1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 73 74 /* 75 * In order to export the rcu_state name to the tracing tools, it 76 * needs to be added in the __tracepoint_string section. 77 * This requires defining a separate variable tp_<sname>_varname 78 * that points to the string being used, and this will allow 79 * the tracing userspace tools to be able to decipher the string 80 * address to the matching string. 81 */ 82 #ifdef CONFIG_TRACING 83 # define DEFINE_RCU_TPS(sname) \ 84 static char sname##_varname[] = #sname; \ 85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 86 # define RCU_STATE_NAME(sname) sname##_varname 87 #else 88 # define DEFINE_RCU_TPS(sname) 89 # define RCU_STATE_NAME(sname) __stringify(sname) 90 #endif 91 92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 93 DEFINE_RCU_TPS(sname) \ 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 95 struct rcu_state sname##_state = { \ 96 .level = { &sname##_state.node[0] }, \ 97 .rda = &sname##_data, \ 98 .call = cr, \ 99 .fqs_state = RCU_GP_IDLE, \ 100 .gpnum = 0UL - 300UL, \ 101 .completed = 0UL - 300UL, \ 102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 104 .orphan_donetail = &sname##_state.orphan_donelist, \ 105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 106 .name = RCU_STATE_NAME(sname), \ 107 .abbr = sabbr, \ 108 } 109 110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 112 113 static struct rcu_state *rcu_state_p; 114 LIST_HEAD(rcu_struct_flavors); 115 116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 118 module_param(rcu_fanout_leaf, int, 0444); 119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 121 NUM_RCU_LVL_0, 122 NUM_RCU_LVL_1, 123 NUM_RCU_LVL_2, 124 NUM_RCU_LVL_3, 125 NUM_RCU_LVL_4, 126 }; 127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 128 129 /* 130 * The rcu_scheduler_active variable transitions from zero to one just 131 * before the first task is spawned. So when this variable is zero, RCU 132 * can assume that there is but one task, allowing RCU to (for example) 133 * optimize synchronize_sched() to a simple barrier(). When this variable 134 * is one, RCU must actually do all the hard work required to detect real 135 * grace periods. This variable is also used to suppress boot-time false 136 * positives from lockdep-RCU error checking. 137 */ 138 int rcu_scheduler_active __read_mostly; 139 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 140 141 /* 142 * The rcu_scheduler_fully_active variable transitions from zero to one 143 * during the early_initcall() processing, which is after the scheduler 144 * is capable of creating new tasks. So RCU processing (for example, 145 * creating tasks for RCU priority boosting) must be delayed until after 146 * rcu_scheduler_fully_active transitions from zero to one. We also 147 * currently delay invocation of any RCU callbacks until after this point. 148 * 149 * It might later prove better for people registering RCU callbacks during 150 * early boot to take responsibility for these callbacks, but one step at 151 * a time. 152 */ 153 static int rcu_scheduler_fully_active __read_mostly; 154 155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 158 static void invoke_rcu_core(void); 159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 160 161 /* rcuc/rcub kthread realtime priority */ 162 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 163 module_param(kthread_prio, int, 0644); 164 165 /* Delay in jiffies for grace-period initialization delays. */ 166 static int gp_init_delay = IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT) 167 ? CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY 168 : 0; 169 module_param(gp_init_delay, int, 0644); 170 171 /* 172 * Track the rcutorture test sequence number and the update version 173 * number within a given test. The rcutorture_testseq is incremented 174 * on every rcutorture module load and unload, so has an odd value 175 * when a test is running. The rcutorture_vernum is set to zero 176 * when rcutorture starts and is incremented on each rcutorture update. 177 * These variables enable correlating rcutorture output with the 178 * RCU tracing information. 179 */ 180 unsigned long rcutorture_testseq; 181 unsigned long rcutorture_vernum; 182 183 /* 184 * Compute the mask of online CPUs for the specified rcu_node structure. 185 * This will not be stable unless the rcu_node structure's ->lock is 186 * held, but the bit corresponding to the current CPU will be stable 187 * in most contexts. 188 */ 189 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 190 { 191 return ACCESS_ONCE(rnp->qsmaskinitnext); 192 } 193 194 /* 195 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 196 * permit this function to be invoked without holding the root rcu_node 197 * structure's ->lock, but of course results can be subject to change. 198 */ 199 static int rcu_gp_in_progress(struct rcu_state *rsp) 200 { 201 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 202 } 203 204 /* 205 * Note a quiescent state. Because we do not need to know 206 * how many quiescent states passed, just if there was at least 207 * one since the start of the grace period, this just sets a flag. 208 * The caller must have disabled preemption. 209 */ 210 void rcu_sched_qs(void) 211 { 212 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) { 213 trace_rcu_grace_period(TPS("rcu_sched"), 214 __this_cpu_read(rcu_sched_data.gpnum), 215 TPS("cpuqs")); 216 __this_cpu_write(rcu_sched_data.passed_quiesce, 1); 217 } 218 } 219 220 void rcu_bh_qs(void) 221 { 222 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) { 223 trace_rcu_grace_period(TPS("rcu_bh"), 224 __this_cpu_read(rcu_bh_data.gpnum), 225 TPS("cpuqs")); 226 __this_cpu_write(rcu_bh_data.passed_quiesce, 1); 227 } 228 } 229 230 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 231 232 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 233 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 234 .dynticks = ATOMIC_INIT(1), 235 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 236 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 237 .dynticks_idle = ATOMIC_INIT(1), 238 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 239 }; 240 241 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 242 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 243 244 /* 245 * Let the RCU core know that this CPU has gone through the scheduler, 246 * which is a quiescent state. This is called when the need for a 247 * quiescent state is urgent, so we burn an atomic operation and full 248 * memory barriers to let the RCU core know about it, regardless of what 249 * this CPU might (or might not) do in the near future. 250 * 251 * We inform the RCU core by emulating a zero-duration dyntick-idle 252 * period, which we in turn do by incrementing the ->dynticks counter 253 * by two. 254 */ 255 static void rcu_momentary_dyntick_idle(void) 256 { 257 unsigned long flags; 258 struct rcu_data *rdp; 259 struct rcu_dynticks *rdtp; 260 int resched_mask; 261 struct rcu_state *rsp; 262 263 local_irq_save(flags); 264 265 /* 266 * Yes, we can lose flag-setting operations. This is OK, because 267 * the flag will be set again after some delay. 268 */ 269 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 270 raw_cpu_write(rcu_sched_qs_mask, 0); 271 272 /* Find the flavor that needs a quiescent state. */ 273 for_each_rcu_flavor(rsp) { 274 rdp = raw_cpu_ptr(rsp->rda); 275 if (!(resched_mask & rsp->flavor_mask)) 276 continue; 277 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 278 if (ACCESS_ONCE(rdp->mynode->completed) != 279 ACCESS_ONCE(rdp->cond_resched_completed)) 280 continue; 281 282 /* 283 * Pretend to be momentarily idle for the quiescent state. 284 * This allows the grace-period kthread to record the 285 * quiescent state, with no need for this CPU to do anything 286 * further. 287 */ 288 rdtp = this_cpu_ptr(&rcu_dynticks); 289 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 290 atomic_add(2, &rdtp->dynticks); /* QS. */ 291 smp_mb__after_atomic(); /* Later stuff after QS. */ 292 break; 293 } 294 local_irq_restore(flags); 295 } 296 297 /* 298 * Note a context switch. This is a quiescent state for RCU-sched, 299 * and requires special handling for preemptible RCU. 300 * The caller must have disabled preemption. 301 */ 302 void rcu_note_context_switch(void) 303 { 304 trace_rcu_utilization(TPS("Start context switch")); 305 rcu_sched_qs(); 306 rcu_preempt_note_context_switch(); 307 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 308 rcu_momentary_dyntick_idle(); 309 trace_rcu_utilization(TPS("End context switch")); 310 } 311 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 312 313 /* 314 * Register a quiescent state for all RCU flavors. If there is an 315 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 316 * dyntick-idle quiescent state visible to other CPUs (but only for those 317 * RCU flavors in desperate need of a quiescent state, which will normally 318 * be none of them). Either way, do a lightweight quiescent state for 319 * all RCU flavors. 320 */ 321 void rcu_all_qs(void) 322 { 323 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 324 rcu_momentary_dyntick_idle(); 325 this_cpu_inc(rcu_qs_ctr); 326 } 327 EXPORT_SYMBOL_GPL(rcu_all_qs); 328 329 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 330 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 331 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 332 333 module_param(blimit, long, 0444); 334 module_param(qhimark, long, 0444); 335 module_param(qlowmark, long, 0444); 336 337 static ulong jiffies_till_first_fqs = ULONG_MAX; 338 static ulong jiffies_till_next_fqs = ULONG_MAX; 339 340 module_param(jiffies_till_first_fqs, ulong, 0644); 341 module_param(jiffies_till_next_fqs, ulong, 0644); 342 343 /* 344 * How long the grace period must be before we start recruiting 345 * quiescent-state help from rcu_note_context_switch(). 346 */ 347 static ulong jiffies_till_sched_qs = HZ / 20; 348 module_param(jiffies_till_sched_qs, ulong, 0644); 349 350 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 351 struct rcu_data *rdp); 352 static void force_qs_rnp(struct rcu_state *rsp, 353 int (*f)(struct rcu_data *rsp, bool *isidle, 354 unsigned long *maxj), 355 bool *isidle, unsigned long *maxj); 356 static void force_quiescent_state(struct rcu_state *rsp); 357 static int rcu_pending(void); 358 359 /* 360 * Return the number of RCU batches started thus far for debug & stats. 361 */ 362 unsigned long rcu_batches_started(void) 363 { 364 return rcu_state_p->gpnum; 365 } 366 EXPORT_SYMBOL_GPL(rcu_batches_started); 367 368 /* 369 * Return the number of RCU-sched batches started thus far for debug & stats. 370 */ 371 unsigned long rcu_batches_started_sched(void) 372 { 373 return rcu_sched_state.gpnum; 374 } 375 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 376 377 /* 378 * Return the number of RCU BH batches started thus far for debug & stats. 379 */ 380 unsigned long rcu_batches_started_bh(void) 381 { 382 return rcu_bh_state.gpnum; 383 } 384 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 385 386 /* 387 * Return the number of RCU batches completed thus far for debug & stats. 388 */ 389 unsigned long rcu_batches_completed(void) 390 { 391 return rcu_state_p->completed; 392 } 393 EXPORT_SYMBOL_GPL(rcu_batches_completed); 394 395 /* 396 * Return the number of RCU-sched batches completed thus far for debug & stats. 397 */ 398 unsigned long rcu_batches_completed_sched(void) 399 { 400 return rcu_sched_state.completed; 401 } 402 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 403 404 /* 405 * Return the number of RCU BH batches completed thus far for debug & stats. 406 */ 407 unsigned long rcu_batches_completed_bh(void) 408 { 409 return rcu_bh_state.completed; 410 } 411 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 412 413 /* 414 * Force a quiescent state. 415 */ 416 void rcu_force_quiescent_state(void) 417 { 418 force_quiescent_state(rcu_state_p); 419 } 420 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 421 422 /* 423 * Force a quiescent state for RCU BH. 424 */ 425 void rcu_bh_force_quiescent_state(void) 426 { 427 force_quiescent_state(&rcu_bh_state); 428 } 429 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 430 431 /* 432 * Force a quiescent state for RCU-sched. 433 */ 434 void rcu_sched_force_quiescent_state(void) 435 { 436 force_quiescent_state(&rcu_sched_state); 437 } 438 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 439 440 /* 441 * Show the state of the grace-period kthreads. 442 */ 443 void show_rcu_gp_kthreads(void) 444 { 445 struct rcu_state *rsp; 446 447 for_each_rcu_flavor(rsp) { 448 pr_info("%s: wait state: %d ->state: %#lx\n", 449 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 450 /* sched_show_task(rsp->gp_kthread); */ 451 } 452 } 453 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 454 455 /* 456 * Record the number of times rcutorture tests have been initiated and 457 * terminated. This information allows the debugfs tracing stats to be 458 * correlated to the rcutorture messages, even when the rcutorture module 459 * is being repeatedly loaded and unloaded. In other words, we cannot 460 * store this state in rcutorture itself. 461 */ 462 void rcutorture_record_test_transition(void) 463 { 464 rcutorture_testseq++; 465 rcutorture_vernum = 0; 466 } 467 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 468 469 /* 470 * Send along grace-period-related data for rcutorture diagnostics. 471 */ 472 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 473 unsigned long *gpnum, unsigned long *completed) 474 { 475 struct rcu_state *rsp = NULL; 476 477 switch (test_type) { 478 case RCU_FLAVOR: 479 rsp = rcu_state_p; 480 break; 481 case RCU_BH_FLAVOR: 482 rsp = &rcu_bh_state; 483 break; 484 case RCU_SCHED_FLAVOR: 485 rsp = &rcu_sched_state; 486 break; 487 default: 488 break; 489 } 490 if (rsp != NULL) { 491 *flags = ACCESS_ONCE(rsp->gp_flags); 492 *gpnum = ACCESS_ONCE(rsp->gpnum); 493 *completed = ACCESS_ONCE(rsp->completed); 494 return; 495 } 496 *flags = 0; 497 *gpnum = 0; 498 *completed = 0; 499 } 500 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 501 502 /* 503 * Record the number of writer passes through the current rcutorture test. 504 * This is also used to correlate debugfs tracing stats with the rcutorture 505 * messages. 506 */ 507 void rcutorture_record_progress(unsigned long vernum) 508 { 509 rcutorture_vernum++; 510 } 511 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 512 513 /* 514 * Does the CPU have callbacks ready to be invoked? 515 */ 516 static int 517 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 518 { 519 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 520 rdp->nxttail[RCU_DONE_TAIL] != NULL; 521 } 522 523 /* 524 * Return the root node of the specified rcu_state structure. 525 */ 526 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 527 { 528 return &rsp->node[0]; 529 } 530 531 /* 532 * Is there any need for future grace periods? 533 * Interrupts must be disabled. If the caller does not hold the root 534 * rnp_node structure's ->lock, the results are advisory only. 535 */ 536 static int rcu_future_needs_gp(struct rcu_state *rsp) 537 { 538 struct rcu_node *rnp = rcu_get_root(rsp); 539 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1; 540 int *fp = &rnp->need_future_gp[idx]; 541 542 return ACCESS_ONCE(*fp); 543 } 544 545 /* 546 * Does the current CPU require a not-yet-started grace period? 547 * The caller must have disabled interrupts to prevent races with 548 * normal callback registry. 549 */ 550 static int 551 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 552 { 553 int i; 554 555 if (rcu_gp_in_progress(rsp)) 556 return 0; /* No, a grace period is already in progress. */ 557 if (rcu_future_needs_gp(rsp)) 558 return 1; /* Yes, a no-CBs CPU needs one. */ 559 if (!rdp->nxttail[RCU_NEXT_TAIL]) 560 return 0; /* No, this is a no-CBs (or offline) CPU. */ 561 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 562 return 1; /* Yes, this CPU has newly registered callbacks. */ 563 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 564 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 565 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 566 rdp->nxtcompleted[i])) 567 return 1; /* Yes, CBs for future grace period. */ 568 return 0; /* No grace period needed. */ 569 } 570 571 /* 572 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 573 * 574 * If the new value of the ->dynticks_nesting counter now is zero, 575 * we really have entered idle, and must do the appropriate accounting. 576 * The caller must have disabled interrupts. 577 */ 578 static void rcu_eqs_enter_common(long long oldval, bool user) 579 { 580 struct rcu_state *rsp; 581 struct rcu_data *rdp; 582 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 583 584 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 585 if (!user && !is_idle_task(current)) { 586 struct task_struct *idle __maybe_unused = 587 idle_task(smp_processor_id()); 588 589 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 590 ftrace_dump(DUMP_ORIG); 591 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 592 current->pid, current->comm, 593 idle->pid, idle->comm); /* must be idle task! */ 594 } 595 for_each_rcu_flavor(rsp) { 596 rdp = this_cpu_ptr(rsp->rda); 597 do_nocb_deferred_wakeup(rdp); 598 } 599 rcu_prepare_for_idle(); 600 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 601 smp_mb__before_atomic(); /* See above. */ 602 atomic_inc(&rdtp->dynticks); 603 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 604 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 605 rcu_dynticks_task_enter(); 606 607 /* 608 * It is illegal to enter an extended quiescent state while 609 * in an RCU read-side critical section. 