
1984 		for (;;) {
1985 			trace_rcu_grace_period(rsp->name,
1986 					       ACCESS_ONCE(rsp->gpnum),
1987 					       TPS("reqwait"));
1988 			rsp->gp_state = RCU_GP_WAIT_GPS;
1989 			wait_event_interruptible(rsp->gp_wq,
1990 						 ACCESS_ONCE(rsp->gp_flags) &
1991 						 RCU_GP_FLAG_INIT);
1992 			/* Locking provides needed memory barrier. */
1993 			if (rcu_gp_init(rsp))
1994 				break;
1995 			cond_resched_rcu_qs();
1996 			ACCESS_ONCE(rsp->gp_activity) = jiffies;
1997 			WARN_ON(signal_pending(current));
1998 			trace_rcu_grace_period(rsp->name,
1999 					       ACCESS_ONCE(rsp->gpnum),
2000 					       TPS("reqwaitsig"));
2001 		}
2002 
2003 		/* Handle quiescent-state forcing. */
2004 		fqs_state = RCU_SAVE_DYNTICK;
2005 		j = jiffies_till_first_fqs;
2006 		if (j > HZ) {
2007 			j = HZ;
2008 			jiffies_till_first_fqs = HZ;
2009 		}
2010 		ret = 0;
2011 		for (;;) {
2012 			if (!ret)
2013 				rsp->jiffies_force_qs = jiffies + j;
2014 			trace_rcu_grace_period(rsp->name,
2015 					       ACCESS_ONCE(rsp->gpnum),
2016 					       TPS("fqswait"));
2017 			rsp->gp_state = RCU_GP_WAIT_FQS;
2018 			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2019 					((gf = ACCESS_ONCE(rsp->gp_flags)) &
2020 					 RCU_GP_FLAG_FQS) ||
2021 					(!ACCESS_ONCE(rnp->qsmask) &&
2022 					 !rcu_preempt_blocked_readers_cgp(rnp)),
2023 					j);
2024 			/* Locking provides needed memory barriers. */
2025 			/* If grace period done, leave loop. */
2026 			if (!ACCESS_ONCE(rnp->qsmask) &&
2027 			    !rcu_preempt_blocked_readers_cgp(rnp))
2028 				break;
2029 			/* If time for quiescent-state forcing, do it. */
2030 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2031 			    (gf & RCU_GP_FLAG_FQS)) {
2032 				trace_rcu_grace_period(rsp->name,
2033 						       ACCESS_ONCE(rsp->gpnum),
2034 						       TPS("fqsstart"));
2035 				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2036 				trace_rcu_grace_period(rsp->name,
2037 						       ACCESS_ONCE(rsp->gpnum),
2038 						       TPS("fqsend"));
2039 				cond_resched_rcu_qs();
2040 				ACCESS_ONCE(rsp->gp_activity) = jiffies;
2041 			} else {
2042 				/* Deal with stray signal. */
2043 				cond_resched_rcu_qs();
2044 				ACCESS_ONCE(rsp->gp_activity) = jiffies;
2045 				WARN_ON(signal_pending(current));
2046 				trace_rcu_grace_period(rsp->name,
2047 						       ACCESS_ONCE(rsp->gpnum),
2048 						       TPS("fqswaitsig"));
2049 			}
2050 			j = jiffies_till_next_fqs;
2051 			if (j > HZ) {
2052 				j = HZ;
2053 				jiffies_till_next_fqs = HZ;
2054 			} else if (j < 1) {
2055 				j = 1;
2056 				jiffies_till_next_fqs = 1;
2057 			}
2058 		}
2059 
2060 		/* Handle grace-period end. */
2061 		rcu_gp_cleanup(rsp);
2062 	}
2063 }
2064 
2065 /*
2066  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2067  * in preparation for detecting the next grace period.  The caller must hold
2068  * the root node's ->lock and hard irqs must be disabled.
2069  *
2070  * Note that it is legal for a dying CPU (which is marked as offline) to
2071  * invoke this function.  This can happen when the dying CPU reports its
2072  * quiescent state.
2073  *
2074  * Returns true if the grace-period kthread must be awakened.
2075  */
2076 static bool
2077 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2078 		      struct rcu_data *rdp)
2079 {
2080 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2081 		/*
2082 		 * Either we have not yet spawned the grace-period
2083 		 * task, this CPU does not need another grace period,
2084 		 * or a grace period is already in progress.
2085 		 * Either way, don't start a new grace period.
2086 		 */
2087 		return false;
2088 	}
2089 	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
2090 	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
2091 			       TPS("newreq"));
2092 
2093 	/*
2094 	 * We can't do wakeups while holding the rnp->lock, as that
2095 	 * could cause possible deadlocks with the rq->lock. Defer
2096 	 * the wakeup to our caller.
2097 	 */
2098 	return true;
2099 }
2100 
2101 /*
2102  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2103  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2104  * is invoked indirectly from rcu_advance_cbs(), which would result in
2105  * endless recursion -- or would do so if it wasn't for the self-deadlock
2106  * that is encountered beforehand.
2107  *
2108  * Returns true if the grace-period kthread needs to be awakened.
2109  */
2110 static bool rcu_start_gp(struct rcu_state *rsp)
2111 {
2112 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2113 	struct rcu_node *rnp = rcu_get_root(rsp);
2114 	bool ret = false;
2115 
2116 	/*
2117 	 * If there is no grace period in progress right now, any
2118 	 * callbacks we have up to this point will be satisfied by the
2119 	 * next grace period.  Also, advancing the callbacks reduces the
2120 	 * probability of false positives from cpu_needs_another_gp()
2121 	 * resulting in pointless grace periods.  So, advance callbacks
2122 	 * then start the grace period!
2123 	 */
2124 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2125 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2126 	return ret;
2127 }
2128 
2129 /*
2130  * Report a full set of quiescent states to the specified rcu_state
2131  * data structure.  This involves cleaning up after the prior grace
2132  * period and letting rcu_start_gp() start up the next grace period
2133  * if one is needed.  Note that the caller must hold rnp->lock, which
2134  * is released before return.
2135  */
2136 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2137 	__releases(rcu_get_root(rsp)->lock)
2138 {
2139 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2140 	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2141 	rcu_gp_kthread_wake(rsp);
2142 }
2143 
2144 /*
2145  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2146  * Allows quiescent states for a group of CPUs to be reported at one go
2147  * to the specified rcu_node structure, though all the CPUs in the group
2148  * must be represented by the same rcu_node structure (which need not be a
2149  * leaf rcu_node structure, though it often will be).  The gps parameter
2150  * is the grace-period snapshot, which means that the quiescent states
2151  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2152  * must be held upon entry, and it is released before return.
2153  */
2154 static void
2155 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2156 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2157 	__releases(rnp->lock)
2158 {
2159 	unsigned long oldmask = 0;
2160 	struct rcu_node *rnp_c;
2161 
2162 	/* Walk up the rcu_node hierarchy. */
2163 	for (;;) {
2164 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2165 
2166 			/*
2167 			 * Our bit has already been cleared, or the
2168 			 * relevant grace period is already over, so done.
2169 			 */
2170 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2171 			return;
2172 		}
2173 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2174 		rnp->qsmask &= ~mask;
2175 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2176 						 mask, rnp->qsmask, rnp->level,
2177 						 rnp->grplo, rnp->grphi,
2178 						 !!rnp->gp_tasks);
2179 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2180 
2181 			/* Other bits still set at this level, so done. */
2182 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2183 			return;
2184 		}
2185 		mask = rnp->grpmask;
2186 		if (rnp->parent == NULL) {
2187 
2188 			/* No more levels.  Exit loop holding root lock. */
2189 
2190 			break;
2191 		}
2192 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2193 		rnp_c = rnp;
2194 		rnp = rnp->parent;
2195 		raw_spin_lock_irqsave(&rnp->lock, flags);
2196 		smp_mb__after_unlock_lock();
2197 		oldmask = rnp_c->qsmask;
2198 	}
2199 
2200 	/*
2201 	 * Get here if we are the last CPU to pass through a quiescent
2202 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2203 	 * to clean up and start the next grace period if one is needed.
2204 	 */
2205 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2206 }
2207 
2208 /*
2209  * Record a quiescent state for all tasks that were previously queued
2210  * on the specified rcu_node structure and that were blocking the current
2211  * RCU grace period.  The caller must hold the specified rnp->lock with
2212  * irqs disabled, and this lock is released upon return, but irqs remain
2213  * disabled.
2214  */
2215 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2216 				      struct rcu_node *rnp, unsigned long flags)
2217 	__releases(rnp->lock)
2218 {
2219 	unsigned long gps;
2220 	unsigned long mask;
2221 	struct rcu_node *rnp_p;
2222 
2223 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2224 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2225 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2226 		return;  /* Still need more quiescent states! */
2227 	}
2228 
2229 	rnp_p = rnp->parent;
2230 	if (rnp_p == NULL) {
2231 		/*
2232 		 * Only one rcu_node structure in the tree, so don't
2233 		 * try to report up to its nonexistent parent!
