1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include <trace/events/rcu.h> 62 63 #include "rcu.h" 64 65 MODULE_ALIAS("rcutree"); 66 #ifdef MODULE_PARAM_PREFIX 67 #undef MODULE_PARAM_PREFIX 68 #endif 69 #define MODULE_PARAM_PREFIX "rcutree." 70 71 /* Data structures. */ 72 73 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 74 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 75 76 /* 77 * In order to export the rcu_state name to the tracing tools, it 78 * needs to be added in the __tracepoint_string section. 79 * This requires defining a separate variable tp_<sname>_varname 80 * that points to the string being used, and this will allow 81 * the tracing userspace tools to be able to decipher the string 82 * address to the matching string. 83 */ 84 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 85 static char sname##_varname[] = #sname; \ 86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ 87 struct rcu_state sname##_state = { \ 88 .level = { &sname##_state.node[0] }, \ 89 .call = cr, \ 90 .fqs_state = RCU_GP_IDLE, \ 91 .gpnum = 0UL - 300UL, \ 92 .completed = 0UL - 300UL, \ 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 95 .orphan_donetail = &sname##_state.orphan_donelist, \ 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ 98 .name = sname##_varname, \ 99 .abbr = sabbr, \ 100 }; \ 101 DEFINE_PER_CPU(struct rcu_data, sname##_data) 102 103 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 104 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 105 106 static struct rcu_state *rcu_state; 107 LIST_HEAD(rcu_struct_flavors); 108 109 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 114 NUM_RCU_LVL_0, 115 NUM_RCU_LVL_1, 116 NUM_RCU_LVL_2, 117 NUM_RCU_LVL_3, 118 NUM_RCU_LVL_4, 119 }; 120 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 121 122 /* 123 * The rcu_scheduler_active variable transitions from zero to one just 124 * before the first task is spawned. So when this variable is zero, RCU 125 * can assume that there is but one task, allowing RCU to (for example) 126 * optimize synchronize_sched() to a simple barrier(). When this variable 127 * is one, RCU must actually do all the hard work required to detect real 128 * grace periods. This variable is also used to suppress boot-time false 129 * positives from lockdep-RCU error checking. 130 */ 131 int rcu_scheduler_active __read_mostly; 132 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 133 134 /* 135 * The rcu_scheduler_fully_active variable transitions from zero to one 136 * during the early_initcall() processing, which is after the scheduler 137 * is capable of creating new tasks. So RCU processing (for example, 138 * creating tasks for RCU priority boosting) must be delayed until after 139 * rcu_scheduler_fully_active transitions from zero to one. We also 140 * currently delay invocation of any RCU callbacks until after this point. 141 * 142 * It might later prove better for people registering RCU callbacks during 143 * early boot to take responsibility for these callbacks, but one step at 144 * a time. 145 */ 146 static int rcu_scheduler_fully_active __read_mostly; 147 148 #ifdef CONFIG_RCU_BOOST 149 150 /* 151 * Control variables for per-CPU and per-rcu_node kthreads. These 152 * handle all flavors of RCU. 153 */ 154 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 155 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 156 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 157 DEFINE_PER_CPU(char, rcu_cpu_has_work); 158 159 #endif /* #ifdef CONFIG_RCU_BOOST */ 160 161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 162 static void invoke_rcu_core(void); 163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 164 165 /* 166 * Track the rcutorture test sequence number and the update version 167 * number within a given test. The rcutorture_testseq is incremented 168 * on every rcutorture module load and unload, so has an odd value 169 * when a test is running. The rcutorture_vernum is set to zero 170 * when rcutorture starts and is incremented on each rcutorture update. 171 * These variables enable correlating rcutorture output with the 172 * RCU tracing information. 173 */ 174 unsigned long rcutorture_testseq; 175 unsigned long rcutorture_vernum; 176 177 /* 178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 179 * permit this function to be invoked without holding the root rcu_node 180 * structure's ->lock, but of course results can be subject to change. 181 */ 182 static int rcu_gp_in_progress(struct rcu_state *rsp) 183 { 184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 185 } 186 187 /* 188 * Note a quiescent state. Because we do not need to know 189 * how many quiescent states passed, just if there was at least 190 * one since the start of the grace period, this just sets a flag. 191 * The caller must have disabled preemption. 192 */ 193 void rcu_sched_qs(int cpu) 194 { 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); 196 197 if (rdp->passed_quiesce == 0) 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); 199 rdp->passed_quiesce = 1; 200 } 201 202 void rcu_bh_qs(int cpu) 203 { 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 205 206 if (rdp->passed_quiesce == 0) 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); 208 rdp->passed_quiesce = 1; 209 } 210 211 /* 212 * Note a context switch. This is a quiescent state for RCU-sched, 213 * and requires special handling for preemptible RCU. 214 * The caller must have disabled preemption. 215 */ 216 void rcu_note_context_switch(int cpu) 217 { 218 trace_rcu_utilization(TPS("Start context switch")); 219 rcu_sched_qs(cpu); 220 rcu_preempt_note_context_switch(cpu); 221 trace_rcu_utilization(TPS("End context switch")); 222 } 223 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 224 225 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 227 .dynticks = ATOMIC_INIT(1), 228 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 230 .dynticks_idle = ATOMIC_INIT(1), 231 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 232 }; 233 234 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 235 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 236 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 237 238 module_param(blimit, long, 0444); 239 module_param(qhimark, long, 0444); 240 module_param(qlowmark, long, 0444); 241 242 static ulong jiffies_till_first_fqs = ULONG_MAX; 243 static ulong jiffies_till_next_fqs = ULONG_MAX; 244 245 module_param(jiffies_till_first_fqs, ulong, 0644); 246 module_param(jiffies_till_next_fqs, ulong, 0644); 247 248 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 249 struct rcu_data *rdp); 250 static void force_qs_rnp(struct rcu_state *rsp, 251 int (*f)(struct rcu_data *rsp, bool *isidle, 252 unsigned long *maxj), 253 bool *isidle, unsigned long *maxj); 254 static void force_quiescent_state(struct rcu_state *rsp); 255 static int rcu_pending(int cpu); 256 257 /* 258 * Return the number of RCU-sched batches processed thus far for debug & stats. 259 */ 260 long rcu_batches_completed_sched(void) 261 { 262 return rcu_sched_state.completed; 263 } 264 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 265 266 /* 267 * Return the number of RCU BH batches processed thus far for debug & stats. 268 */ 269 long rcu_batches_completed_bh(void) 270 { 271 return rcu_bh_state.completed; 272 } 273 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 274 275 /* 276 * Force a quiescent state for RCU BH. 277 */ 278 void rcu_bh_force_quiescent_state(void) 279 { 280 force_quiescent_state(&rcu_bh_state); 281 } 282 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 283 284 /* 285 * Record the number of times rcutorture tests have been initiated and 286 * terminated. This information allows the debugfs tracing stats to be 287 * correlated to the rcutorture messages, even when the rcutorture module 288 * is being repeatedly loaded and unloaded. In other words, we cannot 289 * store this state in rcutorture itself. 290 */ 291 void rcutorture_record_test_transition(void) 292 { 293 rcutorture_testseq++; 294 rcutorture_vernum = 0; 295 } 296 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 297 298 /* 299 * Record the number of writer passes through the current rcutorture test. 300 * This is also used to correlate debugfs tracing stats with the rcutorture 301 * messages. 302 */ 303 void rcutorture_record_progress(unsigned long vernum) 304 { 305 rcutorture_vernum++; 306 } 307 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 308 309 /* 310 * Force a quiescent state for RCU-sched. 311 */ 312 void rcu_sched_force_quiescent_state(void) 313 { 314 force_quiescent_state(&rcu_sched_state); 315 } 316 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 317 318 /* 319 * Does the CPU have callbacks ready to be invoked? 320 */ 321 static int 322 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 323 { 324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 325 rdp->nxttail[RCU_DONE_TAIL] != NULL; 326 } 327 328 /* 329 * Does the current CPU require a not-yet-started grace period? 330 * The caller must have disabled interrupts to prevent races with 331 * normal callback registry. 332 */ 333 static int 334 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 335 { 336 int i; 337 338 if (rcu_gp_in_progress(rsp)) 339 return 0; /* No, a grace period is already in progress. */ 340 if (rcu_nocb_needs_gp(rsp)) 341 return 1; /* Yes, a no-CBs CPU needs one. */ 342 if (!rdp->nxttail[RCU_NEXT_TAIL]) 343 return 0; /* No, this is a no-CBs (or offline) CPU. */ 344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 345 return 1; /* Yes, this CPU has newly registered callbacks. */ 346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 349 rdp->nxtcompleted[i])) 350 return 1; /* Yes, CBs for future grace period. */ 351 return 0; /* No grace period needed. */ 352 } 353 354 /* 355 * Return the root node of the specified rcu_state structure. 356 */ 357 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 358 { 359 return &rsp->node[0]; 360 } 361 362 /* 363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 364 * 365 * If the new value of the ->dynticks_nesting counter now is zero, 366 * we really have entered idle, and must do the appropriate accounting. 367 * The caller must have disabled interrupts. 368 */ 369 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, 370 bool user) 371 { 372 struct rcu_state *rsp; 373 struct rcu_data *rdp; 374 375 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 376 if (!user && !is_idle_task(current)) { 377 struct task_struct *idle __maybe_unused = 378 idle_task(smp_processor_id()); 379 380 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 381 ftrace_dump(DUMP_ORIG); 382 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 383 current->pid, current->comm, 384 idle->pid, idle->comm); /* must be idle task! */ 385 } 386 for_each_rcu_flavor(rsp) { 387 rdp = this_cpu_ptr(rsp->rda); 388 do_nocb_deferred_wakeup(rdp); 389 } 390 rcu_prepare_for_idle(smp_processor_id()); 391 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 392 smp_mb__before_atomic_inc(); /* See above. */ 393 atomic_inc(&rdtp->dynticks); 394 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */ 395 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 396 397 /* 398 * It is illegal to enter an extended quiescent state while 399 * in an RCU read-side critical section. 400 */ 401 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 402 "Illegal idle entry in RCU read-side critical section."); 403 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 404 "Illegal idle entry in RCU-bh read-side critical section."); 405 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 406 "Illegal idle entry in RCU-sched read-side critical section."); 407 } 408 409 /* 410 * Enter an RCU extended quiescent state, which can be either the 411 * idle loop or adaptive-tickless usermode execution. 412 */ 413 static void rcu_eqs_enter(bool user) 414 { 415 long long oldval; 416 struct rcu_dynticks *rdtp; 417 418 rdtp = this_cpu_ptr(&rcu_dynticks); 419 oldval = rdtp->dynticks_nesting; 420 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 421 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 422 rdtp->dynticks_nesting = 0; 423 rcu_eqs_enter_common(rdtp, oldval, user); 424 } else { 425 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 426 } 427 } 428 429 /** 430 * rcu_idle_enter - inform RCU that current CPU is entering idle 431 * 432 * Enter idle mode, in other words, -leave- the mode in which RCU 433 * read-side critical sections can occur. (Though RCU read-side 434 * critical sections can occur in irq handlers in idle, a possibility 435 * handled by irq_enter() and irq_exit().) 436 * 437 * We crowbar the ->dynticks_nesting field to zero to allow for 438 * the possibility of usermode upcalls having messed up our count 439 * of interrupt nesting level during the prior busy period. 440 */ 441 void rcu_idle_enter(void) 442 { 443 unsigned long flags; 444 445 local_irq_save(flags); 446 rcu_eqs_enter(false); 447 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); 448 local_irq_restore(flags); 449 } 450 EXPORT_SYMBOL_GPL(rcu_idle_enter); 451 452 #ifdef CONFIG_RCU_USER_QS 453 /** 454 * rcu_user_enter - inform RCU that we are resuming userspace. 455 * 456 * Enter RCU idle mode right before resuming userspace. No use of RCU 457 * is permitted between this call and rcu_user_exit(). This way the 458 * CPU doesn't need to maintain the tick for RCU maintenance purposes 459 * when the CPU runs in userspace. 460 */ 461 void rcu_user_enter(void) 462 { 463 rcu_eqs_enter(1); 464 } 465 #endif /* CONFIG_RCU_USER_QS */ 466 467 /** 468 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 469 * 470 * Exit from an interrupt handler, which might possibly result in entering 471 * idle mode, in other words, leaving the mode in which read-side critical 472 * sections can occur. 473 * 474 * This code assumes that the idle loop never does anything that might 475 * result in unbalanced calls to irq_enter() and irq_exit(). If your 476 * architecture violates this assumption, RCU will give you what you 477 * deserve, good and hard. But very infrequently and irreproducibly. 478 * 479 * Use things like work queues to work around this limitation. 480 * 481 * You have been warned. 