1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 73 74 /* 75 * In order to export the rcu_state name to the tracing tools, it 76 * needs to be added in the __tracepoint_string section. 77 * This requires defining a separate variable tp_<sname>_varname 78 * that points to the string being used, and this will allow 79 * the tracing userspace tools to be able to decipher the string 80 * address to the matching string. 81 */ 82 #ifdef CONFIG_TRACING 83 # define DEFINE_RCU_TPS(sname) \ 84 static char sname##_varname[] = #sname; \ 85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 86 # define RCU_STATE_NAME(sname) sname##_varname 87 #else 88 # define DEFINE_RCU_TPS(sname) 89 # define RCU_STATE_NAME(sname) __stringify(sname) 90 #endif 91 92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 93 DEFINE_RCU_TPS(sname) \ 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 95 struct rcu_state sname##_state = { \ 96 .level = { &sname##_state.node[0] }, \ 97 .rda = &sname##_data, \ 98 .call = cr, \ 99 .fqs_state = RCU_GP_IDLE, \ 100 .gpnum = 0UL - 300UL, \ 101 .completed = 0UL - 300UL, \ 102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 104 .orphan_donetail = &sname##_state.orphan_donelist, \ 105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 106 .name = RCU_STATE_NAME(sname), \ 107 .abbr = sabbr, \ 108 } 109 110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 112 113 static struct rcu_state *rcu_state_p; 114 LIST_HEAD(rcu_struct_flavors); 115 116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 118 module_param(rcu_fanout_leaf, int, 0444); 119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 121 NUM_RCU_LVL_0, 122 NUM_RCU_LVL_1, 123 NUM_RCU_LVL_2, 124 NUM_RCU_LVL_3, 125 NUM_RCU_LVL_4, 126 }; 127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 128 129 /* 130 * The rcu_scheduler_active variable transitions from zero to one just 131 * before the first task is spawned. So when this variable is zero, RCU 132 * can assume that there is but one task, allowing RCU to (for example) 133 * optimize synchronize_sched() to a simple barrier(). When this variable 134 * is one, RCU must actually do all the hard work required to detect real 135 * grace periods. This variable is also used to suppress boot-time false 136 * positives from lockdep-RCU error checking. 137 */ 138 int rcu_scheduler_active __read_mostly; 139 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 140 141 /* 142 * The rcu_scheduler_fully_active variable transitions from zero to one 143 * during the early_initcall() processing, which is after the scheduler 144 * is capable of creating new tasks. So RCU processing (for example, 145 * creating tasks for RCU priority boosting) must be delayed until after 146 * rcu_scheduler_fully_active transitions from zero to one. We also 147 * currently delay invocation of any RCU callbacks until after this point. 148 * 149 * It might later prove better for people registering RCU callbacks during 150 * early boot to take responsibility for these callbacks, but one step at 151 * a time. 152 */ 153 static int rcu_scheduler_fully_active __read_mostly; 154 155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 158 static void invoke_rcu_core(void); 159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 160 161 /* rcuc/rcub kthread realtime priority */ 162 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 163 module_param(kthread_prio, int, 0644); 164 165 /* Delay in jiffies for grace-period initialization delays, debug only. */ 166 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 167 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 168 module_param(gp_init_delay, int, 0644); 169 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 170 static const int gp_init_delay; 171 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 172 #define PER_RCU_NODE_PERIOD 10 /* Number of grace periods between delays. */ 173 174 /* 175 * Track the rcutorture test sequence number and the update version 176 * number within a given test. The rcutorture_testseq is incremented 177 * on every rcutorture module load and unload, so has an odd value 178 * when a test is running. The rcutorture_vernum is set to zero 179 * when rcutorture starts and is incremented on each rcutorture update. 180 * These variables enable correlating rcutorture output with the 181 * RCU tracing information. 182 */ 183 unsigned long rcutorture_testseq; 184 unsigned long rcutorture_vernum; 185 186 /* 187 * Compute the mask of online CPUs for the specified rcu_node structure. 188 * This will not be stable unless the rcu_node structure's ->lock is 189 * held, but the bit corresponding to the current CPU will be stable 190 * in most contexts. 191 */ 192 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 193 { 194 return ACCESS_ONCE(rnp->qsmaskinitnext); 195 } 196 197 /* 198 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 199 * permit this function to be invoked without holding the root rcu_node 200 * structure's ->lock, but of course results can be subject to change. 201 */ 202 static int rcu_gp_in_progress(struct rcu_state *rsp) 203 { 204 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 205 } 206 207 /* 208 * Note a quiescent state. Because we do not need to know 209 * how many quiescent states passed, just if there was at least 210 * one since the start of the grace period, this just sets a flag. 211 * The caller must have disabled preemption. 212 */ 213 void rcu_sched_qs(void) 214 { 215 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) { 216 trace_rcu_grace_period(TPS("rcu_sched"), 217 __this_cpu_read(rcu_sched_data.gpnum), 218 TPS("cpuqs")); 219 __this_cpu_write(rcu_sched_data.passed_quiesce, 1); 220 } 221 } 222 223 void rcu_bh_qs(void) 224 { 225 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) { 226 trace_rcu_grace_period(TPS("rcu_bh"), 227 __this_cpu_read(rcu_bh_data.gpnum), 228 TPS("cpuqs")); 229 __this_cpu_write(rcu_bh_data.passed_quiesce, 1); 230 } 231 } 232 233 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 234 235 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 236 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 237 .dynticks = ATOMIC_INIT(1), 238 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 239 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 240 .dynticks_idle = ATOMIC_INIT(1), 241 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 242 }; 243 244 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 245 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 246 247 /* 248 * Let the RCU core know that this CPU has gone through the scheduler, 249 * which is a quiescent state. This is called when the need for a 250 * quiescent state is urgent, so we burn an atomic operation and full 251 * memory barriers to let the RCU core know about it, regardless of what 252 * this CPU might (or might not) do in the near future. 253 * 254 * We inform the RCU core by emulating a zero-duration dyntick-idle 255 * period, which we in turn do by incrementing the ->dynticks counter 256 * by two. 257 */ 258 static void rcu_momentary_dyntick_idle(void) 259 { 260 unsigned long flags; 261 struct rcu_data *rdp; 262 struct rcu_dynticks *rdtp; 263 int resched_mask; 264 struct rcu_state *rsp; 265 266 local_irq_save(flags); 267 268 /* 269 * Yes, we can lose flag-setting operations. This is OK, because 270 * the flag will be set again after some delay. 271 */ 272 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 273 raw_cpu_write(rcu_sched_qs_mask, 0); 274 275 /* Find the flavor that needs a quiescent state. */ 276 for_each_rcu_flavor(rsp) { 277 rdp = raw_cpu_ptr(rsp->rda); 278 if (!(resched_mask & rsp->flavor_mask)) 279 continue; 280 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 281 if (ACCESS_ONCE(rdp->mynode->completed) != 282 ACCESS_ONCE(rdp->cond_resched_completed)) 283 continue; 284 285 /* 286 * Pretend to be momentarily idle for the quiescent state. 287 * This allows the grace-period kthread to record the 288 * quiescent state, with no need for this CPU to do anything 289 * further. 290 */ 291 rdtp = this_cpu_ptr(&rcu_dynticks); 292 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 293 atomic_add(2, &rdtp->dynticks); /* QS. */ 294 smp_mb__after_atomic(); /* Later stuff after QS. */ 295 break; 296 } 297 local_irq_restore(flags); 298 } 299 300 /* 301 * Note a context switch. This is a quiescent state for RCU-sched, 302 * and requires special handling for preemptible RCU. 303 * The caller must have disabled preemption. 304 */ 305 void rcu_note_context_switch(void) 306 { 307 trace_rcu_utilization(TPS("Start context switch")); 308 rcu_sched_qs(); 309 rcu_preempt_note_context_switch(); 310 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 311 rcu_momentary_dyntick_idle(); 312 trace_rcu_utilization(TPS("End context switch")); 313 } 314 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 315 316 /* 317 * Register a quiescent state for all RCU flavors. If there is an 318 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 319 * dyntick-idle quiescent state visible to other CPUs (but only for those 320 * RCU flavors in desperate need of a quiescent state, which will normally 321 * be none of them). Either way, do a lightweight quiescent state for 322 * all RCU flavors. 323 */ 324 void rcu_all_qs(void) 325 { 326 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 327 rcu_momentary_dyntick_idle(); 328 this_cpu_inc(rcu_qs_ctr); 329 } 330 EXPORT_SYMBOL_GPL(rcu_all_qs); 331 332 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 333 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 334 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 335 336 module_param(blimit, long, 0444); 337 module_param(qhimark, long, 0444); 338 module_param(qlowmark, long, 0444); 339 340 static ulong jiffies_till_first_fqs = ULONG_MAX; 341 static ulong jiffies_till_next_fqs = ULONG_MAX; 342 343 module_param(jiffies_till_first_fqs, ulong, 0644); 344 module_param(jiffies_till_next_fqs, ulong, 0644); 345 346 /* 347 * How long the grace period must be before we start recruiting 348 * quiescent-state help from rcu_note_context_switch(). 349 */ 350 static ulong jiffies_till_sched_qs = HZ / 20; 351 module_param(jiffies_till_sched_qs, ulong, 0644); 352 353 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 354 struct rcu_data *rdp); 355 static void force_qs_rnp(struct rcu_state *rsp, 356 int (*f)(struct rcu_data *rsp, bool *isidle, 357 unsigned long *maxj), 358 bool *isidle, unsigned long *maxj); 359 static void force_quiescent_state(struct rcu_state *rsp); 360 static int rcu_pending(void); 361 362 /* 363 * Return the number of RCU batches started thus far for debug & stats. 364 */ 365 unsigned long rcu_batches_started(void) 366 { 367 return rcu_state_p->gpnum; 368 } 369 EXPORT_SYMBOL_GPL(rcu_batches_started); 370 371 /* 372 * Return the number of RCU-sched batches started thus far for debug & stats. 373 */ 374 unsigned long rcu_batches_started_sched(void) 375 { 376 return rcu_sched_state.gpnum; 377 } 378 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 379 380 /* 381 * Return the number of RCU BH batches started thus far for debug & stats. 382 */ 383 unsigned long rcu_batches_started_bh(void) 384 { 385 return rcu_bh_state.gpnum; 386 } 387 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 388 389 /* 390 * Return the number of RCU batches completed thus far for debug & stats. 391 */ 392 unsigned long rcu_batches_completed(void) 393 { 394 return rcu_state_p->completed; 395 } 396 EXPORT_SYMBOL_GPL(rcu_batches_completed); 397 398 /* 399 * Return the number of RCU-sched batches completed thus far for debug & stats. 400 */ 401 unsigned long rcu_batches_completed_sched(void) 402 { 403 return rcu_sched_state.completed; 404 } 405 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 406 407 /* 408 * Return the number of RCU BH batches completed thus far for debug & stats. 409 */ 410 unsigned long rcu_batches_completed_bh(void) 411 { 412 return rcu_bh_state.completed; 413 } 414 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 415 416 /* 417 * Force a quiescent state. 418 */ 419 void rcu_force_quiescent_state(void) 420 { 421 force_quiescent_state(rcu_state_p); 422 } 423 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 424 425 /* 426 * Force a quiescent state for RCU BH. 427 */ 428 void rcu_bh_force_quiescent_state(void) 429 { 430 force_quiescent_state(&rcu_bh_state); 431 } 432 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 433 434 /* 435 * Force a quiescent state for RCU-sched. 436 */ 437 void rcu_sched_force_quiescent_state(void) 438 { 439 force_quiescent_state(&rcu_sched_state); 440 } 441 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 442 443 /* 444 * Show the state of the grace-period kthreads. 445 */ 446 void show_rcu_gp_kthreads(void) 447 { 448 struct rcu_state *rsp; 449 450 for_each_rcu_flavor(rsp) { 451 pr_info("%s: wait state: %d ->state: %#lx\n", 452 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 453 /* sched_show_task(rsp->gp_kthread); */ 454 } 455 } 456 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 457 458 /* 459 * Record the number of times rcutorture tests have been initiated and 460 * terminated. This information allows the debugfs tracing stats to be 461 * correlated to the rcutorture messages, even when the rcutorture module 462 * is being repeatedly loaded and unloaded. In other words, we cannot 463 * store this state in rcutorture itself. 464 */ 465 void rcutorture_record_test_transition(void) 466 { 467 rcutorture_testseq++; 468 rcutorture_vernum = 0; 469 } 470 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 471 472 /* 473 * Send along grace-period-related data for rcutorture diagnostics. 474 */ 475 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 476 unsigned long *gpnum, unsigned long *completed) 477 { 478 struct rcu_state *rsp = NULL; 479 480 switch (test_type) { 481 case RCU_FLAVOR: 482 rsp = rcu_state_p; 483 break; 484 case RCU_BH_FLAVOR: 485 rsp = &rcu_bh_state; 486 break; 487 case RCU_SCHED_FLAVOR: 488 rsp = &rcu_sched_state; 489 break; 490 default: 491 break; 492 } 493 if (rsp != NULL) { 494 *flags = ACCESS_ONCE(rsp->gp_flags); 495 *gpnum = ACCESS_ONCE(rsp->gpnum); 496 *completed = ACCESS_ONCE(rsp->completed); 497 return; 498 } 499 *flags = 0; 500 *gpnum = 0; 501 *completed = 0; 502 } 503 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 504 505 /* 506 * Record the number of writer passes through the current rcutorture test. 507 * This is also used to correlate debugfs tracing stats with the rcutorture 508 * messages. 509 */ 510 void rcutorture_record_progress(unsigned long vernum) 511 { 512 rcutorture_vernum++; 513 } 514 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 515 516 /* 517 * Does the CPU have callbacks ready to be invoked? 518 */ 519 static int 520 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 521 { 522 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 523 rdp->nxttail[RCU_DONE_TAIL] != NULL; 524 } 525 526 /* 527 * Return the root node of the specified rcu_state structure. 528 */ 529 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 530 { 531 return &rsp->node[0]; 532 } 533 534 /* 535 * Is there any need for future grace periods? 536 * Interrupts must be disabled. If the caller does not hold the root 537 * rnp_node structure's ->lock, the results are advisory only. 538 */ 539 static int rcu_future_needs_gp(struct rcu_state *rsp) 540 { 541 struct rcu_node *rnp = rcu_get_root(rsp); 542 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1; 543 int *fp = &rnp->need_future_gp[idx]; 544 545 return ACCESS_ONCE(*fp); 546 } 547 548 /* 549 * Does the current CPU require a not-yet-started grace period? 550 * The caller must have disabled interrupts to prevent races with 551 * normal callback registry. 552 */ 553 static int 554 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 555 { 556 int i; 557 558 if (rcu_gp_in_progress(rsp)) 559 return 0; /* No, a grace period is already in progress. */ 560 if (rcu_future_needs_gp(rsp)) 561 return 1; /* Yes, a no-CBs CPU needs one. */ 562 if (!rdp->nxttail[RCU_NEXT_TAIL]) 563 return 0; /* No, this is a no-CBs (or offline) CPU. */ 564 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 565 return 1; /* Yes, this CPU has newly registered callbacks. */ 566 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 567 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 568 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 569 rdp->nxtcompleted[i])) 570 return 1; /* Yes, CBs for future grace period. */ 571 return 0; /* No grace period needed. */ 572 } 573 574 /* 575 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 576 * 577 * If the new value of the ->dynticks_nesting counter now is zero, 578 * we really have entered idle, and must do the appropriate accounting. 579 * The caller must have disabled interrupts. 