2234 		 */
2235 		rcu_report_qs_rsp(rsp, flags);
2236 		return;
2237 	}
2238 
2239 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2240 	gps = rnp->gpnum;
2241 	mask = rnp->grpmask;
2242 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
2243 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
2244 	smp_mb__after_unlock_lock();
2245 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2246 }
2247 
2248 /*
2249  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2250  * structure.  This must be either called from the specified CPU, or
2251  * called when the specified CPU is known to be offline (and when it is
2252  * also known that no other CPU is concurrently trying to help the offline
2253  * CPU).  The lastcomp argument is used to make sure we are still in the
2254  * grace period of interest.  We don't want to end the current grace period
2255  * based on quiescent states detected in an earlier grace period!
2256  */
2257 static void
2258 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2259 {
2260 	unsigned long flags;
2261 	unsigned long mask;
2262 	bool needwake;
2263 	struct rcu_node *rnp;
2264 
2265 	rnp = rdp->mynode;
2266 	raw_spin_lock_irqsave(&rnp->lock, flags);
2267 	smp_mb__after_unlock_lock();
2268 	if ((rdp->passed_quiesce == 0 &&
2269 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2270 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2271 	    rdp->gpwrap) {
2272 
2273 		/*
2274 		 * The grace period in which this quiescent state was
2275 		 * recorded has ended, so don't report it upwards.
2276 		 * We will instead need a new quiescent state that lies
2277 		 * within the current grace period.
2278 		 */
2279 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2280 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2281 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2282 		return;
2283 	}
2284 	mask = rdp->grpmask;
2285 	if ((rnp->qsmask & mask) == 0) {
2286 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2287 	} else {
2288 		rdp->qs_pending = 0;
2289 
2290 		/*
2291 		 * This GP can't end until cpu checks in, so all of our
2292 		 * callbacks can be processed during the next GP.
2293 		 */
2294 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2295 
2296 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2297 		/* ^^^ Released rnp->lock */
2298 		if (needwake)
2299 			rcu_gp_kthread_wake(rsp);
2300 	}
2301 }
2302 
2303 /*
2304  * Check to see if there is a new grace period of which this CPU
2305  * is not yet aware, and if so, set up local rcu_data state for it.
2306  * Otherwise, see if this CPU has just passed through its first
2307  * quiescent state for this grace period, and record that fact if so.
2308  */
2309 static void
2310 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2311 {
2312 	/* Check for grace-period ends and beginnings. */
2313 	note_gp_changes(rsp, rdp);
2314 
2315 	/*
2316 	 * Does this CPU still need to do its part for current grace period?
2317 	 * If no, return and let the other CPUs do their part as well.
2318 	 */
2319 	if (!rdp->qs_pending)
2320 		return;
2321 
2322 	/*
2323 	 * Was there a quiescent state since the beginning of the grace
2324 	 * period? If no, then exit and wait for the next call.
2325 	 */
2326 	if (!rdp->passed_quiesce &&
2327 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2328 		return;
2329 
2330 	/*
2331 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2332 	 * judge of that).
2333 	 */
2334 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2335 }
2336 
2337 #ifdef CONFIG_HOTPLUG_CPU
2338 
2339 /*
2340  * Send the specified CPU's RCU callbacks to the orphanage.  The
2341  * specified CPU must be offline, and the caller must hold the
2342  * ->orphan_lock.
2343  */
2344 static void
2345 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2346 			  struct rcu_node *rnp, struct rcu_data *rdp)
2347 {
2348 	/* No-CBs CPUs do not have orphanable callbacks. */
2349 	if (rcu_is_nocb_cpu(rdp->cpu))
2350 		return;
2351 
2352 	/*
2353 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2354 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2355 	 * cannot be running now.  Thus no memory barrier is required.
2356 	 */
2357 	if (rdp->nxtlist != NULL) {
2358 		rsp->qlen_lazy += rdp->qlen_lazy;
2359 		rsp->qlen += rdp->qlen;
2360 		rdp->n_cbs_orphaned += rdp->qlen;
2361 		rdp->qlen_lazy = 0;
2362 		ACCESS_ONCE(rdp->qlen) = 0;
2363 	}
2364 
2365 	/*
2366 	 * Next, move those callbacks still needing a grace period to
2367 	 * the orphanage, where some other CPU will pick them up.
2368 	 * Some of the callbacks might have gone partway through a grace
2369 	 * period, but that is too bad.  They get to start over because we
2370 	 * cannot assume that grace periods are synchronized across CPUs.
2371 	 * We don't bother updating the ->nxttail[] array yet, instead
2372 	 * we just reset the whole thing later on.
2373 	 */
2374 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2375 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2376 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2377 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2378 	}
2379 
2380 	/*
2381 	 * Then move the ready-to-invoke callbacks to the orphanage,
2382 	 * where some other CPU will pick them up.  These will not be
2383 	 * required to pass though another grace period: They are done.
2384 	 */
2385 	if (rdp->nxtlist != NULL) {
2386 		*rsp->orphan_donetail = rdp->nxtlist;
2387 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2388 	}
2389 
2390 	/*
2391 	 * Finally, initialize the rcu_data structure's list to empty and
2392 	 * disallow further callbacks on this CPU.
2393 	 */
2394 	init_callback_list(rdp);
2395 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2396 }
2397 
2398 /*
2399  * Adopt the RCU callbacks from the specified rcu_state structure's
2400  * orphanage.  The caller must hold the ->orphan_lock.
2401  */
2402 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2403 {
2404 	int i;
2405 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2406 
2407 	/* No-CBs CPUs are handled specially. */
2408 	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2409 		return;
2410 
2411 	/* Do the accounting first. */
2412 	rdp->qlen_lazy += rsp->qlen_lazy;
2413 	rdp->qlen += rsp->qlen;
2414 	rdp->n_cbs_adopted += rsp->qlen;
2415 	if (rsp->qlen_lazy != rsp->qlen)
2416 		rcu_idle_count_callbacks_posted();
2417 	rsp->qlen_lazy = 0;
2418 	rsp->qlen = 0;
2419 
2420 	/*
2421 	 * We do not need a memory barrier here because the only way we
2422 	 * can get here if there is an rcu_barrier() in flight is if
2423 	 * we are the task doing the rcu_barrier().
2424 	 */
2425 
2426 	/* First adopt the ready-to-invoke callbacks. */
2427 	if (rsp->orphan_donelist != NULL) {
2428 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2429 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2430 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2431 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2432 				rdp->nxttail[i] = rsp->orphan_donetail;
2433 		rsp->orphan_donelist = NULL;
2434 		rsp->orphan_donetail = &rsp->orphan_donelist;
2435 	}
2436 
2437 	/* And then adopt the callbacks that still need a grace period. */
2438 	if (rsp->orphan_nxtlist != NULL) {
2439 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2440 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2441 		rsp->orphan_nxtlist = NULL;
2442 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2443 	}
2444 }
2445 
2446 /*
2447  * Trace the fact that this CPU is going offline.
2448  */
2449 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2450 {
2451 	RCU_TRACE(unsigned long mask);
2452 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2453 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2454 
2455 	RCU_TRACE(mask = rdp->grpmask);
2456 	trace_rcu_grace_period(rsp->name,
2457 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2458 			       TPS("cpuofl"));
2459 }
2460 
2461 /*
2462  * All CPUs for the specified rcu_node structure have gone offline,
2463  * and all tasks that were preempted within an RCU read-side critical
2464  * section while running on one of those CPUs have since exited their RCU
2465  * read-side critical section.  Some other CPU is reporting this fact with
2466  * the specified rcu_node structure's ->lock held and interrupts disabled.
2467  * This function therefore goes up the tree of rcu_node structures,
2468  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2469  * the leaf rcu_node structure's ->qsmaskinit field has already been
2470  * updated
2471  *
2472  * This function does check that the specified rcu_node structure has
2473  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2474  * prematurely.  That said, invoking it after the fact will cost you
2475  * a needless lock acquisition.  So once it has done its work, don't
2476  * invoke it again.
2477  */
2478 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2479 {
2480 	long mask;
2481 	struct rcu_node *rnp = rnp_leaf;
2482 
2483 	if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2484 		return;
2485 	for (;;) {
2486 		mask = rnp->grpmask;
2487 		rnp = rnp->parent;
2488 		if (!rnp)
2489 			break;
2490 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2491 		smp_mb__after_unlock_lock(); /* GP memory ordering. */
2492 		rnp->qsmaskinit &= ~mask;
2493 		rnp->qsmask &= ~mask;
2494 		if (rnp->qsmaskinit) {
2495 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2496 			return;
2497 		}
2498 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2499 	}
2500 }
2501 
2502 /*
2503  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2504  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
2505  * bit masks.