610 */ 611 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 612 "Illegal idle entry in RCU read-side critical section."); 613 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 614 "Illegal idle entry in RCU-bh read-side critical section."); 615 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 616 "Illegal idle entry in RCU-sched read-side critical section."); 617 } 618 619 /* 620 * Enter an RCU extended quiescent state, which can be either the 621 * idle loop or adaptive-tickless usermode execution. 622 */ 623 static void rcu_eqs_enter(bool user) 624 { 625 long long oldval; 626 struct rcu_dynticks *rdtp; 627 628 rdtp = this_cpu_ptr(&rcu_dynticks); 629 oldval = rdtp->dynticks_nesting; 630 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 631 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 632 rdtp->dynticks_nesting = 0; 633 rcu_eqs_enter_common(oldval, user); 634 } else { 635 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 636 } 637 } 638 639 /** 640 * rcu_idle_enter - inform RCU that current CPU is entering idle 641 * 642 * Enter idle mode, in other words, -leave- the mode in which RCU 643 * read-side critical sections can occur. (Though RCU read-side 644 * critical sections can occur in irq handlers in idle, a possibility 645 * handled by irq_enter() and irq_exit().) 646 * 647 * We crowbar the ->dynticks_nesting field to zero to allow for 648 * the possibility of usermode upcalls having messed up our count 649 * of interrupt nesting level during the prior busy period. 650 */ 651 void rcu_idle_enter(void) 652 { 653 unsigned long flags; 654 655 local_irq_save(flags); 656 rcu_eqs_enter(false); 657 rcu_sysidle_enter(0); 658 local_irq_restore(flags); 659 } 660 EXPORT_SYMBOL_GPL(rcu_idle_enter); 661 662 #ifdef CONFIG_RCU_USER_QS 663 /** 664 * rcu_user_enter - inform RCU that we are resuming userspace. 665 * 666 * Enter RCU idle mode right before resuming userspace. No use of RCU 667 * is permitted between this call and rcu_user_exit(). This way the 668 * CPU doesn't need to maintain the tick for RCU maintenance purposes 669 * when the CPU runs in userspace. 670 */ 671 void rcu_user_enter(void) 672 { 673 rcu_eqs_enter(1); 674 } 675 #endif /* CONFIG_RCU_USER_QS */ 676 677 /** 678 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 679 * 680 * Exit from an interrupt handler, which might possibly result in entering 681 * idle mode, in other words, leaving the mode in which read-side critical 682 * sections can occur. 683 * 684 * This code assumes that the idle loop never does anything that might 685 * result in unbalanced calls to irq_enter() and irq_exit(). If your 686 * architecture violates this assumption, RCU will give you what you 687 * deserve, good and hard. But very infrequently and irreproducibly. 688 * 689 * Use things like work queues to work around this limitation. 690 * 691 * You have been warned. 692 */ 693 void rcu_irq_exit(void) 694 { 695 unsigned long flags; 696 long long oldval; 697 struct rcu_dynticks *rdtp; 698 699 local_irq_save(flags); 700 rdtp = this_cpu_ptr(&rcu_dynticks); 701 oldval = rdtp->dynticks_nesting; 702 rdtp->dynticks_nesting--; 703 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 704 if (rdtp->dynticks_nesting) 705 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 706 else 707 rcu_eqs_enter_common(oldval, true); 708 rcu_sysidle_enter(1); 709 local_irq_restore(flags); 710 } 711 712 /* 713 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 714 * 715 * If the new value of the ->dynticks_nesting counter was previously zero, 716 * we really have exited idle, and must do the appropriate accounting. 717 * The caller must have disabled interrupts. 718 */ 719 static void rcu_eqs_exit_common(long long oldval, int user) 720 { 721 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 722 723 rcu_dynticks_task_exit(); 724 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 725 atomic_inc(&rdtp->dynticks); 726 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 727 smp_mb__after_atomic(); /* See above. */ 728 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 729 rcu_cleanup_after_idle(); 730 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 731 if (!user && !is_idle_task(current)) { 732 struct task_struct *idle __maybe_unused = 733 idle_task(smp_processor_id()); 734 735 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 736 oldval, rdtp->dynticks_nesting); 737 ftrace_dump(DUMP_ORIG); 738 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 739 current->pid, current->comm, 740 idle->pid, idle->comm); /* must be idle task! */ 741 } 742 } 743 744 /* 745 * Exit an RCU extended quiescent state, which can be either the 746 * idle loop or adaptive-tickless usermode execution. 747 */ 748 static void rcu_eqs_exit(bool user) 749 { 750 struct rcu_dynticks *rdtp; 751 long long oldval; 752 753 rdtp = this_cpu_ptr(&rcu_dynticks); 754 oldval = rdtp->dynticks_nesting; 755 WARN_ON_ONCE(oldval < 0); 756 if (oldval & DYNTICK_TASK_NEST_MASK) { 757 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 758 } else { 759 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 760 rcu_eqs_exit_common(oldval, user); 761 } 762 } 763 764 /** 765 * rcu_idle_exit - inform RCU that current CPU is leaving idle 766 * 767 * Exit idle mode, in other words, -enter- the mode in which RCU 768 * read-side critical sections can occur. 769 * 770 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 771 * allow for the possibility of usermode upcalls messing up our count 772 * of interrupt nesting level during the busy period that is just 773 * now starting. 774 */ 775 void rcu_idle_exit(void) 776 { 777 unsigned long flags; 778 779 local_irq_save(flags); 780 rcu_eqs_exit(false); 781 rcu_sysidle_exit(0); 782 local_irq_restore(flags); 783 } 784 EXPORT_SYMBOL_GPL(rcu_idle_exit); 785 786 #ifdef CONFIG_RCU_USER_QS 787 /** 788 * rcu_user_exit - inform RCU that we are exiting userspace. 789 * 790 * Exit RCU idle mode while entering the kernel because it can 791 * run a RCU read side critical section anytime. 792 */ 793 void rcu_user_exit(void) 794 { 795 rcu_eqs_exit(1); 796 } 797 #endif /* CONFIG_RCU_USER_QS */ 798 799 /** 800 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 801 * 802 * Enter an interrupt handler, which might possibly result in exiting 803 * idle mode, in other words, entering the mode in which read-side critical 804 * sections can occur. 805 * 806 * Note that the Linux kernel is fully capable of entering an interrupt 807 * handler that it never exits, for example when doing upcalls to 808 * user mode! This code assumes that the idle loop never does upcalls to 809 * user mode. If your architecture does do upcalls from the idle loop (or 810 * does anything else that results in unbalanced calls to the irq_enter() 811 * and irq_exit() functions), RCU will give you what you deserve, good 812 * and hard. But very infrequently and irreproducibly. 813 * 814 * Use things like work queues to work around this limitation. 815 * 816 * You have been warned. 817 */ 818 void rcu_irq_enter(void) 819 { 820 unsigned long flags; 821 struct rcu_dynticks *rdtp; 822 long long oldval; 823 824 local_irq_save(flags); 825 rdtp = this_cpu_ptr(&rcu_dynticks); 826 oldval = rdtp->dynticks_nesting; 827 rdtp->dynticks_nesting++; 828 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 829 if (oldval) 830 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 831 else 832 rcu_eqs_exit_common(oldval, true); 833 rcu_sysidle_exit(1); 834 local_irq_restore(flags); 835 } 836 837 /** 838 * rcu_nmi_enter - inform RCU of entry to NMI context 839 * 840 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 841 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 842 * that the CPU is active. This implementation permits nested NMIs, as 843 * long as the nesting level does not overflow an int. (You will probably 844 * run out of stack space first.) 845 */ 846 void rcu_nmi_enter(void) 847 { 848 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 849 int incby = 2; 850 851 /* Complain about underflow. */ 852 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 853 854 /* 855 * If idle from RCU viewpoint, atomically increment ->dynticks 856 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 857 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 858 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 859 * to be in the outermost NMI handler that interrupted an RCU-idle 860 * period (observation due to Andy Lutomirski). 861 */ 862 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 863 smp_mb__before_atomic(); /* Force delay from prior write. */ 864 atomic_inc(&rdtp->dynticks); 865 /* atomic_inc() before later RCU read-side crit sects */ 866 smp_mb__after_atomic(); /* See above. */ 867 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 868 incby = 1; 869 } 870 rdtp->dynticks_nmi_nesting += incby; 871 barrier(); 872 } 873 874 /** 875 * rcu_nmi_exit - inform RCU of exit from NMI context 876 * 877 * If we are returning from the outermost NMI handler that interrupted an 878 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 879 * to let the RCU grace-period handling know that the CPU is back to 880 * being RCU-idle. 881 */ 882 void rcu_nmi_exit(void) 883 { 884 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 885 886 /* 887 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 888 * (We are exiting an NMI handler, so RCU better be paying attention 889 * to us!) 890 */ 891 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 892 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 893 894 /* 895 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 896 * leave it in non-RCU-idle state. 897 */ 898 if (rdtp->dynticks_nmi_nesting != 1) { 899 rdtp->dynticks_nmi_nesting -= 2; 900 return; 901 } 902 903 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 904 rdtp->dynticks_nmi_nesting = 0; 905 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 906 smp_mb__before_atomic(); /* See above. */ 907 atomic_inc(&rdtp->dynticks); 908 smp_mb__after_atomic(); /* Force delay to next write. */ 909 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 910 } 911 912 /** 913 * __rcu_is_watching - are RCU read-side critical sections safe? 914 * 915 * Return true if RCU is watching the running CPU, which means that 916 * this CPU can safely enter RCU read-side critical sections. Unlike 917 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 918 * least disabled preemption. 919 */ 920 bool notrace __rcu_is_watching(void) 921 { 922 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 923 } 924 925 /** 926 * rcu_is_watching - see if RCU thinks that the current CPU is idle 927 * 928 * If the current CPU is in its idle loop and is neither in an interrupt 929 * or NMI handler, return true. 930 */ 931 bool notrace rcu_is_watching(void) 932 { 933 bool ret; 934 935 preempt_disable(); 936 ret = __rcu_is_watching(); 937 preempt_enable(); 938 return ret; 939 } 940 EXPORT_SYMBOL_GPL(rcu_is_watching); 941 942 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 943 944 /* 945 * Is the current CPU online? Disable preemption to avoid false positives 946 * that could otherwise happen due to the current CPU number being sampled, 947 * this task being preempted, its old CPU being taken offline, resuming 948 * on some other CPU, then determining that its old CPU is now offline. 949 * It is OK to use RCU on an offline processor during initial boot, hence 950 * the check for rcu_scheduler_fully_active. Note also that it is OK 951 * for a CPU coming online to use RCU for one jiffy prior to marking itself 952 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 953 * offline to continue to use RCU for one jiffy after marking itself 954 * offline in the cpu_online_mask. This leniency is necessary given the 955 * non-atomic nature of the online and offline processing, for example, 956 * the fact that a CPU enters the scheduler after completing the CPU_DYING 957 * notifiers. 958 * 959 * This is also why RCU internally marks CPUs online during the 960 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 961 * 962 * Disable checking if in an NMI handler because we cannot safely report 963 * errors from NMI handlers anyway. 964 */ 965 bool rcu_lockdep_current_cpu_online(void) 966 { 967 struct rcu_data *rdp; 968 struct rcu_node *rnp; 969 bool ret; 970 971 if (in_nmi()) 972 return true; 973 preempt_disable(); 974 rdp = this_cpu_ptr(&rcu_sched_data); 975 rnp = rdp->mynode; 976 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 977 !rcu_scheduler_fully_active; 978 preempt_enable(); 979 return ret; 980 } 981 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 982 983 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 984 985 /** 986 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 987 * 988 * If the current CPU is idle or running at a first-level (not nested) 989 * interrupt from idle, return true. The caller must have at least 990 * disabled preemption. 991 */ 992 static int rcu_is_cpu_rrupt_from_idle(void) 993 { 994 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 995 } 996 997 /* 998 * Snapshot the specified CPU's dynticks counter so that we can later 999 * credit them with an implicit quiescent state. Return 1 if this CPU 1000 * is in dynticks idle mode, which is an extended quiescent state. 1001 */ 1002 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1003 bool *isidle, unsigned long *maxj) 1004 { 1005 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 1006 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1007 if ((rdp->dynticks_snap & 0x1) == 0) { 1008 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1009 return 1; 1010 } else { 1011 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1012 rdp->mynode->gpnum)) 1013 ACCESS_ONCE(rdp->gpwrap) = true; 1014 return 0; 1015 } 1016 } 1017 1018 /* 1019 * Return true if the specified CPU has passed through a quiescent 1020 * state by virtue of being in or having passed through an dynticks 1021 * idle state since the last call to dyntick_save_progress_counter() 1022 * for this same CPU, or by virtue of having been offline. 1023 */ 1024 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1025 bool *isidle, unsigned long *maxj) 1026 { 1027 unsigned int curr; 1028 int *rcrmp; 1029 unsigned int snap; 1030 1031 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1032 snap = (unsigned int)rdp->dynticks_snap; 1033 1034 /* 1035 * If the CPU passed through or entered a dynticks idle phase with 1036 * no active irq/NMI handlers, then we can safely pretend that the CPU 1037 * already acknowledged the request to pass through a quiescent 1038 * state. Either way, that CPU cannot possibly be in an RCU 1039 * read-side critical section that started before the beginning 1040 * of the current RCU grace period. 1041 */ 1042 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1043 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1044 rdp->dynticks_fqs++; 1045 return 1; 1046 } 1047 1048 /* 1049 * Check for the CPU being offline, but only if the grace period 1050 * is old enough. We don't need to worry about the CPU changing 1051 * state: If we see it offline even once, it has been through a 1052 * quiescent state. 1053 * 1054 * The reason for insisting that the grace period be at least 1055 * one jiffy old is that CPUs that are not quite online and that 1056 * have just gone offline can still execute RCU read-side critical 1057 * sections. 1058 */ 1059 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1060 return 0; /* Grace period is not old enough. */ 1061 barrier(); 1062 if (cpu_is_offline(rdp->cpu)) { 1063 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1064 rdp->offline_fqs++; 1065 return 1; 1066 } 1067 1068 /* 1069 * A CPU running for an extended time within the kernel can 1070 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1071 * even context-switching back and forth between a pair of 1072 * in-kernel CPU-bound tasks cannot advance grace periods. 1073 * So if the grace period is old enough, make the CPU pay attention. 1074 * Note that the unsynchronized assignments to the per-CPU 1075 * rcu_sched_qs_mask variable are safe. Yes, setting of 1076 * bits can be lost, but they will be set again on the next 1077 * force-quiescent-state pass. So lost bit sets do not result 1078 * in incorrect behavior, merely in a grace period lasting 1079 * a few jiffies longer than it might otherwise. Because 1080 * there are at most four threads involved, and because the 1081 * updates are only once every few jiffies, the probability of 1082 * lossage (and thus of slight grace-period extension) is 1083 * quite low. 1084 * 1085 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1086 * is set too high, we override with half of the RCU CPU stall 1087 * warning delay. 