580 */ 581 static void rcu_eqs_enter_common(long long oldval, bool user) 582 { 583 struct rcu_state *rsp; 584 struct rcu_data *rdp; 585 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 586 587 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 588 if (!user && !is_idle_task(current)) { 589 struct task_struct *idle __maybe_unused = 590 idle_task(smp_processor_id()); 591 592 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 593 ftrace_dump(DUMP_ORIG); 594 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 595 current->pid, current->comm, 596 idle->pid, idle->comm); /* must be idle task! */ 597 } 598 for_each_rcu_flavor(rsp) { 599 rdp = this_cpu_ptr(rsp->rda); 600 do_nocb_deferred_wakeup(rdp); 601 } 602 rcu_prepare_for_idle(); 603 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 604 smp_mb__before_atomic(); /* See above. */ 605 atomic_inc(&rdtp->dynticks); 606 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 607 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 608 rcu_dynticks_task_enter(); 609 610 /* 611 * It is illegal to enter an extended quiescent state while 612 * in an RCU read-side critical section. 613 */ 614 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 615 "Illegal idle entry in RCU read-side critical section."); 616 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 617 "Illegal idle entry in RCU-bh read-side critical section."); 618 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 619 "Illegal idle entry in RCU-sched read-side critical section."); 620 } 621 622 /* 623 * Enter an RCU extended quiescent state, which can be either the 624 * idle loop or adaptive-tickless usermode execution. 625 */ 626 static void rcu_eqs_enter(bool user) 627 { 628 long long oldval; 629 struct rcu_dynticks *rdtp; 630 631 rdtp = this_cpu_ptr(&rcu_dynticks); 632 oldval = rdtp->dynticks_nesting; 633 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 634 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 635 rdtp->dynticks_nesting = 0; 636 rcu_eqs_enter_common(oldval, user); 637 } else { 638 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 639 } 640 } 641 642 /** 643 * rcu_idle_enter - inform RCU that current CPU is entering idle 644 * 645 * Enter idle mode, in other words, -leave- the mode in which RCU 646 * read-side critical sections can occur. (Though RCU read-side 647 * critical sections can occur in irq handlers in idle, a possibility 648 * handled by irq_enter() and irq_exit().) 649 * 650 * We crowbar the ->dynticks_nesting field to zero to allow for 651 * the possibility of usermode upcalls having messed up our count 652 * of interrupt nesting level during the prior busy period. 653 */ 654 void rcu_idle_enter(void) 655 { 656 unsigned long flags; 657 658 local_irq_save(flags); 659 rcu_eqs_enter(false); 660 rcu_sysidle_enter(0); 661 local_irq_restore(flags); 662 } 663 EXPORT_SYMBOL_GPL(rcu_idle_enter); 664 665 #ifdef CONFIG_RCU_USER_QS 666 /** 667 * rcu_user_enter - inform RCU that we are resuming userspace. 668 * 669 * Enter RCU idle mode right before resuming userspace. No use of RCU 670 * is permitted between this call and rcu_user_exit(). This way the 671 * CPU doesn't need to maintain the tick for RCU maintenance purposes 672 * when the CPU runs in userspace. 673 */ 674 void rcu_user_enter(void) 675 { 676 rcu_eqs_enter(1); 677 } 678 #endif /* CONFIG_RCU_USER_QS */ 679 680 /** 681 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 682 * 683 * Exit from an interrupt handler, which might possibly result in entering 684 * idle mode, in other words, leaving the mode in which read-side critical 685 * sections can occur. 686 * 687 * This code assumes that the idle loop never does anything that might 688 * result in unbalanced calls to irq_enter() and irq_exit(). If your 689 * architecture violates this assumption, RCU will give you what you 690 * deserve, good and hard. But very infrequently and irreproducibly. 691 * 692 * Use things like work queues to work around this limitation. 693 * 694 * You have been warned. 695 */ 696 void rcu_irq_exit(void) 697 { 698 unsigned long flags; 699 long long oldval; 700 struct rcu_dynticks *rdtp; 701 702 local_irq_save(flags); 703 rdtp = this_cpu_ptr(&rcu_dynticks); 704 oldval = rdtp->dynticks_nesting; 705 rdtp->dynticks_nesting--; 706 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 707 if (rdtp->dynticks_nesting) 708 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 709 else 710 rcu_eqs_enter_common(oldval, true); 711 rcu_sysidle_enter(1); 712 local_irq_restore(flags); 713 } 714 715 /* 716 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 717 * 718 * If the new value of the ->dynticks_nesting counter was previously zero, 719 * we really have exited idle, and must do the appropriate accounting. 720 * The caller must have disabled interrupts. 721 */ 722 static void rcu_eqs_exit_common(long long oldval, int user) 723 { 724 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 725 726 rcu_dynticks_task_exit(); 727 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 728 atomic_inc(&rdtp->dynticks); 729 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 730 smp_mb__after_atomic(); /* See above. */ 731 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 732 rcu_cleanup_after_idle(); 733 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 734 if (!user && !is_idle_task(current)) { 735 struct task_struct *idle __maybe_unused = 736 idle_task(smp_processor_id()); 737 738 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 739 oldval, rdtp->dynticks_nesting); 740 ftrace_dump(DUMP_ORIG); 741 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 742 current->pid, current->comm, 743 idle->pid, idle->comm); /* must be idle task! */ 744 } 745 } 746 747 /* 748 * Exit an RCU extended quiescent state, which can be either the 749 * idle loop or adaptive-tickless usermode execution. 750 */ 751 static void rcu_eqs_exit(bool user) 752 { 753 struct rcu_dynticks *rdtp; 754 long long oldval; 755 756 rdtp = this_cpu_ptr(&rcu_dynticks); 757 oldval = rdtp->dynticks_nesting; 758 WARN_ON_ONCE(oldval < 0); 759 if (oldval & DYNTICK_TASK_NEST_MASK) { 760 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 761 } else { 762 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 763 rcu_eqs_exit_common(oldval, user); 764 } 765 } 766 767 /** 768 * rcu_idle_exit - inform RCU that current CPU is leaving idle 769 * 770 * Exit idle mode, in other words, -enter- the mode in which RCU 771 * read-side critical sections can occur. 772 * 773 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 774 * allow for the possibility of usermode upcalls messing up our count 775 * of interrupt nesting level during the busy period that is just 776 * now starting. 777 */ 778 void rcu_idle_exit(void) 779 { 780 unsigned long flags; 781 782 local_irq_save(flags); 783 rcu_eqs_exit(false); 784 rcu_sysidle_exit(0); 785 local_irq_restore(flags); 786 } 787 EXPORT_SYMBOL_GPL(rcu_idle_exit); 788 789 #ifdef CONFIG_RCU_USER_QS 790 /** 791 * rcu_user_exit - inform RCU that we are exiting userspace. 792 * 793 * Exit RCU idle mode while entering the kernel because it can 794 * run a RCU read side critical section anytime. 795 */ 796 void rcu_user_exit(void) 797 { 798 rcu_eqs_exit(1); 799 } 800 #endif /* CONFIG_RCU_USER_QS */ 801 802 /** 803 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 804 * 805 * Enter an interrupt handler, which might possibly result in exiting 806 * idle mode, in other words, entering the mode in which read-side critical 807 * sections can occur. 808 * 809 * Note that the Linux kernel is fully capable of entering an interrupt 810 * handler that it never exits, for example when doing upcalls to 811 * user mode! This code assumes that the idle loop never does upcalls to 812 * user mode. If your architecture does do upcalls from the idle loop (or 813 * does anything else that results in unbalanced calls to the irq_enter() 814 * and irq_exit() functions), RCU will give you what you deserve, good 815 * and hard. But very infrequently and irreproducibly. 816 * 817 * Use things like work queues to work around this limitation. 818 * 819 * You have been warned. 820 */ 821 void rcu_irq_enter(void) 822 { 823 unsigned long flags; 824 struct rcu_dynticks *rdtp; 825 long long oldval; 826 827 local_irq_save(flags); 828 rdtp = this_cpu_ptr(&rcu_dynticks); 829 oldval = rdtp->dynticks_nesting; 830 rdtp->dynticks_nesting++; 831 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 832 if (oldval) 833 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 834 else 835 rcu_eqs_exit_common(oldval, true); 836 rcu_sysidle_exit(1); 837 local_irq_restore(flags); 838 } 839 840 /** 841 * rcu_nmi_enter - inform RCU of entry to NMI context 842 * 843 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 844 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 845 * that the CPU is active. This implementation permits nested NMIs, as 846 * long as the nesting level does not overflow an int. (You will probably 847 * run out of stack space first.) 848 */ 849 void rcu_nmi_enter(void) 850 { 851 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 852 int incby = 2; 853 854 /* Complain about underflow. */ 855 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 856 857 /* 858 * If idle from RCU viewpoint, atomically increment ->dynticks 859 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 860 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 861 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 862 * to be in the outermost NMI handler that interrupted an RCU-idle 863 * period (observation due to Andy Lutomirski). 864 */ 865 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 866 smp_mb__before_atomic(); /* Force delay from prior write. */ 867 atomic_inc(&rdtp->dynticks); 868 /* atomic_inc() before later RCU read-side crit sects */ 869 smp_mb__after_atomic(); /* See above. */ 870 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 871 incby = 1; 872 } 873 rdtp->dynticks_nmi_nesting += incby; 874 barrier(); 875 } 876 877 /** 878 * rcu_nmi_exit - inform RCU of exit from NMI context 879 * 880 * If we are returning from the outermost NMI handler that interrupted an 881 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 882 * to let the RCU grace-period handling know that the CPU is back to 883 * being RCU-idle. 884 */ 885 void rcu_nmi_exit(void) 886 { 887 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 888 889 /* 890 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 891 * (We are exiting an NMI handler, so RCU better be paying attention 892 * to us!) 893 */ 894 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 895 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 896 897 /* 898 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 899 * leave it in non-RCU-idle state. 900 */ 901 if (rdtp->dynticks_nmi_nesting != 1) { 902 rdtp->dynticks_nmi_nesting -= 2; 903 return; 904 } 905 906 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 907 rdtp->dynticks_nmi_nesting = 0; 908 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 909 smp_mb__before_atomic(); /* See above. */ 910 atomic_inc(&rdtp->dynticks); 911 smp_mb__after_atomic(); /* Force delay to next write. */ 912 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 913 } 914 915 /** 916 * __rcu_is_watching - are RCU read-side critical sections safe? 917 * 918 * Return true if RCU is watching the running CPU, which means that 919 * this CPU can safely enter RCU read-side critical sections. Unlike 920 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 921 * least disabled preemption. 922 */ 923 bool notrace __rcu_is_watching(void) 924 { 925 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 926 } 927 928 /** 929 * rcu_is_watching - see if RCU thinks that the current CPU is idle 930 * 931 * If the current CPU is in its idle loop and is neither in an interrupt 932 * or NMI handler, return true. 933 */ 934 bool notrace rcu_is_watching(void) 935 { 936 bool ret; 937 938 preempt_disable(); 939 ret = __rcu_is_watching(); 940 preempt_enable(); 941 return ret; 942 } 943 EXPORT_SYMBOL_GPL(rcu_is_watching); 944 945 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 946 947 /* 948 * Is the current CPU online? Disable preemption to avoid false positives 949 * that could otherwise happen due to the current CPU number being sampled, 950 * this task being preempted, its old CPU being taken offline, resuming 951 * on some other CPU, then determining that its old CPU is now offline. 952 * It is OK to use RCU on an offline processor during initial boot, hence 953 * the check for rcu_scheduler_fully_active. Note also that it is OK 954 * for a CPU coming online to use RCU for one jiffy prior to marking itself 955 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 956 * offline to continue to use RCU for one jiffy after marking itself 957 * offline in the cpu_online_mask. This leniency is necessary given the 958 * non-atomic nature of the online and offline processing, for example, 959 * the fact that a CPU enters the scheduler after completing the CPU_DYING 960 * notifiers. 961 * 962 * This is also why RCU internally marks CPUs online during the 963 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 964 * 965 * Disable checking if in an NMI handler because we cannot safely report 966 * errors from NMI handlers anyway. 967 */ 968 bool rcu_lockdep_current_cpu_online(void) 969 { 970 struct rcu_data *rdp; 971 struct rcu_node *rnp; 972 bool ret; 973 974 if (in_nmi()) 975 return true; 976 preempt_disable(); 977 rdp = this_cpu_ptr(&rcu_sched_data); 978 rnp = rdp->mynode; 979 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 980 !rcu_scheduler_fully_active; 981 preempt_enable(); 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 985 986 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 987 988 /** 989 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 990 * 991 * If the current CPU is idle or running at a first-level (not nested) 992 * interrupt from idle, return true. The caller must have at least 993 * disabled preemption. 994 */ 995 static int rcu_is_cpu_rrupt_from_idle(void) 996 { 997 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 998 } 999 1000 /* 1001 * Snapshot the specified CPU's dynticks counter so that we can later 1002 * credit them with an implicit quiescent state. Return 1 if this CPU 1003 * is in dynticks idle mode, which is an extended quiescent state. 1004 */ 1005 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1006 bool *isidle, unsigned long *maxj) 1007 { 1008 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 1009 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1010 if ((rdp->dynticks_snap & 0x1) == 0) { 1011 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1012 return 1; 1013 } else { 1014 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1015 rdp->mynode->gpnum)) 1016 ACCESS_ONCE(rdp->gpwrap) = true; 1017 return 0; 1018 } 1019 } 1020 1021 /* 1022 * Return true if the specified CPU has passed through a quiescent 1023 * state by virtue of being in or having passed through an dynticks 1024 * idle state since the last call to dyntick_save_progress_counter() 1025 * for this same CPU, or by virtue of having been offline. 1026 */ 1027 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1028 bool *isidle, unsigned long *maxj) 1029 { 1030 unsigned int curr; 1031 int *rcrmp; 1032 unsigned int snap; 1033 1034 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1035 snap = (unsigned int)rdp->dynticks_snap; 1036 1037 /* 1038 * If the CPU passed through or entered a dynticks idle phase with 1039 * no active irq/NMI handlers, then we can safely pretend that the CPU 1040 * already acknowledged the request to pass through a quiescent 1041 * state. Either way, that CPU cannot possibly be in an RCU 1042 * read-side critical section that started before the beginning 1043 * of the current RCU grace period. 1044 */ 1045 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1046 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1047 rdp->dynticks_fqs++; 1048 return 1; 1049 } 1050 1051 /* 1052 * Check for the CPU being offline, but only if the grace period 1053 * is old enough. We don't need to worry about the CPU changing 1054 * state: If we see it offline even once, it has been through a 1055 * quiescent state. 1056 * 1057 * The reason for insisting that the grace period be at least 1058 * one jiffy old is that CPUs that are not quite online and that 1059 * have just gone offline can still execute RCU read-side critical 1060 * sections. 1061 */ 1062 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1063 return 0; /* Grace period is not old enough. */ 1064 barrier(); 1065 if (cpu_is_offline(rdp->cpu)) { 1066 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1067 rdp->offline_fqs++; 1068 return 1; 1069 } 1070 1071 /* 1072 * A CPU running for an extended time within the kernel can 1073 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1074 * even context-switching back and forth between a pair of 1075 * in-kernel CPU-bound tasks cannot advance grace periods. 1076 * So if the grace period is old enough, make the CPU pay attention. 1077 * Note that the unsynchronized assignments to the per-CPU 1078 * rcu_sched_qs_mask variable are safe. Yes, setting of 1079 * bits can be lost, but they will be set again on the next 1080 * force-quiescent-state pass. So lost bit sets do not result 1081 * in incorrect behavior, merely in a grace period lasting 1082 * a few jiffies longer than it might otherwise. Because 1083 * there are at most four threads involved, and because the 1084 * updates are only once every few jiffies, the probability of 1085 * lossage (and thus of slight grace-period extension) is 1086 * quite low. 1087 * 1088 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1089 * is set too high, we override with half of the RCU CPU stall 1090 * warning delay. 