2506  */
2507 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2508 {
2509 	unsigned long flags;
2510 	unsigned long mask;
2511 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2512 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2513 
2514 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2515 	mask = rdp->grpmask;
2516 	raw_spin_lock_irqsave(&rnp->lock, flags);
2517 	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
2518 	rnp->qsmaskinitnext &= ~mask;
2519 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2520 }
2521 
2522 /*
2523  * The CPU has been completely removed, and some other CPU is reporting
2524  * this fact from process context.  Do the remainder of the cleanup,
2525  * including orphaning the outgoing CPU's RCU callbacks, and also
2526  * adopting them.  There can only be one CPU hotplug operation at a time,
2527  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2528  */
2529 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2530 {
2531 	unsigned long flags;
2532 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2533 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2534 
2535 	/* Adjust any no-longer-needed kthreads. */
2536 	rcu_boost_kthread_setaffinity(rnp, -1);
2537 
2538 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2539 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2540 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2541 	rcu_adopt_orphan_cbs(rsp, flags);
2542 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2543 
2544 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2545 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2546 		  cpu, rdp->qlen, rdp->nxtlist);
2547 }
2548 
2549 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2550 
2551 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2552 {
2553 }
2554 
2555 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2556 {
2557 }
2558 
2559 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2560 {
2561 }
2562 
2563 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2564 {
2565 }
2566 
2567 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2568 
2569 /*
2570  * Invoke any RCU callbacks that have made it to the end of their grace
2571  * period.  Thottle as specified by rdp->blimit.
2572  */
2573 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2574 {
2575 	unsigned long flags;
2576 	struct rcu_head *next, *list, **tail;
2577 	long bl, count, count_lazy;
2578 	int i;
2579 
2580 	/* If no callbacks are ready, just return. */
2581 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2582 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2583 		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2584 				    need_resched(), is_idle_task(current),
2585 				    rcu_is_callbacks_kthread());
2586 		return;
2587 	}
2588 
2589 	/*
2590 	 * Extract the list of ready callbacks, disabling to prevent
2591 	 * races with call_rcu() from interrupt handlers.
2592 	 */
2593 	local_irq_save(flags);
2594 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2595 	bl = rdp->blimit;
2596 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2597 	list = rdp->nxtlist;
2598 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2599 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2600 	tail = rdp->nxttail[RCU_DONE_TAIL];
2601 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2602 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2603 			rdp->nxttail[i] = &rdp->nxtlist;
2604 	local_irq_restore(flags);
2605 
2606 	/* Invoke callbacks. */
2607 	count = count_lazy = 0;
2608 	while (list) {
2609 		next = list->next;
2610 		prefetch(next);
2611 		debug_rcu_head_unqueue(list);
2612 		if (__rcu_reclaim(rsp->name, list))
2613 			count_lazy++;
2614 		list = next;
2615 		/* Stop only if limit reached and CPU has something to do. */
2616 		if (++count >= bl &&
2617 		    (need_resched() ||
2618 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2619 			break;
2620 	}
2621 
2622 	local_irq_save(flags);
2623 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2624 			    is_idle_task(current),
2625 			    rcu_is_callbacks_kthread());
2626 
2627 	/* Update count, and requeue any remaining callbacks. */
2628 	if (list != NULL) {
2629 		*tail = rdp->nxtlist;
2630 		rdp->nxtlist = list;
2631 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2632 			if (&rdp->nxtlist == rdp->nxttail[i])
2633 				rdp->nxttail[i] = tail;
2634 			else
2635 				break;
2636 	}
2637 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2638 	rdp->qlen_lazy -= count_lazy;
2639 	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2640 	rdp->n_cbs_invoked += count;
2641 
2642 	/* Reinstate batch limit if we have worked down the excess. */
2643 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2644 		rdp->blimit = blimit;
2645 
2646 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2647 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2648 		rdp->qlen_last_fqs_check = 0;
2649 		rdp->n_force_qs_snap = rsp->n_force_qs;
2650 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2651 		rdp->qlen_last_fqs_check = rdp->qlen;
2652 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2653 
2654 	local_irq_restore(flags);
2655 
2656 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2657 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2658 		invoke_rcu_core();
2659 }
2660 
2661 /*
2662  * Check to see if this CPU is in a non-context-switch quiescent state
2663  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2664  * Also schedule RCU core processing.
2665  *
2666  * This function must be called from hardirq context.  It is normally
2667  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2668  * false, there is no point in invoking rcu_check_callbacks().
2669  */
2670 void rcu_check_callbacks(int user)
2671 {
2672 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2673 	increment_cpu_stall_ticks();
2674 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2675 
2676 		/*
2677 		 * Get here if this CPU took its interrupt from user
2678 		 * mode or from the idle loop, and if this is not a
2679 		 * nested interrupt.  In this case, the CPU is in
2680 		 * a quiescent state, so note it.
2681 		 *
2682 		 * No memory barrier is required here because both
2683 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2684 		 * variables that other CPUs neither access nor modify,
2685 		 * at least not while the corresponding CPU is online.
2686 		 */
2687 
2688 		rcu_sched_qs();
2689 		rcu_bh_qs();
2690 
2691 	} else if (!in_softirq()) {
2692 
2693 		/*
2694 		 * Get here if this CPU did not take its interrupt from
2695 		 * softirq, in other words, if it is not interrupting
2696 		 * a rcu_bh read-side critical section.  This is an _bh
2697 		 * critical section, so note it.
2698 		 */
2699 
2700 		rcu_bh_qs();
2701 	}
2702 	rcu_preempt_check_callbacks();
2703 	if (rcu_pending())
2704 		invoke_rcu_core();
2705 	if (user)
2706 		rcu_note_voluntary_context_switch(current);
2707 	trace_rcu_utilization(TPS("End scheduler-tick"));
2708 }
2709 
2710 /*
2711  * Scan the leaf rcu_node structures, processing dyntick state for any that
2712  * have not yet encountered a quiescent state, using the function specified.
2713  * Also initiate boosting for any threads blocked on the root rcu_node.
2714  *
2715  * The caller must have suppressed start of new grace periods.
2716  */
2717 static void force_qs_rnp(struct rcu_state *rsp,
2718 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2719 				  unsigned long *maxj),
2720 			 bool *isidle, unsigned long *maxj)
2721 {
2722 	unsigned long bit;
2723 	int cpu;
2724 	unsigned long flags;
2725 	unsigned long mask;
2726 	struct rcu_node *rnp;
2727 
2728 	rcu_for_each_leaf_node(rsp, rnp) {
2729 		cond_resched_rcu_qs();
2730 		mask = 0;
2731 		raw_spin_lock_irqsave(&rnp->lock, flags);
2732 		smp_mb__after_unlock_lock();
2733 		if (!rcu_gp_in_progress(rsp)) {
2734 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2735 			return;
2736 		}
2737 		if (rnp->qsmask == 0) {
2738 			if (rcu_state_p == &rcu_sched_state ||
2739 			    rsp != rcu_state_p ||
2740 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2741 				/*
2742 				 * No point in scanning bits because they
2743 				 * are all zero.  But we might need to
2744 				 * priority-boost blocked readers.
2745 				 */
2746 				rcu_initiate_boost(rnp, flags);
2747 				/* rcu_initiate_boost() releases rnp->lock */
2748 				continue;
2749 			}
2750 			if (rnp->parent &&
2751 			    (rnp->parent->qsmask & rnp->grpmask)) {
2752 				/*
2753 				 * Race between grace-period
2754 				 * initialization and task exiting RCU
2755 				 * read-side critical section: Report.
2756 				 */
2757 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2758 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2759 				continue;
2760 			}
2761 		}
2762 		cpu = rnp->grplo;
2763 		bit = 1;
2764 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2765 			if ((rnp->qsmask & bit) != 0) {
2766 				if ((rnp->qsmaskinit & bit) == 0)
2767 					*isidle = false; /* Pending hotplug. */
2768 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2769 					mask |= bit;
2770 			}
2771 		}
2772 		if (mask != 0) {
2773 			/* Idle/offline CPUs, report (releases rnp->lock. */
2774 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2775 		} else {
2776 			/* Nothing to do here, so just drop the lock. */
2777 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2778 		}
2779 	}
2780 }
2781 
2782 /*
2783  * Force quiescent states on reluctant CPUs, and also detect which
2784  * CPUs are in dyntick-idle mode.
2785  */
2786 static void force_quiescent_state(struct rcu_state *rsp)
2787 {
2788 	unsigned long flags;
2789 	bool ret;
2790 	struct rcu_node *rnp;
2791 	struct rcu_node *rnp_old = NULL;
2792 
2793 	/* Funnel through hierarchy to reduce memory contention. */
2794 	rnp = __this_cpu_read(rsp->rda->mynode);
2795 	for (; rnp != NULL; rnp = rnp->parent) {
2796 		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2797 		      !raw_spin_trylock(&rnp->fqslock);
2798 		if (rnp_old != NULL)
2799 			raw_spin_unlock(&rnp_old->fqslock);
2800 		if (ret) {
2801 			rsp->n_force_qs_lh++;
2802 			return;
2803 		}
2804 		rnp_old = rnp;
2805 	}
2806 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2807 
2808 	/* Reached the root of the rcu_node tree, acquire lock. */
2809 	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2810 	smp_mb__after_unlock_lock();
2811 	raw_spin_unlock(&rnp_old->fqslock);
2812 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2813 		rsp->n_force_qs_lh++;
2814 		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2815 		return;  /* Someone beat us to it. */
2816 	}
2817 	ACCESS_ONCE(rsp->gp_flags) =
2818 		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2819 	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2820 	rcu_gp_kthread_wake(rsp);
2821 }
2822 
2823 /*
2824  * This does the RCU core processing work for the specified rcu_state
2825  * and rcu_data structures.  This may be called only from the CPU to
2826  * whom the rdp belongs.
