xref: /openbmc/linux/kernel/rcu/tree.c (revision 8c749ce9)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 /*
72  * In order to export the rcu_state name to the tracing tools, it
73  * needs to be added in the __tracepoint_string section.
74  * This requires defining a separate variable tp_<sname>_varname
75  * that points to the string being used, and this will allow
76  * the tracing userspace tools to be able to decipher the string
77  * address to the matching string.
78  */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88 
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 	.level = { &sname##_state.node[0] }, \
94 	.rda = &sname##_data, \
95 	.call = cr, \
96 	.gp_state = RCU_GP_IDLE, \
97 	.gpnum = 0UL - 300UL, \
98 	.completed = 0UL - 300UL, \
99 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 	.orphan_donetail = &sname##_state.orphan_donelist, \
102 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 	.name = RCU_STATE_NAME(sname), \
104 	.abbr = sabbr, \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 static struct rcu_data __percpu *const rcu_data_p;
112 LIST_HEAD(rcu_struct_flavors);
113 
114 /* Dump rcu_node combining tree at boot to verify correct setup. */
115 static bool dump_tree;
116 module_param(dump_tree, bool, 0444);
117 /* Control rcu_node-tree auto-balancing at boot time. */
118 static bool rcu_fanout_exact;
119 module_param(rcu_fanout_exact, bool, 0444);
120 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
121 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
122 module_param(rcu_fanout_leaf, int, 0444);
123 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
124 /* Number of rcu_nodes at specified level. */
125 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
126 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
127 
128 /*
129  * The rcu_scheduler_active variable transitions from zero to one just
130  * before the first task is spawned.  So when this variable is zero, RCU
131  * can assume that there is but one task, allowing RCU to (for example)
132  * optimize synchronize_sched() to a simple barrier().  When this variable
133  * is one, RCU must actually do all the hard work required to detect real
134  * grace periods.  This variable is also used to suppress boot-time false
135  * positives from lockdep-RCU error checking.
136  */
137 int rcu_scheduler_active __read_mostly;
138 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
139 
140 /*
141  * The rcu_scheduler_fully_active variable transitions from zero to one
142  * during the early_initcall() processing, which is after the scheduler
143  * is capable of creating new tasks.  So RCU processing (for example,
144  * creating tasks for RCU priority boosting) must be delayed until after
145  * rcu_scheduler_fully_active transitions from zero to one.  We also
146  * currently delay invocation of any RCU callbacks until after this point.
147  *
148  * It might later prove better for people registering RCU callbacks during
149  * early boot to take responsibility for these callbacks, but one step at
150  * a time.
151  */
152 static int rcu_scheduler_fully_active __read_mostly;
153 
154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 static void invoke_rcu_core(void);
158 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
159 static void rcu_report_exp_rdp(struct rcu_state *rsp,
160 			       struct rcu_data *rdp, bool wake);
161 
162 /* rcuc/rcub kthread realtime priority */
163 #ifdef CONFIG_RCU_KTHREAD_PRIO
164 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
165 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
166 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
167 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 module_param(kthread_prio, int, 0644);
169 
170 /* Delay in jiffies for grace-period initialization delays, debug only. */
171 
172 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
173 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
174 module_param(gp_preinit_delay, int, 0644);
175 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
176 static const int gp_preinit_delay;
177 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178 
179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
180 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
181 module_param(gp_init_delay, int, 0644);
182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
183 static const int gp_init_delay;
184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185 
186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
187 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
188 module_param(gp_cleanup_delay, int, 0644);
189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
190 static const int gp_cleanup_delay;
191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
192 
193 /*
194  * Number of grace periods between delays, normalized by the duration of
195  * the delay.  The longer the the delay, the more the grace periods between
196  * each delay.  The reason for this normalization is that it means that,
197  * for non-zero delays, the overall slowdown of grace periods is constant
198  * regardless of the duration of the delay.  This arrangement balances
199  * the need for long delays to increase some race probabilities with the
200  * need for fast grace periods to increase other race probabilities.
201  */
202 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
203 
204 /*
205  * Track the rcutorture test sequence number and the update version
206  * number within a given test.  The rcutorture_testseq is incremented
207  * on every rcutorture module load and unload, so has an odd value
208  * when a test is running.  The rcutorture_vernum is set to zero
209  * when rcutorture starts and is incremented on each rcutorture update.
210  * These variables enable correlating rcutorture output with the
211  * RCU tracing information.
212  */
213 unsigned long rcutorture_testseq;
214 unsigned long rcutorture_vernum;
215 
216 /*
217  * Compute the mask of online CPUs for the specified rcu_node structure.
218  * This will not be stable unless the rcu_node structure's ->lock is
219  * held, but the bit corresponding to the current CPU will be stable
220  * in most contexts.
221  */
222 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
223 {
224 	return READ_ONCE(rnp->qsmaskinitnext);
225 }
226 
227 /*
228  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
229  * permit this function to be invoked without holding the root rcu_node
230  * structure's ->lock, but of course results can be subject to change.
231  */
232 static int rcu_gp_in_progress(struct rcu_state *rsp)
233 {
234 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
235 }
236 
237 /*
238  * Note a quiescent state.  Because we do not need to know
239  * how many quiescent states passed, just if there was at least
240  * one since the start of the grace period, this just sets a flag.
241  * The caller must have disabled preemption.
242  */
243 void rcu_sched_qs(void)
244 {
245 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
246 		return;
247 	trace_rcu_grace_period(TPS("rcu_sched"),
248 			       __this_cpu_read(rcu_sched_data.gpnum),
249 			       TPS("cpuqs"));
250 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
251 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
252 		return;
253 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
254 	rcu_report_exp_rdp(&rcu_sched_state,
255 			   this_cpu_ptr(&rcu_sched_data), true);
256 }
257 
258 void rcu_bh_qs(void)
259 {
260 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
261 		trace_rcu_grace_period(TPS("rcu_bh"),
262 				       __this_cpu_read(rcu_bh_data.gpnum),
263 				       TPS("cpuqs"));
264 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
265 	}
266 }
267 
268 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
269 
270 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
271 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
272 	.dynticks = ATOMIC_INIT(1),
273 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
274 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
275 	.dynticks_idle = ATOMIC_INIT(1),
276 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
277 };
278 
279 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
280 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
281 
282 /*
283  * Let the RCU core know that this CPU has gone through the scheduler,
284  * which is a quiescent state.  This is called when the need for a
285  * quiescent state is urgent, so we burn an atomic operation and full
286  * memory barriers to let the RCU core know about it, regardless of what
287  * this CPU might (or might not) do in the near future.
288  *
289  * We inform the RCU core by emulating a zero-duration dyntick-idle
290  * period, which we in turn do by incrementing the ->dynticks counter
291  * by two.
292  *
293  * The caller must have disabled interrupts.
294  */
295 static void rcu_momentary_dyntick_idle(void)
296 {
297 	struct rcu_data *rdp;
298 	struct rcu_dynticks *rdtp;
299 	int resched_mask;
300 	struct rcu_state *rsp;
301 
302 	/*
303 	 * Yes, we can lose flag-setting operations.  This is OK, because
304 	 * the flag will be set again after some delay.
305 	 */
306 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
307 	raw_cpu_write(rcu_sched_qs_mask, 0);
308 
309 	/* Find the flavor that needs a quiescent state. */
310 	for_each_rcu_flavor(rsp) {
311 		rdp = raw_cpu_ptr(rsp->rda);
312 		if (!(resched_mask & rsp->flavor_mask))
313 			continue;
314 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
315 		if (READ_ONCE(rdp->mynode->completed) !=
316 		    READ_ONCE(rdp->cond_resched_completed))
317 			continue;
318 
319 		/*
320 		 * Pretend to be momentarily idle for the quiescent state.
321 		 * This allows the grace-period kthread to record the
322 		 * quiescent state, with no need for this CPU to do anything
323 		 * further.
324 		 */
325 		rdtp = this_cpu_ptr(&rcu_dynticks);
326 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
327 		atomic_add(2, &rdtp->dynticks);  /* QS. */
328 		smp_mb__after_atomic(); /* Later stuff after QS. */
329 		break;
330 	}
331 }
332 
333 /*
334  * Note a context switch.  This is a quiescent state for RCU-sched,
335  * and requires special handling for preemptible RCU.
336  * The caller must have disabled interrupts.
337  */
338 void rcu_note_context_switch(void)
339 {
340 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
341 	trace_rcu_utilization(TPS("Start context switch"));
342 	rcu_sched_qs();
343 	rcu_preempt_note_context_switch();
344 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
345 		rcu_momentary_dyntick_idle();
346 	trace_rcu_utilization(TPS("End context switch"));
347 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
348 }
349 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
350 
351 /*
352  * Register a quiescent state for all RCU flavors.  If there is an
353  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
354  * dyntick-idle quiescent state visible to other CPUs (but only for those
355  * RCU flavors in desperate need of a quiescent state, which will normally
356  * be none of them).  Either way, do a lightweight quiescent state for
357  * all RCU flavors.
358  *
359  * The barrier() calls are redundant in the common case when this is
360  * called externally, but just in case this is called from within this
361  * file.
362  *
363  */
364 void rcu_all_qs(void)
365 {
366 	unsigned long flags;
367 
368 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
369 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
370 		local_irq_save(flags);
371 		rcu_momentary_dyntick_idle();
372 		local_irq_restore(flags);
373 	}
374 	this_cpu_inc(rcu_qs_ctr);
375 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
376 }
377 EXPORT_SYMBOL_GPL(rcu_all_qs);
378 
379 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
380 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
381 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
382 
383 module_param(blimit, long, 0444);
384 module_param(qhimark, long, 0444);
385 module_param(qlowmark, long, 0444);
386 
387 static ulong jiffies_till_first_fqs = ULONG_MAX;
388 static ulong jiffies_till_next_fqs = ULONG_MAX;
389 
390 module_param(jiffies_till_first_fqs, ulong, 0644);
391 module_param(jiffies_till_next_fqs, ulong, 0644);
392 
393 /*
394  * How long the grace period must be before we start recruiting
395  * quiescent-state help from rcu_note_context_switch().
396  */
397 static ulong jiffies_till_sched_qs = HZ / 20;
398 module_param(jiffies_till_sched_qs, ulong, 0644);
399 
400 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
401 				  struct rcu_data *rdp);
402 static void force_qs_rnp(struct rcu_state *rsp,
403 			 int (*f)(struct rcu_data *rsp, bool *isidle,
404 				  unsigned long *maxj),
405 			 bool *isidle, unsigned long *maxj);
406 static void force_quiescent_state(struct rcu_state *rsp);
407 static int rcu_pending(void);
408 
409 /*
410  * Return the number of RCU batches started thus far for debug & stats.
411  */
412 unsigned long rcu_batches_started(void)
413 {
414 	return rcu_state_p->gpnum;
415 }
416 EXPORT_SYMBOL_GPL(rcu_batches_started);
417 
418 /*
419  * Return the number of RCU-sched batches started thus far for debug & stats.
420  */
421 unsigned long rcu_batches_started_sched(void)
422 {
423 	return rcu_sched_state.gpnum;
424 }
425 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
426 
427 /*
428  * Return the number of RCU BH batches started thus far for debug & stats.
429  */
430 unsigned long rcu_batches_started_bh(void)
431 {
432 	return rcu_bh_state.gpnum;
433 }
434 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
435 
436 /*
437  * Return the number of RCU batches completed thus far for debug & stats.
438  */
439 unsigned long rcu_batches_completed(void)
440 {
441 	return rcu_state_p->completed;
442 }
443 EXPORT_SYMBOL_GPL(rcu_batches_completed);
444 
445 /*
446  * Return the number of RCU-sched batches completed thus far for debug & stats.
447  */
448 unsigned long rcu_batches_completed_sched(void)
449 {
450 	return rcu_sched_state.completed;
451 }
452 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
453 
454 /*
455  * Return the number of RCU BH batches completed thus far for debug & stats.
456  */
457 unsigned long rcu_batches_completed_bh(void)
458 {
459 	return rcu_bh_state.completed;
460 }
461 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
462 
463 /*
464  * Force a quiescent state.
465  */
466 void rcu_force_quiescent_state(void)
467 {
468 	force_quiescent_state(rcu_state_p);
469 }
470 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
471 
472 /*
473  * Force a quiescent state for RCU BH.
474  */
475 void rcu_bh_force_quiescent_state(void)
476 {
477 	force_quiescent_state(&rcu_bh_state);
478 }
479 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
480 
481 /*
482  * Force a quiescent state for RCU-sched.
483  */
484 void rcu_sched_force_quiescent_state(void)
485 {
486 	force_quiescent_state(&rcu_sched_state);
487 }
488 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
489 
490 /*
491  * Show the state of the grace-period kthreads.
492  */
493 void show_rcu_gp_kthreads(void)
494 {
495 	struct rcu_state *rsp;
496 
497 	for_each_rcu_flavor(rsp) {
498 		pr_info("%s: wait state: %d ->state: %#lx\n",
499 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
500 		/* sched_show_task(rsp->gp_kthread); */
501 	}
502 }
503 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
504 
505 /*
506  * Record the number of times rcutorture tests have been initiated and
507  * terminated.  This information allows the debugfs tracing stats to be
508  * correlated to the rcutorture messages, even when the rcutorture module
509  * is being repeatedly loaded and unloaded.  In other words, we cannot
510  * store this state in rcutorture itself.
511  */
512 void rcutorture_record_test_transition(void)
513 {
514 	rcutorture_testseq++;
515 	rcutorture_vernum = 0;
516 }
517 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
518 
519 /*
520  * Send along grace-period-related data for rcutorture diagnostics.
521  */
522 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
523 			    unsigned long *gpnum, unsigned long *completed)
524 {
525 	struct rcu_state *rsp = NULL;
526 
527 	switch (test_type) {
528 	case RCU_FLAVOR:
529 		rsp = rcu_state_p;
530 		break;
531 	case RCU_BH_FLAVOR:
532 		rsp = &rcu_bh_state;
533 		break;
534 	case RCU_SCHED_FLAVOR:
535 		rsp = &rcu_sched_state;
536 		break;
537 	default:
538 		break;
539 	}
540 	if (rsp != NULL) {
541 		*flags = READ_ONCE(rsp->gp_flags);
542 		*gpnum = READ_ONCE(rsp->gpnum);
543 		*completed = READ_ONCE(rsp->completed);
544 		return;
545 	}
546 	*flags = 0;
547 	*gpnum = 0;
548 	*completed = 0;
549 }
550 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
551 
552 /*
553  * Record the number of writer passes through the current rcutorture test.
554  * This is also used to correlate debugfs tracing stats with the rcutorture
555  * messages.
556  */
557 void rcutorture_record_progress(unsigned long vernum)
558 {
559 	rcutorture_vernum++;
560 }
561 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
562 
563 /*
564  * Does the CPU have callbacks ready to be invoked?
565  */
566 static int
567 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
568 {
569 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
570 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
571 }
572 
573 /*
574  * Return the root node of the specified rcu_state structure.
575  */
576 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
577 {
578 	return &rsp->node[0];
579 }
580 
581 /*
582  * Is there any need for future grace periods?
583  * Interrupts must be disabled.  If the caller does not hold the root
584  * rnp_node structure's ->lock, the results are advisory only.
585  */
586 static int rcu_future_needs_gp(struct rcu_state *rsp)
587 {
588 	struct rcu_node *rnp = rcu_get_root(rsp);
589 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
590 	int *fp = &rnp->need_future_gp[idx];
591 
592 	return READ_ONCE(*fp);
593 }
594 
595 /*
596  * Does the current CPU require a not-yet-started grace period?
597  * The caller must have disabled interrupts to prevent races with
598  * normal callback registry.
599  */
600 static bool
601 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
602 {
603 	int i;
604 
605 	if (rcu_gp_in_progress(rsp))
606 		return false;  /* No, a grace period is already in progress. */
607 	if (rcu_future_needs_gp(rsp))
608 		return true;  /* Yes, a no-CBs CPU needs one. */
609 	if (!rdp->nxttail[RCU_NEXT_TAIL])
610 		return false;  /* No, this is a no-CBs (or offline) CPU. */
611 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
612 		return true;  /* Yes, CPU has newly registered callbacks. */
613 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
614 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
615 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
616 				 rdp->nxtcompleted[i]))
617 			return true;  /* Yes, CBs for future grace period. */
618 	return false; /* No grace period needed. */
619 }
620 
621 /*
622  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
623  *
624  * If the new value of the ->dynticks_nesting counter now is zero,
625  * we really have entered idle, and must do the appropriate accounting.
626  * The caller must have disabled interrupts.
627  */
628 static void rcu_eqs_enter_common(long long oldval, bool user)
629 {
630 	struct rcu_state *rsp;
631 	struct rcu_data *rdp;
632 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
633 
634 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
635 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
636 	    !user && !is_idle_task(current)) {
637 		struct task_struct *idle __maybe_unused =
638 			idle_task(smp_processor_id());
639 
640 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
641 		ftrace_dump(DUMP_ORIG);
642 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
643 			  current->pid, current->comm,
644 			  idle->pid, idle->comm); /* must be idle task! */
645 	}
646 	for_each_rcu_flavor(rsp) {
647 		rdp = this_cpu_ptr(rsp->rda);
648 		do_nocb_deferred_wakeup(rdp);
649 	}
650 	rcu_prepare_for_idle();
651 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
652 	smp_mb__before_atomic();  /* See above. */
653 	atomic_inc(&rdtp->dynticks);
654 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
655 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
656 		     atomic_read(&rdtp->dynticks) & 0x1);
657 	rcu_dynticks_task_enter();
658 
659 	/*
660 	 * It is illegal to enter an extended quiescent state while
661 	 * in an RCU read-side critical section.
