1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/trace_events.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 /* 72 * In order to export the rcu_state name to the tracing tools, it 73 * needs to be added in the __tracepoint_string section. 74 * This requires defining a separate variable tp_<sname>_varname 75 * that points to the string being used, and this will allow 76 * the tracing userspace tools to be able to decipher the string 77 * address to the matching string. 78 */ 79 #ifdef CONFIG_TRACING 80 # define DEFINE_RCU_TPS(sname) \ 81 static char sname##_varname[] = #sname; \ 82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 83 # define RCU_STATE_NAME(sname) sname##_varname 84 #else 85 # define DEFINE_RCU_TPS(sname) 86 # define RCU_STATE_NAME(sname) __stringify(sname) 87 #endif 88 89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 90 DEFINE_RCU_TPS(sname) \ 91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 92 struct rcu_state sname##_state = { \ 93 .level = { &sname##_state.node[0] }, \ 94 .rda = &sname##_data, \ 95 .call = cr, \ 96 .gp_state = RCU_GP_IDLE, \ 97 .gpnum = 0UL - 300UL, \ 98 .completed = 0UL - 300UL, \ 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 101 .orphan_donetail = &sname##_state.orphan_donelist, \ 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 103 .name = RCU_STATE_NAME(sname), \ 104 .abbr = sabbr, \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 static struct rcu_data __percpu *const rcu_data_p; 112 LIST_HEAD(rcu_struct_flavors); 113 114 /* Dump rcu_node combining tree at boot to verify correct setup. */ 115 static bool dump_tree; 116 module_param(dump_tree, bool, 0444); 117 /* Control rcu_node-tree auto-balancing at boot time. */ 118 static bool rcu_fanout_exact; 119 module_param(rcu_fanout_exact, bool, 0444); 120 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 121 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 122 module_param(rcu_fanout_leaf, int, 0444); 123 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 124 /* Number of rcu_nodes at specified level. */ 125 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 126 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 127 128 /* 129 * The rcu_scheduler_active variable transitions from zero to one just 130 * before the first task is spawned. So when this variable is zero, RCU 131 * can assume that there is but one task, allowing RCU to (for example) 132 * optimize synchronize_sched() to a simple barrier(). When this variable 133 * is one, RCU must actually do all the hard work required to detect real 134 * grace periods. This variable is also used to suppress boot-time false 135 * positives from lockdep-RCU error checking. 136 */ 137 int rcu_scheduler_active __read_mostly; 138 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 139 140 /* 141 * The rcu_scheduler_fully_active variable transitions from zero to one 142 * during the early_initcall() processing, which is after the scheduler 143 * is capable of creating new tasks. So RCU processing (for example, 144 * creating tasks for RCU priority boosting) must be delayed until after 145 * rcu_scheduler_fully_active transitions from zero to one. We also 146 * currently delay invocation of any RCU callbacks until after this point. 147 * 148 * It might later prove better for people registering RCU callbacks during 149 * early boot to take responsibility for these callbacks, but one step at 150 * a time. 151 */ 152 static int rcu_scheduler_fully_active __read_mostly; 153 154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 157 static void invoke_rcu_core(void); 158 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 159 static void rcu_report_exp_rdp(struct rcu_state *rsp, 160 struct rcu_data *rdp, bool wake); 161 162 /* rcuc/rcub kthread realtime priority */ 163 #ifdef CONFIG_RCU_KTHREAD_PRIO 164 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 165 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 166 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 167 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 168 module_param(kthread_prio, int, 0644); 169 170 /* Delay in jiffies for grace-period initialization delays, debug only. */ 171 172 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 173 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 174 module_param(gp_preinit_delay, int, 0644); 175 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 176 static const int gp_preinit_delay; 177 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 178 179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 180 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 181 module_param(gp_init_delay, int, 0644); 182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 183 static const int gp_init_delay; 184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 185 186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 187 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 188 module_param(gp_cleanup_delay, int, 0644); 189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 190 static const int gp_cleanup_delay; 191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 192 193 /* 194 * Number of grace periods between delays, normalized by the duration of 195 * the delay. The longer the the delay, the more the grace periods between 196 * each delay. The reason for this normalization is that it means that, 197 * for non-zero delays, the overall slowdown of grace periods is constant 198 * regardless of the duration of the delay. This arrangement balances 199 * the need for long delays to increase some race probabilities with the 200 * need for fast grace periods to increase other race probabilities. 201 */ 202 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 203 204 /* 205 * Track the rcutorture test sequence number and the update version 206 * number within a given test. The rcutorture_testseq is incremented 207 * on every rcutorture module load and unload, so has an odd value 208 * when a test is running. The rcutorture_vernum is set to zero 209 * when rcutorture starts and is incremented on each rcutorture update. 210 * These variables enable correlating rcutorture output with the 211 * RCU tracing information. 212 */ 213 unsigned long rcutorture_testseq; 214 unsigned long rcutorture_vernum; 215 216 /* 217 * Compute the mask of online CPUs for the specified rcu_node structure. 218 * This will not be stable unless the rcu_node structure's ->lock is 219 * held, but the bit corresponding to the current CPU will be stable 220 * in most contexts. 221 */ 222 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 223 { 224 return READ_ONCE(rnp->qsmaskinitnext); 225 } 226 227 /* 228 * Return true if an RCU grace period is in progress. The READ_ONCE()s 229 * permit this function to be invoked without holding the root rcu_node 230 * structure's ->lock, but of course results can be subject to change. 231 */ 232 static int rcu_gp_in_progress(struct rcu_state *rsp) 233 { 234 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 235 } 236 237 /* 238 * Note a quiescent state. Because we do not need to know 239 * how many quiescent states passed, just if there was at least 240 * one since the start of the grace period, this just sets a flag. 241 * The caller must have disabled preemption. 242 */ 243 void rcu_sched_qs(void) 244 { 245 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 246 return; 247 trace_rcu_grace_period(TPS("rcu_sched"), 248 __this_cpu_read(rcu_sched_data.gpnum), 249 TPS("cpuqs")); 250 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 251 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 252 return; 253 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 254 rcu_report_exp_rdp(&rcu_sched_state, 255 this_cpu_ptr(&rcu_sched_data), true); 256 } 257 258 void rcu_bh_qs(void) 259 { 260 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 261 trace_rcu_grace_period(TPS("rcu_bh"), 262 __this_cpu_read(rcu_bh_data.gpnum), 263 TPS("cpuqs")); 264 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 265 } 266 } 267 268 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 269 270 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 271 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 272 .dynticks = ATOMIC_INIT(1), 273 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 274 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 275 .dynticks_idle = ATOMIC_INIT(1), 276 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 277 }; 278 279 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 280 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 281 282 /* 283 * Let the RCU core know that this CPU has gone through the scheduler, 284 * which is a quiescent state. This is called when the need for a 285 * quiescent state is urgent, so we burn an atomic operation and full 286 * memory barriers to let the RCU core know about it, regardless of what 287 * this CPU might (or might not) do in the near future. 288 * 289 * We inform the RCU core by emulating a zero-duration dyntick-idle 290 * period, which we in turn do by incrementing the ->dynticks counter 291 * by two. 292 * 293 * The caller must have disabled interrupts. 294 */ 295 static void rcu_momentary_dyntick_idle(void) 296 { 297 struct rcu_data *rdp; 298 struct rcu_dynticks *rdtp; 299 int resched_mask; 300 struct rcu_state *rsp; 301 302 /* 303 * Yes, we can lose flag-setting operations. This is OK, because 304 * the flag will be set again after some delay. 305 */ 306 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 307 raw_cpu_write(rcu_sched_qs_mask, 0); 308 309 /* Find the flavor that needs a quiescent state. */ 310 for_each_rcu_flavor(rsp) { 311 rdp = raw_cpu_ptr(rsp->rda); 312 if (!(resched_mask & rsp->flavor_mask)) 313 continue; 314 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 315 if (READ_ONCE(rdp->mynode->completed) != 316 READ_ONCE(rdp->cond_resched_completed)) 317 continue; 318 319 /* 320 * Pretend to be momentarily idle for the quiescent state. 321 * This allows the grace-period kthread to record the 322 * quiescent state, with no need for this CPU to do anything 323 * further. 324 */ 325 rdtp = this_cpu_ptr(&rcu_dynticks); 326 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 327 atomic_add(2, &rdtp->dynticks); /* QS. */ 328 smp_mb__after_atomic(); /* Later stuff after QS. */ 329 break; 330 } 331 } 332 333 /* 334 * Note a context switch. This is a quiescent state for RCU-sched, 335 * and requires special handling for preemptible RCU. 336 * The caller must have disabled interrupts. 337 */ 338 void rcu_note_context_switch(void) 339 { 340 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 341 trace_rcu_utilization(TPS("Start context switch")); 342 rcu_sched_qs(); 343 rcu_preempt_note_context_switch(); 344 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 345 rcu_momentary_dyntick_idle(); 346 trace_rcu_utilization(TPS("End context switch")); 347 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 348 } 349 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 350 351 /* 352 * Register a quiescent state for all RCU flavors. If there is an 353 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 354 * dyntick-idle quiescent state visible to other CPUs (but only for those 355 * RCU flavors in desperate need of a quiescent state, which will normally 356 * be none of them). Either way, do a lightweight quiescent state for 357 * all RCU flavors. 358 * 359 * The barrier() calls are redundant in the common case when this is 360 * called externally, but just in case this is called from within this 361 * file. 362 * 363 */ 364 void rcu_all_qs(void) 365 { 366 unsigned long flags; 367 368 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 369 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) { 370 local_irq_save(flags); 371 rcu_momentary_dyntick_idle(); 372 local_irq_restore(flags); 373 } 374 this_cpu_inc(rcu_qs_ctr); 375 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 376 } 377 EXPORT_SYMBOL_GPL(rcu_all_qs); 378 379 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 380 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 381 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 382 383 module_param(blimit, long, 0444); 384 module_param(qhimark, long, 0444); 385 module_param(qlowmark, long, 0444); 386 387 static ulong jiffies_till_first_fqs = ULONG_MAX; 388 static ulong jiffies_till_next_fqs = ULONG_MAX; 389 390 module_param(jiffies_till_first_fqs, ulong, 0644); 391 module_param(jiffies_till_next_fqs, ulong, 0644); 392 393 /* 394 * How long the grace period must be before we start recruiting 395 * quiescent-state help from rcu_note_context_switch(). 396 */ 397 static ulong jiffies_till_sched_qs = HZ / 20; 398 module_param(jiffies_till_sched_qs, ulong, 0644); 399 400 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 401 struct rcu_data *rdp); 402 static void force_qs_rnp(struct rcu_state *rsp, 403 int (*f)(struct rcu_data *rsp, bool *isidle, 404 unsigned long *maxj), 405 bool *isidle, unsigned long *maxj); 406 static void force_quiescent_state(struct rcu_state *rsp); 407 static int rcu_pending(void); 408 409 /* 410 * Return the number of RCU batches started thus far for debug & stats. 411 */ 412 unsigned long rcu_batches_started(void) 413 { 414 return rcu_state_p->gpnum; 415 } 416 EXPORT_SYMBOL_GPL(rcu_batches_started); 417 418 /* 419 * Return the number of RCU-sched batches started thus far for debug & stats. 420 */ 421 unsigned long rcu_batches_started_sched(void) 422 { 423 return rcu_sched_state.gpnum; 424 } 425 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 426 427 /* 428 * Return the number of RCU BH batches started thus far for debug & stats. 429 */ 430 unsigned long rcu_batches_started_bh(void) 431 { 432 return rcu_bh_state.gpnum; 433 } 434 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 435 436 /* 437 * Return the number of RCU batches completed thus far for debug & stats. 438 */ 439 unsigned long rcu_batches_completed(void) 440 { 441 return rcu_state_p->completed; 442 } 443 EXPORT_SYMBOL_GPL(rcu_batches_completed); 444 445 /* 446 * Return the number of RCU-sched batches completed thus far for debug & stats. 447 */ 448 unsigned long rcu_batches_completed_sched(void) 449 { 450 return rcu_sched_state.completed; 451 } 452 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 453 454 /* 455 * Return the number of RCU BH batches completed thus far for debug & stats. 456 */ 457 unsigned long rcu_batches_completed_bh(void) 458 { 459 return rcu_bh_state.completed; 460 } 461 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 462 463 /* 464 * Force a quiescent state. 465 */ 466 void rcu_force_quiescent_state(void) 467 { 468 force_quiescent_state(rcu_state_p); 469 } 470 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 471 472 /* 473 * Force a quiescent state for RCU BH. 474 */ 475 void rcu_bh_force_quiescent_state(void) 476 { 477 force_quiescent_state(&rcu_bh_state); 478 } 479 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 480 481 /* 482 * Force a quiescent state for RCU-sched. 483 */ 484 void rcu_sched_force_quiescent_state(void) 485 { 486 force_quiescent_state(&rcu_sched_state); 487 } 488 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 489 490 /* 491 * Show the state of the grace-period kthreads. 492 */ 493 void show_rcu_gp_kthreads(void) 494 { 495 struct rcu_state *rsp; 496 497 for_each_rcu_flavor(rsp) { 498 pr_info("%s: wait state: %d ->state: %#lx\n", 499 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 500 /* sched_show_task(rsp->gp_kthread); */ 501 } 502 } 503 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 504 505 /* 506 * Record the number of times rcutorture tests have been initiated and 507 * terminated. This information allows the debugfs tracing stats to be 508 * correlated to the rcutorture messages, even when the rcutorture module 509 * is being repeatedly loaded and unloaded. In other words, we cannot 510 * store this state in rcutorture itself. 511 */ 512 void rcutorture_record_test_transition(void) 513 { 514 rcutorture_testseq++; 515 rcutorture_vernum = 0; 516 } 517 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 518 519 /* 520 * Send along grace-period-related data for rcutorture diagnostics. 521 */ 522 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 523 unsigned long *gpnum, unsigned long *completed) 524 { 525 struct rcu_state *rsp = NULL; 526 527 switch (test_type) { 528 case RCU_FLAVOR: 529 rsp = rcu_state_p; 530 break; 531 case RCU_BH_FLAVOR: 532 rsp = &rcu_bh_state; 533 break; 534 case RCU_SCHED_FLAVOR: 535 rsp = &rcu_sched_state; 536 break; 537 default: 538 break; 539 } 540 if (rsp != NULL) { 541 *flags = READ_ONCE(rsp->gp_flags); 542 *gpnum = READ_ONCE(rsp->gpnum); 543 *completed = READ_ONCE(rsp->completed); 544 return; 545 } 546 *flags = 0; 547 *gpnum = 0; 548 *completed = 0; 549 } 550 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 551 552 /* 553 * Record the number of writer passes through the current rcutorture test. 554 * This is also used to correlate debugfs tracing stats with the rcutorture 555 * messages. 556 */ 557 void rcutorture_record_progress(unsigned long vernum) 558 { 559 rcutorture_vernum++; 560 } 561 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 562 563 /* 564 * Does the CPU have callbacks ready to be invoked? 565 */ 566 static int 567 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 568 { 569 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 570 rdp->nxttail[RCU_DONE_TAIL] != NULL; 571 } 572 573 /* 574 * Return the root node of the specified rcu_state structure. 575 */ 576 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 577 { 578 return &rsp->node[0]; 579 } 580 581 /* 582 * Is there any need for future grace periods? 583 * Interrupts must be disabled. If the caller does not hold the root 584 * rnp_node structure's ->lock, the results are advisory only. 585 */ 586 static int rcu_future_needs_gp(struct rcu_state *rsp) 587 { 588 struct rcu_node *rnp = rcu_get_root(rsp); 589 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 590 int *fp = &rnp->need_future_gp[idx]; 591 592 return READ_ONCE(*fp); 593 } 594 595 /* 596 * Does the current CPU require a not-yet-started grace period? 597 * The caller must have disabled interrupts to prevent races with 598 * normal callback registry. 599 */ 600 static bool 601 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 602 { 603 int i; 604 605 if (rcu_gp_in_progress(rsp)) 606 return false; /* No, a grace period is already in progress. */ 607 if (rcu_future_needs_gp(rsp)) 608 return true; /* Yes, a no-CBs CPU needs one. */ 609 if (!rdp->nxttail[RCU_NEXT_TAIL]) 610 return false; /* No, this is a no-CBs (or offline) CPU. */ 611 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 612 return true; /* Yes, CPU has newly registered callbacks. */ 613 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 614 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 615 ULONG_CMP_LT(READ_ONCE(rsp->completed), 616 rdp->nxtcompleted[i])) 617 return true; /* Yes, CBs for future grace period. */ 618 return false; /* No grace period needed. */ 619 } 620 621 /* 622 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 623 * 624 * If the new value of the ->dynticks_nesting counter now is zero, 625 * we really have entered idle, and must do the appropriate accounting. 