1088 */ 1089 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1090 if (ULONG_CMP_GE(jiffies, 1091 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1092 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1093 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1094 ACCESS_ONCE(rdp->cond_resched_completed) = 1095 ACCESS_ONCE(rdp->mynode->completed); 1096 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1097 ACCESS_ONCE(*rcrmp) = 1098 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask; 1099 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1100 rdp->rsp->jiffies_resched += 5; /* Enable beating. */ 1101 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1102 /* Time to beat on that CPU again! */ 1103 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1104 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1105 } 1106 } 1107 1108 return 0; 1109 } 1110 1111 static void record_gp_stall_check_time(struct rcu_state *rsp) 1112 { 1113 unsigned long j = jiffies; 1114 unsigned long j1; 1115 1116 rsp->gp_start = j; 1117 smp_wmb(); /* Record start time before stall time. */ 1118 j1 = rcu_jiffies_till_stall_check(); 1119 ACCESS_ONCE(rsp->jiffies_stall) = j + j1; 1120 rsp->jiffies_resched = j + j1 / 2; 1121 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs); 1122 } 1123 1124 /* 1125 * Complain about starvation of grace-period kthread. 1126 */ 1127 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1128 { 1129 unsigned long gpa; 1130 unsigned long j; 1131 1132 j = jiffies; 1133 gpa = ACCESS_ONCE(rsp->gp_activity); 1134 if (j - gpa > 2 * HZ) 1135 pr_err("%s kthread starved for %ld jiffies!\n", 1136 rsp->name, j - gpa); 1137 } 1138 1139 /* 1140 * Dump stacks of all tasks running on stalled CPUs. 1141 */ 1142 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1143 { 1144 int cpu; 1145 unsigned long flags; 1146 struct rcu_node *rnp; 1147 1148 rcu_for_each_leaf_node(rsp, rnp) { 1149 raw_spin_lock_irqsave(&rnp->lock, flags); 1150 if (rnp->qsmask != 0) { 1151 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1152 if (rnp->qsmask & (1UL << cpu)) 1153 dump_cpu_task(rnp->grplo + cpu); 1154 } 1155 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1156 } 1157 } 1158 1159 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1160 { 1161 int cpu; 1162 long delta; 1163 unsigned long flags; 1164 unsigned long gpa; 1165 unsigned long j; 1166 int ndetected = 0; 1167 struct rcu_node *rnp = rcu_get_root(rsp); 1168 long totqlen = 0; 1169 1170 /* Only let one CPU complain about others per time interval. */ 1171 1172 raw_spin_lock_irqsave(&rnp->lock, flags); 1173 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall); 1174 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1175 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1176 return; 1177 } 1178 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1179 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1180 1181 /* 1182 * OK, time to rat on our buddy... 1183 * See Documentation/RCU/stallwarn.txt for info on how to debug 1184 * RCU CPU stall warnings. 1185 */ 1186 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1187 rsp->name); 1188 print_cpu_stall_info_begin(); 1189 rcu_for_each_leaf_node(rsp, rnp) { 1190 raw_spin_lock_irqsave(&rnp->lock, flags); 1191 ndetected += rcu_print_task_stall(rnp); 1192 if (rnp->qsmask != 0) { 1193 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1194 if (rnp->qsmask & (1UL << cpu)) { 1195 print_cpu_stall_info(rsp, 1196 rnp->grplo + cpu); 1197 ndetected++; 1198 } 1199 } 1200 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1201 } 1202 1203 print_cpu_stall_info_end(); 1204 for_each_possible_cpu(cpu) 1205 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1206 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1207 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1208 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1209 if (ndetected) { 1210 rcu_dump_cpu_stacks(rsp); 1211 } else { 1212 if (ACCESS_ONCE(rsp->gpnum) != gpnum || 1213 ACCESS_ONCE(rsp->completed) == gpnum) { 1214 pr_err("INFO: Stall ended before state dump start\n"); 1215 } else { 1216 j = jiffies; 1217 gpa = ACCESS_ONCE(rsp->gp_activity); 1218 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1219 rsp->name, j - gpa, j, gpa, 1220 jiffies_till_next_fqs, 1221 rcu_get_root(rsp)->qsmask); 1222 /* In this case, the current CPU might be at fault. */ 1223 sched_show_task(current); 1224 } 1225 } 1226 1227 /* Complain about tasks blocking the grace period. */ 1228 rcu_print_detail_task_stall(rsp); 1229 1230 rcu_check_gp_kthread_starvation(rsp); 1231 1232 force_quiescent_state(rsp); /* Kick them all. */ 1233 } 1234 1235 static void print_cpu_stall(struct rcu_state *rsp) 1236 { 1237 int cpu; 1238 unsigned long flags; 1239 struct rcu_node *rnp = rcu_get_root(rsp); 1240 long totqlen = 0; 1241 1242 /* 1243 * OK, time to rat on ourselves... 1244 * See Documentation/RCU/stallwarn.txt for info on how to debug 1245 * RCU CPU stall warnings. 1246 */ 1247 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1248 print_cpu_stall_info_begin(); 1249 print_cpu_stall_info(rsp, smp_processor_id()); 1250 print_cpu_stall_info_end(); 1251 for_each_possible_cpu(cpu) 1252 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1253 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1254 jiffies - rsp->gp_start, 1255 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1256 1257 rcu_check_gp_kthread_starvation(rsp); 1258 1259 rcu_dump_cpu_stacks(rsp); 1260 1261 raw_spin_lock_irqsave(&rnp->lock, flags); 1262 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall))) 1263 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 1264 3 * rcu_jiffies_till_stall_check() + 3; 1265 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1266 1267 /* 1268 * Attempt to revive the RCU machinery by forcing a context switch. 1269 * 1270 * A context switch would normally allow the RCU state machine to make 1271 * progress and it could be we're stuck in kernel space without context 1272 * switches for an entirely unreasonable amount of time. 1273 */ 1274 resched_cpu(smp_processor_id()); 1275 } 1276 1277 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1278 { 1279 unsigned long completed; 1280 unsigned long gpnum; 1281 unsigned long gps; 1282 unsigned long j; 1283 unsigned long js; 1284 struct rcu_node *rnp; 1285 1286 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1287 return; 1288 j = jiffies; 1289 1290 /* 1291 * Lots of memory barriers to reject false positives. 1292 * 1293 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1294 * then rsp->gp_start, and finally rsp->completed. These values 1295 * are updated in the opposite order with memory barriers (or 1296 * equivalent) during grace-period initialization and cleanup. 1297 * Now, a false positive can occur if we get an new value of 1298 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1299 * the memory barriers, the only way that this can happen is if one 1300 * grace period ends and another starts between these two fetches. 1301 * Detect this by comparing rsp->completed with the previous fetch 1302 * from rsp->gpnum. 1303 * 1304 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1305 * and rsp->gp_start suffice to forestall false positives. 1306 */ 1307 gpnum = ACCESS_ONCE(rsp->gpnum); 1308 smp_rmb(); /* Pick up ->gpnum first... */ 1309 js = ACCESS_ONCE(rsp->jiffies_stall); 1310 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1311 gps = ACCESS_ONCE(rsp->gp_start); 1312 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1313 completed = ACCESS_ONCE(rsp->completed); 1314 if (ULONG_CMP_GE(completed, gpnum) || 1315 ULONG_CMP_LT(j, js) || 1316 ULONG_CMP_GE(gps, js)) 1317 return; /* No stall or GP completed since entering function. */ 1318 rnp = rdp->mynode; 1319 if (rcu_gp_in_progress(rsp) && 1320 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1321 1322 /* We haven't checked in, so go dump stack. */ 1323 print_cpu_stall(rsp); 1324 1325 } else if (rcu_gp_in_progress(rsp) && 1326 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1327 1328 /* They had a few time units to dump stack, so complain. */ 1329 print_other_cpu_stall(rsp, gpnum); 1330 } 1331 } 1332 1333 /** 1334 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1335 * 1336 * Set the stall-warning timeout way off into the future, thus preventing 1337 * any RCU CPU stall-warning messages from appearing in the current set of 1338 * RCU grace periods. 1339 * 1340 * The caller must disable hard irqs. 1341 */ 1342 void rcu_cpu_stall_reset(void) 1343 { 1344 struct rcu_state *rsp; 1345 1346 for_each_rcu_flavor(rsp) 1347 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2; 1348 } 1349 1350 /* 1351 * Initialize the specified rcu_data structure's default callback list 1352 * to empty. The default callback list is the one that is not used by 1353 * no-callbacks CPUs. 1354 */ 1355 static void init_default_callback_list(struct rcu_data *rdp) 1356 { 1357 int i; 1358 1359 rdp->nxtlist = NULL; 1360 for (i = 0; i < RCU_NEXT_SIZE; i++) 1361 rdp->nxttail[i] = &rdp->nxtlist; 1362 } 1363 1364 /* 1365 * Initialize the specified rcu_data structure's callback list to empty. 1366 */ 1367 static void init_callback_list(struct rcu_data *rdp) 1368 { 1369 if (init_nocb_callback_list(rdp)) 1370 return; 1371 init_default_callback_list(rdp); 1372 } 1373 1374 /* 1375 * Determine the value that ->completed will have at the end of the 1376 * next subsequent grace period. This is used to tag callbacks so that 1377 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1378 * been dyntick-idle for an extended period with callbacks under the 1379 * influence of RCU_FAST_NO_HZ. 1380 * 1381 * The caller must hold rnp->lock with interrupts disabled. 1382 */ 1383 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1384 struct rcu_node *rnp) 1385 { 1386 /* 1387 * If RCU is idle, we just wait for the next grace period. 1388 * But we can only be sure that RCU is idle if we are looking 1389 * at the root rcu_node structure -- otherwise, a new grace 1390 * period might have started, but just not yet gotten around 1391 * to initializing the current non-root rcu_node structure. 1392 */ 1393 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1394 return rnp->completed + 1; 1395 1396 /* 1397 * Otherwise, wait for a possible partial grace period and 1398 * then the subsequent full grace period. 1399 */ 1400 return rnp->completed + 2; 1401 } 1402 1403 /* 1404 * Trace-event helper function for rcu_start_future_gp() and 1405 * rcu_nocb_wait_gp(). 1406 */ 1407 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1408 unsigned long c, const char *s) 1409 { 1410 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1411 rnp->completed, c, rnp->level, 1412 rnp->grplo, rnp->grphi, s); 1413 } 1414 1415 /* 1416 * Start some future grace period, as needed to handle newly arrived 1417 * callbacks. The required future grace periods are recorded in each 1418 * rcu_node structure's ->need_future_gp field. Returns true if there 1419 * is reason to awaken the grace-period kthread. 1420 * 1421 * The caller must hold the specified rcu_node structure's ->lock. 1422 */ 1423 static bool __maybe_unused 1424 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1425 unsigned long *c_out) 1426 { 1427 unsigned long c; 1428 int i; 1429 bool ret = false; 1430 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1431 1432 /* 1433 * Pick up grace-period number for new callbacks. If this 1434 * grace period is already marked as needed, return to the caller. 1435 */ 1436 c = rcu_cbs_completed(rdp->rsp, rnp); 1437 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1438 if (rnp->need_future_gp[c & 0x1]) { 1439 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1440 goto out; 1441 } 1442 1443 /* 1444 * If either this rcu_node structure or the root rcu_node structure 1445 * believe that a grace period is in progress, then we must wait 1446 * for the one following, which is in "c". Because our request 1447 * will be noticed at the end of the current grace period, we don't 1448 * need to explicitly start one. We only do the lockless check 1449 * of rnp_root's fields if the current rcu_node structure thinks 1450 * there is no grace period in flight, and because we hold rnp->lock, 1451 * the only possible change is when rnp_root's two fields are 1452 * equal, in which case rnp_root->gpnum might be concurrently 1453 * incremented. But that is OK, as it will just result in our 1454 * doing some extra useless work. 1455 */ 1456 if (rnp->gpnum != rnp->completed || 1457 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) { 1458 rnp->need_future_gp[c & 0x1]++; 1459 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1460 goto out; 1461 } 1462 1463 /* 1464 * There might be no grace period in progress. If we don't already 1465 * hold it, acquire the root rcu_node structure's lock in order to 1466 * start one (if needed). 1467 */ 1468 if (rnp != rnp_root) { 1469 raw_spin_lock(&rnp_root->lock); 1470 smp_mb__after_unlock_lock(); 1471 } 1472 1473 /* 1474 * Get a new grace-period number. If there really is no grace 1475 * period in progress, it will be smaller than the one we obtained 1476 * earlier. Adjust callbacks as needed. Note that even no-CBs 1477 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1478 */ 1479 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1480 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1481 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1482 rdp->nxtcompleted[i] = c; 1483 1484 /* 1485 * If the needed for the required grace period is already 1486 * recorded, trace and leave. 1487 */ 1488 if (rnp_root->need_future_gp[c & 0x1]) { 1489 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1490 goto unlock_out; 1491 } 1492 1493 /* Record the need for the future grace period. */ 1494 rnp_root->need_future_gp[c & 0x1]++; 1495 1496 /* If a grace period is not already in progress, start one. */ 1497 if (rnp_root->gpnum != rnp_root->completed) { 1498 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1499 } else { 1500 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1501 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1502 } 1503 unlock_out: 1504 if (rnp != rnp_root) 1505 raw_spin_unlock(&rnp_root->lock); 1506 out: 1507 if (c_out != NULL) 1508 *c_out = c; 1509 return ret; 1510 } 1511 1512 /* 1513 * Clean up any old requests for the just-ended grace period. Also return 1514 * whether any additional grace periods have been requested. Also invoke 1515 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1516 * waiting for this grace period to complete. 1517 */ 1518 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1519 { 1520 int c = rnp->completed; 1521 int needmore; 1522 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1523 1524 rcu_nocb_gp_cleanup(rsp, rnp); 1525 rnp->need_future_gp[c & 0x1] = 0; 1526 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1527 trace_rcu_future_gp(rnp, rdp, c, 1528 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1529 return needmore; 1530 } 1531 1532 /* 1533 * Awaken the grace-period kthread for the specified flavor of RCU. 1534 * Don't do a self-awaken, and don't bother awakening when there is 1535 * nothing for the grace-period kthread to do (as in several CPUs 1536 * raced to awaken, and we lost), and finally don't try to awaken 1537 * a kthread that has not yet been created. 1538 */ 1539 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1540 { 1541 if (current == rsp->gp_kthread || 1542 !ACCESS_ONCE(rsp->gp_flags) || 1543 !rsp->gp_kthread) 1544 return; 1545 wake_up(&rsp->gp_wq); 1546 } 1547 1548 /* 1549 * If there is room, assign a ->completed number to any callbacks on 1550 * this CPU that have not already been assigned. Also accelerate any 1551 * callbacks that were previously assigned a ->completed number that has 1552 * since proven to be too conservative, which can happen if callbacks get 1553 * assigned a ->completed number while RCU is idle, but with reference to 1554 * a non-root rcu_node structure. This function is idempotent, so it does 1555 * not hurt to call it repeatedly. Returns an flag saying that we should 1556 * awaken the RCU grace-period kthread. 1557 * 1558 * The caller must hold rnp->lock with interrupts disabled. 1559 */ 1560 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1561 struct rcu_data *rdp) 1562 { 1563 unsigned long c; 1564 int i; 1565 bool ret; 1566 1567 /* If the CPU has no callbacks, nothing to do. */ 1568 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1569 return false; 1570 1571 /* 1572 * Starting from the sublist containing the callbacks most 1573 * recently assigned a ->completed number and working down, find the 1574 * first sublist that is not assignable to an upcoming grace period. 1575 * Such a sublist has something in it (first two tests) and has 1576 * a ->completed number assigned that will complete sooner than 1577 * the ->completed number for newly arrived callbacks (last test). 1578 * 1579 * The key point is that any later sublist can be assigned the 1580 * same ->completed number as the newly arrived callbacks, which 1581 * means that the callbacks in any of these later sublist can be 1582 * grouped into a single sublist, whether or not they have already 1583 * been assigned a ->completed number. 1584 */ 1585 c = rcu_cbs_completed(rsp, rnp); 1586 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1587 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1588 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1589 break; 1590 1591 /* 1592 * If there are no sublist for unassigned callbacks, leave. 