662 	 */
663 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
664 			 "Illegal idle entry in RCU read-side critical section.");
665 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
666 			 "Illegal idle entry in RCU-bh read-side critical section.");
667 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
668 			 "Illegal idle entry in RCU-sched read-side critical section.");
669 }
670 
671 /*
672  * Enter an RCU extended quiescent state, which can be either the
673  * idle loop or adaptive-tickless usermode execution.
674  */
675 static void rcu_eqs_enter(bool user)
676 {
677 	long long oldval;
678 	struct rcu_dynticks *rdtp;
679 
680 	rdtp = this_cpu_ptr(&rcu_dynticks);
681 	oldval = rdtp->dynticks_nesting;
682 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
683 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
684 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
685 		rdtp->dynticks_nesting = 0;
686 		rcu_eqs_enter_common(oldval, user);
687 	} else {
688 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
689 	}
690 }
691 
692 /**
693  * rcu_idle_enter - inform RCU that current CPU is entering idle
694  *
695  * Enter idle mode, in other words, -leave- the mode in which RCU
696  * read-side critical sections can occur.  (Though RCU read-side
697  * critical sections can occur in irq handlers in idle, a possibility
698  * handled by irq_enter() and irq_exit().)
699  *
700  * We crowbar the ->dynticks_nesting field to zero to allow for
701  * the possibility of usermode upcalls having messed up our count
702  * of interrupt nesting level during the prior busy period.
703  */
704 void rcu_idle_enter(void)
705 {
706 	unsigned long flags;
707 
708 	local_irq_save(flags);
709 	rcu_eqs_enter(false);
710 	rcu_sysidle_enter(0);
711 	local_irq_restore(flags);
712 }
713 EXPORT_SYMBOL_GPL(rcu_idle_enter);
714 
715 #ifdef CONFIG_NO_HZ_FULL
716 /**
717  * rcu_user_enter - inform RCU that we are resuming userspace.
718  *
719  * Enter RCU idle mode right before resuming userspace.  No use of RCU
720  * is permitted between this call and rcu_user_exit(). This way the
721  * CPU doesn't need to maintain the tick for RCU maintenance purposes
722  * when the CPU runs in userspace.
723  */
724 void rcu_user_enter(void)
725 {
726 	rcu_eqs_enter(1);
727 }
728 #endif /* CONFIG_NO_HZ_FULL */
729 
730 /**
731  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
732  *
733  * Exit from an interrupt handler, which might possibly result in entering
734  * idle mode, in other words, leaving the mode in which read-side critical
735  * sections can occur.  The caller must have disabled interrupts.
736  *
737  * This code assumes that the idle loop never does anything that might
738  * result in unbalanced calls to irq_enter() and irq_exit().  If your
739  * architecture violates this assumption, RCU will give you what you
740  * deserve, good and hard.  But very infrequently and irreproducibly.
741  *
742  * Use things like work queues to work around this limitation.
743  *
744  * You have been warned.
745  */
746 void rcu_irq_exit(void)
747 {
748 	long long oldval;
749 	struct rcu_dynticks *rdtp;
750 
751 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
752 	rdtp = this_cpu_ptr(&rcu_dynticks);
753 	oldval = rdtp->dynticks_nesting;
754 	rdtp->dynticks_nesting--;
755 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
756 		     rdtp->dynticks_nesting < 0);
757 	if (rdtp->dynticks_nesting)
758 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
759 	else
760 		rcu_eqs_enter_common(oldval, true);
761 	rcu_sysidle_enter(1);
762 }
763 
764 /*
765  * Wrapper for rcu_irq_exit() where interrupts are enabled.
766  */
767 void rcu_irq_exit_irqson(void)
768 {
769 	unsigned long flags;
770 
771 	local_irq_save(flags);
772 	rcu_irq_exit();
773 	local_irq_restore(flags);
774 }
775 
776 /*
777  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
778  *
779  * If the new value of the ->dynticks_nesting counter was previously zero,
780  * we really have exited idle, and must do the appropriate accounting.
781  * The caller must have disabled interrupts.
782  */
783 static void rcu_eqs_exit_common(long long oldval, int user)
784 {
785 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
786 
787 	rcu_dynticks_task_exit();
788 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
789 	atomic_inc(&rdtp->dynticks);
790 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
791 	smp_mb__after_atomic();  /* See above. */
792 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
793 		     !(atomic_read(&rdtp->dynticks) & 0x1));
794 	rcu_cleanup_after_idle();
795 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
796 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
797 	    !user && !is_idle_task(current)) {
798 		struct task_struct *idle __maybe_unused =
799 			idle_task(smp_processor_id());
800 
801 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
802 				  oldval, rdtp->dynticks_nesting);
803 		ftrace_dump(DUMP_ORIG);
804 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
805 			  current->pid, current->comm,
806 			  idle->pid, idle->comm); /* must be idle task! */
807 	}
808 }
809 
810 /*
811  * Exit an RCU extended quiescent state, which can be either the
812  * idle loop or adaptive-tickless usermode execution.
813  */
814 static void rcu_eqs_exit(bool user)
815 {
816 	struct rcu_dynticks *rdtp;
817 	long long oldval;
818 
819 	rdtp = this_cpu_ptr(&rcu_dynticks);
820 	oldval = rdtp->dynticks_nesting;
821 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
822 	if (oldval & DYNTICK_TASK_NEST_MASK) {
823 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
824 	} else {
825 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
826 		rcu_eqs_exit_common(oldval, user);
827 	}
828 }
829 
830 /**
831  * rcu_idle_exit - inform RCU that current CPU is leaving idle
832  *
833  * Exit idle mode, in other words, -enter- the mode in which RCU
834  * read-side critical sections can occur.
835  *
836  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
837  * allow for the possibility of usermode upcalls messing up our count
838  * of interrupt nesting level during the busy period that is just
839  * now starting.
840  */
841 void rcu_idle_exit(void)
842 {
843 	unsigned long flags;
844 
845 	local_irq_save(flags);
846 	rcu_eqs_exit(false);
847 	rcu_sysidle_exit(0);
848 	local_irq_restore(flags);
849 }
850 EXPORT_SYMBOL_GPL(rcu_idle_exit);
851 
852 #ifdef CONFIG_NO_HZ_FULL
853 /**
854  * rcu_user_exit - inform RCU that we are exiting userspace.
855  *
856  * Exit RCU idle mode while entering the kernel because it can
857  * run a RCU read side critical section anytime.
858  */
859 void rcu_user_exit(void)
860 {
861 	rcu_eqs_exit(1);
862 }
863 #endif /* CONFIG_NO_HZ_FULL */
864 
865 /**
866  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
867  *
868  * Enter an interrupt handler, which might possibly result in exiting
869  * idle mode, in other words, entering the mode in which read-side critical
870  * sections can occur.  The caller must have disabled interrupts.
871  *
872  * Note that the Linux kernel is fully capable of entering an interrupt
873  * handler that it never exits, for example when doing upcalls to
874  * user mode!  This code assumes that the idle loop never does upcalls to
875  * user mode.  If your architecture does do upcalls from the idle loop (or
876  * does anything else that results in unbalanced calls to the irq_enter()
877  * and irq_exit() functions), RCU will give you what you deserve, good
878  * and hard.  But very infrequently and irreproducibly.
879  *
880  * Use things like work queues to work around this limitation.
881  *
882  * You have been warned.
883  */
884 void rcu_irq_enter(void)
885 {
886 	struct rcu_dynticks *rdtp;
887 	long long oldval;
888 
889 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
890 	rdtp = this_cpu_ptr(&rcu_dynticks);
891 	oldval = rdtp->dynticks_nesting;
892 	rdtp->dynticks_nesting++;
893 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
894 		     rdtp->dynticks_nesting == 0);
895 	if (oldval)
896 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
897 	else
898 		rcu_eqs_exit_common(oldval, true);
899 	rcu_sysidle_exit(1);
900 }
901 
902 /*
903  * Wrapper for rcu_irq_enter() where interrupts are enabled.
904  */
905 void rcu_irq_enter_irqson(void)
906 {
907 	unsigned long flags;
908 
909 	local_irq_save(flags);
910 	rcu_irq_enter();
911 	local_irq_restore(flags);
912 }
913 
914 /**
915  * rcu_nmi_enter - inform RCU of entry to NMI context
916  *
917  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
918  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
919  * that the CPU is active.  This implementation permits nested NMIs, as
920  * long as the nesting level does not overflow an int.  (You will probably
921  * run out of stack space first.)
922  */
923 void rcu_nmi_enter(void)
924 {
925 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
926 	int incby = 2;
927 
928 	/* Complain about underflow. */
929 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
930 
931 	/*
932 	 * If idle from RCU viewpoint, atomically increment ->dynticks
933 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
934 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
935 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
936 	 * to be in the outermost NMI handler that interrupted an RCU-idle
937 	 * period (observation due to Andy Lutomirski).
938 	 */
939 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
940 		smp_mb__before_atomic();  /* Force delay from prior write. */
941 		atomic_inc(&rdtp->dynticks);
942 		/* atomic_inc() before later RCU read-side crit sects */
943 		smp_mb__after_atomic();  /* See above. */
944 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
945 		incby = 1;
946 	}
947 	rdtp->dynticks_nmi_nesting += incby;
948 	barrier();
949 }
950 
951 /**
952  * rcu_nmi_exit - inform RCU of exit from NMI context
953  *
954  * If we are returning from the outermost NMI handler that interrupted an
955  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
956  * to let the RCU grace-period handling know that the CPU is back to
957  * being RCU-idle.
958  */
959 void rcu_nmi_exit(void)
960 {
961 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
962 
963 	/*
964 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
965 	 * (We are exiting an NMI handler, so RCU better be paying attention
966 	 * to us!)
967 	 */
968 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
969 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
970 
971 	/*
972 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
973 	 * leave it in non-RCU-idle state.
974 	 */
975 	if (rdtp->dynticks_nmi_nesting != 1) {
976 		rdtp->dynticks_nmi_nesting -= 2;
977 		return;
978 	}
979 
980 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
981 	rdtp->dynticks_nmi_nesting = 0;
982 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
983 	smp_mb__before_atomic();  /* See above. */
984 	atomic_inc(&rdtp->dynticks);
985 	smp_mb__after_atomic();  /* Force delay to next write. */
986 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
987 }
988 
989 /**
990  * __rcu_is_watching - are RCU read-side critical sections safe?
991  *
992  * Return true if RCU is watching the running CPU, which means that
993  * this CPU can safely enter RCU read-side critical sections.  Unlike
994  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
995  * least disabled preemption.
996  */
997 bool notrace __rcu_is_watching(void)
998 {
999 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1000 }
1001 
1002 /**
1003  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1004  *
1005  * If the current CPU is in its idle loop and is neither in an interrupt
1006  * or NMI handler, return true.
1007  */
1008 bool notrace rcu_is_watching(void)
1009 {
1010 	bool ret;
1011 
1012 	preempt_disable_notrace();
1013 	ret = __rcu_is_watching();
1014 	preempt_enable_notrace();
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(rcu_is_watching);
1018 
1019 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1020 
1021 /*
1022  * Is the current CPU online?  Disable preemption to avoid false positives
1023  * that could otherwise happen due to the current CPU number being sampled,
1024  * this task being preempted, its old CPU being taken offline, resuming
1025  * on some other CPU, then determining that its old CPU is now offline.
1026  * It is OK to use RCU on an offline processor during initial boot, hence
1027  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1028  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1029  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1030  * offline to continue to use RCU for one jiffy after marking itself
1031  * offline in the cpu_online_mask.  This leniency is necessary given the
1032  * non-atomic nature of the online and offline processing, for example,
1033  * the fact that a CPU enters the scheduler after completing the CPU_DYING
1034  * notifiers.
1035  *
1036  * This is also why RCU internally marks CPUs online during the
1037  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1038  *
1039  * Disable checking if in an NMI handler because we cannot safely report
1040  * errors from NMI handlers anyway.
1041  */
1042 bool rcu_lockdep_current_cpu_online(void)
1043 {
1044 	struct rcu_data *rdp;
1045 	struct rcu_node *rnp;
1046 	bool ret;
1047 
1048 	if (in_nmi())
1049 		return true;
1050 	preempt_disable();
1051 	rdp = this_cpu_ptr(&rcu_sched_data);
1052 	rnp = rdp->mynode;
1053 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1054 	      !rcu_scheduler_fully_active;
1055 	preempt_enable();
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1059 
1060 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1061 
1062 /**
1063  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1064  *
1065  * If the current CPU is idle or running at a first-level (not nested)
1066  * interrupt from idle, return true.  The caller must have at least
1067  * disabled preemption.
1068  */
1069 static int rcu_is_cpu_rrupt_from_idle(void)
1070 {
1071 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1072 }
1073 
1074 /*
1075  * Snapshot the specified CPU's dynticks counter so that we can later
1076  * credit them with an implicit quiescent state.  Return 1 if this CPU
1077  * is in dynticks idle mode, which is an extended quiescent state.
1078  */
1079 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1080 					 bool *isidle, unsigned long *maxj)
1081 {
1082 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1083 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1084 	if ((rdp->dynticks_snap & 0x1) == 0) {
1085 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1086 		return 1;
1087 	} else {
1088 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1089 				 rdp->mynode->gpnum))
1090 			WRITE_ONCE(rdp->gpwrap, true);
1091 		return 0;
1092 	}
1093 }
1094 
1095 /*
1096  * Return true if the specified CPU has passed through a quiescent
1097  * state by virtue of being in or having passed through an dynticks
1098  * idle state since the last call to dyntick_save_progress_counter()
1099  * for this same CPU, or by virtue of having been offline.
1100  */
1101 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1102 				    bool *isidle, unsigned long *maxj)
1103 {
1104 	unsigned int curr;
1105 	int *rcrmp;
1106 	unsigned int snap;
1107 
1108 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1109 	snap = (unsigned int)rdp->dynticks_snap;
1110 
1111 	/*
1112 	 * If the CPU passed through or entered a dynticks idle phase with
1113 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1114 	 * already acknowledged the request to pass through a quiescent
1115 	 * state.  Either way, that CPU cannot possibly be in an RCU
1116 	 * read-side critical section that started before the beginning
1117 	 * of the current RCU grace period.
1118 	 */
1119 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1120 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1121 		rdp->dynticks_fqs++;
1122 		return 1;
1123 	}
1124 
1125 	/*
1126 	 * Check for the CPU being offline, but only if the grace period
1127 	 * is old enough.  We don't need to worry about the CPU changing
1128 	 * state: If we see it offline even once, it has been through a
1129 	 * quiescent state.
1130 	 *
1131 	 * The reason for insisting that the grace period be at least
1132 	 * one jiffy old is that CPUs that are not quite online and that
1133 	 * have just gone offline can still execute RCU read-side critical
1134 	 * sections.
1135 	 */
1136 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1137 		return 0;  /* Grace period is not old enough. */
1138 	barrier();
1139 	if (cpu_is_offline(rdp->cpu)) {
1140 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1141 		rdp->offline_fqs++;
1142 		return 1;
1143 	}
1144 
1145 	/*
1146 	 * A CPU running for an extended time within the kernel can
1147 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1148 	 * even context-switching back and forth between a pair of
1149 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1150 	 * So if the grace period is old enough, make the CPU pay attention.
1151 	 * Note that the unsynchronized assignments to the per-CPU
1152 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1153 	 * bits can be lost, but they will be set again on the next
1154 	 * force-quiescent-state pass.  So lost bit sets do not result
1155 	 * in incorrect behavior, merely in a grace period lasting
1156 	 * a few jiffies longer than it might otherwise.  Because
1157 	 * there are at most four threads involved, and because the
1158 	 * updates are only once every few jiffies, the probability of
1159 	 * lossage (and thus of slight grace-period extension) is
1160 	 * quite low.
1161 	 *
1162 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1163 	 * is set too high, we override with half of the RCU CPU stall
1164 	 * warning delay.
1165 	 */
1166 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1167 	if (ULONG_CMP_GE(jiffies,
1168 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1169 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1170 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1171 			WRITE_ONCE(rdp->cond_resched_completed,
1172 				   READ_ONCE(rdp->mynode->completed));
1173 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1174 			WRITE_ONCE(*rcrmp,
1175 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1176 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1177 			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1178 		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1179 			/* Time to beat on that CPU again! */
1180 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1181 			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1182 		}
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static void record_gp_stall_check_time(struct rcu_state *rsp)
1189 {
1190 	unsigned long j = jiffies;
1191 	unsigned long j1;
1192 
1193 	rsp->gp_start = j;
1194 	smp_wmb(); /* Record start time before stall time. */
1195 	j1 = rcu_jiffies_till_stall_check();
1196 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1197 	rsp->jiffies_resched = j + j1 / 2;
1198 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1199 }
1200 
1201 /*
1202  * Convert a ->gp_state value to a character string.
1203  */
1204 static const char *gp_state_getname(short gs)
1205 {
1206 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1207 		return "???";
1208 	return gp_state_names[gs];
1209 }
1210 
1211 /*
1212  * Complain about starvation of grace-period kthread.