482 */ 483 void rcu_irq_exit(void) 484 { 485 unsigned long flags; 486 long long oldval; 487 struct rcu_dynticks *rdtp; 488 489 local_irq_save(flags); 490 rdtp = this_cpu_ptr(&rcu_dynticks); 491 oldval = rdtp->dynticks_nesting; 492 rdtp->dynticks_nesting--; 493 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 494 if (rdtp->dynticks_nesting) 495 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 496 else 497 rcu_eqs_enter_common(rdtp, oldval, true); 498 rcu_sysidle_enter(rdtp, 1); 499 local_irq_restore(flags); 500 } 501 502 /* 503 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 504 * 505 * If the new value of the ->dynticks_nesting counter was previously zero, 506 * we really have exited idle, and must do the appropriate accounting. 507 * The caller must have disabled interrupts. 508 */ 509 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, 510 int user) 511 { 512 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */ 513 atomic_inc(&rdtp->dynticks); 514 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 515 smp_mb__after_atomic_inc(); /* See above. */ 516 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 517 rcu_cleanup_after_idle(smp_processor_id()); 518 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 519 if (!user && !is_idle_task(current)) { 520 struct task_struct *idle __maybe_unused = 521 idle_task(smp_processor_id()); 522 523 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 524 oldval, rdtp->dynticks_nesting); 525 ftrace_dump(DUMP_ORIG); 526 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 527 current->pid, current->comm, 528 idle->pid, idle->comm); /* must be idle task! */ 529 } 530 } 531 532 /* 533 * Exit an RCU extended quiescent state, which can be either the 534 * idle loop or adaptive-tickless usermode execution. 535 */ 536 static void rcu_eqs_exit(bool user) 537 { 538 struct rcu_dynticks *rdtp; 539 long long oldval; 540 541 rdtp = this_cpu_ptr(&rcu_dynticks); 542 oldval = rdtp->dynticks_nesting; 543 WARN_ON_ONCE(oldval < 0); 544 if (oldval & DYNTICK_TASK_NEST_MASK) { 545 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 546 } else { 547 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 548 rcu_eqs_exit_common(rdtp, oldval, user); 549 } 550 } 551 552 /** 553 * rcu_idle_exit - inform RCU that current CPU is leaving idle 554 * 555 * Exit idle mode, in other words, -enter- the mode in which RCU 556 * read-side critical sections can occur. 557 * 558 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 559 * allow for the possibility of usermode upcalls messing up our count 560 * of interrupt nesting level during the busy period that is just 561 * now starting. 562 */ 563 void rcu_idle_exit(void) 564 { 565 unsigned long flags; 566 567 local_irq_save(flags); 568 rcu_eqs_exit(false); 569 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); 570 local_irq_restore(flags); 571 } 572 EXPORT_SYMBOL_GPL(rcu_idle_exit); 573 574 #ifdef CONFIG_RCU_USER_QS 575 /** 576 * rcu_user_exit - inform RCU that we are exiting userspace. 577 * 578 * Exit RCU idle mode while entering the kernel because it can 579 * run a RCU read side critical section anytime. 580 */ 581 void rcu_user_exit(void) 582 { 583 rcu_eqs_exit(1); 584 } 585 #endif /* CONFIG_RCU_USER_QS */ 586 587 /** 588 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 589 * 590 * Enter an interrupt handler, which might possibly result in exiting 591 * idle mode, in other words, entering the mode in which read-side critical 592 * sections can occur. 593 * 594 * Note that the Linux kernel is fully capable of entering an interrupt 595 * handler that it never exits, for example when doing upcalls to 596 * user mode! This code assumes that the idle loop never does upcalls to 597 * user mode. If your architecture does do upcalls from the idle loop (or 598 * does anything else that results in unbalanced calls to the irq_enter() 599 * and irq_exit() functions), RCU will give you what you deserve, good 600 * and hard. But very infrequently and irreproducibly. 601 * 602 * Use things like work queues to work around this limitation. 603 * 604 * You have been warned. 605 */ 606 void rcu_irq_enter(void) 607 { 608 unsigned long flags; 609 struct rcu_dynticks *rdtp; 610 long long oldval; 611 612 local_irq_save(flags); 613 rdtp = this_cpu_ptr(&rcu_dynticks); 614 oldval = rdtp->dynticks_nesting; 615 rdtp->dynticks_nesting++; 616 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 617 if (oldval) 618 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 619 else 620 rcu_eqs_exit_common(rdtp, oldval, true); 621 rcu_sysidle_exit(rdtp, 1); 622 local_irq_restore(flags); 623 } 624 625 /** 626 * rcu_nmi_enter - inform RCU of entry to NMI context 627 * 628 * If the CPU was idle with dynamic ticks active, and there is no 629 * irq handler running, this updates rdtp->dynticks_nmi to let the 630 * RCU grace-period handling know that the CPU is active. 631 */ 632 void rcu_nmi_enter(void) 633 { 634 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 635 636 if (rdtp->dynticks_nmi_nesting == 0 && 637 (atomic_read(&rdtp->dynticks) & 0x1)) 638 return; 639 rdtp->dynticks_nmi_nesting++; 640 smp_mb__before_atomic_inc(); /* Force delay from prior write. */ 641 atomic_inc(&rdtp->dynticks); 642 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 643 smp_mb__after_atomic_inc(); /* See above. */ 644 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 645 } 646 647 /** 648 * rcu_nmi_exit - inform RCU of exit from NMI context 649 * 650 * If the CPU was idle with dynamic ticks active, and there is no 651 * irq handler running, this updates rdtp->dynticks_nmi to let the 652 * RCU grace-period handling know that the CPU is no longer active. 653 */ 654 void rcu_nmi_exit(void) 655 { 656 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 657 658 if (rdtp->dynticks_nmi_nesting == 0 || 659 --rdtp->dynticks_nmi_nesting != 0) 660 return; 661 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 662 smp_mb__before_atomic_inc(); /* See above. */ 663 atomic_inc(&rdtp->dynticks); 664 smp_mb__after_atomic_inc(); /* Force delay to next write. */ 665 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 666 } 667 668 /** 669 * __rcu_is_watching - are RCU read-side critical sections safe? 670 * 671 * Return true if RCU is watching the running CPU, which means that 672 * this CPU can safely enter RCU read-side critical sections. Unlike 673 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 674 * least disabled preemption. 675 */ 676 bool notrace __rcu_is_watching(void) 677 { 678 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 679 } 680 681 /** 682 * rcu_is_watching - see if RCU thinks that the current CPU is idle 683 * 684 * If the current CPU is in its idle loop and is neither in an interrupt 685 * or NMI handler, return true. 686 */ 687 bool notrace rcu_is_watching(void) 688 { 689 int ret; 690 691 preempt_disable(); 692 ret = __rcu_is_watching(); 693 preempt_enable(); 694 return ret; 695 } 696 EXPORT_SYMBOL_GPL(rcu_is_watching); 697 698 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 699 700 /* 701 * Is the current CPU online? Disable preemption to avoid false positives 702 * that could otherwise happen due to the current CPU number being sampled, 703 * this task being preempted, its old CPU being taken offline, resuming 704 * on some other CPU, then determining that its old CPU is now offline. 705 * It is OK to use RCU on an offline processor during initial boot, hence 706 * the check for rcu_scheduler_fully_active. Note also that it is OK 707 * for a CPU coming online to use RCU for one jiffy prior to marking itself 708 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 709 * offline to continue to use RCU for one jiffy after marking itself 710 * offline in the cpu_online_mask. This leniency is necessary given the 711 * non-atomic nature of the online and offline processing, for example, 712 * the fact that a CPU enters the scheduler after completing the CPU_DYING 713 * notifiers. 714 * 715 * This is also why RCU internally marks CPUs online during the 716 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 717 * 718 * Disable checking if in an NMI handler because we cannot safely report 719 * errors from NMI handlers anyway. 720 */ 721 bool rcu_lockdep_current_cpu_online(void) 722 { 723 struct rcu_data *rdp; 724 struct rcu_node *rnp; 725 bool ret; 726 727 if (in_nmi()) 728 return true; 729 preempt_disable(); 730 rdp = this_cpu_ptr(&rcu_sched_data); 731 rnp = rdp->mynode; 732 ret = (rdp->grpmask & rnp->qsmaskinit) || 733 !rcu_scheduler_fully_active; 734 preempt_enable(); 735 return ret; 736 } 737 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 738 739 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 740 741 /** 742 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 743 * 744 * If the current CPU is idle or running at a first-level (not nested) 745 * interrupt from idle, return true. The caller must have at least 746 * disabled preemption. 747 */ 748 static int rcu_is_cpu_rrupt_from_idle(void) 749 { 750 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 751 } 752 753 /* 754 * Snapshot the specified CPU's dynticks counter so that we can later 755 * credit them with an implicit quiescent state. Return 1 if this CPU 756 * is in dynticks idle mode, which is an extended quiescent state. 757 */ 758 static int dyntick_save_progress_counter(struct rcu_data *rdp, 759 bool *isidle, unsigned long *maxj) 760 { 761 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 762 rcu_sysidle_check_cpu(rdp, isidle, maxj); 763 return (rdp->dynticks_snap & 0x1) == 0; 764 } 765 766 /* 767 * This function really isn't for public consumption, but RCU is special in 768 * that context switches can allow the state machine to make progress. 769 */ 770 extern void resched_cpu(int cpu); 771 772 /* 773 * Return true if the specified CPU has passed through a quiescent 774 * state by virtue of being in or having passed through an dynticks 775 * idle state since the last call to dyntick_save_progress_counter() 776 * for this same CPU, or by virtue of having been offline. 777 */ 778 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 779 bool *isidle, unsigned long *maxj) 780 { 781 unsigned int curr; 782 unsigned int snap; 783 784 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 785 snap = (unsigned int)rdp->dynticks_snap; 786 787 /* 788 * If the CPU passed through or entered a dynticks idle phase with 789 * no active irq/NMI handlers, then we can safely pretend that the CPU 790 * already acknowledged the request to pass through a quiescent 791 * state. Either way, that CPU cannot possibly be in an RCU 792 * read-side critical section that started before the beginning 793 * of the current RCU grace period. 794 */ 795 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 796 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 797 rdp->dynticks_fqs++; 798 return 1; 799 } 800 801 /* 802 * Check for the CPU being offline, but only if the grace period 803 * is old enough. We don't need to worry about the CPU changing 804 * state: If we see it offline even once, it has been through a 805 * quiescent state. 806 * 807 * The reason for insisting that the grace period be at least 808 * one jiffy old is that CPUs that are not quite online and that 809 * have just gone offline can still execute RCU read-side critical 810 * sections. 811 */ 812 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 813 return 0; /* Grace period is not old enough. */ 814 barrier(); 815 if (cpu_is_offline(rdp->cpu)) { 816 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 817 rdp->offline_fqs++; 818 return 1; 819 } 820 821 /* 822 * There is a possibility that a CPU in adaptive-ticks state 823 * might run in the kernel with the scheduling-clock tick disabled 824 * for an extended time period. Invoke rcu_kick_nohz_cpu() to 825 * force the CPU to restart the scheduling-clock tick in this 826 * CPU is in this state. 827 */ 828 rcu_kick_nohz_cpu(rdp->cpu); 829 830 /* 831 * Alternatively, the CPU might be running in the kernel 832 * for an extended period of time without a quiescent state. 833 * Attempt to force the CPU through the scheduler to gain the 834 * needed quiescent state, but only if the grace period has gone 835 * on for an uncommonly long time. If there are many stuck CPUs, 836 * we will beat on the first one until it gets unstuck, then move 837 * to the next. Only do this for the primary flavor of RCU. 838 */ 839 if (rdp->rsp == rcu_state && 840 ULONG_CMP_GE(ACCESS_ONCE(jiffies), rdp->rsp->jiffies_resched)) { 841 rdp->rsp->jiffies_resched += 5; 842 resched_cpu(rdp->cpu); 843 } 844 845 return 0; 846 } 847 848 static void record_gp_stall_check_time(struct rcu_state *rsp) 849 { 850 unsigned long j = ACCESS_ONCE(jiffies); 851 unsigned long j1; 852 853 rsp->gp_start = j; 854 smp_wmb(); /* Record start time before stall time. */ 855 j1 = rcu_jiffies_till_stall_check(); 856 rsp->jiffies_stall = j + j1; 857 rsp->jiffies_resched = j + j1 / 2; 858 } 859 860 /* 861 * Dump stacks of all tasks running on stalled CPUs. This is a fallback 862 * for architectures that do not implement trigger_all_cpu_backtrace(). 863 * The NMI-triggered stack traces are more accurate because they are 864 * printed by the target CPU. 865 */ 866 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 867 { 868 int cpu; 869 unsigned long flags; 870 struct rcu_node *rnp; 871 872 rcu_for_each_leaf_node(rsp, rnp) { 873 raw_spin_lock_irqsave(&rnp->lock, flags); 874 if (rnp->qsmask != 0) { 875 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 876 if (rnp->qsmask & (1UL << cpu)) 877 dump_cpu_task(rnp->grplo + cpu); 878 } 879 raw_spin_unlock_irqrestore(&rnp->lock, flags); 880 } 881 } 882 883 static void print_other_cpu_stall(struct rcu_state *rsp) 884 { 885 int cpu; 886 long delta; 887 unsigned long flags; 888 int ndetected = 0; 889 struct rcu_node *rnp = rcu_get_root(rsp); 890 long totqlen = 0; 891 892 /* Only let one CPU complain about others per time interval. */ 893 894 raw_spin_lock_irqsave(&rnp->lock, flags); 895 delta = jiffies - rsp->jiffies_stall; 896 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 897 raw_spin_unlock_irqrestore(&rnp->lock, flags); 898 return; 899 } 900 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 901 raw_spin_unlock_irqrestore(&rnp->lock, flags); 902 903 /* 904 * OK, time to rat on our buddy... 905 * See Documentation/RCU/stallwarn.txt for info on how to debug 906 * RCU CPU stall warnings. 907 */ 908 pr_err("INFO: %s detected stalls on CPUs/tasks:", 909 rsp->name); 910 print_cpu_stall_info_begin(); 911 rcu_for_each_leaf_node(rsp, rnp) { 912 raw_spin_lock_irqsave(&rnp->lock, flags); 913 ndetected += rcu_print_task_stall(rnp); 914 if (rnp->qsmask != 0) { 915 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 916 if (rnp->qsmask & (1UL << cpu)) { 917 print_cpu_stall_info(rsp, 918 rnp->grplo + cpu); 919 ndetected++; 920 } 921 } 922 raw_spin_unlock_irqrestore(&rnp->lock, flags); 923 } 924 925 /* 926 * Now rat on any tasks that got kicked up to the root rcu_node 927 * due to CPU offlining. 