1593 * At the same time, advance "i" one sublist, so that "i" will 1594 * index into the sublist where all the remaining callbacks should 1595 * be grouped into. 1596 */ 1597 if (++i >= RCU_NEXT_TAIL) 1598 return false; 1599 1600 /* 1601 * Assign all subsequent callbacks' ->completed number to the next 1602 * full grace period and group them all in the sublist initially 1603 * indexed by "i". 1604 */ 1605 for (; i <= RCU_NEXT_TAIL; i++) { 1606 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1607 rdp->nxtcompleted[i] = c; 1608 } 1609 /* Record any needed additional grace periods. */ 1610 ret = rcu_start_future_gp(rnp, rdp, NULL); 1611 1612 /* Trace depending on how much we were able to accelerate. */ 1613 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1614 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1615 else 1616 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1617 return ret; 1618 } 1619 1620 /* 1621 * Move any callbacks whose grace period has completed to the 1622 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1623 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1624 * sublist. This function is idempotent, so it does not hurt to 1625 * invoke it repeatedly. As long as it is not invoked -too- often... 1626 * Returns true if the RCU grace-period kthread needs to be awakened. 1627 * 1628 * The caller must hold rnp->lock with interrupts disabled. 1629 */ 1630 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1631 struct rcu_data *rdp) 1632 { 1633 int i, j; 1634 1635 /* If the CPU has no callbacks, nothing to do. */ 1636 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1637 return false; 1638 1639 /* 1640 * Find all callbacks whose ->completed numbers indicate that they 1641 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1642 */ 1643 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1644 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1645 break; 1646 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1647 } 1648 /* Clean up any sublist tail pointers that were misordered above. */ 1649 for (j = RCU_WAIT_TAIL; j < i; j++) 1650 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1651 1652 /* Copy down callbacks to fill in empty sublists. */ 1653 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1654 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1655 break; 1656 rdp->nxttail[j] = rdp->nxttail[i]; 1657 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1658 } 1659 1660 /* Classify any remaining callbacks. */ 1661 return rcu_accelerate_cbs(rsp, rnp, rdp); 1662 } 1663 1664 /* 1665 * Update CPU-local rcu_data state to record the beginnings and ends of 1666 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1667 * structure corresponding to the current CPU, and must have irqs disabled. 1668 * Returns true if the grace-period kthread needs to be awakened. 1669 */ 1670 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1671 struct rcu_data *rdp) 1672 { 1673 bool ret; 1674 1675 /* Handle the ends of any preceding grace periods first. */ 1676 if (rdp->completed == rnp->completed && 1677 !unlikely(ACCESS_ONCE(rdp->gpwrap))) { 1678 1679 /* No grace period end, so just accelerate recent callbacks. */ 1680 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1681 1682 } else { 1683 1684 /* Advance callbacks. */ 1685 ret = rcu_advance_cbs(rsp, rnp, rdp); 1686 1687 /* Remember that we saw this grace-period completion. */ 1688 rdp->completed = rnp->completed; 1689 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1690 } 1691 1692 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) { 1693 /* 1694 * If the current grace period is waiting for this CPU, 1695 * set up to detect a quiescent state, otherwise don't 1696 * go looking for one. 1697 */ 1698 rdp->gpnum = rnp->gpnum; 1699 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1700 rdp->passed_quiesce = 0; 1701 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1702 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1703 zero_cpu_stall_ticks(rdp); 1704 ACCESS_ONCE(rdp->gpwrap) = false; 1705 } 1706 return ret; 1707 } 1708 1709 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1710 { 1711 unsigned long flags; 1712 bool needwake; 1713 struct rcu_node *rnp; 1714 1715 local_irq_save(flags); 1716 rnp = rdp->mynode; 1717 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1718 rdp->completed == ACCESS_ONCE(rnp->completed) && 1719 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1720 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1721 local_irq_restore(flags); 1722 return; 1723 } 1724 smp_mb__after_unlock_lock(); 1725 needwake = __note_gp_changes(rsp, rnp, rdp); 1726 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1727 if (needwake) 1728 rcu_gp_kthread_wake(rsp); 1729 } 1730 1731 /* 1732 * Initialize a new grace period. Return 0 if no grace period required. 1733 */ 1734 static int rcu_gp_init(struct rcu_state *rsp) 1735 { 1736 unsigned long oldmask; 1737 struct rcu_data *rdp; 1738 struct rcu_node *rnp = rcu_get_root(rsp); 1739 1740 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1741 raw_spin_lock_irq(&rnp->lock); 1742 smp_mb__after_unlock_lock(); 1743 if (!ACCESS_ONCE(rsp->gp_flags)) { 1744 /* Spurious wakeup, tell caller to go back to sleep. */ 1745 raw_spin_unlock_irq(&rnp->lock); 1746 return 0; 1747 } 1748 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */ 1749 1750 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1751 /* 1752 * Grace period already in progress, don't start another. 1753 * Not supposed to be able to happen. 1754 */ 1755 raw_spin_unlock_irq(&rnp->lock); 1756 return 0; 1757 } 1758 1759 /* Advance to a new grace period and initialize state. */ 1760 record_gp_stall_check_time(rsp); 1761 /* Record GP times before starting GP, hence smp_store_release(). */ 1762 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1763 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1764 raw_spin_unlock_irq(&rnp->lock); 1765 1766 /* 1767 * Apply per-leaf buffered online and offline operations to the 1768 * rcu_node tree. Note that this new grace period need not wait 1769 * for subsequent online CPUs, and that quiescent-state forcing 1770 * will handle subsequent offline CPUs. 1771 */ 1772 rcu_for_each_leaf_node(rsp, rnp) { 1773 raw_spin_lock_irq(&rnp->lock); 1774 smp_mb__after_unlock_lock(); 1775 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1776 !rnp->wait_blkd_tasks) { 1777 /* Nothing to do on this leaf rcu_node structure. */ 1778 raw_spin_unlock_irq(&rnp->lock); 1779 continue; 1780 } 1781 1782 /* Record old state, apply changes to ->qsmaskinit field. */ 1783 oldmask = rnp->qsmaskinit; 1784 rnp->qsmaskinit = rnp->qsmaskinitnext; 1785 1786 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1787 if (!oldmask != !rnp->qsmaskinit) { 1788 if (!oldmask) /* First online CPU for this rcu_node. */ 1789 rcu_init_new_rnp(rnp); 1790 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1791 rnp->wait_blkd_tasks = true; 1792 else /* Last offline CPU and can propagate. */ 1793 rcu_cleanup_dead_rnp(rnp); 1794 } 1795 1796 /* 1797 * If all waited-on tasks from prior grace period are 1798 * done, and if all this rcu_node structure's CPUs are 1799 * still offline, propagate up the rcu_node tree and 1800 * clear ->wait_blkd_tasks. Otherwise, if one of this 1801 * rcu_node structure's CPUs has since come back online, 1802 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1803 * checks for this, so just call it unconditionally). 1804 */ 1805 if (rnp->wait_blkd_tasks && 1806 (!rcu_preempt_has_tasks(rnp) || 1807 rnp->qsmaskinit)) { 1808 rnp->wait_blkd_tasks = false; 1809 rcu_cleanup_dead_rnp(rnp); 1810 } 1811 1812 raw_spin_unlock_irq(&rnp->lock); 1813 } 1814 1815 /* 1816 * Set the quiescent-state-needed bits in all the rcu_node 1817 * structures for all currently online CPUs in breadth-first order, 1818 * starting from the root rcu_node structure, relying on the layout 1819 * of the tree within the rsp->node[] array. Note that other CPUs 1820 * will access only the leaves of the hierarchy, thus seeing that no 1821 * grace period is in progress, at least until the corresponding 1822 * leaf node has been initialized. In addition, we have excluded 1823 * CPU-hotplug operations. 1824 * 1825 * The grace period cannot complete until the initialization 1826 * process finishes, because this kthread handles both. 1827 */ 1828 rcu_for_each_node_breadth_first(rsp, rnp) { 1829 raw_spin_lock_irq(&rnp->lock); 1830 smp_mb__after_unlock_lock(); 1831 rdp = this_cpu_ptr(rsp->rda); 1832 rcu_preempt_check_blocked_tasks(rnp); 1833 rnp->qsmask = rnp->qsmaskinit; 1834 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1835 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 1836 ACCESS_ONCE(rnp->completed) = rsp->completed; 1837 if (rnp == rdp->mynode) 1838 (void)__note_gp_changes(rsp, rnp, rdp); 1839 rcu_preempt_boost_start_gp(rnp); 1840 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1841 rnp->level, rnp->grplo, 1842 rnp->grphi, rnp->qsmask); 1843 raw_spin_unlock_irq(&rnp->lock); 1844 cond_resched_rcu_qs(); 1845 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1846 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT) && 1847 gp_init_delay > 0 && 1848 !(rsp->gpnum % (rcu_num_nodes * 10))) 1849 schedule_timeout_uninterruptible(gp_init_delay); 1850 } 1851 1852 return 1; 1853 } 1854 1855 /* 1856 * Do one round of quiescent-state forcing. 1857 */ 1858 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1859 { 1860 int fqs_state = fqs_state_in; 1861 bool isidle = false; 1862 unsigned long maxj; 1863 struct rcu_node *rnp = rcu_get_root(rsp); 1864 1865 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1866 rsp->n_force_qs++; 1867 if (fqs_state == RCU_SAVE_DYNTICK) { 1868 /* Collect dyntick-idle snapshots. */ 1869 if (is_sysidle_rcu_state(rsp)) { 1870 isidle = true; 1871 maxj = jiffies - ULONG_MAX / 4; 1872 } 1873 force_qs_rnp(rsp, dyntick_save_progress_counter, 1874 &isidle, &maxj); 1875 rcu_sysidle_report_gp(rsp, isidle, maxj); 1876 fqs_state = RCU_FORCE_QS; 1877 } else { 1878 /* Handle dyntick-idle and offline CPUs. */ 1879 isidle = true; 1880 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1881 } 1882 /* Clear flag to prevent immediate re-entry. */ 1883 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1884 raw_spin_lock_irq(&rnp->lock); 1885 smp_mb__after_unlock_lock(); 1886 ACCESS_ONCE(rsp->gp_flags) = 1887 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS; 1888 raw_spin_unlock_irq(&rnp->lock); 1889 } 1890 return fqs_state; 1891 } 1892 1893 /* 1894 * Clean up after the old grace period. 1895 */ 1896 static void rcu_gp_cleanup(struct rcu_state *rsp) 1897 { 1898 unsigned long gp_duration; 1899 bool needgp = false; 1900 int nocb = 0; 1901 struct rcu_data *rdp; 1902 struct rcu_node *rnp = rcu_get_root(rsp); 1903 1904 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1905 raw_spin_lock_irq(&rnp->lock); 1906 smp_mb__after_unlock_lock(); 1907 gp_duration = jiffies - rsp->gp_start; 1908 if (gp_duration > rsp->gp_max) 1909 rsp->gp_max = gp_duration; 1910 1911 /* 1912 * We know the grace period is complete, but to everyone else 1913 * it appears to still be ongoing. But it is also the case 1914 * that to everyone else it looks like there is nothing that 1915 * they can do to advance the grace period. It is therefore 1916 * safe for us to drop the lock in order to mark the grace 1917 * period as completed in all of the rcu_node structures. 1918 */ 1919 raw_spin_unlock_irq(&rnp->lock); 1920 1921 /* 1922 * Propagate new ->completed value to rcu_node structures so 1923 * that other CPUs don't have to wait until the start of the next 1924 * grace period to process their callbacks. This also avoids 1925 * some nasty RCU grace-period initialization races by forcing 1926 * the end of the current grace period to be completely recorded in 1927 * all of the rcu_node structures before the beginning of the next 1928 * grace period is recorded in any of the rcu_node structures. 1929 */ 1930 rcu_for_each_node_breadth_first(rsp, rnp) { 1931 raw_spin_lock_irq(&rnp->lock); 1932 smp_mb__after_unlock_lock(); 1933 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 1934 WARN_ON_ONCE(rnp->qsmask); 1935 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1936 rdp = this_cpu_ptr(rsp->rda); 1937 if (rnp == rdp->mynode) 1938 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 1939 /* smp_mb() provided by prior unlock-lock pair. */ 1940 nocb += rcu_future_gp_cleanup(rsp, rnp); 1941 raw_spin_unlock_irq(&rnp->lock); 1942 cond_resched_rcu_qs(); 1943 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1944 } 1945 rnp = rcu_get_root(rsp); 1946 raw_spin_lock_irq(&rnp->lock); 1947 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */ 1948 rcu_nocb_gp_set(rnp, nocb); 1949 1950 /* Declare grace period done. */ 1951 ACCESS_ONCE(rsp->completed) = rsp->gpnum; 1952 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1953 rsp->fqs_state = RCU_GP_IDLE; 1954 rdp = this_cpu_ptr(rsp->rda); 1955 /* Advance CBs to reduce false positives below. */ 1956 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 1957 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 1958 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 1959 trace_rcu_grace_period(rsp->name, 1960 ACCESS_ONCE(rsp->gpnum), 1961 TPS("newreq")); 1962 } 1963 raw_spin_unlock_irq(&rnp->lock); 1964 } 1965 1966 /* 1967 * Body of kthread that handles grace periods. 1968 */ 1969 static int __noreturn rcu_gp_kthread(void *arg) 1970 { 1971 int fqs_state; 1972 int gf; 1973 unsigned long j; 1974 int ret; 1975 struct rcu_state *rsp = arg; 1976 struct rcu_node *rnp = rcu_get_root(rsp); 1977 1978 rcu_bind_gp_kthread(); 1979 for (;;) { 1980 1981 /* Handle grace-period start. */ 1982 for (;;) { 1983 trace_rcu_grace_period(rsp->name, 1984 ACCESS_ONCE(rsp->gpnum), 1985 TPS("reqwait")); 1986 rsp->gp_state = RCU_GP_WAIT_GPS; 1987 wait_event_interruptible(rsp->gp_wq, 1988 ACCESS_ONCE(rsp->gp_flags) & 1989 RCU_GP_FLAG_INIT); 1990 /* Locking provides needed memory barrier. */ 1991 if (rcu_gp_init(rsp)) 1992 break; 1993 cond_resched_rcu_qs(); 1994 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1995 WARN_ON(signal_pending(current)); 1996 trace_rcu_grace_period(rsp->name, 1997 ACCESS_ONCE(rsp->gpnum), 1998 TPS("reqwaitsig")); 1999 } 2000 2001 /* Handle quiescent-state forcing. */ 2002 fqs_state = RCU_SAVE_DYNTICK; 2003 j = jiffies_till_first_fqs; 2004 if (j > HZ) { 2005 j = HZ; 2006 jiffies_till_first_fqs = HZ; 2007 } 2008 ret = 0; 2009 for (;;) { 2010 if (!ret) 2011 rsp->jiffies_force_qs = jiffies + j; 2012 trace_rcu_grace_period(rsp->name, 2013 ACCESS_ONCE(rsp->gpnum), 2014 TPS("fqswait")); 2015 rsp->gp_state = RCU_GP_WAIT_FQS; 2016 ret = wait_event_interruptible_timeout(rsp->gp_wq, 2017 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 2018 RCU_GP_FLAG_FQS) || 2019 (!ACCESS_ONCE(rnp->qsmask) && 2020 !rcu_preempt_blocked_readers_cgp(rnp)), 2021 j); 2022 /* Locking provides needed memory barriers. */ 2023 /* If grace period done, leave loop. */ 2024 if (!ACCESS_ONCE(rnp->qsmask) && 2025 !rcu_preempt_blocked_readers_cgp(rnp)) 2026 break; 2027 /* If time for quiescent-state forcing, do it. */ 2028 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2029 (gf & RCU_GP_FLAG_FQS)) { 2030 trace_rcu_grace_period(rsp->name, 2031 ACCESS_ONCE(rsp->gpnum), 2032 TPS("fqsstart")); 2033 fqs_state = rcu_gp_fqs(rsp, fqs_state); 2034 trace_rcu_grace_period(rsp->name, 2035 ACCESS_ONCE(rsp->gpnum), 2036 TPS("fqsend")); 2037 cond_resched_rcu_qs(); 2038 ACCESS_ONCE(rsp->gp_activity) = jiffies; 2039 } else { 2040 /* Deal with stray signal. */ 2041 cond_resched_rcu_qs(); 2042 ACCESS_ONCE(rsp->gp_activity) = jiffies; 2043 WARN_ON(signal_pending(current)); 2044 trace_rcu_grace_period(rsp->name, 2045 ACCESS_ONCE(rsp->gpnum), 2046 TPS("fqswaitsig")); 2047 } 2048 j = jiffies_till_next_fqs; 2049 if (j > HZ) { 2050 j = HZ; 2051 jiffies_till_next_fqs = HZ; 2052 } else if (j < 1) { 2053 j = 1; 2054 jiffies_till_next_fqs = 1; 2055 } 2056 } 2057 2058 /* Handle grace-period end. */ 2059 rcu_gp_cleanup(rsp); 2060 } 2061 } 2062 2063 /* 2064 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2065 * in preparation for detecting the next grace period. The caller must hold 2066 * the root node's ->lock and hard irqs must be disabled. 2067 * 2068 * Note that it is legal for a dying CPU (which is marked as offline) to 2069 * invoke this function. This can happen when the dying CPU reports its 2070 * quiescent state. 2071 * 2072 * Returns true if the grace-period kthread must be awakened. 2073 */ 2074 static bool 2075 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2076 struct rcu_data *rdp) 2077 { 2078 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2079 /* 2080 * Either we have not yet spawned the grace-period 2081 * task, this CPU does not need another grace period, 2082 * or a grace period is already in progress. 2083 * Either way, don't start a new grace period. 2084 */ 2085 return false; 2086 } 2087 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 2088 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 2089 TPS("newreq")); 2090 2091 /* 2092 * We can't do wakeups while holding the rnp->lock, as that 2093 * could cause possible deadlocks with the rq->lock. Defer 2094 * the wakeup to our caller. 