1213  */
1214 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1215 {
1216 	unsigned long gpa;
1217 	unsigned long j;
1218 
1219 	j = jiffies;
1220 	gpa = READ_ONCE(rsp->gp_activity);
1221 	if (j - gpa > 2 * HZ) {
1222 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1223 		       rsp->name, j - gpa,
1224 		       rsp->gpnum, rsp->completed,
1225 		       rsp->gp_flags,
1226 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1227 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1228 		if (rsp->gp_kthread)
1229 			sched_show_task(rsp->gp_kthread);
1230 	}
1231 }
1232 
1233 /*
1234  * Dump stacks of all tasks running on stalled CPUs.
1235  */
1236 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1237 {
1238 	int cpu;
1239 	unsigned long flags;
1240 	struct rcu_node *rnp;
1241 
1242 	rcu_for_each_leaf_node(rsp, rnp) {
1243 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1244 		if (rnp->qsmask != 0) {
1245 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1246 				if (rnp->qsmask & (1UL << cpu))
1247 					dump_cpu_task(rnp->grplo + cpu);
1248 		}
1249 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1250 	}
1251 }
1252 
1253 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1254 {
1255 	int cpu;
1256 	long delta;
1257 	unsigned long flags;
1258 	unsigned long gpa;
1259 	unsigned long j;
1260 	int ndetected = 0;
1261 	struct rcu_node *rnp = rcu_get_root(rsp);
1262 	long totqlen = 0;
1263 
1264 	/* Only let one CPU complain about others per time interval. */
1265 
1266 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1267 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1268 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1269 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270 		return;
1271 	}
1272 	WRITE_ONCE(rsp->jiffies_stall,
1273 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1274 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1275 
1276 	/*
1277 	 * OK, time to rat on our buddy...
1278 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1279 	 * RCU CPU stall warnings.
1280 	 */
1281 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1282 	       rsp->name);
1283 	print_cpu_stall_info_begin();
1284 	rcu_for_each_leaf_node(rsp, rnp) {
1285 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1286 		ndetected += rcu_print_task_stall(rnp);
1287 		if (rnp->qsmask != 0) {
1288 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1289 				if (rnp->qsmask & (1UL << cpu)) {
1290 					print_cpu_stall_info(rsp,
1291 							     rnp->grplo + cpu);
1292 					ndetected++;
1293 				}
1294 		}
1295 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1296 	}
1297 
1298 	print_cpu_stall_info_end();
1299 	for_each_possible_cpu(cpu)
1300 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1301 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1302 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1303 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1304 	if (ndetected) {
1305 		rcu_dump_cpu_stacks(rsp);
1306 	} else {
1307 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1308 		    READ_ONCE(rsp->completed) == gpnum) {
1309 			pr_err("INFO: Stall ended before state dump start\n");
1310 		} else {
1311 			j = jiffies;
1312 			gpa = READ_ONCE(rsp->gp_activity);
1313 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1314 			       rsp->name, j - gpa, j, gpa,
1315 			       jiffies_till_next_fqs,
1316 			       rcu_get_root(rsp)->qsmask);
1317 			/* In this case, the current CPU might be at fault. */
1318 			sched_show_task(current);
1319 		}
1320 	}
1321 
1322 	/* Complain about tasks blocking the grace period. */
1323 	rcu_print_detail_task_stall(rsp);
1324 
1325 	rcu_check_gp_kthread_starvation(rsp);
1326 
1327 	force_quiescent_state(rsp);  /* Kick them all. */
1328 }
1329 
1330 static void print_cpu_stall(struct rcu_state *rsp)
1331 {
1332 	int cpu;
1333 	unsigned long flags;
1334 	struct rcu_node *rnp = rcu_get_root(rsp);
1335 	long totqlen = 0;
1336 
1337 	/*
1338 	 * OK, time to rat on ourselves...
1339 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1340 	 * RCU CPU stall warnings.
1341 	 */
1342 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1343 	print_cpu_stall_info_begin();
1344 	print_cpu_stall_info(rsp, smp_processor_id());
1345 	print_cpu_stall_info_end();
1346 	for_each_possible_cpu(cpu)
1347 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1348 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1349 		jiffies - rsp->gp_start,
1350 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1351 
1352 	rcu_check_gp_kthread_starvation(rsp);
1353 
1354 	rcu_dump_cpu_stacks(rsp);
1355 
1356 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1357 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1358 		WRITE_ONCE(rsp->jiffies_stall,
1359 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1360 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1361 
1362 	/*
1363 	 * Attempt to revive the RCU machinery by forcing a context switch.
1364 	 *
1365 	 * A context switch would normally allow the RCU state machine to make
1366 	 * progress and it could be we're stuck in kernel space without context
1367 	 * switches for an entirely unreasonable amount of time.
1368 	 */
1369 	resched_cpu(smp_processor_id());
1370 }
1371 
1372 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1373 {
1374 	unsigned long completed;
1375 	unsigned long gpnum;
1376 	unsigned long gps;
1377 	unsigned long j;
1378 	unsigned long js;
1379 	struct rcu_node *rnp;
1380 
1381 	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1382 		return;
1383 	j = jiffies;
1384 
1385 	/*
1386 	 * Lots of memory barriers to reject false positives.
1387 	 *
1388 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1389 	 * then rsp->gp_start, and finally rsp->completed.  These values
1390 	 * are updated in the opposite order with memory barriers (or
1391 	 * equivalent) during grace-period initialization and cleanup.
1392 	 * Now, a false positive can occur if we get an new value of
1393 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1394 	 * the memory barriers, the only way that this can happen is if one
1395 	 * grace period ends and another starts between these two fetches.
1396 	 * Detect this by comparing rsp->completed with the previous fetch
1397 	 * from rsp->gpnum.
1398 	 *
1399 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1400 	 * and rsp->gp_start suffice to forestall false positives.
1401 	 */
1402 	gpnum = READ_ONCE(rsp->gpnum);
1403 	smp_rmb(); /* Pick up ->gpnum first... */
1404 	js = READ_ONCE(rsp->jiffies_stall);
1405 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1406 	gps = READ_ONCE(rsp->gp_start);
1407 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1408 	completed = READ_ONCE(rsp->completed);
1409 	if (ULONG_CMP_GE(completed, gpnum) ||
1410 	    ULONG_CMP_LT(j, js) ||
1411 	    ULONG_CMP_GE(gps, js))
1412 		return; /* No stall or GP completed since entering function. */
1413 	rnp = rdp->mynode;
1414 	if (rcu_gp_in_progress(rsp) &&
1415 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1416 
1417 		/* We haven't checked in, so go dump stack. */
1418 		print_cpu_stall(rsp);
1419 
1420 	} else if (rcu_gp_in_progress(rsp) &&
1421 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1422 
1423 		/* They had a few time units to dump stack, so complain. */
1424 		print_other_cpu_stall(rsp, gpnum);
1425 	}
1426 }
1427 
1428 /**
1429  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1430  *
1431  * Set the stall-warning timeout way off into the future, thus preventing
1432  * any RCU CPU stall-warning messages from appearing in the current set of
1433  * RCU grace periods.
1434  *
1435  * The caller must disable hard irqs.
1436  */
1437 void rcu_cpu_stall_reset(void)
1438 {
1439 	struct rcu_state *rsp;
1440 
1441 	for_each_rcu_flavor(rsp)
1442 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1443 }
1444 
1445 /*
1446  * Initialize the specified rcu_data structure's default callback list
1447  * to empty.  The default callback list is the one that is not used by
1448  * no-callbacks CPUs.
1449  */
1450 static void init_default_callback_list(struct rcu_data *rdp)
1451 {
1452 	int i;
1453 
1454 	rdp->nxtlist = NULL;
1455 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1456 		rdp->nxttail[i] = &rdp->nxtlist;
1457 }
1458 
1459 /*
1460  * Initialize the specified rcu_data structure's callback list to empty.
1461  */
1462 static void init_callback_list(struct rcu_data *rdp)
1463 {
1464 	if (init_nocb_callback_list(rdp))
1465 		return;
1466 	init_default_callback_list(rdp);
1467 }
1468 
1469 /*
1470  * Determine the value that ->completed will have at the end of the
1471  * next subsequent grace period.  This is used to tag callbacks so that
1472  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1473  * been dyntick-idle for an extended period with callbacks under the
1474  * influence of RCU_FAST_NO_HZ.
1475  *
1476  * The caller must hold rnp->lock with interrupts disabled.
1477  */
1478 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1479 				       struct rcu_node *rnp)
1480 {
1481 	/*
1482 	 * If RCU is idle, we just wait for the next grace period.
1483 	 * But we can only be sure that RCU is idle if we are looking
1484 	 * at the root rcu_node structure -- otherwise, a new grace
1485 	 * period might have started, but just not yet gotten around
1486 	 * to initializing the current non-root rcu_node structure.
1487 	 */
1488 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1489 		return rnp->completed + 1;
1490 
1491 	/*
1492 	 * Otherwise, wait for a possible partial grace period and
1493 	 * then the subsequent full grace period.
1494 	 */
1495 	return rnp->completed + 2;
1496 }
1497 
1498 /*
1499  * Trace-event helper function for rcu_start_future_gp() and
1500  * rcu_nocb_wait_gp().
1501  */
1502 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1503 				unsigned long c, const char *s)
1504 {
1505 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1506 				      rnp->completed, c, rnp->level,
1507 				      rnp->grplo, rnp->grphi, s);
1508 }
1509 
1510 /*
1511  * Start some future grace period, as needed to handle newly arrived
1512  * callbacks.  The required future grace periods are recorded in each
1513  * rcu_node structure's ->need_future_gp field.  Returns true if there
1514  * is reason to awaken the grace-period kthread.
1515  *
1516  * The caller must hold the specified rcu_node structure's ->lock.
1517  */
1518 static bool __maybe_unused
1519 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1520 		    unsigned long *c_out)
1521 {
1522 	unsigned long c;
1523 	int i;
1524 	bool ret = false;
1525 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1526 
1527 	/*
1528 	 * Pick up grace-period number for new callbacks.  If this
1529 	 * grace period is already marked as needed, return to the caller.
1530 	 */
1531 	c = rcu_cbs_completed(rdp->rsp, rnp);
1532 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1533 	if (rnp->need_future_gp[c & 0x1]) {
1534 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1535 		goto out;
1536 	}
1537 
1538 	/*
1539 	 * If either this rcu_node structure or the root rcu_node structure
1540 	 * believe that a grace period is in progress, then we must wait
1541 	 * for the one following, which is in "c".  Because our request
1542 	 * will be noticed at the end of the current grace period, we don't
1543 	 * need to explicitly start one.  We only do the lockless check
1544 	 * of rnp_root's fields if the current rcu_node structure thinks
1545 	 * there is no grace period in flight, and because we hold rnp->lock,
1546 	 * the only possible change is when rnp_root's two fields are
1547 	 * equal, in which case rnp_root->gpnum might be concurrently
1548 	 * incremented.  But that is OK, as it will just result in our
1549 	 * doing some extra useless work.
1550 	 */
1551 	if (rnp->gpnum != rnp->completed ||
1552 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1553 		rnp->need_future_gp[c & 0x1]++;
1554 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1555 		goto out;
1556 	}
1557 
1558 	/*
1559 	 * There might be no grace period in progress.  If we don't already
1560 	 * hold it, acquire the root rcu_node structure's lock in order to
1561 	 * start one (if needed).
1562 	 */
1563 	if (rnp != rnp_root)
1564 		raw_spin_lock_rcu_node(rnp_root);
1565 
1566 	/*
1567 	 * Get a new grace-period number.  If there really is no grace
1568 	 * period in progress, it will be smaller than the one we obtained
1569 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1570 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1571 	 */
1572 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1573 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1574 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1575 			rdp->nxtcompleted[i] = c;
1576 
1577 	/*
1578 	 * If the needed for the required grace period is already
1579 	 * recorded, trace and leave.
1580 	 */
1581 	if (rnp_root->need_future_gp[c & 0x1]) {
1582 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1583 		goto unlock_out;
1584 	}
1585 
1586 	/* Record the need for the future grace period. */
1587 	rnp_root->need_future_gp[c & 0x1]++;
1588 
1589 	/* If a grace period is not already in progress, start one. */
1590 	if (rnp_root->gpnum != rnp_root->completed) {
1591 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1592 	} else {
1593 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1594 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1595 	}
1596 unlock_out:
1597 	if (rnp != rnp_root)
1598 		raw_spin_unlock(&rnp_root->lock);
1599 out:
1600 	if (c_out != NULL)
1601 		*c_out = c;
1602 	return ret;
1603 }
1604 
1605 /*
1606  * Clean up any old requests for the just-ended grace period.  Also return
1607  * whether any additional grace periods have been requested.  Also invoke
1608  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1609  * waiting for this grace period to complete.
1610  */
1611 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1612 {
1613 	int c = rnp->completed;
1614 	int needmore;
1615 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1616 
1617 	rcu_nocb_gp_cleanup(rsp, rnp);
1618 	rnp->need_future_gp[c & 0x1] = 0;
1619 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1620 	trace_rcu_future_gp(rnp, rdp, c,
1621 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1622 	return needmore;
1623 }
1624 
1625 /*
1626  * Awaken the grace-period kthread for the specified flavor of RCU.
1627  * Don't do a self-awaken, and don't bother awakening when there is
1628  * nothing for the grace-period kthread to do (as in several CPUs
1629  * raced to awaken, and we lost), and finally don't try to awaken
1630  * a kthread that has not yet been created.
1631  */
1632 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1633 {
1634 	if (current == rsp->gp_kthread ||
1635 	    !READ_ONCE(rsp->gp_flags) ||
1636 	    !rsp->gp_kthread)
1637 		return;
1638 	wake_up(&rsp->gp_wq);
1639 }
1640 
1641 /*
1642  * If there is room, assign a ->completed number to any callbacks on
1643  * this CPU that have not already been assigned.  Also accelerate any
1644  * callbacks that were previously assigned a ->completed number that has
1645  * since proven to be too conservative, which can happen if callbacks get
1646  * assigned a ->completed number while RCU is idle, but with reference to
1647  * a non-root rcu_node structure.  This function is idempotent, so it does
1648  * not hurt to call it repeatedly.  Returns an flag saying that we should
1649  * awaken the RCU grace-period kthread.
1650  *
1651  * The caller must hold rnp->lock with interrupts disabled.
1652  */
1653 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1654 			       struct rcu_data *rdp)
1655 {
1656 	unsigned long c;
1657 	int i;
1658 	bool ret;
1659 
1660 	/* If the CPU has no callbacks, nothing to do. */
1661 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1662 		return false;
1663 
1664 	/*
1665 	 * Starting from the sublist containing the callbacks most
1666 	 * recently assigned a ->completed number and working down, find the
1667 	 * first sublist that is not assignable to an upcoming grace period.
1668 	 * Such a sublist has something in it (first two tests) and has
1669 	 * a ->completed number assigned that will complete sooner than
1670 	 * the ->completed number for newly arrived callbacks (last test).
1671 	 *
1672 	 * The key point is that any later sublist can be assigned the
1673 	 * same ->completed number as the newly arrived callbacks, which
1674 	 * means that the callbacks in any of these later sublist can be
1675 	 * grouped into a single sublist, whether or not they have already
1676 	 * been assigned a ->completed number.
1677 	 */
1678 	c = rcu_cbs_completed(rsp, rnp);
1679 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1680 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1681 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1682 			break;
1683 
1684 	/*
1685 	 * If there are no sublist for unassigned callbacks, leave.
1686 	 * At the same time, advance "i" one sublist, so that "i" will
1687 	 * index into the sublist where all the remaining callbacks should
1688 	 * be grouped into.
1689 	 */
1690 	if (++i >= RCU_NEXT_TAIL)
1691 		return false;
1692 
1693 	/*
1694 	 * Assign all subsequent callbacks' ->completed number to the next
1695 	 * full grace period and group them all in the sublist initially
1696 	 * indexed by "i".
1697 	 */
1698 	for (; i <= RCU_NEXT_TAIL; i++) {
1699 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1700 		rdp->nxtcompleted[i] = c;
1701 	}
1702 	/* Record any needed additional grace periods. */
1703 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1704 
1705 	/* Trace depending on how much we were able to accelerate. */
1706 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1707 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1708 	else
1709 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1710 	return ret;
1711 }
1712 
1713 /*
1714  * Move any callbacks whose grace period has completed to the
1715  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1716  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1717  * sublist.  This function is idempotent, so it does not hurt to
1718  * invoke it repeatedly.  As long as it is not invoked -too- often...
1719  * Returns true if the RCU grace-period kthread needs to be awakened.
1720  *
1721  * The caller must hold rnp->lock with interrupts disabled.
1722  */
1723 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1724 			    struct rcu_data *rdp)
1725 {
1726 	int i, j;
1727 
1728 	/* If the CPU has no callbacks, nothing to do. */
1729 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1730 		return false;
1731 
1732 	/*
1733 	 * Find all callbacks whose ->completed numbers indicate that they
1734 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1735 	 */
1736 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1737 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1738 			break;
1739 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1740 	}
1741 	/* Clean up any sublist tail pointers that were misordered above. */
1742 	for (j = RCU_WAIT_TAIL; j < i; j++)
1743 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1744 
1745 	/* Copy down callbacks to fill in empty sublists. */
1746 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1747 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1748 			break;
1749 		rdp->nxttail[j] = rdp->nxttail[i];
1750 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1751 	}
1752 
1753 	/* Classify any remaining callbacks. */
1754 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1755 }
1756 
1757 /*
1758  * Update CPU-local rcu_data state to record the beginnings and ends of
1759  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1760  * structure corresponding to the current CPU, and must have irqs disabled.