1091 */ 1092 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1093 if (ULONG_CMP_GE(jiffies, 1094 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1095 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1096 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1097 ACCESS_ONCE(rdp->cond_resched_completed) = 1098 ACCESS_ONCE(rdp->mynode->completed); 1099 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1100 ACCESS_ONCE(*rcrmp) = 1101 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask; 1102 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1103 rdp->rsp->jiffies_resched += 5; /* Enable beating. */ 1104 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1105 /* Time to beat on that CPU again! */ 1106 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1107 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1108 } 1109 } 1110 1111 return 0; 1112 } 1113 1114 static void record_gp_stall_check_time(struct rcu_state *rsp) 1115 { 1116 unsigned long j = jiffies; 1117 unsigned long j1; 1118 1119 rsp->gp_start = j; 1120 smp_wmb(); /* Record start time before stall time. */ 1121 j1 = rcu_jiffies_till_stall_check(); 1122 ACCESS_ONCE(rsp->jiffies_stall) = j + j1; 1123 rsp->jiffies_resched = j + j1 / 2; 1124 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs); 1125 } 1126 1127 /* 1128 * Complain about starvation of grace-period kthread. 1129 */ 1130 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1131 { 1132 unsigned long gpa; 1133 unsigned long j; 1134 1135 j = jiffies; 1136 gpa = ACCESS_ONCE(rsp->gp_activity); 1137 if (j - gpa > 2 * HZ) 1138 pr_err("%s kthread starved for %ld jiffies!\n", 1139 rsp->name, j - gpa); 1140 } 1141 1142 /* 1143 * Dump stacks of all tasks running on stalled CPUs. 1144 */ 1145 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1146 { 1147 int cpu; 1148 unsigned long flags; 1149 struct rcu_node *rnp; 1150 1151 rcu_for_each_leaf_node(rsp, rnp) { 1152 raw_spin_lock_irqsave(&rnp->lock, flags); 1153 if (rnp->qsmask != 0) { 1154 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1155 if (rnp->qsmask & (1UL << cpu)) 1156 dump_cpu_task(rnp->grplo + cpu); 1157 } 1158 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1159 } 1160 } 1161 1162 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1163 { 1164 int cpu; 1165 long delta; 1166 unsigned long flags; 1167 unsigned long gpa; 1168 unsigned long j; 1169 int ndetected = 0; 1170 struct rcu_node *rnp = rcu_get_root(rsp); 1171 long totqlen = 0; 1172 1173 /* Only let one CPU complain about others per time interval. */ 1174 1175 raw_spin_lock_irqsave(&rnp->lock, flags); 1176 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall); 1177 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1178 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1179 return; 1180 } 1181 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1182 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1183 1184 /* 1185 * OK, time to rat on our buddy... 1186 * See Documentation/RCU/stallwarn.txt for info on how to debug 1187 * RCU CPU stall warnings. 1188 */ 1189 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1190 rsp->name); 1191 print_cpu_stall_info_begin(); 1192 rcu_for_each_leaf_node(rsp, rnp) { 1193 raw_spin_lock_irqsave(&rnp->lock, flags); 1194 ndetected += rcu_print_task_stall(rnp); 1195 if (rnp->qsmask != 0) { 1196 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1197 if (rnp->qsmask & (1UL << cpu)) { 1198 print_cpu_stall_info(rsp, 1199 rnp->grplo + cpu); 1200 ndetected++; 1201 } 1202 } 1203 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1204 } 1205 1206 print_cpu_stall_info_end(); 1207 for_each_possible_cpu(cpu) 1208 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1209 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1210 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1211 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1212 if (ndetected) { 1213 rcu_dump_cpu_stacks(rsp); 1214 } else { 1215 if (ACCESS_ONCE(rsp->gpnum) != gpnum || 1216 ACCESS_ONCE(rsp->completed) == gpnum) { 1217 pr_err("INFO: Stall ended before state dump start\n"); 1218 } else { 1219 j = jiffies; 1220 gpa = ACCESS_ONCE(rsp->gp_activity); 1221 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1222 rsp->name, j - gpa, j, gpa, 1223 jiffies_till_next_fqs, 1224 rcu_get_root(rsp)->qsmask); 1225 /* In this case, the current CPU might be at fault. */ 1226 sched_show_task(current); 1227 } 1228 } 1229 1230 /* Complain about tasks blocking the grace period. */ 1231 rcu_print_detail_task_stall(rsp); 1232 1233 rcu_check_gp_kthread_starvation(rsp); 1234 1235 force_quiescent_state(rsp); /* Kick them all. */ 1236 } 1237 1238 static void print_cpu_stall(struct rcu_state *rsp) 1239 { 1240 int cpu; 1241 unsigned long flags; 1242 struct rcu_node *rnp = rcu_get_root(rsp); 1243 long totqlen = 0; 1244 1245 /* 1246 * OK, time to rat on ourselves... 1247 * See Documentation/RCU/stallwarn.txt for info on how to debug 1248 * RCU CPU stall warnings. 1249 */ 1250 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1251 print_cpu_stall_info_begin(); 1252 print_cpu_stall_info(rsp, smp_processor_id()); 1253 print_cpu_stall_info_end(); 1254 for_each_possible_cpu(cpu) 1255 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1256 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1257 jiffies - rsp->gp_start, 1258 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1259 1260 rcu_check_gp_kthread_starvation(rsp); 1261 1262 rcu_dump_cpu_stacks(rsp); 1263 1264 raw_spin_lock_irqsave(&rnp->lock, flags); 1265 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall))) 1266 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 1267 3 * rcu_jiffies_till_stall_check() + 3; 1268 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1269 1270 /* 1271 * Attempt to revive the RCU machinery by forcing a context switch. 1272 * 1273 * A context switch would normally allow the RCU state machine to make 1274 * progress and it could be we're stuck in kernel space without context 1275 * switches for an entirely unreasonable amount of time. 1276 */ 1277 resched_cpu(smp_processor_id()); 1278 } 1279 1280 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1281 { 1282 unsigned long completed; 1283 unsigned long gpnum; 1284 unsigned long gps; 1285 unsigned long j; 1286 unsigned long js; 1287 struct rcu_node *rnp; 1288 1289 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1290 return; 1291 j = jiffies; 1292 1293 /* 1294 * Lots of memory barriers to reject false positives. 1295 * 1296 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1297 * then rsp->gp_start, and finally rsp->completed. These values 1298 * are updated in the opposite order with memory barriers (or 1299 * equivalent) during grace-period initialization and cleanup. 1300 * Now, a false positive can occur if we get an new value of 1301 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1302 * the memory barriers, the only way that this can happen is if one 1303 * grace period ends and another starts between these two fetches. 1304 * Detect this by comparing rsp->completed with the previous fetch 1305 * from rsp->gpnum. 1306 * 1307 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1308 * and rsp->gp_start suffice to forestall false positives. 1309 */ 1310 gpnum = ACCESS_ONCE(rsp->gpnum); 1311 smp_rmb(); /* Pick up ->gpnum first... */ 1312 js = ACCESS_ONCE(rsp->jiffies_stall); 1313 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1314 gps = ACCESS_ONCE(rsp->gp_start); 1315 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1316 completed = ACCESS_ONCE(rsp->completed); 1317 if (ULONG_CMP_GE(completed, gpnum) || 1318 ULONG_CMP_LT(j, js) || 1319 ULONG_CMP_GE(gps, js)) 1320 return; /* No stall or GP completed since entering function. */ 1321 rnp = rdp->mynode; 1322 if (rcu_gp_in_progress(rsp) && 1323 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1324 1325 /* We haven't checked in, so go dump stack. */ 1326 print_cpu_stall(rsp); 1327 1328 } else if (rcu_gp_in_progress(rsp) && 1329 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1330 1331 /* They had a few time units to dump stack, so complain. */ 1332 print_other_cpu_stall(rsp, gpnum); 1333 } 1334 } 1335 1336 /** 1337 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1338 * 1339 * Set the stall-warning timeout way off into the future, thus preventing 1340 * any RCU CPU stall-warning messages from appearing in the current set of 1341 * RCU grace periods. 1342 * 1343 * The caller must disable hard irqs. 1344 */ 1345 void rcu_cpu_stall_reset(void) 1346 { 1347 struct rcu_state *rsp; 1348 1349 for_each_rcu_flavor(rsp) 1350 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2; 1351 } 1352 1353 /* 1354 * Initialize the specified rcu_data structure's default callback list 1355 * to empty. The default callback list is the one that is not used by 1356 * no-callbacks CPUs. 1357 */ 1358 static void init_default_callback_list(struct rcu_data *rdp) 1359 { 1360 int i; 1361 1362 rdp->nxtlist = NULL; 1363 for (i = 0; i < RCU_NEXT_SIZE; i++) 1364 rdp->nxttail[i] = &rdp->nxtlist; 1365 } 1366 1367 /* 1368 * Initialize the specified rcu_data structure's callback list to empty. 1369 */ 1370 static void init_callback_list(struct rcu_data *rdp) 1371 { 1372 if (init_nocb_callback_list(rdp)) 1373 return; 1374 init_default_callback_list(rdp); 1375 } 1376 1377 /* 1378 * Determine the value that ->completed will have at the end of the 1379 * next subsequent grace period. This is used to tag callbacks so that 1380 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1381 * been dyntick-idle for an extended period with callbacks under the 1382 * influence of RCU_FAST_NO_HZ. 1383 * 1384 * The caller must hold rnp->lock with interrupts disabled. 1385 */ 1386 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1387 struct rcu_node *rnp) 1388 { 1389 /* 1390 * If RCU is idle, we just wait for the next grace period. 1391 * But we can only be sure that RCU is idle if we are looking 1392 * at the root rcu_node structure -- otherwise, a new grace 1393 * period might have started, but just not yet gotten around 1394 * to initializing the current non-root rcu_node structure. 1395 */ 1396 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1397 return rnp->completed + 1; 1398 1399 /* 1400 * Otherwise, wait for a possible partial grace period and 1401 * then the subsequent full grace period. 1402 */ 1403 return rnp->completed + 2; 1404 } 1405 1406 /* 1407 * Trace-event helper function for rcu_start_future_gp() and 1408 * rcu_nocb_wait_gp(). 1409 */ 1410 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1411 unsigned long c, const char *s) 1412 { 1413 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1414 rnp->completed, c, rnp->level, 1415 rnp->grplo, rnp->grphi, s); 1416 } 1417 1418 /* 1419 * Start some future grace period, as needed to handle newly arrived 1420 * callbacks. The required future grace periods are recorded in each 1421 * rcu_node structure's ->need_future_gp field. Returns true if there 1422 * is reason to awaken the grace-period kthread. 1423 * 1424 * The caller must hold the specified rcu_node structure's ->lock. 1425 */ 1426 static bool __maybe_unused 1427 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1428 unsigned long *c_out) 1429 { 1430 unsigned long c; 1431 int i; 1432 bool ret = false; 1433 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1434 1435 /* 1436 * Pick up grace-period number for new callbacks. If this 1437 * grace period is already marked as needed, return to the caller. 1438 */ 1439 c = rcu_cbs_completed(rdp->rsp, rnp); 1440 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1441 if (rnp->need_future_gp[c & 0x1]) { 1442 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1443 goto out; 1444 } 1445 1446 /* 1447 * If either this rcu_node structure or the root rcu_node structure 1448 * believe that a grace period is in progress, then we must wait 1449 * for the one following, which is in "c". Because our request 1450 * will be noticed at the end of the current grace period, we don't 1451 * need to explicitly start one. We only do the lockless check 1452 * of rnp_root's fields if the current rcu_node structure thinks 1453 * there is no grace period in flight, and because we hold rnp->lock, 1454 * the only possible change is when rnp_root's two fields are 1455 * equal, in which case rnp_root->gpnum might be concurrently 1456 * incremented. But that is OK, as it will just result in our 1457 * doing some extra useless work. 1458 */ 1459 if (rnp->gpnum != rnp->completed || 1460 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) { 1461 rnp->need_future_gp[c & 0x1]++; 1462 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1463 goto out; 1464 } 1465 1466 /* 1467 * There might be no grace period in progress. If we don't already 1468 * hold it, acquire the root rcu_node structure's lock in order to 1469 * start one (if needed). 1470 */ 1471 if (rnp != rnp_root) { 1472 raw_spin_lock(&rnp_root->lock); 1473 smp_mb__after_unlock_lock(); 1474 } 1475 1476 /* 1477 * Get a new grace-period number. If there really is no grace 1478 * period in progress, it will be smaller than the one we obtained 1479 * earlier. Adjust callbacks as needed. Note that even no-CBs 1480 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1481 */ 1482 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1483 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1484 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1485 rdp->nxtcompleted[i] = c; 1486 1487 /* 1488 * If the needed for the required grace period is already 1489 * recorded, trace and leave. 1490 */ 1491 if (rnp_root->need_future_gp[c & 0x1]) { 1492 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1493 goto unlock_out; 1494 } 1495 1496 /* Record the need for the future grace period. */ 1497 rnp_root->need_future_gp[c & 0x1]++; 1498 1499 /* If a grace period is not already in progress, start one. */ 1500 if (rnp_root->gpnum != rnp_root->completed) { 1501 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1502 } else { 1503 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1504 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1505 } 1506 unlock_out: 1507 if (rnp != rnp_root) 1508 raw_spin_unlock(&rnp_root->lock); 1509 out: 1510 if (c_out != NULL) 1511 *c_out = c; 1512 return ret; 1513 } 1514 1515 /* 1516 * Clean up any old requests for the just-ended grace period. Also return 1517 * whether any additional grace periods have been requested. Also invoke 1518 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1519 * waiting for this grace period to complete. 1520 */ 1521 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1522 { 1523 int c = rnp->completed; 1524 int needmore; 1525 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1526 1527 rcu_nocb_gp_cleanup(rsp, rnp); 1528 rnp->need_future_gp[c & 0x1] = 0; 1529 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1530 trace_rcu_future_gp(rnp, rdp, c, 1531 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1532 return needmore; 1533 } 1534 1535 /* 1536 * Awaken the grace-period kthread for the specified flavor of RCU. 1537 * Don't do a self-awaken, and don't bother awakening when there is 1538 * nothing for the grace-period kthread to do (as in several CPUs 1539 * raced to awaken, and we lost), and finally don't try to awaken 1540 * a kthread that has not yet been created. 1541 */ 1542 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1543 { 1544 if (current == rsp->gp_kthread || 1545 !ACCESS_ONCE(rsp->gp_flags) || 1546 !rsp->gp_kthread) 1547 return; 1548 wake_up(&rsp->gp_wq); 1549 } 1550 1551 /* 1552 * If there is room, assign a ->completed number to any callbacks on 1553 * this CPU that have not already been assigned. Also accelerate any 1554 * callbacks that were previously assigned a ->completed number that has 1555 * since proven to be too conservative, which can happen if callbacks get 1556 * assigned a ->completed number while RCU is idle, but with reference to 1557 * a non-root rcu_node structure. This function is idempotent, so it does 1558 * not hurt to call it repeatedly. Returns an flag saying that we should 1559 * awaken the RCU grace-period kthread. 1560 * 1561 * The caller must hold rnp->lock with interrupts disabled. 1562 */ 1563 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1564 struct rcu_data *rdp) 1565 { 1566 unsigned long c; 1567 int i; 1568 bool ret; 1569 1570 /* If the CPU has no callbacks, nothing to do. */ 1571 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1572 return false; 1573 1574 /* 1575 * Starting from the sublist containing the callbacks most 1576 * recently assigned a ->completed number and working down, find the 1577 * first sublist that is not assignable to an upcoming grace period. 1578 * Such a sublist has something in it (first two tests) and has 1579 * a ->completed number assigned that will complete sooner than 1580 * the ->completed number for newly arrived callbacks (last test). 1581 * 1582 * The key point is that any later sublist can be assigned the 1583 * same ->completed number as the newly arrived callbacks, which 1584 * means that the callbacks in any of these later sublist can be 1585 * grouped into a single sublist, whether or not they have already 1586 * been assigned a ->completed number. 