928 */ 929 rnp = rcu_get_root(rsp); 930 raw_spin_lock_irqsave(&rnp->lock, flags); 931 ndetected += rcu_print_task_stall(rnp); 932 raw_spin_unlock_irqrestore(&rnp->lock, flags); 933 934 print_cpu_stall_info_end(); 935 for_each_possible_cpu(cpu) 936 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 937 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n", 938 smp_processor_id(), (long)(jiffies - rsp->gp_start), 939 rsp->gpnum, rsp->completed, totqlen); 940 if (ndetected == 0) 941 pr_err("INFO: Stall ended before state dump start\n"); 942 else if (!trigger_all_cpu_backtrace()) 943 rcu_dump_cpu_stacks(rsp); 944 945 /* Complain about tasks blocking the grace period. */ 946 947 rcu_print_detail_task_stall(rsp); 948 949 force_quiescent_state(rsp); /* Kick them all. */ 950 } 951 952 /* 953 * This function really isn't for public consumption, but RCU is special in 954 * that context switches can allow the state machine to make progress. 955 */ 956 extern void resched_cpu(int cpu); 957 958 static void print_cpu_stall(struct rcu_state *rsp) 959 { 960 int cpu; 961 unsigned long flags; 962 struct rcu_node *rnp = rcu_get_root(rsp); 963 long totqlen = 0; 964 965 /* 966 * OK, time to rat on ourselves... 967 * See Documentation/RCU/stallwarn.txt for info on how to debug 968 * RCU CPU stall warnings. 969 */ 970 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 971 print_cpu_stall_info_begin(); 972 print_cpu_stall_info(rsp, smp_processor_id()); 973 print_cpu_stall_info_end(); 974 for_each_possible_cpu(cpu) 975 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 976 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n", 977 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen); 978 if (!trigger_all_cpu_backtrace()) 979 dump_stack(); 980 981 raw_spin_lock_irqsave(&rnp->lock, flags); 982 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) 983 rsp->jiffies_stall = jiffies + 984 3 * rcu_jiffies_till_stall_check() + 3; 985 raw_spin_unlock_irqrestore(&rnp->lock, flags); 986 987 /* 988 * Attempt to revive the RCU machinery by forcing a context switch. 989 * 990 * A context switch would normally allow the RCU state machine to make 991 * progress and it could be we're stuck in kernel space without context 992 * switches for an entirely unreasonable amount of time. 993 */ 994 resched_cpu(smp_processor_id()); 995 } 996 997 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 998 { 999 unsigned long completed; 1000 unsigned long gpnum; 1001 unsigned long gps; 1002 unsigned long j; 1003 unsigned long js; 1004 struct rcu_node *rnp; 1005 1006 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1007 return; 1008 j = ACCESS_ONCE(jiffies); 1009 1010 /* 1011 * Lots of memory barriers to reject false positives. 1012 * 1013 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1014 * then rsp->gp_start, and finally rsp->completed. These values 1015 * are updated in the opposite order with memory barriers (or 1016 * equivalent) during grace-period initialization and cleanup. 1017 * Now, a false positive can occur if we get an new value of 1018 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1019 * the memory barriers, the only way that this can happen is if one 1020 * grace period ends and another starts between these two fetches. 1021 * Detect this by comparing rsp->completed with the previous fetch 1022 * from rsp->gpnum. 1023 * 1024 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1025 * and rsp->gp_start suffice to forestall false positives. 1026 */ 1027 gpnum = ACCESS_ONCE(rsp->gpnum); 1028 smp_rmb(); /* Pick up ->gpnum first... */ 1029 js = ACCESS_ONCE(rsp->jiffies_stall); 1030 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1031 gps = ACCESS_ONCE(rsp->gp_start); 1032 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1033 completed = ACCESS_ONCE(rsp->completed); 1034 if (ULONG_CMP_GE(completed, gpnum) || 1035 ULONG_CMP_LT(j, js) || 1036 ULONG_CMP_GE(gps, js)) 1037 return; /* No stall or GP completed since entering function. */ 1038 rnp = rdp->mynode; 1039 if (rcu_gp_in_progress(rsp) && 1040 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1041 1042 /* We haven't checked in, so go dump stack. */ 1043 print_cpu_stall(rsp); 1044 1045 } else if (rcu_gp_in_progress(rsp) && 1046 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1047 1048 /* They had a few time units to dump stack, so complain. */ 1049 print_other_cpu_stall(rsp); 1050 } 1051 } 1052 1053 /** 1054 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1055 * 1056 * Set the stall-warning timeout way off into the future, thus preventing 1057 * any RCU CPU stall-warning messages from appearing in the current set of 1058 * RCU grace periods. 1059 * 1060 * The caller must disable hard irqs. 1061 */ 1062 void rcu_cpu_stall_reset(void) 1063 { 1064 struct rcu_state *rsp; 1065 1066 for_each_rcu_flavor(rsp) 1067 rsp->jiffies_stall = jiffies + ULONG_MAX / 2; 1068 } 1069 1070 /* 1071 * Initialize the specified rcu_data structure's callback list to empty. 1072 */ 1073 static void init_callback_list(struct rcu_data *rdp) 1074 { 1075 int i; 1076 1077 if (init_nocb_callback_list(rdp)) 1078 return; 1079 rdp->nxtlist = NULL; 1080 for (i = 0; i < RCU_NEXT_SIZE; i++) 1081 rdp->nxttail[i] = &rdp->nxtlist; 1082 } 1083 1084 /* 1085 * Determine the value that ->completed will have at the end of the 1086 * next subsequent grace period. This is used to tag callbacks so that 1087 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1088 * been dyntick-idle for an extended period with callbacks under the 1089 * influence of RCU_FAST_NO_HZ. 1090 * 1091 * The caller must hold rnp->lock with interrupts disabled. 1092 */ 1093 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1094 struct rcu_node *rnp) 1095 { 1096 /* 1097 * If RCU is idle, we just wait for the next grace period. 1098 * But we can only be sure that RCU is idle if we are looking 1099 * at the root rcu_node structure -- otherwise, a new grace 1100 * period might have started, but just not yet gotten around 1101 * to initializing the current non-root rcu_node structure. 1102 */ 1103 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1104 return rnp->completed + 1; 1105 1106 /* 1107 * Otherwise, wait for a possible partial grace period and 1108 * then the subsequent full grace period. 1109 */ 1110 return rnp->completed + 2; 1111 } 1112 1113 /* 1114 * Trace-event helper function for rcu_start_future_gp() and 1115 * rcu_nocb_wait_gp(). 1116 */ 1117 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1118 unsigned long c, const char *s) 1119 { 1120 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1121 rnp->completed, c, rnp->level, 1122 rnp->grplo, rnp->grphi, s); 1123 } 1124 1125 /* 1126 * Start some future grace period, as needed to handle newly arrived 1127 * callbacks. The required future grace periods are recorded in each 1128 * rcu_node structure's ->need_future_gp field. 1129 * 1130 * The caller must hold the specified rcu_node structure's ->lock. 1131 */ 1132 static unsigned long __maybe_unused 1133 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp) 1134 { 1135 unsigned long c; 1136 int i; 1137 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1138 1139 /* 1140 * Pick up grace-period number for new callbacks. If this 1141 * grace period is already marked as needed, return to the caller. 1142 */ 1143 c = rcu_cbs_completed(rdp->rsp, rnp); 1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1145 if (rnp->need_future_gp[c & 0x1]) { 1146 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1147 return c; 1148 } 1149 1150 /* 1151 * If either this rcu_node structure or the root rcu_node structure 1152 * believe that a grace period is in progress, then we must wait 1153 * for the one following, which is in "c". Because our request 1154 * will be noticed at the end of the current grace period, we don't 1155 * need to explicitly start one. 1156 */ 1157 if (rnp->gpnum != rnp->completed || 1158 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) { 1159 rnp->need_future_gp[c & 0x1]++; 1160 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1161 return c; 1162 } 1163 1164 /* 1165 * There might be no grace period in progress. If we don't already 1166 * hold it, acquire the root rcu_node structure's lock in order to 1167 * start one (if needed). 1168 */ 1169 if (rnp != rnp_root) { 1170 raw_spin_lock(&rnp_root->lock); 1171 smp_mb__after_unlock_lock(); 1172 } 1173 1174 /* 1175 * Get a new grace-period number. If there really is no grace 1176 * period in progress, it will be smaller than the one we obtained 1177 * earlier. Adjust callbacks as needed. Note that even no-CBs 1178 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1179 */ 1180 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1181 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1182 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1183 rdp->nxtcompleted[i] = c; 1184 1185 /* 1186 * If the needed for the required grace period is already 1187 * recorded, trace and leave. 1188 */ 1189 if (rnp_root->need_future_gp[c & 0x1]) { 1190 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1191 goto unlock_out; 1192 } 1193 1194 /* Record the need for the future grace period. */ 1195 rnp_root->need_future_gp[c & 0x1]++; 1196 1197 /* If a grace period is not already in progress, start one. */ 1198 if (rnp_root->gpnum != rnp_root->completed) { 1199 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1200 } else { 1201 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1202 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1203 } 1204 unlock_out: 1205 if (rnp != rnp_root) 1206 raw_spin_unlock(&rnp_root->lock); 1207 return c; 1208 } 1209 1210 /* 1211 * Clean up any old requests for the just-ended grace period. Also return 1212 * whether any additional grace periods have been requested. Also invoke 1213 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1214 * waiting for this grace period to complete. 1215 */ 1216 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1217 { 1218 int c = rnp->completed; 1219 int needmore; 1220 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1221 1222 rcu_nocb_gp_cleanup(rsp, rnp); 1223 rnp->need_future_gp[c & 0x1] = 0; 1224 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1225 trace_rcu_future_gp(rnp, rdp, c, 1226 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1227 return needmore; 1228 } 1229 1230 /* 1231 * If there is room, assign a ->completed number to any callbacks on 1232 * this CPU that have not already been assigned. Also accelerate any 1233 * callbacks that were previously assigned a ->completed number that has 1234 * since proven to be too conservative, which can happen if callbacks get 1235 * assigned a ->completed number while RCU is idle, but with reference to 1236 * a non-root rcu_node structure. This function is idempotent, so it does 1237 * not hurt to call it repeatedly. 1238 * 1239 * The caller must hold rnp->lock with interrupts disabled. 1240 */ 1241 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1242 struct rcu_data *rdp) 1243 { 1244 unsigned long c; 1245 int i; 1246 1247 /* If the CPU has no callbacks, nothing to do. */ 1248 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1249 return; 1250 1251 /* 1252 * Starting from the sublist containing the callbacks most 1253 * recently assigned a ->completed number and working down, find the 1254 * first sublist that is not assignable to an upcoming grace period. 1255 * Such a sublist has something in it (first two tests) and has 1256 * a ->completed number assigned that will complete sooner than 1257 * the ->completed number for newly arrived callbacks (last test). 1258 * 1259 * The key point is that any later sublist can be assigned the 1260 * same ->completed number as the newly arrived callbacks, which 1261 * means that the callbacks in any of these later sublist can be 1262 * grouped into a single sublist, whether or not they have already 1263 * been assigned a ->completed number. 1264 */ 1265 c = rcu_cbs_completed(rsp, rnp); 1266 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1267 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1268 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1269 break; 1270 1271 /* 1272 * If there are no sublist for unassigned callbacks, leave. 1273 * At the same time, advance "i" one sublist, so that "i" will 1274 * index into the sublist where all the remaining callbacks should 1275 * be grouped into. 1276 */ 1277 if (++i >= RCU_NEXT_TAIL) 1278 return; 1279 1280 /* 1281 * Assign all subsequent callbacks' ->completed number to the next 1282 * full grace period and group them all in the sublist initially 1283 * indexed by "i". 1284 */ 1285 for (; i <= RCU_NEXT_TAIL; i++) { 1286 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1287 rdp->nxtcompleted[i] = c; 1288 } 1289 /* Record any needed additional grace periods. */ 1290 rcu_start_future_gp(rnp, rdp); 1291 1292 /* Trace depending on how much we were able to accelerate. */ 1293 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1294 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1295 else 1296 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1297 } 1298 1299 /* 1300 * Move any callbacks whose grace period has completed to the 1301 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1302 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1303 * sublist. This function is idempotent, so it does not hurt to 1304 * invoke it repeatedly. As long as it is not invoked -too- often... 1305 * 1306 * The caller must hold rnp->lock with interrupts disabled. 1307 */ 1308 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1309 struct rcu_data *rdp) 1310 { 1311 int i, j; 1312 1313 /* If the CPU has no callbacks, nothing to do. */ 1314 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1315 return; 1316 1317 /* 1318 * Find all callbacks whose ->completed numbers indicate that they 1319 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1320 */ 1321 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1322 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1323 break; 1324 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1325 } 1326 /* Clean up any sublist tail pointers that were misordered above. */ 1327 for (j = RCU_WAIT_TAIL; j < i; j++) 1328 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1329 1330 /* Copy down callbacks to fill in empty sublists. */ 1331 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1332 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1333 break; 1334 rdp->nxttail[j] = rdp->nxttail[i]; 1335 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1336 } 1337 1338 /* Classify any remaining callbacks. */ 1339 rcu_accelerate_cbs(rsp, rnp, rdp); 1340 } 1341 1342 /* 1343 * Update CPU-local rcu_data state to record the beginnings and ends of 1344 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1345 * structure corresponding to the current CPU, and must have irqs disabled. 