626 * The caller must have disabled interrupts. 627 */ 628 static void rcu_eqs_enter_common(long long oldval, bool user) 629 { 630 struct rcu_state *rsp; 631 struct rcu_data *rdp; 632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 633 634 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 635 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 636 !user && !is_idle_task(current)) { 637 struct task_struct *idle __maybe_unused = 638 idle_task(smp_processor_id()); 639 640 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 641 ftrace_dump(DUMP_ORIG); 642 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 643 current->pid, current->comm, 644 idle->pid, idle->comm); /* must be idle task! */ 645 } 646 for_each_rcu_flavor(rsp) { 647 rdp = this_cpu_ptr(rsp->rda); 648 do_nocb_deferred_wakeup(rdp); 649 } 650 rcu_prepare_for_idle(); 651 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 652 smp_mb__before_atomic(); /* See above. */ 653 atomic_inc(&rdtp->dynticks); 654 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 655 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 656 atomic_read(&rdtp->dynticks) & 0x1); 657 rcu_dynticks_task_enter(); 658 659 /* 660 * It is illegal to enter an extended quiescent state while 661 * in an RCU read-side critical section. 662 */ 663 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 664 "Illegal idle entry in RCU read-side critical section."); 665 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 666 "Illegal idle entry in RCU-bh read-side critical section."); 667 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 668 "Illegal idle entry in RCU-sched read-side critical section."); 669 } 670 671 /* 672 * Enter an RCU extended quiescent state, which can be either the 673 * idle loop or adaptive-tickless usermode execution. 674 */ 675 static void rcu_eqs_enter(bool user) 676 { 677 long long oldval; 678 struct rcu_dynticks *rdtp; 679 680 rdtp = this_cpu_ptr(&rcu_dynticks); 681 oldval = rdtp->dynticks_nesting; 682 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 683 (oldval & DYNTICK_TASK_NEST_MASK) == 0); 684 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 685 rdtp->dynticks_nesting = 0; 686 rcu_eqs_enter_common(oldval, user); 687 } else { 688 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 689 } 690 } 691 692 /** 693 * rcu_idle_enter - inform RCU that current CPU is entering idle 694 * 695 * Enter idle mode, in other words, -leave- the mode in which RCU 696 * read-side critical sections can occur. (Though RCU read-side 697 * critical sections can occur in irq handlers in idle, a possibility 698 * handled by irq_enter() and irq_exit().) 699 * 700 * We crowbar the ->dynticks_nesting field to zero to allow for 701 * the possibility of usermode upcalls having messed up our count 702 * of interrupt nesting level during the prior busy period. 703 */ 704 void rcu_idle_enter(void) 705 { 706 unsigned long flags; 707 708 local_irq_save(flags); 709 rcu_eqs_enter(false); 710 rcu_sysidle_enter(0); 711 local_irq_restore(flags); 712 } 713 EXPORT_SYMBOL_GPL(rcu_idle_enter); 714 715 #ifdef CONFIG_NO_HZ_FULL 716 /** 717 * rcu_user_enter - inform RCU that we are resuming userspace. 718 * 719 * Enter RCU idle mode right before resuming userspace. No use of RCU 720 * is permitted between this call and rcu_user_exit(). This way the 721 * CPU doesn't need to maintain the tick for RCU maintenance purposes 722 * when the CPU runs in userspace. 723 */ 724 void rcu_user_enter(void) 725 { 726 rcu_eqs_enter(1); 727 } 728 #endif /* CONFIG_NO_HZ_FULL */ 729 730 /** 731 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 732 * 733 * Exit from an interrupt handler, which might possibly result in entering 734 * idle mode, in other words, leaving the mode in which read-side critical 735 * sections can occur. The caller must have disabled interrupts. 736 * 737 * This code assumes that the idle loop never does anything that might 738 * result in unbalanced calls to irq_enter() and irq_exit(). If your 739 * architecture violates this assumption, RCU will give you what you 740 * deserve, good and hard. But very infrequently and irreproducibly. 741 * 742 * Use things like work queues to work around this limitation. 743 * 744 * You have been warned. 745 */ 746 void rcu_irq_exit(void) 747 { 748 long long oldval; 749 struct rcu_dynticks *rdtp; 750 751 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 752 rdtp = this_cpu_ptr(&rcu_dynticks); 753 oldval = rdtp->dynticks_nesting; 754 rdtp->dynticks_nesting--; 755 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 756 rdtp->dynticks_nesting < 0); 757 if (rdtp->dynticks_nesting) 758 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 759 else 760 rcu_eqs_enter_common(oldval, true); 761 rcu_sysidle_enter(1); 762 } 763 764 /* 765 * Wrapper for rcu_irq_exit() where interrupts are enabled. 766 */ 767 void rcu_irq_exit_irqson(void) 768 { 769 unsigned long flags; 770 771 local_irq_save(flags); 772 rcu_irq_exit(); 773 local_irq_restore(flags); 774 } 775 776 /* 777 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 778 * 779 * If the new value of the ->dynticks_nesting counter was previously zero, 780 * we really have exited idle, and must do the appropriate accounting. 781 * The caller must have disabled interrupts. 782 */ 783 static void rcu_eqs_exit_common(long long oldval, int user) 784 { 785 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 786 787 rcu_dynticks_task_exit(); 788 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 789 atomic_inc(&rdtp->dynticks); 790 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 791 smp_mb__after_atomic(); /* See above. */ 792 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 793 !(atomic_read(&rdtp->dynticks) & 0x1)); 794 rcu_cleanup_after_idle(); 795 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 796 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 797 !user && !is_idle_task(current)) { 798 struct task_struct *idle __maybe_unused = 799 idle_task(smp_processor_id()); 800 801 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 802 oldval, rdtp->dynticks_nesting); 803 ftrace_dump(DUMP_ORIG); 804 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 805 current->pid, current->comm, 806 idle->pid, idle->comm); /* must be idle task! */ 807 } 808 } 809 810 /* 811 * Exit an RCU extended quiescent state, which can be either the 812 * idle loop or adaptive-tickless usermode execution. 813 */ 814 static void rcu_eqs_exit(bool user) 815 { 816 struct rcu_dynticks *rdtp; 817 long long oldval; 818 819 rdtp = this_cpu_ptr(&rcu_dynticks); 820 oldval = rdtp->dynticks_nesting; 821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 822 if (oldval & DYNTICK_TASK_NEST_MASK) { 823 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 824 } else { 825 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 826 rcu_eqs_exit_common(oldval, user); 827 } 828 } 829 830 /** 831 * rcu_idle_exit - inform RCU that current CPU is leaving idle 832 * 833 * Exit idle mode, in other words, -enter- the mode in which RCU 834 * read-side critical sections can occur. 835 * 836 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 837 * allow for the possibility of usermode upcalls messing up our count 838 * of interrupt nesting level during the busy period that is just 839 * now starting. 840 */ 841 void rcu_idle_exit(void) 842 { 843 unsigned long flags; 844 845 local_irq_save(flags); 846 rcu_eqs_exit(false); 847 rcu_sysidle_exit(0); 848 local_irq_restore(flags); 849 } 850 EXPORT_SYMBOL_GPL(rcu_idle_exit); 851 852 #ifdef CONFIG_NO_HZ_FULL 853 /** 854 * rcu_user_exit - inform RCU that we are exiting userspace. 855 * 856 * Exit RCU idle mode while entering the kernel because it can 857 * run a RCU read side critical section anytime. 858 */ 859 void rcu_user_exit(void) 860 { 861 rcu_eqs_exit(1); 862 } 863 #endif /* CONFIG_NO_HZ_FULL */ 864 865 /** 866 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 867 * 868 * Enter an interrupt handler, which might possibly result in exiting 869 * idle mode, in other words, entering the mode in which read-side critical 870 * sections can occur. The caller must have disabled interrupts. 871 * 872 * Note that the Linux kernel is fully capable of entering an interrupt 873 * handler that it never exits, for example when doing upcalls to 874 * user mode! This code assumes that the idle loop never does upcalls to 875 * user mode. If your architecture does do upcalls from the idle loop (or 876 * does anything else that results in unbalanced calls to the irq_enter() 877 * and irq_exit() functions), RCU will give you what you deserve, good 878 * and hard. But very infrequently and irreproducibly. 879 * 880 * Use things like work queues to work around this limitation. 881 * 882 * You have been warned. 883 */ 884 void rcu_irq_enter(void) 885 { 886 struct rcu_dynticks *rdtp; 887 long long oldval; 888 889 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 890 rdtp = this_cpu_ptr(&rcu_dynticks); 891 oldval = rdtp->dynticks_nesting; 892 rdtp->dynticks_nesting++; 893 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 894 rdtp->dynticks_nesting == 0); 895 if (oldval) 896 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 897 else 898 rcu_eqs_exit_common(oldval, true); 899 rcu_sysidle_exit(1); 900 } 901 902 /* 903 * Wrapper for rcu_irq_enter() where interrupts are enabled. 904 */ 905 void rcu_irq_enter_irqson(void) 906 { 907 unsigned long flags; 908 909 local_irq_save(flags); 910 rcu_irq_enter(); 911 local_irq_restore(flags); 912 } 913 914 /** 915 * rcu_nmi_enter - inform RCU of entry to NMI context 916 * 917 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 918 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 919 * that the CPU is active. This implementation permits nested NMIs, as 920 * long as the nesting level does not overflow an int. (You will probably 921 * run out of stack space first.) 922 */ 923 void rcu_nmi_enter(void) 924 { 925 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 926 int incby = 2; 927 928 /* Complain about underflow. */ 929 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 930 931 /* 932 * If idle from RCU viewpoint, atomically increment ->dynticks 933 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 934 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 935 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 936 * to be in the outermost NMI handler that interrupted an RCU-idle 937 * period (observation due to Andy Lutomirski). 938 */ 939 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 940 smp_mb__before_atomic(); /* Force delay from prior write. */ 941 atomic_inc(&rdtp->dynticks); 942 /* atomic_inc() before later RCU read-side crit sects */ 943 smp_mb__after_atomic(); /* See above. */ 944 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 945 incby = 1; 946 } 947 rdtp->dynticks_nmi_nesting += incby; 948 barrier(); 949 } 950 951 /** 952 * rcu_nmi_exit - inform RCU of exit from NMI context 953 * 954 * If we are returning from the outermost NMI handler that interrupted an 955 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 956 * to let the RCU grace-period handling know that the CPU is back to 957 * being RCU-idle. 958 */ 959 void rcu_nmi_exit(void) 960 { 961 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 962 963 /* 964 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 965 * (We are exiting an NMI handler, so RCU better be paying attention 966 * to us!) 967 */ 968 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 969 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 970 971 /* 972 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 973 * leave it in non-RCU-idle state. 974 */ 975 if (rdtp->dynticks_nmi_nesting != 1) { 976 rdtp->dynticks_nmi_nesting -= 2; 977 return; 978 } 979 980 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 981 rdtp->dynticks_nmi_nesting = 0; 982 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 983 smp_mb__before_atomic(); /* See above. */ 984 atomic_inc(&rdtp->dynticks); 985 smp_mb__after_atomic(); /* Force delay to next write. */ 986 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 987 } 988 989 /** 990 * __rcu_is_watching - are RCU read-side critical sections safe? 991 * 992 * Return true if RCU is watching the running CPU, which means that 993 * this CPU can safely enter RCU read-side critical sections. Unlike 994 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 995 * least disabled preemption. 996 */ 997 bool notrace __rcu_is_watching(void) 998 { 999 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 1000 } 1001 1002 /** 1003 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1004 * 1005 * If the current CPU is in its idle loop and is neither in an interrupt 1006 * or NMI handler, return true. 1007 */ 1008 bool notrace rcu_is_watching(void) 1009 { 1010 bool ret; 1011 1012 preempt_disable_notrace(); 1013 ret = __rcu_is_watching(); 1014 preempt_enable_notrace(); 1015 return ret; 1016 } 1017 EXPORT_SYMBOL_GPL(rcu_is_watching); 1018 1019 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1020 1021 /* 1022 * Is the current CPU online? Disable preemption to avoid false positives 1023 * that could otherwise happen due to the current CPU number being sampled, 1024 * this task being preempted, its old CPU being taken offline, resuming 1025 * on some other CPU, then determining that its old CPU is now offline. 1026 * It is OK to use RCU on an offline processor during initial boot, hence 1027 * the check for rcu_scheduler_fully_active. Note also that it is OK 1028 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1029 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1030 * offline to continue to use RCU for one jiffy after marking itself 1031 * offline in the cpu_online_mask. This leniency is necessary given the 1032 * non-atomic nature of the online and offline processing, for example, 1033 * the fact that a CPU enters the scheduler after completing the CPU_DYING 1034 * notifiers. 1035 * 1036 * This is also why RCU internally marks CPUs online during the 1037 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 1038 * 1039 * Disable checking if in an NMI handler because we cannot safely report 1040 * errors from NMI handlers anyway. 1041 */ 1042 bool rcu_lockdep_current_cpu_online(void) 1043 { 1044 struct rcu_data *rdp; 1045 struct rcu_node *rnp; 1046 bool ret; 1047 1048 if (in_nmi()) 1049 return true; 1050 preempt_disable(); 1051 rdp = this_cpu_ptr(&rcu_sched_data); 1052 rnp = rdp->mynode; 1053 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1054 !rcu_scheduler_fully_active; 1055 preempt_enable(); 1056 return ret; 1057 } 1058 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1059 1060 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1061 1062 /** 1063 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1064 * 1065 * If the current CPU is idle or running at a first-level (not nested) 1066 * interrupt from idle, return true. The caller must have at least 1067 * disabled preemption. 1068 */ 1069 static int rcu_is_cpu_rrupt_from_idle(void) 1070 { 1071 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1072 } 1073 1074 /* 1075 * Snapshot the specified CPU's dynticks counter so that we can later 1076 * credit them with an implicit quiescent state. Return 1 if this CPU 1077 * is in dynticks idle mode, which is an extended quiescent state. 1078 */ 1079 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1080 bool *isidle, unsigned long *maxj) 1081 { 1082 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 1083 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1084 if ((rdp->dynticks_snap & 0x1) == 0) { 1085 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1086 return 1; 1087 } else { 1088 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1089 rdp->mynode->gpnum)) 1090 WRITE_ONCE(rdp->gpwrap, true); 1091 return 0; 1092 } 1093 } 1094 1095 /* 1096 * Return true if the specified CPU has passed through a quiescent 1097 * state by virtue of being in or having passed through an dynticks 1098 * idle state since the last call to dyntick_save_progress_counter() 1099 * for this same CPU, or by virtue of having been offline. 1100 */ 1101 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1102 bool *isidle, unsigned long *maxj) 1103 { 1104 unsigned int curr; 1105 int *rcrmp; 1106 unsigned int snap; 1107 1108 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1109 snap = (unsigned int)rdp->dynticks_snap; 1110 1111 /* 1112 * If the CPU passed through or entered a dynticks idle phase with 1113 * no active irq/NMI handlers, then we can safely pretend that the CPU 1114 * already acknowledged the request to pass through a quiescent 1115 * state. Either way, that CPU cannot possibly be in an RCU 1116 * read-side critical section that started before the beginning 1117 * of the current RCU grace period. 1118 */ 1119 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1120 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1121 rdp->dynticks_fqs++; 1122 return 1; 1123 } 1124 1125 /* 1126 * Check for the CPU being offline, but only if the grace period 1127 * is old enough. We don't need to worry about the CPU changing 1128 * state: If we see it offline even once, it has been through a 1129 * quiescent state. 1130 * 1131 * The reason for insisting that the grace period be at least 1132 * one jiffy old is that CPUs that are not quite online and that 1133 * have just gone offline can still execute RCU read-side critical 1134 * sections. 1135 */ 1136 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1137 return 0; /* Grace period is not old enough. */ 1138 barrier(); 1139 if (cpu_is_offline(rdp->cpu)) { 1140 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1141 rdp->offline_fqs++; 1142 return 1; 1143 } 1144 1145 /* 1146 * A CPU running for an extended time within the kernel can 1147 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1148 * even context-switching back and forth between a pair of 1149 * in-kernel CPU-bound tasks cannot advance grace periods. 1150 * So if the grace period is old enough, make the CPU pay attention. 1151 * Note that the unsynchronized assignments to the per-CPU 1152 * rcu_sched_qs_mask variable are safe. Yes, setting of 1153 * bits can be lost, but they will be set again on the next 1154 * force-quiescent-state pass. So lost bit sets do not result 1155 * in incorrect behavior, merely in a grace period lasting 1156 * a few jiffies longer than it might otherwise. Because 1157 * there are at most four threads involved, and because the 1158 * updates are only once every few jiffies, the probability of 1159 * lossage (and thus of slight grace-period extension) is 1160 * quite low. 1161 * 1162 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1163 * is set too high, we override with half of the RCU CPU stall 1164 * warning delay. 