1587 */ 1588 c = rcu_cbs_completed(rsp, rnp); 1589 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1590 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1591 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1592 break; 1593 1594 /* 1595 * If there are no sublist for unassigned callbacks, leave. 1596 * At the same time, advance "i" one sublist, so that "i" will 1597 * index into the sublist where all the remaining callbacks should 1598 * be grouped into. 1599 */ 1600 if (++i >= RCU_NEXT_TAIL) 1601 return false; 1602 1603 /* 1604 * Assign all subsequent callbacks' ->completed number to the next 1605 * full grace period and group them all in the sublist initially 1606 * indexed by "i". 1607 */ 1608 for (; i <= RCU_NEXT_TAIL; i++) { 1609 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1610 rdp->nxtcompleted[i] = c; 1611 } 1612 /* Record any needed additional grace periods. */ 1613 ret = rcu_start_future_gp(rnp, rdp, NULL); 1614 1615 /* Trace depending on how much we were able to accelerate. */ 1616 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1617 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1618 else 1619 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1620 return ret; 1621 } 1622 1623 /* 1624 * Move any callbacks whose grace period has completed to the 1625 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1626 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1627 * sublist. This function is idempotent, so it does not hurt to 1628 * invoke it repeatedly. As long as it is not invoked -too- often... 1629 * Returns true if the RCU grace-period kthread needs to be awakened. 1630 * 1631 * The caller must hold rnp->lock with interrupts disabled. 1632 */ 1633 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1634 struct rcu_data *rdp) 1635 { 1636 int i, j; 1637 1638 /* If the CPU has no callbacks, nothing to do. */ 1639 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1640 return false; 1641 1642 /* 1643 * Find all callbacks whose ->completed numbers indicate that they 1644 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1645 */ 1646 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1647 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1648 break; 1649 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1650 } 1651 /* Clean up any sublist tail pointers that were misordered above. */ 1652 for (j = RCU_WAIT_TAIL; j < i; j++) 1653 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1654 1655 /* Copy down callbacks to fill in empty sublists. */ 1656 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1657 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1658 break; 1659 rdp->nxttail[j] = rdp->nxttail[i]; 1660 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1661 } 1662 1663 /* Classify any remaining callbacks. */ 1664 return rcu_accelerate_cbs(rsp, rnp, rdp); 1665 } 1666 1667 /* 1668 * Update CPU-local rcu_data state to record the beginnings and ends of 1669 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1670 * structure corresponding to the current CPU, and must have irqs disabled. 1671 * Returns true if the grace-period kthread needs to be awakened. 1672 */ 1673 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1674 struct rcu_data *rdp) 1675 { 1676 bool ret; 1677 1678 /* Handle the ends of any preceding grace periods first. */ 1679 if (rdp->completed == rnp->completed && 1680 !unlikely(ACCESS_ONCE(rdp->gpwrap))) { 1681 1682 /* No grace period end, so just accelerate recent callbacks. */ 1683 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1684 1685 } else { 1686 1687 /* Advance callbacks. */ 1688 ret = rcu_advance_cbs(rsp, rnp, rdp); 1689 1690 /* Remember that we saw this grace-period completion. */ 1691 rdp->completed = rnp->completed; 1692 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1693 } 1694 1695 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) { 1696 /* 1697 * If the current grace period is waiting for this CPU, 1698 * set up to detect a quiescent state, otherwise don't 1699 * go looking for one. 1700 */ 1701 rdp->gpnum = rnp->gpnum; 1702 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1703 rdp->passed_quiesce = 0; 1704 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1705 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1706 zero_cpu_stall_ticks(rdp); 1707 ACCESS_ONCE(rdp->gpwrap) = false; 1708 } 1709 return ret; 1710 } 1711 1712 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1713 { 1714 unsigned long flags; 1715 bool needwake; 1716 struct rcu_node *rnp; 1717 1718 local_irq_save(flags); 1719 rnp = rdp->mynode; 1720 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1721 rdp->completed == ACCESS_ONCE(rnp->completed) && 1722 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1723 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1724 local_irq_restore(flags); 1725 return; 1726 } 1727 smp_mb__after_unlock_lock(); 1728 needwake = __note_gp_changes(rsp, rnp, rdp); 1729 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1730 if (needwake) 1731 rcu_gp_kthread_wake(rsp); 1732 } 1733 1734 /* 1735 * Initialize a new grace period. Return 0 if no grace period required. 1736 */ 1737 static int rcu_gp_init(struct rcu_state *rsp) 1738 { 1739 unsigned long oldmask; 1740 struct rcu_data *rdp; 1741 struct rcu_node *rnp = rcu_get_root(rsp); 1742 1743 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1744 raw_spin_lock_irq(&rnp->lock); 1745 smp_mb__after_unlock_lock(); 1746 if (!ACCESS_ONCE(rsp->gp_flags)) { 1747 /* Spurious wakeup, tell caller to go back to sleep. */ 1748 raw_spin_unlock_irq(&rnp->lock); 1749 return 0; 1750 } 1751 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */ 1752 1753 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1754 /* 1755 * Grace period already in progress, don't start another. 1756 * Not supposed to be able to happen. 1757 */ 1758 raw_spin_unlock_irq(&rnp->lock); 1759 return 0; 1760 } 1761 1762 /* Advance to a new grace period and initialize state. */ 1763 record_gp_stall_check_time(rsp); 1764 /* Record GP times before starting GP, hence smp_store_release(). */ 1765 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1766 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1767 raw_spin_unlock_irq(&rnp->lock); 1768 1769 /* 1770 * Apply per-leaf buffered online and offline operations to the 1771 * rcu_node tree. Note that this new grace period need not wait 1772 * for subsequent online CPUs, and that quiescent-state forcing 1773 * will handle subsequent offline CPUs. 1774 */ 1775 rcu_for_each_leaf_node(rsp, rnp) { 1776 raw_spin_lock_irq(&rnp->lock); 1777 smp_mb__after_unlock_lock(); 1778 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1779 !rnp->wait_blkd_tasks) { 1780 /* Nothing to do on this leaf rcu_node structure. */ 1781 raw_spin_unlock_irq(&rnp->lock); 1782 continue; 1783 } 1784 1785 /* Record old state, apply changes to ->qsmaskinit field. */ 1786 oldmask = rnp->qsmaskinit; 1787 rnp->qsmaskinit = rnp->qsmaskinitnext; 1788 1789 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1790 if (!oldmask != !rnp->qsmaskinit) { 1791 if (!oldmask) /* First online CPU for this rcu_node. */ 1792 rcu_init_new_rnp(rnp); 1793 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1794 rnp->wait_blkd_tasks = true; 1795 else /* Last offline CPU and can propagate. */ 1796 rcu_cleanup_dead_rnp(rnp); 1797 } 1798 1799 /* 1800 * If all waited-on tasks from prior grace period are 1801 * done, and if all this rcu_node structure's CPUs are 1802 * still offline, propagate up the rcu_node tree and 1803 * clear ->wait_blkd_tasks. Otherwise, if one of this 1804 * rcu_node structure's CPUs has since come back online, 1805 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1806 * checks for this, so just call it unconditionally). 1807 */ 1808 if (rnp->wait_blkd_tasks && 1809 (!rcu_preempt_has_tasks(rnp) || 1810 rnp->qsmaskinit)) { 1811 rnp->wait_blkd_tasks = false; 1812 rcu_cleanup_dead_rnp(rnp); 1813 } 1814 1815 raw_spin_unlock_irq(&rnp->lock); 1816 } 1817 1818 /* 1819 * Set the quiescent-state-needed bits in all the rcu_node 1820 * structures for all currently online CPUs in breadth-first order, 1821 * starting from the root rcu_node structure, relying on the layout 1822 * of the tree within the rsp->node[] array. Note that other CPUs 1823 * will access only the leaves of the hierarchy, thus seeing that no 1824 * grace period is in progress, at least until the corresponding 1825 * leaf node has been initialized. In addition, we have excluded 1826 * CPU-hotplug operations. 1827 * 1828 * The grace period cannot complete until the initialization 1829 * process finishes, because this kthread handles both. 1830 */ 1831 rcu_for_each_node_breadth_first(rsp, rnp) { 1832 raw_spin_lock_irq(&rnp->lock); 1833 smp_mb__after_unlock_lock(); 1834 rdp = this_cpu_ptr(rsp->rda); 1835 rcu_preempt_check_blocked_tasks(rnp); 1836 rnp->qsmask = rnp->qsmaskinit; 1837 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1838 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 1839 ACCESS_ONCE(rnp->completed) = rsp->completed; 1840 if (rnp == rdp->mynode) 1841 (void)__note_gp_changes(rsp, rnp, rdp); 1842 rcu_preempt_boost_start_gp(rnp); 1843 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1844 rnp->level, rnp->grplo, 1845 rnp->grphi, rnp->qsmask); 1846 raw_spin_unlock_irq(&rnp->lock); 1847 cond_resched_rcu_qs(); 1848 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1849 if (gp_init_delay > 0 && 1850 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD))) 1851 schedule_timeout_uninterruptible(gp_init_delay); 1852 } 1853 1854 return 1; 1855 } 1856 1857 /* 1858 * Do one round of quiescent-state forcing. 1859 */ 1860 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1861 { 1862 int fqs_state = fqs_state_in; 1863 bool isidle = false; 1864 unsigned long maxj; 1865 struct rcu_node *rnp = rcu_get_root(rsp); 1866 1867 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1868 rsp->n_force_qs++; 1869 if (fqs_state == RCU_SAVE_DYNTICK) { 1870 /* Collect dyntick-idle snapshots. */ 1871 if (is_sysidle_rcu_state(rsp)) { 1872 isidle = true; 1873 maxj = jiffies - ULONG_MAX / 4; 1874 } 1875 force_qs_rnp(rsp, dyntick_save_progress_counter, 1876 &isidle, &maxj); 1877 rcu_sysidle_report_gp(rsp, isidle, maxj); 1878 fqs_state = RCU_FORCE_QS; 1879 } else { 1880 /* Handle dyntick-idle and offline CPUs. */ 1881 isidle = true; 1882 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1883 } 1884 /* Clear flag to prevent immediate re-entry. */ 1885 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1886 raw_spin_lock_irq(&rnp->lock); 1887 smp_mb__after_unlock_lock(); 1888 ACCESS_ONCE(rsp->gp_flags) = 1889 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS; 1890 raw_spin_unlock_irq(&rnp->lock); 1891 } 1892 return fqs_state; 1893 } 1894 1895 /* 1896 * Clean up after the old grace period. 1897 */ 1898 static void rcu_gp_cleanup(struct rcu_state *rsp) 1899 { 1900 unsigned long gp_duration; 1901 bool needgp = false; 1902 int nocb = 0; 1903 struct rcu_data *rdp; 1904 struct rcu_node *rnp = rcu_get_root(rsp); 1905 1906 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1907 raw_spin_lock_irq(&rnp->lock); 1908 smp_mb__after_unlock_lock(); 1909 gp_duration = jiffies - rsp->gp_start; 1910 if (gp_duration > rsp->gp_max) 1911 rsp->gp_max = gp_duration; 1912 1913 /* 1914 * We know the grace period is complete, but to everyone else 1915 * it appears to still be ongoing. But it is also the case 1916 * that to everyone else it looks like there is nothing that 1917 * they can do to advance the grace period. It is therefore 1918 * safe for us to drop the lock in order to mark the grace 1919 * period as completed in all of the rcu_node structures. 1920 */ 1921 raw_spin_unlock_irq(&rnp->lock); 1922 1923 /* 1924 * Propagate new ->completed value to rcu_node structures so 1925 * that other CPUs don't have to wait until the start of the next 1926 * grace period to process their callbacks. This also avoids 1927 * some nasty RCU grace-period initialization races by forcing 1928 * the end of the current grace period to be completely recorded in 1929 * all of the rcu_node structures before the beginning of the next 1930 * grace period is recorded in any of the rcu_node structures. 1931 */ 1932 rcu_for_each_node_breadth_first(rsp, rnp) { 1933 raw_spin_lock_irq(&rnp->lock); 1934 smp_mb__after_unlock_lock(); 1935 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 1936 WARN_ON_ONCE(rnp->qsmask); 1937 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1938 rdp = this_cpu_ptr(rsp->rda); 1939 if (rnp == rdp->mynode) 1940 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 1941 /* smp_mb() provided by prior unlock-lock pair. */ 1942 nocb += rcu_future_gp_cleanup(rsp, rnp); 1943 raw_spin_unlock_irq(&rnp->lock); 1944 cond_resched_rcu_qs(); 1945 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1946 } 1947 rnp = rcu_get_root(rsp); 1948 raw_spin_lock_irq(&rnp->lock); 1949 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */ 1950 rcu_nocb_gp_set(rnp, nocb); 1951 1952 /* Declare grace period done. */ 1953 ACCESS_ONCE(rsp->completed) = rsp->gpnum; 1954 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1955 rsp->fqs_state = RCU_GP_IDLE; 1956 rdp = this_cpu_ptr(rsp->rda); 1957 /* Advance CBs to reduce false positives below. */ 1958 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 1959 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 1960 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 1961 trace_rcu_grace_period(rsp->name, 1962 ACCESS_ONCE(rsp->gpnum), 1963 TPS("newreq")); 1964 } 1965 raw_spin_unlock_irq(&rnp->lock); 1966 } 1967 1968 /* 1969 * Body of kthread that handles grace periods. 1970 */ 1971 static int __noreturn rcu_gp_kthread(void *arg) 1972 { 1973 int fqs_state; 1974 int gf; 1975 unsigned long j; 1976 int ret; 1977 struct rcu_state *rsp = arg; 1978 struct rcu_node *rnp = rcu_get_root(rsp); 1979 1980 rcu_bind_gp_kthread(); 1981 for (;;) { 1982 1983 /* Handle grace-period start. */ 1984 for (;;) { 1985 trace_rcu_grace_period(rsp->name, 1986 ACCESS_ONCE(rsp->gpnum), 1987 TPS("reqwait")); 1988 rsp->gp_state = RCU_GP_WAIT_GPS; 1989 wait_event_interruptible(rsp->gp_wq, 1990 ACCESS_ONCE(rsp->gp_flags) & 1991 RCU_GP_FLAG_INIT); 1992 /* Locking provides needed memory barrier. */ 1993 if (rcu_gp_init(rsp)) 1994 break; 1995 cond_resched_rcu_qs(); 1996 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1997 WARN_ON(signal_pending(current)); 1998 trace_rcu_grace_period(rsp->name, 1999 ACCESS_ONCE(rsp->gpnum), 2000 TPS("reqwaitsig")); 2001 } 2002 2003 /* Handle quiescent-state forcing. */ 2004 fqs_state = RCU_SAVE_DYNTICK; 2005 j = jiffies_till_first_fqs; 2006 if (j > HZ) { 2007 j = HZ; 2008 jiffies_till_first_fqs = HZ; 2009 } 2010 ret = 0; 2011 for (;;) { 2012 if (!ret) 2013 rsp->jiffies_force_qs = jiffies + j; 2014 trace_rcu_grace_period(rsp->name, 2015 ACCESS_ONCE(rsp->gpnum), 2016 TPS("fqswait")); 2017 rsp->gp_state = RCU_GP_WAIT_FQS; 2018 ret = wait_event_interruptible_timeout(rsp->gp_wq, 2019 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 2020 RCU_GP_FLAG_FQS) || 2021 (!ACCESS_ONCE(rnp->qsmask) && 2022 !rcu_preempt_blocked_readers_cgp(rnp)), 2023 j); 2024 /* Locking provides needed memory barriers. */ 2025 /* If grace period done, leave loop. */ 2026 if (!ACCESS_ONCE(rnp->qsmask) && 2027 !rcu_preempt_blocked_readers_cgp(rnp)) 2028 break; 2029 /* If time for quiescent-state forcing, do it. */ 2030 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2031 (gf & RCU_GP_FLAG_FQS)) { 2032 trace_rcu_grace_period(rsp->name, 2033 ACCESS_ONCE(rsp->gpnum), 2034 TPS("fqsstart")); 2035 fqs_state = rcu_gp_fqs(rsp, fqs_state); 2036 trace_rcu_grace_period(rsp->name, 2037 ACCESS_ONCE(rsp->gpnum), 2038 TPS("fqsend")); 2039 cond_resched_rcu_qs(); 2040 ACCESS_ONCE(rsp->gp_activity) = jiffies; 2041 } else { 2042 /* Deal with stray signal. */ 2043 cond_resched_rcu_qs(); 2044 ACCESS_ONCE(rsp->gp_activity) = jiffies; 2045 WARN_ON(signal_pending(current)); 2046 trace_rcu_grace_period(rsp->name, 2047 ACCESS_ONCE(rsp->gpnum), 2048 TPS("fqswaitsig")); 2049 } 2050 j = jiffies_till_next_fqs; 2051 if (j > HZ) { 2052 j = HZ; 2053 jiffies_till_next_fqs = HZ; 2054 } else if (j < 1) { 2055 j = 1; 2056 jiffies_till_next_fqs = 1; 2057 } 2058 } 2059 2060 /* Handle grace-period end. */ 2061 rcu_gp_cleanup(rsp); 2062 } 2063 } 2064 2065 /* 2066 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2067 * in preparation for detecting the next grace period. The caller must hold 2068 * the root node's ->lock and hard irqs must be disabled. 2069 * 2070 * Note that it is legal for a dying CPU (which is marked as offline) to 2071 * invoke this function. This can happen when the dying CPU reports its 2072 * quiescent state. 2073 * 2074 * Returns true if the grace-period kthread must be awakened. 2075 */ 2076 static bool 2077 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2078 struct rcu_data *rdp) 2079 { 2080 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2081 /* 2082 * Either we have not yet spawned the grace-period 2083 * task, this CPU does not need another grace period, 2084 * or a grace period is already in progress. 2085 * Either way, don't start a new grace period. 2086 */ 2087 return false; 2088 } 2089 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 2090 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 2091 TPS("newreq")); 2092 2093 /* 2094 * We can't do wakeups while holding the rnp->lock, as that 2095 * could cause possible deadlocks with the rq->lock. Defer 2096 * the wakeup to our caller. 