1761  * Returns true if the grace-period kthread needs to be awakened.
1762  */
1763 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1764 			      struct rcu_data *rdp)
1765 {
1766 	bool ret;
1767 
1768 	/* Handle the ends of any preceding grace periods first. */
1769 	if (rdp->completed == rnp->completed &&
1770 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1771 
1772 		/* No grace period end, so just accelerate recent callbacks. */
1773 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1774 
1775 	} else {
1776 
1777 		/* Advance callbacks. */
1778 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1779 
1780 		/* Remember that we saw this grace-period completion. */
1781 		rdp->completed = rnp->completed;
1782 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1783 	}
1784 
1785 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1786 		/*
1787 		 * If the current grace period is waiting for this CPU,
1788 		 * set up to detect a quiescent state, otherwise don't
1789 		 * go looking for one.
1790 		 */
1791 		rdp->gpnum = rnp->gpnum;
1792 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1793 		rdp->cpu_no_qs.b.norm = true;
1794 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1795 		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1796 		zero_cpu_stall_ticks(rdp);
1797 		WRITE_ONCE(rdp->gpwrap, false);
1798 	}
1799 	return ret;
1800 }
1801 
1802 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1803 {
1804 	unsigned long flags;
1805 	bool needwake;
1806 	struct rcu_node *rnp;
1807 
1808 	local_irq_save(flags);
1809 	rnp = rdp->mynode;
1810 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1811 	     rdp->completed == READ_ONCE(rnp->completed) &&
1812 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1813 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1814 		local_irq_restore(flags);
1815 		return;
1816 	}
1817 	needwake = __note_gp_changes(rsp, rnp, rdp);
1818 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1819 	if (needwake)
1820 		rcu_gp_kthread_wake(rsp);
1821 }
1822 
1823 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1824 {
1825 	if (delay > 0 &&
1826 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1827 		schedule_timeout_uninterruptible(delay);
1828 }
1829 
1830 /*
1831  * Initialize a new grace period.  Return false if no grace period required.
1832  */
1833 static bool rcu_gp_init(struct rcu_state *rsp)
1834 {
1835 	unsigned long oldmask;
1836 	struct rcu_data *rdp;
1837 	struct rcu_node *rnp = rcu_get_root(rsp);
1838 
1839 	WRITE_ONCE(rsp->gp_activity, jiffies);
1840 	raw_spin_lock_irq_rcu_node(rnp);
1841 	if (!READ_ONCE(rsp->gp_flags)) {
1842 		/* Spurious wakeup, tell caller to go back to sleep.  */
1843 		raw_spin_unlock_irq(&rnp->lock);
1844 		return false;
1845 	}
1846 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1847 
1848 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1849 		/*
1850 		 * Grace period already in progress, don't start another.
1851 		 * Not supposed to be able to happen.
1852 		 */
1853 		raw_spin_unlock_irq(&rnp->lock);
1854 		return false;
1855 	}
1856 
1857 	/* Advance to a new grace period and initialize state. */
1858 	record_gp_stall_check_time(rsp);
1859 	/* Record GP times before starting GP, hence smp_store_release(). */
1860 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1861 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1862 	raw_spin_unlock_irq(&rnp->lock);
1863 
1864 	/*
1865 	 * Apply per-leaf buffered online and offline operations to the
1866 	 * rcu_node tree.  Note that this new grace period need not wait
1867 	 * for subsequent online CPUs, and that quiescent-state forcing
1868 	 * will handle subsequent offline CPUs.
1869 	 */
1870 	rcu_for_each_leaf_node(rsp, rnp) {
1871 		rcu_gp_slow(rsp, gp_preinit_delay);
1872 		raw_spin_lock_irq_rcu_node(rnp);
1873 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1874 		    !rnp->wait_blkd_tasks) {
1875 			/* Nothing to do on this leaf rcu_node structure. */
1876 			raw_spin_unlock_irq(&rnp->lock);
1877 			continue;
1878 		}
1879 
1880 		/* Record old state, apply changes to ->qsmaskinit field. */
1881 		oldmask = rnp->qsmaskinit;
1882 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1883 
1884 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1885 		if (!oldmask != !rnp->qsmaskinit) {
1886 			if (!oldmask) /* First online CPU for this rcu_node. */
1887 				rcu_init_new_rnp(rnp);
1888 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1889 				rnp->wait_blkd_tasks = true;
1890 			else /* Last offline CPU and can propagate. */
1891 				rcu_cleanup_dead_rnp(rnp);
1892 		}
1893 
1894 		/*
1895 		 * If all waited-on tasks from prior grace period are
1896 		 * done, and if all this rcu_node structure's CPUs are
1897 		 * still offline, propagate up the rcu_node tree and
1898 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1899 		 * rcu_node structure's CPUs has since come back online,
1900 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1901 		 * checks for this, so just call it unconditionally).
1902 		 */
1903 		if (rnp->wait_blkd_tasks &&
1904 		    (!rcu_preempt_has_tasks(rnp) ||
1905 		     rnp->qsmaskinit)) {
1906 			rnp->wait_blkd_tasks = false;
1907 			rcu_cleanup_dead_rnp(rnp);
1908 		}
1909 
1910 		raw_spin_unlock_irq(&rnp->lock);
1911 	}
1912 
1913 	/*
1914 	 * Set the quiescent-state-needed bits in all the rcu_node
1915 	 * structures for all currently online CPUs in breadth-first order,
1916 	 * starting from the root rcu_node structure, relying on the layout
1917 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1918 	 * will access only the leaves of the hierarchy, thus seeing that no
1919 	 * grace period is in progress, at least until the corresponding
1920 	 * leaf node has been initialized.  In addition, we have excluded
1921 	 * CPU-hotplug operations.
1922 	 *
1923 	 * The grace period cannot complete until the initialization
1924 	 * process finishes, because this kthread handles both.
1925 	 */
1926 	rcu_for_each_node_breadth_first(rsp, rnp) {
1927 		rcu_gp_slow(rsp, gp_init_delay);
1928 		raw_spin_lock_irq_rcu_node(rnp);
1929 		rdp = this_cpu_ptr(rsp->rda);
1930 		rcu_preempt_check_blocked_tasks(rnp);
1931 		rnp->qsmask = rnp->qsmaskinit;
1932 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1933 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1934 			WRITE_ONCE(rnp->completed, rsp->completed);
1935 		if (rnp == rdp->mynode)
1936 			(void)__note_gp_changes(rsp, rnp, rdp);
1937 		rcu_preempt_boost_start_gp(rnp);
1938 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1939 					    rnp->level, rnp->grplo,
1940 					    rnp->grphi, rnp->qsmask);
1941 		raw_spin_unlock_irq(&rnp->lock);
1942 		cond_resched_rcu_qs();
1943 		WRITE_ONCE(rsp->gp_activity, jiffies);
1944 	}
1945 
1946 	return true;
1947 }
1948 
1949 /*
1950  * Helper function for wait_event_interruptible_timeout() wakeup
1951  * at force-quiescent-state time.
1952  */
1953 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1954 {
1955 	struct rcu_node *rnp = rcu_get_root(rsp);
1956 
1957 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1958 	*gfp = READ_ONCE(rsp->gp_flags);
1959 	if (*gfp & RCU_GP_FLAG_FQS)
1960 		return true;
1961 
1962 	/* The current grace period has completed. */
1963 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1964 		return true;
1965 
1966 	return false;
1967 }
1968 
1969 /*
1970  * Do one round of quiescent-state forcing.
1971  */
1972 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1973 {
1974 	bool isidle = false;
1975 	unsigned long maxj;
1976 	struct rcu_node *rnp = rcu_get_root(rsp);
1977 
1978 	WRITE_ONCE(rsp->gp_activity, jiffies);
1979 	rsp->n_force_qs++;
1980 	if (first_time) {
1981 		/* Collect dyntick-idle snapshots. */
1982 		if (is_sysidle_rcu_state(rsp)) {
1983 			isidle = true;
1984 			maxj = jiffies - ULONG_MAX / 4;
1985 		}
1986 		force_qs_rnp(rsp, dyntick_save_progress_counter,
1987 			     &isidle, &maxj);
1988 		rcu_sysidle_report_gp(rsp, isidle, maxj);
1989 	} else {
1990 		/* Handle dyntick-idle and offline CPUs. */
1991 		isidle = true;
1992 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1993 	}
1994 	/* Clear flag to prevent immediate re-entry. */
1995 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1996 		raw_spin_lock_irq_rcu_node(rnp);
1997 		WRITE_ONCE(rsp->gp_flags,
1998 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1999 		raw_spin_unlock_irq(&rnp->lock);
2000 	}
2001 }
2002 
2003 /*
2004  * Clean up after the old grace period.
2005  */
2006 static void rcu_gp_cleanup(struct rcu_state *rsp)
2007 {
2008 	unsigned long gp_duration;
2009 	bool needgp = false;
2010 	int nocb = 0;
2011 	struct rcu_data *rdp;
2012 	struct rcu_node *rnp = rcu_get_root(rsp);
2013 
2014 	WRITE_ONCE(rsp->gp_activity, jiffies);
2015 	raw_spin_lock_irq_rcu_node(rnp);
2016 	gp_duration = jiffies - rsp->gp_start;
2017 	if (gp_duration > rsp->gp_max)
2018 		rsp->gp_max = gp_duration;
2019 
2020 	/*
2021 	 * We know the grace period is complete, but to everyone else
2022 	 * it appears to still be ongoing.  But it is also the case
2023 	 * that to everyone else it looks like there is nothing that
2024 	 * they can do to advance the grace period.  It is therefore
2025 	 * safe for us to drop the lock in order to mark the grace
2026 	 * period as completed in all of the rcu_node structures.
2027 	 */
2028 	raw_spin_unlock_irq(&rnp->lock);
2029 
2030 	/*
2031 	 * Propagate new ->completed value to rcu_node structures so
2032 	 * that other CPUs don't have to wait until the start of the next
2033 	 * grace period to process their callbacks.  This also avoids
2034 	 * some nasty RCU grace-period initialization races by forcing
2035 	 * the end of the current grace period to be completely recorded in
2036 	 * all of the rcu_node structures before the beginning of the next
2037 	 * grace period is recorded in any of the rcu_node structures.
2038 	 */
2039 	rcu_for_each_node_breadth_first(rsp, rnp) {
2040 		raw_spin_lock_irq_rcu_node(rnp);
2041 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2042 		WARN_ON_ONCE(rnp->qsmask);
2043 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2044 		rdp = this_cpu_ptr(rsp->rda);
2045 		if (rnp == rdp->mynode)
2046 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2047 		/* smp_mb() provided by prior unlock-lock pair. */
2048 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2049 		raw_spin_unlock_irq(&rnp->lock);
2050 		cond_resched_rcu_qs();
2051 		WRITE_ONCE(rsp->gp_activity, jiffies);
2052 		rcu_gp_slow(rsp, gp_cleanup_delay);
2053 	}
2054 	rnp = rcu_get_root(rsp);
2055 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2056 	rcu_nocb_gp_set(rnp, nocb);
2057 
2058 	/* Declare grace period done. */
2059 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2060 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2061 	rsp->gp_state = RCU_GP_IDLE;
2062 	rdp = this_cpu_ptr(rsp->rda);
2063 	/* Advance CBs to reduce false positives below. */
2064 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2065 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2066 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2067 		trace_rcu_grace_period(rsp->name,
2068 				       READ_ONCE(rsp->gpnum),
2069 				       TPS("newreq"));
2070 	}
2071 	raw_spin_unlock_irq(&rnp->lock);
2072 }
2073 
2074 /*
2075  * Body of kthread that handles grace periods.
2076  */
2077 static int __noreturn rcu_gp_kthread(void *arg)
2078 {
2079 	bool first_gp_fqs;
2080 	int gf;
2081 	unsigned long j;
2082 	int ret;
2083 	struct rcu_state *rsp = arg;
2084 	struct rcu_node *rnp = rcu_get_root(rsp);
2085 
2086 	rcu_bind_gp_kthread();
2087 	for (;;) {
2088 
2089 		/* Handle grace-period start. */
2090 		for (;;) {
2091 			trace_rcu_grace_period(rsp->name,
2092 					       READ_ONCE(rsp->gpnum),
2093 					       TPS("reqwait"));
2094 			rsp->gp_state = RCU_GP_WAIT_GPS;
2095 			wait_event_interruptible(rsp->gp_wq,
2096 						 READ_ONCE(rsp->gp_flags) &
2097 						 RCU_GP_FLAG_INIT);
2098 			rsp->gp_state = RCU_GP_DONE_GPS;
2099 			/* Locking provides needed memory barrier. */
2100 			if (rcu_gp_init(rsp))
2101 				break;
2102 			cond_resched_rcu_qs();
2103 			WRITE_ONCE(rsp->gp_activity, jiffies);
2104 			WARN_ON(signal_pending(current));
2105 			trace_rcu_grace_period(rsp->name,
2106 					       READ_ONCE(rsp->gpnum),
2107 					       TPS("reqwaitsig"));
2108 		}
2109 
2110 		/* Handle quiescent-state forcing. */
2111 		first_gp_fqs = true;
2112 		j = jiffies_till_first_fqs;
2113 		if (j > HZ) {
2114 			j = HZ;
2115 			jiffies_till_first_fqs = HZ;
2116 		}
2117 		ret = 0;
2118 		for (;;) {
2119 			if (!ret)
2120 				rsp->jiffies_force_qs = jiffies + j;
2121 			trace_rcu_grace_period(rsp->name,
2122 					       READ_ONCE(rsp->gpnum),
2123 					       TPS("fqswait"));
2124 			rsp->gp_state = RCU_GP_WAIT_FQS;
2125 			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2126 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2127 			rsp->gp_state = RCU_GP_DOING_FQS;
2128 			/* Locking provides needed memory barriers. */
2129 			/* If grace period done, leave loop. */
2130 			if (!READ_ONCE(rnp->qsmask) &&
2131 			    !rcu_preempt_blocked_readers_cgp(rnp))
2132 				break;
2133 			/* If time for quiescent-state forcing, do it. */
2134 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2135 			    (gf & RCU_GP_FLAG_FQS)) {
2136 				trace_rcu_grace_period(rsp->name,
2137 						       READ_ONCE(rsp->gpnum),
2138 						       TPS("fqsstart"));
2139 				rcu_gp_fqs(rsp, first_gp_fqs);
2140 				first_gp_fqs = false;
2141 				trace_rcu_grace_period(rsp->name,
2142 						       READ_ONCE(rsp->gpnum),
2143 						       TPS("fqsend"));
2144 				cond_resched_rcu_qs();
2145 				WRITE_ONCE(rsp->gp_activity, jiffies);
2146 			} else {
2147 				/* Deal with stray signal. */
2148 				cond_resched_rcu_qs();
2149 				WRITE_ONCE(rsp->gp_activity, jiffies);
2150 				WARN_ON(signal_pending(current));
2151 				trace_rcu_grace_period(rsp->name,
2152 						       READ_ONCE(rsp->gpnum),
2153 						       TPS("fqswaitsig"));
2154 			}
2155 			j = jiffies_till_next_fqs;
2156 			if (j > HZ) {
2157 				j = HZ;
2158 				jiffies_till_next_fqs = HZ;
2159 			} else if (j < 1) {
2160 				j = 1;
2161 				jiffies_till_next_fqs = 1;
2162 			}
2163 		}
2164 
2165 		/* Handle grace-period end. */
2166 		rsp->gp_state = RCU_GP_CLEANUP;
2167 		rcu_gp_cleanup(rsp);
2168 		rsp->gp_state = RCU_GP_CLEANED;
2169 	}
2170 }
2171 
2172 /*
2173  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2174  * in preparation for detecting the next grace period.  The caller must hold
2175  * the root node's ->lock and hard irqs must be disabled.
2176  *
2177  * Note that it is legal for a dying CPU (which is marked as offline) to
2178  * invoke this function.  This can happen when the dying CPU reports its
2179  * quiescent state.
2180  *
2181  * Returns true if the grace-period kthread must be awakened.
2182  */
2183 static bool
2184 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2185 		      struct rcu_data *rdp)
2186 {
2187 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2188 		/*
2189 		 * Either we have not yet spawned the grace-period
2190 		 * task, this CPU does not need another grace period,
2191 		 * or a grace period is already in progress.
2192 		 * Either way, don't start a new grace period.
2193 		 */
2194 		return false;
2195 	}
2196 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2197 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2198 			       TPS("newreq"));
2199 
2200 	/*
2201 	 * We can't do wakeups while holding the rnp->lock, as that
2202 	 * could cause possible deadlocks with the rq->lock. Defer
2203 	 * the wakeup to our caller.
2204 	 */
2205 	return true;
2206 }
2207 
2208 /*
2209  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2210  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2211  * is invoked indirectly from rcu_advance_cbs(), which would result in
2212  * endless recursion -- or would do so if it wasn't for the self-deadlock
2213  * that is encountered beforehand.
2214  *
2215  * Returns true if the grace-period kthread needs to be awakened.
2216  */
2217 static bool rcu_start_gp(struct rcu_state *rsp)
2218 {
2219 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2220 	struct rcu_node *rnp = rcu_get_root(rsp);
2221 	bool ret = false;
2222 
2223 	/*
2224 	 * If there is no grace period in progress right now, any
2225 	 * callbacks we have up to this point will be satisfied by the
2226 	 * next grace period.  Also, advancing the callbacks reduces the
2227 	 * probability of false positives from cpu_needs_another_gp()
2228 	 * resulting in pointless grace periods.  So, advance callbacks
2229 	 * then start the grace period!