1165 */ 1166 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1167 if (ULONG_CMP_GE(jiffies, 1168 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1169 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1170 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1171 WRITE_ONCE(rdp->cond_resched_completed, 1172 READ_ONCE(rdp->mynode->completed)); 1173 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1174 WRITE_ONCE(*rcrmp, 1175 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); 1176 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1177 rdp->rsp->jiffies_resched += 5; /* Enable beating. */ 1178 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1179 /* Time to beat on that CPU again! */ 1180 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1181 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1182 } 1183 } 1184 1185 return 0; 1186 } 1187 1188 static void record_gp_stall_check_time(struct rcu_state *rsp) 1189 { 1190 unsigned long j = jiffies; 1191 unsigned long j1; 1192 1193 rsp->gp_start = j; 1194 smp_wmb(); /* Record start time before stall time. */ 1195 j1 = rcu_jiffies_till_stall_check(); 1196 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1197 rsp->jiffies_resched = j + j1 / 2; 1198 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1199 } 1200 1201 /* 1202 * Convert a ->gp_state value to a character string. 1203 */ 1204 static const char *gp_state_getname(short gs) 1205 { 1206 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1207 return "???"; 1208 return gp_state_names[gs]; 1209 } 1210 1211 /* 1212 * Complain about starvation of grace-period kthread. 1213 */ 1214 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1215 { 1216 unsigned long gpa; 1217 unsigned long j; 1218 1219 j = jiffies; 1220 gpa = READ_ONCE(rsp->gp_activity); 1221 if (j - gpa > 2 * HZ) { 1222 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1223 rsp->name, j - gpa, 1224 rsp->gpnum, rsp->completed, 1225 rsp->gp_flags, 1226 gp_state_getname(rsp->gp_state), rsp->gp_state, 1227 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1228 if (rsp->gp_kthread) 1229 sched_show_task(rsp->gp_kthread); 1230 } 1231 } 1232 1233 /* 1234 * Dump stacks of all tasks running on stalled CPUs. 1235 */ 1236 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1237 { 1238 int cpu; 1239 unsigned long flags; 1240 struct rcu_node *rnp; 1241 1242 rcu_for_each_leaf_node(rsp, rnp) { 1243 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1244 if (rnp->qsmask != 0) { 1245 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1246 if (rnp->qsmask & (1UL << cpu)) 1247 dump_cpu_task(rnp->grplo + cpu); 1248 } 1249 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1250 } 1251 } 1252 1253 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1254 { 1255 int cpu; 1256 long delta; 1257 unsigned long flags; 1258 unsigned long gpa; 1259 unsigned long j; 1260 int ndetected = 0; 1261 struct rcu_node *rnp = rcu_get_root(rsp); 1262 long totqlen = 0; 1263 1264 /* Only let one CPU complain about others per time interval. */ 1265 1266 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1267 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1268 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1269 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1270 return; 1271 } 1272 WRITE_ONCE(rsp->jiffies_stall, 1273 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1274 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1275 1276 /* 1277 * OK, time to rat on our buddy... 1278 * See Documentation/RCU/stallwarn.txt for info on how to debug 1279 * RCU CPU stall warnings. 1280 */ 1281 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1282 rsp->name); 1283 print_cpu_stall_info_begin(); 1284 rcu_for_each_leaf_node(rsp, rnp) { 1285 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1286 ndetected += rcu_print_task_stall(rnp); 1287 if (rnp->qsmask != 0) { 1288 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1289 if (rnp->qsmask & (1UL << cpu)) { 1290 print_cpu_stall_info(rsp, 1291 rnp->grplo + cpu); 1292 ndetected++; 1293 } 1294 } 1295 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1296 } 1297 1298 print_cpu_stall_info_end(); 1299 for_each_possible_cpu(cpu) 1300 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1301 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1302 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1303 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1304 if (ndetected) { 1305 rcu_dump_cpu_stacks(rsp); 1306 } else { 1307 if (READ_ONCE(rsp->gpnum) != gpnum || 1308 READ_ONCE(rsp->completed) == gpnum) { 1309 pr_err("INFO: Stall ended before state dump start\n"); 1310 } else { 1311 j = jiffies; 1312 gpa = READ_ONCE(rsp->gp_activity); 1313 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1314 rsp->name, j - gpa, j, gpa, 1315 jiffies_till_next_fqs, 1316 rcu_get_root(rsp)->qsmask); 1317 /* In this case, the current CPU might be at fault. */ 1318 sched_show_task(current); 1319 } 1320 } 1321 1322 /* Complain about tasks blocking the grace period. */ 1323 rcu_print_detail_task_stall(rsp); 1324 1325 rcu_check_gp_kthread_starvation(rsp); 1326 1327 force_quiescent_state(rsp); /* Kick them all. */ 1328 } 1329 1330 static void print_cpu_stall(struct rcu_state *rsp) 1331 { 1332 int cpu; 1333 unsigned long flags; 1334 struct rcu_node *rnp = rcu_get_root(rsp); 1335 long totqlen = 0; 1336 1337 /* 1338 * OK, time to rat on ourselves... 1339 * See Documentation/RCU/stallwarn.txt for info on how to debug 1340 * RCU CPU stall warnings. 1341 */ 1342 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1343 print_cpu_stall_info_begin(); 1344 print_cpu_stall_info(rsp, smp_processor_id()); 1345 print_cpu_stall_info_end(); 1346 for_each_possible_cpu(cpu) 1347 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1348 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1349 jiffies - rsp->gp_start, 1350 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1351 1352 rcu_check_gp_kthread_starvation(rsp); 1353 1354 rcu_dump_cpu_stacks(rsp); 1355 1356 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1357 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1358 WRITE_ONCE(rsp->jiffies_stall, 1359 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1360 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1361 1362 /* 1363 * Attempt to revive the RCU machinery by forcing a context switch. 1364 * 1365 * A context switch would normally allow the RCU state machine to make 1366 * progress and it could be we're stuck in kernel space without context 1367 * switches for an entirely unreasonable amount of time. 1368 */ 1369 resched_cpu(smp_processor_id()); 1370 } 1371 1372 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1373 { 1374 unsigned long completed; 1375 unsigned long gpnum; 1376 unsigned long gps; 1377 unsigned long j; 1378 unsigned long js; 1379 struct rcu_node *rnp; 1380 1381 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1382 return; 1383 j = jiffies; 1384 1385 /* 1386 * Lots of memory barriers to reject false positives. 1387 * 1388 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1389 * then rsp->gp_start, and finally rsp->completed. These values 1390 * are updated in the opposite order with memory barriers (or 1391 * equivalent) during grace-period initialization and cleanup. 1392 * Now, a false positive can occur if we get an new value of 1393 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1394 * the memory barriers, the only way that this can happen is if one 1395 * grace period ends and another starts between these two fetches. 1396 * Detect this by comparing rsp->completed with the previous fetch 1397 * from rsp->gpnum. 1398 * 1399 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1400 * and rsp->gp_start suffice to forestall false positives. 1401 */ 1402 gpnum = READ_ONCE(rsp->gpnum); 1403 smp_rmb(); /* Pick up ->gpnum first... */ 1404 js = READ_ONCE(rsp->jiffies_stall); 1405 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1406 gps = READ_ONCE(rsp->gp_start); 1407 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1408 completed = READ_ONCE(rsp->completed); 1409 if (ULONG_CMP_GE(completed, gpnum) || 1410 ULONG_CMP_LT(j, js) || 1411 ULONG_CMP_GE(gps, js)) 1412 return; /* No stall or GP completed since entering function. */ 1413 rnp = rdp->mynode; 1414 if (rcu_gp_in_progress(rsp) && 1415 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1416 1417 /* We haven't checked in, so go dump stack. */ 1418 print_cpu_stall(rsp); 1419 1420 } else if (rcu_gp_in_progress(rsp) && 1421 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1422 1423 /* They had a few time units to dump stack, so complain. */ 1424 print_other_cpu_stall(rsp, gpnum); 1425 } 1426 } 1427 1428 /** 1429 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1430 * 1431 * Set the stall-warning timeout way off into the future, thus preventing 1432 * any RCU CPU stall-warning messages from appearing in the current set of 1433 * RCU grace periods. 1434 * 1435 * The caller must disable hard irqs. 1436 */ 1437 void rcu_cpu_stall_reset(void) 1438 { 1439 struct rcu_state *rsp; 1440 1441 for_each_rcu_flavor(rsp) 1442 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1443 } 1444 1445 /* 1446 * Initialize the specified rcu_data structure's default callback list 1447 * to empty. The default callback list is the one that is not used by 1448 * no-callbacks CPUs. 1449 */ 1450 static void init_default_callback_list(struct rcu_data *rdp) 1451 { 1452 int i; 1453 1454 rdp->nxtlist = NULL; 1455 for (i = 0; i < RCU_NEXT_SIZE; i++) 1456 rdp->nxttail[i] = &rdp->nxtlist; 1457 } 1458 1459 /* 1460 * Initialize the specified rcu_data structure's callback list to empty. 1461 */ 1462 static void init_callback_list(struct rcu_data *rdp) 1463 { 1464 if (init_nocb_callback_list(rdp)) 1465 return; 1466 init_default_callback_list(rdp); 1467 } 1468 1469 /* 1470 * Determine the value that ->completed will have at the end of the 1471 * next subsequent grace period. This is used to tag callbacks so that 1472 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1473 * been dyntick-idle for an extended period with callbacks under the 1474 * influence of RCU_FAST_NO_HZ. 1475 * 1476 * The caller must hold rnp->lock with interrupts disabled. 1477 */ 1478 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1479 struct rcu_node *rnp) 1480 { 1481 /* 1482 * If RCU is idle, we just wait for the next grace period. 1483 * But we can only be sure that RCU is idle if we are looking 1484 * at the root rcu_node structure -- otherwise, a new grace 1485 * period might have started, but just not yet gotten around 1486 * to initializing the current non-root rcu_node structure. 1487 */ 1488 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1489 return rnp->completed + 1; 1490 1491 /* 1492 * Otherwise, wait for a possible partial grace period and 1493 * then the subsequent full grace period. 1494 */ 1495 return rnp->completed + 2; 1496 } 1497 1498 /* 1499 * Trace-event helper function for rcu_start_future_gp() and 1500 * rcu_nocb_wait_gp(). 1501 */ 1502 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1503 unsigned long c, const char *s) 1504 { 1505 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1506 rnp->completed, c, rnp->level, 1507 rnp->grplo, rnp->grphi, s); 1508 } 1509 1510 /* 1511 * Start some future grace period, as needed to handle newly arrived 1512 * callbacks. The required future grace periods are recorded in each 1513 * rcu_node structure's ->need_future_gp field. Returns true if there 1514 * is reason to awaken the grace-period kthread. 1515 * 1516 * The caller must hold the specified rcu_node structure's ->lock. 1517 */ 1518 static bool __maybe_unused 1519 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1520 unsigned long *c_out) 1521 { 1522 unsigned long c; 1523 int i; 1524 bool ret = false; 1525 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1526 1527 /* 1528 * Pick up grace-period number for new callbacks. If this 1529 * grace period is already marked as needed, return to the caller. 1530 */ 1531 c = rcu_cbs_completed(rdp->rsp, rnp); 1532 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1533 if (rnp->need_future_gp[c & 0x1]) { 1534 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1535 goto out; 1536 } 1537 1538 /* 1539 * If either this rcu_node structure or the root rcu_node structure 1540 * believe that a grace period is in progress, then we must wait 1541 * for the one following, which is in "c". Because our request 1542 * will be noticed at the end of the current grace period, we don't 1543 * need to explicitly start one. We only do the lockless check 1544 * of rnp_root's fields if the current rcu_node structure thinks 1545 * there is no grace period in flight, and because we hold rnp->lock, 1546 * the only possible change is when rnp_root's two fields are 1547 * equal, in which case rnp_root->gpnum might be concurrently 1548 * incremented. But that is OK, as it will just result in our 1549 * doing some extra useless work. 1550 */ 1551 if (rnp->gpnum != rnp->completed || 1552 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1553 rnp->need_future_gp[c & 0x1]++; 1554 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1555 goto out; 1556 } 1557 1558 /* 1559 * There might be no grace period in progress. If we don't already 1560 * hold it, acquire the root rcu_node structure's lock in order to 1561 * start one (if needed). 1562 */ 1563 if (rnp != rnp_root) 1564 raw_spin_lock_rcu_node(rnp_root); 1565 1566 /* 1567 * Get a new grace-period number. If there really is no grace 1568 * period in progress, it will be smaller than the one we obtained 1569 * earlier. Adjust callbacks as needed. Note that even no-CBs 1570 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1571 */ 1572 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1573 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1574 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1575 rdp->nxtcompleted[i] = c; 1576 1577 /* 1578 * If the needed for the required grace period is already 1579 * recorded, trace and leave. 1580 */ 1581 if (rnp_root->need_future_gp[c & 0x1]) { 1582 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1583 goto unlock_out; 1584 } 1585 1586 /* Record the need for the future grace period. */ 1587 rnp_root->need_future_gp[c & 0x1]++; 1588 1589 /* If a grace period is not already in progress, start one. */ 1590 if (rnp_root->gpnum != rnp_root->completed) { 1591 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1592 } else { 1593 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1594 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1595 } 1596 unlock_out: 1597 if (rnp != rnp_root) 1598 raw_spin_unlock(&rnp_root->lock); 1599 out: 1600 if (c_out != NULL) 1601 *c_out = c; 1602 return ret; 1603 } 1604 1605 /* 1606 * Clean up any old requests for the just-ended grace period. Also return 1607 * whether any additional grace periods have been requested. Also invoke 1608 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1609 * waiting for this grace period to complete. 1610 */ 1611 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1612 { 1613 int c = rnp->completed; 1614 int needmore; 1615 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1616 1617 rcu_nocb_gp_cleanup(rsp, rnp); 1618 rnp->need_future_gp[c & 0x1] = 0; 1619 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1620 trace_rcu_future_gp(rnp, rdp, c, 1621 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1622 return needmore; 1623 } 1624 1625 /* 1626 * Awaken the grace-period kthread for the specified flavor of RCU. 1627 * Don't do a self-awaken, and don't bother awakening when there is 1628 * nothing for the grace-period kthread to do (as in several CPUs 1629 * raced to awaken, and we lost), and finally don't try to awaken 1630 * a kthread that has not yet been created. 1631 */ 1632 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1633 { 1634 if (current == rsp->gp_kthread || 1635 !READ_ONCE(rsp->gp_flags) || 1636 !rsp->gp_kthread) 1637 return; 1638 wake_up(&rsp->gp_wq); 1639 } 1640 1641 /* 1642 * If there is room, assign a ->completed number to any callbacks on 1643 * this CPU that have not already been assigned. Also accelerate any 1644 * callbacks that were previously assigned a ->completed number that has 1645 * since proven to be too conservative, which can happen if callbacks get 1646 * assigned a ->completed number while RCU is idle, but with reference to 1647 * a non-root rcu_node structure. This function is idempotent, so it does 1648 * not hurt to call it repeatedly. Returns an flag saying that we should 1649 * awaken the RCU grace-period kthread. 1650 * 1651 * The caller must hold rnp->lock with interrupts disabled. 1652 */ 1653 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1654 struct rcu_data *rdp) 1655 { 1656 unsigned long c; 1657 int i; 1658 bool ret; 1659 1660 /* If the CPU has no callbacks, nothing to do. */ 1661 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1662 return false; 1663 1664 /* 1665 * Starting from the sublist containing the callbacks most 1666 * recently assigned a ->completed number and working down, find the 1667 * first sublist that is not assignable to an upcoming grace period. 1668 * Such a sublist has something in it (first two tests) and has 1669 * a ->completed number assigned that will complete sooner than 1670 * the ->completed number for newly arrived callbacks (last test). 1671 * 1672 * The key point is that any later sublist can be assigned the 1673 * same ->completed number as the newly arrived callbacks, which 1674 * means that the callbacks in any of these later sublist can be 1675 * grouped into a single sublist, whether or not they have already 1676 * been assigned a ->completed number. 1677 */ 1678 c = rcu_cbs_completed(rsp, rnp); 1679 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1680 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1681 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1682 break; 1683 1684 /* 1685 * If there are no sublist for unassigned callbacks, leave. 1686 * At the same time, advance "i" one sublist, so that "i" will 1687 * index into the sublist where all the remaining callbacks should 1688 * be grouped into. 1689 */ 1690 if (++i >= RCU_NEXT_TAIL) 1691 return false; 1692 1693 /* 1694 * Assign all subsequent callbacks' ->completed number to the next 1695 * full grace period and group them all in the sublist initially 1696 * indexed by "i". 1697 */ 1698 for (; i <= RCU_NEXT_TAIL; i++) { 1699 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1700 rdp->nxtcompleted[i] = c; 1701 } 1702 /* Record any needed additional grace periods. */ 1703 ret = rcu_start_future_gp(rnp, rdp, NULL); 1704 1705 /* Trace depending on how much we were able to accelerate. */ 1706 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1707 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1708 else 1709 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1710 return ret; 1711 } 1712 1713 /* 1714 * Move any callbacks whose grace period has completed to the 1715 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1716 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1717 * sublist. This function is idempotent, so it does not hurt to 1718 * invoke it repeatedly. As long as it is not invoked -too- often... 1719 * Returns true if the RCU grace-period kthread needs to be awakened. 1720 * 1721 * The caller must hold rnp->lock with interrupts disabled. 