1346 */ 1347 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 1348 { 1349 /* Handle the ends of any preceding grace periods first. */ 1350 if (rdp->completed == rnp->completed) { 1351 1352 /* No grace period end, so just accelerate recent callbacks. */ 1353 rcu_accelerate_cbs(rsp, rnp, rdp); 1354 1355 } else { 1356 1357 /* Advance callbacks. */ 1358 rcu_advance_cbs(rsp, rnp, rdp); 1359 1360 /* Remember that we saw this grace-period completion. */ 1361 rdp->completed = rnp->completed; 1362 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1363 } 1364 1365 if (rdp->gpnum != rnp->gpnum) { 1366 /* 1367 * If the current grace period is waiting for this CPU, 1368 * set up to detect a quiescent state, otherwise don't 1369 * go looking for one. 1370 */ 1371 rdp->gpnum = rnp->gpnum; 1372 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1373 rdp->passed_quiesce = 0; 1374 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1375 zero_cpu_stall_ticks(rdp); 1376 } 1377 } 1378 1379 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1380 { 1381 unsigned long flags; 1382 struct rcu_node *rnp; 1383 1384 local_irq_save(flags); 1385 rnp = rdp->mynode; 1386 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1387 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ 1388 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1389 local_irq_restore(flags); 1390 return; 1391 } 1392 smp_mb__after_unlock_lock(); 1393 __note_gp_changes(rsp, rnp, rdp); 1394 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1395 } 1396 1397 /* 1398 * Initialize a new grace period. Return 0 if no grace period required. 1399 */ 1400 static int rcu_gp_init(struct rcu_state *rsp) 1401 { 1402 struct rcu_data *rdp; 1403 struct rcu_node *rnp = rcu_get_root(rsp); 1404 1405 rcu_bind_gp_kthread(); 1406 raw_spin_lock_irq(&rnp->lock); 1407 smp_mb__after_unlock_lock(); 1408 if (rsp->gp_flags == 0) { 1409 /* Spurious wakeup, tell caller to go back to sleep. */ 1410 raw_spin_unlock_irq(&rnp->lock); 1411 return 0; 1412 } 1413 rsp->gp_flags = 0; /* Clear all flags: New grace period. */ 1414 1415 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1416 /* 1417 * Grace period already in progress, don't start another. 1418 * Not supposed to be able to happen. 1419 */ 1420 raw_spin_unlock_irq(&rnp->lock); 1421 return 0; 1422 } 1423 1424 /* Advance to a new grace period and initialize state. */ 1425 record_gp_stall_check_time(rsp); 1426 smp_wmb(); /* Record GP times before starting GP. */ 1427 rsp->gpnum++; 1428 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1429 raw_spin_unlock_irq(&rnp->lock); 1430 1431 /* Exclude any concurrent CPU-hotplug operations. */ 1432 mutex_lock(&rsp->onoff_mutex); 1433 1434 /* 1435 * Set the quiescent-state-needed bits in all the rcu_node 1436 * structures for all currently online CPUs in breadth-first order, 1437 * starting from the root rcu_node structure, relying on the layout 1438 * of the tree within the rsp->node[] array. Note that other CPUs 1439 * will access only the leaves of the hierarchy, thus seeing that no 1440 * grace period is in progress, at least until the corresponding 1441 * leaf node has been initialized. In addition, we have excluded 1442 * CPU-hotplug operations. 1443 * 1444 * The grace period cannot complete until the initialization 1445 * process finishes, because this kthread handles both. 1446 */ 1447 rcu_for_each_node_breadth_first(rsp, rnp) { 1448 raw_spin_lock_irq(&rnp->lock); 1449 smp_mb__after_unlock_lock(); 1450 rdp = this_cpu_ptr(rsp->rda); 1451 rcu_preempt_check_blocked_tasks(rnp); 1452 rnp->qsmask = rnp->qsmaskinit; 1453 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1454 WARN_ON_ONCE(rnp->completed != rsp->completed); 1455 ACCESS_ONCE(rnp->completed) = rsp->completed; 1456 if (rnp == rdp->mynode) 1457 __note_gp_changes(rsp, rnp, rdp); 1458 rcu_preempt_boost_start_gp(rnp); 1459 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1460 rnp->level, rnp->grplo, 1461 rnp->grphi, rnp->qsmask); 1462 raw_spin_unlock_irq(&rnp->lock); 1463 #ifdef CONFIG_PROVE_RCU_DELAY 1464 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 && 1465 system_state == SYSTEM_RUNNING) 1466 udelay(200); 1467 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ 1468 cond_resched(); 1469 } 1470 1471 mutex_unlock(&rsp->onoff_mutex); 1472 return 1; 1473 } 1474 1475 /* 1476 * Do one round of quiescent-state forcing. 1477 */ 1478 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1479 { 1480 int fqs_state = fqs_state_in; 1481 bool isidle = false; 1482 unsigned long maxj; 1483 struct rcu_node *rnp = rcu_get_root(rsp); 1484 1485 rsp->n_force_qs++; 1486 if (fqs_state == RCU_SAVE_DYNTICK) { 1487 /* Collect dyntick-idle snapshots. */ 1488 if (is_sysidle_rcu_state(rsp)) { 1489 isidle = 1; 1490 maxj = jiffies - ULONG_MAX / 4; 1491 } 1492 force_qs_rnp(rsp, dyntick_save_progress_counter, 1493 &isidle, &maxj); 1494 rcu_sysidle_report_gp(rsp, isidle, maxj); 1495 fqs_state = RCU_FORCE_QS; 1496 } else { 1497 /* Handle dyntick-idle and offline CPUs. */ 1498 isidle = 0; 1499 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1500 } 1501 /* Clear flag to prevent immediate re-entry. */ 1502 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1503 raw_spin_lock_irq(&rnp->lock); 1504 smp_mb__after_unlock_lock(); 1505 rsp->gp_flags &= ~RCU_GP_FLAG_FQS; 1506 raw_spin_unlock_irq(&rnp->lock); 1507 } 1508 return fqs_state; 1509 } 1510 1511 /* 1512 * Clean up after the old grace period. 1513 */ 1514 static void rcu_gp_cleanup(struct rcu_state *rsp) 1515 { 1516 unsigned long gp_duration; 1517 int nocb = 0; 1518 struct rcu_data *rdp; 1519 struct rcu_node *rnp = rcu_get_root(rsp); 1520 1521 raw_spin_lock_irq(&rnp->lock); 1522 smp_mb__after_unlock_lock(); 1523 gp_duration = jiffies - rsp->gp_start; 1524 if (gp_duration > rsp->gp_max) 1525 rsp->gp_max = gp_duration; 1526 1527 /* 1528 * We know the grace period is complete, but to everyone else 1529 * it appears to still be ongoing. But it is also the case 1530 * that to everyone else it looks like there is nothing that 1531 * they can do to advance the grace period. It is therefore 1532 * safe for us to drop the lock in order to mark the grace 1533 * period as completed in all of the rcu_node structures. 1534 */ 1535 raw_spin_unlock_irq(&rnp->lock); 1536 1537 /* 1538 * Propagate new ->completed value to rcu_node structures so 1539 * that other CPUs don't have to wait until the start of the next 1540 * grace period to process their callbacks. This also avoids 1541 * some nasty RCU grace-period initialization races by forcing 1542 * the end of the current grace period to be completely recorded in 1543 * all of the rcu_node structures before the beginning of the next 1544 * grace period is recorded in any of the rcu_node structures. 1545 */ 1546 rcu_for_each_node_breadth_first(rsp, rnp) { 1547 raw_spin_lock_irq(&rnp->lock); 1548 smp_mb__after_unlock_lock(); 1549 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1550 rdp = this_cpu_ptr(rsp->rda); 1551 if (rnp == rdp->mynode) 1552 __note_gp_changes(rsp, rnp, rdp); 1553 /* smp_mb() provided by prior unlock-lock pair. */ 1554 nocb += rcu_future_gp_cleanup(rsp, rnp); 1555 raw_spin_unlock_irq(&rnp->lock); 1556 cond_resched(); 1557 } 1558 rnp = rcu_get_root(rsp); 1559 raw_spin_lock_irq(&rnp->lock); 1560 smp_mb__after_unlock_lock(); 1561 rcu_nocb_gp_set(rnp, nocb); 1562 1563 rsp->completed = rsp->gpnum; /* Declare grace period done. */ 1564 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1565 rsp->fqs_state = RCU_GP_IDLE; 1566 rdp = this_cpu_ptr(rsp->rda); 1567 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */ 1568 if (cpu_needs_another_gp(rsp, rdp)) { 1569 rsp->gp_flags = RCU_GP_FLAG_INIT; 1570 trace_rcu_grace_period(rsp->name, 1571 ACCESS_ONCE(rsp->gpnum), 1572 TPS("newreq")); 1573 } 1574 raw_spin_unlock_irq(&rnp->lock); 1575 } 1576 1577 /* 1578 * Body of kthread that handles grace periods. 1579 */ 1580 static int __noreturn rcu_gp_kthread(void *arg) 1581 { 1582 int fqs_state; 1583 int gf; 1584 unsigned long j; 1585 int ret; 1586 struct rcu_state *rsp = arg; 1587 struct rcu_node *rnp = rcu_get_root(rsp); 1588 1589 for (;;) { 1590 1591 /* Handle grace-period start. */ 1592 for (;;) { 1593 trace_rcu_grace_period(rsp->name, 1594 ACCESS_ONCE(rsp->gpnum), 1595 TPS("reqwait")); 1596 wait_event_interruptible(rsp->gp_wq, 1597 ACCESS_ONCE(rsp->gp_flags) & 1598 RCU_GP_FLAG_INIT); 1599 /* Locking provides needed memory barrier. */ 1600 if (rcu_gp_init(rsp)) 1601 break; 1602 cond_resched(); 1603 flush_signals(current); 1604 trace_rcu_grace_period(rsp->name, 1605 ACCESS_ONCE(rsp->gpnum), 1606 TPS("reqwaitsig")); 1607 } 1608 1609 /* Handle quiescent-state forcing. */ 1610 fqs_state = RCU_SAVE_DYNTICK; 1611 j = jiffies_till_first_fqs; 1612 if (j > HZ) { 1613 j = HZ; 1614 jiffies_till_first_fqs = HZ; 1615 } 1616 ret = 0; 1617 for (;;) { 1618 if (!ret) 1619 rsp->jiffies_force_qs = jiffies + j; 1620 trace_rcu_grace_period(rsp->name, 1621 ACCESS_ONCE(rsp->gpnum), 1622 TPS("fqswait")); 1623 ret = wait_event_interruptible_timeout(rsp->gp_wq, 1624 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 1625 RCU_GP_FLAG_FQS) || 1626 (!ACCESS_ONCE(rnp->qsmask) && 1627 !rcu_preempt_blocked_readers_cgp(rnp)), 1628 j); 1629 /* Locking provides needed memory barriers. */ 1630 /* If grace period done, leave loop. */ 1631 if (!ACCESS_ONCE(rnp->qsmask) && 1632 !rcu_preempt_blocked_readers_cgp(rnp)) 1633 break; 1634 /* If time for quiescent-state forcing, do it. */ 1635 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 1636 (gf & RCU_GP_FLAG_FQS)) { 1637 trace_rcu_grace_period(rsp->name, 1638 ACCESS_ONCE(rsp->gpnum), 1639 TPS("fqsstart")); 1640 fqs_state = rcu_gp_fqs(rsp, fqs_state); 1641 trace_rcu_grace_period(rsp->name, 1642 ACCESS_ONCE(rsp->gpnum), 1643 TPS("fqsend")); 1644 cond_resched(); 1645 } else { 1646 /* Deal with stray signal. */ 1647 cond_resched(); 1648 flush_signals(current); 1649 trace_rcu_grace_period(rsp->name, 1650 ACCESS_ONCE(rsp->gpnum), 1651 TPS("fqswaitsig")); 1652 } 1653 j = jiffies_till_next_fqs; 1654 if (j > HZ) { 1655 j = HZ; 1656 jiffies_till_next_fqs = HZ; 1657 } else if (j < 1) { 1658 j = 1; 1659 jiffies_till_next_fqs = 1; 1660 } 1661 } 1662 1663 /* Handle grace-period end. */ 1664 rcu_gp_cleanup(rsp); 1665 } 1666 } 1667 1668 static void rsp_wakeup(struct irq_work *work) 1669 { 1670 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work); 1671 1672 /* Wake up rcu_gp_kthread() to start the grace period. */ 1673 wake_up(&rsp->gp_wq); 1674 } 1675 1676 /* 1677 * Start a new RCU grace period if warranted, re-initializing the hierarchy 1678 * in preparation for detecting the next grace period. The caller must hold 1679 * the root node's ->lock and hard irqs must be disabled. 1680 * 1681 * Note that it is legal for a dying CPU (which is marked as offline) to 1682 * invoke this function. This can happen when the dying CPU reports its 1683 * quiescent state. 1684 */ 1685 static void 1686 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 1687 struct rcu_data *rdp) 1688 { 1689 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 1690 /* 1691 * Either we have not yet spawned the grace-period 1692 * task, this CPU does not need another grace period, 1693 * or a grace period is already in progress. 1694 * Either way, don't start a new grace period. 1695 */ 1696 return; 1697 } 1698 rsp->gp_flags = RCU_GP_FLAG_INIT; 1699 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 1700 TPS("newreq")); 1701 1702 /* 1703 * We can't do wakeups while holding the rnp->lock, as that 1704 * could cause possible deadlocks with the rq->lock. Defer 1705 * the wakeup to interrupt context. And don't bother waking 1706 * up the running kthread. 1707 */ 1708 if (current != rsp->gp_kthread) 1709 irq_work_queue(&rsp->wakeup_work); 1710 } 1711 1712 /* 1713 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 1714 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 1715 * is invoked indirectly from rcu_advance_cbs(), which would result in 1716 * endless recursion -- or would do so if it wasn't for the self-deadlock 1717 * that is encountered beforehand. 1718 */ 1719 static void 1720 rcu_start_gp(struct rcu_state *rsp) 1721 { 1722 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1723 struct rcu_node *rnp = rcu_get_root(rsp); 1724 1725 /* 1726 * If there is no grace period in progress right now, any 1727 * callbacks we have up to this point will be satisfied by the 1728 * next grace period. Also, advancing the callbacks reduces the 1729 * probability of false positives from cpu_needs_another_gp() 1730 * resulting in pointless grace periods. So, advance callbacks 1731 * then start the grace period! 1732 */ 1733 rcu_advance_cbs(rsp, rnp, rdp); 1734 rcu_start_gp_advanced(rsp, rnp, rdp); 1735 } 1736 1737 /* 1738 * Report a full set of quiescent states to the specified rcu_state 1739 * data structure. This involves cleaning up after the prior grace 1740 * period and letting rcu_start_gp() start up the next grace period 1741 * if one is needed. Note that the caller must hold rnp->lock, which 1742 * is released before return. 1743 */ 1744 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 1745 __releases(rcu_get_root(rsp)->lock) 1746 { 1747 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 1748 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 1749 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 1750 } 1751 1752 /* 1753 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1754 * Allows quiescent states for a group of CPUs to be reported at one go 1755 * to the specified rcu_node structure, though all the CPUs in the group 1756 * must be represented by the same rcu_node structure (which need not be 1757 * a leaf rcu_node structure, though it often will be). That structure's 1758 * lock must be held upon entry, and it is released before return. 1759 */ 1760 static void 1761 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 1762 struct rcu_node *rnp, unsigned long flags) 1763 __releases(rnp->lock) 1764 { 1765 struct rcu_node *rnp_c; 1766 1767 /* Walk up the rcu_node hierarchy. */ 1768 for (;;) { 1769 if (!