2827  */
2828 static void
2829 __rcu_process_callbacks(struct rcu_state *rsp)
2830 {
2831 	unsigned long flags;
2832 	bool needwake;
2833 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2834 
2835 	WARN_ON_ONCE(rdp->beenonline == 0);
2836 
2837 	/* Update RCU state based on any recent quiescent states. */
2838 	rcu_check_quiescent_state(rsp, rdp);
2839 
2840 	/* Does this CPU require a not-yet-started grace period? */
2841 	local_irq_save(flags);
2842 	if (cpu_needs_another_gp(rsp, rdp)) {
2843 		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2844 		needwake = rcu_start_gp(rsp);
2845 		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2846 		if (needwake)
2847 			rcu_gp_kthread_wake(rsp);
2848 	} else {
2849 		local_irq_restore(flags);
2850 	}
2851 
2852 	/* If there are callbacks ready, invoke them. */
2853 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2854 		invoke_rcu_callbacks(rsp, rdp);
2855 
2856 	/* Do any needed deferred wakeups of rcuo kthreads. */
2857 	do_nocb_deferred_wakeup(rdp);
2858 }
2859 
2860 /*
2861  * Do RCU core processing for the current CPU.
2862  */
2863 static void rcu_process_callbacks(struct softirq_action *unused)
2864 {
2865 	struct rcu_state *rsp;
2866 
2867 	if (cpu_is_offline(smp_processor_id()))
2868 		return;
2869 	trace_rcu_utilization(TPS("Start RCU core"));
2870 	for_each_rcu_flavor(rsp)
2871 		__rcu_process_callbacks(rsp);
2872 	trace_rcu_utilization(TPS("End RCU core"));
2873 }
2874 
2875 /*
2876  * Schedule RCU callback invocation.  If the specified type of RCU
2877  * does not support RCU priority boosting, just do a direct call,
2878  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2879  * are running on the current CPU with softirqs disabled, the
2880  * rcu_cpu_kthread_task cannot disappear out from under us.
2881  */
2882 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2883 {
2884 	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2885 		return;
2886 	if (likely(!rsp->boost)) {
2887 		rcu_do_batch(rsp, rdp);
2888 		return;
2889 	}
2890 	invoke_rcu_callbacks_kthread();
2891 }
2892 
2893 static void invoke_rcu_core(void)
2894 {
2895 	if (cpu_online(smp_processor_id()))
2896 		raise_softirq(RCU_SOFTIRQ);
2897 }
2898 
2899 /*
2900  * Handle any core-RCU processing required by a call_rcu() invocation.
2901  */
2902 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2903 			    struct rcu_head *head, unsigned long flags)
2904 {
2905 	bool needwake;
2906 
2907 	/*
2908 	 * If called from an extended quiescent state, invoke the RCU
2909 	 * core in order to force a re-evaluation of RCU's idleness.
2910 	 */
2911 	if (!rcu_is_watching())
2912 		invoke_rcu_core();
2913 
2914 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2915 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2916 		return;
2917 
2918 	/*
2919 	 * Force the grace period if too many callbacks or too long waiting.
2920 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2921 	 * if some other CPU has recently done so.  Also, don't bother
2922 	 * invoking force_quiescent_state() if the newly enqueued callback
2923 	 * is the only one waiting for a grace period to complete.
2924 	 */
2925 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2926 
2927 		/* Are we ignoring a completed grace period? */
2928 		note_gp_changes(rsp, rdp);
2929 
2930 		/* Start a new grace period if one not already started. */
2931 		if (!rcu_gp_in_progress(rsp)) {
2932 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2933 
2934 			raw_spin_lock(&rnp_root->lock);
2935 			smp_mb__after_unlock_lock();
2936 			needwake = rcu_start_gp(rsp);
2937 			raw_spin_unlock(&rnp_root->lock);
2938 			if (needwake)
2939 				rcu_gp_kthread_wake(rsp);
2940 		} else {
2941 			/* Give the grace period a kick. */
2942 			rdp->blimit = LONG_MAX;
2943 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2944 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2945 				force_quiescent_state(rsp);
2946 			rdp->n_force_qs_snap = rsp->n_force_qs;
2947 			rdp->qlen_last_fqs_check = rdp->qlen;
2948 		}
2949 	}
2950 }
2951 
2952 /*
2953  * RCU callback function to leak a callback.
2954  */
2955 static void rcu_leak_callback(struct rcu_head *rhp)
2956 {
2957 }
2958 
2959 /*
2960  * Helper function for call_rcu() and friends.  The cpu argument will
2961  * normally be -1, indicating "currently running CPU".  It may specify
2962  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2963  * is expected to specify a CPU.
2964  */
2965 static void
2966 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2967 	   struct rcu_state *rsp, int cpu, bool lazy)
2968 {
2969 	unsigned long flags;
2970 	struct rcu_data *rdp;
2971 
2972 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2973 	if (debug_rcu_head_queue(head)) {
2974 		/* Probable double call_rcu(), so leak the callback. */
2975 		ACCESS_ONCE(head->func) = rcu_leak_callback;
2976 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2977 		return;
2978 	}
2979 	head->func = func;
2980 	head->next = NULL;
2981 
2982 	/*
2983 	 * Opportunistically note grace-period endings and beginnings.
2984 	 * Note that we might see a beginning right after we see an
2985 	 * end, but never vice versa, since this CPU has to pass through
2986 	 * a quiescent state betweentimes.
2987 	 */
2988 	local_irq_save(flags);
2989 	rdp = this_cpu_ptr(rsp->rda);
2990 
2991 	/* Add the callback to our list. */
2992 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2993 		int offline;
2994 
2995 		if (cpu != -1)
2996 			rdp = per_cpu_ptr(rsp->rda, cpu);
2997 		if (likely(rdp->mynode)) {
2998 			/* Post-boot, so this should be for a no-CBs CPU. */
2999 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3000 			WARN_ON_ONCE(offline);
3001 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3002 			local_irq_restore(flags);
3003 			return;
3004 		}
3005 		/*
3006 		 * Very early boot, before rcu_init().  Initialize if needed
3007 		 * and then drop through to queue the callback.
3008 		 */
3009 		BUG_ON(cpu != -1);
3010 		WARN_ON_ONCE(!rcu_is_watching());
3011 		if (!likely(rdp->nxtlist))
3012 			init_default_callback_list(rdp);
3013 	}
3014 	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
3015 	if (lazy)
3016 		rdp->qlen_lazy++;
3017 	else
3018 		rcu_idle_count_callbacks_posted();
3019 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3020 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3021 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3022 
3023 	if (__is_kfree_rcu_offset((unsigned long)func))
3024 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3025 					 rdp->qlen_lazy, rdp->qlen);
3026 	else
3027 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3028 
3029 	/* Go handle any RCU core processing required. */
3030 	__call_rcu_core(rsp, rdp, head, flags);
3031 	local_irq_restore(flags);
3032 }
3033 
3034 /*
3035  * Queue an RCU-sched callback for invocation after a grace period.
3036  */
3037 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3038 {
3039 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3040 }
3041 EXPORT_SYMBOL_GPL(call_rcu_sched);
3042 
3043 /*
3044  * Queue an RCU callback for invocation after a quicker grace period.
3045  */
3046 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3047 {
3048 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3049 }
3050 EXPORT_SYMBOL_GPL(call_rcu_bh);
3051 
3052 /*
3053  * Queue an RCU callback for lazy invocation after a grace period.
3054  * This will likely be later named something like "call_rcu_lazy()",
3055  * but this change will require some way of tagging the lazy RCU
3056  * callbacks in the list of pending callbacks. Until then, this
3057  * function may only be called from __kfree_rcu().
3058  */
3059 void kfree_call_rcu(struct rcu_head *head,
3060 		    void (*func)(struct rcu_head *rcu))
3061 {
3062 	__call_rcu(head, func, rcu_state_p, -1, 1);
3063 }
3064 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3065 
3066 /*
3067  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3068  * any blocking grace-period wait automatically implies a grace period
3069  * if there is only one CPU online at any point time during execution
3070  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3071  * occasionally incorrectly indicate that there are multiple CPUs online
3072  * when there was in fact only one the whole time, as this just adds
3073  * some overhead: RCU still operates correctly.
3074  */
3075 static inline int rcu_blocking_is_gp(void)
3076 {
3077 	int ret;
3078 
3079 	might_sleep();  /* Check for RCU read-side critical section. */
3080 	preempt_disable();
3081 	ret = num_online_cpus() <= 1;
3082 	preempt_enable();
3083 	return ret;
3084 }
3085 
3086 /**
3087  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3088  *
3089  * Control will return to the caller some time after a full rcu-sched
3090  * grace period has elapsed, in other words after all currently executing
3091  * rcu-sched read-side critical sections have completed.   These read-side
3092  * critical sections are delimited by rcu_read_lock_sched() and
3093  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3094  * local_irq_disable(), and so on may be used in place of
3095  * rcu_read_lock_sched().