1722 */ 1723 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1724 struct rcu_data *rdp) 1725 { 1726 int i, j; 1727 1728 /* If the CPU has no callbacks, nothing to do. */ 1729 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1730 return false; 1731 1732 /* 1733 * Find all callbacks whose ->completed numbers indicate that they 1734 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1735 */ 1736 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1737 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1738 break; 1739 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1740 } 1741 /* Clean up any sublist tail pointers that were misordered above. */ 1742 for (j = RCU_WAIT_TAIL; j < i; j++) 1743 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1744 1745 /* Copy down callbacks to fill in empty sublists. */ 1746 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1747 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1748 break; 1749 rdp->nxttail[j] = rdp->nxttail[i]; 1750 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1751 } 1752 1753 /* Classify any remaining callbacks. */ 1754 return rcu_accelerate_cbs(rsp, rnp, rdp); 1755 } 1756 1757 /* 1758 * Update CPU-local rcu_data state to record the beginnings and ends of 1759 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1760 * structure corresponding to the current CPU, and must have irqs disabled. 1761 * Returns true if the grace-period kthread needs to be awakened. 1762 */ 1763 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1764 struct rcu_data *rdp) 1765 { 1766 bool ret; 1767 1768 /* Handle the ends of any preceding grace periods first. */ 1769 if (rdp->completed == rnp->completed && 1770 !unlikely(READ_ONCE(rdp->gpwrap))) { 1771 1772 /* No grace period end, so just accelerate recent callbacks. */ 1773 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1774 1775 } else { 1776 1777 /* Advance callbacks. */ 1778 ret = rcu_advance_cbs(rsp, rnp, rdp); 1779 1780 /* Remember that we saw this grace-period completion. */ 1781 rdp->completed = rnp->completed; 1782 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1783 } 1784 1785 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1786 /* 1787 * If the current grace period is waiting for this CPU, 1788 * set up to detect a quiescent state, otherwise don't 1789 * go looking for one. 1790 */ 1791 rdp->gpnum = rnp->gpnum; 1792 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1793 rdp->cpu_no_qs.b.norm = true; 1794 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1795 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1796 zero_cpu_stall_ticks(rdp); 1797 WRITE_ONCE(rdp->gpwrap, false); 1798 } 1799 return ret; 1800 } 1801 1802 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1803 { 1804 unsigned long flags; 1805 bool needwake; 1806 struct rcu_node *rnp; 1807 1808 local_irq_save(flags); 1809 rnp = rdp->mynode; 1810 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1811 rdp->completed == READ_ONCE(rnp->completed) && 1812 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1813 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1814 local_irq_restore(flags); 1815 return; 1816 } 1817 needwake = __note_gp_changes(rsp, rnp, rdp); 1818 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1819 if (needwake) 1820 rcu_gp_kthread_wake(rsp); 1821 } 1822 1823 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1824 { 1825 if (delay > 0 && 1826 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1827 schedule_timeout_uninterruptible(delay); 1828 } 1829 1830 /* 1831 * Initialize a new grace period. Return false if no grace period required. 1832 */ 1833 static bool rcu_gp_init(struct rcu_state *rsp) 1834 { 1835 unsigned long oldmask; 1836 struct rcu_data *rdp; 1837 struct rcu_node *rnp = rcu_get_root(rsp); 1838 1839 WRITE_ONCE(rsp->gp_activity, jiffies); 1840 raw_spin_lock_irq_rcu_node(rnp); 1841 if (!READ_ONCE(rsp->gp_flags)) { 1842 /* Spurious wakeup, tell caller to go back to sleep. */ 1843 raw_spin_unlock_irq(&rnp->lock); 1844 return false; 1845 } 1846 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1847 1848 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1849 /* 1850 * Grace period already in progress, don't start another. 1851 * Not supposed to be able to happen. 1852 */ 1853 raw_spin_unlock_irq(&rnp->lock); 1854 return false; 1855 } 1856 1857 /* Advance to a new grace period and initialize state. */ 1858 record_gp_stall_check_time(rsp); 1859 /* Record GP times before starting GP, hence smp_store_release(). */ 1860 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1861 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1862 raw_spin_unlock_irq(&rnp->lock); 1863 1864 /* 1865 * Apply per-leaf buffered online and offline operations to the 1866 * rcu_node tree. Note that this new grace period need not wait 1867 * for subsequent online CPUs, and that quiescent-state forcing 1868 * will handle subsequent offline CPUs. 1869 */ 1870 rcu_for_each_leaf_node(rsp, rnp) { 1871 rcu_gp_slow(rsp, gp_preinit_delay); 1872 raw_spin_lock_irq_rcu_node(rnp); 1873 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1874 !rnp->wait_blkd_tasks) { 1875 /* Nothing to do on this leaf rcu_node structure. */ 1876 raw_spin_unlock_irq(&rnp->lock); 1877 continue; 1878 } 1879 1880 /* Record old state, apply changes to ->qsmaskinit field. */ 1881 oldmask = rnp->qsmaskinit; 1882 rnp->qsmaskinit = rnp->qsmaskinitnext; 1883 1884 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1885 if (!oldmask != !rnp->qsmaskinit) { 1886 if (!oldmask) /* First online CPU for this rcu_node. */ 1887 rcu_init_new_rnp(rnp); 1888 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1889 rnp->wait_blkd_tasks = true; 1890 else /* Last offline CPU and can propagate. */ 1891 rcu_cleanup_dead_rnp(rnp); 1892 } 1893 1894 /* 1895 * If all waited-on tasks from prior grace period are 1896 * done, and if all this rcu_node structure's CPUs are 1897 * still offline, propagate up the rcu_node tree and 1898 * clear ->wait_blkd_tasks. Otherwise, if one of this 1899 * rcu_node structure's CPUs has since come back online, 1900 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1901 * checks for this, so just call it unconditionally). 1902 */ 1903 if (rnp->wait_blkd_tasks && 1904 (!rcu_preempt_has_tasks(rnp) || 1905 rnp->qsmaskinit)) { 1906 rnp->wait_blkd_tasks = false; 1907 rcu_cleanup_dead_rnp(rnp); 1908 } 1909 1910 raw_spin_unlock_irq(&rnp->lock); 1911 } 1912 1913 /* 1914 * Set the quiescent-state-needed bits in all the rcu_node 1915 * structures for all currently online CPUs in breadth-first order, 1916 * starting from the root rcu_node structure, relying on the layout 1917 * of the tree within the rsp->node[] array. Note that other CPUs 1918 * will access only the leaves of the hierarchy, thus seeing that no 1919 * grace period is in progress, at least until the corresponding 1920 * leaf node has been initialized. In addition, we have excluded 1921 * CPU-hotplug operations. 1922 * 1923 * The grace period cannot complete until the initialization 1924 * process finishes, because this kthread handles both. 1925 */ 1926 rcu_for_each_node_breadth_first(rsp, rnp) { 1927 rcu_gp_slow(rsp, gp_init_delay); 1928 raw_spin_lock_irq_rcu_node(rnp); 1929 rdp = this_cpu_ptr(rsp->rda); 1930 rcu_preempt_check_blocked_tasks(rnp); 1931 rnp->qsmask = rnp->qsmaskinit; 1932 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 1933 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 1934 WRITE_ONCE(rnp->completed, rsp->completed); 1935 if (rnp == rdp->mynode) 1936 (void)__note_gp_changes(rsp, rnp, rdp); 1937 rcu_preempt_boost_start_gp(rnp); 1938 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1939 rnp->level, rnp->grplo, 1940 rnp->grphi, rnp->qsmask); 1941 raw_spin_unlock_irq(&rnp->lock); 1942 cond_resched_rcu_qs(); 1943 WRITE_ONCE(rsp->gp_activity, jiffies); 1944 } 1945 1946 return true; 1947 } 1948 1949 /* 1950 * Helper function for wait_event_interruptible_timeout() wakeup 1951 * at force-quiescent-state time. 1952 */ 1953 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 1954 { 1955 struct rcu_node *rnp = rcu_get_root(rsp); 1956 1957 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1958 *gfp = READ_ONCE(rsp->gp_flags); 1959 if (*gfp & RCU_GP_FLAG_FQS) 1960 return true; 1961 1962 /* The current grace period has completed. */ 1963 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1964 return true; 1965 1966 return false; 1967 } 1968 1969 /* 1970 * Do one round of quiescent-state forcing. 1971 */ 1972 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 1973 { 1974 bool isidle = false; 1975 unsigned long maxj; 1976 struct rcu_node *rnp = rcu_get_root(rsp); 1977 1978 WRITE_ONCE(rsp->gp_activity, jiffies); 1979 rsp->n_force_qs++; 1980 if (first_time) { 1981 /* Collect dyntick-idle snapshots. */ 1982 if (is_sysidle_rcu_state(rsp)) { 1983 isidle = true; 1984 maxj = jiffies - ULONG_MAX / 4; 1985 } 1986 force_qs_rnp(rsp, dyntick_save_progress_counter, 1987 &isidle, &maxj); 1988 rcu_sysidle_report_gp(rsp, isidle, maxj); 1989 } else { 1990 /* Handle dyntick-idle and offline CPUs. */ 1991 isidle = true; 1992 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1993 } 1994 /* Clear flag to prevent immediate re-entry. */ 1995 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1996 raw_spin_lock_irq_rcu_node(rnp); 1997 WRITE_ONCE(rsp->gp_flags, 1998 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 1999 raw_spin_unlock_irq(&rnp->lock); 2000 } 2001 } 2002 2003 /* 2004 * Clean up after the old grace period. 2005 */ 2006 static void rcu_gp_cleanup(struct rcu_state *rsp) 2007 { 2008 unsigned long gp_duration; 2009 bool needgp = false; 2010 int nocb = 0; 2011 struct rcu_data *rdp; 2012 struct rcu_node *rnp = rcu_get_root(rsp); 2013 2014 WRITE_ONCE(rsp->gp_activity, jiffies); 2015 raw_spin_lock_irq_rcu_node(rnp); 2016 gp_duration = jiffies - rsp->gp_start; 2017 if (gp_duration > rsp->gp_max) 2018 rsp->gp_max = gp_duration; 2019 2020 /* 2021 * We know the grace period is complete, but to everyone else 2022 * it appears to still be ongoing. But it is also the case 2023 * that to everyone else it looks like there is nothing that 2024 * they can do to advance the grace period. It is therefore 2025 * safe for us to drop the lock in order to mark the grace 2026 * period as completed in all of the rcu_node structures. 2027 */ 2028 raw_spin_unlock_irq(&rnp->lock); 2029 2030 /* 2031 * Propagate new ->completed value to rcu_node structures so 2032 * that other CPUs don't have to wait until the start of the next 2033 * grace period to process their callbacks. This also avoids 2034 * some nasty RCU grace-period initialization races by forcing 2035 * the end of the current grace period to be completely recorded in 2036 * all of the rcu_node structures before the beginning of the next 2037 * grace period is recorded in any of the rcu_node structures. 2038 */ 2039 rcu_for_each_node_breadth_first(rsp, rnp) { 2040 raw_spin_lock_irq_rcu_node(rnp); 2041 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2042 WARN_ON_ONCE(rnp->qsmask); 2043 WRITE_ONCE(rnp->completed, rsp->gpnum); 2044 rdp = this_cpu_ptr(rsp->rda); 2045 if (rnp == rdp->mynode) 2046 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2047 /* smp_mb() provided by prior unlock-lock pair. */ 2048 nocb += rcu_future_gp_cleanup(rsp, rnp); 2049 raw_spin_unlock_irq(&rnp->lock); 2050 cond_resched_rcu_qs(); 2051 WRITE_ONCE(rsp->gp_activity, jiffies); 2052 rcu_gp_slow(rsp, gp_cleanup_delay); 2053 } 2054 rnp = rcu_get_root(rsp); 2055 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2056 rcu_nocb_gp_set(rnp, nocb); 2057 2058 /* Declare grace period done. */ 2059 WRITE_ONCE(rsp->completed, rsp->gpnum); 2060 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2061 rsp->gp_state = RCU_GP_IDLE; 2062 rdp = this_cpu_ptr(rsp->rda); 2063 /* Advance CBs to reduce false positives below. */ 2064 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2065 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2066 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2067 trace_rcu_grace_period(rsp->name, 2068 READ_ONCE(rsp->gpnum), 2069 TPS("newreq")); 2070 } 2071 raw_spin_unlock_irq(&rnp->lock); 2072 } 2073 2074 /* 2075 * Body of kthread that handles grace periods. 2076 */ 2077 static int __noreturn rcu_gp_kthread(void *arg) 2078 { 2079 bool first_gp_fqs; 2080 int gf; 2081 unsigned long j; 2082 int ret; 2083 struct rcu_state *rsp = arg; 2084 struct rcu_node *rnp = rcu_get_root(rsp); 2085 2086 rcu_bind_gp_kthread(); 2087 for (;;) { 2088 2089 /* Handle grace-period start. */ 2090 for (;;) { 2091 trace_rcu_grace_period(rsp->name, 2092 READ_ONCE(rsp->gpnum), 2093 TPS("reqwait")); 2094 rsp->gp_state = RCU_GP_WAIT_GPS; 2095 wait_event_interruptible(rsp->gp_wq, 2096 READ_ONCE(rsp->gp_flags) & 2097 RCU_GP_FLAG_INIT); 2098 rsp->gp_state = RCU_GP_DONE_GPS; 2099 /* Locking provides needed memory barrier. */ 2100 if (rcu_gp_init(rsp)) 2101 break; 2102 cond_resched_rcu_qs(); 2103 WRITE_ONCE(rsp->gp_activity, jiffies); 2104 WARN_ON(signal_pending(current)); 2105 trace_rcu_grace_period(rsp->name, 2106 READ_ONCE(rsp->gpnum), 2107 TPS("reqwaitsig")); 2108 } 2109 2110 /* Handle quiescent-state forcing. */ 2111 first_gp_fqs = true; 2112 j = jiffies_till_first_fqs; 2113 if (j > HZ) { 2114 j = HZ; 2115 jiffies_till_first_fqs = HZ; 2116 } 2117 ret = 0; 2118 for (;;) { 2119 if (!ret) 2120 rsp->jiffies_force_qs = jiffies + j; 2121 trace_rcu_grace_period(rsp->name, 2122 READ_ONCE(rsp->gpnum), 2123 TPS("fqswait")); 2124 rsp->gp_state = RCU_GP_WAIT_FQS; 2125 ret = wait_event_interruptible_timeout(rsp->gp_wq, 2126 rcu_gp_fqs_check_wake(rsp, &gf), j); 2127 rsp->gp_state = RCU_GP_DOING_FQS; 2128 /* Locking provides needed memory barriers. */ 2129 /* If grace period done, leave loop. */ 2130 if (!READ_ONCE(rnp->qsmask) && 2131 !rcu_preempt_blocked_readers_cgp(rnp)) 2132 break; 2133 /* If time for quiescent-state forcing, do it. */ 2134 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2135 (gf & RCU_GP_FLAG_FQS)) { 2136 trace_rcu_grace_period(rsp->name, 2137 READ_ONCE(rsp->gpnum), 2138 TPS("fqsstart")); 2139 rcu_gp_fqs(rsp, first_gp_fqs); 2140 first_gp_fqs = false; 2141 trace_rcu_grace_period(rsp->name, 2142 READ_ONCE(rsp->gpnum), 2143 TPS("fqsend")); 2144 cond_resched_rcu_qs(); 2145 WRITE_ONCE(rsp->gp_activity, jiffies); 2146 } else { 2147 /* Deal with stray signal. */ 2148 cond_resched_rcu_qs(); 2149 WRITE_ONCE(rsp->gp_activity, jiffies); 2150 WARN_ON(signal_pending(current)); 2151 trace_rcu_grace_period(rsp->name, 2152 READ_ONCE(rsp->gpnum), 2153 TPS("fqswaitsig")); 2154 } 2155 j = jiffies_till_next_fqs; 2156 if (j > HZ) { 2157 j = HZ; 2158 jiffies_till_next_fqs = HZ; 2159 } else if (j < 1) { 2160 j = 1; 2161 jiffies_till_next_fqs = 1; 2162 } 2163 } 2164 2165 /* Handle grace-period end. */ 2166 rsp->gp_state = RCU_GP_CLEANUP; 2167 rcu_gp_cleanup(rsp); 2168 rsp->gp_state = RCU_GP_CLEANED; 2169 } 2170 } 2171 2172 /* 2173 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2174 * in preparation for detecting the next grace period. The caller must hold 2175 * the root node's ->lock and hard irqs must be disabled. 2176 * 2177 * Note that it is legal for a dying CPU (which is marked as offline) to 2178 * invoke this function. This can happen when the dying CPU reports its 2179 * quiescent state. 2180 * 2181 * Returns true if the grace-period kthread must be awakened. 2182 */ 2183 static bool 2184 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2185 struct rcu_data *rdp) 2186 { 2187 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2188 /* 2189 * Either we have not yet spawned the grace-period 2190 * task, this CPU does not need another grace period, 2191 * or a grace period is already in progress. 2192 * Either way, don't start a new grace period. 2193 */ 2194 return false; 2195 } 2196 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2197 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2198 TPS("newreq")); 2199 2200 /* 2201 * We can't do wakeups while holding the rnp->lock, as that 2202 * could cause possible deadlocks with the rq->lock. Defer 2203 * the wakeup to our caller. 2204 */ 2205 return true; 2206 } 2207 2208 /* 2209 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2210 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2211 * is invoked indirectly from rcu_advance_cbs(), which would result in 2212 * endless recursion -- or would do so if it wasn't for the self-deadlock 2213 * that is encountered beforehand. 2214 * 2215 * Returns true if the grace-period kthread needs to be awakened. 2216 */ 2217 static bool rcu_start_gp(struct rcu_state *rsp) 2218 { 2219 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2220 struct rcu_node *rnp = rcu_get_root(rsp); 2221 bool ret = false; 2222 2223 /* 2224 * If there is no grace period in progress right now, any 2225 * callbacks we have up to this point will be satisfied by the 2226 * next grace period. Also, advancing the callbacks reduces the 2227 * probability of false positives from cpu_needs_another_gp() 2228 * resulting in pointless grace periods. So, advance callbacks 2229 * then start the grace period! 2230 */ 2231 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2232 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2233 return ret; 2234 } 2235 2236 /* 2237 * Report a full set of quiescent states to the specified rcu_state 2238 * data structure. This involves cleaning up after the prior grace 2239 * period and letting rcu_start_gp() start up the next grace period 2240 * if one is needed. Note that the caller must hold rnp->lock, which 2241 * is released before return. 2242 */ 2243 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2244 __releases(rcu_get_root(rsp)->lock) 2245 { 2246 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2247 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2248 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2249 rcu_gp_kthread_wake(rsp); 2250 } 2251 2252 /* 2253 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2254 * Allows quiescent states for a group of CPUs to be reported at one go 2255 * to the specified rcu_node structure, though all the CPUs in the group 2256 * must be represented by the same rcu_node structure (which need not be a 2257 * leaf rcu_node structure, though it often will be). The gps parameter 2258 * is the grace-period snapshot, which means that the quiescent states 2259 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2260 * must be held upon entry, and it is released before return. 2261 */ 2262 static void 2263 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2264 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2265 __releases(rnp->lock) 2266 { 2267 unsigned long oldmask = 0; 2268 struct rcu_node *rnp_c; 2269 2270 /* Walk up the rcu_node hierarchy. */ 2271 for (;;) { 2272 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2273 2274 /* 2275 * Our bit has already been cleared, or the 2276 * relevant grace period is already over, so done. 2277 */ 2278 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2279 return; 2280 } 2281 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2282 rnp->qsmask &= ~mask; 2283 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2284 mask, rnp->qsmask, rnp->level, 2285 rnp->grplo, rnp->grphi, 2286 !!rnp->gp_tasks); 2287 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2288 2289 /* Other bits still set at this level, so done. */ 2290 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2291 return; 2292 } 2293 mask = rnp->grpmask; 2294 if (rnp->parent == NULL) { 2295 2296 /* No more levels. Exit loop holding root lock. */ 2297 2298 break; 2299 } 2300 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2301 rnp_c = rnp; 2302 rnp = rnp->parent; 2303 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2304 oldmask = rnp_c->qsmask; 2305 } 2306 2307 /* 2308 * Get here if we are the last CPU to pass through a quiescent 2309 * state for this grace period. Invoke rcu_report_qs_rsp() 2310 * to clean up and start the next grace period if one is needed. 