(rnp->qsmask & mask)) { 1770 1771 /* Our bit has already been cleared, so done. */ 1772 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1773 return; 1774 } 1775 rnp->qsmask &= ~mask; 1776 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 1777 mask, rnp->qsmask, rnp->level, 1778 rnp->grplo, rnp->grphi, 1779 !!rnp->gp_tasks); 1780 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1781 1782 /* Other bits still set at this level, so done. */ 1783 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1784 return; 1785 } 1786 mask = rnp->grpmask; 1787 if (rnp->parent == NULL) { 1788 1789 /* No more levels. Exit loop holding root lock. */ 1790 1791 break; 1792 } 1793 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1794 rnp_c = rnp; 1795 rnp = rnp->parent; 1796 raw_spin_lock_irqsave(&rnp->lock, flags); 1797 smp_mb__after_unlock_lock(); 1798 WARN_ON_ONCE(rnp_c->qsmask); 1799 } 1800 1801 /* 1802 * Get here if we are the last CPU to pass through a quiescent 1803 * state for this grace period. Invoke rcu_report_qs_rsp() 1804 * to clean up and start the next grace period if one is needed. 1805 */ 1806 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 1807 } 1808 1809 /* 1810 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1811 * structure. This must be either called from the specified CPU, or 1812 * called when the specified CPU is known to be offline (and when it is 1813 * also known that no other CPU is concurrently trying to help the offline 1814 * CPU). The lastcomp argument is used to make sure we are still in the 1815 * grace period of interest. We don't want to end the current grace period 1816 * based on quiescent states detected in an earlier grace period! 1817 */ 1818 static void 1819 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 1820 { 1821 unsigned long flags; 1822 unsigned long mask; 1823 struct rcu_node *rnp; 1824 1825 rnp = rdp->mynode; 1826 raw_spin_lock_irqsave(&rnp->lock, flags); 1827 smp_mb__after_unlock_lock(); 1828 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || 1829 rnp->completed == rnp->gpnum) { 1830 1831 /* 1832 * The grace period in which this quiescent state was 1833 * recorded has ended, so don't report it upwards. 1834 * We will instead need a new quiescent state that lies 1835 * within the current grace period. 1836 */ 1837 rdp->passed_quiesce = 0; /* need qs for new gp. */ 1838 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1839 return; 1840 } 1841 mask = rdp->grpmask; 1842 if ((rnp->qsmask & mask) == 0) { 1843 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1844 } else { 1845 rdp->qs_pending = 0; 1846 1847 /* 1848 * This GP can't end until cpu checks in, so all of our 1849 * callbacks can be processed during the next GP. 1850 */ 1851 rcu_accelerate_cbs(rsp, rnp, rdp); 1852 1853 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 1854 } 1855 } 1856 1857 /* 1858 * Check to see if there is a new grace period of which this CPU 1859 * is not yet aware, and if so, set up local rcu_data state for it. 1860 * Otherwise, see if this CPU has just passed through its first 1861 * quiescent state for this grace period, and record that fact if so. 1862 */ 1863 static void 1864 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 1865 { 1866 /* Check for grace-period ends and beginnings. */ 1867 note_gp_changes(rsp, rdp); 1868 1869 /* 1870 * Does this CPU still need to do its part for current grace period? 1871 * If no, return and let the other CPUs do their part as well. 1872 */ 1873 if (!rdp->qs_pending) 1874 return; 1875 1876 /* 1877 * Was there a quiescent state since the beginning of the grace 1878 * period? If no, then exit and wait for the next call. 1879 */ 1880 if (!rdp->passed_quiesce) 1881 return; 1882 1883 /* 1884 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 1885 * judge of that). 1886 */ 1887 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 1888 } 1889 1890 #ifdef CONFIG_HOTPLUG_CPU 1891 1892 /* 1893 * Send the specified CPU's RCU callbacks to the orphanage. The 1894 * specified CPU must be offline, and the caller must hold the 1895 * ->orphan_lock. 1896 */ 1897 static void 1898 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 1899 struct rcu_node *rnp, struct rcu_data *rdp) 1900 { 1901 /* No-CBs CPUs do not have orphanable callbacks. */ 1902 if (rcu_is_nocb_cpu(rdp->cpu)) 1903 return; 1904 1905 /* 1906 * Orphan the callbacks. First adjust the counts. This is safe 1907 * because _rcu_barrier() excludes CPU-hotplug operations, so it 1908 * cannot be running now. Thus no memory barrier is required. 1909 */ 1910 if (rdp->nxtlist != NULL) { 1911 rsp->qlen_lazy += rdp->qlen_lazy; 1912 rsp->qlen += rdp->qlen; 1913 rdp->n_cbs_orphaned += rdp->qlen; 1914 rdp->qlen_lazy = 0; 1915 ACCESS_ONCE(rdp->qlen) = 0; 1916 } 1917 1918 /* 1919 * Next, move those callbacks still needing a grace period to 1920 * the orphanage, where some other CPU will pick them up. 1921 * Some of the callbacks might have gone partway through a grace 1922 * period, but that is too bad. They get to start over because we 1923 * cannot assume that grace periods are synchronized across CPUs. 1924 * We don't bother updating the ->nxttail[] array yet, instead 1925 * we just reset the whole thing later on. 1926 */ 1927 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 1928 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 1929 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 1930 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 1931 } 1932 1933 /* 1934 * Then move the ready-to-invoke callbacks to the orphanage, 1935 * where some other CPU will pick them up. These will not be 1936 * required to pass though another grace period: They are done. 1937 */ 1938 if (rdp->nxtlist != NULL) { 1939 *rsp->orphan_donetail = rdp->nxtlist; 1940 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 1941 } 1942 1943 /* Finally, initialize the rcu_data structure's list to empty. */ 1944 init_callback_list(rdp); 1945 } 1946 1947 /* 1948 * Adopt the RCU callbacks from the specified rcu_state structure's 1949 * orphanage. The caller must hold the ->orphan_lock. 1950 */ 1951 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 1952 { 1953 int i; 1954 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 1955 1956 /* No-CBs CPUs are handled specially. */ 1957 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 1958 return; 1959 1960 /* Do the accounting first. */ 1961 rdp->qlen_lazy += rsp->qlen_lazy; 1962 rdp->qlen += rsp->qlen; 1963 rdp->n_cbs_adopted += rsp->qlen; 1964 if (rsp->qlen_lazy != rsp->qlen) 1965 rcu_idle_count_callbacks_posted(); 1966 rsp->qlen_lazy = 0; 1967 rsp->qlen = 0; 1968 1969 /* 1970 * We do not need a memory barrier here because the only way we 1971 * can get here if there is an rcu_barrier() in flight is if 1972 * we are the task doing the rcu_barrier(). 1973 */ 1974 1975 /* First adopt the ready-to-invoke callbacks. */ 1976 if (rsp->orphan_donelist != NULL) { 1977 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 1978 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 1979 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 1980 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 1981 rdp->nxttail[i] = rsp->orphan_donetail; 1982 rsp->orphan_donelist = NULL; 1983 rsp->orphan_donetail = &rsp->orphan_donelist; 1984 } 1985 1986 /* And then adopt the callbacks that still need a grace period. */ 1987 if (rsp->orphan_nxtlist != NULL) { 1988 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 1989 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 1990 rsp->orphan_nxtlist = NULL; 1991 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 1992 } 1993 } 1994 1995 /* 1996 * Trace the fact that this CPU is going offline. 1997 */ 1998 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 1999 { 2000 RCU_TRACE(unsigned long mask); 2001 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2002 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2003 2004 RCU_TRACE(mask = rdp->grpmask); 2005 trace_rcu_grace_period(rsp->name, 2006 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2007 TPS("cpuofl")); 2008 } 2009 2010 /* 2011 * The CPU has been completely removed, and some other CPU is reporting 2012 * this fact from process context. Do the remainder of the cleanup, 2013 * including orphaning the outgoing CPU's RCU callbacks, and also 2014 * adopting them. There can only be one CPU hotplug operation at a time, 2015 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2016 */ 2017 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2018 { 2019 unsigned long flags; 2020 unsigned long mask; 2021 int need_report = 0; 2022 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2023 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2024 2025 /* Adjust any no-longer-needed kthreads. */ 2026 rcu_boost_kthread_setaffinity(rnp, -1); 2027 2028 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ 2029 2030 /* Exclude any attempts to start a new grace period. */ 2031 mutex_lock(&rsp->onoff_mutex); 2032 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2033 2034 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2035 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2036 rcu_adopt_orphan_cbs(rsp, flags); 2037 2038 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 2039 mask = rdp->grpmask; /* rnp->grplo is constant. */ 2040 do { 2041 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2042 smp_mb__after_unlock_lock(); 2043 rnp->qsmaskinit &= ~mask; 2044 if (rnp->qsmaskinit != 0) { 2045 if (rnp != rdp->mynode) 2046 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2047 break; 2048 } 2049 if (rnp == rdp->mynode) 2050 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 2051 else 2052 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2053 mask = rnp->grpmask; 2054 rnp = rnp->parent; 2055 } while (rnp != NULL); 2056 2057 /* 2058 * We still hold the leaf rcu_node structure lock here, and 2059 * irqs are still disabled. The reason for this subterfuge is 2060 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock 2061 * held leads to deadlock. 2062 */ 2063 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ 2064 rnp = rdp->mynode; 2065 if (need_report & RCU_OFL_TASKS_NORM_GP) 2066 rcu_report_unblock_qs_rnp(rnp, flags); 2067 else 2068 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2069 if (need_report & RCU_OFL_TASKS_EXP_GP) 2070 rcu_report_exp_rnp(rsp, rnp, true); 2071 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2072 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2073 cpu, rdp->qlen, rdp->nxtlist); 2074 init_callback_list(rdp); 2075 /* Disallow further callbacks on this CPU. */ 2076 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2077 mutex_unlock(&rsp->onoff_mutex); 2078 } 2079 2080 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2081 2082 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2083 { 2084 } 2085 2086 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2087 { 2088 } 2089 2090 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2091 2092 /* 2093 * Invoke any RCU callbacks that have made it to the end of their grace 2094 * period. Thottle as specified by rdp->blimit. 2095 */ 2096 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2097 { 2098 unsigned long flags; 2099 struct rcu_head *next, *list, **tail; 2100 long bl, count, count_lazy; 2101 int i; 2102 2103 /* If no callbacks are ready, just return. */ 2104 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2105 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2106 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2107 need_resched(), is_idle_task(current), 2108 rcu_is_callbacks_kthread()); 2109 return; 2110 } 2111 2112 /* 2113 * Extract the list of ready callbacks, disabling to prevent 2114 * races with call_rcu() from interrupt handlers. 2115 */ 2116 local_irq_save(flags); 2117 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2118 bl = rdp->blimit; 2119 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2120 list = rdp->nxtlist; 2121 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2122 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2123 tail = rdp->nxttail[RCU_DONE_TAIL]; 2124 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2125 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2126 rdp->nxttail[i] = &rdp->nxtlist; 2127 local_irq_restore(flags); 2128 2129 /* Invoke callbacks. */ 2130 count = count_lazy = 0; 2131 while (list) { 2132 next = list->next; 2133 prefetch(next); 2134 debug_rcu_head_unqueue(list); 2135 if (__rcu_reclaim(rsp->name, list)) 2136 count_lazy++; 2137 list = next; 2138 /* Stop only if limit reached and CPU has something to do. */ 2139 if (++count >= bl && 2140 (need_resched() || 2141 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2142 break; 2143 } 2144 2145 local_irq_save(flags); 2146 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2147 is_idle_task(current), 2148 rcu_is_callbacks_kthread()); 2149 2150 /* Update count, and requeue any remaining callbacks. */ 2151 if (list != NULL) { 2152 *tail = rdp->nxtlist; 2153 rdp->nxtlist = list; 2154 for (i = 0; i < RCU_NEXT_SIZE; i++) 2155 if (&rdp->nxtlist == rdp->nxttail[i]) 2156 rdp->nxttail[i] = tail; 2157 else 2158 break; 2159 } 2160 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2161 rdp->qlen_lazy -= count_lazy; 2162 ACCESS_ONCE(rdp->qlen) -= count; 2163 rdp->n_cbs_invoked += count; 2164 2165 /* Reinstate batch limit if we have worked down the excess. */ 2166 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2167 rdp->blimit = blimit; 2168 2169 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2170 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2171 rdp->qlen_last_fqs_check = 0; 2172 rdp->n_force_qs_snap = rsp->n_force_qs; 2173 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2174 rdp->qlen_last_fqs_check = rdp->qlen; 2175 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2176 2177 local_irq_restore(flags); 2178 2179 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2180 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2181 invoke_rcu_core(); 2182 } 2183 2184 /* 2185 * Check to see if this CPU is in a non-context-switch quiescent state 2186 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2187 * Also schedule RCU core processing. 2188 * 2189 * This function must be called from hardirq context. It is normally 2190 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2191 * false, there is no point in invoking rcu_check_callbacks(). 