2095 */ 2096 return true; 2097 } 2098 2099 /* 2100 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2101 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2102 * is invoked indirectly from rcu_advance_cbs(), which would result in 2103 * endless recursion -- or would do so if it wasn't for the self-deadlock 2104 * that is encountered beforehand. 2105 * 2106 * Returns true if the grace-period kthread needs to be awakened. 2107 */ 2108 static bool rcu_start_gp(struct rcu_state *rsp) 2109 { 2110 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2111 struct rcu_node *rnp = rcu_get_root(rsp); 2112 bool ret = false; 2113 2114 /* 2115 * If there is no grace period in progress right now, any 2116 * callbacks we have up to this point will be satisfied by the 2117 * next grace period. Also, advancing the callbacks reduces the 2118 * probability of false positives from cpu_needs_another_gp() 2119 * resulting in pointless grace periods. So, advance callbacks 2120 * then start the grace period! 2121 */ 2122 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2123 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2124 return ret; 2125 } 2126 2127 /* 2128 * Report a full set of quiescent states to the specified rcu_state 2129 * data structure. This involves cleaning up after the prior grace 2130 * period and letting rcu_start_gp() start up the next grace period 2131 * if one is needed. Note that the caller must hold rnp->lock, which 2132 * is released before return. 2133 */ 2134 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2135 __releases(rcu_get_root(rsp)->lock) 2136 { 2137 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2138 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2139 rcu_gp_kthread_wake(rsp); 2140 } 2141 2142 /* 2143 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2144 * Allows quiescent states for a group of CPUs to be reported at one go 2145 * to the specified rcu_node structure, though all the CPUs in the group 2146 * must be represented by the same rcu_node structure (which need not be a 2147 * leaf rcu_node structure, though it often will be). The gps parameter 2148 * is the grace-period snapshot, which means that the quiescent states 2149 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2150 * must be held upon entry, and it is released before return. 2151 */ 2152 static void 2153 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2154 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2155 __releases(rnp->lock) 2156 { 2157 unsigned long oldmask = 0; 2158 struct rcu_node *rnp_c; 2159 2160 /* Walk up the rcu_node hierarchy. */ 2161 for (;;) { 2162 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2163 2164 /* 2165 * Our bit has already been cleared, or the 2166 * relevant grace period is already over, so done. 2167 */ 2168 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2169 return; 2170 } 2171 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2172 rnp->qsmask &= ~mask; 2173 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2174 mask, rnp->qsmask, rnp->level, 2175 rnp->grplo, rnp->grphi, 2176 !!rnp->gp_tasks); 2177 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2178 2179 /* Other bits still set at this level, so done. */ 2180 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2181 return; 2182 } 2183 mask = rnp->grpmask; 2184 if (rnp->parent == NULL) { 2185 2186 /* No more levels. Exit loop holding root lock. */ 2187 2188 break; 2189 } 2190 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2191 rnp_c = rnp; 2192 rnp = rnp->parent; 2193 raw_spin_lock_irqsave(&rnp->lock, flags); 2194 smp_mb__after_unlock_lock(); 2195 oldmask = rnp_c->qsmask; 2196 } 2197 2198 /* 2199 * Get here if we are the last CPU to pass through a quiescent 2200 * state for this grace period. Invoke rcu_report_qs_rsp() 2201 * to clean up and start the next grace period if one is needed. 2202 */ 2203 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2204 } 2205 2206 /* 2207 * Record a quiescent state for all tasks that were previously queued 2208 * on the specified rcu_node structure and that were blocking the current 2209 * RCU grace period. The caller must hold the specified rnp->lock with 2210 * irqs disabled, and this lock is released upon return, but irqs remain 2211 * disabled. 2212 */ 2213 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2214 struct rcu_node *rnp, unsigned long flags) 2215 __releases(rnp->lock) 2216 { 2217 unsigned long gps; 2218 unsigned long mask; 2219 struct rcu_node *rnp_p; 2220 2221 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2222 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2223 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2224 return; /* Still need more quiescent states! */ 2225 } 2226 2227 rnp_p = rnp->parent; 2228 if (rnp_p == NULL) { 2229 /* 2230 * Only one rcu_node structure in the tree, so don't 2231 * try to report up to its nonexistent parent! 2232 */ 2233 rcu_report_qs_rsp(rsp, flags); 2234 return; 2235 } 2236 2237 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2238 gps = rnp->gpnum; 2239 mask = rnp->grpmask; 2240 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2241 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ 2242 smp_mb__after_unlock_lock(); 2243 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2244 } 2245 2246 /* 2247 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2248 * structure. This must be either called from the specified CPU, or 2249 * called when the specified CPU is known to be offline (and when it is 2250 * also known that no other CPU is concurrently trying to help the offline 2251 * CPU). The lastcomp argument is used to make sure we are still in the 2252 * grace period of interest. We don't want to end the current grace period 2253 * based on quiescent states detected in an earlier grace period! 2254 */ 2255 static void 2256 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2257 { 2258 unsigned long flags; 2259 unsigned long mask; 2260 bool needwake; 2261 struct rcu_node *rnp; 2262 2263 rnp = rdp->mynode; 2264 raw_spin_lock_irqsave(&rnp->lock, flags); 2265 smp_mb__after_unlock_lock(); 2266 if ((rdp->passed_quiesce == 0 && 2267 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2268 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2269 rdp->gpwrap) { 2270 2271 /* 2272 * The grace period in which this quiescent state was 2273 * recorded has ended, so don't report it upwards. 2274 * We will instead need a new quiescent state that lies 2275 * within the current grace period. 2276 */ 2277 rdp->passed_quiesce = 0; /* need qs for new gp. */ 2278 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2279 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2280 return; 2281 } 2282 mask = rdp->grpmask; 2283 if ((rnp->qsmask & mask) == 0) { 2284 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2285 } else { 2286 rdp->qs_pending = 0; 2287 2288 /* 2289 * This GP can't end until cpu checks in, so all of our 2290 * callbacks can be processed during the next GP. 2291 */ 2292 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2293 2294 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2295 /* ^^^ Released rnp->lock */ 2296 if (needwake) 2297 rcu_gp_kthread_wake(rsp); 2298 } 2299 } 2300 2301 /* 2302 * Check to see if there is a new grace period of which this CPU 2303 * is not yet aware, and if so, set up local rcu_data state for it. 2304 * Otherwise, see if this CPU has just passed through its first 2305 * quiescent state for this grace period, and record that fact if so. 2306 */ 2307 static void 2308 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2309 { 2310 /* Check for grace-period ends and beginnings. */ 2311 note_gp_changes(rsp, rdp); 2312 2313 /* 2314 * Does this CPU still need to do its part for current grace period? 2315 * If no, return and let the other CPUs do their part as well. 2316 */ 2317 if (!rdp->qs_pending) 2318 return; 2319 2320 /* 2321 * Was there a quiescent state since the beginning of the grace 2322 * period? If no, then exit and wait for the next call. 2323 */ 2324 if (!rdp->passed_quiesce && 2325 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2326 return; 2327 2328 /* 2329 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2330 * judge of that). 2331 */ 2332 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2333 } 2334 2335 #ifdef CONFIG_HOTPLUG_CPU 2336 2337 /* 2338 * Send the specified CPU's RCU callbacks to the orphanage. The 2339 * specified CPU must be offline, and the caller must hold the 2340 * ->orphan_lock. 2341 */ 2342 static void 2343 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2344 struct rcu_node *rnp, struct rcu_data *rdp) 2345 { 2346 /* No-CBs CPUs do not have orphanable callbacks. */ 2347 if (rcu_is_nocb_cpu(rdp->cpu)) 2348 return; 2349 2350 /* 2351 * Orphan the callbacks. First adjust the counts. This is safe 2352 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2353 * cannot be running now. Thus no memory barrier is required. 2354 */ 2355 if (rdp->nxtlist != NULL) { 2356 rsp->qlen_lazy += rdp->qlen_lazy; 2357 rsp->qlen += rdp->qlen; 2358 rdp->n_cbs_orphaned += rdp->qlen; 2359 rdp->qlen_lazy = 0; 2360 ACCESS_ONCE(rdp->qlen) = 0; 2361 } 2362 2363 /* 2364 * Next, move those callbacks still needing a grace period to 2365 * the orphanage, where some other CPU will pick them up. 2366 * Some of the callbacks might have gone partway through a grace 2367 * period, but that is too bad. They get to start over because we 2368 * cannot assume that grace periods are synchronized across CPUs. 2369 * We don't bother updating the ->nxttail[] array yet, instead 2370 * we just reset the whole thing later on. 2371 */ 2372 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2373 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2374 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2375 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2376 } 2377 2378 /* 2379 * Then move the ready-to-invoke callbacks to the orphanage, 2380 * where some other CPU will pick them up. These will not be 2381 * required to pass though another grace period: They are done. 2382 */ 2383 if (rdp->nxtlist != NULL) { 2384 *rsp->orphan_donetail = rdp->nxtlist; 2385 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2386 } 2387 2388 /* 2389 * Finally, initialize the rcu_data structure's list to empty and 2390 * disallow further callbacks on this CPU. 2391 */ 2392 init_callback_list(rdp); 2393 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2394 } 2395 2396 /* 2397 * Adopt the RCU callbacks from the specified rcu_state structure's 2398 * orphanage. The caller must hold the ->orphan_lock. 2399 */ 2400 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2401 { 2402 int i; 2403 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2404 2405 /* No-CBs CPUs are handled specially. */ 2406 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2407 return; 2408 2409 /* Do the accounting first. */ 2410 rdp->qlen_lazy += rsp->qlen_lazy; 2411 rdp->qlen += rsp->qlen; 2412 rdp->n_cbs_adopted += rsp->qlen; 2413 if (rsp->qlen_lazy != rsp->qlen) 2414 rcu_idle_count_callbacks_posted(); 2415 rsp->qlen_lazy = 0; 2416 rsp->qlen = 0; 2417 2418 /* 2419 * We do not need a memory barrier here because the only way we 2420 * can get here if there is an rcu_barrier() in flight is if 2421 * we are the task doing the rcu_barrier(). 2422 */ 2423 2424 /* First adopt the ready-to-invoke callbacks. */ 2425 if (rsp->orphan_donelist != NULL) { 2426 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2427 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2428 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2429 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2430 rdp->nxttail[i] = rsp->orphan_donetail; 2431 rsp->orphan_donelist = NULL; 2432 rsp->orphan_donetail = &rsp->orphan_donelist; 2433 } 2434 2435 /* And then adopt the callbacks that still need a grace period. */ 2436 if (rsp->orphan_nxtlist != NULL) { 2437 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2438 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2439 rsp->orphan_nxtlist = NULL; 2440 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2441 } 2442 } 2443 2444 /* 2445 * Trace the fact that this CPU is going offline. 2446 */ 2447 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2448 { 2449 RCU_TRACE(unsigned long mask); 2450 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2451 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2452 2453 RCU_TRACE(mask = rdp->grpmask); 2454 trace_rcu_grace_period(rsp->name, 2455 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2456 TPS("cpuofl")); 2457 } 2458 2459 /* 2460 * All CPUs for the specified rcu_node structure have gone offline, 2461 * and all tasks that were preempted within an RCU read-side critical 2462 * section while running on one of those CPUs have since exited their RCU 2463 * read-side critical section. Some other CPU is reporting this fact with 2464 * the specified rcu_node structure's ->lock held and interrupts disabled. 2465 * This function therefore goes up the tree of rcu_node structures, 2466 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2467 * the leaf rcu_node structure's ->qsmaskinit field has already been 2468 * updated 2469 * 2470 * This function does check that the specified rcu_node structure has 2471 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2472 * prematurely. That said, invoking it after the fact will cost you 2473 * a needless lock acquisition. So once it has done its work, don't 2474 * invoke it again. 2475 */ 2476 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2477 { 2478 long mask; 2479 struct rcu_node *rnp = rnp_leaf; 2480 2481 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2482 return; 2483 for (;;) { 2484 mask = rnp->grpmask; 2485 rnp = rnp->parent; 2486 if (!rnp) 2487 break; 2488 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2489 smp_mb__after_unlock_lock(); /* GP memory ordering. */ 2490 rnp->qsmaskinit &= ~mask; 2491 rnp->qsmask &= ~mask; 2492 if (rnp->qsmaskinit) { 2493 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2494 return; 2495 } 2496 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2497 } 2498 } 2499 2500 /* 2501 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 2502 * function. We now remove it from the rcu_node tree's ->qsmaskinit 2503 * bit masks. 2504 */ 2505 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 2506 { 2507 unsigned long flags; 2508 unsigned long mask; 2509 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2510 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2511 2512 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 2513 mask = rdp->grpmask; 2514 raw_spin_lock_irqsave(&rnp->lock, flags); 2515 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */ 2516 rnp->qsmaskinitnext &= ~mask; 2517 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2518 } 2519 2520 /* 2521 * The CPU has been completely removed, and some other CPU is reporting 2522 * this fact from process context. Do the remainder of the cleanup, 2523 * including orphaning the outgoing CPU's RCU callbacks, and also 2524 * adopting them. There can only be one CPU hotplug operation at a time, 2525 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2526 */ 2527 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2528 { 2529 unsigned long flags; 2530 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2531 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2532 2533 /* Adjust any no-longer-needed kthreads. */ 2534 rcu_boost_kthread_setaffinity(rnp, -1); 2535 2536 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2537 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2538 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2539 rcu_adopt_orphan_cbs(rsp, flags); 2540 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2541 2542 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2543 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2544 cpu, rdp->qlen, rdp->nxtlist); 2545 } 2546 2547 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2548 2549 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2550 { 2551 } 2552 2553 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2554 { 2555 } 2556 2557 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 2558 { 2559 } 2560 2561 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2562 { 2563 } 2564 2565 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2566 2567 /* 2568 * Invoke any RCU callbacks that have made it to the end of their grace 2569 * period. Thottle as specified by rdp->blimit. 2570 */ 2571 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2572 { 2573 unsigned long flags; 2574 struct rcu_head *next, *list, **tail; 2575 long bl, count, count_lazy; 2576 int i; 2577 2578 /* If no callbacks are ready, just return. */ 2579 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2580 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2581 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2582 need_resched(), is_idle_task(current), 2583 rcu_is_callbacks_kthread()); 2584 return; 2585 } 2586 2587 /* 2588 * Extract the list of ready callbacks, disabling to prevent 2589 * races with call_rcu() from interrupt handlers. 