2311 */ 2312 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2313 } 2314 2315 /* 2316 * Record a quiescent state for all tasks that were previously queued 2317 * on the specified rcu_node structure and that were blocking the current 2318 * RCU grace period. The caller must hold the specified rnp->lock with 2319 * irqs disabled, and this lock is released upon return, but irqs remain 2320 * disabled. 2321 */ 2322 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2323 struct rcu_node *rnp, unsigned long flags) 2324 __releases(rnp->lock) 2325 { 2326 unsigned long gps; 2327 unsigned long mask; 2328 struct rcu_node *rnp_p; 2329 2330 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2331 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2332 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2333 return; /* Still need more quiescent states! */ 2334 } 2335 2336 rnp_p = rnp->parent; 2337 if (rnp_p == NULL) { 2338 /* 2339 * Only one rcu_node structure in the tree, so don't 2340 * try to report up to its nonexistent parent! 2341 */ 2342 rcu_report_qs_rsp(rsp, flags); 2343 return; 2344 } 2345 2346 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2347 gps = rnp->gpnum; 2348 mask = rnp->grpmask; 2349 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2350 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2351 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2352 } 2353 2354 /* 2355 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2356 * structure. This must be either called from the specified CPU, or 2357 * called when the specified CPU is known to be offline (and when it is 2358 * also known that no other CPU is concurrently trying to help the offline 2359 * CPU). The lastcomp argument is used to make sure we are still in the 2360 * grace period of interest. We don't want to end the current grace period 2361 * based on quiescent states detected in an earlier grace period! 2362 */ 2363 static void 2364 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2365 { 2366 unsigned long flags; 2367 unsigned long mask; 2368 bool needwake; 2369 struct rcu_node *rnp; 2370 2371 rnp = rdp->mynode; 2372 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2373 if ((rdp->cpu_no_qs.b.norm && 2374 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2375 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2376 rdp->gpwrap) { 2377 2378 /* 2379 * The grace period in which this quiescent state was 2380 * recorded has ended, so don't report it upwards. 2381 * We will instead need a new quiescent state that lies 2382 * within the current grace period. 2383 */ 2384 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2385 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2386 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2387 return; 2388 } 2389 mask = rdp->grpmask; 2390 if ((rnp->qsmask & mask) == 0) { 2391 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2392 } else { 2393 rdp->core_needs_qs = 0; 2394 2395 /* 2396 * This GP can't end until cpu checks in, so all of our 2397 * callbacks can be processed during the next GP. 2398 */ 2399 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2400 2401 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2402 /* ^^^ Released rnp->lock */ 2403 if (needwake) 2404 rcu_gp_kthread_wake(rsp); 2405 } 2406 } 2407 2408 /* 2409 * Check to see if there is a new grace period of which this CPU 2410 * is not yet aware, and if so, set up local rcu_data state for it. 2411 * Otherwise, see if this CPU has just passed through its first 2412 * quiescent state for this grace period, and record that fact if so. 2413 */ 2414 static void 2415 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2416 { 2417 /* Check for grace-period ends and beginnings. */ 2418 note_gp_changes(rsp, rdp); 2419 2420 /* 2421 * Does this CPU still need to do its part for current grace period? 2422 * If no, return and let the other CPUs do their part as well. 2423 */ 2424 if (!rdp->core_needs_qs) 2425 return; 2426 2427 /* 2428 * Was there a quiescent state since the beginning of the grace 2429 * period? If no, then exit and wait for the next call. 2430 */ 2431 if (rdp->cpu_no_qs.b.norm && 2432 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2433 return; 2434 2435 /* 2436 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2437 * judge of that). 2438 */ 2439 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2440 } 2441 2442 /* 2443 * Send the specified CPU's RCU callbacks to the orphanage. The 2444 * specified CPU must be offline, and the caller must hold the 2445 * ->orphan_lock. 2446 */ 2447 static void 2448 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2449 struct rcu_node *rnp, struct rcu_data *rdp) 2450 { 2451 /* No-CBs CPUs do not have orphanable callbacks. */ 2452 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2453 return; 2454 2455 /* 2456 * Orphan the callbacks. First adjust the counts. This is safe 2457 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2458 * cannot be running now. Thus no memory barrier is required. 2459 */ 2460 if (rdp->nxtlist != NULL) { 2461 rsp->qlen_lazy += rdp->qlen_lazy; 2462 rsp->qlen += rdp->qlen; 2463 rdp->n_cbs_orphaned += rdp->qlen; 2464 rdp->qlen_lazy = 0; 2465 WRITE_ONCE(rdp->qlen, 0); 2466 } 2467 2468 /* 2469 * Next, move those callbacks still needing a grace period to 2470 * the orphanage, where some other CPU will pick them up. 2471 * Some of the callbacks might have gone partway through a grace 2472 * period, but that is too bad. They get to start over because we 2473 * cannot assume that grace periods are synchronized across CPUs. 2474 * We don't bother updating the ->nxttail[] array yet, instead 2475 * we just reset the whole thing later on. 2476 */ 2477 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2478 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2479 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2480 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2481 } 2482 2483 /* 2484 * Then move the ready-to-invoke callbacks to the orphanage, 2485 * where some other CPU will pick them up. These will not be 2486 * required to pass though another grace period: They are done. 2487 */ 2488 if (rdp->nxtlist != NULL) { 2489 *rsp->orphan_donetail = rdp->nxtlist; 2490 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2491 } 2492 2493 /* 2494 * Finally, initialize the rcu_data structure's list to empty and 2495 * disallow further callbacks on this CPU. 2496 */ 2497 init_callback_list(rdp); 2498 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2499 } 2500 2501 /* 2502 * Adopt the RCU callbacks from the specified rcu_state structure's 2503 * orphanage. The caller must hold the ->orphan_lock. 2504 */ 2505 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2506 { 2507 int i; 2508 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2509 2510 /* No-CBs CPUs are handled specially. */ 2511 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2512 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2513 return; 2514 2515 /* Do the accounting first. */ 2516 rdp->qlen_lazy += rsp->qlen_lazy; 2517 rdp->qlen += rsp->qlen; 2518 rdp->n_cbs_adopted += rsp->qlen; 2519 if (rsp->qlen_lazy != rsp->qlen) 2520 rcu_idle_count_callbacks_posted(); 2521 rsp->qlen_lazy = 0; 2522 rsp->qlen = 0; 2523 2524 /* 2525 * We do not need a memory barrier here because the only way we 2526 * can get here if there is an rcu_barrier() in flight is if 2527 * we are the task doing the rcu_barrier(). 2528 */ 2529 2530 /* First adopt the ready-to-invoke callbacks. */ 2531 if (rsp->orphan_donelist != NULL) { 2532 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2533 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2534 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2535 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2536 rdp->nxttail[i] = rsp->orphan_donetail; 2537 rsp->orphan_donelist = NULL; 2538 rsp->orphan_donetail = &rsp->orphan_donelist; 2539 } 2540 2541 /* And then adopt the callbacks that still need a grace period. */ 2542 if (rsp->orphan_nxtlist != NULL) { 2543 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2544 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2545 rsp->orphan_nxtlist = NULL; 2546 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2547 } 2548 } 2549 2550 /* 2551 * Trace the fact that this CPU is going offline. 2552 */ 2553 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2554 { 2555 RCU_TRACE(unsigned long mask); 2556 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2557 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2558 2559 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2560 return; 2561 2562 RCU_TRACE(mask = rdp->grpmask); 2563 trace_rcu_grace_period(rsp->name, 2564 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2565 TPS("cpuofl")); 2566 } 2567 2568 /* 2569 * All CPUs for the specified rcu_node structure have gone offline, 2570 * and all tasks that were preempted within an RCU read-side critical 2571 * section while running on one of those CPUs have since exited their RCU 2572 * read-side critical section. Some other CPU is reporting this fact with 2573 * the specified rcu_node structure's ->lock held and interrupts disabled. 2574 * This function therefore goes up the tree of rcu_node structures, 2575 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2576 * the leaf rcu_node structure's ->qsmaskinit field has already been 2577 * updated 2578 * 2579 * This function does check that the specified rcu_node structure has 2580 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2581 * prematurely. That said, invoking it after the fact will cost you 2582 * a needless lock acquisition. So once it has done its work, don't 2583 * invoke it again. 2584 */ 2585 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2586 { 2587 long mask; 2588 struct rcu_node *rnp = rnp_leaf; 2589 2590 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2591 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2592 return; 2593 for (;;) { 2594 mask = rnp->grpmask; 2595 rnp = rnp->parent; 2596 if (!rnp) 2597 break; 2598 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2599 rnp->qsmaskinit &= ~mask; 2600 rnp->qsmask &= ~mask; 2601 if (rnp->qsmaskinit) { 2602 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2603 return; 2604 } 2605 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2606 } 2607 } 2608 2609 /* 2610 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 2611 * function. We now remove it from the rcu_node tree's ->qsmaskinit 2612 * bit masks. 2613 */ 2614 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 2615 { 2616 unsigned long flags; 2617 unsigned long mask; 2618 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2619 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2620 2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2622 return; 2623 2624 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 2625 mask = rdp->grpmask; 2626 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 2627 rnp->qsmaskinitnext &= ~mask; 2628 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2629 } 2630 2631 /* 2632 * The CPU has been completely removed, and some other CPU is reporting 2633 * this fact from process context. Do the remainder of the cleanup, 2634 * including orphaning the outgoing CPU's RCU callbacks, and also 2635 * adopting them. There can only be one CPU hotplug operation at a time, 2636 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2637 */ 2638 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2639 { 2640 unsigned long flags; 2641 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2642 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2643 2644 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2645 return; 2646 2647 /* Adjust any no-longer-needed kthreads. */ 2648 rcu_boost_kthread_setaffinity(rnp, -1); 2649 2650 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2651 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2652 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2653 rcu_adopt_orphan_cbs(rsp, flags); 2654 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2655 2656 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2657 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2658 cpu, rdp->qlen, rdp->nxtlist); 2659 } 2660 2661 /* 2662 * Invoke any RCU callbacks that have made it to the end of their grace 2663 * period. Thottle as specified by rdp->blimit. 2664 */ 2665 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2666 { 2667 unsigned long flags; 2668 struct rcu_head *next, *list, **tail; 2669 long bl, count, count_lazy; 2670 int i; 2671 2672 /* If no callbacks are ready, just return. */ 2673 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2674 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2675 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist), 2676 need_resched(), is_idle_task(current), 2677 rcu_is_callbacks_kthread()); 2678 return; 2679 } 2680 2681 /* 2682 * Extract the list of ready callbacks, disabling to prevent 2683 * races with call_rcu() from interrupt handlers. 2684 */ 2685 local_irq_save(flags); 2686 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2687 bl = rdp->blimit; 2688 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2689 list = rdp->nxtlist; 2690 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2691 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2692 tail = rdp->nxttail[RCU_DONE_TAIL]; 2693 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2694 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2695 rdp->nxttail[i] = &rdp->nxtlist; 2696 local_irq_restore(flags); 2697 2698 /* Invoke callbacks. */ 2699 count = count_lazy = 0; 2700 while (list) { 2701 next = list->next; 2702 prefetch(next); 2703 debug_rcu_head_unqueue(list); 2704 if (__rcu_reclaim(rsp->name, list)) 2705 count_lazy++; 2706 list = next; 2707 /* Stop only if limit reached and CPU has something to do. */ 2708 if (++count >= bl && 2709 (need_resched() || 2710 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2711 break; 2712 } 2713 2714 local_irq_save(flags); 2715 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2716 is_idle_task(current), 2717 rcu_is_callbacks_kthread()); 2718 2719 /* Update count, and requeue any remaining callbacks. */ 2720 if (list != NULL) { 2721 *tail = rdp->nxtlist; 2722 rdp->nxtlist = list; 2723 for (i = 0; i < RCU_NEXT_SIZE; i++) 2724 if (&rdp->nxtlist == rdp->nxttail[i]) 2725 rdp->nxttail[i] = tail; 2726 else 2727 break; 2728 } 2729 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2730 rdp->qlen_lazy -= count_lazy; 2731 WRITE_ONCE(rdp->qlen, rdp->qlen - count); 2732 rdp->n_cbs_invoked += count; 2733 2734 /* Reinstate batch limit if we have worked down the excess. */ 2735 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2736 rdp->blimit = blimit; 2737 2738 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2739 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2740 rdp->qlen_last_fqs_check = 0; 2741 rdp->n_force_qs_snap = rsp->n_force_qs; 2742 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2743 rdp->qlen_last_fqs_check = rdp->qlen; 2744 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2745 2746 local_irq_restore(flags); 2747 2748 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2749 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2750 invoke_rcu_core(); 2751 } 2752 2753 /* 2754 * Check to see if this CPU is in a non-context-switch quiescent state 2755 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2756 * Also schedule RCU core processing. 2757 * 2758 * This function must be called from hardirq context. It is normally 2759 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2760 * false, there is no point in invoking rcu_check_callbacks(). 2761 */ 2762 void rcu_check_callbacks(int user) 2763 { 2764 trace_rcu_utilization(TPS("Start scheduler-tick")); 2765 increment_cpu_stall_ticks(); 2766 if (user || rcu_is_cpu_rrupt_from_idle()) { 2767 2768 /* 2769 * Get here if this CPU took its interrupt from user 2770 * mode or from the idle loop, and if this is not a 2771 * nested interrupt. In this case, the CPU is in 2772 * a quiescent state, so note it. 2773 * 2774 * No memory barrier is required here because both 2775 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2776 * variables that other CPUs neither access nor modify, 2777 * at least not while the corresponding CPU is online. 2778 */ 2779 2780 rcu_sched_qs(); 2781 rcu_bh_qs(); 2782 2783 } else if (!in_softirq()) { 2784 2785 /* 2786 * Get here if this CPU did not take its interrupt from 2787 * softirq, in other words, if it is not interrupting 2788 * a rcu_bh read-side critical section. This is an _bh 2789 * critical section, so note it. 2790 */ 2791 2792 rcu_bh_qs(); 2793 } 2794 rcu_preempt_check_callbacks(); 2795 if (rcu_pending()) 2796 invoke_rcu_core(); 2797 if (user) 2798 rcu_note_voluntary_context_switch(current); 2799 trace_rcu_utilization(TPS("End scheduler-tick")); 2800 } 2801 2802 /* 2803 * Scan the leaf rcu_node structures, processing dyntick state for any that 2804 * have not yet encountered a quiescent state, using the function specified. 2805 * Also initiate boosting for any threads blocked on the root rcu_node. 2806 * 2807 * The caller must have suppressed start of new grace periods. 2808 */ 2809 static void force_qs_rnp(struct rcu_state *rsp, 2810 int (*f)(struct rcu_data *rsp, bool *isidle, 2811 unsigned long *maxj), 2812 bool *isidle, unsigned long *maxj) 2813 { 2814 unsigned long bit; 2815 int cpu; 2816 unsigned long flags; 2817 unsigned long mask; 2818 struct rcu_node *rnp; 2819 2820 rcu_for_each_leaf_node(rsp, rnp) { 2821 cond_resched_rcu_qs(); 2822 mask = 0; 2823 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2824 if (rnp->qsmask == 0) { 2825 if (rcu_state_p == &rcu_sched_state || 2826 rsp != rcu_state_p || 2827 rcu_preempt_blocked_readers_cgp(rnp)) { 2828 /* 2829 * No point in scanning bits because they 2830 * are all zero. But we might need to 2831 * priority-boost blocked readers. 2832 */ 2833 rcu_initiate_boost(rnp, flags); 2834 /* rcu_initiate_boost() releases rnp->lock */ 2835 continue; 2836 } 2837 if (rnp->parent && 2838 (rnp->parent->qsmask & rnp->grpmask)) { 2839 /* 2840 * Race between grace-period 2841 * initialization and task exiting RCU 2842 * read-side critical section: Report. 