2192 */ 2193 void rcu_check_callbacks(int cpu, int user) 2194 { 2195 trace_rcu_utilization(TPS("Start scheduler-tick")); 2196 increment_cpu_stall_ticks(); 2197 if (user || rcu_is_cpu_rrupt_from_idle()) { 2198 2199 /* 2200 * Get here if this CPU took its interrupt from user 2201 * mode or from the idle loop, and if this is not a 2202 * nested interrupt. In this case, the CPU is in 2203 * a quiescent state, so note it. 2204 * 2205 * No memory barrier is required here because both 2206 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2207 * variables that other CPUs neither access nor modify, 2208 * at least not while the corresponding CPU is online. 2209 */ 2210 2211 rcu_sched_qs(cpu); 2212 rcu_bh_qs(cpu); 2213 2214 } else if (!in_softirq()) { 2215 2216 /* 2217 * Get here if this CPU did not take its interrupt from 2218 * softirq, in other words, if it is not interrupting 2219 * a rcu_bh read-side critical section. This is an _bh 2220 * critical section, so note it. 2221 */ 2222 2223 rcu_bh_qs(cpu); 2224 } 2225 rcu_preempt_check_callbacks(cpu); 2226 if (rcu_pending(cpu)) 2227 invoke_rcu_core(); 2228 trace_rcu_utilization(TPS("End scheduler-tick")); 2229 } 2230 2231 /* 2232 * Scan the leaf rcu_node structures, processing dyntick state for any that 2233 * have not yet encountered a quiescent state, using the function specified. 2234 * Also initiate boosting for any threads blocked on the root rcu_node. 2235 * 2236 * The caller must have suppressed start of new grace periods. 2237 */ 2238 static void force_qs_rnp(struct rcu_state *rsp, 2239 int (*f)(struct rcu_data *rsp, bool *isidle, 2240 unsigned long *maxj), 2241 bool *isidle, unsigned long *maxj) 2242 { 2243 unsigned long bit; 2244 int cpu; 2245 unsigned long flags; 2246 unsigned long mask; 2247 struct rcu_node *rnp; 2248 2249 rcu_for_each_leaf_node(rsp, rnp) { 2250 cond_resched(); 2251 mask = 0; 2252 raw_spin_lock_irqsave(&rnp->lock, flags); 2253 smp_mb__after_unlock_lock(); 2254 if (!rcu_gp_in_progress(rsp)) { 2255 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2256 return; 2257 } 2258 if (rnp->qsmask == 0) { 2259 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 2260 continue; 2261 } 2262 cpu = rnp->grplo; 2263 bit = 1; 2264 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2265 if ((rnp->qsmask & bit) != 0) { 2266 if ((rnp->qsmaskinit & bit) != 0) 2267 *isidle = 0; 2268 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2269 mask |= bit; 2270 } 2271 } 2272 if (mask != 0) { 2273 2274 /* rcu_report_qs_rnp() releases rnp->lock. */ 2275 rcu_report_qs_rnp(mask, rsp, rnp, flags); 2276 continue; 2277 } 2278 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2279 } 2280 rnp = rcu_get_root(rsp); 2281 if (rnp->qsmask == 0) { 2282 raw_spin_lock_irqsave(&rnp->lock, flags); 2283 smp_mb__after_unlock_lock(); 2284 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ 2285 } 2286 } 2287 2288 /* 2289 * Force quiescent states on reluctant CPUs, and also detect which 2290 * CPUs are in dyntick-idle mode. 2291 */ 2292 static void force_quiescent_state(struct rcu_state *rsp) 2293 { 2294 unsigned long flags; 2295 bool ret; 2296 struct rcu_node *rnp; 2297 struct rcu_node *rnp_old = NULL; 2298 2299 /* Funnel through hierarchy to reduce memory contention. */ 2300 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; 2301 for (; rnp != NULL; rnp = rnp->parent) { 2302 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2303 !raw_spin_trylock(&rnp->fqslock); 2304 if (rnp_old != NULL) 2305 raw_spin_unlock(&rnp_old->fqslock); 2306 if (ret) { 2307 rsp->n_force_qs_lh++; 2308 return; 2309 } 2310 rnp_old = rnp; 2311 } 2312 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2313 2314 /* Reached the root of the rcu_node tree, acquire lock. */ 2315 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2316 smp_mb__after_unlock_lock(); 2317 raw_spin_unlock(&rnp_old->fqslock); 2318 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2319 rsp->n_force_qs_lh++; 2320 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2321 return; /* Someone beat us to it. */ 2322 } 2323 rsp->gp_flags |= RCU_GP_FLAG_FQS; 2324 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2325 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 2326 } 2327 2328 /* 2329 * This does the RCU core processing work for the specified rcu_state 2330 * and rcu_data structures. This may be called only from the CPU to 2331 * whom the rdp belongs. 2332 */ 2333 static void 2334 __rcu_process_callbacks(struct rcu_state *rsp) 2335 { 2336 unsigned long flags; 2337 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 2338 2339 WARN_ON_ONCE(rdp->beenonline == 0); 2340 2341 /* Update RCU state based on any recent quiescent states. */ 2342 rcu_check_quiescent_state(rsp, rdp); 2343 2344 /* Does this CPU require a not-yet-started grace period? */ 2345 local_irq_save(flags); 2346 if (cpu_needs_another_gp(rsp, rdp)) { 2347 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2348 rcu_start_gp(rsp); 2349 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2350 } else { 2351 local_irq_restore(flags); 2352 } 2353 2354 /* If there are callbacks ready, invoke them. */ 2355 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2356 invoke_rcu_callbacks(rsp, rdp); 2357 2358 /* Do any needed deferred wakeups of rcuo kthreads. */ 2359 do_nocb_deferred_wakeup(rdp); 2360 } 2361 2362 /* 2363 * Do RCU core processing for the current CPU. 2364 */ 2365 static void rcu_process_callbacks(struct softirq_action *unused) 2366 { 2367 struct rcu_state *rsp; 2368 2369 if (cpu_is_offline(smp_processor_id())) 2370 return; 2371 trace_rcu_utilization(TPS("Start RCU core")); 2372 for_each_rcu_flavor(rsp) 2373 __rcu_process_callbacks(rsp); 2374 trace_rcu_utilization(TPS("End RCU core")); 2375 } 2376 2377 /* 2378 * Schedule RCU callback invocation. If the specified type of RCU 2379 * does not support RCU priority boosting, just do a direct call, 2380 * otherwise wake up the per-CPU kernel kthread. Note that because we 2381 * are running on the current CPU with interrupts disabled, the 2382 * rcu_cpu_kthread_task cannot disappear out from under us. 2383 */ 2384 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2385 { 2386 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2387 return; 2388 if (likely(!rsp->boost)) { 2389 rcu_do_batch(rsp, rdp); 2390 return; 2391 } 2392 invoke_rcu_callbacks_kthread(); 2393 } 2394 2395 static void invoke_rcu_core(void) 2396 { 2397 if (cpu_online(smp_processor_id())) 2398 raise_softirq(RCU_SOFTIRQ); 2399 } 2400 2401 /* 2402 * Handle any core-RCU processing required by a call_rcu() invocation. 2403 */ 2404 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2405 struct rcu_head *head, unsigned long flags) 2406 { 2407 /* 2408 * If called from an extended quiescent state, invoke the RCU 2409 * core in order to force a re-evaluation of RCU's idleness. 2410 */ 2411 if (!rcu_is_watching() && cpu_online(smp_processor_id())) 2412 invoke_rcu_core(); 2413 2414 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2415 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2416 return; 2417 2418 /* 2419 * Force the grace period if too many callbacks or too long waiting. 2420 * Enforce hysteresis, and don't invoke force_quiescent_state() 2421 * if some other CPU has recently done so. Also, don't bother 2422 * invoking force_quiescent_state() if the newly enqueued callback 2423 * is the only one waiting for a grace period to complete. 2424 */ 2425 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2426 2427 /* Are we ignoring a completed grace period? */ 2428 note_gp_changes(rsp, rdp); 2429 2430 /* Start a new grace period if one not already started. */ 2431 if (!rcu_gp_in_progress(rsp)) { 2432 struct rcu_node *rnp_root = rcu_get_root(rsp); 2433 2434 raw_spin_lock(&rnp_root->lock); 2435 smp_mb__after_unlock_lock(); 2436 rcu_start_gp(rsp); 2437 raw_spin_unlock(&rnp_root->lock); 2438 } else { 2439 /* Give the grace period a kick. */ 2440 rdp->blimit = LONG_MAX; 2441 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2442 *rdp->nxttail[RCU_DONE_TAIL] != head) 2443 force_quiescent_state(rsp); 2444 rdp->n_force_qs_snap = rsp->n_force_qs; 2445 rdp->qlen_last_fqs_check = rdp->qlen; 2446 } 2447 } 2448 } 2449 2450 /* 2451 * RCU callback function to leak a callback. 2452 */ 2453 static void rcu_leak_callback(struct rcu_head *rhp) 2454 { 2455 } 2456 2457 /* 2458 * Helper function for call_rcu() and friends. The cpu argument will 2459 * normally be -1, indicating "currently running CPU". It may specify 2460 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2461 * is expected to specify a CPU. 2462 */ 2463 static void 2464 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2465 struct rcu_state *rsp, int cpu, bool lazy) 2466 { 2467 unsigned long flags; 2468 struct rcu_data *rdp; 2469 2470 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ 2471 if (debug_rcu_head_queue(head)) { 2472 /* Probable double call_rcu(), so leak the callback. */ 2473 ACCESS_ONCE(head->func) = rcu_leak_callback; 2474 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2475 return; 2476 } 2477 head->func = func; 2478 head->next = NULL; 2479 2480 /* 2481 * Opportunistically note grace-period endings and beginnings. 2482 * Note that we might see a beginning right after we see an 2483 * end, but never vice versa, since this CPU has to pass through 2484 * a quiescent state betweentimes. 2485 */ 2486 local_irq_save(flags); 2487 rdp = this_cpu_ptr(rsp->rda); 2488 2489 /* Add the callback to our list. */ 2490 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2491 int offline; 2492 2493 if (cpu != -1) 2494 rdp = per_cpu_ptr(rsp->rda, cpu); 2495 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2496 WARN_ON_ONCE(offline); 2497 /* _call_rcu() is illegal on offline CPU; leak the callback. */ 2498 local_irq_restore(flags); 2499 return; 2500 } 2501 ACCESS_ONCE(rdp->qlen)++; 2502 if (lazy) 2503 rdp->qlen_lazy++; 2504 else 2505 rcu_idle_count_callbacks_posted(); 2506 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 2507 *rdp->nxttail[RCU_NEXT_TAIL] = head; 2508 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 2509 2510 if (__is_kfree_rcu_offset((unsigned long)func)) 2511 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2512 rdp->qlen_lazy, rdp->qlen); 2513 else 2514 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 2515 2516 /* Go handle any RCU core processing required. */ 2517 __call_rcu_core(rsp, rdp, head, flags); 2518 local_irq_restore(flags); 2519 } 2520 2521 /* 2522 * Queue an RCU-sched callback for invocation after a grace period. 2523 */ 2524 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2525 { 2526 __call_rcu(head, func, &rcu_sched_state, -1, 0); 2527 } 2528 EXPORT_SYMBOL_GPL(call_rcu_sched); 2529 2530 /* 2531 * Queue an RCU callback for invocation after a quicker grace period. 2532 */ 2533 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2534 { 2535 __call_rcu(head, func, &rcu_bh_state, -1, 0); 2536 } 2537 EXPORT_SYMBOL_GPL(call_rcu_bh); 2538 2539 /* 2540 * Because a context switch is a grace period for RCU-sched and RCU-bh, 2541 * any blocking grace-period wait automatically implies a grace period 2542 * if there is only one CPU online at any point time during execution 2543 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 2544 * occasionally incorrectly indicate that there are multiple CPUs online 2545 * when there was in fact only one the whole time, as this just adds 2546 * some overhead: RCU still operates correctly. 2547 */ 2548 static inline int rcu_blocking_is_gp(void) 2549 { 2550 int ret; 2551 2552 might_sleep(); /* Check for RCU read-side critical section. */ 2553 preempt_disable(); 2554 ret = num_online_cpus() <= 1; 2555 preempt_enable(); 2556 return ret; 2557 } 2558 2559 /** 2560 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 2561 * 2562 * Control will return to the caller some time after a full rcu-sched 2563 * grace period has elapsed, in other words after all currently executing 2564 * rcu-sched read-side critical sections have completed. These read-side 2565 * critical sections are delimited by rcu_read_lock_sched() and 2566 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 2567 * local_irq_disable(), and so on may be used in place of 2568 * rcu_read_lock_sched(). 2569 * 2570 * This means that all preempt_disable code sequences, including NMI and 2571 * non-threaded hardware-interrupt handlers, in progress on entry will 2572 * have completed before this primitive returns. However, this does not 2573 * guarantee that softirq handlers will have completed, since in some 2574 * kernels, these handlers can run in process context, and can block. 2575 * 2576 * Note that this guarantee implies further memory-ordering guarantees. 2577 * On systems with more than one CPU, when synchronize_sched() returns, 2578 * each CPU is guaranteed to have executed a full memory barrier since the 2579 * end of its last RCU-sched read-side critical section whose beginning 2580 * preceded the call to synchronize_sched(). In addition, each CPU having 2581 * an RCU read-side critical section that extends beyond the return from 2582 * synchronize_sched() is guaranteed to have executed a full memory barrier 2583 * after the beginning of synchronize_sched() and before the beginning of 2584 * that RCU read-side critical section. Note that these guarantees include 2585 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2586 * that are executing in the kernel. 2587 * 2588 * Furthermore, if CPU A invoked synchronize_sched(), which returned 2589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2590 * to have executed a full memory barrier during the execution of 2591 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 2592 * again only if the system has more than one CPU). 2593 * 2594 * This primitive provides the guarantees made by the (now removed) 2595 * synchronize_kernel() API. In contrast, synchronize_rcu() only 2596 * guarantees that rcu_read_lock() sections will have completed. 2597 * In "classic RCU", these two guarantees happen to be one and 2598 * the same, but can differ in realtime RCU implementations. 2599 */ 2600 void synchronize_sched(void) 2601 { 2602 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2603 !lock_is_held(&rcu_lock_map) && 2604 !lock_is_held(&rcu_sched_lock_map), 2605 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 2606 if (rcu_blocking_is_gp()) 2607 return; 2608 if (rcu_expedited) 2609 synchronize_sched_expedited(); 2610 else 2611 wait_rcu_gp(call_rcu_sched); 2612 } 2613 EXPORT_SYMBOL_GPL(synchronize_sched); 2614 2615 /** 2616 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 2617 * 2618 * Control will return to the caller some time after a full rcu_bh grace 2619 * period has elapsed, in other words after all currently executing rcu_bh 2620 * read-side critical sections have completed. RCU read-side critical 2621 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 2622 * and may be nested. 