2097 */ 2098 return true; 2099 } 2100 2101 /* 2102 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2103 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2104 * is invoked indirectly from rcu_advance_cbs(), which would result in 2105 * endless recursion -- or would do so if it wasn't for the self-deadlock 2106 * that is encountered beforehand. 2107 * 2108 * Returns true if the grace-period kthread needs to be awakened. 2109 */ 2110 static bool rcu_start_gp(struct rcu_state *rsp) 2111 { 2112 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2113 struct rcu_node *rnp = rcu_get_root(rsp); 2114 bool ret = false; 2115 2116 /* 2117 * If there is no grace period in progress right now, any 2118 * callbacks we have up to this point will be satisfied by the 2119 * next grace period. Also, advancing the callbacks reduces the 2120 * probability of false positives from cpu_needs_another_gp() 2121 * resulting in pointless grace periods. So, advance callbacks 2122 * then start the grace period! 2123 */ 2124 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2125 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2126 return ret; 2127 } 2128 2129 /* 2130 * Report a full set of quiescent states to the specified rcu_state 2131 * data structure. This involves cleaning up after the prior grace 2132 * period and letting rcu_start_gp() start up the next grace period 2133 * if one is needed. Note that the caller must hold rnp->lock, which 2134 * is released before return. 2135 */ 2136 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2137 __releases(rcu_get_root(rsp)->lock) 2138 { 2139 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2140 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2141 rcu_gp_kthread_wake(rsp); 2142 } 2143 2144 /* 2145 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2146 * Allows quiescent states for a group of CPUs to be reported at one go 2147 * to the specified rcu_node structure, though all the CPUs in the group 2148 * must be represented by the same rcu_node structure (which need not be a 2149 * leaf rcu_node structure, though it often will be). The gps parameter 2150 * is the grace-period snapshot, which means that the quiescent states 2151 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2152 * must be held upon entry, and it is released before return. 2153 */ 2154 static void 2155 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2156 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2157 __releases(rnp->lock) 2158 { 2159 unsigned long oldmask = 0; 2160 struct rcu_node *rnp_c; 2161 2162 /* Walk up the rcu_node hierarchy. */ 2163 for (;;) { 2164 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2165 2166 /* 2167 * Our bit has already been cleared, or the 2168 * relevant grace period is already over, so done. 2169 */ 2170 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2171 return; 2172 } 2173 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2174 rnp->qsmask &= ~mask; 2175 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2176 mask, rnp->qsmask, rnp->level, 2177 rnp->grplo, rnp->grphi, 2178 !!rnp->gp_tasks); 2179 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2180 2181 /* Other bits still set at this level, so done. */ 2182 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2183 return; 2184 } 2185 mask = rnp->grpmask; 2186 if (rnp->parent == NULL) { 2187 2188 /* No more levels. Exit loop holding root lock. */ 2189 2190 break; 2191 } 2192 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2193 rnp_c = rnp; 2194 rnp = rnp->parent; 2195 raw_spin_lock_irqsave(&rnp->lock, flags); 2196 smp_mb__after_unlock_lock(); 2197 oldmask = rnp_c->qsmask; 2198 } 2199 2200 /* 2201 * Get here if we are the last CPU to pass through a quiescent 2202 * state for this grace period. Invoke rcu_report_qs_rsp() 2203 * to clean up and start the next grace period if one is needed. 2204 */ 2205 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2206 } 2207 2208 /* 2209 * Record a quiescent state for all tasks that were previously queued 2210 * on the specified rcu_node structure and that were blocking the current 2211 * RCU grace period. The caller must hold the specified rnp->lock with 2212 * irqs disabled, and this lock is released upon return, but irqs remain 2213 * disabled. 2214 */ 2215 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2216 struct rcu_node *rnp, unsigned long flags) 2217 __releases(rnp->lock) 2218 { 2219 unsigned long gps; 2220 unsigned long mask; 2221 struct rcu_node *rnp_p; 2222 2223 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2224 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2225 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2226 return; /* Still need more quiescent states! */ 2227 } 2228 2229 rnp_p = rnp->parent; 2230 if (rnp_p == NULL) { 2231 /* 2232 * Only one rcu_node structure in the tree, so don't 2233 * try to report up to its nonexistent parent! 2234 */ 2235 rcu_report_qs_rsp(rsp, flags); 2236 return; 2237 } 2238 2239 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2240 gps = rnp->gpnum; 2241 mask = rnp->grpmask; 2242 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2243 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ 2244 smp_mb__after_unlock_lock(); 2245 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2246 } 2247 2248 /* 2249 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2250 * structure. This must be either called from the specified CPU, or 2251 * called when the specified CPU is known to be offline (and when it is 2252 * also known that no other CPU is concurrently trying to help the offline 2253 * CPU). The lastcomp argument is used to make sure we are still in the 2254 * grace period of interest. We don't want to end the current grace period 2255 * based on quiescent states detected in an earlier grace period! 2256 */ 2257 static void 2258 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2259 { 2260 unsigned long flags; 2261 unsigned long mask; 2262 bool needwake; 2263 struct rcu_node *rnp; 2264 2265 rnp = rdp->mynode; 2266 raw_spin_lock_irqsave(&rnp->lock, flags); 2267 smp_mb__after_unlock_lock(); 2268 if ((rdp->passed_quiesce == 0 && 2269 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2270 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2271 rdp->gpwrap) { 2272 2273 /* 2274 * The grace period in which this quiescent state was 2275 * recorded has ended, so don't report it upwards. 2276 * We will instead need a new quiescent state that lies 2277 * within the current grace period. 2278 */ 2279 rdp->passed_quiesce = 0; /* need qs for new gp. */ 2280 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2281 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2282 return; 2283 } 2284 mask = rdp->grpmask; 2285 if ((rnp->qsmask & mask) == 0) { 2286 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2287 } else { 2288 rdp->qs_pending = 0; 2289 2290 /* 2291 * This GP can't end until cpu checks in, so all of our 2292 * callbacks can be processed during the next GP. 2293 */ 2294 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2295 2296 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2297 /* ^^^ Released rnp->lock */ 2298 if (needwake) 2299 rcu_gp_kthread_wake(rsp); 2300 } 2301 } 2302 2303 /* 2304 * Check to see if there is a new grace period of which this CPU 2305 * is not yet aware, and if so, set up local rcu_data state for it. 2306 * Otherwise, see if this CPU has just passed through its first 2307 * quiescent state for this grace period, and record that fact if so. 2308 */ 2309 static void 2310 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2311 { 2312 /* Check for grace-period ends and beginnings. */ 2313 note_gp_changes(rsp, rdp); 2314 2315 /* 2316 * Does this CPU still need to do its part for current grace period? 2317 * If no, return and let the other CPUs do their part as well. 2318 */ 2319 if (!rdp->qs_pending) 2320 return; 2321 2322 /* 2323 * Was there a quiescent state since the beginning of the grace 2324 * period? If no, then exit and wait for the next call. 2325 */ 2326 if (!rdp->passed_quiesce && 2327 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2328 return; 2329 2330 /* 2331 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2332 * judge of that). 2333 */ 2334 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2335 } 2336 2337 #ifdef CONFIG_HOTPLUG_CPU 2338 2339 /* 2340 * Send the specified CPU's RCU callbacks to the orphanage. The 2341 * specified CPU must be offline, and the caller must hold the 2342 * ->orphan_lock. 2343 */ 2344 static void 2345 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2346 struct rcu_node *rnp, struct rcu_data *rdp) 2347 { 2348 /* No-CBs CPUs do not have orphanable callbacks. */ 2349 if (rcu_is_nocb_cpu(rdp->cpu)) 2350 return; 2351 2352 /* 2353 * Orphan the callbacks. First adjust the counts. This is safe 2354 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2355 * cannot be running now. Thus no memory barrier is required. 2356 */ 2357 if (rdp->nxtlist != NULL) { 2358 rsp->qlen_lazy += rdp->qlen_lazy; 2359 rsp->qlen += rdp->qlen; 2360 rdp->n_cbs_orphaned += rdp->qlen; 2361 rdp->qlen_lazy = 0; 2362 ACCESS_ONCE(rdp->qlen) = 0; 2363 } 2364 2365 /* 2366 * Next, move those callbacks still needing a grace period to 2367 * the orphanage, where some other CPU will pick them up. 2368 * Some of the callbacks might have gone partway through a grace 2369 * period, but that is too bad. They get to start over because we 2370 * cannot assume that grace periods are synchronized across CPUs. 2371 * We don't bother updating the ->nxttail[] array yet, instead 2372 * we just reset the whole thing later on. 2373 */ 2374 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2375 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2376 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2377 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2378 } 2379 2380 /* 2381 * Then move the ready-to-invoke callbacks to the orphanage, 2382 * where some other CPU will pick them up. These will not be 2383 * required to pass though another grace period: They are done. 2384 */ 2385 if (rdp->nxtlist != NULL) { 2386 *rsp->orphan_donetail = rdp->nxtlist; 2387 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2388 } 2389 2390 /* 2391 * Finally, initialize the rcu_data structure's list to empty and 2392 * disallow further callbacks on this CPU. 2393 */ 2394 init_callback_list(rdp); 2395 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2396 } 2397 2398 /* 2399 * Adopt the RCU callbacks from the specified rcu_state structure's 2400 * orphanage. The caller must hold the ->orphan_lock. 2401 */ 2402 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2403 { 2404 int i; 2405 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2406 2407 /* No-CBs CPUs are handled specially. */ 2408 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2409 return; 2410 2411 /* Do the accounting first. */ 2412 rdp->qlen_lazy += rsp->qlen_lazy; 2413 rdp->qlen += rsp->qlen; 2414 rdp->n_cbs_adopted += rsp->qlen; 2415 if (rsp->qlen_lazy != rsp->qlen) 2416 rcu_idle_count_callbacks_posted(); 2417 rsp->qlen_lazy = 0; 2418 rsp->qlen = 0; 2419 2420 /* 2421 * We do not need a memory barrier here because the only way we 2422 * can get here if there is an rcu_barrier() in flight is if 2423 * we are the task doing the rcu_barrier(). 2424 */ 2425 2426 /* First adopt the ready-to-invoke callbacks. */ 2427 if (rsp->orphan_donelist != NULL) { 2428 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2429 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2430 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2431 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2432 rdp->nxttail[i] = rsp->orphan_donetail; 2433 rsp->orphan_donelist = NULL; 2434 rsp->orphan_donetail = &rsp->orphan_donelist; 2435 } 2436 2437 /* And then adopt the callbacks that still need a grace period. */ 2438 if (rsp->orphan_nxtlist != NULL) { 2439 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2440 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2441 rsp->orphan_nxtlist = NULL; 2442 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2443 } 2444 } 2445 2446 /* 2447 * Trace the fact that this CPU is going offline. 2448 */ 2449 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2450 { 2451 RCU_TRACE(unsigned long mask); 2452 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2453 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2454 2455 RCU_TRACE(mask = rdp->grpmask); 2456 trace_rcu_grace_period(rsp->name, 2457 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2458 TPS("cpuofl")); 2459 } 2460 2461 /* 2462 * All CPUs for the specified rcu_node structure have gone offline, 2463 * and all tasks that were preempted within an RCU read-side critical 2464 * section while running on one of those CPUs have since exited their RCU 2465 * read-side critical section. Some other CPU is reporting this fact with 2466 * the specified rcu_node structure's ->lock held and interrupts disabled. 2467 * This function therefore goes up the tree of rcu_node structures, 2468 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2469 * the leaf rcu_node structure's ->qsmaskinit field has already been 2470 * updated 2471 * 2472 * This function does check that the specified rcu_node structure has 2473 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2474 * prematurely. That said, invoking it after the fact will cost you 2475 * a needless lock acquisition. So once it has done its work, don't 2476 * invoke it again. 2477 */ 2478 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2479 { 2480 long mask; 2481 struct rcu_node *rnp = rnp_leaf; 2482 2483 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2484 return; 2485 for (;;) { 2486 mask = rnp->grpmask; 2487 rnp = rnp->parent; 2488 if (!rnp) 2489 break; 2490 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2491 smp_mb__after_unlock_lock(); /* GP memory ordering. */ 2492 rnp->qsmaskinit &= ~mask; 2493 rnp->qsmask &= ~mask; 2494 if (rnp->qsmaskinit) { 2495 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2496 return; 2497 } 2498 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2499 } 2500 } 2501 2502 /* 2503 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 2504 * function. We now remove it from the rcu_node tree's ->qsmaskinit 2505 * bit masks. 2506 */ 2507 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 2508 { 2509 unsigned long flags; 2510 unsigned long mask; 2511 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2512 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2513 2514 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 2515 mask = rdp->grpmask; 2516 raw_spin_lock_irqsave(&rnp->lock, flags); 2517 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */ 2518 rnp->qsmaskinitnext &= ~mask; 2519 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2520 } 2521 2522 /* 2523 * The CPU has been completely removed, and some other CPU is reporting 2524 * this fact from process context. Do the remainder of the cleanup, 2525 * including orphaning the outgoing CPU's RCU callbacks, and also 2526 * adopting them. There can only be one CPU hotplug operation at a time, 2527 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2528 */ 2529 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2530 { 2531 unsigned long flags; 2532 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2533 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2534 2535 /* Adjust any no-longer-needed kthreads. */ 2536 rcu_boost_kthread_setaffinity(rnp, -1); 2537 2538 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2539 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2540 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2541 rcu_adopt_orphan_cbs(rsp, flags); 2542 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2543 2544 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2545 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2546 cpu, rdp->qlen, rdp->nxtlist); 2547 } 2548 2549 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2550 2551 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2552 { 2553 } 2554 2555 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2556 { 2557 } 2558 2559 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 2560 { 2561 } 2562 2563 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2564 { 2565 } 2566 2567 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2568 2569 /* 2570 * Invoke any RCU callbacks that have made it to the end of their grace 2571 * period. Thottle as specified by rdp->blimit. 2572 */ 2573 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2574 { 2575 unsigned long flags; 2576 struct rcu_head *next, *list, **tail; 2577 long bl, count, count_lazy; 2578 int i; 2579 2580 /* If no callbacks are ready, just return. */ 2581 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2582 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2583 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2584 need_resched(), is_idle_task(current), 2585 rcu_is_callbacks_kthread()); 2586 return; 2587 } 2588 2589 /* 2590 * Extract the list of ready callbacks, disabling to prevent 2591 * races with call_rcu() from interrupt handlers. 