2843 */ 2844 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2845 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2846 continue; 2847 } 2848 } 2849 cpu = rnp->grplo; 2850 bit = 1; 2851 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2852 if ((rnp->qsmask & bit) != 0) { 2853 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2854 mask |= bit; 2855 } 2856 } 2857 if (mask != 0) { 2858 /* Idle/offline CPUs, report (releases rnp->lock. */ 2859 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2860 } else { 2861 /* Nothing to do here, so just drop the lock. */ 2862 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2863 } 2864 } 2865 } 2866 2867 /* 2868 * Force quiescent states on reluctant CPUs, and also detect which 2869 * CPUs are in dyntick-idle mode. 2870 */ 2871 static void force_quiescent_state(struct rcu_state *rsp) 2872 { 2873 unsigned long flags; 2874 bool ret; 2875 struct rcu_node *rnp; 2876 struct rcu_node *rnp_old = NULL; 2877 2878 /* Funnel through hierarchy to reduce memory contention. */ 2879 rnp = __this_cpu_read(rsp->rda->mynode); 2880 for (; rnp != NULL; rnp = rnp->parent) { 2881 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2882 !raw_spin_trylock(&rnp->fqslock); 2883 if (rnp_old != NULL) 2884 raw_spin_unlock(&rnp_old->fqslock); 2885 if (ret) { 2886 rsp->n_force_qs_lh++; 2887 return; 2888 } 2889 rnp_old = rnp; 2890 } 2891 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2892 2893 /* Reached the root of the rcu_node tree, acquire lock. */ 2894 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2895 raw_spin_unlock(&rnp_old->fqslock); 2896 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2897 rsp->n_force_qs_lh++; 2898 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2899 return; /* Someone beat us to it. */ 2900 } 2901 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2902 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2903 rcu_gp_kthread_wake(rsp); 2904 } 2905 2906 /* 2907 * This does the RCU core processing work for the specified rcu_state 2908 * and rcu_data structures. This may be called only from the CPU to 2909 * whom the rdp belongs. 2910 */ 2911 static void 2912 __rcu_process_callbacks(struct rcu_state *rsp) 2913 { 2914 unsigned long flags; 2915 bool needwake; 2916 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2917 2918 WARN_ON_ONCE(rdp->beenonline == 0); 2919 2920 /* Update RCU state based on any recent quiescent states. */ 2921 rcu_check_quiescent_state(rsp, rdp); 2922 2923 /* Does this CPU require a not-yet-started grace period? */ 2924 local_irq_save(flags); 2925 if (cpu_needs_another_gp(rsp, rdp)) { 2926 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 2927 needwake = rcu_start_gp(rsp); 2928 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2929 if (needwake) 2930 rcu_gp_kthread_wake(rsp); 2931 } else { 2932 local_irq_restore(flags); 2933 } 2934 2935 /* If there are callbacks ready, invoke them. */ 2936 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2937 invoke_rcu_callbacks(rsp, rdp); 2938 2939 /* Do any needed deferred wakeups of rcuo kthreads. */ 2940 do_nocb_deferred_wakeup(rdp); 2941 } 2942 2943 /* 2944 * Do RCU core processing for the current CPU. 2945 */ 2946 static void rcu_process_callbacks(struct softirq_action *unused) 2947 { 2948 struct rcu_state *rsp; 2949 2950 if (cpu_is_offline(smp_processor_id())) 2951 return; 2952 trace_rcu_utilization(TPS("Start RCU core")); 2953 for_each_rcu_flavor(rsp) 2954 __rcu_process_callbacks(rsp); 2955 trace_rcu_utilization(TPS("End RCU core")); 2956 } 2957 2958 /* 2959 * Schedule RCU callback invocation. If the specified type of RCU 2960 * does not support RCU priority boosting, just do a direct call, 2961 * otherwise wake up the per-CPU kernel kthread. Note that because we 2962 * are running on the current CPU with softirqs disabled, the 2963 * rcu_cpu_kthread_task cannot disappear out from under us. 2964 */ 2965 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2966 { 2967 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2968 return; 2969 if (likely(!rsp->boost)) { 2970 rcu_do_batch(rsp, rdp); 2971 return; 2972 } 2973 invoke_rcu_callbacks_kthread(); 2974 } 2975 2976 static void invoke_rcu_core(void) 2977 { 2978 if (cpu_online(smp_processor_id())) 2979 raise_softirq(RCU_SOFTIRQ); 2980 } 2981 2982 /* 2983 * Handle any core-RCU processing required by a call_rcu() invocation. 2984 */ 2985 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2986 struct rcu_head *head, unsigned long flags) 2987 { 2988 bool needwake; 2989 2990 /* 2991 * If called from an extended quiescent state, invoke the RCU 2992 * core in order to force a re-evaluation of RCU's idleness. 2993 */ 2994 if (!rcu_is_watching()) 2995 invoke_rcu_core(); 2996 2997 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2998 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2999 return; 3000 3001 /* 3002 * Force the grace period if too many callbacks or too long waiting. 3003 * Enforce hysteresis, and don't invoke force_quiescent_state() 3004 * if some other CPU has recently done so. Also, don't bother 3005 * invoking force_quiescent_state() if the newly enqueued callback 3006 * is the only one waiting for a grace period to complete. 3007 */ 3008 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 3009 3010 /* Are we ignoring a completed grace period? */ 3011 note_gp_changes(rsp, rdp); 3012 3013 /* Start a new grace period if one not already started. */ 3014 if (!rcu_gp_in_progress(rsp)) { 3015 struct rcu_node *rnp_root = rcu_get_root(rsp); 3016 3017 raw_spin_lock_rcu_node(rnp_root); 3018 needwake = rcu_start_gp(rsp); 3019 raw_spin_unlock(&rnp_root->lock); 3020 if (needwake) 3021 rcu_gp_kthread_wake(rsp); 3022 } else { 3023 /* Give the grace period a kick. */ 3024 rdp->blimit = LONG_MAX; 3025 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3026 *rdp->nxttail[RCU_DONE_TAIL] != head) 3027 force_quiescent_state(rsp); 3028 rdp->n_force_qs_snap = rsp->n_force_qs; 3029 rdp->qlen_last_fqs_check = rdp->qlen; 3030 } 3031 } 3032 } 3033 3034 /* 3035 * RCU callback function to leak a callback. 3036 */ 3037 static void rcu_leak_callback(struct rcu_head *rhp) 3038 { 3039 } 3040 3041 /* 3042 * Helper function for call_rcu() and friends. The cpu argument will 3043 * normally be -1, indicating "currently running CPU". It may specify 3044 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3045 * is expected to specify a CPU. 3046 */ 3047 static void 3048 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3049 struct rcu_state *rsp, int cpu, bool lazy) 3050 { 3051 unsigned long flags; 3052 struct rcu_data *rdp; 3053 3054 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 3055 if (debug_rcu_head_queue(head)) { 3056 /* Probable double call_rcu(), so leak the callback. */ 3057 WRITE_ONCE(head->func, rcu_leak_callback); 3058 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3059 return; 3060 } 3061 head->func = func; 3062 head->next = NULL; 3063 3064 /* 3065 * Opportunistically note grace-period endings and beginnings. 3066 * Note that we might see a beginning right after we see an 3067 * end, but never vice versa, since this CPU has to pass through 3068 * a quiescent state betweentimes. 3069 */ 3070 local_irq_save(flags); 3071 rdp = this_cpu_ptr(rsp->rda); 3072 3073 /* Add the callback to our list. */ 3074 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 3075 int offline; 3076 3077 if (cpu != -1) 3078 rdp = per_cpu_ptr(rsp->rda, cpu); 3079 if (likely(rdp->mynode)) { 3080 /* Post-boot, so this should be for a no-CBs CPU. */ 3081 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3082 WARN_ON_ONCE(offline); 3083 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3084 local_irq_restore(flags); 3085 return; 3086 } 3087 /* 3088 * Very early boot, before rcu_init(). Initialize if needed 3089 * and then drop through to queue the callback. 3090 */ 3091 BUG_ON(cpu != -1); 3092 WARN_ON_ONCE(!rcu_is_watching()); 3093 if (!likely(rdp->nxtlist)) 3094 init_default_callback_list(rdp); 3095 } 3096 WRITE_ONCE(rdp->qlen, rdp->qlen + 1); 3097 if (lazy) 3098 rdp->qlen_lazy++; 3099 else 3100 rcu_idle_count_callbacks_posted(); 3101 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3102 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3103 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3104 3105 if (__is_kfree_rcu_offset((unsigned long)func)) 3106 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3107 rdp->qlen_lazy, rdp->qlen); 3108 else 3109 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3110 3111 /* Go handle any RCU core processing required. */ 3112 __call_rcu_core(rsp, rdp, head, flags); 3113 local_irq_restore(flags); 3114 } 3115 3116 /* 3117 * Queue an RCU-sched callback for invocation after a grace period. 3118 */ 3119 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3120 { 3121 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3122 } 3123 EXPORT_SYMBOL_GPL(call_rcu_sched); 3124 3125 /* 3126 * Queue an RCU callback for invocation after a quicker grace period. 3127 */ 3128 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3129 { 3130 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3131 } 3132 EXPORT_SYMBOL_GPL(call_rcu_bh); 3133 3134 /* 3135 * Queue an RCU callback for lazy invocation after a grace period. 3136 * This will likely be later named something like "call_rcu_lazy()", 3137 * but this change will require some way of tagging the lazy RCU 3138 * callbacks in the list of pending callbacks. Until then, this 3139 * function may only be called from __kfree_rcu(). 3140 */ 3141 void kfree_call_rcu(struct rcu_head *head, 3142 rcu_callback_t func) 3143 { 3144 __call_rcu(head, func, rcu_state_p, -1, 1); 3145 } 3146 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3147 3148 /* 3149 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3150 * any blocking grace-period wait automatically implies a grace period 3151 * if there is only one CPU online at any point time during execution 3152 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3153 * occasionally incorrectly indicate that there are multiple CPUs online 3154 * when there was in fact only one the whole time, as this just adds 3155 * some overhead: RCU still operates correctly. 3156 */ 3157 static inline int rcu_blocking_is_gp(void) 3158 { 3159 int ret; 3160 3161 might_sleep(); /* Check for RCU read-side critical section. */ 3162 preempt_disable(); 3163 ret = num_online_cpus() <= 1; 3164 preempt_enable(); 3165 return ret; 3166 } 3167 3168 /** 3169 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3170 * 3171 * Control will return to the caller some time after a full rcu-sched 3172 * grace period has elapsed, in other words after all currently executing 3173 * rcu-sched read-side critical sections have completed. These read-side 3174 * critical sections are delimited by rcu_read_lock_sched() and 3175 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3176 * local_irq_disable(), and so on may be used in place of 3177 * rcu_read_lock_sched(). 3178 * 3179 * This means that all preempt_disable code sequences, including NMI and 3180 * non-threaded hardware-interrupt handlers, in progress on entry will 3181 * have completed before this primitive returns. However, this does not 3182 * guarantee that softirq handlers will have completed, since in some 3183 * kernels, these handlers can run in process context, and can block. 3184 * 3185 * Note that this guarantee implies further memory-ordering guarantees. 3186 * On systems with more than one CPU, when synchronize_sched() returns, 3187 * each CPU is guaranteed to have executed a full memory barrier since the 3188 * end of its last RCU-sched read-side critical section whose beginning 3189 * preceded the call to synchronize_sched(). In addition, each CPU having 3190 * an RCU read-side critical section that extends beyond the return from 3191 * synchronize_sched() is guaranteed to have executed a full memory barrier 3192 * after the beginning of synchronize_sched() and before the beginning of 3193 * that RCU read-side critical section. Note that these guarantees include 3194 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3195 * that are executing in the kernel. 3196 * 3197 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3198 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3199 * to have executed a full memory barrier during the execution of 3200 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3201 * again only if the system has more than one CPU). 3202 * 3203 * This primitive provides the guarantees made by the (now removed) 3204 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3205 * guarantees that rcu_read_lock() sections will have completed. 3206 * In "classic RCU", these two guarantees happen to be one and 3207 * the same, but can differ in realtime RCU implementations. 3208 */ 3209 void synchronize_sched(void) 3210 { 3211 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3212 lock_is_held(&rcu_lock_map) || 3213 lock_is_held(&rcu_sched_lock_map), 3214 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3215 if (rcu_blocking_is_gp()) 3216 return; 3217 if (rcu_gp_is_expedited()) 3218 synchronize_sched_expedited(); 3219 else 3220 wait_rcu_gp(call_rcu_sched); 3221 } 3222 EXPORT_SYMBOL_GPL(synchronize_sched); 3223 3224 /** 3225 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3226 * 3227 * Control will return to the caller some time after a full rcu_bh grace 3228 * period has elapsed, in other words after all currently executing rcu_bh 3229 * read-side critical sections have completed. RCU read-side critical 3230 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3231 * and may be nested. 3232 * 3233 * See the description of synchronize_sched() for more detailed information 3234 * on memory ordering guarantees. 3235 */ 3236 void synchronize_rcu_bh(void) 3237 { 3238 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3239 lock_is_held(&rcu_lock_map) || 3240 lock_is_held(&rcu_sched_lock_map), 3241 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3242 if (rcu_blocking_is_gp()) 3243 return; 3244 if (rcu_gp_is_expedited()) 3245 synchronize_rcu_bh_expedited(); 3246 else 3247 wait_rcu_gp(call_rcu_bh); 3248 } 3249 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3250 3251 /** 3252 * get_state_synchronize_rcu - Snapshot current RCU state 3253 * 3254 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3255 * to determine whether or not a full grace period has elapsed in the 3256 * meantime. 3257 */ 3258 unsigned long get_state_synchronize_rcu(void) 3259 { 3260 /* 3261 * Any prior manipulation of RCU-protected data must happen 3262 * before the load from ->gpnum. 3263 */ 3264 smp_mb(); /* ^^^ */ 3265 3266 /* 3267 * Make sure this load happens before the purportedly 3268 * time-consuming work between get_state_synchronize_rcu() 3269 * and cond_synchronize_rcu(). 3270 */ 3271 return smp_load_acquire(&rcu_state_p->gpnum); 3272 } 3273 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3274 3275 /** 3276 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3277 * 3278 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3279 * 3280 * If a full RCU grace period has elapsed since the earlier call to 3281 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3282 * synchronize_rcu() to wait for a full grace period. 3283 * 3284 * Yes, this function does not take counter wrap into account. But 3285 * counter wrap is harmless. If the counter wraps, we have waited for 3286 * more than 2 billion grace periods (and way more on a 64-bit system!), 3287 * so waiting for one additional grace period should be just fine. 3288 */ 3289 void cond_synchronize_rcu(unsigned long oldstate) 3290 { 3291 unsigned long newstate; 3292 3293 /* 3294 * Ensure that this load happens before any RCU-destructive 3295 * actions the caller might carry out after we return. 3296 */ 3297 newstate = smp_load_acquire(&rcu_state_p->completed); 3298 if (ULONG_CMP_GE(oldstate, newstate)) 3299 synchronize_rcu(); 3300 } 3301 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3302 3303 /** 3304 * get_state_synchronize_sched - Snapshot current RCU-sched state 3305 * 3306 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3307 * to determine whether or not a full grace period has elapsed in the 3308 * meantime. 3309 */ 3310 unsigned long get_state_synchronize_sched(void) 3311 { 3312 /* 3313 * Any prior manipulation of RCU-protected data must happen 3314 * before the load from ->gpnum. 3315 */ 3316 smp_mb(); /* ^^^ */ 3317 3318 /* 3319 * Make sure this load happens before the purportedly 3320 * time-consuming work between get_state_synchronize_sched() 3321 * and cond_synchronize_sched(). 3322 */ 3323 return smp_load_acquire(&rcu_sched_state.gpnum); 3324 } 3325 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3326 3327 /** 3328 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3329 * 3330 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3331 * 3332 * If a full RCU-sched grace period has elapsed since the earlier call to 3333 * get_state_synchronize_sched(), just return. Otherwise, invoke 3334 * synchronize_sched() to wait for a full grace period. 3335 * 3336 * Yes, this function does not take counter wrap into account. But 3337 * counter wrap is harmless. If the counter wraps, we have waited for 3338 * more than 2 billion grace periods (and way more on a 64-bit system!), 3339 * so waiting for one additional grace period should be just fine. 3340 */ 3341 void cond_synchronize_sched(unsigned long oldstate) 3342 { 3343 unsigned long newstate; 3344 3345 /* 3346 * Ensure that this load happens before any RCU-destructive 3347 * actions the caller might carry out after we return. 3348 */ 3349 newstate = smp_load_acquire(&rcu_sched_state.completed); 3350 if (ULONG_CMP_GE(oldstate, newstate)) 3351 synchronize_sched(); 3352 } 3353 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3354 3355 /* Adjust sequence number for start of update-side operation. */ 3356 static void rcu_seq_start(unsigned long *sp) 3357 { 3358 WRITE_ONCE(*sp, *sp + 1); 3359 smp_mb(); /* Ensure update-side operation after counter increment. */ 3360 WARN_ON_ONCE(!(*sp & 0x1)); 3361 } 3362 3363 /* Adjust sequence number for end of update-side operation. */ 3364 static void rcu_seq_end(unsigned long *sp) 3365 { 3366 smp_mb(); /* Ensure update-side operation before counter increment. */ 3367 WRITE_ONCE(*sp, *sp + 1); 3368 WARN_ON_ONCE(*sp & 0x1); 3369 } 3370 3371 /* Take a snapshot of the update side's sequence number. */ 3372 static unsigned long rcu_seq_snap(unsigned long *sp) 3373 { 3374 unsigned long s; 3375 3376 s = (READ_ONCE(*sp) + 3) & ~0x1; 3377 smp_mb(); /* Above access must not bleed into critical section. */ 3378 return s; 3379 } 3380 3381 /* 3382 * Given a snapshot from rcu_seq_snap(), determine whether or not a 3383 * full update-side operation has occurred. 3384 */ 3385 static bool rcu_seq_done(unsigned long *sp, unsigned long s) 3386 { 3387 return ULONG_CMP_GE(READ_ONCE(*sp), s); 3388 } 3389 3390 /* Wrapper functions for expedited grace periods. */ 3391 static void rcu_exp_gp_seq_start(struct rcu_state *rsp) 3392 { 3393 rcu_seq_start(&rsp->expedited_sequence); 3394 } 3395 static void rcu_exp_gp_seq_end(struct rcu_state *rsp) 3396 { 3397 rcu_seq_end(&rsp->expedited_sequence); 3398 smp_mb(); /* Ensure that consecutive grace periods serialize. */ 3399 } 3400 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp) 3401 { 3402 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 3403 return rcu_seq_snap(&rsp->expedited_sequence); 3404 } 3405 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s) 3406 { 3407 return rcu_seq_done(&rsp->expedited_sequence, s); 3408 } 3409 3410 /* 3411 * Reset the ->expmaskinit values in the rcu_node tree to reflect any 3412 * recent CPU-online activity. Note that these masks are not cleared 3413 * when CPUs go offline, so they reflect the union of all CPUs that have 3414 * ever been online. This means that this function normally takes its 3415 * no-work-to-do fastpath. 