2623 * 2624 * See the description of synchronize_sched() for more detailed information 2625 * on memory ordering guarantees. 2626 */ 2627 void synchronize_rcu_bh(void) 2628 { 2629 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2630 !lock_is_held(&rcu_lock_map) && 2631 !lock_is_held(&rcu_sched_lock_map), 2632 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 2633 if (rcu_blocking_is_gp()) 2634 return; 2635 if (rcu_expedited) 2636 synchronize_rcu_bh_expedited(); 2637 else 2638 wait_rcu_gp(call_rcu_bh); 2639 } 2640 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 2641 2642 static int synchronize_sched_expedited_cpu_stop(void *data) 2643 { 2644 /* 2645 * There must be a full memory barrier on each affected CPU 2646 * between the time that try_stop_cpus() is called and the 2647 * time that it returns. 2648 * 2649 * In the current initial implementation of cpu_stop, the 2650 * above condition is already met when the control reaches 2651 * this point and the following smp_mb() is not strictly 2652 * necessary. Do smp_mb() anyway for documentation and 2653 * robustness against future implementation changes. 2654 */ 2655 smp_mb(); /* See above comment block. */ 2656 return 0; 2657 } 2658 2659 /** 2660 * synchronize_sched_expedited - Brute-force RCU-sched grace period 2661 * 2662 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 2663 * approach to force the grace period to end quickly. This consumes 2664 * significant time on all CPUs and is unfriendly to real-time workloads, 2665 * so is thus not recommended for any sort of common-case code. In fact, 2666 * if you are using synchronize_sched_expedited() in a loop, please 2667 * restructure your code to batch your updates, and then use a single 2668 * synchronize_sched() instead. 2669 * 2670 * Note that it is illegal to call this function while holding any lock 2671 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 2672 * to call this function from a CPU-hotplug notifier. Failing to observe 2673 * these restriction will result in deadlock. 2674 * 2675 * This implementation can be thought of as an application of ticket 2676 * locking to RCU, with sync_sched_expedited_started and 2677 * sync_sched_expedited_done taking on the roles of the halves 2678 * of the ticket-lock word. Each task atomically increments 2679 * sync_sched_expedited_started upon entry, snapshotting the old value, 2680 * then attempts to stop all the CPUs. If this succeeds, then each 2681 * CPU will have executed a context switch, resulting in an RCU-sched 2682 * grace period. We are then done, so we use atomic_cmpxchg() to 2683 * update sync_sched_expedited_done to match our snapshot -- but 2684 * only if someone else has not already advanced past our snapshot. 2685 * 2686 * On the other hand, if try_stop_cpus() fails, we check the value 2687 * of sync_sched_expedited_done. If it has advanced past our 2688 * initial snapshot, then someone else must have forced a grace period 2689 * some time after we took our snapshot. In this case, our work is 2690 * done for us, and we can simply return. Otherwise, we try again, 2691 * but keep our initial snapshot for purposes of checking for someone 2692 * doing our work for us. 2693 * 2694 * If we fail too many times in a row, we fall back to synchronize_sched(). 2695 */ 2696 void synchronize_sched_expedited(void) 2697 { 2698 long firstsnap, s, snap; 2699 int trycount = 0; 2700 struct rcu_state *rsp = &rcu_sched_state; 2701 2702 /* 2703 * If we are in danger of counter wrap, just do synchronize_sched(). 2704 * By allowing sync_sched_expedited_started to advance no more than 2705 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 2706 * that more than 3.5 billion CPUs would be required to force a 2707 * counter wrap on a 32-bit system. Quite a few more CPUs would of 2708 * course be required on a 64-bit system. 2709 */ 2710 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 2711 (ulong)atomic_long_read(&rsp->expedited_done) + 2712 ULONG_MAX / 8)) { 2713 synchronize_sched(); 2714 atomic_long_inc(&rsp->expedited_wrap); 2715 return; 2716 } 2717 2718 /* 2719 * Take a ticket. Note that atomic_inc_return() implies a 2720 * full memory barrier. 2721 */ 2722 snap = atomic_long_inc_return(&rsp->expedited_start); 2723 firstsnap = snap; 2724 get_online_cpus(); 2725 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 2726 2727 /* 2728 * Each pass through the following loop attempts to force a 2729 * context switch on each CPU. 2730 */ 2731 while (try_stop_cpus(cpu_online_mask, 2732 synchronize_sched_expedited_cpu_stop, 2733 NULL) == -EAGAIN) { 2734 put_online_cpus(); 2735 atomic_long_inc(&rsp->expedited_tryfail); 2736 2737 /* Check to see if someone else did our work for us. */ 2738 s = atomic_long_read(&rsp->expedited_done); 2739 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 2740 /* ensure test happens before caller kfree */ 2741 smp_mb__before_atomic_inc(); /* ^^^ */ 2742 atomic_long_inc(&rsp->expedited_workdone1); 2743 return; 2744 } 2745 2746 /* No joy, try again later. Or just synchronize_sched(). */ 2747 if (trycount++ < 10) { 2748 udelay(trycount * num_online_cpus()); 2749 } else { 2750 wait_rcu_gp(call_rcu_sched); 2751 atomic_long_inc(&rsp->expedited_normal); 2752 return; 2753 } 2754 2755 /* Recheck to see if someone else did our work for us. */ 2756 s = atomic_long_read(&rsp->expedited_done); 2757 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 2758 /* ensure test happens before caller kfree */ 2759 smp_mb__before_atomic_inc(); /* ^^^ */ 2760 atomic_long_inc(&rsp->expedited_workdone2); 2761 return; 2762 } 2763 2764 /* 2765 * Refetching sync_sched_expedited_started allows later 2766 * callers to piggyback on our grace period. We retry 2767 * after they started, so our grace period works for them, 2768 * and they started after our first try, so their grace 2769 * period works for us. 2770 */ 2771 get_online_cpus(); 2772 snap = atomic_long_read(&rsp->expedited_start); 2773 smp_mb(); /* ensure read is before try_stop_cpus(). */ 2774 } 2775 atomic_long_inc(&rsp->expedited_stoppedcpus); 2776 2777 /* 2778 * Everyone up to our most recent fetch is covered by our grace 2779 * period. Update the counter, but only if our work is still 2780 * relevant -- which it won't be if someone who started later 2781 * than we did already did their update. 2782 */ 2783 do { 2784 atomic_long_inc(&rsp->expedited_done_tries); 2785 s = atomic_long_read(&rsp->expedited_done); 2786 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 2787 /* ensure test happens before caller kfree */ 2788 smp_mb__before_atomic_inc(); /* ^^^ */ 2789 atomic_long_inc(&rsp->expedited_done_lost); 2790 break; 2791 } 2792 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 2793 atomic_long_inc(&rsp->expedited_done_exit); 2794 2795 put_online_cpus(); 2796 } 2797 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 2798 2799 /* 2800 * Check to see if there is any immediate RCU-related work to be done 2801 * by the current CPU, for the specified type of RCU, returning 1 if so. 2802 * The checks are in order of increasing expense: checks that can be 2803 * carried out against CPU-local state are performed first. However, 2804 * we must check for CPU stalls first, else we might not get a chance. 2805 */ 2806 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 2807 { 2808 struct rcu_node *rnp = rdp->mynode; 2809 2810 rdp->n_rcu_pending++; 2811 2812 /* Check for CPU stalls, if enabled. */ 2813 check_cpu_stall(rsp, rdp); 2814 2815 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 2816 if (rcu_nohz_full_cpu(rsp)) 2817 return 0; 2818 2819 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2820 if (rcu_scheduler_fully_active && 2821 rdp->qs_pending && !rdp->passed_quiesce) { 2822 rdp->n_rp_qs_pending++; 2823 } else if (rdp->qs_pending && rdp->passed_quiesce) { 2824 rdp->n_rp_report_qs++; 2825 return 1; 2826 } 2827 2828 /* Does this CPU have callbacks ready to invoke? */ 2829 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 2830 rdp->n_rp_cb_ready++; 2831 return 1; 2832 } 2833 2834 /* Has RCU gone idle with this CPU needing another grace period? */ 2835 if (cpu_needs_another_gp(rsp, rdp)) { 2836 rdp->n_rp_cpu_needs_gp++; 2837 return 1; 2838 } 2839 2840 /* Has another RCU grace period completed? */ 2841 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 2842 rdp->n_rp_gp_completed++; 2843 return 1; 2844 } 2845 2846 /* Has a new RCU grace period started? */ 2847 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ 2848 rdp->n_rp_gp_started++; 2849 return 1; 2850 } 2851 2852 /* Does this CPU need a deferred NOCB wakeup? */ 2853 if (rcu_nocb_need_deferred_wakeup(rdp)) { 2854 rdp->n_rp_nocb_defer_wakeup++; 2855 return 1; 2856 } 2857 2858 /* nothing to do */ 2859 rdp->n_rp_need_nothing++; 2860 return 0; 2861 } 2862 2863 /* 2864 * Check to see if there is any immediate RCU-related work to be done 2865 * by the current CPU, returning 1 if so. This function is part of the 2866 * RCU implementation; it is -not- an exported member of the RCU API. 2867 */ 2868 static int rcu_pending(int cpu) 2869 { 2870 struct rcu_state *rsp; 2871 2872 for_each_rcu_flavor(rsp) 2873 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) 2874 return 1; 2875 return 0; 2876 } 2877 2878 /* 2879 * Return true if the specified CPU has any callback. If all_lazy is 2880 * non-NULL, store an indication of whether all callbacks are lazy. 2881 * (If there are no callbacks, all of them are deemed to be lazy.) 2882 */ 2883 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy) 2884 { 2885 bool al = true; 2886 bool hc = false; 2887 struct rcu_data *rdp; 2888 struct rcu_state *rsp; 2889 2890 for_each_rcu_flavor(rsp) { 2891 rdp = per_cpu_ptr(rsp->rda, cpu); 2892 if (!rdp->nxtlist) 2893 continue; 2894 hc = true; 2895 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 2896 al = false; 2897 break; 2898 } 2899 } 2900 if (all_lazy) 2901 *all_lazy = al; 2902 return hc; 2903 } 2904 2905 /* 2906 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 2907 * the compiler is expected to optimize this away. 2908 */ 2909 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 2910 int cpu, unsigned long done) 2911 { 2912 trace_rcu_barrier(rsp->name, s, cpu, 2913 atomic_read(&rsp->barrier_cpu_count), done); 2914 } 2915 2916 /* 2917 * RCU callback function for _rcu_barrier(). If we are last, wake 2918 * up the task executing _rcu_barrier(). 2919 */ 2920 static void rcu_barrier_callback(struct rcu_head *rhp) 2921 { 2922 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 2923 struct rcu_state *rsp = rdp->rsp; 2924 2925 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 2926 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 2927 complete(&rsp->barrier_completion); 2928 } else { 2929 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 2930 } 2931 } 2932 2933 /* 2934 * Called with preemption disabled, and from cross-cpu IRQ context. 2935 */ 2936 static void rcu_barrier_func(void *type) 2937 { 2938 struct rcu_state *rsp = type; 2939 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 2940 2941 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 2942 atomic_inc(&rsp->barrier_cpu_count); 2943 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 2944 } 2945 2946 /* 2947 * Orchestrate the specified type of RCU barrier, waiting for all 2948 * RCU callbacks of the specified type to complete. 2949 */ 2950 static void _rcu_barrier(struct rcu_state *rsp) 2951 { 2952 int cpu; 2953 struct rcu_data *rdp; 2954 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 2955 unsigned long snap_done; 2956 2957 _rcu_barrier_trace(rsp, "Begin", -1, snap); 2958 2959 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 2960 mutex_lock(&rsp->barrier_mutex); 2961 2962 /* 2963 * Ensure that all prior references, including to ->n_barrier_done, 2964 * are ordered before the _rcu_barrier() machinery. 2965 */ 2966 smp_mb(); /* See above block comment. */ 2967 2968 /* 2969 * Recheck ->n_barrier_done to see if others did our work for us. 2970 * This means checking ->n_barrier_done for an even-to-odd-to-even 2971 * transition. The "if" expression below therefore rounds the old 2972 * value up to the next even number and adds two before comparing. 2973 */ 2974 snap_done = rsp->n_barrier_done; 2975 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 2976 2977 /* 2978 * If the value in snap is odd, we needed to wait for the current 2979 * rcu_barrier() to complete, then wait for the next one, in other 2980 * words, we need the value of snap_done to be three larger than 2981 * the value of snap. On the other hand, if the value in snap is 2982 * even, we only had to wait for the next rcu_barrier() to complete, 2983 * in other words, we need the value of snap_done to be only two 2984 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 2985 * this for us (thank you, Linus!). 2986 */ 2987 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 2988 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 2989 smp_mb(); /* caller's subsequent code after above check. */ 2990 mutex_unlock(&rsp->barrier_mutex); 2991 return; 2992 } 2993 2994 /* 2995 * Increment ->n_barrier_done to avoid duplicate work. Use 2996 * ACCESS_ONCE() to prevent the compiler from speculating 2997 * the increment to precede the early-exit check. 2998 */ 2999 ACCESS_ONCE(rsp->n_barrier_done)++; 3000 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 3001 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 3002 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 3003 3004 /* 3005 * Initialize the count to one rather than to zero in order to 3006 * avoid a too-soon return to zero in case of a short grace period 3007 * (or preemption of this task). Exclude CPU-hotplug operations 3008 * to ensure that no offline CPU has callbacks queued. 3009 */ 3010 init_completion(&rsp->barrier_completion); 3011 atomic_set(&rsp->barrier_cpu_count, 1); 3012 get_online_cpus(); 3013 3014 /* 3015 * Force each CPU with callbacks to register a new callback. 3016 * When that callback is invoked, we will know that all of the 3017 * corresponding CPU's preceding callbacks have been invoked. 