2230 	 */
2231 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2232 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2233 	return ret;
2234 }
2235 
2236 /*
2237  * Report a full set of quiescent states to the specified rcu_state
2238  * data structure.  This involves cleaning up after the prior grace
2239  * period and letting rcu_start_gp() start up the next grace period
2240  * if one is needed.  Note that the caller must hold rnp->lock, which
2241  * is released before return.
2242  */
2243 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2244 	__releases(rcu_get_root(rsp)->lock)
2245 {
2246 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2247 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2248 	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2249 	rcu_gp_kthread_wake(rsp);
2250 }
2251 
2252 /*
2253  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2254  * Allows quiescent states for a group of CPUs to be reported at one go
2255  * to the specified rcu_node structure, though all the CPUs in the group
2256  * must be represented by the same rcu_node structure (which need not be a
2257  * leaf rcu_node structure, though it often will be).  The gps parameter
2258  * is the grace-period snapshot, which means that the quiescent states
2259  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2260  * must be held upon entry, and it is released before return.
2261  */
2262 static void
2263 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2264 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2265 	__releases(rnp->lock)
2266 {
2267 	unsigned long oldmask = 0;
2268 	struct rcu_node *rnp_c;
2269 
2270 	/* Walk up the rcu_node hierarchy. */
2271 	for (;;) {
2272 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2273 
2274 			/*
2275 			 * Our bit has already been cleared, or the
2276 			 * relevant grace period is already over, so done.
2277 			 */
2278 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279 			return;
2280 		}
2281 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2282 		rnp->qsmask &= ~mask;
2283 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2284 						 mask, rnp->qsmask, rnp->level,
2285 						 rnp->grplo, rnp->grphi,
2286 						 !!rnp->gp_tasks);
2287 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2288 
2289 			/* Other bits still set at this level, so done. */
2290 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2291 			return;
2292 		}
2293 		mask = rnp->grpmask;
2294 		if (rnp->parent == NULL) {
2295 
2296 			/* No more levels.  Exit loop holding root lock. */
2297 
2298 			break;
2299 		}
2300 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2301 		rnp_c = rnp;
2302 		rnp = rnp->parent;
2303 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2304 		oldmask = rnp_c->qsmask;
2305 	}
2306 
2307 	/*
2308 	 * Get here if we are the last CPU to pass through a quiescent
2309 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2310 	 * to clean up and start the next grace period if one is needed.
2311 	 */
2312 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2313 }
2314 
2315 /*
2316  * Record a quiescent state for all tasks that were previously queued
2317  * on the specified rcu_node structure and that were blocking the current
2318  * RCU grace period.  The caller must hold the specified rnp->lock with
2319  * irqs disabled, and this lock is released upon return, but irqs remain
2320  * disabled.
2321  */
2322 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2323 				      struct rcu_node *rnp, unsigned long flags)
2324 	__releases(rnp->lock)
2325 {
2326 	unsigned long gps;
2327 	unsigned long mask;
2328 	struct rcu_node *rnp_p;
2329 
2330 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2331 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2332 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2333 		return;  /* Still need more quiescent states! */
2334 	}
2335 
2336 	rnp_p = rnp->parent;
2337 	if (rnp_p == NULL) {
2338 		/*
2339 		 * Only one rcu_node structure in the tree, so don't
2340 		 * try to report up to its nonexistent parent!
2341 		 */
2342 		rcu_report_qs_rsp(rsp, flags);
2343 		return;
2344 	}
2345 
2346 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2347 	gps = rnp->gpnum;
2348 	mask = rnp->grpmask;
2349 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
2350 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2351 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2352 }
2353 
2354 /*
2355  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2356  * structure.  This must be either called from the specified CPU, or
2357  * called when the specified CPU is known to be offline (and when it is
2358  * also known that no other CPU is concurrently trying to help the offline
2359  * CPU).  The lastcomp argument is used to make sure we are still in the
2360  * grace period of interest.  We don't want to end the current grace period
2361  * based on quiescent states detected in an earlier grace period!
2362  */
2363 static void
2364 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2365 {
2366 	unsigned long flags;
2367 	unsigned long mask;
2368 	bool needwake;
2369 	struct rcu_node *rnp;
2370 
2371 	rnp = rdp->mynode;
2372 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373 	if ((rdp->cpu_no_qs.b.norm &&
2374 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2375 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2376 	    rdp->gpwrap) {
2377 
2378 		/*
2379 		 * The grace period in which this quiescent state was
2380 		 * recorded has ended, so don't report it upwards.
2381 		 * We will instead need a new quiescent state that lies
2382 		 * within the current grace period.
2383 		 */
2384 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2385 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2386 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2387 		return;
2388 	}
2389 	mask = rdp->grpmask;
2390 	if ((rnp->qsmask & mask) == 0) {
2391 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2392 	} else {
2393 		rdp->core_needs_qs = 0;
2394 
2395 		/*
2396 		 * This GP can't end until cpu checks in, so all of our
2397 		 * callbacks can be processed during the next GP.
2398 		 */
2399 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2400 
2401 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2402 		/* ^^^ Released rnp->lock */
2403 		if (needwake)
2404 			rcu_gp_kthread_wake(rsp);
2405 	}
2406 }
2407 
2408 /*
2409  * Check to see if there is a new grace period of which this CPU
2410  * is not yet aware, and if so, set up local rcu_data state for it.
2411  * Otherwise, see if this CPU has just passed through its first
2412  * quiescent state for this grace period, and record that fact if so.
2413  */
2414 static void
2415 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2416 {
2417 	/* Check for grace-period ends and beginnings. */
2418 	note_gp_changes(rsp, rdp);
2419 
2420 	/*
2421 	 * Does this CPU still need to do its part for current grace period?
2422 	 * If no, return and let the other CPUs do their part as well.
2423 	 */
2424 	if (!rdp->core_needs_qs)
2425 		return;
2426 
2427 	/*
2428 	 * Was there a quiescent state since the beginning of the grace
2429 	 * period? If no, then exit and wait for the next call.
2430 	 */
2431 	if (rdp->cpu_no_qs.b.norm &&
2432 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2433 		return;
2434 
2435 	/*
2436 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2437 	 * judge of that).
2438 	 */
2439 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2440 }
2441 
2442 /*
2443  * Send the specified CPU's RCU callbacks to the orphanage.  The
2444  * specified CPU must be offline, and the caller must hold the
2445  * ->orphan_lock.
2446  */
2447 static void
2448 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2449 			  struct rcu_node *rnp, struct rcu_data *rdp)
2450 {
2451 	/* No-CBs CPUs do not have orphanable callbacks. */
2452 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2453 		return;
2454 
2455 	/*
2456 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2457 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2458 	 * cannot be running now.  Thus no memory barrier is required.
2459 	 */
2460 	if (rdp->nxtlist != NULL) {
2461 		rsp->qlen_lazy += rdp->qlen_lazy;
2462 		rsp->qlen += rdp->qlen;
2463 		rdp->n_cbs_orphaned += rdp->qlen;
2464 		rdp->qlen_lazy = 0;
2465 		WRITE_ONCE(rdp->qlen, 0);
2466 	}
2467 
2468 	/*
2469 	 * Next, move those callbacks still needing a grace period to
2470 	 * the orphanage, where some other CPU will pick them up.
2471 	 * Some of the callbacks might have gone partway through a grace
2472 	 * period, but that is too bad.  They get to start over because we
2473 	 * cannot assume that grace periods are synchronized across CPUs.
2474 	 * We don't bother updating the ->nxttail[] array yet, instead
2475 	 * we just reset the whole thing later on.
2476 	 */
2477 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2478 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2479 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2480 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2481 	}
2482 
2483 	/*
2484 	 * Then move the ready-to-invoke callbacks to the orphanage,
2485 	 * where some other CPU will pick them up.  These will not be
2486 	 * required to pass though another grace period: They are done.
2487 	 */
2488 	if (rdp->nxtlist != NULL) {
2489 		*rsp->orphan_donetail = rdp->nxtlist;
2490 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2491 	}
2492 
2493 	/*
2494 	 * Finally, initialize the rcu_data structure's list to empty and
2495 	 * disallow further callbacks on this CPU.
2496 	 */
2497 	init_callback_list(rdp);
2498 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2499 }
2500 
2501 /*
2502  * Adopt the RCU callbacks from the specified rcu_state structure's
2503  * orphanage.  The caller must hold the ->orphan_lock.
2504  */
2505 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2506 {
2507 	int i;
2508 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2509 
2510 	/* No-CBs CPUs are handled specially. */
2511 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2512 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2513 		return;
2514 
2515 	/* Do the accounting first. */
2516 	rdp->qlen_lazy += rsp->qlen_lazy;
2517 	rdp->qlen += rsp->qlen;
2518 	rdp->n_cbs_adopted += rsp->qlen;
2519 	if (rsp->qlen_lazy != rsp->qlen)
2520 		rcu_idle_count_callbacks_posted();
2521 	rsp->qlen_lazy = 0;
2522 	rsp->qlen = 0;
2523 
2524 	/*
2525 	 * We do not need a memory barrier here because the only way we
2526 	 * can get here if there is an rcu_barrier() in flight is if
2527 	 * we are the task doing the rcu_barrier().
2528 	 */
2529 
2530 	/* First adopt the ready-to-invoke callbacks. */
2531 	if (rsp->orphan_donelist != NULL) {
2532 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2533 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2534 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2535 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2536 				rdp->nxttail[i] = rsp->orphan_donetail;
2537 		rsp->orphan_donelist = NULL;
2538 		rsp->orphan_donetail = &rsp->orphan_donelist;
2539 	}
2540 
2541 	/* And then adopt the callbacks that still need a grace period. */
2542 	if (rsp->orphan_nxtlist != NULL) {
2543 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2544 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2545 		rsp->orphan_nxtlist = NULL;
2546 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2547 	}
2548 }
2549 
2550 /*
2551  * Trace the fact that this CPU is going offline.
2552  */
2553 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2554 {
2555 	RCU_TRACE(unsigned long mask);
2556 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2557 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2558 
2559 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2560 		return;
2561 
2562 	RCU_TRACE(mask = rdp->grpmask);
2563 	trace_rcu_grace_period(rsp->name,
2564 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2565 			       TPS("cpuofl"));
2566 }
2567 
2568 /*
2569  * All CPUs for the specified rcu_node structure have gone offline,
2570  * and all tasks that were preempted within an RCU read-side critical
2571  * section while running on one of those CPUs have since exited their RCU
2572  * read-side critical section.  Some other CPU is reporting this fact with
2573  * the specified rcu_node structure's ->lock held and interrupts disabled.
2574  * This function therefore goes up the tree of rcu_node structures,
2575  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2576  * the leaf rcu_node structure's ->qsmaskinit field has already been
2577  * updated
2578  *
2579  * This function does check that the specified rcu_node structure has
2580  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2581  * prematurely.  That said, invoking it after the fact will cost you
2582  * a needless lock acquisition.  So once it has done its work, don't
2583  * invoke it again.
2584  */
2585 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2586 {
2587 	long mask;
2588 	struct rcu_node *rnp = rnp_leaf;
2589 
2590 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2591 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2592 		return;
2593 	for (;;) {
2594 		mask = rnp->grpmask;
2595 		rnp = rnp->parent;
2596 		if (!rnp)
2597 			break;
2598 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2599 		rnp->qsmaskinit &= ~mask;
2600 		rnp->qsmask &= ~mask;
2601 		if (rnp->qsmaskinit) {
2602 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2603 			return;
2604 		}
2605 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2606 	}
2607 }
2608 
2609 /*
2610  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2611  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
2612  * bit masks.
2613  */
2614 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2615 {
2616 	unsigned long flags;
2617 	unsigned long mask;
2618 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2620 
2621 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2622 		return;
2623 
2624 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2625 	mask = rdp->grpmask;
2626 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
2627 	rnp->qsmaskinitnext &= ~mask;
2628 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2629 }
2630 
2631 /*
2632  * The CPU has been completely removed, and some other CPU is reporting
2633  * this fact from process context.  Do the remainder of the cleanup,
2634  * including orphaning the outgoing CPU's RCU callbacks, and also
2635  * adopting them.  There can only be one CPU hotplug operation at a time,
2636  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2637  */
2638 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2639 {
2640 	unsigned long flags;
2641 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2642 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2643 
2644 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2645 		return;
2646 
2647 	/* Adjust any no-longer-needed kthreads. */
2648 	rcu_boost_kthread_setaffinity(rnp, -1);
2649 
2650 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2651 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2652 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2653 	rcu_adopt_orphan_cbs(rsp, flags);
2654 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2655 
2656 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2657 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2658 		  cpu, rdp->qlen, rdp->nxtlist);
2659 }
2660 
2661 /*
2662  * Invoke any RCU callbacks that have made it to the end of their grace
2663  * period.  Thottle as specified by rdp->blimit.
2664  */
2665 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2666 {
2667 	unsigned long flags;
2668 	struct rcu_head *next, *list, **tail;
2669 	long bl, count, count_lazy;
2670 	int i;
2671 
2672 	/* If no callbacks are ready, just return. */
2673 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2674 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2675 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2676 				    need_resched(), is_idle_task(current),
2677 				    rcu_is_callbacks_kthread());
2678 		return;
2679 	}
2680 
2681 	/*
2682 	 * Extract the list of ready callbacks, disabling to prevent
2683 	 * races with call_rcu() from interrupt handlers.
2684 	 */
2685 	local_irq_save(flags);
2686 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2687 	bl = rdp->blimit;
2688 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2689 	list = rdp->nxtlist;
2690 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2691 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2692 	tail = rdp->nxttail[RCU_DONE_TAIL];
2693 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2694 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2695 			rdp->nxttail[i] = &rdp->nxtlist;
2696 	local_irq_restore(flags);
2697 
2698 	/* Invoke callbacks. */
2699 	count = count_lazy = 0;
2700 	while (list) {
2701 		next = list->next;
2702 		prefetch(next);
2703 		debug_rcu_head_unqueue(list);
2704 		if (__rcu_reclaim(rsp->name, list))
2705 			count_lazy++;
2706 		list = next;
2707 		/* Stop only if limit reached and CPU has something to do. */
2708 		if (++count >= bl &&
2709 		    (need_resched() ||
2710 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2711 			break;
2712 	}
2713 
2714 	local_irq_save(flags);
2715 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2716 			    is_idle_task(current),
2717 			    rcu_is_callbacks_kthread());
2718 
2719 	/* Update count, and requeue any remaining callbacks. */
2720 	if (list != NULL) {
2721 		*tail = rdp->nxtlist;
2722 		rdp->nxtlist = list;
2723 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2724 			if (&rdp->nxtlist == rdp->nxttail[i])
2725 				rdp->nxttail[i] = tail;
2726 			else
2727 				break;
2728 	}
2729 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2730 	rdp->qlen_lazy -= count_lazy;
2731 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2732 	rdp->n_cbs_invoked += count;
2733 
2734 	/* Reinstate batch limit if we have worked down the excess. */
2735 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2736 		rdp->blimit = blimit;
2737 
2738 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2739 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2740 		rdp->qlen_last_fqs_check = 0;
2741 		rdp->n_force_qs_snap = rsp->n_force_qs;
2742 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2743 		rdp->qlen_last_fqs_check = rdp->qlen;
2744 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2745 
2746 	local_irq_restore(flags);
2747 
2748 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2749 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2750 		invoke_rcu_core();
2751 }
2752 
2753 /*
2754  * Check to see if this CPU is in a non-context-switch quiescent state
2755  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2756  * Also schedule RCU core processing.
2757  *
2758  * This function must be called from hardirq context.  It is normally
2759  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2760  * false, there is no point in invoking rcu_check_callbacks().
2761  */
2762 void rcu_check_callbacks(int user)
2763 {
2764 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2765 	increment_cpu_stall_ticks();
2766 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2767 
2768 		/*
2769 		 * Get here if this CPU took its interrupt from user
2770 		 * mode or from the idle loop, and if this is not a
2771 		 * nested interrupt.  In this case, the CPU is in
2772 		 * a quiescent state, so note it.
2773 		 *
2774 		 * No memory barrier is required here because both
2775 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2776 		 * variables that other CPUs neither access nor modify,
2777 		 * at least not while the corresponding CPU is online.
2778 		 */
2779 
2780 		rcu_sched_qs();
2781 		rcu_bh_qs();
2782 
2783 	} else if (!in_softirq()) {
2784 
2785 		/*
2786 		 * Get here if this CPU did not take its interrupt from
2787 		 * softirq, in other words, if it is not interrupting
2788 		 * a rcu_bh read-side critical section.  This is an _bh
2789 		 * critical section, so note it.
2790 		 */
2791 
2792 		rcu_bh_qs();
2793 	}
2794 	rcu_preempt_check_callbacks();
2795 	if (rcu_pending())
2796 		invoke_rcu_core();
2797 	if (user)
2798 		rcu_note_voluntary_context_switch(current);
2799 	trace_rcu_utilization(TPS("End scheduler-tick"));
2800 }
2801 
2802 /*
2803  * Scan the leaf rcu_node structures, processing dyntick state for any that
2804  * have not yet encountered a quiescent state, using the function specified.
2805  * Also initiate boosting for any threads blocked on the root rcu_node.
2806  *
2807  * The caller must have suppressed start of new grace periods.