3096  *
3097  * This means that all preempt_disable code sequences, including NMI and
3098  * non-threaded hardware-interrupt handlers, in progress on entry will
3099  * have completed before this primitive returns.  However, this does not
3100  * guarantee that softirq handlers will have completed, since in some
3101  * kernels, these handlers can run in process context, and can block.
3102  *
3103  * Note that this guarantee implies further memory-ordering guarantees.
3104  * On systems with more than one CPU, when synchronize_sched() returns,
3105  * each CPU is guaranteed to have executed a full memory barrier since the
3106  * end of its last RCU-sched read-side critical section whose beginning
3107  * preceded the call to synchronize_sched().  In addition, each CPU having
3108  * an RCU read-side critical section that extends beyond the return from
3109  * synchronize_sched() is guaranteed to have executed a full memory barrier
3110  * after the beginning of synchronize_sched() and before the beginning of
3111  * that RCU read-side critical section.  Note that these guarantees include
3112  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3113  * that are executing in the kernel.
3114  *
3115  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3116  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3117  * to have executed a full memory barrier during the execution of
3118  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3119  * again only if the system has more than one CPU).
3120  *
3121  * This primitive provides the guarantees made by the (now removed)
3122  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3123  * guarantees that rcu_read_lock() sections will have completed.
3124  * In "classic RCU", these two guarantees happen to be one and
3125  * the same, but can differ in realtime RCU implementations.
3126  */
3127 void synchronize_sched(void)
3128 {
3129 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3130 			   !lock_is_held(&rcu_lock_map) &&
3131 			   !lock_is_held(&rcu_sched_lock_map),
3132 			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3133 	if (rcu_blocking_is_gp())
3134 		return;
3135 	if (rcu_gp_is_expedited())
3136 		synchronize_sched_expedited();
3137 	else
3138 		wait_rcu_gp(call_rcu_sched);
3139 }
3140 EXPORT_SYMBOL_GPL(synchronize_sched);
3141 
3142 /**
3143  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3144  *
3145  * Control will return to the caller some time after a full rcu_bh grace
3146  * period has elapsed, in other words after all currently executing rcu_bh
3147  * read-side critical sections have completed.  RCU read-side critical
3148  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3149  * and may be nested.
3150  *
3151  * See the description of synchronize_sched() for more detailed information
3152  * on memory ordering guarantees.
3153  */
3154 void synchronize_rcu_bh(void)
3155 {
3156 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3157 			   !lock_is_held(&rcu_lock_map) &&
3158 			   !lock_is_held(&rcu_sched_lock_map),
3159 			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3160 	if (rcu_blocking_is_gp())
3161 		return;
3162 	if (rcu_gp_is_expedited())
3163 		synchronize_rcu_bh_expedited();
3164 	else
3165 		wait_rcu_gp(call_rcu_bh);
3166 }
3167 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3168 
3169 /**
3170  * get_state_synchronize_rcu - Snapshot current RCU state
3171  *
3172  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3173  * to determine whether or not a full grace period has elapsed in the
3174  * meantime.
3175  */
3176 unsigned long get_state_synchronize_rcu(void)
3177 {
3178 	/*
3179 	 * Any prior manipulation of RCU-protected data must happen
3180 	 * before the load from ->gpnum.
3181 	 */
3182 	smp_mb();  /* ^^^ */
3183 
3184 	/*
3185 	 * Make sure this load happens before the purportedly
3186 	 * time-consuming work between get_state_synchronize_rcu()
3187 	 * and cond_synchronize_rcu().
3188 	 */
3189 	return smp_load_acquire(&rcu_state_p->gpnum);
3190 }
3191 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3192 
3193 /**
3194  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3195  *
3196  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3197  *
3198  * If a full RCU grace period has elapsed since the earlier call to
3199  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3200  * synchronize_rcu() to wait for a full grace period.
3201  *
3202  * Yes, this function does not take counter wrap into account.  But
3203  * counter wrap is harmless.  If the counter wraps, we have waited for
3204  * more than 2 billion grace periods (and way more on a 64-bit system!),
3205  * so waiting for one additional grace period should be just fine.
3206  */
3207 void cond_synchronize_rcu(unsigned long oldstate)
3208 {
3209 	unsigned long newstate;
3210 
3211 	/*
3212 	 * Ensure that this load happens before any RCU-destructive
3213 	 * actions the caller might carry out after we return.
3214 	 */
3215 	newstate = smp_load_acquire(&rcu_state_p->completed);
3216 	if (ULONG_CMP_GE(oldstate, newstate))
3217 		synchronize_rcu();
3218 }
3219 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3220 
3221 static int synchronize_sched_expedited_cpu_stop(void *data)
3222 {
3223 	/*
3224 	 * There must be a full memory barrier on each affected CPU
3225 	 * between the time that try_stop_cpus() is called and the
3226 	 * time that it returns.
3227 	 *
3228 	 * In the current initial implementation of cpu_stop, the
3229 	 * above condition is already met when the control reaches
3230 	 * this point and the following smp_mb() is not strictly
3231 	 * necessary.  Do smp_mb() anyway for documentation and
3232 	 * robustness against future implementation changes.
3233 	 */
3234 	smp_mb(); /* See above comment block. */
3235 	return 0;
3236 }
3237 
3238 /**
3239  * synchronize_sched_expedited - Brute-force RCU-sched grace period
3240  *
3241  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3242  * approach to force the grace period to end quickly.  This consumes
3243  * significant time on all CPUs and is unfriendly to real-time workloads,
3244  * so is thus not recommended for any sort of common-case code.  In fact,
3245  * if you are using synchronize_sched_expedited() in a loop, please
3246  * restructure your code to batch your updates, and then use a single
3247  * synchronize_sched() instead.
3248  *
3249  * This implementation can be thought of as an application of ticket
3250  * locking to RCU, with sync_sched_expedited_started and
3251  * sync_sched_expedited_done taking on the roles of the halves
3252  * of the ticket-lock word.  Each task atomically increments
3253  * sync_sched_expedited_started upon entry, snapshotting the old value,
3254  * then attempts to stop all the CPUs.  If this succeeds, then each
3255  * CPU will have executed a context switch, resulting in an RCU-sched
3256  * grace period.  We are then done, so we use atomic_cmpxchg() to
3257  * update sync_sched_expedited_done to match our snapshot -- but
3258  * only if someone else has not already advanced past our snapshot.
3259  *
3260  * On the other hand, if try_stop_cpus() fails, we check the value
3261  * of sync_sched_expedited_done.  If it has advanced past our
3262  * initial snapshot, then someone else must have forced a grace period
3263  * some time after we took our snapshot.  In this case, our work is
3264  * done for us, and we can simply return.  Otherwise, we try again,
3265  * but keep our initial snapshot for purposes of checking for someone
3266  * doing our work for us.
3267  *
3268  * If we fail too many times in a row, we fall back to synchronize_sched().
3269  */
3270 void synchronize_sched_expedited(void)
3271 {
3272 	cpumask_var_t cm;
3273 	bool cma = false;
3274 	int cpu;
3275 	long firstsnap, s, snap;
3276 	int trycount = 0;
3277 	struct rcu_state *rsp = &rcu_sched_state;
3278 
3279 	/*
3280 	 * If we are in danger of counter wrap, just do synchronize_sched().
3281 	 * By allowing sync_sched_expedited_started to advance no more than
3282 	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3283 	 * that more than 3.5 billion CPUs would be required to force a
3284 	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
3285 	 * course be required on a 64-bit system.
3286 	 */
3287 	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3288 			 (ulong)atomic_long_read(&rsp->expedited_done) +
3289 			 ULONG_MAX / 8)) {
3290 		synchronize_sched();
3291 		atomic_long_inc(&rsp->expedited_wrap);
3292 		return;
3293 	}
3294 
3295 	/*
3296 	 * Take a ticket.  Note that atomic_inc_return() implies a
3297 	 * full memory barrier.
3298 	 */
3299 	snap = atomic_long_inc_return(&rsp->expedited_start);
3300 	firstsnap = snap;
3301 	if (!try_get_online_cpus()) {
3302 		/* CPU hotplug operation in flight, fall back to normal GP. */
3303 		wait_rcu_gp(call_rcu_sched);
3304 		atomic_long_inc(&rsp->expedited_normal);
3305 		return;
3306 	}
3307 	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3308 
3309 	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3310 	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3311 	if (cma) {
3312 		cpumask_copy(cm, cpu_online_mask);
3313 		cpumask_clear_cpu(raw_smp_processor_id(), cm);
3314 		for_each_cpu(cpu, cm) {
3315 			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3316 
3317 			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3318 				cpumask_clear_cpu(cpu, cm);
3319 		}
3320 		if (cpumask_weight(cm) == 0)
3321 			goto all_cpus_idle;
3322 	}
3323 
3324 	/*
3325 	 * Each pass through the following loop attempts to force a
3326 	 * context switch on each CPU.