2590 */ 2591 local_irq_save(flags); 2592 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2593 bl = rdp->blimit; 2594 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2595 list = rdp->nxtlist; 2596 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2597 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2598 tail = rdp->nxttail[RCU_DONE_TAIL]; 2599 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2600 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2601 rdp->nxttail[i] = &rdp->nxtlist; 2602 local_irq_restore(flags); 2603 2604 /* Invoke callbacks. */ 2605 count = count_lazy = 0; 2606 while (list) { 2607 next = list->next; 2608 prefetch(next); 2609 debug_rcu_head_unqueue(list); 2610 if (__rcu_reclaim(rsp->name, list)) 2611 count_lazy++; 2612 list = next; 2613 /* Stop only if limit reached and CPU has something to do. */ 2614 if (++count >= bl && 2615 (need_resched() || 2616 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2617 break; 2618 } 2619 2620 local_irq_save(flags); 2621 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2622 is_idle_task(current), 2623 rcu_is_callbacks_kthread()); 2624 2625 /* Update count, and requeue any remaining callbacks. */ 2626 if (list != NULL) { 2627 *tail = rdp->nxtlist; 2628 rdp->nxtlist = list; 2629 for (i = 0; i < RCU_NEXT_SIZE; i++) 2630 if (&rdp->nxtlist == rdp->nxttail[i]) 2631 rdp->nxttail[i] = tail; 2632 else 2633 break; 2634 } 2635 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2636 rdp->qlen_lazy -= count_lazy; 2637 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count; 2638 rdp->n_cbs_invoked += count; 2639 2640 /* Reinstate batch limit if we have worked down the excess. */ 2641 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2642 rdp->blimit = blimit; 2643 2644 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2645 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2646 rdp->qlen_last_fqs_check = 0; 2647 rdp->n_force_qs_snap = rsp->n_force_qs; 2648 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2649 rdp->qlen_last_fqs_check = rdp->qlen; 2650 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2651 2652 local_irq_restore(flags); 2653 2654 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2655 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2656 invoke_rcu_core(); 2657 } 2658 2659 /* 2660 * Check to see if this CPU is in a non-context-switch quiescent state 2661 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2662 * Also schedule RCU core processing. 2663 * 2664 * This function must be called from hardirq context. It is normally 2665 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2666 * false, there is no point in invoking rcu_check_callbacks(). 2667 */ 2668 void rcu_check_callbacks(int user) 2669 { 2670 trace_rcu_utilization(TPS("Start scheduler-tick")); 2671 increment_cpu_stall_ticks(); 2672 if (user || rcu_is_cpu_rrupt_from_idle()) { 2673 2674 /* 2675 * Get here if this CPU took its interrupt from user 2676 * mode or from the idle loop, and if this is not a 2677 * nested interrupt. In this case, the CPU is in 2678 * a quiescent state, so note it. 2679 * 2680 * No memory barrier is required here because both 2681 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2682 * variables that other CPUs neither access nor modify, 2683 * at least not while the corresponding CPU is online. 2684 */ 2685 2686 rcu_sched_qs(); 2687 rcu_bh_qs(); 2688 2689 } else if (!in_softirq()) { 2690 2691 /* 2692 * Get here if this CPU did not take its interrupt from 2693 * softirq, in other words, if it is not interrupting 2694 * a rcu_bh read-side critical section. This is an _bh 2695 * critical section, so note it. 2696 */ 2697 2698 rcu_bh_qs(); 2699 } 2700 rcu_preempt_check_callbacks(); 2701 if (rcu_pending()) 2702 invoke_rcu_core(); 2703 if (user) 2704 rcu_note_voluntary_context_switch(current); 2705 trace_rcu_utilization(TPS("End scheduler-tick")); 2706 } 2707 2708 /* 2709 * Scan the leaf rcu_node structures, processing dyntick state for any that 2710 * have not yet encountered a quiescent state, using the function specified. 2711 * Also initiate boosting for any threads blocked on the root rcu_node. 2712 * 2713 * The caller must have suppressed start of new grace periods. 2714 */ 2715 static void force_qs_rnp(struct rcu_state *rsp, 2716 int (*f)(struct rcu_data *rsp, bool *isidle, 2717 unsigned long *maxj), 2718 bool *isidle, unsigned long *maxj) 2719 { 2720 unsigned long bit; 2721 int cpu; 2722 unsigned long flags; 2723 unsigned long mask; 2724 struct rcu_node *rnp; 2725 2726 rcu_for_each_leaf_node(rsp, rnp) { 2727 cond_resched_rcu_qs(); 2728 mask = 0; 2729 raw_spin_lock_irqsave(&rnp->lock, flags); 2730 smp_mb__after_unlock_lock(); 2731 if (!rcu_gp_in_progress(rsp)) { 2732 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2733 return; 2734 } 2735 if (rnp->qsmask == 0) { 2736 if (rcu_state_p == &rcu_sched_state || 2737 rsp != rcu_state_p || 2738 rcu_preempt_blocked_readers_cgp(rnp)) { 2739 /* 2740 * No point in scanning bits because they 2741 * are all zero. But we might need to 2742 * priority-boost blocked readers. 2743 */ 2744 rcu_initiate_boost(rnp, flags); 2745 /* rcu_initiate_boost() releases rnp->lock */ 2746 continue; 2747 } 2748 if (rnp->parent && 2749 (rnp->parent->qsmask & rnp->grpmask)) { 2750 /* 2751 * Race between grace-period 2752 * initialization and task exiting RCU 2753 * read-side critical section: Report. 2754 */ 2755 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2756 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2757 continue; 2758 } 2759 } 2760 cpu = rnp->grplo; 2761 bit = 1; 2762 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2763 if ((rnp->qsmask & bit) != 0) { 2764 if ((rnp->qsmaskinit & bit) == 0) 2765 *isidle = false; /* Pending hotplug. */ 2766 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2767 mask |= bit; 2768 } 2769 } 2770 if (mask != 0) { 2771 /* Idle/offline CPUs, report (releases rnp->lock. */ 2772 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2773 } else { 2774 /* Nothing to do here, so just drop the lock. */ 2775 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2776 } 2777 } 2778 } 2779 2780 /* 2781 * Force quiescent states on reluctant CPUs, and also detect which 2782 * CPUs are in dyntick-idle mode. 2783 */ 2784 static void force_quiescent_state(struct rcu_state *rsp) 2785 { 2786 unsigned long flags; 2787 bool ret; 2788 struct rcu_node *rnp; 2789 struct rcu_node *rnp_old = NULL; 2790 2791 /* Funnel through hierarchy to reduce memory contention. */ 2792 rnp = __this_cpu_read(rsp->rda->mynode); 2793 for (; rnp != NULL; rnp = rnp->parent) { 2794 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2795 !raw_spin_trylock(&rnp->fqslock); 2796 if (rnp_old != NULL) 2797 raw_spin_unlock(&rnp_old->fqslock); 2798 if (ret) { 2799 rsp->n_force_qs_lh++; 2800 return; 2801 } 2802 rnp_old = rnp; 2803 } 2804 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2805 2806 /* Reached the root of the rcu_node tree, acquire lock. */ 2807 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2808 smp_mb__after_unlock_lock(); 2809 raw_spin_unlock(&rnp_old->fqslock); 2810 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2811 rsp->n_force_qs_lh++; 2812 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2813 return; /* Someone beat us to it. */ 2814 } 2815 ACCESS_ONCE(rsp->gp_flags) = 2816 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS; 2817 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2818 rcu_gp_kthread_wake(rsp); 2819 } 2820 2821 /* 2822 * This does the RCU core processing work for the specified rcu_state 2823 * and rcu_data structures. This may be called only from the CPU to 2824 * whom the rdp belongs. 2825 */ 2826 static void 2827 __rcu_process_callbacks(struct rcu_state *rsp) 2828 { 2829 unsigned long flags; 2830 bool needwake; 2831 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2832 2833 WARN_ON_ONCE(rdp->beenonline == 0); 2834 2835 /* Update RCU state based on any recent quiescent states. */ 2836 rcu_check_quiescent_state(rsp, rdp); 2837 2838 /* Does this CPU require a not-yet-started grace period? */ 2839 local_irq_save(flags); 2840 if (cpu_needs_another_gp(rsp, rdp)) { 2841 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2842 needwake = rcu_start_gp(rsp); 2843 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2844 if (needwake) 2845 rcu_gp_kthread_wake(rsp); 2846 } else { 2847 local_irq_restore(flags); 2848 } 2849 2850 /* If there are callbacks ready, invoke them. */ 2851 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2852 invoke_rcu_callbacks(rsp, rdp); 2853 2854 /* Do any needed deferred wakeups of rcuo kthreads. */ 2855 do_nocb_deferred_wakeup(rdp); 2856 } 2857 2858 /* 2859 * Do RCU core processing for the current CPU. 2860 */ 2861 static void rcu_process_callbacks(struct softirq_action *unused) 2862 { 2863 struct rcu_state *rsp; 2864 2865 if (cpu_is_offline(smp_processor_id())) 2866 return; 2867 trace_rcu_utilization(TPS("Start RCU core")); 2868 for_each_rcu_flavor(rsp) 2869 __rcu_process_callbacks(rsp); 2870 trace_rcu_utilization(TPS("End RCU core")); 2871 } 2872 2873 /* 2874 * Schedule RCU callback invocation. If the specified type of RCU 2875 * does not support RCU priority boosting, just do a direct call, 2876 * otherwise wake up the per-CPU kernel kthread. Note that because we 2877 * are running on the current CPU with softirqs disabled, the 2878 * rcu_cpu_kthread_task cannot disappear out from under us. 2879 */ 2880 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2881 { 2882 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2883 return; 2884 if (likely(!rsp->boost)) { 2885 rcu_do_batch(rsp, rdp); 2886 return; 2887 } 2888 invoke_rcu_callbacks_kthread(); 2889 } 2890 2891 static void invoke_rcu_core(void) 2892 { 2893 if (cpu_online(smp_processor_id())) 2894 raise_softirq(RCU_SOFTIRQ); 2895 } 2896 2897 /* 2898 * Handle any core-RCU processing required by a call_rcu() invocation. 2899 */ 2900 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2901 struct rcu_head *head, unsigned long flags) 2902 { 2903 bool needwake; 2904 2905 /* 2906 * If called from an extended quiescent state, invoke the RCU 2907 * core in order to force a re-evaluation of RCU's idleness. 2908 */ 2909 if (!rcu_is_watching()) 2910 invoke_rcu_core(); 2911 2912 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2913 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2914 return; 2915 2916 /* 2917 * Force the grace period if too many callbacks or too long waiting. 2918 * Enforce hysteresis, and don't invoke force_quiescent_state() 2919 * if some other CPU has recently done so. Also, don't bother 2920 * invoking force_quiescent_state() if the newly enqueued callback 2921 * is the only one waiting for a grace period to complete. 2922 */ 2923 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2924 2925 /* Are we ignoring a completed grace period? */ 2926 note_gp_changes(rsp, rdp); 2927 2928 /* Start a new grace period if one not already started. */ 2929 if (!rcu_gp_in_progress(rsp)) { 2930 struct rcu_node *rnp_root = rcu_get_root(rsp); 2931 2932 raw_spin_lock(&rnp_root->lock); 2933 smp_mb__after_unlock_lock(); 2934 needwake = rcu_start_gp(rsp); 2935 raw_spin_unlock(&rnp_root->lock); 2936 if (needwake) 2937 rcu_gp_kthread_wake(rsp); 2938 } else { 2939 /* Give the grace period a kick. */ 2940 rdp->blimit = LONG_MAX; 2941 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2942 *rdp->nxttail[RCU_DONE_TAIL] != head) 2943 force_quiescent_state(rsp); 2944 rdp->n_force_qs_snap = rsp->n_force_qs; 2945 rdp->qlen_last_fqs_check = rdp->qlen; 2946 } 2947 } 2948 } 2949 2950 /* 2951 * RCU callback function to leak a callback. 2952 */ 2953 static void rcu_leak_callback(struct rcu_head *rhp) 2954 { 2955 } 2956 2957 /* 2958 * Helper function for call_rcu() and friends. The cpu argument will 2959 * normally be -1, indicating "currently running CPU". It may specify 2960 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2961 * is expected to specify a CPU. 2962 */ 2963 static void 2964 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2965 struct rcu_state *rsp, int cpu, bool lazy) 2966 { 2967 unsigned long flags; 2968 struct rcu_data *rdp; 2969 2970 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 2971 if (debug_rcu_head_queue(head)) { 2972 /* Probable double call_rcu(), so leak the callback. */ 2973 ACCESS_ONCE(head->func) = rcu_leak_callback; 2974 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2975 return; 2976 } 2977 head->func = func; 2978 head->next = NULL; 2979 2980 /* 2981 * Opportunistically note grace-period endings and beginnings. 2982 * Note that we might see a beginning right after we see an 2983 * end, but never vice versa, since this CPU has to pass through 2984 * a quiescent state betweentimes. 2985 */ 2986 local_irq_save(flags); 2987 rdp = this_cpu_ptr(rsp->rda); 2988 2989 /* Add the callback to our list. */ 2990 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2991 int offline; 2992 2993 if (cpu != -1) 2994 rdp = per_cpu_ptr(rsp->rda, cpu); 2995 if (likely(rdp->mynode)) { 2996 /* Post-boot, so this should be for a no-CBs CPU. */ 2997 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2998 WARN_ON_ONCE(offline); 2999 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3000 local_irq_restore(flags); 3001 return; 3002 } 3003 /* 3004 * Very early boot, before rcu_init(). Initialize if needed 3005 * and then drop through to queue the callback. 3006 */ 3007 BUG_ON(cpu != -1); 3008 WARN_ON_ONCE(!rcu_is_watching()); 3009 if (!likely(rdp->nxtlist)) 3010 init_default_callback_list(rdp); 3011 } 3012 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1; 3013 if (lazy) 3014 rdp->qlen_lazy++; 3015 else 3016 rcu_idle_count_callbacks_posted(); 3017 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3018 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3019 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3020 3021 if (__is_kfree_rcu_offset((unsigned long)func)) 3022 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3023 rdp->qlen_lazy, rdp->qlen); 3024 else 3025 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3026 3027 /* Go handle any RCU core processing required. */ 3028 __call_rcu_core(rsp, rdp, head, flags); 3029 local_irq_restore(flags); 3030 } 3031 3032 /* 3033 * Queue an RCU-sched callback for invocation after a grace period. 3034 */ 3035 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 3036 { 3037 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3038 } 3039 EXPORT_SYMBOL_GPL(call_rcu_sched); 3040 3041 /* 3042 * Queue an RCU callback for invocation after a quicker grace period. 3043 */ 3044 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 3045 { 3046 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3047 } 3048 EXPORT_SYMBOL_GPL(call_rcu_bh); 3049 3050 /* 3051 * Queue an RCU callback for lazy invocation after a grace period. 3052 * This will likely be later named something like "call_rcu_lazy()", 3053 * but this change will require some way of tagging the lazy RCU 3054 * callbacks in the list of pending callbacks. Until then, this 3055 * function may only be called from __kfree_rcu(). 3056 */ 3057 void kfree_call_rcu(struct rcu_head *head, 3058 void (*func)(struct rcu_head *rcu)) 3059 { 3060 __call_rcu(head, func, rcu_state_p, -1, 1); 3061 } 3062 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3063 3064 /* 3065 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3066 * any blocking grace-period wait automatically implies a grace period 3067 * if there is only one CPU online at any point time during execution 3068 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3069 * occasionally incorrectly indicate that there are multiple CPUs online 3070 * when there was in fact only one the whole time, as this just adds 3071 * some overhead: RCU still operates correctly. 3072 */ 3073 static inline int rcu_blocking_is_gp(void) 3074 { 3075 int ret; 3076 3077 might_sleep(); /* Check for RCU read-side critical section. */ 3078 preempt_disable(); 3079 ret = num_online_cpus() <= 1; 3080 preempt_enable(); 3081 return ret; 3082 } 3083 3084 /** 3085 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3086 * 3087 * Control will return to the caller some time after a full rcu-sched 3088 * grace period has elapsed, in other words after all currently executing 3089 * rcu-sched read-side critical sections have completed. These read-side 3090 * critical sections are delimited by rcu_read_lock_sched() and 3091 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3092 * local_irq_disable(), and so on may be used in place of 3093 * rcu_read_lock_sched(). 3094 * 3095 * This means that all preempt_disable code sequences, including NMI and 3096 * non-threaded hardware-interrupt handlers, in progress on entry will 3097 * have completed before this primitive returns. However, this does not 3098 * guarantee that softirq handlers will have completed, since in some 3099 * kernels, these handlers can run in process context, and can block. 3100 * 3101 * Note that this guarantee implies further memory-ordering guarantees. 3102 * On systems with more than one CPU, when synchronize_sched() returns, 3103 * each CPU is guaranteed to have executed a full memory barrier since the 3104 * end of its last RCU-sched read-side critical section whose beginning 3105 * preceded the call to synchronize_sched(). In addition, each CPU having 3106 * an RCU read-side critical section that extends beyond the return from 3107 * synchronize_sched() is guaranteed to have executed a full memory barrier 3108 * after the beginning of synchronize_sched() and before the beginning of 3109 * that RCU read-side critical section. Note that these guarantees include 3110 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3111 * that are executing in the kernel. 