2808  */
2809 static void force_qs_rnp(struct rcu_state *rsp,
2810 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2811 				  unsigned long *maxj),
2812 			 bool *isidle, unsigned long *maxj)
2813 {
2814 	unsigned long bit;
2815 	int cpu;
2816 	unsigned long flags;
2817 	unsigned long mask;
2818 	struct rcu_node *rnp;
2819 
2820 	rcu_for_each_leaf_node(rsp, rnp) {
2821 		cond_resched_rcu_qs();
2822 		mask = 0;
2823 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2824 		if (rnp->qsmask == 0) {
2825 			if (rcu_state_p == &rcu_sched_state ||
2826 			    rsp != rcu_state_p ||
2827 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2828 				/*
2829 				 * No point in scanning bits because they
2830 				 * are all zero.  But we might need to
2831 				 * priority-boost blocked readers.
2832 				 */
2833 				rcu_initiate_boost(rnp, flags);
2834 				/* rcu_initiate_boost() releases rnp->lock */
2835 				continue;
2836 			}
2837 			if (rnp->parent &&
2838 			    (rnp->parent->qsmask & rnp->grpmask)) {
2839 				/*
2840 				 * Race between grace-period
2841 				 * initialization and task exiting RCU
2842 				 * read-side critical section: Report.
2843 				 */
2844 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2845 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2846 				continue;
2847 			}
2848 		}
2849 		cpu = rnp->grplo;
2850 		bit = 1;
2851 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2852 			if ((rnp->qsmask & bit) != 0) {
2853 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2854 					mask |= bit;
2855 			}
2856 		}
2857 		if (mask != 0) {
2858 			/* Idle/offline CPUs, report (releases rnp->lock. */
2859 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2860 		} else {
2861 			/* Nothing to do here, so just drop the lock. */
2862 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2863 		}
2864 	}
2865 }
2866 
2867 /*
2868  * Force quiescent states on reluctant CPUs, and also detect which
2869  * CPUs are in dyntick-idle mode.
2870  */
2871 static void force_quiescent_state(struct rcu_state *rsp)
2872 {
2873 	unsigned long flags;
2874 	bool ret;
2875 	struct rcu_node *rnp;
2876 	struct rcu_node *rnp_old = NULL;
2877 
2878 	/* Funnel through hierarchy to reduce memory contention. */
2879 	rnp = __this_cpu_read(rsp->rda->mynode);
2880 	for (; rnp != NULL; rnp = rnp->parent) {
2881 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2882 		      !raw_spin_trylock(&rnp->fqslock);
2883 		if (rnp_old != NULL)
2884 			raw_spin_unlock(&rnp_old->fqslock);
2885 		if (ret) {
2886 			rsp->n_force_qs_lh++;
2887 			return;
2888 		}
2889 		rnp_old = rnp;
2890 	}
2891 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2892 
2893 	/* Reached the root of the rcu_node tree, acquire lock. */
2894 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2895 	raw_spin_unlock(&rnp_old->fqslock);
2896 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2897 		rsp->n_force_qs_lh++;
2898 		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2899 		return;  /* Someone beat us to it. */
2900 	}
2901 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2902 	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2903 	rcu_gp_kthread_wake(rsp);
2904 }
2905 
2906 /*
2907  * This does the RCU core processing work for the specified rcu_state
2908  * and rcu_data structures.  This may be called only from the CPU to
2909  * whom the rdp belongs.
2910  */
2911 static void
2912 __rcu_process_callbacks(struct rcu_state *rsp)
2913 {
2914 	unsigned long flags;
2915 	bool needwake;
2916 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2917 
2918 	WARN_ON_ONCE(rdp->beenonline == 0);
2919 
2920 	/* Update RCU state based on any recent quiescent states. */
2921 	rcu_check_quiescent_state(rsp, rdp);
2922 
2923 	/* Does this CPU require a not-yet-started grace period? */
2924 	local_irq_save(flags);
2925 	if (cpu_needs_another_gp(rsp, rdp)) {
2926 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2927 		needwake = rcu_start_gp(rsp);
2928 		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2929 		if (needwake)
2930 			rcu_gp_kthread_wake(rsp);
2931 	} else {
2932 		local_irq_restore(flags);
2933 	}
2934 
2935 	/* If there are callbacks ready, invoke them. */
2936 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2937 		invoke_rcu_callbacks(rsp, rdp);
2938 
2939 	/* Do any needed deferred wakeups of rcuo kthreads. */
2940 	do_nocb_deferred_wakeup(rdp);
2941 }
2942 
2943 /*
2944  * Do RCU core processing for the current CPU.
2945  */
2946 static void rcu_process_callbacks(struct softirq_action *unused)
2947 {
2948 	struct rcu_state *rsp;
2949 
2950 	if (cpu_is_offline(smp_processor_id()))
2951 		return;
2952 	trace_rcu_utilization(TPS("Start RCU core"));
2953 	for_each_rcu_flavor(rsp)
2954 		__rcu_process_callbacks(rsp);
2955 	trace_rcu_utilization(TPS("End RCU core"));
2956 }
2957 
2958 /*
2959  * Schedule RCU callback invocation.  If the specified type of RCU
2960  * does not support RCU priority boosting, just do a direct call,
2961  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2962  * are running on the current CPU with softirqs disabled, the
2963  * rcu_cpu_kthread_task cannot disappear out from under us.
2964  */
2965 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2966 {
2967 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2968 		return;
2969 	if (likely(!rsp->boost)) {
2970 		rcu_do_batch(rsp, rdp);
2971 		return;
2972 	}
2973 	invoke_rcu_callbacks_kthread();
2974 }
2975 
2976 static void invoke_rcu_core(void)
2977 {
2978 	if (cpu_online(smp_processor_id()))
2979 		raise_softirq(RCU_SOFTIRQ);
2980 }
2981 
2982 /*
2983  * Handle any core-RCU processing required by a call_rcu() invocation.
2984  */
2985 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2986 			    struct rcu_head *head, unsigned long flags)
2987 {
2988 	bool needwake;
2989 
2990 	/*
2991 	 * If called from an extended quiescent state, invoke the RCU
2992 	 * core in order to force a re-evaluation of RCU's idleness.
2993 	 */
2994 	if (!rcu_is_watching())
2995 		invoke_rcu_core();
2996 
2997 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2998 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2999 		return;
3000 
3001 	/*
3002 	 * Force the grace period if too many callbacks or too long waiting.
3003 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3004 	 * if some other CPU has recently done so.  Also, don't bother
3005 	 * invoking force_quiescent_state() if the newly enqueued callback
3006 	 * is the only one waiting for a grace period to complete.
3007 	 */
3008 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3009 
3010 		/* Are we ignoring a completed grace period? */
3011 		note_gp_changes(rsp, rdp);
3012 
3013 		/* Start a new grace period if one not already started. */
3014 		if (!rcu_gp_in_progress(rsp)) {
3015 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3016 
3017 			raw_spin_lock_rcu_node(rnp_root);
3018 			needwake = rcu_start_gp(rsp);
3019 			raw_spin_unlock(&rnp_root->lock);
3020 			if (needwake)
3021 				rcu_gp_kthread_wake(rsp);
3022 		} else {
3023 			/* Give the grace period a kick. */
3024 			rdp->blimit = LONG_MAX;
3025 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3026 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3027 				force_quiescent_state(rsp);
3028 			rdp->n_force_qs_snap = rsp->n_force_qs;
3029 			rdp->qlen_last_fqs_check = rdp->qlen;
3030 		}
3031 	}
3032 }
3033 
3034 /*
3035  * RCU callback function to leak a callback.
3036  */
3037 static void rcu_leak_callback(struct rcu_head *rhp)
3038 {
3039 }
3040 
3041 /*
3042  * Helper function for call_rcu() and friends.  The cpu argument will
3043  * normally be -1, indicating "currently running CPU".  It may specify
3044  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3045  * is expected to specify a CPU.
3046  */
3047 static void
3048 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3049 	   struct rcu_state *rsp, int cpu, bool lazy)
3050 {
3051 	unsigned long flags;
3052 	struct rcu_data *rdp;
3053 
3054 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3055 	if (debug_rcu_head_queue(head)) {
3056 		/* Probable double call_rcu(), so leak the callback. */
3057 		WRITE_ONCE(head->func, rcu_leak_callback);
3058 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3059 		return;
3060 	}
3061 	head->func = func;
3062 	head->next = NULL;
3063 
3064 	/*
3065 	 * Opportunistically note grace-period endings and beginnings.
3066 	 * Note that we might see a beginning right after we see an
3067 	 * end, but never vice versa, since this CPU has to pass through
3068 	 * a quiescent state betweentimes.
3069 	 */
3070 	local_irq_save(flags);
3071 	rdp = this_cpu_ptr(rsp->rda);
3072 
3073 	/* Add the callback to our list. */
3074 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3075 		int offline;
3076 
3077 		if (cpu != -1)
3078 			rdp = per_cpu_ptr(rsp->rda, cpu);
3079 		if (likely(rdp->mynode)) {
3080 			/* Post-boot, so this should be for a no-CBs CPU. */
3081 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3082 			WARN_ON_ONCE(offline);
3083 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3084 			local_irq_restore(flags);
3085 			return;
3086 		}
3087 		/*
3088 		 * Very early boot, before rcu_init().  Initialize if needed
3089 		 * and then drop through to queue the callback.
3090 		 */
3091 		BUG_ON(cpu != -1);
3092 		WARN_ON_ONCE(!rcu_is_watching());
3093 		if (!likely(rdp->nxtlist))
3094 			init_default_callback_list(rdp);
3095 	}
3096 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3097 	if (lazy)
3098 		rdp->qlen_lazy++;
3099 	else
3100 		rcu_idle_count_callbacks_posted();
3101 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3102 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3103 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3104 
3105 	if (__is_kfree_rcu_offset((unsigned long)func))
3106 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3107 					 rdp->qlen_lazy, rdp->qlen);
3108 	else
3109 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3110 
3111 	/* Go handle any RCU core processing required. */
3112 	__call_rcu_core(rsp, rdp, head, flags);
3113 	local_irq_restore(flags);
3114 }
3115 
3116 /*
3117  * Queue an RCU-sched callback for invocation after a grace period.
3118  */
3119 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3120 {
3121 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3122 }
3123 EXPORT_SYMBOL_GPL(call_rcu_sched);
3124 
3125 /*
3126  * Queue an RCU callback for invocation after a quicker grace period.
3127  */
3128 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3129 {
3130 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3131 }
3132 EXPORT_SYMBOL_GPL(call_rcu_bh);
3133 
3134 /*
3135  * Queue an RCU callback for lazy invocation after a grace period.
3136  * This will likely be later named something like "call_rcu_lazy()",
3137  * but this change will require some way of tagging the lazy RCU
3138  * callbacks in the list of pending callbacks. Until then, this
3139  * function may only be called from __kfree_rcu().
3140  */
3141 void kfree_call_rcu(struct rcu_head *head,
3142 		    rcu_callback_t func)
3143 {
3144 	__call_rcu(head, func, rcu_state_p, -1, 1);
3145 }
3146 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3147 
3148 /*
3149  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3150  * any blocking grace-period wait automatically implies a grace period
3151  * if there is only one CPU online at any point time during execution
3152  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3153  * occasionally incorrectly indicate that there are multiple CPUs online
3154  * when there was in fact only one the whole time, as this just adds
3155  * some overhead: RCU still operates correctly.
3156  */
3157 static inline int rcu_blocking_is_gp(void)
3158 {
3159 	int ret;
3160 
3161 	might_sleep();  /* Check for RCU read-side critical section. */
3162 	preempt_disable();
3163 	ret = num_online_cpus() <= 1;
3164 	preempt_enable();
3165 	return ret;
3166 }
3167 
3168 /**
3169  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3170  *
3171  * Control will return to the caller some time after a full rcu-sched
3172  * grace period has elapsed, in other words after all currently executing
3173  * rcu-sched read-side critical sections have completed.   These read-side
3174  * critical sections are delimited by rcu_read_lock_sched() and
3175  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3176  * local_irq_disable(), and so on may be used in place of
3177  * rcu_read_lock_sched().
3178  *
3179  * This means that all preempt_disable code sequences, including NMI and
3180  * non-threaded hardware-interrupt handlers, in progress on entry will
3181  * have completed before this primitive returns.  However, this does not
3182  * guarantee that softirq handlers will have completed, since in some
3183  * kernels, these handlers can run in process context, and can block.
3184  *
3185  * Note that this guarantee implies further memory-ordering guarantees.
3186  * On systems with more than one CPU, when synchronize_sched() returns,
3187  * each CPU is guaranteed to have executed a full memory barrier since the
3188  * end of its last RCU-sched read-side critical section whose beginning
3189  * preceded the call to synchronize_sched().  In addition, each CPU having
3190  * an RCU read-side critical section that extends beyond the return from
3191  * synchronize_sched() is guaranteed to have executed a full memory barrier
3192  * after the beginning of synchronize_sched() and before the beginning of
3193  * that RCU read-side critical section.  Note that these guarantees include
3194  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3195  * that are executing in the kernel.
3196  *
3197  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3198  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3199  * to have executed a full memory barrier during the execution of
3200  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3201  * again only if the system has more than one CPU).
3202  *
3203  * This primitive provides the guarantees made by the (now removed)
3204  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3205  * guarantees that rcu_read_lock() sections will have completed.
3206  * In "classic RCU", these two guarantees happen to be one and
3207  * the same, but can differ in realtime RCU implementations.
3208  */
3209 void synchronize_sched(void)
3210 {
3211 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3212 			 lock_is_held(&rcu_lock_map) ||
3213 			 lock_is_held(&rcu_sched_lock_map),
3214 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3215 	if (rcu_blocking_is_gp())
3216 		return;
3217 	if (rcu_gp_is_expedited())
3218 		synchronize_sched_expedited();
3219 	else
3220 		wait_rcu_gp(call_rcu_sched);
3221 }
3222 EXPORT_SYMBOL_GPL(synchronize_sched);
3223 
3224 /**
3225  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3226  *
3227  * Control will return to the caller some time after a full rcu_bh grace
3228  * period has elapsed, in other words after all currently executing rcu_bh
3229  * read-side critical sections have completed.  RCU read-side critical
3230  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3231  * and may be nested.
3232  *
3233  * See the description of synchronize_sched() for more detailed information
3234  * on memory ordering guarantees.
3235  */
3236 void synchronize_rcu_bh(void)
3237 {
3238 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3239 			 lock_is_held(&rcu_lock_map) ||
3240 			 lock_is_held(&rcu_sched_lock_map),
3241 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3242 	if (rcu_blocking_is_gp())
3243 		return;
3244 	if (rcu_gp_is_expedited())
3245 		synchronize_rcu_bh_expedited();
3246 	else
3247 		wait_rcu_gp(call_rcu_bh);
3248 }
3249 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3250 
3251 /**
3252  * get_state_synchronize_rcu - Snapshot current RCU state
3253  *
3254  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3255  * to determine whether or not a full grace period has elapsed in the
3256  * meantime.
3257  */
3258 unsigned long get_state_synchronize_rcu(void)
3259 {
3260 	/*
3261 	 * Any prior manipulation of RCU-protected data must happen
3262 	 * before the load from ->gpnum.
3263 	 */
3264 	smp_mb();  /* ^^^ */
3265 
3266 	/*
3267 	 * Make sure this load happens before the purportedly
3268 	 * time-consuming work between get_state_synchronize_rcu()
3269 	 * and cond_synchronize_rcu().
3270 	 */
3271 	return smp_load_acquire(&rcu_state_p->gpnum);
3272 }
3273 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3274 
3275 /**
3276  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3277  *
3278  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3279  *
3280  * If a full RCU grace period has elapsed since the earlier call to
3281  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3282  * synchronize_rcu() to wait for a full grace period.
3283  *
3284  * Yes, this function does not take counter wrap into account.  But
3285  * counter wrap is harmless.  If the counter wraps, we have waited for
3286  * more than 2 billion grace periods (and way more on a 64-bit system!),
3287  * so waiting for one additional grace period should be just fine.
3288  */
3289 void cond_synchronize_rcu(unsigned long oldstate)
3290 {
3291 	unsigned long newstate;
3292 
3293 	/*
3294 	 * Ensure that this load happens before any RCU-destructive
3295 	 * actions the caller might carry out after we return.
3296 	 */
3297 	newstate = smp_load_acquire(&rcu_state_p->completed);
3298 	if (ULONG_CMP_GE(oldstate, newstate))
3299 		synchronize_rcu();
3300 }
3301 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3302 
3303 /**
3304  * get_state_synchronize_sched - Snapshot current RCU-sched state
3305  *
3306  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3307  * to determine whether or not a full grace period has elapsed in the
3308  * meantime.
3309  */
3310 unsigned long get_state_synchronize_sched(void)
3311 {
3312 	/*
3313 	 * Any prior manipulation of RCU-protected data must happen
3314 	 * before the load from ->gpnum.
3315 	 */
3316 	smp_mb();  /* ^^^ */
3317 
3318 	/*
3319 	 * Make sure this load happens before the purportedly
3320 	 * time-consuming work between get_state_synchronize_sched()
3321 	 * and cond_synchronize_sched().
3322 	 */
3323 	return smp_load_acquire(&rcu_sched_state.gpnum);
3324 }
3325 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3326 
3327 /**
3328  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3329  *
3330  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3331  *
3332  * If a full RCU-sched grace period has elapsed since the earlier call to
3333  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3334  * synchronize_sched() to wait for a full grace period.