2592 */ 2593 local_irq_save(flags); 2594 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2595 bl = rdp->blimit; 2596 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2597 list = rdp->nxtlist; 2598 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2599 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2600 tail = rdp->nxttail[RCU_DONE_TAIL]; 2601 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2602 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2603 rdp->nxttail[i] = &rdp->nxtlist; 2604 local_irq_restore(flags); 2605 2606 /* Invoke callbacks. */ 2607 count = count_lazy = 0; 2608 while (list) { 2609 next = list->next; 2610 prefetch(next); 2611 debug_rcu_head_unqueue(list); 2612 if (__rcu_reclaim(rsp->name, list)) 2613 count_lazy++; 2614 list = next; 2615 /* Stop only if limit reached and CPU has something to do. */ 2616 if (++count >= bl && 2617 (need_resched() || 2618 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2619 break; 2620 } 2621 2622 local_irq_save(flags); 2623 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2624 is_idle_task(current), 2625 rcu_is_callbacks_kthread()); 2626 2627 /* Update count, and requeue any remaining callbacks. */ 2628 if (list != NULL) { 2629 *tail = rdp->nxtlist; 2630 rdp->nxtlist = list; 2631 for (i = 0; i < RCU_NEXT_SIZE; i++) 2632 if (&rdp->nxtlist == rdp->nxttail[i]) 2633 rdp->nxttail[i] = tail; 2634 else 2635 break; 2636 } 2637 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2638 rdp->qlen_lazy -= count_lazy; 2639 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count; 2640 rdp->n_cbs_invoked += count; 2641 2642 /* Reinstate batch limit if we have worked down the excess. */ 2643 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2644 rdp->blimit = blimit; 2645 2646 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2647 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2648 rdp->qlen_last_fqs_check = 0; 2649 rdp->n_force_qs_snap = rsp->n_force_qs; 2650 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2651 rdp->qlen_last_fqs_check = rdp->qlen; 2652 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2653 2654 local_irq_restore(flags); 2655 2656 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2657 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2658 invoke_rcu_core(); 2659 } 2660 2661 /* 2662 * Check to see if this CPU is in a non-context-switch quiescent state 2663 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2664 * Also schedule RCU core processing. 2665 * 2666 * This function must be called from hardirq context. It is normally 2667 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2668 * false, there is no point in invoking rcu_check_callbacks(). 2669 */ 2670 void rcu_check_callbacks(int user) 2671 { 2672 trace_rcu_utilization(TPS("Start scheduler-tick")); 2673 increment_cpu_stall_ticks(); 2674 if (user || rcu_is_cpu_rrupt_from_idle()) { 2675 2676 /* 2677 * Get here if this CPU took its interrupt from user 2678 * mode or from the idle loop, and if this is not a 2679 * nested interrupt. In this case, the CPU is in 2680 * a quiescent state, so note it. 2681 * 2682 * No memory barrier is required here because both 2683 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2684 * variables that other CPUs neither access nor modify, 2685 * at least not while the corresponding CPU is online. 2686 */ 2687 2688 rcu_sched_qs(); 2689 rcu_bh_qs(); 2690 2691 } else if (!in_softirq()) { 2692 2693 /* 2694 * Get here if this CPU did not take its interrupt from 2695 * softirq, in other words, if it is not interrupting 2696 * a rcu_bh read-side critical section. This is an _bh 2697 * critical section, so note it. 2698 */ 2699 2700 rcu_bh_qs(); 2701 } 2702 rcu_preempt_check_callbacks(); 2703 if (rcu_pending()) 2704 invoke_rcu_core(); 2705 if (user) 2706 rcu_note_voluntary_context_switch(current); 2707 trace_rcu_utilization(TPS("End scheduler-tick")); 2708 } 2709 2710 /* 2711 * Scan the leaf rcu_node structures, processing dyntick state for any that 2712 * have not yet encountered a quiescent state, using the function specified. 2713 * Also initiate boosting for any threads blocked on the root rcu_node. 2714 * 2715 * The caller must have suppressed start of new grace periods. 2716 */ 2717 static void force_qs_rnp(struct rcu_state *rsp, 2718 int (*f)(struct rcu_data *rsp, bool *isidle, 2719 unsigned long *maxj), 2720 bool *isidle, unsigned long *maxj) 2721 { 2722 unsigned long bit; 2723 int cpu; 2724 unsigned long flags; 2725 unsigned long mask; 2726 struct rcu_node *rnp; 2727 2728 rcu_for_each_leaf_node(rsp, rnp) { 2729 cond_resched_rcu_qs(); 2730 mask = 0; 2731 raw_spin_lock_irqsave(&rnp->lock, flags); 2732 smp_mb__after_unlock_lock(); 2733 if (!rcu_gp_in_progress(rsp)) { 2734 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2735 return; 2736 } 2737 if (rnp->qsmask == 0) { 2738 if (rcu_state_p == &rcu_sched_state || 2739 rsp != rcu_state_p || 2740 rcu_preempt_blocked_readers_cgp(rnp)) { 2741 /* 2742 * No point in scanning bits because they 2743 * are all zero. But we might need to 2744 * priority-boost blocked readers. 2745 */ 2746 rcu_initiate_boost(rnp, flags); 2747 /* rcu_initiate_boost() releases rnp->lock */ 2748 continue; 2749 } 2750 if (rnp->parent && 2751 (rnp->parent->qsmask & rnp->grpmask)) { 2752 /* 2753 * Race between grace-period 2754 * initialization and task exiting RCU 2755 * read-side critical section: Report. 2756 */ 2757 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2758 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2759 continue; 2760 } 2761 } 2762 cpu = rnp->grplo; 2763 bit = 1; 2764 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2765 if ((rnp->qsmask & bit) != 0) { 2766 if ((rnp->qsmaskinit & bit) == 0) 2767 *isidle = false; /* Pending hotplug. */ 2768 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2769 mask |= bit; 2770 } 2771 } 2772 if (mask != 0) { 2773 /* Idle/offline CPUs, report (releases rnp->lock. */ 2774 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2775 } else { 2776 /* Nothing to do here, so just drop the lock. */ 2777 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2778 } 2779 } 2780 } 2781 2782 /* 2783 * Force quiescent states on reluctant CPUs, and also detect which 2784 * CPUs are in dyntick-idle mode. 2785 */ 2786 static void force_quiescent_state(struct rcu_state *rsp) 2787 { 2788 unsigned long flags; 2789 bool ret; 2790 struct rcu_node *rnp; 2791 struct rcu_node *rnp_old = NULL; 2792 2793 /* Funnel through hierarchy to reduce memory contention. */ 2794 rnp = __this_cpu_read(rsp->rda->mynode); 2795 for (; rnp != NULL; rnp = rnp->parent) { 2796 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2797 !raw_spin_trylock(&rnp->fqslock); 2798 if (rnp_old != NULL) 2799 raw_spin_unlock(&rnp_old->fqslock); 2800 if (ret) { 2801 rsp->n_force_qs_lh++; 2802 return; 2803 } 2804 rnp_old = rnp; 2805 } 2806 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2807 2808 /* Reached the root of the rcu_node tree, acquire lock. */ 2809 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2810 smp_mb__after_unlock_lock(); 2811 raw_spin_unlock(&rnp_old->fqslock); 2812 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2813 rsp->n_force_qs_lh++; 2814 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2815 return; /* Someone beat us to it. */ 2816 } 2817 ACCESS_ONCE(rsp->gp_flags) = 2818 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS; 2819 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2820 rcu_gp_kthread_wake(rsp); 2821 } 2822 2823 /* 2824 * This does the RCU core processing work for the specified rcu_state 2825 * and rcu_data structures. This may be called only from the CPU to 2826 * whom the rdp belongs. 2827 */ 2828 static void 2829 __rcu_process_callbacks(struct rcu_state *rsp) 2830 { 2831 unsigned long flags; 2832 bool needwake; 2833 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2834 2835 WARN_ON_ONCE(rdp->beenonline == 0); 2836 2837 /* Update RCU state based on any recent quiescent states. */ 2838 rcu_check_quiescent_state(rsp, rdp); 2839 2840 /* Does this CPU require a not-yet-started grace period? */ 2841 local_irq_save(flags); 2842 if (cpu_needs_another_gp(rsp, rdp)) { 2843 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2844 needwake = rcu_start_gp(rsp); 2845 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2846 if (needwake) 2847 rcu_gp_kthread_wake(rsp); 2848 } else { 2849 local_irq_restore(flags); 2850 } 2851 2852 /* If there are callbacks ready, invoke them. */ 2853 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2854 invoke_rcu_callbacks(rsp, rdp); 2855 2856 /* Do any needed deferred wakeups of rcuo kthreads. */ 2857 do_nocb_deferred_wakeup(rdp); 2858 } 2859 2860 /* 2861 * Do RCU core processing for the current CPU. 2862 */ 2863 static void rcu_process_callbacks(struct softirq_action *unused) 2864 { 2865 struct rcu_state *rsp; 2866 2867 if (cpu_is_offline(smp_processor_id())) 2868 return; 2869 trace_rcu_utilization(TPS("Start RCU core")); 2870 for_each_rcu_flavor(rsp) 2871 __rcu_process_callbacks(rsp); 2872 trace_rcu_utilization(TPS("End RCU core")); 2873 } 2874 2875 /* 2876 * Schedule RCU callback invocation. If the specified type of RCU 2877 * does not support RCU priority boosting, just do a direct call, 2878 * otherwise wake up the per-CPU kernel kthread. Note that because we 2879 * are running on the current CPU with softirqs disabled, the 2880 * rcu_cpu_kthread_task cannot disappear out from under us. 2881 */ 2882 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2883 { 2884 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2885 return; 2886 if (likely(!rsp->boost)) { 2887 rcu_do_batch(rsp, rdp); 2888 return; 2889 } 2890 invoke_rcu_callbacks_kthread(); 2891 } 2892 2893 static void invoke_rcu_core(void) 2894 { 2895 if (cpu_online(smp_processor_id())) 2896 raise_softirq(RCU_SOFTIRQ); 2897 } 2898 2899 /* 2900 * Handle any core-RCU processing required by a call_rcu() invocation. 2901 */ 2902 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2903 struct rcu_head *head, unsigned long flags) 2904 { 2905 bool needwake; 2906 2907 /* 2908 * If called from an extended quiescent state, invoke the RCU 2909 * core in order to force a re-evaluation of RCU's idleness. 2910 */ 2911 if (!rcu_is_watching()) 2912 invoke_rcu_core(); 2913 2914 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2915 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2916 return; 2917 2918 /* 2919 * Force the grace period if too many callbacks or too long waiting. 2920 * Enforce hysteresis, and don't invoke force_quiescent_state() 2921 * if some other CPU has recently done so. Also, don't bother 2922 * invoking force_quiescent_state() if the newly enqueued callback 2923 * is the only one waiting for a grace period to complete. 2924 */ 2925 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2926 2927 /* Are we ignoring a completed grace period? */ 2928 note_gp_changes(rsp, rdp); 2929 2930 /* Start a new grace period if one not already started. */ 2931 if (!rcu_gp_in_progress(rsp)) { 2932 struct rcu_node *rnp_root = rcu_get_root(rsp); 2933 2934 raw_spin_lock(&rnp_root->lock); 2935 smp_mb__after_unlock_lock(); 2936 needwake = rcu_start_gp(rsp); 2937 raw_spin_unlock(&rnp_root->lock); 2938 if (needwake) 2939 rcu_gp_kthread_wake(rsp); 2940 } else { 2941 /* Give the grace period a kick. */ 2942 rdp->blimit = LONG_MAX; 2943 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2944 *rdp->nxttail[RCU_DONE_TAIL] != head) 2945 force_quiescent_state(rsp); 2946 rdp->n_force_qs_snap = rsp->n_force_qs; 2947 rdp->qlen_last_fqs_check = rdp->qlen; 2948 } 2949 } 2950 } 2951 2952 /* 2953 * RCU callback function to leak a callback. 2954 */ 2955 static void rcu_leak_callback(struct rcu_head *rhp) 2956 { 2957 } 2958 2959 /* 2960 * Helper function for call_rcu() and friends. The cpu argument will 2961 * normally be -1, indicating "currently running CPU". It may specify 2962 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2963 * is expected to specify a CPU. 2964 */ 2965 static void 2966 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2967 struct rcu_state *rsp, int cpu, bool lazy) 2968 { 2969 unsigned long flags; 2970 struct rcu_data *rdp; 2971 2972 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 2973 if (debug_rcu_head_queue(head)) { 2974 /* Probable double call_rcu(), so leak the callback. */ 2975 ACCESS_ONCE(head->func) = rcu_leak_callback; 2976 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2977 return; 2978 } 2979 head->func = func; 2980 head->next = NULL; 2981 2982 /* 2983 * Opportunistically note grace-period endings and beginnings. 2984 * Note that we might see a beginning right after we see an 2985 * end, but never vice versa, since this CPU has to pass through 2986 * a quiescent state betweentimes. 2987 */ 2988 local_irq_save(flags); 2989 rdp = this_cpu_ptr(rsp->rda); 2990 2991 /* Add the callback to our list. */ 2992 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2993 int offline; 2994 2995 if (cpu != -1) 2996 rdp = per_cpu_ptr(rsp->rda, cpu); 2997 if (likely(rdp->mynode)) { 2998 /* Post-boot, so this should be for a no-CBs CPU. */ 2999 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3000 WARN_ON_ONCE(offline); 3001 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3002 local_irq_restore(flags); 3003 return; 3004 } 3005 /* 3006 * Very early boot, before rcu_init(). Initialize if needed 3007 * and then drop through to queue the callback. 3008 */ 3009 BUG_ON(cpu != -1); 3010 WARN_ON_ONCE(!rcu_is_watching()); 3011 if (!likely(rdp->nxtlist)) 3012 init_default_callback_list(rdp); 3013 } 3014 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1; 3015 if (lazy) 3016 rdp->qlen_lazy++; 3017 else 3018 rcu_idle_count_callbacks_posted(); 3019 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3020 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3021 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3022 3023 if (__is_kfree_rcu_offset((unsigned long)func)) 3024 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3025 rdp->qlen_lazy, rdp->qlen); 3026 else 3027 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3028 3029 /* Go handle any RCU core processing required. */ 3030 __call_rcu_core(rsp, rdp, head, flags); 3031 local_irq_restore(flags); 3032 } 3033 3034 /* 3035 * Queue an RCU-sched callback for invocation after a grace period. 3036 */ 3037 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 3038 { 3039 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3040 } 3041 EXPORT_SYMBOL_GPL(call_rcu_sched); 3042 3043 /* 3044 * Queue an RCU callback for invocation after a quicker grace period. 3045 */ 3046 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 3047 { 3048 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3049 } 3050 EXPORT_SYMBOL_GPL(call_rcu_bh); 3051 3052 /* 3053 * Queue an RCU callback for lazy invocation after a grace period. 3054 * This will likely be later named something like "call_rcu_lazy()", 3055 * but this change will require some way of tagging the lazy RCU 3056 * callbacks in the list of pending callbacks. Until then, this 3057 * function may only be called from __kfree_rcu(). 3058 */ 3059 void kfree_call_rcu(struct rcu_head *head, 3060 void (*func)(struct rcu_head *rcu)) 3061 { 3062 __call_rcu(head, func, rcu_state_p, -1, 1); 3063 } 3064 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3065 3066 /* 3067 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3068 * any blocking grace-period wait automatically implies a grace period 3069 * if there is only one CPU online at any point time during execution 3070 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3071 * occasionally incorrectly indicate that there are multiple CPUs online 3072 * when there was in fact only one the whole time, as this just adds 3073 * some overhead: RCU still operates correctly. 3074 */ 3075 static inline int rcu_blocking_is_gp(void) 3076 { 3077 int ret; 3078 3079 might_sleep(); /* Check for RCU read-side critical section. */ 3080 preempt_disable(); 3081 ret = num_online_cpus() <= 1; 3082 preempt_enable(); 3083 return ret; 3084 } 3085 3086 /** 3087 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3088 * 3089 * Control will return to the caller some time after a full rcu-sched 3090 * grace period has elapsed, in other words after all currently executing 3091 * rcu-sched read-side critical sections have completed. These read-side 3092 * critical sections are delimited by rcu_read_lock_sched() and 3093 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3094 * local_irq_disable(), and so on may be used in place of 3095 * rcu_read_lock_sched(). 3096 * 3097 * This means that all preempt_disable code sequences, including NMI and 3098 * non-threaded hardware-interrupt handlers, in progress on entry will 3099 * have completed before this primitive returns. However, this does not 3100 * guarantee that softirq handlers will have completed, since in some 3101 * kernels, these handlers can run in process context, and can block. 3102 * 3103 * Note that this guarantee implies further memory-ordering guarantees. 3104 * On systems with more than one CPU, when synchronize_sched() returns, 3105 * each CPU is guaranteed to have executed a full memory barrier since the 3106 * end of its last RCU-sched read-side critical section whose beginning 3107 * preceded the call to synchronize_sched(). In addition, each CPU having 3108 * an RCU read-side critical section that extends beyond the return from 3109 * synchronize_sched() is guaranteed to have executed a full memory barrier 3110 * after the beginning of synchronize_sched() and before the beginning of 3111 * that RCU read-side critical section. Note that these guarantees include 3112 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3113 * that are executing in the kernel. 