3327 	 */
3328 	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3329 			     synchronize_sched_expedited_cpu_stop,
3330 			     NULL) == -EAGAIN) {
3331 		put_online_cpus();
3332 		atomic_long_inc(&rsp->expedited_tryfail);
3333 
3334 		/* Check to see if someone else did our work for us. */
3335 		s = atomic_long_read(&rsp->expedited_done);
3336 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3337 			/* ensure test happens before caller kfree */
3338 			smp_mb__before_atomic(); /* ^^^ */
3339 			atomic_long_inc(&rsp->expedited_workdone1);
3340 			free_cpumask_var(cm);
3341 			return;
3342 		}
3343 
3344 		/* No joy, try again later.  Or just synchronize_sched(). */
3345 		if (trycount++ < 10) {
3346 			udelay(trycount * num_online_cpus());
3347 		} else {
3348 			wait_rcu_gp(call_rcu_sched);
3349 			atomic_long_inc(&rsp->expedited_normal);
3350 			free_cpumask_var(cm);
3351 			return;
3352 		}
3353 
3354 		/* Recheck to see if someone else did our work for us. */
3355 		s = atomic_long_read(&rsp->expedited_done);
3356 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3357 			/* ensure test happens before caller kfree */
3358 			smp_mb__before_atomic(); /* ^^^ */
3359 			atomic_long_inc(&rsp->expedited_workdone2);
3360 			free_cpumask_var(cm);
3361 			return;
3362 		}
3363 
3364 		/*
3365 		 * Refetching sync_sched_expedited_started allows later
3366 		 * callers to piggyback on our grace period.  We retry
3367 		 * after they started, so our grace period works for them,
3368 		 * and they started after our first try, so their grace
3369 		 * period works for us.
3370 		 */
3371 		if (!try_get_online_cpus()) {
3372 			/* CPU hotplug operation in flight, use normal GP. */
3373 			wait_rcu_gp(call_rcu_sched);
3374 			atomic_long_inc(&rsp->expedited_normal);
3375 			free_cpumask_var(cm);
3376 			return;
3377 		}
3378 		snap = atomic_long_read(&rsp->expedited_start);
3379 		smp_mb(); /* ensure read is before try_stop_cpus(). */
3380 	}
3381 	atomic_long_inc(&rsp->expedited_stoppedcpus);
3382 
3383 all_cpus_idle:
3384 	free_cpumask_var(cm);
3385 
3386 	/*
3387 	 * Everyone up to our most recent fetch is covered by our grace
3388 	 * period.  Update the counter, but only if our work is still
3389 	 * relevant -- which it won't be if someone who started later
3390 	 * than we did already did their update.
3391 	 */
3392 	do {
3393 		atomic_long_inc(&rsp->expedited_done_tries);
3394 		s = atomic_long_read(&rsp->expedited_done);
3395 		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3396 			/* ensure test happens before caller kfree */
3397 			smp_mb__before_atomic(); /* ^^^ */
3398 			atomic_long_inc(&rsp->expedited_done_lost);
3399 			break;
3400 		}
3401 	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3402 	atomic_long_inc(&rsp->expedited_done_exit);
3403 
3404 	put_online_cpus();
3405 }
3406 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3407 
3408 /*
3409  * Check to see if there is any immediate RCU-related work to be done
3410  * by the current CPU, for the specified type of RCU, returning 1 if so.
3411  * The checks are in order of increasing expense: checks that can be
3412  * carried out against CPU-local state are performed first.  However,
3413  * we must check for CPU stalls first, else we might not get a chance.
3414  */
3415 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3416 {
3417 	struct rcu_node *rnp = rdp->mynode;
3418 
3419 	rdp->n_rcu_pending++;
3420 
3421 	/* Check for CPU stalls, if enabled. */
3422 	check_cpu_stall(rsp, rdp);
3423 
3424 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3425 	if (rcu_nohz_full_cpu(rsp))
3426 		return 0;
3427 
3428 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3429 	if (rcu_scheduler_fully_active &&
3430 	    rdp->qs_pending && !rdp->passed_quiesce &&
3431 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3432 		rdp->n_rp_qs_pending++;
3433 	} else if (rdp->qs_pending &&
3434 		   (rdp->passed_quiesce ||
3435 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3436 		rdp->n_rp_report_qs++;
3437 		return 1;
3438 	}
3439 
3440 	/* Does this CPU have callbacks ready to invoke? */
3441 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3442 		rdp->n_rp_cb_ready++;
3443 		return 1;
3444 	}
3445 
3446 	/* Has RCU gone idle with this CPU needing another grace period? */
3447 	if (cpu_needs_another_gp(rsp, rdp)) {
3448 		rdp->n_rp_cpu_needs_gp++;
3449 		return 1;
3450 	}
3451 
3452 	/* Has another RCU grace period completed?  */
3453 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3454 		rdp->n_rp_gp_completed++;
3455 		return 1;
3456 	}
3457 
3458 	/* Has a new RCU grace period started? */
3459 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3460 	    unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3461 		rdp->n_rp_gp_started++;
3462 		return 1;
3463 	}
3464 
3465 	/* Does this CPU need a deferred NOCB wakeup? */
3466 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3467 		rdp->n_rp_nocb_defer_wakeup++;
3468 		return 1;
3469 	}
3470 
3471 	/* nothing to do */
3472 	rdp->n_rp_need_nothing++;
3473 	return 0;
3474 }
3475 
3476 /*
3477  * Check to see if there is any immediate RCU-related work to be done
3478  * by the current CPU, returning 1 if so.  This function is part of the
3479  * RCU implementation; it is -not- an exported member of the RCU API.
3480  */
3481 static int rcu_pending(void)
3482 {
3483 	struct rcu_state *rsp;
3484 
3485 	for_each_rcu_flavor(rsp)
3486 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3487 			return 1;
3488 	return 0;
3489 }
3490 
3491 /*
3492  * Return true if the specified CPU has any callback.  If all_lazy is
3493  * non-NULL, store an indication of whether all callbacks are lazy.
3494  * (If there are no callbacks, all of them are deemed to be lazy.)
3495  */
3496 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3497 {
3498 	bool al = true;
3499 	bool hc = false;
3500 	struct rcu_data *rdp;
3501 	struct rcu_state *rsp;
3502 
3503 	for_each_rcu_flavor(rsp) {
3504 		rdp = this_cpu_ptr(rsp->rda);
3505 		if (!rdp->nxtlist)
3506 			continue;
3507 		hc = true;
3508 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3509 			al = false;
3510 			break;
3511 		}
3512 	}
3513 	if (all_lazy)
3514 		*all_lazy = al;
3515 	return hc;
3516 }
3517 
3518 /*
3519  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3520  * the compiler is expected to optimize this away.
3521  */
3522 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3523 			       int cpu, unsigned long done)
3524 {
3525 	trace_rcu_barrier(rsp->name, s, cpu,
3526 			  atomic_read(&rsp->barrier_cpu_count), done);
3527 }
3528 
3529 /*
3530  * RCU callback function for _rcu_barrier().  If we are last, wake
3531  * up the task executing _rcu_barrier().
3532  */
3533 static void rcu_barrier_callback(struct rcu_head *rhp)
3534 {
3535 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3536 	struct rcu_state *rsp = rdp->rsp;
3537 
3538 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3539 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3540 		complete(&rsp->barrier_completion);
3541 	} else {
3542 		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3543 	}
3544 }
3545 
3546 /*
3547  * Called with preemption disabled, and from cross-cpu IRQ context.
3548  */
3549 static void rcu_barrier_func(void *type)
3550 {
3551 	struct rcu_state *rsp = type;
3552 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3553 
3554 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3555 	atomic_inc(&rsp->barrier_cpu_count);
3556 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3557 }
3558 
3559 /*
3560  * Orchestrate the specified type of RCU barrier, waiting for all
3561  * RCU callbacks of the specified type to complete.
3562  */
3563 static void _rcu_barrier(struct rcu_state *rsp)
3564 {
3565 	int cpu;
3566 	struct rcu_data *rdp;
3567 	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3568 	unsigned long snap_done;
3569 
3570 	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3571 
3572 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3573 	mutex_lock(&rsp->barrier_mutex);
3574 
3575 	/*
3576 	 * Ensure that all prior references, including to ->n_barrier_done,
3577 	 * are ordered before the _rcu_barrier() machinery.
3578 	 */
3579 	smp_mb();  /* See above block comment. */
3580 
3581 	/*
3582 	 * Recheck ->n_barrier_done to see if others did our work for us.
3583 	 * This means checking ->n_barrier_done for an even-to-odd-to-even
3584 	 * transition.  The "if" expression below therefore rounds the old
3585 	 * value up to the next even number and adds two before comparing.
3586 	 */
3587 	snap_done = rsp->n_barrier_done;
3588 	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3589 
3590 	/*
3591 	 * If the value in snap is odd, we needed to wait for the current
3592 	 * rcu_barrier() to complete, then wait for the next one, in other
3593 	 * words, we need the value of snap_done to be three larger than
3594 	 * the value of snap.  On the other hand, if the value in snap is
3595 	 * even, we only had to wait for the next rcu_barrier() to complete,
3596 	 * in other words, we need the value of snap_done to be only two
3597 	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3598 	 * this for us (thank you, Linus!).