3335  *
3336  * Yes, this function does not take counter wrap into account.  But
3337  * counter wrap is harmless.  If the counter wraps, we have waited for
3338  * more than 2 billion grace periods (and way more on a 64-bit system!),
3339  * so waiting for one additional grace period should be just fine.
3340  */
3341 void cond_synchronize_sched(unsigned long oldstate)
3342 {
3343 	unsigned long newstate;
3344 
3345 	/*
3346 	 * Ensure that this load happens before any RCU-destructive
3347 	 * actions the caller might carry out after we return.
3348 	 */
3349 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3350 	if (ULONG_CMP_GE(oldstate, newstate))
3351 		synchronize_sched();
3352 }
3353 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3354 
3355 /* Adjust sequence number for start of update-side operation. */
3356 static void rcu_seq_start(unsigned long *sp)
3357 {
3358 	WRITE_ONCE(*sp, *sp + 1);
3359 	smp_mb(); /* Ensure update-side operation after counter increment. */
3360 	WARN_ON_ONCE(!(*sp & 0x1));
3361 }
3362 
3363 /* Adjust sequence number for end of update-side operation. */
3364 static void rcu_seq_end(unsigned long *sp)
3365 {
3366 	smp_mb(); /* Ensure update-side operation before counter increment. */
3367 	WRITE_ONCE(*sp, *sp + 1);
3368 	WARN_ON_ONCE(*sp & 0x1);
3369 }
3370 
3371 /* Take a snapshot of the update side's sequence number. */
3372 static unsigned long rcu_seq_snap(unsigned long *sp)
3373 {
3374 	unsigned long s;
3375 
3376 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3377 	smp_mb(); /* Above access must not bleed into critical section. */
3378 	return s;
3379 }
3380 
3381 /*
3382  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3383  * full update-side operation has occurred.
3384  */
3385 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3386 {
3387 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3388 }
3389 
3390 /* Wrapper functions for expedited grace periods.  */
3391 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3392 {
3393 	rcu_seq_start(&rsp->expedited_sequence);
3394 }
3395 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3396 {
3397 	rcu_seq_end(&rsp->expedited_sequence);
3398 	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3399 }
3400 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3401 {
3402 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3403 	return rcu_seq_snap(&rsp->expedited_sequence);
3404 }
3405 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3406 {
3407 	return rcu_seq_done(&rsp->expedited_sequence, s);
3408 }
3409 
3410 /*
3411  * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3412  * recent CPU-online activity.  Note that these masks are not cleared
3413  * when CPUs go offline, so they reflect the union of all CPUs that have
3414  * ever been online.  This means that this function normally takes its
3415  * no-work-to-do fastpath.
3416  */
3417 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3418 {
3419 	bool done;
3420 	unsigned long flags;
3421 	unsigned long mask;
3422 	unsigned long oldmask;
3423 	int ncpus = READ_ONCE(rsp->ncpus);
3424 	struct rcu_node *rnp;
3425 	struct rcu_node *rnp_up;
3426 
3427 	/* If no new CPUs onlined since last time, nothing to do. */
3428 	if (likely(ncpus == rsp->ncpus_snap))
3429 		return;
3430 	rsp->ncpus_snap = ncpus;
3431 
3432 	/*
3433 	 * Each pass through the following loop propagates newly onlined
3434 	 * CPUs for the current rcu_node structure up the rcu_node tree.
3435 	 */
3436 	rcu_for_each_leaf_node(rsp, rnp) {
3437 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3438 		if (rnp->expmaskinit == rnp->expmaskinitnext) {
3439 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
3440 			continue;  /* No new CPUs, nothing to do. */
3441 		}
3442 
3443 		/* Update this node's mask, track old value for propagation. */
3444 		oldmask = rnp->expmaskinit;
3445 		rnp->expmaskinit = rnp->expmaskinitnext;
3446 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3447 
3448 		/* If was already nonzero, nothing to propagate. */
3449 		if (oldmask)
3450 			continue;
3451 
3452 		/* Propagate the new CPU up the tree. */
3453 		mask = rnp->grpmask;
3454 		rnp_up = rnp->parent;
3455 		done = false;
3456 		while (rnp_up) {
3457 			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3458 			if (rnp_up->expmaskinit)
3459 				done = true;
3460 			rnp_up->expmaskinit |= mask;
3461 			raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
3462 			if (done)
3463 				break;
3464 			mask = rnp_up->grpmask;
3465 			rnp_up = rnp_up->parent;
3466 		}
3467 	}
3468 }
3469 
3470 /*
3471  * Reset the ->expmask values in the rcu_node tree in preparation for
3472  * a new expedited grace period.
3473  */
3474 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3475 {
3476 	unsigned long flags;
3477 	struct rcu_node *rnp;
3478 
3479 	sync_exp_reset_tree_hotplug(rsp);
3480 	rcu_for_each_node_breadth_first(rsp, rnp) {
3481 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3482 		WARN_ON_ONCE(rnp->expmask);
3483 		rnp->expmask = rnp->expmaskinit;
3484 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3485 	}
3486 }
3487 
3488 /*
3489  * Return non-zero if there is no RCU expedited grace period in progress
3490  * for the specified rcu_node structure, in other words, if all CPUs and
3491  * tasks covered by the specified rcu_node structure have done their bit
3492  * for the current expedited grace period.  Works only for preemptible
3493  * RCU -- other RCU implementation use other means.
3494  *
3495  * Caller must hold the root rcu_node's exp_funnel_mutex.
3496  */
3497 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3498 {
3499 	return rnp->exp_tasks == NULL &&
3500 	       READ_ONCE(rnp->expmask) == 0;
3501 }
3502 
3503 /*
3504  * Report the exit from RCU read-side critical section for the last task
3505  * that queued itself during or before the current expedited preemptible-RCU
3506  * grace period.  This event is reported either to the rcu_node structure on
3507  * which the task was queued or to one of that rcu_node structure's ancestors,
3508  * recursively up the tree.  (Calm down, calm down, we do the recursion
3509  * iteratively!)
3510  *
3511  * Caller must hold the root rcu_node's exp_funnel_mutex and the
3512  * specified rcu_node structure's ->lock.
3513  */
3514 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3515 				 bool wake, unsigned long flags)
3516 	__releases(rnp->lock)
3517 {
3518 	unsigned long mask;
3519 
3520 	for (;;) {
3521 		if (!sync_rcu_preempt_exp_done(rnp)) {
3522 			if (!rnp->expmask)
3523 				rcu_initiate_boost(rnp, flags);
3524 			else
3525 				raw_spin_unlock_irqrestore(&rnp->lock, flags);
3526 			break;
3527 		}
3528 		if (rnp->parent == NULL) {
3529 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
3530 			if (wake) {
3531 				smp_mb(); /* EGP done before wake_up(). */
3532 				wake_up(&rsp->expedited_wq);
3533 			}
3534 			break;
3535 		}
3536 		mask = rnp->grpmask;
3537 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
3538 		rnp = rnp->parent;
3539 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3540 		WARN_ON_ONCE(!(rnp->expmask & mask));
3541 		rnp->expmask &= ~mask;
3542 	}
3543 }
3544 
3545 /*
3546  * Report expedited quiescent state for specified node.  This is a
3547  * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3548  *
3549  * Caller must hold the root rcu_node's exp_funnel_mutex.
3550  */
3551 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3552 					      struct rcu_node *rnp, bool wake)
3553 {
3554 	unsigned long flags;
3555 
3556 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3557 	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
3558 }
3559 
3560 /*
3561  * Report expedited quiescent state for multiple CPUs, all covered by the
3562  * specified leaf rcu_node structure.  Caller must hold the root
3563  * rcu_node's exp_funnel_mutex.
3564  */
3565 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3566 				    unsigned long mask, bool wake)
3567 {
3568 	unsigned long flags;
3569 
3570 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3571 	if (!(rnp->expmask & mask)) {
3572 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3573 		return;
3574 	}
3575 	rnp->expmask &= ~mask;
3576 	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3577 }
3578 
3579 /*
3580  * Report expedited quiescent state for specified rcu_data (CPU).
3581  * Caller must hold the root rcu_node's exp_funnel_mutex.
3582  */
3583 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3584 			       bool wake)
3585 {
3586 	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3587 }
3588 
3589 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3590 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3591 			       struct rcu_data *rdp,
3592 			       atomic_long_t *stat, unsigned long s)
3593 {
3594 	if (rcu_exp_gp_seq_done(rsp, s)) {
3595 		if (rnp)
3596 			mutex_unlock(&rnp->exp_funnel_mutex);
3597 		else if (rdp)
3598 			mutex_unlock(&rdp->exp_funnel_mutex);
3599 		/* Ensure test happens before caller kfree(). */
3600 		smp_mb__before_atomic(); /* ^^^ */
3601 		atomic_long_inc(stat);
3602 		return true;
3603 	}
3604 	return false;
3605 }
3606 
3607 /*
3608  * Funnel-lock acquisition for expedited grace periods.  Returns a
3609  * pointer to the root rcu_node structure, or NULL if some other
3610  * task did the expedited grace period for us.
3611  */
3612 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3613 {
3614 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3615 	struct rcu_node *rnp0;
3616 	struct rcu_node *rnp1 = NULL;
3617 
3618 	/*
3619 	 * First try directly acquiring the root lock in order to reduce
3620 	 * latency in the common case where expedited grace periods are
3621 	 * rare.  We check mutex_is_locked() to avoid pathological levels of
3622 	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3623 	 */
3624 	rnp0 = rcu_get_root(rsp);
3625 	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3626 		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3627 			if (sync_exp_work_done(rsp, rnp0, NULL,
3628 					       &rdp->expedited_workdone0, s))
3629 				return NULL;
3630 			return rnp0;
3631 		}
3632 	}
3633 
3634 	/*
3635 	 * Each pass through the following loop works its way
3636 	 * up the rcu_node tree, returning if others have done the
3637 	 * work or otherwise falls through holding the root rnp's
3638 	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
3639 	 * can be inexact, as it is just promoting locality and is not
3640 	 * strictly needed for correctness.
3641 	 */
3642 	if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3643 		return NULL;
3644 	mutex_lock(&rdp->exp_funnel_mutex);
3645 	rnp0 = rdp->mynode;
3646 	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3647 		if (sync_exp_work_done(rsp, rnp1, rdp,
3648 				       &rdp->expedited_workdone2, s))
3649 			return NULL;
3650 		mutex_lock(&rnp0->exp_funnel_mutex);
3651 		if (rnp1)
3652 			mutex_unlock(&rnp1->exp_funnel_mutex);
3653 		else
3654 			mutex_unlock(&rdp->exp_funnel_mutex);
3655 		rnp1 = rnp0;
3656 	}
3657 	if (sync_exp_work_done(rsp, rnp1, rdp,
3658 			       &rdp->expedited_workdone3, s))
3659 		return NULL;
3660 	return rnp1;
3661 }
3662 
3663 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3664 static void sync_sched_exp_handler(void *data)
3665 {
3666 	struct rcu_data *rdp;
3667 	struct rcu_node *rnp;
3668 	struct rcu_state *rsp = data;
3669 
3670 	rdp = this_cpu_ptr(rsp->rda);
3671 	rnp = rdp->mynode;
3672 	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3673 	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3674 		return;
3675 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3676 	resched_cpu(smp_processor_id());
3677 }
3678 
3679 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3680 static void sync_sched_exp_online_cleanup(int cpu)
3681 {
3682 	struct rcu_data *rdp;
3683 	int ret;
3684 	struct rcu_node *rnp;
3685 	struct rcu_state *rsp = &rcu_sched_state;
3686 
3687 	rdp = per_cpu_ptr(rsp->rda, cpu);
3688 	rnp = rdp->mynode;
3689 	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3690 		return;
3691 	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3692 	WARN_ON_ONCE(ret);
3693 }
3694 
3695 /*
3696  * Select the nodes that the upcoming expedited grace period needs
3697  * to wait for.
3698  */
3699 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3700 				     smp_call_func_t func)
3701 {
3702 	int cpu;
3703 	unsigned long flags;
3704 	unsigned long mask;
3705 	unsigned long mask_ofl_test;
3706 	unsigned long mask_ofl_ipi;
3707 	int ret;
3708 	struct rcu_node *rnp;
3709 
3710 	sync_exp_reset_tree(rsp);
3711 	rcu_for_each_leaf_node(rsp, rnp) {
3712 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3713 
3714 		/* Each pass checks a CPU for identity, offline, and idle. */
3715 		mask_ofl_test = 0;
3716 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3717 			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3718 			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3719 
3720 			if (raw_smp_processor_id() == cpu ||
3721 			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3722 				mask_ofl_test |= rdp->grpmask;
3723 		}
3724 		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3725 
3726 		/*
3727 		 * Need to wait for any blocked tasks as well.  Note that
3728 		 * additional blocking tasks will also block the expedited
3729 		 * GP until such time as the ->expmask bits are cleared.
3730 		 */
3731 		if (rcu_preempt_has_tasks(rnp))
3732 			rnp->exp_tasks = rnp->blkd_tasks.next;
3733 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3734 
3735 		/* IPI the remaining CPUs for expedited quiescent state. */
3736 		mask = 1;
3737 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3738 			if (!(mask_ofl_ipi & mask))
3739 				continue;
3740 retry_ipi:
3741 			ret = smp_call_function_single(cpu, func, rsp, 0);
3742 			if (!ret) {
3743 				mask_ofl_ipi &= ~mask;
3744 				continue;
3745 			}
3746 			/* Failed, raced with offline. */
3747 			raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748 			if (cpu_online(cpu) &&
3749 			    (rnp->expmask & mask)) {
3750 				raw_spin_unlock_irqrestore(&rnp->lock, flags);
3751 				schedule_timeout_uninterruptible(1);
3752 				if (cpu_online(cpu) &&
3753 				    (rnp->expmask & mask))
3754 					goto retry_ipi;
3755 				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3756 			}
3757 			if (!(rnp->expmask & mask))
3758 				mask_ofl_ipi &= ~mask;
3759 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
3760 		}
3761 		/* Report quiescent states for those that went offline. */
3762 		mask_ofl_test |= mask_ofl_ipi;
3763 		if (mask_ofl_test)
3764 			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3765 	}
3766 }
3767 
3768 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3769 {
3770 	int cpu;
3771 	unsigned long jiffies_stall;
3772 	unsigned long jiffies_start;
3773 	unsigned long mask;
3774 	int ndetected;
3775 	struct rcu_node *rnp;
3776 	struct rcu_node *rnp_root = rcu_get_root(rsp);
3777 	int ret;
3778 
3779 	jiffies_stall = rcu_jiffies_till_stall_check();
3780 	jiffies_start = jiffies;
3781 
3782 	for (;;) {
3783 		ret = wait_event_interruptible_timeout(
3784 				rsp->expedited_wq,
3785 				sync_rcu_preempt_exp_done(rnp_root),
3786 				jiffies_stall);
3787 		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3788 			return;
3789 		if (ret < 0) {
3790 			/* Hit a signal, disable CPU stall warnings. */
3791 			wait_event(rsp->expedited_wq,
3792 				   sync_rcu_preempt_exp_done(rnp_root));
3793 			return;
3794 		}
3795 		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3796 		       rsp->name);
3797 		ndetected = 0;
3798 		rcu_for_each_leaf_node(rsp, rnp) {
3799 			ndetected = rcu_print_task_exp_stall(rnp);
3800 			mask = 1;
3801 			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3802 				struct rcu_data *rdp;
3803 
3804 				if (!(rnp->expmask & mask))
3805 					continue;
3806 				ndetected++;
3807 				rdp = per_cpu_ptr(rsp->rda, cpu);
3808 				pr_cont(" %d-%c%c%c", cpu,
3809 					"O."[cpu_online(cpu)],
3810 					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
3811 					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3812 			}
3813 			mask <<= 1;
3814 		}
3815 		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3816 			jiffies - jiffies_start, rsp->expedited_sequence,
3817 			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3818 		if (!ndetected) {
3819 			pr_err("blocking rcu_node structures:");
3820 			rcu_for_each_node_breadth_first(rsp, rnp) {
3821 				if (rnp == rnp_root)
3822 					continue; /* printed unconditionally */
3823 				if (sync_rcu_preempt_exp_done(rnp))
3824 					continue;
3825 				pr_cont(" l=%u:%d-%d:%#lx/%c",
3826 					rnp->level, rnp->grplo, rnp->grphi,
3827 					rnp->expmask,
3828 					".T"[!!rnp->exp_tasks]);
3829 			}
3830 			pr_cont("\n");
3831 		}
3832 		rcu_for_each_leaf_node(rsp, rnp) {
3833 			mask = 1;
3834 			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3835 				if (!(rnp->expmask & mask))
3836 					continue;
3837 				dump_cpu_task(cpu);
3838 			}
3839 		}
3840 		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3841 	}
3842 }
3843 
3844 /**
3845  * synchronize_sched_expedited - Brute-force RCU-sched grace period
3846  *
3847  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3848  * approach to force the grace period to end quickly.  This consumes
3849  * significant time on all CPUs and is unfriendly to real-time workloads,
3850  * so is thus not recommended for any sort of common-case code.  In fact,
3851  * if you are using synchronize_sched_expedited() in a loop, please
3852  * restructure your code to batch your updates, and then use a single
3853  * synchronize_sched() instead.
3854  *
3855  * This implementation can be thought of as an application of sequence
3856  * locking to expedited grace periods, but using the sequence counter to
3857  * determine when someone else has already done the work instead of for
3858  * retrying readers.