3018 */ 3019 for_each_possible_cpu(cpu) { 3020 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3021 continue; 3022 rdp = per_cpu_ptr(rsp->rda, cpu); 3023 if (rcu_is_nocb_cpu(cpu)) { 3024 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3025 rsp->n_barrier_done); 3026 atomic_inc(&rsp->barrier_cpu_count); 3027 __call_rcu(&rdp->barrier_head, rcu_barrier_callback, 3028 rsp, cpu, 0); 3029 } else if (ACCESS_ONCE(rdp->qlen)) { 3030 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3031 rsp->n_barrier_done); 3032 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3033 } else { 3034 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3035 rsp->n_barrier_done); 3036 } 3037 } 3038 put_online_cpus(); 3039 3040 /* 3041 * Now that we have an rcu_barrier_callback() callback on each 3042 * CPU, and thus each counted, remove the initial count. 3043 */ 3044 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3045 complete(&rsp->barrier_completion); 3046 3047 /* Increment ->n_barrier_done to prevent duplicate work. */ 3048 smp_mb(); /* Keep increment after above mechanism. */ 3049 ACCESS_ONCE(rsp->n_barrier_done)++; 3050 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 3051 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 3052 smp_mb(); /* Keep increment before caller's subsequent code. */ 3053 3054 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3055 wait_for_completion(&rsp->barrier_completion); 3056 3057 /* Other rcu_barrier() invocations can now safely proceed. */ 3058 mutex_unlock(&rsp->barrier_mutex); 3059 } 3060 3061 /** 3062 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3063 */ 3064 void rcu_barrier_bh(void) 3065 { 3066 _rcu_barrier(&rcu_bh_state); 3067 } 3068 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3069 3070 /** 3071 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3072 */ 3073 void rcu_barrier_sched(void) 3074 { 3075 _rcu_barrier(&rcu_sched_state); 3076 } 3077 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3078 3079 /* 3080 * Do boot-time initialization of a CPU's per-CPU RCU data. 3081 */ 3082 static void __init 3083 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3084 { 3085 unsigned long flags; 3086 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3087 struct rcu_node *rnp = rcu_get_root(rsp); 3088 3089 /* Set up local state, ensuring consistent view of global state. */ 3090 raw_spin_lock_irqsave(&rnp->lock, flags); 3091 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3092 init_callback_list(rdp); 3093 rdp->qlen_lazy = 0; 3094 ACCESS_ONCE(rdp->qlen) = 0; 3095 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3096 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3097 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3098 rdp->cpu = cpu; 3099 rdp->rsp = rsp; 3100 rcu_boot_init_nocb_percpu_data(rdp); 3101 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3102 } 3103 3104 /* 3105 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3106 * offline event can be happening at a given time. Note also that we 3107 * can accept some slop in the rsp->completed access due to the fact 3108 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3109 */ 3110 static void 3111 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) 3112 { 3113 unsigned long flags; 3114 unsigned long mask; 3115 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3116 struct rcu_node *rnp = rcu_get_root(rsp); 3117 3118 /* Exclude new grace periods. */ 3119 mutex_lock(&rsp->onoff_mutex); 3120 3121 /* Set up local state, ensuring consistent view of global state. */ 3122 raw_spin_lock_irqsave(&rnp->lock, flags); 3123 rdp->beenonline = 1; /* We have now been online. */ 3124 rdp->preemptible = preemptible; 3125 rdp->qlen_last_fqs_check = 0; 3126 rdp->n_force_qs_snap = rsp->n_force_qs; 3127 rdp->blimit = blimit; 3128 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3129 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3130 rcu_sysidle_init_percpu_data(rdp->dynticks); 3131 atomic_set(&rdp->dynticks->dynticks, 3132 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3133 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3134 3135 /* Add CPU to rcu_node bitmasks. */ 3136 rnp = rdp->mynode; 3137 mask = rdp->grpmask; 3138 do { 3139 /* Exclude any attempts to start a new GP on small systems. */ 3140 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3141 rnp->qsmaskinit |= mask; 3142 mask = rnp->grpmask; 3143 if (rnp == rdp->mynode) { 3144 /* 3145 * If there is a grace period in progress, we will 3146 * set up to wait for it next time we run the 3147 * RCU core code. 3148 */ 3149 rdp->gpnum = rnp->completed; 3150 rdp->completed = rnp->completed; 3151 rdp->passed_quiesce = 0; 3152 rdp->qs_pending = 0; 3153 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3154 } 3155 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 3156 rnp = rnp->parent; 3157 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 3158 local_irq_restore(flags); 3159 3160 mutex_unlock(&rsp->onoff_mutex); 3161 } 3162 3163 static void rcu_prepare_cpu(int cpu) 3164 { 3165 struct rcu_state *rsp; 3166 3167 for_each_rcu_flavor(rsp) 3168 rcu_init_percpu_data(cpu, rsp, 3169 strcmp(rsp->name, "rcu_preempt") == 0); 3170 } 3171 3172 /* 3173 * Handle CPU online/offline notification events. 3174 */ 3175 static int rcu_cpu_notify(struct notifier_block *self, 3176 unsigned long action, void *hcpu) 3177 { 3178 long cpu = (long)hcpu; 3179 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); 3180 struct rcu_node *rnp = rdp->mynode; 3181 struct rcu_state *rsp; 3182 3183 trace_rcu_utilization(TPS("Start CPU hotplug")); 3184 switch (action) { 3185 case CPU_UP_PREPARE: 3186 case CPU_UP_PREPARE_FROZEN: 3187 rcu_prepare_cpu(cpu); 3188 rcu_prepare_kthreads(cpu); 3189 break; 3190 case CPU_ONLINE: 3191 case CPU_DOWN_FAILED: 3192 rcu_boost_kthread_setaffinity(rnp, -1); 3193 break; 3194 case CPU_DOWN_PREPARE: 3195 rcu_boost_kthread_setaffinity(rnp, cpu); 3196 break; 3197 case CPU_DYING: 3198 case CPU_DYING_FROZEN: 3199 for_each_rcu_flavor(rsp) 3200 rcu_cleanup_dying_cpu(rsp); 3201 break; 3202 case CPU_DEAD: 3203 case CPU_DEAD_FROZEN: 3204 case CPU_UP_CANCELED: 3205 case CPU_UP_CANCELED_FROZEN: 3206 for_each_rcu_flavor(rsp) 3207 rcu_cleanup_dead_cpu(cpu, rsp); 3208 break; 3209 default: 3210 break; 3211 } 3212 trace_rcu_utilization(TPS("End CPU hotplug")); 3213 return NOTIFY_OK; 3214 } 3215 3216 static int rcu_pm_notify(struct notifier_block *self, 3217 unsigned long action, void *hcpu) 3218 { 3219 switch (action) { 3220 case PM_HIBERNATION_PREPARE: 3221 case PM_SUSPEND_PREPARE: 3222 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3223 rcu_expedited = 1; 3224 break; 3225 case PM_POST_HIBERNATION: 3226 case PM_POST_SUSPEND: 3227 rcu_expedited = 0; 3228 break; 3229 default: 3230 break; 3231 } 3232 return NOTIFY_OK; 3233 } 3234 3235 /* 3236 * Spawn the kthread that handles this RCU flavor's grace periods. 3237 */ 3238 static int __init rcu_spawn_gp_kthread(void) 3239 { 3240 unsigned long flags; 3241 struct rcu_node *rnp; 3242 struct rcu_state *rsp; 3243 struct task_struct *t; 3244 3245 for_each_rcu_flavor(rsp) { 3246 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); 3247 BUG_ON(IS_ERR(t)); 3248 rnp = rcu_get_root(rsp); 3249 raw_spin_lock_irqsave(&rnp->lock, flags); 3250 rsp->gp_kthread = t; 3251 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3252 rcu_spawn_nocb_kthreads(rsp); 3253 } 3254 return 0; 3255 } 3256 early_initcall(rcu_spawn_gp_kthread); 3257 3258 /* 3259 * This function is invoked towards the end of the scheduler's initialization 3260 * process. Before this is called, the idle task might contain 3261 * RCU read-side critical sections (during which time, this idle 3262 * task is booting the system). After this function is called, the 3263 * idle tasks are prohibited from containing RCU read-side critical 3264 * sections. This function also enables RCU lockdep checking. 3265 */ 3266 void rcu_scheduler_starting(void) 3267 { 3268 WARN_ON(num_online_cpus() != 1); 3269 WARN_ON(nr_context_switches() > 0); 3270 rcu_scheduler_active = 1; 3271 } 3272 3273 /* 3274 * Compute the per-level fanout, either using the exact fanout specified 3275 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3276 */ 3277 #ifdef CONFIG_RCU_FANOUT_EXACT 3278 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3279 { 3280 int i; 3281 3282 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3283 for (i = rcu_num_lvls - 2; i >= 0; i--) 3284 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3285 } 3286 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 3287 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3288 { 3289 int ccur; 3290 int cprv; 3291 int i; 3292 3293 cprv = nr_cpu_ids; 3294 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3295 ccur = rsp->levelcnt[i]; 3296 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3297 cprv = ccur; 3298 } 3299 } 3300 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 3301 3302 /* 3303 * Helper function for rcu_init() that initializes one rcu_state structure. 3304 */ 3305 static void __init rcu_init_one(struct rcu_state *rsp, 3306 struct rcu_data __percpu *rda) 3307 { 3308 static char *buf[] = { "rcu_node_0", 3309 "rcu_node_1", 3310 "rcu_node_2", 3311 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3312 static char *fqs[] = { "rcu_node_fqs_0", 3313 "rcu_node_fqs_1", 3314 "rcu_node_fqs_2", 3315 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3316 int cpustride = 1; 3317 int i; 3318 int j; 3319 struct rcu_node *rnp; 3320 3321 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3322 3323 /* Silence gcc 4.8 warning about array index out of range. */ 3324 if (rcu_num_lvls > RCU_NUM_LVLS) 3325 panic("rcu_init_one: rcu_num_lvls overflow"); 3326 3327 /* Initialize the level-tracking arrays. */ 3328 3329 for (i = 0; i < rcu_num_lvls; i++) 3330 rsp->levelcnt[i] = num_rcu_lvl[i]; 3331 for (i = 1; i < rcu_num_lvls; i++) 3332 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3333 rcu_init_levelspread(rsp); 3334 3335 /* Initialize the elements themselves, starting from the leaves. */ 3336 3337 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3338 cpustride *= rsp->levelspread[i]; 3339 rnp = rsp->level[i]; 3340 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3341 raw_spin_lock_init(&rnp->lock); 3342 lockdep_set_class_and_name(&rnp->lock, 3343 &rcu_node_class[i], buf[i]); 3344 raw_spin_lock_init(&rnp->fqslock); 3345 lockdep_set_class_and_name(&rnp->fqslock, 3346 &rcu_fqs_class[i], fqs[i]); 3347 rnp->gpnum = rsp->gpnum; 3348 rnp->completed = rsp->completed; 3349 rnp->qsmask = 0; 3350 rnp->qsmaskinit = 0; 3351 rnp->grplo = j * cpustride; 3352 rnp->grphi = (j + 1) * cpustride - 1; 3353 if (rnp->grphi >= NR_CPUS) 3354 rnp->grphi = NR_CPUS - 1; 3355 if (i == 0) { 3356 rnp->grpnum = 0; 3357 rnp->grpmask = 0; 3358 rnp->parent = NULL; 3359 } else { 3360 rnp->grpnum = j % rsp->levelspread[i - 1]; 3361 rnp->grpmask = 1UL << rnp->grpnum; 3362 rnp->parent = rsp->level[i - 1] + 3363 j / rsp->levelspread[i - 1]; 3364 } 3365 rnp->level = i; 3366 INIT_LIST_HEAD(&rnp->blkd_tasks); 3367 rcu_init_one_nocb(rnp); 3368 } 3369 } 3370 3371 rsp->rda = rda; 3372 init_waitqueue_head(&rsp->gp_wq); 3373 init_irq_work(&rsp->wakeup_work, rsp_wakeup); 3374 rnp = rsp->level[rcu_num_lvls - 1]; 3375 for_each_possible_cpu(i) { 3376 while (i > rnp->grphi) 3377 rnp++; 3378 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3379 rcu_boot_init_percpu_data(i, rsp); 3380 } 3381 list_add(&rsp->flavors, &rcu_struct_flavors); 3382 } 3383 3384 /* 3385 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3386 * replace the definitions in tree.h because those are needed to size 3387 * the ->node array in the rcu_state structure. 3388 */ 3389 static void __init rcu_init_geometry(void) 3390 { 3391 ulong d; 3392 int i; 3393 int j; 3394 int n = nr_cpu_ids; 3395 int rcu_capacity[MAX_RCU_LVLS + 1]; 3396 3397 /* 3398 * Initialize any unspecified boot parameters. 3399 * The default values of jiffies_till_first_fqs and 3400 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3401 * value, which is a function of HZ, then adding one for each 3402 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3403 */ 3404 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3405 if (jiffies_till_first_fqs == ULONG_MAX) 3406 jiffies_till_first_fqs = d; 3407 if (jiffies_till_next_fqs == ULONG_MAX) 3408 jiffies_till_next_fqs = d; 3409 3410 /* If the compile-time values are accurate, just leave. */ 3411 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 3412 nr_cpu_ids == NR_CPUS) 3413 return; 3414 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 3415 rcu_fanout_leaf, nr_cpu_ids); 3416 3417 /* 3418 * Compute number of nodes that can be handled an rcu_node tree 3419 * with the given number of levels. Setting rcu_capacity[0] makes 3420 * some of the arithmetic easier. 3421 */ 3422 rcu_capacity[0] = 1; 3423 rcu_capacity[1] = rcu_fanout_leaf; 3424 for (i = 2; i <= MAX_RCU_LVLS; i++) 3425 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 3426 3427 /* 3428 * The boot-time rcu_fanout_leaf parameter is only permitted 3429 * to increase the leaf-level fanout, not decrease it. Of course, 3430 * the leaf-level fanout cannot exceed the number of bits in 3431 * the rcu_node masks. Finally, the tree must be able to accommodate 3432 * the configured number of CPUs. Complain and fall back to the 3433 * compile-time values if these limits are exceeded. 3434 */ 3435 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 3436 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 3437 n > rcu_capacity[MAX_RCU_LVLS]) { 3438 WARN_ON(1); 3439 return; 3440 } 3441 3442 /* Calculate the number of rcu_nodes at each level of the tree. */ 3443 for (i = 1; i <= MAX_RCU_LVLS; i++) 3444 if (n <= rcu_capacity[i]) { 3445 for (j = 0; j <= i; j++) 3446 num_rcu_lvl[j] = 3447 DIV_ROUND_UP(n, rcu_capacity[i - j]); 3448 rcu_num_lvls = i; 3449 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 3450 num_rcu_lvl[j] = 0; 3451 break; 3452 } 3453 3454 /* Calculate the total number of rcu_node structures. */ 3455 rcu_num_nodes = 0; 3456 for (i = 0; i <= MAX_RCU_LVLS; i++) 3457 rcu_num_nodes += num_rcu_lvl[i]; 3458 rcu_num_nodes -= n; 3459 } 3460 3461 void __init rcu_init(void) 3462 { 3463 int cpu; 3464 3465 rcu_bootup_announce(); 3466 rcu_init_geometry(); 3467 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 3468 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 3469 __rcu_init_preempt(); 3470 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3471 3472 /* 3473 * We don't need protection against CPU-hotplug here because 3474 * this is called early in boot, before either interrupts 3475 * or the scheduler are operational. 3476 */ 3477 cpu_notifier(rcu_cpu_notify, 0); 3478 pm_notifier(rcu_pm_notify, 0); 3479 for_each_online_cpu(cpu) 3480 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 3481 } 3482 3483 #include "tree_plugin.h" 3484