3112 * 3113 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3114 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3115 * to have executed a full memory barrier during the execution of 3116 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3117 * again only if the system has more than one CPU). 3118 * 3119 * This primitive provides the guarantees made by the (now removed) 3120 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3121 * guarantees that rcu_read_lock() sections will have completed. 3122 * In "classic RCU", these two guarantees happen to be one and 3123 * the same, but can differ in realtime RCU implementations. 3124 */ 3125 void synchronize_sched(void) 3126 { 3127 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 3128 !lock_is_held(&rcu_lock_map) && 3129 !lock_is_held(&rcu_sched_lock_map), 3130 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3131 if (rcu_blocking_is_gp()) 3132 return; 3133 if (rcu_gp_is_expedited()) 3134 synchronize_sched_expedited(); 3135 else 3136 wait_rcu_gp(call_rcu_sched); 3137 } 3138 EXPORT_SYMBOL_GPL(synchronize_sched); 3139 3140 /** 3141 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3142 * 3143 * Control will return to the caller some time after a full rcu_bh grace 3144 * period has elapsed, in other words after all currently executing rcu_bh 3145 * read-side critical sections have completed. RCU read-side critical 3146 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3147 * and may be nested. 3148 * 3149 * See the description of synchronize_sched() for more detailed information 3150 * on memory ordering guarantees. 3151 */ 3152 void synchronize_rcu_bh(void) 3153 { 3154 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 3155 !lock_is_held(&rcu_lock_map) && 3156 !lock_is_held(&rcu_sched_lock_map), 3157 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3158 if (rcu_blocking_is_gp()) 3159 return; 3160 if (rcu_gp_is_expedited()) 3161 synchronize_rcu_bh_expedited(); 3162 else 3163 wait_rcu_gp(call_rcu_bh); 3164 } 3165 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3166 3167 /** 3168 * get_state_synchronize_rcu - Snapshot current RCU state 3169 * 3170 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3171 * to determine whether or not a full grace period has elapsed in the 3172 * meantime. 3173 */ 3174 unsigned long get_state_synchronize_rcu(void) 3175 { 3176 /* 3177 * Any prior manipulation of RCU-protected data must happen 3178 * before the load from ->gpnum. 3179 */ 3180 smp_mb(); /* ^^^ */ 3181 3182 /* 3183 * Make sure this load happens before the purportedly 3184 * time-consuming work between get_state_synchronize_rcu() 3185 * and cond_synchronize_rcu(). 3186 */ 3187 return smp_load_acquire(&rcu_state_p->gpnum); 3188 } 3189 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3190 3191 /** 3192 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3193 * 3194 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3195 * 3196 * If a full RCU grace period has elapsed since the earlier call to 3197 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3198 * synchronize_rcu() to wait for a full grace period. 3199 * 3200 * Yes, this function does not take counter wrap into account. But 3201 * counter wrap is harmless. If the counter wraps, we have waited for 3202 * more than 2 billion grace periods (and way more on a 64-bit system!), 3203 * so waiting for one additional grace period should be just fine. 3204 */ 3205 void cond_synchronize_rcu(unsigned long oldstate) 3206 { 3207 unsigned long newstate; 3208 3209 /* 3210 * Ensure that this load happens before any RCU-destructive 3211 * actions the caller might carry out after we return. 3212 */ 3213 newstate = smp_load_acquire(&rcu_state_p->completed); 3214 if (ULONG_CMP_GE(oldstate, newstate)) 3215 synchronize_rcu(); 3216 } 3217 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3218 3219 static int synchronize_sched_expedited_cpu_stop(void *data) 3220 { 3221 /* 3222 * There must be a full memory barrier on each affected CPU 3223 * between the time that try_stop_cpus() is called and the 3224 * time that it returns. 3225 * 3226 * In the current initial implementation of cpu_stop, the 3227 * above condition is already met when the control reaches 3228 * this point and the following smp_mb() is not strictly 3229 * necessary. Do smp_mb() anyway for documentation and 3230 * robustness against future implementation changes. 3231 */ 3232 smp_mb(); /* See above comment block. */ 3233 return 0; 3234 } 3235 3236 /** 3237 * synchronize_sched_expedited - Brute-force RCU-sched grace period 3238 * 3239 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 3240 * approach to force the grace period to end quickly. This consumes 3241 * significant time on all CPUs and is unfriendly to real-time workloads, 3242 * so is thus not recommended for any sort of common-case code. In fact, 3243 * if you are using synchronize_sched_expedited() in a loop, please 3244 * restructure your code to batch your updates, and then use a single 3245 * synchronize_sched() instead. 3246 * 3247 * This implementation can be thought of as an application of ticket 3248 * locking to RCU, with sync_sched_expedited_started and 3249 * sync_sched_expedited_done taking on the roles of the halves 3250 * of the ticket-lock word. Each task atomically increments 3251 * sync_sched_expedited_started upon entry, snapshotting the old value, 3252 * then attempts to stop all the CPUs. If this succeeds, then each 3253 * CPU will have executed a context switch, resulting in an RCU-sched 3254 * grace period. We are then done, so we use atomic_cmpxchg() to 3255 * update sync_sched_expedited_done to match our snapshot -- but 3256 * only if someone else has not already advanced past our snapshot. 3257 * 3258 * On the other hand, if try_stop_cpus() fails, we check the value 3259 * of sync_sched_expedited_done. If it has advanced past our 3260 * initial snapshot, then someone else must have forced a grace period 3261 * some time after we took our snapshot. In this case, our work is 3262 * done for us, and we can simply return. Otherwise, we try again, 3263 * but keep our initial snapshot for purposes of checking for someone 3264 * doing our work for us. 3265 * 3266 * If we fail too many times in a row, we fall back to synchronize_sched(). 3267 */ 3268 void synchronize_sched_expedited(void) 3269 { 3270 cpumask_var_t cm; 3271 bool cma = false; 3272 int cpu; 3273 long firstsnap, s, snap; 3274 int trycount = 0; 3275 struct rcu_state *rsp = &rcu_sched_state; 3276 3277 /* 3278 * If we are in danger of counter wrap, just do synchronize_sched(). 3279 * By allowing sync_sched_expedited_started to advance no more than 3280 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 3281 * that more than 3.5 billion CPUs would be required to force a 3282 * counter wrap on a 32-bit system. Quite a few more CPUs would of 3283 * course be required on a 64-bit system. 3284 */ 3285 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 3286 (ulong)atomic_long_read(&rsp->expedited_done) + 3287 ULONG_MAX / 8)) { 3288 synchronize_sched(); 3289 atomic_long_inc(&rsp->expedited_wrap); 3290 return; 3291 } 3292 3293 /* 3294 * Take a ticket. Note that atomic_inc_return() implies a 3295 * full memory barrier. 3296 */ 3297 snap = atomic_long_inc_return(&rsp->expedited_start); 3298 firstsnap = snap; 3299 if (!try_get_online_cpus()) { 3300 /* CPU hotplug operation in flight, fall back to normal GP. */ 3301 wait_rcu_gp(call_rcu_sched); 3302 atomic_long_inc(&rsp->expedited_normal); 3303 return; 3304 } 3305 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 3306 3307 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */ 3308 cma = zalloc_cpumask_var(&cm, GFP_KERNEL); 3309 if (cma) { 3310 cpumask_copy(cm, cpu_online_mask); 3311 cpumask_clear_cpu(raw_smp_processor_id(), cm); 3312 for_each_cpu(cpu, cm) { 3313 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 3314 3315 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1)) 3316 cpumask_clear_cpu(cpu, cm); 3317 } 3318 if (cpumask_weight(cm) == 0) 3319 goto all_cpus_idle; 3320 } 3321 3322 /* 3323 * Each pass through the following loop attempts to force a 3324 * context switch on each CPU. 3325 */ 3326 while (try_stop_cpus(cma ? cm : cpu_online_mask, 3327 synchronize_sched_expedited_cpu_stop, 3328 NULL) == -EAGAIN) { 3329 put_online_cpus(); 3330 atomic_long_inc(&rsp->expedited_tryfail); 3331 3332 /* Check to see if someone else did our work for us. */ 3333 s = atomic_long_read(&rsp->expedited_done); 3334 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3335 /* ensure test happens before caller kfree */ 3336 smp_mb__before_atomic(); /* ^^^ */ 3337 atomic_long_inc(&rsp->expedited_workdone1); 3338 free_cpumask_var(cm); 3339 return; 3340 } 3341 3342 /* No joy, try again later. Or just synchronize_sched(). */ 3343 if (trycount++ < 10) { 3344 udelay(trycount * num_online_cpus()); 3345 } else { 3346 wait_rcu_gp(call_rcu_sched); 3347 atomic_long_inc(&rsp->expedited_normal); 3348 free_cpumask_var(cm); 3349 return; 3350 } 3351 3352 /* Recheck to see if someone else did our work for us. */ 3353 s = atomic_long_read(&rsp->expedited_done); 3354 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3355 /* ensure test happens before caller kfree */ 3356 smp_mb__before_atomic(); /* ^^^ */ 3357 atomic_long_inc(&rsp->expedited_workdone2); 3358 free_cpumask_var(cm); 3359 return; 3360 } 3361 3362 /* 3363 * Refetching sync_sched_expedited_started allows later 3364 * callers to piggyback on our grace period. We retry 3365 * after they started, so our grace period works for them, 3366 * and they started after our first try, so their grace 3367 * period works for us. 3368 */ 3369 if (!try_get_online_cpus()) { 3370 /* CPU hotplug operation in flight, use normal GP. */ 3371 wait_rcu_gp(call_rcu_sched); 3372 atomic_long_inc(&rsp->expedited_normal); 3373 free_cpumask_var(cm); 3374 return; 3375 } 3376 snap = atomic_long_read(&rsp->expedited_start); 3377 smp_mb(); /* ensure read is before try_stop_cpus(). */ 3378 } 3379 atomic_long_inc(&rsp->expedited_stoppedcpus); 3380 3381 all_cpus_idle: 3382 free_cpumask_var(cm); 3383 3384 /* 3385 * Everyone up to our most recent fetch is covered by our grace 3386 * period. Update the counter, but only if our work is still 3387 * relevant -- which it won't be if someone who started later 3388 * than we did already did their update. 3389 */ 3390 do { 3391 atomic_long_inc(&rsp->expedited_done_tries); 3392 s = atomic_long_read(&rsp->expedited_done); 3393 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 3394 /* ensure test happens before caller kfree */ 3395 smp_mb__before_atomic(); /* ^^^ */ 3396 atomic_long_inc(&rsp->expedited_done_lost); 3397 break; 3398 } 3399 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 3400 atomic_long_inc(&rsp->expedited_done_exit); 3401 3402 put_online_cpus(); 3403 } 3404 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3405 3406 /* 3407 * Check to see if there is any immediate RCU-related work to be done 3408 * by the current CPU, for the specified type of RCU, returning 1 if so. 3409 * The checks are in order of increasing expense: checks that can be 3410 * carried out against CPU-local state are performed first. However, 3411 * we must check for CPU stalls first, else we might not get a chance. 3412 */ 3413 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3414 { 3415 struct rcu_node *rnp = rdp->mynode; 3416 3417 rdp->n_rcu_pending++; 3418 3419 /* Check for CPU stalls, if enabled. */ 3420 check_cpu_stall(rsp, rdp); 3421 3422 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3423 if (rcu_nohz_full_cpu(rsp)) 3424 return 0; 3425 3426 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3427 if (rcu_scheduler_fully_active && 3428 rdp->qs_pending && !rdp->passed_quiesce && 3429 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3430 rdp->n_rp_qs_pending++; 3431 } else if (rdp->qs_pending && 3432 (rdp->passed_quiesce || 3433 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 3434 rdp->n_rp_report_qs++; 3435 return 1; 3436 } 3437 3438 /* Does this CPU have callbacks ready to invoke? */ 3439 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3440 rdp->n_rp_cb_ready++; 3441 return 1; 3442 } 3443 3444 /* Has RCU gone idle with this CPU needing another grace period? */ 3445 if (cpu_needs_another_gp(rsp, rdp)) { 3446 rdp->n_rp_cpu_needs_gp++; 3447 return 1; 3448 } 3449 3450 /* Has another RCU grace period completed? */ 3451 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3452 rdp->n_rp_gp_completed++; 3453 return 1; 3454 } 3455 3456 /* Has a new RCU grace period started? */ 3457 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum || 3458 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */ 3459 rdp->n_rp_gp_started++; 3460 return 1; 3461 } 3462 3463 /* Does this CPU need a deferred NOCB wakeup? */ 3464 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3465 rdp->n_rp_nocb_defer_wakeup++; 3466 return 1; 3467 } 3468 3469 /* nothing to do */ 3470 rdp->n_rp_need_nothing++; 3471 return 0; 3472 } 3473 3474 /* 3475 * Check to see if there is any immediate RCU-related work to be done 3476 * by the current CPU, returning 1 if so. This function is part of the 3477 * RCU implementation; it is -not- an exported member of the RCU API. 3478 */ 3479 static int rcu_pending(void) 3480 { 3481 struct rcu_state *rsp; 3482 3483 for_each_rcu_flavor(rsp) 3484 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3485 return 1; 3486 return 0; 3487 } 3488 3489 /* 3490 * Return true if the specified CPU has any callback. If all_lazy is 3491 * non-NULL, store an indication of whether all callbacks are lazy. 3492 * (If there are no callbacks, all of them are deemed to be lazy.) 3493 */ 3494 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3495 { 3496 bool al = true; 3497 bool hc = false; 3498 struct rcu_data *rdp; 3499 struct rcu_state *rsp; 3500 3501 for_each_rcu_flavor(rsp) { 3502 rdp = this_cpu_ptr(rsp->rda); 3503 if (!rdp->nxtlist) 3504 continue; 3505 hc = true; 3506 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3507 al = false; 3508 break; 3509 } 3510 } 3511 if (all_lazy) 3512 *all_lazy = al; 3513 return hc; 3514 } 3515 3516 /* 3517 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3518 * the compiler is expected to optimize this away. 3519 */ 3520 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3521 int cpu, unsigned long done) 3522 { 3523 trace_rcu_barrier(rsp->name, s, cpu, 3524 atomic_read(&rsp->barrier_cpu_count), done); 3525 } 3526 3527 /* 3528 * RCU callback function for _rcu_barrier(). If we are last, wake 3529 * up the task executing _rcu_barrier(). 3530 */ 3531 static void rcu_barrier_callback(struct rcu_head *rhp) 3532 { 3533 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3534 struct rcu_state *rsp = rdp->rsp; 3535 3536 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3537 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 3538 complete(&rsp->barrier_completion); 3539 } else { 3540 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 3541 } 3542 } 3543 3544 /* 3545 * Called with preemption disabled, and from cross-cpu IRQ context. 3546 */ 3547 static void rcu_barrier_func(void *type) 3548 { 3549 struct rcu_state *rsp = type; 3550 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3551 3552 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 3553 atomic_inc(&rsp->barrier_cpu_count); 3554 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3555 } 3556 3557 /* 3558 * Orchestrate the specified type of RCU barrier, waiting for all 3559 * RCU callbacks of the specified type to complete. 3560 */ 3561 static void _rcu_barrier(struct rcu_state *rsp) 3562 { 3563 int cpu; 3564 struct rcu_data *rdp; 3565 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 3566 unsigned long snap_done; 3567 3568 _rcu_barrier_trace(rsp, "Begin", -1, snap); 3569 3570 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3571 mutex_lock(&rsp->barrier_mutex); 3572 3573 /* 3574 * Ensure that all prior references, including to ->n_barrier_done, 3575 * are ordered before the _rcu_barrier() machinery. 3576 */ 3577 smp_mb(); /* See above block comment. */ 3578 3579 /* 3580 * Recheck ->n_barrier_done to see if others did our work for us. 3581 * This means checking ->n_barrier_done for an even-to-odd-to-even 3582 * transition. The "if" expression below therefore rounds the old 3583 * value up to the next even number and adds two before comparing. 3584 */ 3585 snap_done = rsp->n_barrier_done; 3586 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 3587 3588 /* 3589 * If the value in snap is odd, we needed to wait for the current 3590 * rcu_barrier() to complete, then wait for the next one, in other 3591 * words, we need the value of snap_done to be three larger than 3592 * the value of snap. On the other hand, if the value in snap is 3593 * even, we only had to wait for the next rcu_barrier() to complete, 3594 * in other words, we need the value of snap_done to be only two 3595 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 3596 * this for us (thank you, Linus!). 