3416 */ 3417 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp) 3418 { 3419 bool done; 3420 unsigned long flags; 3421 unsigned long mask; 3422 unsigned long oldmask; 3423 int ncpus = READ_ONCE(rsp->ncpus); 3424 struct rcu_node *rnp; 3425 struct rcu_node *rnp_up; 3426 3427 /* If no new CPUs onlined since last time, nothing to do. */ 3428 if (likely(ncpus == rsp->ncpus_snap)) 3429 return; 3430 rsp->ncpus_snap = ncpus; 3431 3432 /* 3433 * Each pass through the following loop propagates newly onlined 3434 * CPUs for the current rcu_node structure up the rcu_node tree. 3435 */ 3436 rcu_for_each_leaf_node(rsp, rnp) { 3437 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3438 if (rnp->expmaskinit == rnp->expmaskinitnext) { 3439 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3440 continue; /* No new CPUs, nothing to do. */ 3441 } 3442 3443 /* Update this node's mask, track old value for propagation. */ 3444 oldmask = rnp->expmaskinit; 3445 rnp->expmaskinit = rnp->expmaskinitnext; 3446 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3447 3448 /* If was already nonzero, nothing to propagate. */ 3449 if (oldmask) 3450 continue; 3451 3452 /* Propagate the new CPU up the tree. */ 3453 mask = rnp->grpmask; 3454 rnp_up = rnp->parent; 3455 done = false; 3456 while (rnp_up) { 3457 raw_spin_lock_irqsave_rcu_node(rnp_up, flags); 3458 if (rnp_up->expmaskinit) 3459 done = true; 3460 rnp_up->expmaskinit |= mask; 3461 raw_spin_unlock_irqrestore(&rnp_up->lock, flags); 3462 if (done) 3463 break; 3464 mask = rnp_up->grpmask; 3465 rnp_up = rnp_up->parent; 3466 } 3467 } 3468 } 3469 3470 /* 3471 * Reset the ->expmask values in the rcu_node tree in preparation for 3472 * a new expedited grace period. 3473 */ 3474 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp) 3475 { 3476 unsigned long flags; 3477 struct rcu_node *rnp; 3478 3479 sync_exp_reset_tree_hotplug(rsp); 3480 rcu_for_each_node_breadth_first(rsp, rnp) { 3481 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3482 WARN_ON_ONCE(rnp->expmask); 3483 rnp->expmask = rnp->expmaskinit; 3484 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3485 } 3486 } 3487 3488 /* 3489 * Return non-zero if there is no RCU expedited grace period in progress 3490 * for the specified rcu_node structure, in other words, if all CPUs and 3491 * tasks covered by the specified rcu_node structure have done their bit 3492 * for the current expedited grace period. Works only for preemptible 3493 * RCU -- other RCU implementation use other means. 3494 * 3495 * Caller must hold the root rcu_node's exp_funnel_mutex. 3496 */ 3497 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 3498 { 3499 return rnp->exp_tasks == NULL && 3500 READ_ONCE(rnp->expmask) == 0; 3501 } 3502 3503 /* 3504 * Report the exit from RCU read-side critical section for the last task 3505 * that queued itself during or before the current expedited preemptible-RCU 3506 * grace period. This event is reported either to the rcu_node structure on 3507 * which the task was queued or to one of that rcu_node structure's ancestors, 3508 * recursively up the tree. (Calm down, calm down, we do the recursion 3509 * iteratively!) 3510 * 3511 * Caller must hold the root rcu_node's exp_funnel_mutex and the 3512 * specified rcu_node structure's ->lock. 3513 */ 3514 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 3515 bool wake, unsigned long flags) 3516 __releases(rnp->lock) 3517 { 3518 unsigned long mask; 3519 3520 for (;;) { 3521 if (!sync_rcu_preempt_exp_done(rnp)) { 3522 if (!rnp->expmask) 3523 rcu_initiate_boost(rnp, flags); 3524 else 3525 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3526 break; 3527 } 3528 if (rnp->parent == NULL) { 3529 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3530 if (wake) { 3531 smp_mb(); /* EGP done before wake_up(). */ 3532 wake_up(&rsp->expedited_wq); 3533 } 3534 break; 3535 } 3536 mask = rnp->grpmask; 3537 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 3538 rnp = rnp->parent; 3539 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */ 3540 WARN_ON_ONCE(!(rnp->expmask & mask)); 3541 rnp->expmask &= ~mask; 3542 } 3543 } 3544 3545 /* 3546 * Report expedited quiescent state for specified node. This is a 3547 * lock-acquisition wrapper function for __rcu_report_exp_rnp(). 3548 * 3549 * Caller must hold the root rcu_node's exp_funnel_mutex. 3550 */ 3551 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp, 3552 struct rcu_node *rnp, bool wake) 3553 { 3554 unsigned long flags; 3555 3556 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3557 __rcu_report_exp_rnp(rsp, rnp, wake, flags); 3558 } 3559 3560 /* 3561 * Report expedited quiescent state for multiple CPUs, all covered by the 3562 * specified leaf rcu_node structure. Caller must hold the root 3563 * rcu_node's exp_funnel_mutex. 3564 */ 3565 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp, 3566 unsigned long mask, bool wake) 3567 { 3568 unsigned long flags; 3569 3570 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3571 if (!(rnp->expmask & mask)) { 3572 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3573 return; 3574 } 3575 rnp->expmask &= ~mask; 3576 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */ 3577 } 3578 3579 /* 3580 * Report expedited quiescent state for specified rcu_data (CPU). 3581 * Caller must hold the root rcu_node's exp_funnel_mutex. 3582 */ 3583 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp, 3584 bool wake) 3585 { 3586 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake); 3587 } 3588 3589 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */ 3590 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp, 3591 struct rcu_data *rdp, 3592 atomic_long_t *stat, unsigned long s) 3593 { 3594 if (rcu_exp_gp_seq_done(rsp, s)) { 3595 if (rnp) 3596 mutex_unlock(&rnp->exp_funnel_mutex); 3597 else if (rdp) 3598 mutex_unlock(&rdp->exp_funnel_mutex); 3599 /* Ensure test happens before caller kfree(). */ 3600 smp_mb__before_atomic(); /* ^^^ */ 3601 atomic_long_inc(stat); 3602 return true; 3603 } 3604 return false; 3605 } 3606 3607 /* 3608 * Funnel-lock acquisition for expedited grace periods. Returns a 3609 * pointer to the root rcu_node structure, or NULL if some other 3610 * task did the expedited grace period for us. 3611 */ 3612 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s) 3613 { 3614 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id()); 3615 struct rcu_node *rnp0; 3616 struct rcu_node *rnp1 = NULL; 3617 3618 /* 3619 * First try directly acquiring the root lock in order to reduce 3620 * latency in the common case where expedited grace periods are 3621 * rare. We check mutex_is_locked() to avoid pathological levels of 3622 * memory contention on ->exp_funnel_mutex in the heavy-load case. 3623 */ 3624 rnp0 = rcu_get_root(rsp); 3625 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) { 3626 if (mutex_trylock(&rnp0->exp_funnel_mutex)) { 3627 if (sync_exp_work_done(rsp, rnp0, NULL, 3628 &rdp->expedited_workdone0, s)) 3629 return NULL; 3630 return rnp0; 3631 } 3632 } 3633 3634 /* 3635 * Each pass through the following loop works its way 3636 * up the rcu_node tree, returning if others have done the 3637 * work or otherwise falls through holding the root rnp's 3638 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure 3639 * can be inexact, as it is just promoting locality and is not 3640 * strictly needed for correctness. 3641 */ 3642 if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s)) 3643 return NULL; 3644 mutex_lock(&rdp->exp_funnel_mutex); 3645 rnp0 = rdp->mynode; 3646 for (; rnp0 != NULL; rnp0 = rnp0->parent) { 3647 if (sync_exp_work_done(rsp, rnp1, rdp, 3648 &rdp->expedited_workdone2, s)) 3649 return NULL; 3650 mutex_lock(&rnp0->exp_funnel_mutex); 3651 if (rnp1) 3652 mutex_unlock(&rnp1->exp_funnel_mutex); 3653 else 3654 mutex_unlock(&rdp->exp_funnel_mutex); 3655 rnp1 = rnp0; 3656 } 3657 if (sync_exp_work_done(rsp, rnp1, rdp, 3658 &rdp->expedited_workdone3, s)) 3659 return NULL; 3660 return rnp1; 3661 } 3662 3663 /* Invoked on each online non-idle CPU for expedited quiescent state. */ 3664 static void sync_sched_exp_handler(void *data) 3665 { 3666 struct rcu_data *rdp; 3667 struct rcu_node *rnp; 3668 struct rcu_state *rsp = data; 3669 3670 rdp = this_cpu_ptr(rsp->rda); 3671 rnp = rdp->mynode; 3672 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) || 3673 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 3674 return; 3675 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true); 3676 resched_cpu(smp_processor_id()); 3677 } 3678 3679 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */ 3680 static void sync_sched_exp_online_cleanup(int cpu) 3681 { 3682 struct rcu_data *rdp; 3683 int ret; 3684 struct rcu_node *rnp; 3685 struct rcu_state *rsp = &rcu_sched_state; 3686 3687 rdp = per_cpu_ptr(rsp->rda, cpu); 3688 rnp = rdp->mynode; 3689 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask)) 3690 return; 3691 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0); 3692 WARN_ON_ONCE(ret); 3693 } 3694 3695 /* 3696 * Select the nodes that the upcoming expedited grace period needs 3697 * to wait for. 3698 */ 3699 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp, 3700 smp_call_func_t func) 3701 { 3702 int cpu; 3703 unsigned long flags; 3704 unsigned long mask; 3705 unsigned long mask_ofl_test; 3706 unsigned long mask_ofl_ipi; 3707 int ret; 3708 struct rcu_node *rnp; 3709 3710 sync_exp_reset_tree(rsp); 3711 rcu_for_each_leaf_node(rsp, rnp) { 3712 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3713 3714 /* Each pass checks a CPU for identity, offline, and idle. */ 3715 mask_ofl_test = 0; 3716 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 3717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3718 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 3719 3720 if (raw_smp_processor_id() == cpu || 3721 !(atomic_add_return(0, &rdtp->dynticks) & 0x1)) 3722 mask_ofl_test |= rdp->grpmask; 3723 } 3724 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test; 3725 3726 /* 3727 * Need to wait for any blocked tasks as well. Note that 3728 * additional blocking tasks will also block the expedited 3729 * GP until such time as the ->expmask bits are cleared. 3730 */ 3731 if (rcu_preempt_has_tasks(rnp)) 3732 rnp->exp_tasks = rnp->blkd_tasks.next; 3733 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3734 3735 /* IPI the remaining CPUs for expedited quiescent state. */ 3736 mask = 1; 3737 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) { 3738 if (!(mask_ofl_ipi & mask)) 3739 continue; 3740 retry_ipi: 3741 ret = smp_call_function_single(cpu, func, rsp, 0); 3742 if (!ret) { 3743 mask_ofl_ipi &= ~mask; 3744 continue; 3745 } 3746 /* Failed, raced with offline. */ 3747 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3748 if (cpu_online(cpu) && 3749 (rnp->expmask & mask)) { 3750 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3751 schedule_timeout_uninterruptible(1); 3752 if (cpu_online(cpu) && 3753 (rnp->expmask & mask)) 3754 goto retry_ipi; 3755 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3756 } 3757 if (!(rnp->expmask & mask)) 3758 mask_ofl_ipi &= ~mask; 3759 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3760 } 3761 /* Report quiescent states for those that went offline. */ 3762 mask_ofl_test |= mask_ofl_ipi; 3763 if (mask_ofl_test) 3764 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false); 3765 } 3766 } 3767 3768 static void synchronize_sched_expedited_wait(struct rcu_state *rsp) 3769 { 3770 int cpu; 3771 unsigned long jiffies_stall; 3772 unsigned long jiffies_start; 3773 unsigned long mask; 3774 int ndetected; 3775 struct rcu_node *rnp; 3776 struct rcu_node *rnp_root = rcu_get_root(rsp); 3777 int ret; 3778 3779 jiffies_stall = rcu_jiffies_till_stall_check(); 3780 jiffies_start = jiffies; 3781 3782 for (;;) { 3783 ret = wait_event_interruptible_timeout( 3784 rsp->expedited_wq, 3785 sync_rcu_preempt_exp_done(rnp_root), 3786 jiffies_stall); 3787 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root)) 3788 return; 3789 if (ret < 0) { 3790 /* Hit a signal, disable CPU stall warnings. */ 3791 wait_event(rsp->expedited_wq, 3792 sync_rcu_preempt_exp_done(rnp_root)); 3793 return; 3794 } 3795 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {", 3796 rsp->name); 3797 ndetected = 0; 3798 rcu_for_each_leaf_node(rsp, rnp) { 3799 ndetected = rcu_print_task_exp_stall(rnp); 3800 mask = 1; 3801 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) { 3802 struct rcu_data *rdp; 3803 3804 if (!(rnp->expmask & mask)) 3805 continue; 3806 ndetected++; 3807 rdp = per_cpu_ptr(rsp->rda, cpu); 3808 pr_cont(" %d-%c%c%c", cpu, 3809 "O."[cpu_online(cpu)], 3810 "o."[!!(rdp->grpmask & rnp->expmaskinit)], 3811 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]); 3812 } 3813 mask <<= 1; 3814 } 3815 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n", 3816 jiffies - jiffies_start, rsp->expedited_sequence, 3817 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]); 3818 if (!ndetected) { 3819 pr_err("blocking rcu_node structures:"); 3820 rcu_for_each_node_breadth_first(rsp, rnp) { 3821 if (rnp == rnp_root) 3822 continue; /* printed unconditionally */ 3823 if (sync_rcu_preempt_exp_done(rnp)) 3824 continue; 3825 pr_cont(" l=%u:%d-%d:%#lx/%c", 3826 rnp->level, rnp->grplo, rnp->grphi, 3827 rnp->expmask, 3828 ".T"[!!rnp->exp_tasks]); 3829 } 3830 pr_cont("\n"); 3831 } 3832 rcu_for_each_leaf_node(rsp, rnp) { 3833 mask = 1; 3834 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) { 3835 if (!(rnp->expmask & mask)) 3836 continue; 3837 dump_cpu_task(cpu); 3838 } 3839 } 3840 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3; 3841 } 3842 } 3843 3844 /** 3845 * synchronize_sched_expedited - Brute-force RCU-sched grace period 3846 * 3847 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 3848 * approach to force the grace period to end quickly. This consumes 3849 * significant time on all CPUs and is unfriendly to real-time workloads, 3850 * so is thus not recommended for any sort of common-case code. In fact, 3851 * if you are using synchronize_sched_expedited() in a loop, please 3852 * restructure your code to batch your updates, and then use a single 3853 * synchronize_sched() instead. 3854 * 3855 * This implementation can be thought of as an application of sequence 3856 * locking to expedited grace periods, but using the sequence counter to 3857 * determine when someone else has already done the work instead of for 3858 * retrying readers. 3859 */ 3860 void synchronize_sched_expedited(void) 3861 { 3862 unsigned long s; 3863 struct rcu_node *rnp; 3864 struct rcu_state *rsp = &rcu_sched_state; 3865 3866 /* If only one CPU, this is automatically a grace period. */ 3867 if (rcu_blocking_is_gp()) 3868 return; 3869 3870 /* If expedited grace periods are prohibited, fall back to normal. */ 3871 if (rcu_gp_is_normal()) { 3872 wait_rcu_gp(call_rcu_sched); 3873 return; 3874 } 3875 3876 /* Take a snapshot of the sequence number. */ 3877 s = rcu_exp_gp_seq_snap(rsp); 3878 3879 rnp = exp_funnel_lock(rsp, s); 3880 if (rnp == NULL) 3881 return; /* Someone else did our work for us. */ 3882 3883 rcu_exp_gp_seq_start(rsp); 3884 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler); 3885 synchronize_sched_expedited_wait(rsp); 3886 3887 rcu_exp_gp_seq_end(rsp); 3888 mutex_unlock(&rnp->exp_funnel_mutex); 3889 } 3890 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3891 3892 /* 3893 * Check to see if there is any immediate RCU-related work to be done 3894 * by the current CPU, for the specified type of RCU, returning 1 if so. 3895 * The checks are in order of increasing expense: checks that can be 3896 * carried out against CPU-local state are performed first. However, 3897 * we must check for CPU stalls first, else we might not get a chance. 3898 */ 3899 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3900 { 3901 struct rcu_node *rnp = rdp->mynode; 3902 3903 rdp->n_rcu_pending++; 3904 3905 /* Check for CPU stalls, if enabled. */ 3906 check_cpu_stall(rsp, rdp); 3907 3908 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3909 if (rcu_nohz_full_cpu(rsp)) 3910 return 0; 3911 3912 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3913 if (rcu_scheduler_fully_active && 3914 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3915 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3916 rdp->n_rp_core_needs_qs++; 3917 } else if (rdp->core_needs_qs && 3918 (!rdp->cpu_no_qs.b.norm || 3919 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 3920 rdp->n_rp_report_qs++; 3921 return 1; 3922 } 3923 3924 /* Does this CPU have callbacks ready to invoke? */ 3925 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3926 rdp->n_rp_cb_ready++; 3927 return 1; 3928 } 3929 3930 /* Has RCU gone idle with this CPU needing another grace period? */ 3931 if (cpu_needs_another_gp(rsp, rdp)) { 3932 rdp->n_rp_cpu_needs_gp++; 3933 return 1; 3934 } 3935 3936 /* Has another RCU grace period completed? */ 3937 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3938 rdp->n_rp_gp_completed++; 3939 return 1; 3940 } 3941 3942 /* Has a new RCU grace period started? */ 3943 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3944 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3945 rdp->n_rp_gp_started++; 3946 return 1; 3947 } 3948 3949 /* Does this CPU need a deferred NOCB wakeup? */ 3950 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3951 rdp->n_rp_nocb_defer_wakeup++; 3952 return 1; 3953 } 3954 3955 /* nothing to do */ 3956 rdp->n_rp_need_nothing++; 3957 return 0; 3958 } 3959 3960 /* 3961 * Check to see if there is any immediate RCU-related work to be done 3962 * by the current CPU, returning 1 if so. This function is part of the 3963 * RCU implementation; it is -not- an exported member of the RCU API. 3964 */ 3965 static int rcu_pending(void) 3966 { 3967 struct rcu_state *rsp; 3968 3969 for_each_rcu_flavor(rsp) 3970 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3971 return 1; 3972 return 0; 3973 } 3974 3975 /* 3976 * Return true if the specified CPU has any callback. If all_lazy is 3977 * non-NULL, store an indication of whether all callbacks are lazy. 3978 * (If there are no callbacks, all of them are deemed to be lazy.) 3979 */ 3980 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3981 { 3982 bool al = true; 3983 bool hc = false; 3984 struct rcu_data *rdp; 3985 struct rcu_state *rsp; 3986 3987 for_each_rcu_flavor(rsp) { 3988 rdp = this_cpu_ptr(rsp->rda); 3989 if (!rdp->nxtlist) 3990 continue; 3991 hc = true; 3992 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3993 al = false; 3994 break; 3995 } 3996 } 3997 if (all_lazy) 3998 *all_lazy = al; 3999 return hc; 4000 } 4001 4002 /* 4003 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 4004 * the compiler is expected to optimize this away. 4005 */ 4006 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 4007 int cpu, unsigned long done) 4008 { 4009 trace_rcu_barrier(rsp->name, s, cpu, 4010 atomic_read(&rsp->barrier_cpu_count), done); 4011 } 4012 4013 /* 4014 * RCU callback function for _rcu_barrier(). If we are last, wake 4015 * up the task executing _rcu_barrier(). 