3114 * 3115 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3116 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3117 * to have executed a full memory barrier during the execution of 3118 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3119 * again only if the system has more than one CPU). 3120 * 3121 * This primitive provides the guarantees made by the (now removed) 3122 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3123 * guarantees that rcu_read_lock() sections will have completed. 3124 * In "classic RCU", these two guarantees happen to be one and 3125 * the same, but can differ in realtime RCU implementations. 3126 */ 3127 void synchronize_sched(void) 3128 { 3129 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 3130 !lock_is_held(&rcu_lock_map) && 3131 !lock_is_held(&rcu_sched_lock_map), 3132 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3133 if (rcu_blocking_is_gp()) 3134 return; 3135 if (rcu_gp_is_expedited()) 3136 synchronize_sched_expedited(); 3137 else 3138 wait_rcu_gp(call_rcu_sched); 3139 } 3140 EXPORT_SYMBOL_GPL(synchronize_sched); 3141 3142 /** 3143 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3144 * 3145 * Control will return to the caller some time after a full rcu_bh grace 3146 * period has elapsed, in other words after all currently executing rcu_bh 3147 * read-side critical sections have completed. RCU read-side critical 3148 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3149 * and may be nested. 3150 * 3151 * See the description of synchronize_sched() for more detailed information 3152 * on memory ordering guarantees. 3153 */ 3154 void synchronize_rcu_bh(void) 3155 { 3156 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 3157 !lock_is_held(&rcu_lock_map) && 3158 !lock_is_held(&rcu_sched_lock_map), 3159 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3160 if (rcu_blocking_is_gp()) 3161 return; 3162 if (rcu_gp_is_expedited()) 3163 synchronize_rcu_bh_expedited(); 3164 else 3165 wait_rcu_gp(call_rcu_bh); 3166 } 3167 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3168 3169 /** 3170 * get_state_synchronize_rcu - Snapshot current RCU state 3171 * 3172 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3173 * to determine whether or not a full grace period has elapsed in the 3174 * meantime. 3175 */ 3176 unsigned long get_state_synchronize_rcu(void) 3177 { 3178 /* 3179 * Any prior manipulation of RCU-protected data must happen 3180 * before the load from ->gpnum. 3181 */ 3182 smp_mb(); /* ^^^ */ 3183 3184 /* 3185 * Make sure this load happens before the purportedly 3186 * time-consuming work between get_state_synchronize_rcu() 3187 * and cond_synchronize_rcu(). 3188 */ 3189 return smp_load_acquire(&rcu_state_p->gpnum); 3190 } 3191 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3192 3193 /** 3194 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3195 * 3196 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3197 * 3198 * If a full RCU grace period has elapsed since the earlier call to 3199 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3200 * synchronize_rcu() to wait for a full grace period. 3201 * 3202 * Yes, this function does not take counter wrap into account. But 3203 * counter wrap is harmless. If the counter wraps, we have waited for 3204 * more than 2 billion grace periods (and way more on a 64-bit system!), 3205 * so waiting for one additional grace period should be just fine. 3206 */ 3207 void cond_synchronize_rcu(unsigned long oldstate) 3208 { 3209 unsigned long newstate; 3210 3211 /* 3212 * Ensure that this load happens before any RCU-destructive 3213 * actions the caller might carry out after we return. 3214 */ 3215 newstate = smp_load_acquire(&rcu_state_p->completed); 3216 if (ULONG_CMP_GE(oldstate, newstate)) 3217 synchronize_rcu(); 3218 } 3219 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3220 3221 static int synchronize_sched_expedited_cpu_stop(void *data) 3222 { 3223 /* 3224 * There must be a full memory barrier on each affected CPU 3225 * between the time that try_stop_cpus() is called and the 3226 * time that it returns. 3227 * 3228 * In the current initial implementation of cpu_stop, the 3229 * above condition is already met when the control reaches 3230 * this point and the following smp_mb() is not strictly 3231 * necessary. Do smp_mb() anyway for documentation and 3232 * robustness against future implementation changes. 3233 */ 3234 smp_mb(); /* See above comment block. */ 3235 return 0; 3236 } 3237 3238 /** 3239 * synchronize_sched_expedited - Brute-force RCU-sched grace period 3240 * 3241 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 3242 * approach to force the grace period to end quickly. This consumes 3243 * significant time on all CPUs and is unfriendly to real-time workloads, 3244 * so is thus not recommended for any sort of common-case code. In fact, 3245 * if you are using synchronize_sched_expedited() in a loop, please 3246 * restructure your code to batch your updates, and then use a single 3247 * synchronize_sched() instead. 3248 * 3249 * This implementation can be thought of as an application of ticket 3250 * locking to RCU, with sync_sched_expedited_started and 3251 * sync_sched_expedited_done taking on the roles of the halves 3252 * of the ticket-lock word. Each task atomically increments 3253 * sync_sched_expedited_started upon entry, snapshotting the old value, 3254 * then attempts to stop all the CPUs. If this succeeds, then each 3255 * CPU will have executed a context switch, resulting in an RCU-sched 3256 * grace period. We are then done, so we use atomic_cmpxchg() to 3257 * update sync_sched_expedited_done to match our snapshot -- but 3258 * only if someone else has not already advanced past our snapshot. 3259 * 3260 * On the other hand, if try_stop_cpus() fails, we check the value 3261 * of sync_sched_expedited_done. If it has advanced past our 3262 * initial snapshot, then someone else must have forced a grace period 3263 * some time after we took our snapshot. In this case, our work is 3264 * done for us, and we can simply return. Otherwise, we try again, 3265 * but keep our initial snapshot for purposes of checking for someone 3266 * doing our work for us. 3267 * 3268 * If we fail too many times in a row, we fall back to synchronize_sched(). 3269 */ 3270 void synchronize_sched_expedited(void) 3271 { 3272 cpumask_var_t cm; 3273 bool cma = false; 3274 int cpu; 3275 long firstsnap, s, snap; 3276 int trycount = 0; 3277 struct rcu_state *rsp = &rcu_sched_state; 3278 3279 /* 3280 * If we are in danger of counter wrap, just do synchronize_sched(). 3281 * By allowing sync_sched_expedited_started to advance no more than 3282 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 3283 * that more than 3.5 billion CPUs would be required to force a 3284 * counter wrap on a 32-bit system. Quite a few more CPUs would of 3285 * course be required on a 64-bit system. 3286 */ 3287 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 3288 (ulong)atomic_long_read(&rsp->expedited_done) + 3289 ULONG_MAX / 8)) { 3290 synchronize_sched(); 3291 atomic_long_inc(&rsp->expedited_wrap); 3292 return; 3293 } 3294 3295 /* 3296 * Take a ticket. Note that atomic_inc_return() implies a 3297 * full memory barrier. 3298 */ 3299 snap = atomic_long_inc_return(&rsp->expedited_start); 3300 firstsnap = snap; 3301 if (!try_get_online_cpus()) { 3302 /* CPU hotplug operation in flight, fall back to normal GP. */ 3303 wait_rcu_gp(call_rcu_sched); 3304 atomic_long_inc(&rsp->expedited_normal); 3305 return; 3306 } 3307 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 3308 3309 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */ 3310 cma = zalloc_cpumask_var(&cm, GFP_KERNEL); 3311 if (cma) { 3312 cpumask_copy(cm, cpu_online_mask); 3313 cpumask_clear_cpu(raw_smp_processor_id(), cm); 3314 for_each_cpu(cpu, cm) { 3315 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 3316 3317 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1)) 3318 cpumask_clear_cpu(cpu, cm); 3319 } 3320 if (cpumask_weight(cm) == 0) 3321 goto all_cpus_idle; 3322 } 3323 3324 /* 3325 * Each pass through the following loop attempts to force a 3326 * context switch on each CPU. 3327 */ 3328 while (try_stop_cpus(cma ? cm : cpu_online_mask, 3329 synchronize_sched_expedited_cpu_stop, 3330 NULL) == -EAGAIN) { 3331 put_online_cpus(); 3332 atomic_long_inc(&rsp->expedited_tryfail); 3333 3334 /* Check to see if someone else did our work for us. */ 3335 s = atomic_long_read(&rsp->expedited_done); 3336 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3337 /* ensure test happens before caller kfree */ 3338 smp_mb__before_atomic(); /* ^^^ */ 3339 atomic_long_inc(&rsp->expedited_workdone1); 3340 free_cpumask_var(cm); 3341 return; 3342 } 3343 3344 /* No joy, try again later. Or just synchronize_sched(). */ 3345 if (trycount++ < 10) { 3346 udelay(trycount * num_online_cpus()); 3347 } else { 3348 wait_rcu_gp(call_rcu_sched); 3349 atomic_long_inc(&rsp->expedited_normal); 3350 free_cpumask_var(cm); 3351 return; 3352 } 3353 3354 /* Recheck to see if someone else did our work for us. */ 3355 s = atomic_long_read(&rsp->expedited_done); 3356 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3357 /* ensure test happens before caller kfree */ 3358 smp_mb__before_atomic(); /* ^^^ */ 3359 atomic_long_inc(&rsp->expedited_workdone2); 3360 free_cpumask_var(cm); 3361 return; 3362 } 3363 3364 /* 3365 * Refetching sync_sched_expedited_started allows later 3366 * callers to piggyback on our grace period. We retry 3367 * after they started, so our grace period works for them, 3368 * and they started after our first try, so their grace 3369 * period works for us. 3370 */ 3371 if (!try_get_online_cpus()) { 3372 /* CPU hotplug operation in flight, use normal GP. */ 3373 wait_rcu_gp(call_rcu_sched); 3374 atomic_long_inc(&rsp->expedited_normal); 3375 free_cpumask_var(cm); 3376 return; 3377 } 3378 snap = atomic_long_read(&rsp->expedited_start); 3379 smp_mb(); /* ensure read is before try_stop_cpus(). */ 3380 } 3381 atomic_long_inc(&rsp->expedited_stoppedcpus); 3382 3383 all_cpus_idle: 3384 free_cpumask_var(cm); 3385 3386 /* 3387 * Everyone up to our most recent fetch is covered by our grace 3388 * period. Update the counter, but only if our work is still 3389 * relevant -- which it won't be if someone who started later 3390 * than we did already did their update. 3391 */ 3392 do { 3393 atomic_long_inc(&rsp->expedited_done_tries); 3394 s = atomic_long_read(&rsp->expedited_done); 3395 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 3396 /* ensure test happens before caller kfree */ 3397 smp_mb__before_atomic(); /* ^^^ */ 3398 atomic_long_inc(&rsp->expedited_done_lost); 3399 break; 3400 } 3401 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 3402 atomic_long_inc(&rsp->expedited_done_exit); 3403 3404 put_online_cpus(); 3405 } 3406 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3407 3408 /* 3409 * Check to see if there is any immediate RCU-related work to be done 3410 * by the current CPU, for the specified type of RCU, returning 1 if so. 3411 * The checks are in order of increasing expense: checks that can be 3412 * carried out against CPU-local state are performed first. However, 3413 * we must check for CPU stalls first, else we might not get a chance. 3414 */ 3415 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3416 { 3417 struct rcu_node *rnp = rdp->mynode; 3418 3419 rdp->n_rcu_pending++; 3420 3421 /* Check for CPU stalls, if enabled. */ 3422 check_cpu_stall(rsp, rdp); 3423 3424 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3425 if (rcu_nohz_full_cpu(rsp)) 3426 return 0; 3427 3428 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3429 if (rcu_scheduler_fully_active && 3430 rdp->qs_pending && !rdp->passed_quiesce && 3431 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3432 rdp->n_rp_qs_pending++; 3433 } else if (rdp->qs_pending && 3434 (rdp->passed_quiesce || 3435 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 3436 rdp->n_rp_report_qs++; 3437 return 1; 3438 } 3439 3440 /* Does this CPU have callbacks ready to invoke? */ 3441 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3442 rdp->n_rp_cb_ready++; 3443 return 1; 3444 } 3445 3446 /* Has RCU gone idle with this CPU needing another grace period? */ 3447 if (cpu_needs_another_gp(rsp, rdp)) { 3448 rdp->n_rp_cpu_needs_gp++; 3449 return 1; 3450 } 3451 3452 /* Has another RCU grace period completed? */ 3453 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3454 rdp->n_rp_gp_completed++; 3455 return 1; 3456 } 3457 3458 /* Has a new RCU grace period started? */ 3459 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum || 3460 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */ 3461 rdp->n_rp_gp_started++; 3462 return 1; 3463 } 3464 3465 /* Does this CPU need a deferred NOCB wakeup? */ 3466 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3467 rdp->n_rp_nocb_defer_wakeup++; 3468 return 1; 3469 } 3470 3471 /* nothing to do */ 3472 rdp->n_rp_need_nothing++; 3473 return 0; 3474 } 3475 3476 /* 3477 * Check to see if there is any immediate RCU-related work to be done 3478 * by the current CPU, returning 1 if so. This function is part of the 3479 * RCU implementation; it is -not- an exported member of the RCU API. 3480 */ 3481 static int rcu_pending(void) 3482 { 3483 struct rcu_state *rsp; 3484 3485 for_each_rcu_flavor(rsp) 3486 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3487 return 1; 3488 return 0; 3489 } 3490 3491 /* 3492 * Return true if the specified CPU has any callback. If all_lazy is 3493 * non-NULL, store an indication of whether all callbacks are lazy. 3494 * (If there are no callbacks, all of them are deemed to be lazy.) 3495 */ 3496 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3497 { 3498 bool al = true; 3499 bool hc = false; 3500 struct rcu_data *rdp; 3501 struct rcu_state *rsp; 3502 3503 for_each_rcu_flavor(rsp) { 3504 rdp = this_cpu_ptr(rsp->rda); 3505 if (!rdp->nxtlist) 3506 continue; 3507 hc = true; 3508 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3509 al = false; 3510 break; 3511 } 3512 } 3513 if (all_lazy) 3514 *all_lazy = al; 3515 return hc; 3516 } 3517 3518 /* 3519 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3520 * the compiler is expected to optimize this away. 3521 */ 3522 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3523 int cpu, unsigned long done) 3524 { 3525 trace_rcu_barrier(rsp->name, s, cpu, 3526 atomic_read(&rsp->barrier_cpu_count), done); 3527 } 3528 3529 /* 3530 * RCU callback function for _rcu_barrier(). If we are last, wake 3531 * up the task executing _rcu_barrier(). 3532 */ 3533 static void rcu_barrier_callback(struct rcu_head *rhp) 3534 { 3535 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3536 struct rcu_state *rsp = rdp->rsp; 3537 3538 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3539 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 3540 complete(&rsp->barrier_completion); 3541 } else { 3542 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 3543 } 3544 } 3545 3546 /* 3547 * Called with preemption disabled, and from cross-cpu IRQ context. 3548 */ 3549 static void rcu_barrier_func(void *type) 3550 { 3551 struct rcu_state *rsp = type; 3552 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3553 3554 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 3555 atomic_inc(&rsp->barrier_cpu_count); 3556 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3557 } 3558 3559 /* 3560 * Orchestrate the specified type of RCU barrier, waiting for all 3561 * RCU callbacks of the specified type to complete. 3562 */ 3563 static void _rcu_barrier(struct rcu_state *rsp) 3564 { 3565 int cpu; 3566 struct rcu_data *rdp; 3567 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 3568 unsigned long snap_done; 3569 3570 _rcu_barrier_trace(rsp, "Begin", -1, snap); 3571 3572 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3573 mutex_lock(&rsp->barrier_mutex); 3574 3575 /* 3576 * Ensure that all prior references, including to ->n_barrier_done, 3577 * are ordered before the _rcu_barrier() machinery. 3578 */ 3579 smp_mb(); /* See above block comment. */ 3580 3581 /* 3582 * Recheck ->n_barrier_done to see if others did our work for us. 3583 * This means checking ->n_barrier_done for an even-to-odd-to-even 3584 * transition. The "if" expression below therefore rounds the old 3585 * value up to the next even number and adds two before comparing. 3586 */ 3587 snap_done = rsp->n_barrier_done; 3588 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 3589 3590 /* 3591 * If the value in snap is odd, we needed to wait for the current 3592 * rcu_barrier() to complete, then wait for the next one, in other 3593 * words, we need the value of snap_done to be three larger than 3594 * the value of snap. On the other hand, if the value in snap is 3595 * even, we only had to wait for the next rcu_barrier() to complete, 3596 * in other words, we need the value of snap_done to be only two 3597 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 3598 * this for us (thank you, Linus!). 