3597 */ 3598 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 3599 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 3600 smp_mb(); /* caller's subsequent code after above check. */ 3601 mutex_unlock(&rsp->barrier_mutex); 3602 return; 3603 } 3604 3605 /* 3606 * Increment ->n_barrier_done to avoid duplicate work. Use 3607 * ACCESS_ONCE() to prevent the compiler from speculating 3608 * the increment to precede the early-exit check. 3609 */ 3610 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3611 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 3612 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 3613 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 3614 3615 /* 3616 * Initialize the count to one rather than to zero in order to 3617 * avoid a too-soon return to zero in case of a short grace period 3618 * (or preemption of this task). Exclude CPU-hotplug operations 3619 * to ensure that no offline CPU has callbacks queued. 3620 */ 3621 init_completion(&rsp->barrier_completion); 3622 atomic_set(&rsp->barrier_cpu_count, 1); 3623 get_online_cpus(); 3624 3625 /* 3626 * Force each CPU with callbacks to register a new callback. 3627 * When that callback is invoked, we will know that all of the 3628 * corresponding CPU's preceding callbacks have been invoked. 3629 */ 3630 for_each_possible_cpu(cpu) { 3631 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3632 continue; 3633 rdp = per_cpu_ptr(rsp->rda, cpu); 3634 if (rcu_is_nocb_cpu(cpu)) { 3635 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3636 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3637 rsp->n_barrier_done); 3638 } else { 3639 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3640 rsp->n_barrier_done); 3641 smp_mb__before_atomic(); 3642 atomic_inc(&rsp->barrier_cpu_count); 3643 __call_rcu(&rdp->barrier_head, 3644 rcu_barrier_callback, rsp, cpu, 0); 3645 } 3646 } else if (ACCESS_ONCE(rdp->qlen)) { 3647 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3648 rsp->n_barrier_done); 3649 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3650 } else { 3651 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3652 rsp->n_barrier_done); 3653 } 3654 } 3655 put_online_cpus(); 3656 3657 /* 3658 * Now that we have an rcu_barrier_callback() callback on each 3659 * CPU, and thus each counted, remove the initial count. 3660 */ 3661 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3662 complete(&rsp->barrier_completion); 3663 3664 /* Increment ->n_barrier_done to prevent duplicate work. */ 3665 smp_mb(); /* Keep increment after above mechanism. */ 3666 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3667 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 3668 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 3669 smp_mb(); /* Keep increment before caller's subsequent code. */ 3670 3671 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3672 wait_for_completion(&rsp->barrier_completion); 3673 3674 /* Other rcu_barrier() invocations can now safely proceed. */ 3675 mutex_unlock(&rsp->barrier_mutex); 3676 } 3677 3678 /** 3679 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3680 */ 3681 void rcu_barrier_bh(void) 3682 { 3683 _rcu_barrier(&rcu_bh_state); 3684 } 3685 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3686 3687 /** 3688 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3689 */ 3690 void rcu_barrier_sched(void) 3691 { 3692 _rcu_barrier(&rcu_sched_state); 3693 } 3694 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3695 3696 /* 3697 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3698 * first CPU in a given leaf rcu_node structure coming online. The caller 3699 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3700 * disabled. 3701 */ 3702 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3703 { 3704 long mask; 3705 struct rcu_node *rnp = rnp_leaf; 3706 3707 for (;;) { 3708 mask = rnp->grpmask; 3709 rnp = rnp->parent; 3710 if (rnp == NULL) 3711 return; 3712 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */ 3713 rnp->qsmaskinit |= mask; 3714 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */ 3715 } 3716 } 3717 3718 /* 3719 * Do boot-time initialization of a CPU's per-CPU RCU data. 3720 */ 3721 static void __init 3722 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3723 { 3724 unsigned long flags; 3725 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3726 struct rcu_node *rnp = rcu_get_root(rsp); 3727 3728 /* Set up local state, ensuring consistent view of global state. */ 3729 raw_spin_lock_irqsave(&rnp->lock, flags); 3730 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3731 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3732 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3733 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3734 rdp->cpu = cpu; 3735 rdp->rsp = rsp; 3736 rcu_boot_init_nocb_percpu_data(rdp); 3737 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3738 } 3739 3740 /* 3741 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3742 * offline event can be happening at a given time. Note also that we 3743 * can accept some slop in the rsp->completed access due to the fact 3744 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3745 */ 3746 static void 3747 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3748 { 3749 unsigned long flags; 3750 unsigned long mask; 3751 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3752 struct rcu_node *rnp = rcu_get_root(rsp); 3753 3754 /* Set up local state, ensuring consistent view of global state. */ 3755 raw_spin_lock_irqsave(&rnp->lock, flags); 3756 rdp->beenonline = 1; /* We have now been online. */ 3757 rdp->qlen_last_fqs_check = 0; 3758 rdp->n_force_qs_snap = rsp->n_force_qs; 3759 rdp->blimit = blimit; 3760 if (!rdp->nxtlist) 3761 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3762 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3763 rcu_sysidle_init_percpu_data(rdp->dynticks); 3764 atomic_set(&rdp->dynticks->dynticks, 3765 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3766 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3767 3768 /* 3769 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3770 * propagation up the rcu_node tree will happen at the beginning 3771 * of the next grace period. 3772 */ 3773 rnp = rdp->mynode; 3774 mask = rdp->grpmask; 3775 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3776 smp_mb__after_unlock_lock(); 3777 rnp->qsmaskinitnext |= mask; 3778 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3779 rdp->completed = rnp->completed; 3780 rdp->passed_quiesce = false; 3781 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 3782 rdp->qs_pending = false; 3783 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3784 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3785 } 3786 3787 static void rcu_prepare_cpu(int cpu) 3788 { 3789 struct rcu_state *rsp; 3790 3791 for_each_rcu_flavor(rsp) 3792 rcu_init_percpu_data(cpu, rsp); 3793 } 3794 3795 /* 3796 * Handle CPU online/offline notification events. 3797 */ 3798 int rcu_cpu_notify(struct notifier_block *self, 3799 unsigned long action, void *hcpu) 3800 { 3801 long cpu = (long)hcpu; 3802 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3803 struct rcu_node *rnp = rdp->mynode; 3804 struct rcu_state *rsp; 3805 3806 switch (action) { 3807 case CPU_UP_PREPARE: 3808 case CPU_UP_PREPARE_FROZEN: 3809 rcu_prepare_cpu(cpu); 3810 rcu_prepare_kthreads(cpu); 3811 rcu_spawn_all_nocb_kthreads(cpu); 3812 break; 3813 case CPU_ONLINE: 3814 case CPU_DOWN_FAILED: 3815 rcu_boost_kthread_setaffinity(rnp, -1); 3816 break; 3817 case CPU_DOWN_PREPARE: 3818 rcu_boost_kthread_setaffinity(rnp, cpu); 3819 break; 3820 case CPU_DYING: 3821 case CPU_DYING_FROZEN: 3822 for_each_rcu_flavor(rsp) 3823 rcu_cleanup_dying_cpu(rsp); 3824 break; 3825 case CPU_DYING_IDLE: 3826 for_each_rcu_flavor(rsp) { 3827 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3828 } 3829 break; 3830 case CPU_DEAD: 3831 case CPU_DEAD_FROZEN: 3832 case CPU_UP_CANCELED: 3833 case CPU_UP_CANCELED_FROZEN: 3834 for_each_rcu_flavor(rsp) { 3835 rcu_cleanup_dead_cpu(cpu, rsp); 3836 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3837 } 3838 break; 3839 default: 3840 break; 3841 } 3842 return NOTIFY_OK; 3843 } 3844 3845 static int rcu_pm_notify(struct notifier_block *self, 3846 unsigned long action, void *hcpu) 3847 { 3848 switch (action) { 3849 case PM_HIBERNATION_PREPARE: 3850 case PM_SUSPEND_PREPARE: 3851 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3852 rcu_expedite_gp(); 3853 break; 3854 case PM_POST_HIBERNATION: 3855 case PM_POST_SUSPEND: 3856 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3857 rcu_unexpedite_gp(); 3858 break; 3859 default: 3860 break; 3861 } 3862 return NOTIFY_OK; 3863 } 3864 3865 /* 3866 * Spawn the kthreads that handle each RCU flavor's grace periods. 3867 */ 3868 static int __init rcu_spawn_gp_kthread(void) 3869 { 3870 unsigned long flags; 3871 int kthread_prio_in = kthread_prio; 3872 struct rcu_node *rnp; 3873 struct rcu_state *rsp; 3874 struct sched_param sp; 3875 struct task_struct *t; 3876 3877 /* Force priority into range. */ 3878 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3879 kthread_prio = 1; 3880 else if (kthread_prio < 0) 3881 kthread_prio = 0; 3882 else if (kthread_prio > 99) 3883 kthread_prio = 99; 3884 if (kthread_prio != kthread_prio_in) 3885 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3886 kthread_prio, kthread_prio_in); 3887 3888 rcu_scheduler_fully_active = 1; 3889 for_each_rcu_flavor(rsp) { 3890 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3891 BUG_ON(IS_ERR(t)); 3892 rnp = rcu_get_root(rsp); 3893 raw_spin_lock_irqsave(&rnp->lock, flags); 3894 rsp->gp_kthread = t; 3895 if (kthread_prio) { 3896 sp.sched_priority = kthread_prio; 3897 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3898 } 3899 wake_up_process(t); 3900 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3901 } 3902 rcu_spawn_nocb_kthreads(); 3903 rcu_spawn_boost_kthreads(); 3904 return 0; 3905 } 3906 early_initcall(rcu_spawn_gp_kthread); 3907 3908 /* 3909 * This function is invoked towards the end of the scheduler's initialization 3910 * process. Before this is called, the idle task might contain 3911 * RCU read-side critical sections (during which time, this idle 3912 * task is booting the system). After this function is called, the 3913 * idle tasks are prohibited from containing RCU read-side critical 3914 * sections. This function also enables RCU lockdep checking. 3915 */ 3916 void rcu_scheduler_starting(void) 3917 { 3918 WARN_ON(num_online_cpus() != 1); 3919 WARN_ON(nr_context_switches() > 0); 3920 rcu_scheduler_active = 1; 3921 } 3922 3923 /* 3924 * Compute the per-level fanout, either using the exact fanout specified 3925 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3926 */ 3927 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3928 { 3929 int i; 3930 3931 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) { 3932 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3933 for (i = rcu_num_lvls - 2; i >= 0; i--) 3934 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3935 } else { 3936 int ccur; 3937 int cprv; 3938 3939 cprv = nr_cpu_ids; 3940 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3941 ccur = rsp->levelcnt[i]; 3942 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3943 cprv = ccur; 3944 } 3945 } 3946 } 3947 3948 /* 3949 * Helper function for rcu_init() that initializes one rcu_state structure. 3950 */ 3951 static void __init rcu_init_one(struct rcu_state *rsp, 3952 struct rcu_data __percpu *rda) 3953 { 3954 static const char * const buf[] = { 3955 "rcu_node_0", 3956 "rcu_node_1", 3957 "rcu_node_2", 3958 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3959 static const char * const fqs[] = { 3960 "rcu_node_fqs_0", 3961 "rcu_node_fqs_1", 3962 "rcu_node_fqs_2", 3963 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3964 static u8 fl_mask = 0x1; 3965 int cpustride = 1; 3966 int i; 3967 int j; 3968 struct rcu_node *rnp; 3969 3970 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3971 3972 /* Silence gcc 4.8 warning about array index out of range. */ 3973 if (rcu_num_lvls > RCU_NUM_LVLS) 3974 panic("rcu_init_one: rcu_num_lvls overflow"); 3975 3976 /* Initialize the level-tracking arrays. */ 3977 3978 for (i = 0; i < rcu_num_lvls; i++) 3979 rsp->levelcnt[i] = num_rcu_lvl[i]; 3980 for (i = 1; i < rcu_num_lvls; i++) 3981 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3982 rcu_init_levelspread(rsp); 3983 rsp->flavor_mask = fl_mask; 3984 fl_mask <<= 1; 3985 3986 /* Initialize the elements themselves, starting from the leaves. */ 3987 3988 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3989 cpustride *= rsp->levelspread[i]; 3990 rnp = rsp->level[i]; 3991 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3992 raw_spin_lock_init(&rnp->lock); 3993 lockdep_set_class_and_name(&rnp->lock, 3994 &rcu_node_class[i], buf[i]); 3995 raw_spin_lock_init(&rnp->fqslock); 3996 lockdep_set_class_and_name(&rnp->fqslock, 3997 &rcu_fqs_class[i], fqs[i]); 3998 rnp->gpnum = rsp->gpnum; 3999 rnp->completed = rsp->completed; 4000 rnp->qsmask = 0; 4001 rnp->qsmaskinit = 0; 4002 rnp->grplo = j * cpustride; 4003 rnp->grphi = (j + 1) * cpustride - 1; 4004 if (rnp->grphi >= nr_cpu_ids) 4005 rnp->grphi = nr_cpu_ids - 1; 4006 if (i == 0) { 4007 rnp->grpnum = 0; 4008 rnp->grpmask = 0; 4009 rnp->parent = NULL; 4010 } else { 4011 rnp->grpnum = j % rsp->levelspread[i - 1]; 4012 rnp->grpmask = 1UL << rnp->grpnum; 4013 rnp->parent = rsp->level[i - 1] + 4014 j / rsp->levelspread[i - 1]; 4015 } 4016 rnp->level = i; 4017 INIT_LIST_HEAD(&rnp->blkd_tasks); 4018 rcu_init_one_nocb(rnp); 4019 } 4020 } 4021 4022 init_waitqueue_head(&rsp->gp_wq); 4023 rnp = rsp->level[rcu_num_lvls - 1]; 4024 for_each_possible_cpu(i) { 4025 while (i > rnp->grphi) 4026 rnp++; 4027 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4028 rcu_boot_init_percpu_data(i, rsp); 4029 } 4030 list_add(&rsp->flavors, &rcu_struct_flavors); 4031 } 4032 4033 /* 4034 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4035 * replace the definitions in tree.h because those are needed to size 4036 * the ->node array in the rcu_state structure. 4037 */ 4038 static void __init rcu_init_geometry(void) 4039 { 4040 ulong d; 4041 int i; 4042 int j; 4043 int n = nr_cpu_ids; 4044 int rcu_capacity[MAX_RCU_LVLS + 1]; 4045 4046 /* 4047 * Initialize any unspecified boot parameters. 4048 * The default values of jiffies_till_first_fqs and 4049 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4050 * value, which is a function of HZ, then adding one for each 4051 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4052 */ 4053 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4054 if (jiffies_till_first_fqs == ULONG_MAX) 4055 jiffies_till_first_fqs = d; 4056 if (jiffies_till_next_fqs == ULONG_MAX) 4057 jiffies_till_next_fqs = d; 4058 4059 /* If the compile-time values are accurate, just leave. */ 4060 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 4061 nr_cpu_ids == NR_CPUS) 4062 return; 4063 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4064 rcu_fanout_leaf, nr_cpu_ids); 4065 4066 /* 4067 * Compute number of nodes that can be handled an rcu_node tree 4068 * with the given number of levels. Setting rcu_capacity[0] makes 4069 * some of the arithmetic easier. 4070 */ 4071 rcu_capacity[0] = 1; 4072 rcu_capacity[1] = rcu_fanout_leaf; 4073 for (i = 2; i <= MAX_RCU_LVLS; i++) 4074 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 4075 4076 /* 4077 * The boot-time rcu_fanout_leaf parameter is only permitted 4078 * to increase the leaf-level fanout, not decrease it. Of course, 4079 * the leaf-level fanout cannot exceed the number of bits in 4080 * the rcu_node masks. Finally, the tree must be able to accommodate 4081 * the configured number of CPUs. Complain and fall back to the 4082 * compile-time values if these limits are exceeded. 4083 */ 4084 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 4085 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 4086 n > rcu_capacity[MAX_RCU_LVLS]) { 4087 WARN_ON(1); 4088 return; 4089 } 4090 4091 /* Calculate the number of rcu_nodes at each level of the tree. */ 4092 for (i = 1; i <= MAX_RCU_LVLS; i++) 4093 if (n <= rcu_capacity[i]) { 4094 for (j = 0; j <= i; j++) 4095 num_rcu_lvl[j] = 4096 DIV_ROUND_UP(n, rcu_capacity[i - j]); 4097 rcu_num_lvls = i; 4098 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 4099 num_rcu_lvl[j] = 0; 4100 break; 4101 } 4102 4103 /* Calculate the total number of rcu_node structures. */ 4104 rcu_num_nodes = 0; 4105 for (i = 0; i <= MAX_RCU_LVLS; i++) 4106 rcu_num_nodes += num_rcu_lvl[i]; 4107 rcu_num_nodes -= n; 4108 } 4109 4110 void __init rcu_init(void) 4111 { 4112 int cpu; 4113 4114 rcu_early_boot_tests(); 4115 4116 rcu_bootup_announce(); 4117 rcu_init_geometry(); 4118 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 4119 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 4120 __rcu_init_preempt(); 4121 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4122 4123 /* 4124 * We don't need protection against CPU-hotplug here because 4125 * this is called early in boot, before either interrupts 4126 * or the scheduler are operational. 4127 */ 4128 cpu_notifier(rcu_cpu_notify, 0); 4129 pm_notifier(rcu_pm_notify, 0); 4130 for_each_online_cpu(cpu) 4131 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 4132 } 4133 4134 #include "tree_plugin.h" 4135