3599 	 */
3600 	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3601 		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3602 		smp_mb(); /* caller's subsequent code after above check. */
3603 		mutex_unlock(&rsp->barrier_mutex);
3604 		return;
3605 	}
3606 
3607 	/*
3608 	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3609 	 * ACCESS_ONCE() to prevent the compiler from speculating
3610 	 * the increment to precede the early-exit check.
3611 	 */
3612 	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3613 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3614 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3615 	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3616 
3617 	/*
3618 	 * Initialize the count to one rather than to zero in order to
3619 	 * avoid a too-soon return to zero in case of a short grace period
3620 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3621 	 * to ensure that no offline CPU has callbacks queued.
3622 	 */
3623 	init_completion(&rsp->barrier_completion);
3624 	atomic_set(&rsp->barrier_cpu_count, 1);
3625 	get_online_cpus();
3626 
3627 	/*
3628 	 * Force each CPU with callbacks to register a new callback.
3629 	 * When that callback is invoked, we will know that all of the
3630 	 * corresponding CPU's preceding callbacks have been invoked.
3631 	 */
3632 	for_each_possible_cpu(cpu) {
3633 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3634 			continue;
3635 		rdp = per_cpu_ptr(rsp->rda, cpu);
3636 		if (rcu_is_nocb_cpu(cpu)) {
3637 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3638 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3639 						   rsp->n_barrier_done);
3640 			} else {
3641 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3642 						   rsp->n_barrier_done);
3643 				smp_mb__before_atomic();
3644 				atomic_inc(&rsp->barrier_cpu_count);
3645 				__call_rcu(&rdp->barrier_head,
3646 					   rcu_barrier_callback, rsp, cpu, 0);
3647 			}
3648 		} else if (ACCESS_ONCE(rdp->qlen)) {
3649 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3650 					   rsp->n_barrier_done);
3651 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3652 		} else {
3653 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3654 					   rsp->n_barrier_done);
3655 		}
3656 	}
3657 	put_online_cpus();
3658 
3659 	/*
3660 	 * Now that we have an rcu_barrier_callback() callback on each
3661 	 * CPU, and thus each counted, remove the initial count.
3662 	 */
3663 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3664 		complete(&rsp->barrier_completion);
3665 
3666 	/* Increment ->n_barrier_done to prevent duplicate work. */
3667 	smp_mb(); /* Keep increment after above mechanism. */
3668 	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3669 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3670 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3671 	smp_mb(); /* Keep increment before caller's subsequent code. */
3672 
3673 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3674 	wait_for_completion(&rsp->barrier_completion);
3675 
3676 	/* Other rcu_barrier() invocations can now safely proceed. */
3677 	mutex_unlock(&rsp->barrier_mutex);
3678 }
3679 
3680 /**
3681  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3682  */
3683 void rcu_barrier_bh(void)
3684 {
3685 	_rcu_barrier(&rcu_bh_state);
3686 }
3687 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3688 
3689 /**
3690  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3691  */
3692 void rcu_barrier_sched(void)
3693 {
3694 	_rcu_barrier(&rcu_sched_state);
3695 }
3696 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3697 
3698 /*
3699  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3700  * first CPU in a given leaf rcu_node structure coming online.  The caller
3701  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3702  * disabled.
3703  */
3704 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3705 {
3706 	long mask;
3707 	struct rcu_node *rnp = rnp_leaf;
3708 
3709 	for (;;) {
3710 		mask = rnp->grpmask;
3711 		rnp = rnp->parent;
3712 		if (rnp == NULL)
3713 			return;
3714 		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3715 		rnp->qsmaskinit |= mask;
3716 		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3717 	}
3718 }
3719 
3720 /*
3721  * Do boot-time initialization of a CPU's per-CPU RCU data.
3722  */
3723 static void __init
3724 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3725 {
3726 	unsigned long flags;
3727 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3728 	struct rcu_node *rnp = rcu_get_root(rsp);
3729 
3730 	/* Set up local state, ensuring consistent view of global state. */
3731 	raw_spin_lock_irqsave(&rnp->lock, flags);
3732 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3733 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3734 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3735 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3736 	rdp->cpu = cpu;
3737 	rdp->rsp = rsp;
3738 	rcu_boot_init_nocb_percpu_data(rdp);
3739 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3740 }
3741 
3742 /*
3743  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3744  * offline event can be happening at a given time.  Note also that we
3745  * can accept some slop in the rsp->completed access due to the fact
3746  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3747  */
3748 static void
3749 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3750 {
3751 	unsigned long flags;
3752 	unsigned long mask;
3753 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3754 	struct rcu_node *rnp = rcu_get_root(rsp);
3755 
3756 	/* Set up local state, ensuring consistent view of global state. */
3757 	raw_spin_lock_irqsave(&rnp->lock, flags);
3758 	rdp->beenonline = 1;	 /* We have now been online. */
3759 	rdp->qlen_last_fqs_check = 0;
3760 	rdp->n_force_qs_snap = rsp->n_force_qs;
3761 	rdp->blimit = blimit;
3762 	if (!rdp->nxtlist)
3763 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3764 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3765 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3766 	atomic_set(&rdp->dynticks->dynticks,
3767 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3768 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3769 
3770 	/*
3771 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3772 	 * propagation up the rcu_node tree will happen at the beginning
3773 	 * of the next grace period.
3774 	 */
3775 	rnp = rdp->mynode;
3776 	mask = rdp->grpmask;
3777 	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
3778 	smp_mb__after_unlock_lock();
3779 	rnp->qsmaskinitnext |= mask;
3780 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3781 	rdp->completed = rnp->completed;
3782 	rdp->passed_quiesce = false;
3783 	rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3784 	rdp->qs_pending = false;
3785 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3786 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3787 }
3788 
3789 static void rcu_prepare_cpu(int cpu)
3790 {
3791 	struct rcu_state *rsp;
3792 
3793 	for_each_rcu_flavor(rsp)
3794 		rcu_init_percpu_data(cpu, rsp);
3795 }
3796 
3797 /*
3798  * Handle CPU online/offline notification events.
3799  */
3800 int rcu_cpu_notify(struct notifier_block *self,
3801 		   unsigned long action, void *hcpu)
3802 {
3803 	long cpu = (long)hcpu;
3804 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3805 	struct rcu_node *rnp = rdp->mynode;
3806 	struct rcu_state *rsp;
3807 
3808 	switch (action) {
3809 	case CPU_UP_PREPARE:
3810 	case CPU_UP_PREPARE_FROZEN:
3811 		rcu_prepare_cpu(cpu);
3812 		rcu_prepare_kthreads(cpu);
3813 		rcu_spawn_all_nocb_kthreads(cpu);
3814 		break;
3815 	case CPU_ONLINE:
3816 	case CPU_DOWN_FAILED:
3817 		rcu_boost_kthread_setaffinity(rnp, -1);
3818 		break;
3819 	case CPU_DOWN_PREPARE:
3820 		rcu_boost_kthread_setaffinity(rnp, cpu);
3821 		break;
3822 	case CPU_DYING:
3823 	case CPU_DYING_FROZEN:
3824 		for_each_rcu_flavor(rsp)
3825 			rcu_cleanup_dying_cpu(rsp);
3826 		break;
3827 	case CPU_DYING_IDLE:
3828 		for_each_rcu_flavor(rsp) {
3829 			rcu_cleanup_dying_idle_cpu(cpu, rsp);
3830 		}
3831 		break;
3832 	case CPU_DEAD:
3833 	case CPU_DEAD_FROZEN:
3834 	case CPU_UP_CANCELED:
3835 	case CPU_UP_CANCELED_FROZEN:
3836 		for_each_rcu_flavor(rsp) {
3837 			rcu_cleanup_dead_cpu(cpu, rsp);
3838 			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3839 		}
3840 		break;
3841 	default:
3842 		break;
3843 	}
3844 	return NOTIFY_OK;
3845 }
3846 
3847 static int rcu_pm_notify(struct notifier_block *self,
3848 			 unsigned long action, void *hcpu)
3849 {
3850 	switch (action) {
3851 	case PM_HIBERNATION_PREPARE:
3852 	case PM_SUSPEND_PREPARE:
3853 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3854 			rcu_expedite_gp();
3855 		break;
3856 	case PM_POST_HIBERNATION:
3857 	case PM_POST_SUSPEND:
3858 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3859 			rcu_unexpedite_gp();
3860 		break;
3861 	default:
3862 		break;
3863 	}
3864 	return NOTIFY_OK;
3865 }
3866 
3867 /*
3868  * Spawn the kthreads that handle each RCU flavor's grace periods.