3599 */ 3600 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 3601 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 3602 smp_mb(); /* caller's subsequent code after above check. */ 3603 mutex_unlock(&rsp->barrier_mutex); 3604 return; 3605 } 3606 3607 /* 3608 * Increment ->n_barrier_done to avoid duplicate work. Use 3609 * ACCESS_ONCE() to prevent the compiler from speculating 3610 * the increment to precede the early-exit check. 3611 */ 3612 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3613 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 3614 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 3615 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 3616 3617 /* 3618 * Initialize the count to one rather than to zero in order to 3619 * avoid a too-soon return to zero in case of a short grace period 3620 * (or preemption of this task). Exclude CPU-hotplug operations 3621 * to ensure that no offline CPU has callbacks queued. 3622 */ 3623 init_completion(&rsp->barrier_completion); 3624 atomic_set(&rsp->barrier_cpu_count, 1); 3625 get_online_cpus(); 3626 3627 /* 3628 * Force each CPU with callbacks to register a new callback. 3629 * When that callback is invoked, we will know that all of the 3630 * corresponding CPU's preceding callbacks have been invoked. 3631 */ 3632 for_each_possible_cpu(cpu) { 3633 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3634 continue; 3635 rdp = per_cpu_ptr(rsp->rda, cpu); 3636 if (rcu_is_nocb_cpu(cpu)) { 3637 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3638 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3639 rsp->n_barrier_done); 3640 } else { 3641 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3642 rsp->n_barrier_done); 3643 smp_mb__before_atomic(); 3644 atomic_inc(&rsp->barrier_cpu_count); 3645 __call_rcu(&rdp->barrier_head, 3646 rcu_barrier_callback, rsp, cpu, 0); 3647 } 3648 } else if (ACCESS_ONCE(rdp->qlen)) { 3649 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3650 rsp->n_barrier_done); 3651 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3652 } else { 3653 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3654 rsp->n_barrier_done); 3655 } 3656 } 3657 put_online_cpus(); 3658 3659 /* 3660 * Now that we have an rcu_barrier_callback() callback on each 3661 * CPU, and thus each counted, remove the initial count. 3662 */ 3663 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3664 complete(&rsp->barrier_completion); 3665 3666 /* Increment ->n_barrier_done to prevent duplicate work. */ 3667 smp_mb(); /* Keep increment after above mechanism. */ 3668 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3669 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 3670 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 3671 smp_mb(); /* Keep increment before caller's subsequent code. */ 3672 3673 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3674 wait_for_completion(&rsp->barrier_completion); 3675 3676 /* Other rcu_barrier() invocations can now safely proceed. */ 3677 mutex_unlock(&rsp->barrier_mutex); 3678 } 3679 3680 /** 3681 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3682 */ 3683 void rcu_barrier_bh(void) 3684 { 3685 _rcu_barrier(&rcu_bh_state); 3686 } 3687 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3688 3689 /** 3690 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3691 */ 3692 void rcu_barrier_sched(void) 3693 { 3694 _rcu_barrier(&rcu_sched_state); 3695 } 3696 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3697 3698 /* 3699 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3700 * first CPU in a given leaf rcu_node structure coming online. The caller 3701 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3702 * disabled. 3703 */ 3704 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3705 { 3706 long mask; 3707 struct rcu_node *rnp = rnp_leaf; 3708 3709 for (;;) { 3710 mask = rnp->grpmask; 3711 rnp = rnp->parent; 3712 if (rnp == NULL) 3713 return; 3714 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */ 3715 rnp->qsmaskinit |= mask; 3716 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */ 3717 } 3718 } 3719 3720 /* 3721 * Do boot-time initialization of a CPU's per-CPU RCU data. 3722 */ 3723 static void __init 3724 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3725 { 3726 unsigned long flags; 3727 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3728 struct rcu_node *rnp = rcu_get_root(rsp); 3729 3730 /* Set up local state, ensuring consistent view of global state. */ 3731 raw_spin_lock_irqsave(&rnp->lock, flags); 3732 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3733 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3734 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3735 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3736 rdp->cpu = cpu; 3737 rdp->rsp = rsp; 3738 rcu_boot_init_nocb_percpu_data(rdp); 3739 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3740 } 3741 3742 /* 3743 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3744 * offline event can be happening at a given time. Note also that we 3745 * can accept some slop in the rsp->completed access due to the fact 3746 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3747 */ 3748 static void 3749 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3750 { 3751 unsigned long flags; 3752 unsigned long mask; 3753 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3754 struct rcu_node *rnp = rcu_get_root(rsp); 3755 3756 /* Set up local state, ensuring consistent view of global state. */ 3757 raw_spin_lock_irqsave(&rnp->lock, flags); 3758 rdp->beenonline = 1; /* We have now been online. */ 3759 rdp->qlen_last_fqs_check = 0; 3760 rdp->n_force_qs_snap = rsp->n_force_qs; 3761 rdp->blimit = blimit; 3762 if (!rdp->nxtlist) 3763 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3764 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3765 rcu_sysidle_init_percpu_data(rdp->dynticks); 3766 atomic_set(&rdp->dynticks->dynticks, 3767 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3768 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3769 3770 /* 3771 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3772 * propagation up the rcu_node tree will happen at the beginning 3773 * of the next grace period. 3774 */ 3775 rnp = rdp->mynode; 3776 mask = rdp->grpmask; 3777 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3778 smp_mb__after_unlock_lock(); 3779 rnp->qsmaskinitnext |= mask; 3780 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3781 rdp->completed = rnp->completed; 3782 rdp->passed_quiesce = false; 3783 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 3784 rdp->qs_pending = false; 3785 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3786 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3787 } 3788 3789 static void rcu_prepare_cpu(int cpu) 3790 { 3791 struct rcu_state *rsp; 3792 3793 for_each_rcu_flavor(rsp) 3794 rcu_init_percpu_data(cpu, rsp); 3795 } 3796 3797 /* 3798 * Handle CPU online/offline notification events. 3799 */ 3800 int rcu_cpu_notify(struct notifier_block *self, 3801 unsigned long action, void *hcpu) 3802 { 3803 long cpu = (long)hcpu; 3804 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3805 struct rcu_node *rnp = rdp->mynode; 3806 struct rcu_state *rsp; 3807 3808 switch (action) { 3809 case CPU_UP_PREPARE: 3810 case CPU_UP_PREPARE_FROZEN: 3811 rcu_prepare_cpu(cpu); 3812 rcu_prepare_kthreads(cpu); 3813 rcu_spawn_all_nocb_kthreads(cpu); 3814 break; 3815 case CPU_ONLINE: 3816 case CPU_DOWN_FAILED: 3817 rcu_boost_kthread_setaffinity(rnp, -1); 3818 break; 3819 case CPU_DOWN_PREPARE: 3820 rcu_boost_kthread_setaffinity(rnp, cpu); 3821 break; 3822 case CPU_DYING: 3823 case CPU_DYING_FROZEN: 3824 for_each_rcu_flavor(rsp) 3825 rcu_cleanup_dying_cpu(rsp); 3826 break; 3827 case CPU_DYING_IDLE: 3828 for_each_rcu_flavor(rsp) { 3829 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3830 } 3831 break; 3832 case CPU_DEAD: 3833 case CPU_DEAD_FROZEN: 3834 case CPU_UP_CANCELED: 3835 case CPU_UP_CANCELED_FROZEN: 3836 for_each_rcu_flavor(rsp) { 3837 rcu_cleanup_dead_cpu(cpu, rsp); 3838 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3839 } 3840 break; 3841 default: 3842 break; 3843 } 3844 return NOTIFY_OK; 3845 } 3846 3847 static int rcu_pm_notify(struct notifier_block *self, 3848 unsigned long action, void *hcpu) 3849 { 3850 switch (action) { 3851 case PM_HIBERNATION_PREPARE: 3852 case PM_SUSPEND_PREPARE: 3853 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3854 rcu_expedite_gp(); 3855 break; 3856 case PM_POST_HIBERNATION: 3857 case PM_POST_SUSPEND: 3858 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3859 rcu_unexpedite_gp(); 3860 break; 3861 default: 3862 break; 3863 } 3864 return NOTIFY_OK; 3865 } 3866 3867 /* 3868 * Spawn the kthreads that handle each RCU flavor's grace periods. 3869 */ 3870 static int __init rcu_spawn_gp_kthread(void) 3871 { 3872 unsigned long flags; 3873 int kthread_prio_in = kthread_prio; 3874 struct rcu_node *rnp; 3875 struct rcu_state *rsp; 3876 struct sched_param sp; 3877 struct task_struct *t; 3878 3879 /* Force priority into range. */ 3880 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3881 kthread_prio = 1; 3882 else if (kthread_prio < 0) 3883 kthread_prio = 0; 3884 else if (kthread_prio > 99) 3885 kthread_prio = 99; 3886 if (kthread_prio != kthread_prio_in) 3887 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3888 kthread_prio, kthread_prio_in); 3889 3890 rcu_scheduler_fully_active = 1; 3891 for_each_rcu_flavor(rsp) { 3892 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3893 BUG_ON(IS_ERR(t)); 3894 rnp = rcu_get_root(rsp); 3895 raw_spin_lock_irqsave(&rnp->lock, flags); 3896 rsp->gp_kthread = t; 3897 if (kthread_prio) { 3898 sp.sched_priority = kthread_prio; 3899 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3900 } 3901 wake_up_process(t); 3902 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3903 } 3904 rcu_spawn_nocb_kthreads(); 3905 rcu_spawn_boost_kthreads(); 3906 return 0; 3907 } 3908 early_initcall(rcu_spawn_gp_kthread); 3909 3910 /* 3911 * This function is invoked towards the end of the scheduler's initialization 3912 * process. Before this is called, the idle task might contain 3913 * RCU read-side critical sections (during which time, this idle 3914 * task is booting the system). After this function is called, the 3915 * idle tasks are prohibited from containing RCU read-side critical 3916 * sections. This function also enables RCU lockdep checking. 3917 */ 3918 void rcu_scheduler_starting(void) 3919 { 3920 WARN_ON(num_online_cpus() != 1); 3921 WARN_ON(nr_context_switches() > 0); 3922 rcu_scheduler_active = 1; 3923 } 3924 3925 /* 3926 * Compute the per-level fanout, either using the exact fanout specified 3927 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3928 */ 3929 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3930 { 3931 int i; 3932 3933 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) { 3934 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3935 for (i = rcu_num_lvls - 2; i >= 0; i--) 3936 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3937 } else { 3938 int ccur; 3939 int cprv; 3940 3941 cprv = nr_cpu_ids; 3942 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3943 ccur = rsp->levelcnt[i]; 3944 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3945 cprv = ccur; 3946 } 3947 } 3948 } 3949 3950 /* 3951 * Helper function for rcu_init() that initializes one rcu_state structure. 3952 */ 3953 static void __init rcu_init_one(struct rcu_state *rsp, 3954 struct rcu_data __percpu *rda) 3955 { 3956 static const char * const buf[] = { 3957 "rcu_node_0", 3958 "rcu_node_1", 3959 "rcu_node_2", 3960 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3961 static const char * const fqs[] = { 3962 "rcu_node_fqs_0", 3963 "rcu_node_fqs_1", 3964 "rcu_node_fqs_2", 3965 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3966 static u8 fl_mask = 0x1; 3967 int cpustride = 1; 3968 int i; 3969 int j; 3970 struct rcu_node *rnp; 3971 3972 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3973 3974 /* Silence gcc 4.8 warning about array index out of range. */ 3975 if (rcu_num_lvls > RCU_NUM_LVLS) 3976 panic("rcu_init_one: rcu_num_lvls overflow"); 3977 3978 /* Initialize the level-tracking arrays. */ 3979 3980 for (i = 0; i < rcu_num_lvls; i++) 3981 rsp->levelcnt[i] = num_rcu_lvl[i]; 3982 for (i = 1; i < rcu_num_lvls; i++) 3983 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3984 rcu_init_levelspread(rsp); 3985 rsp->flavor_mask = fl_mask; 3986 fl_mask <<= 1; 3987 3988 /* Initialize the elements themselves, starting from the leaves. */ 3989 3990 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3991 cpustride *= rsp->levelspread[i]; 3992 rnp = rsp->level[i]; 3993 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3994 raw_spin_lock_init(&rnp->lock); 3995 lockdep_set_class_and_name(&rnp->lock, 3996 &rcu_node_class[i], buf[i]); 3997 raw_spin_lock_init(&rnp->fqslock); 3998 lockdep_set_class_and_name(&rnp->fqslock, 3999 &rcu_fqs_class[i], fqs[i]); 4000 rnp->gpnum = rsp->gpnum; 4001 rnp->completed = rsp->completed; 4002 rnp->qsmask = 0; 4003 rnp->qsmaskinit = 0; 4004 rnp->grplo = j * cpustride; 4005 rnp->grphi = (j + 1) * cpustride - 1; 4006 if (rnp->grphi >= nr_cpu_ids) 4007 rnp->grphi = nr_cpu_ids - 1; 4008 if (i == 0) { 4009 rnp->grpnum = 0; 4010 rnp->grpmask = 0; 4011 rnp->parent = NULL; 4012 } else { 4013 rnp->grpnum = j % rsp->levelspread[i - 1]; 4014 rnp->grpmask = 1UL << rnp->grpnum; 4015 rnp->parent = rsp->level[i - 1] + 4016 j / rsp->levelspread[i - 1]; 4017 } 4018 rnp->level = i; 4019 INIT_LIST_HEAD(&rnp->blkd_tasks); 4020 rcu_init_one_nocb(rnp); 4021 } 4022 } 4023 4024 init_waitqueue_head(&rsp->gp_wq); 4025 rnp = rsp->level[rcu_num_lvls - 1]; 4026 for_each_possible_cpu(i) { 4027 while (i > rnp->grphi) 4028 rnp++; 4029 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4030 rcu_boot_init_percpu_data(i, rsp); 4031 } 4032 list_add(&rsp->flavors, &rcu_struct_flavors); 4033 } 4034 4035 /* 4036 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4037 * replace the definitions in tree.h because those are needed to size 4038 * the ->node array in the rcu_state structure. 4039 */ 4040 static void __init rcu_init_geometry(void) 4041 { 4042 ulong d; 4043 int i; 4044 int j; 4045 int n = nr_cpu_ids; 4046 int rcu_capacity[MAX_RCU_LVLS + 1]; 4047 4048 /* 4049 * Initialize any unspecified boot parameters. 4050 * The default values of jiffies_till_first_fqs and 4051 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4052 * value, which is a function of HZ, then adding one for each 4053 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4054 */ 4055 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4056 if (jiffies_till_first_fqs == ULONG_MAX) 4057 jiffies_till_first_fqs = d; 4058 if (jiffies_till_next_fqs == ULONG_MAX) 4059 jiffies_till_next_fqs = d; 4060 4061 /* If the compile-time values are accurate, just leave. */ 4062 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 4063 nr_cpu_ids == NR_CPUS) 4064 return; 4065 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4066 rcu_fanout_leaf, nr_cpu_ids); 4067 4068 /* 4069 * Compute number of nodes that can be handled an rcu_node tree 4070 * with the given number of levels. Setting rcu_capacity[0] makes 4071 * some of the arithmetic easier. 4072 */ 4073 rcu_capacity[0] = 1; 4074 rcu_capacity[1] = rcu_fanout_leaf; 4075 for (i = 2; i <= MAX_RCU_LVLS; i++) 4076 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 4077 4078 /* 4079 * The boot-time rcu_fanout_leaf parameter is only permitted 4080 * to increase the leaf-level fanout, not decrease it. Of course, 4081 * the leaf-level fanout cannot exceed the number of bits in 4082 * the rcu_node masks. Finally, the tree must be able to accommodate 4083 * the configured number of CPUs. Complain and fall back to the 4084 * compile-time values if these limits are exceeded. 4085 */ 4086 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 4087 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 4088 n > rcu_capacity[MAX_RCU_LVLS]) { 4089 WARN_ON(1); 4090 return; 4091 } 4092 4093 /* Calculate the number of rcu_nodes at each level of the tree. */ 4094 for (i = 1; i <= MAX_RCU_LVLS; i++) 4095 if (n <= rcu_capacity[i]) { 4096 for (j = 0; j <= i; j++) 4097 num_rcu_lvl[j] = 4098 DIV_ROUND_UP(n, rcu_capacity[i - j]); 4099 rcu_num_lvls = i; 4100 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 4101 num_rcu_lvl[j] = 0; 4102 break; 4103 } 4104 4105 /* Calculate the total number of rcu_node structures. */ 4106 rcu_num_nodes = 0; 4107 for (i = 0; i <= MAX_RCU_LVLS; i++) 4108 rcu_num_nodes += num_rcu_lvl[i]; 4109 rcu_num_nodes -= n; 4110 } 4111 4112 void __init rcu_init(void) 4113 { 4114 int cpu; 4115 4116 rcu_early_boot_tests(); 4117 4118 rcu_bootup_announce(); 4119 rcu_init_geometry(); 4120 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 4121 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 4122 __rcu_init_preempt(); 4123 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4124 4125 /* 4126 * We don't need protection against CPU-hotplug here because 4127 * this is called early in boot, before either interrupts 4128 * or the scheduler are operational. 4129 */ 4130 cpu_notifier(rcu_cpu_notify, 0); 4131 pm_notifier(rcu_pm_notify, 0); 4132 for_each_online_cpu(cpu) 4133 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 4134 } 4135 4136 #include "tree_plugin.h" 4137