4016 */ 4017 static void rcu_barrier_callback(struct rcu_head *rhp) 4018 { 4019 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 4020 struct rcu_state *rsp = rdp->rsp; 4021 4022 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 4023 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 4024 complete(&rsp->barrier_completion); 4025 } else { 4026 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 4027 } 4028 } 4029 4030 /* 4031 * Called with preemption disabled, and from cross-cpu IRQ context. 4032 */ 4033 static void rcu_barrier_func(void *type) 4034 { 4035 struct rcu_state *rsp = type; 4036 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 4037 4038 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 4039 atomic_inc(&rsp->barrier_cpu_count); 4040 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 4041 } 4042 4043 /* 4044 * Orchestrate the specified type of RCU barrier, waiting for all 4045 * RCU callbacks of the specified type to complete. 4046 */ 4047 static void _rcu_barrier(struct rcu_state *rsp) 4048 { 4049 int cpu; 4050 struct rcu_data *rdp; 4051 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 4052 4053 _rcu_barrier_trace(rsp, "Begin", -1, s); 4054 4055 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4056 mutex_lock(&rsp->barrier_mutex); 4057 4058 /* Did someone else do our work for us? */ 4059 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 4060 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 4061 smp_mb(); /* caller's subsequent code after above check. */ 4062 mutex_unlock(&rsp->barrier_mutex); 4063 return; 4064 } 4065 4066 /* Mark the start of the barrier operation. */ 4067 rcu_seq_start(&rsp->barrier_sequence); 4068 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 4069 4070 /* 4071 * Initialize the count to one rather than to zero in order to 4072 * avoid a too-soon return to zero in case of a short grace period 4073 * (or preemption of this task). Exclude CPU-hotplug operations 4074 * to ensure that no offline CPU has callbacks queued. 4075 */ 4076 init_completion(&rsp->barrier_completion); 4077 atomic_set(&rsp->barrier_cpu_count, 1); 4078 get_online_cpus(); 4079 4080 /* 4081 * Force each CPU with callbacks to register a new callback. 4082 * When that callback is invoked, we will know that all of the 4083 * corresponding CPU's preceding callbacks have been invoked. 4084 */ 4085 for_each_possible_cpu(cpu) { 4086 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 4087 continue; 4088 rdp = per_cpu_ptr(rsp->rda, cpu); 4089 if (rcu_is_nocb_cpu(cpu)) { 4090 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 4091 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 4092 rsp->barrier_sequence); 4093 } else { 4094 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 4095 rsp->barrier_sequence); 4096 smp_mb__before_atomic(); 4097 atomic_inc(&rsp->barrier_cpu_count); 4098 __call_rcu(&rdp->barrier_head, 4099 rcu_barrier_callback, rsp, cpu, 0); 4100 } 4101 } else if (READ_ONCE(rdp->qlen)) { 4102 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 4103 rsp->barrier_sequence); 4104 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 4105 } else { 4106 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 4107 rsp->barrier_sequence); 4108 } 4109 } 4110 put_online_cpus(); 4111 4112 /* 4113 * Now that we have an rcu_barrier_callback() callback on each 4114 * CPU, and thus each counted, remove the initial count. 4115 */ 4116 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 4117 complete(&rsp->barrier_completion); 4118 4119 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4120 wait_for_completion(&rsp->barrier_completion); 4121 4122 /* Mark the end of the barrier operation. */ 4123 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 4124 rcu_seq_end(&rsp->barrier_sequence); 4125 4126 /* Other rcu_barrier() invocations can now safely proceed. */ 4127 mutex_unlock(&rsp->barrier_mutex); 4128 } 4129 4130 /** 4131 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 4132 */ 4133 void rcu_barrier_bh(void) 4134 { 4135 _rcu_barrier(&rcu_bh_state); 4136 } 4137 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 4138 4139 /** 4140 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 4141 */ 4142 void rcu_barrier_sched(void) 4143 { 4144 _rcu_barrier(&rcu_sched_state); 4145 } 4146 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 4147 4148 /* 4149 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4150 * first CPU in a given leaf rcu_node structure coming online. The caller 4151 * must hold the corresponding leaf rcu_node ->lock with interrrupts 4152 * disabled. 4153 */ 4154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4155 { 4156 long mask; 4157 struct rcu_node *rnp = rnp_leaf; 4158 4159 for (;;) { 4160 mask = rnp->grpmask; 4161 rnp = rnp->parent; 4162 if (rnp == NULL) 4163 return; 4164 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4165 rnp->qsmaskinit |= mask; 4166 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */ 4167 } 4168 } 4169 4170 /* 4171 * Do boot-time initialization of a CPU's per-CPU RCU data. 4172 */ 4173 static void __init 4174 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 4175 { 4176 unsigned long flags; 4177 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 4178 struct rcu_node *rnp = rcu_get_root(rsp); 4179 4180 /* Set up local state, ensuring consistent view of global state. */ 4181 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4182 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 4183 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 4184 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 4185 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 4186 rdp->cpu = cpu; 4187 rdp->rsp = rsp; 4188 mutex_init(&rdp->exp_funnel_mutex); 4189 rcu_boot_init_nocb_percpu_data(rdp); 4190 raw_spin_unlock_irqrestore(&rnp->lock, flags); 4191 } 4192 4193 /* 4194 * Initialize a CPU's per-CPU RCU data. Note that only one online or 4195 * offline event can be happening at a given time. Note also that we 4196 * can accept some slop in the rsp->completed access due to the fact 4197 * that this CPU cannot possibly have any RCU callbacks in flight yet. 4198 */ 4199 static void 4200 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 4201 { 4202 unsigned long flags; 4203 unsigned long mask; 4204 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 4205 struct rcu_node *rnp = rcu_get_root(rsp); 4206 4207 /* Set up local state, ensuring consistent view of global state. */ 4208 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4209 rdp->qlen_last_fqs_check = 0; 4210 rdp->n_force_qs_snap = rsp->n_force_qs; 4211 rdp->blimit = blimit; 4212 if (!rdp->nxtlist) 4213 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 4214 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 4215 rcu_sysidle_init_percpu_data(rdp->dynticks); 4216 atomic_set(&rdp->dynticks->dynticks, 4217 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 4218 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 4219 4220 /* 4221 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4222 * propagation up the rcu_node tree will happen at the beginning 4223 * of the next grace period. 4224 */ 4225 rnp = rdp->mynode; 4226 mask = rdp->grpmask; 4227 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4228 rnp->qsmaskinitnext |= mask; 4229 rnp->expmaskinitnext |= mask; 4230 if (!rdp->beenonline) 4231 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 4232 rdp->beenonline = true; /* We have now been online. */ 4233 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 4234 rdp->completed = rnp->completed; 4235 rdp->cpu_no_qs.b.norm = true; 4236 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); 4237 rdp->core_needs_qs = false; 4238 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 4239 raw_spin_unlock_irqrestore(&rnp->lock, flags); 4240 } 4241 4242 static void rcu_prepare_cpu(int cpu) 4243 { 4244 struct rcu_state *rsp; 4245 4246 for_each_rcu_flavor(rsp) 4247 rcu_init_percpu_data(cpu, rsp); 4248 } 4249 4250 /* 4251 * Handle CPU online/offline notification events. 4252 */ 4253 int rcu_cpu_notify(struct notifier_block *self, 4254 unsigned long action, void *hcpu) 4255 { 4256 long cpu = (long)hcpu; 4257 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 4258 struct rcu_node *rnp = rdp->mynode; 4259 struct rcu_state *rsp; 4260 4261 switch (action) { 4262 case CPU_UP_PREPARE: 4263 case CPU_UP_PREPARE_FROZEN: 4264 rcu_prepare_cpu(cpu); 4265 rcu_prepare_kthreads(cpu); 4266 rcu_spawn_all_nocb_kthreads(cpu); 4267 break; 4268 case CPU_ONLINE: 4269 case CPU_DOWN_FAILED: 4270 sync_sched_exp_online_cleanup(cpu); 4271 rcu_boost_kthread_setaffinity(rnp, -1); 4272 break; 4273 case CPU_DOWN_PREPARE: 4274 rcu_boost_kthread_setaffinity(rnp, cpu); 4275 break; 4276 case CPU_DYING: 4277 case CPU_DYING_FROZEN: 4278 for_each_rcu_flavor(rsp) 4279 rcu_cleanup_dying_cpu(rsp); 4280 break; 4281 case CPU_DYING_IDLE: 4282 /* QS for any half-done expedited RCU-sched GP. */ 4283 preempt_disable(); 4284 rcu_report_exp_rdp(&rcu_sched_state, 4285 this_cpu_ptr(rcu_sched_state.rda), true); 4286 preempt_enable(); 4287 4288 for_each_rcu_flavor(rsp) { 4289 rcu_cleanup_dying_idle_cpu(cpu, rsp); 4290 } 4291 break; 4292 case CPU_DEAD: 4293 case CPU_DEAD_FROZEN: 4294 case CPU_UP_CANCELED: 4295 case CPU_UP_CANCELED_FROZEN: 4296 for_each_rcu_flavor(rsp) { 4297 rcu_cleanup_dead_cpu(cpu, rsp); 4298 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 4299 } 4300 break; 4301 default: 4302 break; 4303 } 4304 return NOTIFY_OK; 4305 } 4306 4307 static int rcu_pm_notify(struct notifier_block *self, 4308 unsigned long action, void *hcpu) 4309 { 4310 switch (action) { 4311 case PM_HIBERNATION_PREPARE: 4312 case PM_SUSPEND_PREPARE: 4313 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4314 rcu_expedite_gp(); 4315 break; 4316 case PM_POST_HIBERNATION: 4317 case PM_POST_SUSPEND: 4318 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4319 rcu_unexpedite_gp(); 4320 break; 4321 default: 4322 break; 4323 } 4324 return NOTIFY_OK; 4325 } 4326 4327 /* 4328 * Spawn the kthreads that handle each RCU flavor's grace periods. 4329 */ 4330 static int __init rcu_spawn_gp_kthread(void) 4331 { 4332 unsigned long flags; 4333 int kthread_prio_in = kthread_prio; 4334 struct rcu_node *rnp; 4335 struct rcu_state *rsp; 4336 struct sched_param sp; 4337 struct task_struct *t; 4338 4339 /* Force priority into range. */ 4340 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4341 kthread_prio = 1; 4342 else if (kthread_prio < 0) 4343 kthread_prio = 0; 4344 else if (kthread_prio > 99) 4345 kthread_prio = 99; 4346 if (kthread_prio != kthread_prio_in) 4347 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4348 kthread_prio, kthread_prio_in); 4349 4350 rcu_scheduler_fully_active = 1; 4351 for_each_rcu_flavor(rsp) { 4352 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 4353 BUG_ON(IS_ERR(t)); 4354 rnp = rcu_get_root(rsp); 4355 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4356 rsp->gp_kthread = t; 4357 if (kthread_prio) { 4358 sp.sched_priority = kthread_prio; 4359 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4360 } 4361 raw_spin_unlock_irqrestore(&rnp->lock, flags); 4362 wake_up_process(t); 4363 } 4364 rcu_spawn_nocb_kthreads(); 4365 rcu_spawn_boost_kthreads(); 4366 return 0; 4367 } 4368 early_initcall(rcu_spawn_gp_kthread); 4369 4370 /* 4371 * This function is invoked towards the end of the scheduler's initialization 4372 * process. Before this is called, the idle task might contain 4373 * RCU read-side critical sections (during which time, this idle 4374 * task is booting the system). After this function is called, the 4375 * idle tasks are prohibited from containing RCU read-side critical 4376 * sections. This function also enables RCU lockdep checking. 4377 */ 4378 void rcu_scheduler_starting(void) 4379 { 4380 WARN_ON(num_online_cpus() != 1); 4381 WARN_ON(nr_context_switches() > 0); 4382 rcu_scheduler_active = 1; 4383 } 4384 4385 /* 4386 * Compute the per-level fanout, either using the exact fanout specified 4387 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 4388 */ 4389 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt) 4390 { 4391 int i; 4392 4393 if (rcu_fanout_exact) { 4394 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 4395 for (i = rcu_num_lvls - 2; i >= 0; i--) 4396 levelspread[i] = RCU_FANOUT; 4397 } else { 4398 int ccur; 4399 int cprv; 4400 4401 cprv = nr_cpu_ids; 4402 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4403 ccur = levelcnt[i]; 4404 levelspread[i] = (cprv + ccur - 1) / ccur; 4405 cprv = ccur; 4406 } 4407 } 4408 } 4409 4410 /* 4411 * Helper function for rcu_init() that initializes one rcu_state structure. 4412 */ 4413 static void __init rcu_init_one(struct rcu_state *rsp) 4414 { 4415 static const char * const buf[] = RCU_NODE_NAME_INIT; 4416 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4417 static const char * const exp[] = RCU_EXP_NAME_INIT; 4418 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4419 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4420 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS]; 4421 static u8 fl_mask = 0x1; 4422 4423 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */ 4424 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4425 int cpustride = 1; 4426 int i; 4427 int j; 4428 struct rcu_node *rnp; 4429 4430 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4431 4432 /* Silence gcc 4.8 false positive about array index out of range. */ 4433 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4434 panic("rcu_init_one: rcu_num_lvls out of range"); 4435 4436 /* Initialize the level-tracking arrays. */ 4437 4438 for (i = 0; i < rcu_num_lvls; i++) 4439 levelcnt[i] = num_rcu_lvl[i]; 4440 for (i = 1; i < rcu_num_lvls; i++) 4441 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1]; 4442 rcu_init_levelspread(levelspread, levelcnt); 4443 rsp->flavor_mask = fl_mask; 4444 fl_mask <<= 1; 4445 4446 /* Initialize the elements themselves, starting from the leaves. */ 4447 4448 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4449 cpustride *= levelspread[i]; 4450 rnp = rsp->level[i]; 4451 for (j = 0; j < levelcnt[i]; j++, rnp++) { 4452 raw_spin_lock_init(&rnp->lock); 4453 lockdep_set_class_and_name(&rnp->lock, 4454 &rcu_node_class[i], buf[i]); 4455 raw_spin_lock_init(&rnp->fqslock); 4456 lockdep_set_class_and_name(&rnp->fqslock, 4457 &rcu_fqs_class[i], fqs[i]); 4458 rnp->gpnum = rsp->gpnum; 4459 rnp->completed = rsp->completed; 4460 rnp->qsmask = 0; 4461 rnp->qsmaskinit = 0; 4462 rnp->grplo = j * cpustride; 4463 rnp->grphi = (j + 1) * cpustride - 1; 4464 if (rnp->grphi >= nr_cpu_ids) 4465 rnp->grphi = nr_cpu_ids - 1; 4466 if (i == 0) { 4467 rnp->grpnum = 0; 4468 rnp->grpmask = 0; 4469 rnp->parent = NULL; 4470 } else { 4471 rnp->grpnum = j % levelspread[i - 1]; 4472 rnp->grpmask = 1UL << rnp->grpnum; 4473 rnp->parent = rsp->level[i - 1] + 4474 j / levelspread[i - 1]; 4475 } 4476 rnp->level = i; 4477 INIT_LIST_HEAD(&rnp->blkd_tasks); 4478 rcu_init_one_nocb(rnp); 4479 mutex_init(&rnp->exp_funnel_mutex); 4480 lockdep_set_class_and_name(&rnp->exp_funnel_mutex, 4481 &rcu_exp_class[i], exp[i]); 4482 } 4483 } 4484 4485 init_waitqueue_head(&rsp->gp_wq); 4486 init_waitqueue_head(&rsp->expedited_wq); 4487 rnp = rsp->level[rcu_num_lvls - 1]; 4488 for_each_possible_cpu(i) { 4489 while (i > rnp->grphi) 4490 rnp++; 4491 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4492 rcu_boot_init_percpu_data(i, rsp); 4493 } 4494 list_add(&rsp->flavors, &rcu_struct_flavors); 4495 } 4496 4497 /* 4498 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4499 * replace the definitions in tree.h because those are needed to size 4500 * the ->node array in the rcu_state structure. 4501 */ 4502 static void __init rcu_init_geometry(void) 4503 { 4504 ulong d; 4505 int i; 4506 int rcu_capacity[RCU_NUM_LVLS]; 4507 4508 /* 4509 * Initialize any unspecified boot parameters. 4510 * The default values of jiffies_till_first_fqs and 4511 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4512 * value, which is a function of HZ, then adding one for each 4513 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4514 */ 4515 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4516 if (jiffies_till_first_fqs == ULONG_MAX) 4517 jiffies_till_first_fqs = d; 4518 if (jiffies_till_next_fqs == ULONG_MAX) 4519 jiffies_till_next_fqs = d; 4520 4521 /* If the compile-time values are accurate, just leave. */ 4522 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4523 nr_cpu_ids == NR_CPUS) 4524 return; 4525 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4526 rcu_fanout_leaf, nr_cpu_ids); 4527 4528 /* 4529 * The boot-time rcu_fanout_leaf parameter must be at least two 4530 * and cannot exceed the number of bits in the rcu_node masks. 4531 * Complain and fall back to the compile-time values if this 4532 * limit is exceeded. 4533 */ 4534 if (rcu_fanout_leaf < 2 || 4535 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4536 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4537 WARN_ON(1); 4538 return; 4539 } 4540 4541 /* 4542 * Compute number of nodes that can be handled an rcu_node tree 4543 * with the given number of levels. 4544 */ 4545 rcu_capacity[0] = rcu_fanout_leaf; 4546 for (i = 1; i < RCU_NUM_LVLS; i++) 4547 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4548 4549 /* 4550 * The tree must be able to accommodate the configured number of CPUs. 4551 * If this limit is exceeded, fall back to the compile-time values. 4552 */ 4553 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4554 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4555 WARN_ON(1); 4556 return; 4557 } 4558 4559 /* Calculate the number of levels in the tree. */ 4560 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4561 } 4562 rcu_num_lvls = i + 1; 4563 4564 /* Calculate the number of rcu_nodes at each level of the tree. */ 4565 for (i = 0; i < rcu_num_lvls; i++) { 4566 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4567 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4568 } 4569 4570 /* Calculate the total number of rcu_node structures. */ 4571 rcu_num_nodes = 0; 4572 for (i = 0; i < rcu_num_lvls; i++) 4573 rcu_num_nodes += num_rcu_lvl[i]; 4574 } 4575 4576 /* 4577 * Dump out the structure of the rcu_node combining tree associated 4578 * with the rcu_state structure referenced by rsp. 4579 */ 4580 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4581 { 4582 int level = 0; 4583 struct rcu_node *rnp; 4584 4585 pr_info("rcu_node tree layout dump\n"); 4586 pr_info(" "); 4587 rcu_for_each_node_breadth_first(rsp, rnp) { 4588 if (rnp->level != level) { 4589 pr_cont("\n"); 4590 pr_info(" "); 4591 level = rnp->level; 4592 } 4593 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4594 } 4595 pr_cont("\n"); 4596 } 4597 4598 void __init rcu_init(void) 4599 { 4600 int cpu; 4601 4602 rcu_early_boot_tests(); 4603 4604 rcu_bootup_announce(); 4605 rcu_init_geometry(); 4606 rcu_init_one(&rcu_bh_state); 4607 rcu_init_one(&rcu_sched_state); 4608 if (dump_tree) 4609 rcu_dump_rcu_node_tree(&rcu_sched_state); 4610 __rcu_init_preempt(); 4611 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4612 4613 /* 4614 * We don't need protection against CPU-hotplug here because 4615 * this is called early in boot, before either interrupts 4616 * or the scheduler are operational. 4617 */ 4618 cpu_notifier(rcu_cpu_notify, 0); 4619 pm_notifier(rcu_pm_notify, 0); 4620 for_each_online_cpu(cpu) 4621 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 4622 } 4623 4624 #include "tree_plugin.h" 4625