3869  */
3870 static int __init rcu_spawn_gp_kthread(void)
3871 {
3872 	unsigned long flags;
3873 	int kthread_prio_in = kthread_prio;
3874 	struct rcu_node *rnp;
3875 	struct rcu_state *rsp;
3876 	struct sched_param sp;
3877 	struct task_struct *t;
3878 
3879 	/* Force priority into range. */
3880 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3881 		kthread_prio = 1;
3882 	else if (kthread_prio < 0)
3883 		kthread_prio = 0;
3884 	else if (kthread_prio > 99)
3885 		kthread_prio = 99;
3886 	if (kthread_prio != kthread_prio_in)
3887 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3888 			 kthread_prio, kthread_prio_in);
3889 
3890 	rcu_scheduler_fully_active = 1;
3891 	for_each_rcu_flavor(rsp) {
3892 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3893 		BUG_ON(IS_ERR(t));
3894 		rnp = rcu_get_root(rsp);
3895 		raw_spin_lock_irqsave(&rnp->lock, flags);
3896 		rsp->gp_kthread = t;
3897 		if (kthread_prio) {
3898 			sp.sched_priority = kthread_prio;
3899 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3900 		}
3901 		wake_up_process(t);
3902 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3903 	}
3904 	rcu_spawn_nocb_kthreads();
3905 	rcu_spawn_boost_kthreads();
3906 	return 0;
3907 }
3908 early_initcall(rcu_spawn_gp_kthread);
3909 
3910 /*
3911  * This function is invoked towards the end of the scheduler's initialization
3912  * process.  Before this is called, the idle task might contain
3913  * RCU read-side critical sections (during which time, this idle
3914  * task is booting the system).  After this function is called, the
3915  * idle tasks are prohibited from containing RCU read-side critical
3916  * sections.  This function also enables RCU lockdep checking.
3917  */
3918 void rcu_scheduler_starting(void)
3919 {
3920 	WARN_ON(num_online_cpus() != 1);
3921 	WARN_ON(nr_context_switches() > 0);
3922 	rcu_scheduler_active = 1;
3923 }
3924 
3925 /*
3926  * Compute the per-level fanout, either using the exact fanout specified
3927  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3928  */
3929 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3930 {
3931 	int i;
3932 
3933 	if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
3934 		rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3935 		for (i = rcu_num_lvls - 2; i >= 0; i--)
3936 			rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3937 	} else {
3938 		int ccur;
3939 		int cprv;
3940 
3941 		cprv = nr_cpu_ids;
3942 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
3943 			ccur = rsp->levelcnt[i];
3944 			rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3945 			cprv = ccur;
3946 		}
3947 	}
3948 }
3949 
3950 /*
3951  * Helper function for rcu_init() that initializes one rcu_state structure.
3952  */
3953 static void __init rcu_init_one(struct rcu_state *rsp,
3954 		struct rcu_data __percpu *rda)
3955 {
3956 	static const char * const buf[] = {
3957 		"rcu_node_0",
3958 		"rcu_node_1",
3959 		"rcu_node_2",
3960 		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
3961 	static const char * const fqs[] = {
3962 		"rcu_node_fqs_0",
3963 		"rcu_node_fqs_1",
3964 		"rcu_node_fqs_2",
3965 		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3966 	static u8 fl_mask = 0x1;
3967 	int cpustride = 1;
3968 	int i;
3969 	int j;
3970 	struct rcu_node *rnp;
3971 
3972 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3973 
3974 	/* Silence gcc 4.8 warning about array index out of range. */
3975 	if (rcu_num_lvls > RCU_NUM_LVLS)
3976 		panic("rcu_init_one: rcu_num_lvls overflow");
3977 
3978 	/* Initialize the level-tracking arrays. */
3979 
3980 	for (i = 0; i < rcu_num_lvls; i++)
3981 		rsp->levelcnt[i] = num_rcu_lvl[i];
3982 	for (i = 1; i < rcu_num_lvls; i++)
3983 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3984 	rcu_init_levelspread(rsp);
3985 	rsp->flavor_mask = fl_mask;
3986 	fl_mask <<= 1;
3987 
3988 	/* Initialize the elements themselves, starting from the leaves. */
3989 
3990 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3991 		cpustride *= rsp->levelspread[i];
3992 		rnp = rsp->level[i];
3993 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3994 			raw_spin_lock_init(&rnp->lock);
3995 			lockdep_set_class_and_name(&rnp->lock,
3996 						   &rcu_node_class[i], buf[i]);
3997 			raw_spin_lock_init(&rnp->fqslock);
3998 			lockdep_set_class_and_name(&rnp->fqslock,
3999 						   &rcu_fqs_class[i], fqs[i]);
4000 			rnp->gpnum = rsp->gpnum;
4001 			rnp->completed = rsp->completed;
4002 			rnp->qsmask = 0;
4003 			rnp->qsmaskinit = 0;
4004 			rnp->grplo = j * cpustride;
4005 			rnp->grphi = (j + 1) * cpustride - 1;
4006 			if (rnp->grphi >= nr_cpu_ids)
4007 				rnp->grphi = nr_cpu_ids - 1;
4008 			if (i == 0) {
4009 				rnp->grpnum = 0;
4010 				rnp->grpmask = 0;
4011 				rnp->parent = NULL;
4012 			} else {
4013 				rnp->grpnum = j % rsp->levelspread[i - 1];
4014 				rnp->grpmask = 1UL << rnp->grpnum;
4015 				rnp->parent = rsp->level[i - 1] +
4016 					      j / rsp->levelspread[i - 1];
4017 			}
4018 			rnp->level = i;
4019 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4020 			rcu_init_one_nocb(rnp);
4021 		}
4022 	}
4023 
4024 	init_waitqueue_head(&rsp->gp_wq);
4025 	rnp = rsp->level[rcu_num_lvls - 1];
4026 	for_each_possible_cpu(i) {
4027 		while (i > rnp->grphi)
4028 			rnp++;
4029 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4030 		rcu_boot_init_percpu_data(i, rsp);
4031 	}
4032 	list_add(&rsp->flavors, &rcu_struct_flavors);
4033 }
4034 
4035 /*
4036  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4037  * replace the definitions in tree.h because those are needed to size
4038  * the ->node array in the rcu_state structure.
4039  */
4040 static void __init rcu_init_geometry(void)
4041 {
4042 	ulong d;
4043 	int i;
4044 	int j;
4045 	int n = nr_cpu_ids;
4046 	int rcu_capacity[MAX_RCU_LVLS + 1];
4047 
4048 	/*
4049 	 * Initialize any unspecified boot parameters.
4050 	 * The default values of jiffies_till_first_fqs and
4051 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4052 	 * value, which is a function of HZ, then adding one for each
4053 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4054 	 */
4055 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4056 	if (jiffies_till_first_fqs == ULONG_MAX)
4057 		jiffies_till_first_fqs = d;
4058 	if (jiffies_till_next_fqs == ULONG_MAX)
4059 		jiffies_till_next_fqs = d;
4060 
4061 	/* If the compile-time values are accurate, just leave. */
4062 	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4063 	    nr_cpu_ids == NR_CPUS)
4064 		return;
4065 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4066 		rcu_fanout_leaf, nr_cpu_ids);
4067 
4068 	/*
4069 	 * Compute number of nodes that can be handled an rcu_node tree
4070 	 * with the given number of levels.  Setting rcu_capacity[0] makes
4071 	 * some of the arithmetic easier.
4072 	 */
4073 	rcu_capacity[0] = 1;
4074 	rcu_capacity[1] = rcu_fanout_leaf;
4075 	for (i = 2; i <= MAX_RCU_LVLS; i++)
4076 		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4077 
4078 	/*
4079 	 * The boot-time rcu_fanout_leaf parameter is only permitted
4080 	 * to increase the leaf-level fanout, not decrease it.  Of course,
4081 	 * the leaf-level fanout cannot exceed the number of bits in
4082 	 * the rcu_node masks.  Finally, the tree must be able to accommodate
4083 	 * the configured number of CPUs.  Complain and fall back to the
4084 	 * compile-time values if these limits are exceeded.
4085 	 */
4086 	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4087 	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4088 	    n > rcu_capacity[MAX_RCU_LVLS]) {
4089 		WARN_ON(1);
4090 		return;
4091 	}
4092 
4093 	/* Calculate the number of rcu_nodes at each level of the tree. */
4094 	for (i = 1; i <= MAX_RCU_LVLS; i++)
4095 		if (n <= rcu_capacity[i]) {
4096 			for (j = 0; j <= i; j++)
4097 				num_rcu_lvl[j] =
4098 					DIV_ROUND_UP(n, rcu_capacity[i - j]);
4099 			rcu_num_lvls = i;
4100 			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4101 				num_rcu_lvl[j] = 0;
4102 			break;
4103 		}
4104 
4105 	/* Calculate the total number of rcu_node structures. */
4106 	rcu_num_nodes = 0;
4107 	for (i = 0; i <= MAX_RCU_LVLS; i++)
4108 		rcu_num_nodes += num_rcu_lvl[i];
4109 	rcu_num_nodes -= n;
4110 }
4111 
4112 void __init rcu_init(void)
4113 {
4114 	int cpu;
4115 
4116 	rcu_early_boot_tests();
4117 
4118 	rcu_bootup_announce();
4119 	rcu_init_geometry();
4120 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4121 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4122 	__rcu_init_preempt();
4123 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4124 
4125 	/*
4126 	 * We don't need protection against CPU-hotplug here because
4127 	 * this is called early in boot, before either interrupts
4128 	 * or the scheduler are operational.
4129 	 */
4130 	cpu_notifier(rcu_cpu_notify, 0);
4131 	pm_notifier(rcu_pm_notify, 0);
4132 	for_each_online_cpu(cpu)
4133 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4134 }
4135 
4136 #include "tree_plugin.h"
4137