3859  */
3860 void synchronize_sched_expedited(void)
3861 {
3862 	unsigned long s;
3863 	struct rcu_node *rnp;
3864 	struct rcu_state *rsp = &rcu_sched_state;
3865 
3866 	/* If only one CPU, this is automatically a grace period. */
3867 	if (rcu_blocking_is_gp())
3868 		return;
3869 
3870 	/* If expedited grace periods are prohibited, fall back to normal. */
3871 	if (rcu_gp_is_normal()) {
3872 		wait_rcu_gp(call_rcu_sched);
3873 		return;
3874 	}
3875 
3876 	/* Take a snapshot of the sequence number.  */
3877 	s = rcu_exp_gp_seq_snap(rsp);
3878 
3879 	rnp = exp_funnel_lock(rsp, s);
3880 	if (rnp == NULL)
3881 		return;  /* Someone else did our work for us. */
3882 
3883 	rcu_exp_gp_seq_start(rsp);
3884 	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3885 	synchronize_sched_expedited_wait(rsp);
3886 
3887 	rcu_exp_gp_seq_end(rsp);
3888 	mutex_unlock(&rnp->exp_funnel_mutex);
3889 }
3890 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3891 
3892 /*
3893  * Check to see if there is any immediate RCU-related work to be done
3894  * by the current CPU, for the specified type of RCU, returning 1 if so.
3895  * The checks are in order of increasing expense: checks that can be
3896  * carried out against CPU-local state are performed first.  However,
3897  * we must check for CPU stalls first, else we might not get a chance.
3898  */
3899 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3900 {
3901 	struct rcu_node *rnp = rdp->mynode;
3902 
3903 	rdp->n_rcu_pending++;
3904 
3905 	/* Check for CPU stalls, if enabled. */
3906 	check_cpu_stall(rsp, rdp);
3907 
3908 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3909 	if (rcu_nohz_full_cpu(rsp))
3910 		return 0;
3911 
3912 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3913 	if (rcu_scheduler_fully_active &&
3914 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3915 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3916 		rdp->n_rp_core_needs_qs++;
3917 	} else if (rdp->core_needs_qs &&
3918 		   (!rdp->cpu_no_qs.b.norm ||
3919 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3920 		rdp->n_rp_report_qs++;
3921 		return 1;
3922 	}
3923 
3924 	/* Does this CPU have callbacks ready to invoke? */
3925 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3926 		rdp->n_rp_cb_ready++;
3927 		return 1;
3928 	}
3929 
3930 	/* Has RCU gone idle with this CPU needing another grace period? */
3931 	if (cpu_needs_another_gp(rsp, rdp)) {
3932 		rdp->n_rp_cpu_needs_gp++;
3933 		return 1;
3934 	}
3935 
3936 	/* Has another RCU grace period completed?  */
3937 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3938 		rdp->n_rp_gp_completed++;
3939 		return 1;
3940 	}
3941 
3942 	/* Has a new RCU grace period started? */
3943 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3944 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3945 		rdp->n_rp_gp_started++;
3946 		return 1;
3947 	}
3948 
3949 	/* Does this CPU need a deferred NOCB wakeup? */
3950 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3951 		rdp->n_rp_nocb_defer_wakeup++;
3952 		return 1;
3953 	}
3954 
3955 	/* nothing to do */
3956 	rdp->n_rp_need_nothing++;
3957 	return 0;
3958 }
3959 
3960 /*
3961  * Check to see if there is any immediate RCU-related work to be done
3962  * by the current CPU, returning 1 if so.  This function is part of the
3963  * RCU implementation; it is -not- an exported member of the RCU API.
3964  */
3965 static int rcu_pending(void)
3966 {
3967 	struct rcu_state *rsp;
3968 
3969 	for_each_rcu_flavor(rsp)
3970 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3971 			return 1;
3972 	return 0;
3973 }
3974 
3975 /*
3976  * Return true if the specified CPU has any callback.  If all_lazy is
3977  * non-NULL, store an indication of whether all callbacks are lazy.
3978  * (If there are no callbacks, all of them are deemed to be lazy.)
3979  */
3980 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3981 {
3982 	bool al = true;
3983 	bool hc = false;
3984 	struct rcu_data *rdp;
3985 	struct rcu_state *rsp;
3986 
3987 	for_each_rcu_flavor(rsp) {
3988 		rdp = this_cpu_ptr(rsp->rda);
3989 		if (!rdp->nxtlist)
3990 			continue;
3991 		hc = true;
3992 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3993 			al = false;
3994 			break;
3995 		}
3996 	}
3997 	if (all_lazy)
3998 		*all_lazy = al;
3999 	return hc;
4000 }
4001 
4002 /*
4003  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
4004  * the compiler is expected to optimize this away.
4005  */
4006 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
4007 			       int cpu, unsigned long done)
4008 {
4009 	trace_rcu_barrier(rsp->name, s, cpu,
4010 			  atomic_read(&rsp->barrier_cpu_count), done);
4011 }
4012 
4013 /*
4014  * RCU callback function for _rcu_barrier().  If we are last, wake
4015  * up the task executing _rcu_barrier().
4016  */
4017 static void rcu_barrier_callback(struct rcu_head *rhp)
4018 {
4019 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
4020 	struct rcu_state *rsp = rdp->rsp;
4021 
4022 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4023 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4024 		complete(&rsp->barrier_completion);
4025 	} else {
4026 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4027 	}
4028 }
4029 
4030 /*
4031  * Called with preemption disabled, and from cross-cpu IRQ context.
4032  */
4033 static void rcu_barrier_func(void *type)
4034 {
4035 	struct rcu_state *rsp = type;
4036 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4037 
4038 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4039 	atomic_inc(&rsp->barrier_cpu_count);
4040 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4041 }
4042 
4043 /*
4044  * Orchestrate the specified type of RCU barrier, waiting for all
4045  * RCU callbacks of the specified type to complete.
4046  */
4047 static void _rcu_barrier(struct rcu_state *rsp)
4048 {
4049 	int cpu;
4050 	struct rcu_data *rdp;
4051 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4052 
4053 	_rcu_barrier_trace(rsp, "Begin", -1, s);
4054 
4055 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4056 	mutex_lock(&rsp->barrier_mutex);
4057 
4058 	/* Did someone else do our work for us? */
4059 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4060 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4061 		smp_mb(); /* caller's subsequent code after above check. */
4062 		mutex_unlock(&rsp->barrier_mutex);
4063 		return;
4064 	}
4065 
4066 	/* Mark the start of the barrier operation. */
4067 	rcu_seq_start(&rsp->barrier_sequence);
4068 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4069 
4070 	/*
4071 	 * Initialize the count to one rather than to zero in order to
4072 	 * avoid a too-soon return to zero in case of a short grace period
4073 	 * (or preemption of this task).  Exclude CPU-hotplug operations
4074 	 * to ensure that no offline CPU has callbacks queued.
4075 	 */
4076 	init_completion(&rsp->barrier_completion);
4077 	atomic_set(&rsp->barrier_cpu_count, 1);
4078 	get_online_cpus();
4079 
4080 	/*
4081 	 * Force each CPU with callbacks to register a new callback.
4082 	 * When that callback is invoked, we will know that all of the
4083 	 * corresponding CPU's preceding callbacks have been invoked.
4084 	 */
4085 	for_each_possible_cpu(cpu) {
4086 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4087 			continue;
4088 		rdp = per_cpu_ptr(rsp->rda, cpu);
4089 		if (rcu_is_nocb_cpu(cpu)) {
4090 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4091 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4092 						   rsp->barrier_sequence);
4093 			} else {
4094 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4095 						   rsp->barrier_sequence);
4096 				smp_mb__before_atomic();
4097 				atomic_inc(&rsp->barrier_cpu_count);
4098 				__call_rcu(&rdp->barrier_head,
4099 					   rcu_barrier_callback, rsp, cpu, 0);
4100 			}
4101 		} else if (READ_ONCE(rdp->qlen)) {
4102 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4103 					   rsp->barrier_sequence);
4104 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4105 		} else {
4106 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4107 					   rsp->barrier_sequence);
4108 		}
4109 	}
4110 	put_online_cpus();
4111 
4112 	/*
4113 	 * Now that we have an rcu_barrier_callback() callback on each
4114 	 * CPU, and thus each counted, remove the initial count.
4115 	 */
4116 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4117 		complete(&rsp->barrier_completion);
4118 
4119 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4120 	wait_for_completion(&rsp->barrier_completion);
4121 
4122 	/* Mark the end of the barrier operation. */
4123 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4124 	rcu_seq_end(&rsp->barrier_sequence);
4125 
4126 	/* Other rcu_barrier() invocations can now safely proceed. */
4127 	mutex_unlock(&rsp->barrier_mutex);
4128 }
4129 
4130 /**
4131  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4132  */
4133 void rcu_barrier_bh(void)
4134 {
4135 	_rcu_barrier(&rcu_bh_state);
4136 }
4137 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4138 
4139 /**
4140  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4141  */
4142 void rcu_barrier_sched(void)
4143 {
4144 	_rcu_barrier(&rcu_sched_state);
4145 }
4146 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4147 
4148 /*
4149  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4150  * first CPU in a given leaf rcu_node structure coming online.  The caller
4151  * must hold the corresponding leaf rcu_node ->lock with interrrupts
4152  * disabled.
4153  */
4154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4155 {
4156 	long mask;
4157 	struct rcu_node *rnp = rnp_leaf;
4158 
4159 	for (;;) {
4160 		mask = rnp->grpmask;
4161 		rnp = rnp->parent;
4162 		if (rnp == NULL)
4163 			return;
4164 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4165 		rnp->qsmaskinit |= mask;
4166 		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
4167 	}
4168 }
4169 
4170 /*
4171  * Do boot-time initialization of a CPU's per-CPU RCU data.
4172  */
4173 static void __init
4174 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4175 {
4176 	unsigned long flags;
4177 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4178 	struct rcu_node *rnp = rcu_get_root(rsp);
4179 
4180 	/* Set up local state, ensuring consistent view of global state. */
4181 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4182 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4183 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4184 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4185 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4186 	rdp->cpu = cpu;
4187 	rdp->rsp = rsp;
4188 	mutex_init(&rdp->exp_funnel_mutex);
4189 	rcu_boot_init_nocb_percpu_data(rdp);
4190 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4191 }
4192 
4193 /*
4194  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
4195  * offline event can be happening at a given time.  Note also that we
4196  * can accept some slop in the rsp->completed access due to the fact
4197  * that this CPU cannot possibly have any RCU callbacks in flight yet.
4198  */
4199 static void
4200 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4201 {
4202 	unsigned long flags;
4203 	unsigned long mask;
4204 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4205 	struct rcu_node *rnp = rcu_get_root(rsp);
4206 
4207 	/* Set up local state, ensuring consistent view of global state. */
4208 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4209 	rdp->qlen_last_fqs_check = 0;
4210 	rdp->n_force_qs_snap = rsp->n_force_qs;
4211 	rdp->blimit = blimit;
4212 	if (!rdp->nxtlist)
4213 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4214 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4215 	rcu_sysidle_init_percpu_data(rdp->dynticks);
4216 	atomic_set(&rdp->dynticks->dynticks,
4217 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4218 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
4219 
4220 	/*
4221 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4222 	 * propagation up the rcu_node tree will happen at the beginning
4223 	 * of the next grace period.
4224 	 */
4225 	rnp = rdp->mynode;
4226 	mask = rdp->grpmask;
4227 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4228 	rnp->qsmaskinitnext |= mask;
4229 	rnp->expmaskinitnext |= mask;
4230 	if (!rdp->beenonline)
4231 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4232 	rdp->beenonline = true;	 /* We have now been online. */
4233 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4234 	rdp->completed = rnp->completed;
4235 	rdp->cpu_no_qs.b.norm = true;
4236 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4237 	rdp->core_needs_qs = false;
4238 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4239 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4240 }
4241 
4242 static void rcu_prepare_cpu(int cpu)
4243 {
4244 	struct rcu_state *rsp;
4245 
4246 	for_each_rcu_flavor(rsp)
4247 		rcu_init_percpu_data(cpu, rsp);
4248 }
4249 
4250 /*
4251  * Handle CPU online/offline notification events.
4252  */
4253 int rcu_cpu_notify(struct notifier_block *self,
4254 		   unsigned long action, void *hcpu)
4255 {
4256 	long cpu = (long)hcpu;
4257 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4258 	struct rcu_node *rnp = rdp->mynode;
4259 	struct rcu_state *rsp;
4260 
4261 	switch (action) {
4262 	case CPU_UP_PREPARE:
4263 	case CPU_UP_PREPARE_FROZEN:
4264 		rcu_prepare_cpu(cpu);
4265 		rcu_prepare_kthreads(cpu);
4266 		rcu_spawn_all_nocb_kthreads(cpu);
4267 		break;
4268 	case CPU_ONLINE:
4269 	case CPU_DOWN_FAILED:
4270 		sync_sched_exp_online_cleanup(cpu);
4271 		rcu_boost_kthread_setaffinity(rnp, -1);
4272 		break;
4273 	case CPU_DOWN_PREPARE:
4274 		rcu_boost_kthread_setaffinity(rnp, cpu);
4275 		break;
4276 	case CPU_DYING:
4277 	case CPU_DYING_FROZEN:
4278 		for_each_rcu_flavor(rsp)
4279 			rcu_cleanup_dying_cpu(rsp);
4280 		break;
4281 	case CPU_DYING_IDLE:
4282 		/* QS for any half-done expedited RCU-sched GP. */
4283 		preempt_disable();
4284 		rcu_report_exp_rdp(&rcu_sched_state,
4285 				   this_cpu_ptr(rcu_sched_state.rda), true);
4286 		preempt_enable();
4287 
4288 		for_each_rcu_flavor(rsp) {
4289 			rcu_cleanup_dying_idle_cpu(cpu, rsp);
4290 		}
4291 		break;
4292 	case CPU_DEAD:
4293 	case CPU_DEAD_FROZEN:
4294 	case CPU_UP_CANCELED:
4295 	case CPU_UP_CANCELED_FROZEN:
4296 		for_each_rcu_flavor(rsp) {
4297 			rcu_cleanup_dead_cpu(cpu, rsp);
4298 			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4299 		}
4300 		break;
4301 	default:
4302 		break;
4303 	}
4304 	return NOTIFY_OK;
4305 }
4306 
4307 static int rcu_pm_notify(struct notifier_block *self,
4308 			 unsigned long action, void *hcpu)
4309 {
4310 	switch (action) {
4311 	case PM_HIBERNATION_PREPARE:
4312 	case PM_SUSPEND_PREPARE:
4313 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4314 			rcu_expedite_gp();
4315 		break;
4316 	case PM_POST_HIBERNATION:
4317 	case PM_POST_SUSPEND:
4318 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4319 			rcu_unexpedite_gp();
4320 		break;
4321 	default:
4322 		break;
4323 	}
4324 	return NOTIFY_OK;
4325 }
4326 
4327 /*
4328  * Spawn the kthreads that handle each RCU flavor's grace periods.
4329  */
4330 static int __init rcu_spawn_gp_kthread(void)
4331 {
4332 	unsigned long flags;
4333 	int kthread_prio_in = kthread_prio;
4334 	struct rcu_node *rnp;
4335 	struct rcu_state *rsp;
4336 	struct sched_param sp;
4337 	struct task_struct *t;
4338 
4339 	/* Force priority into range. */
4340 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4341 		kthread_prio = 1;
4342 	else if (kthread_prio < 0)
4343 		kthread_prio = 0;
4344 	else if (kthread_prio > 99)
4345 		kthread_prio = 99;
4346 	if (kthread_prio != kthread_prio_in)
4347 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4348 			 kthread_prio, kthread_prio_in);
4349 
4350 	rcu_scheduler_fully_active = 1;
4351 	for_each_rcu_flavor(rsp) {
4352 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4353 		BUG_ON(IS_ERR(t));
4354 		rnp = rcu_get_root(rsp);
4355 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4356 		rsp->gp_kthread = t;
4357 		if (kthread_prio) {
4358 			sp.sched_priority = kthread_prio;
4359 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4360 		}
4361 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
4362 		wake_up_process(t);
4363 	}
4364 	rcu_spawn_nocb_kthreads();
4365 	rcu_spawn_boost_kthreads();
4366 	return 0;
4367 }
4368 early_initcall(rcu_spawn_gp_kthread);
4369 
4370 /*
4371  * This function is invoked towards the end of the scheduler's initialization
4372  * process.  Before this is called, the idle task might contain
4373  * RCU read-side critical sections (during which time, this idle
4374  * task is booting the system).  After this function is called, the
4375  * idle tasks are prohibited from containing RCU read-side critical
4376  * sections.  This function also enables RCU lockdep checking.
4377  */
4378 void rcu_scheduler_starting(void)
4379 {
4380 	WARN_ON(num_online_cpus() != 1);
4381 	WARN_ON(nr_context_switches() > 0);
4382 	rcu_scheduler_active = 1;
4383 }
4384 
4385 /*
4386  * Compute the per-level fanout, either using the exact fanout specified
4387  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4388  */
4389 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4390 {
4391 	int i;
4392 
4393 	if (rcu_fanout_exact) {
4394 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4395 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4396 			levelspread[i] = RCU_FANOUT;
4397 	} else {
4398 		int ccur;
4399 		int cprv;
4400 
4401 		cprv = nr_cpu_ids;
4402 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4403 			ccur = levelcnt[i];
4404 			levelspread[i] = (cprv + ccur - 1) / ccur;
4405 			cprv = ccur;
4406 		}
4407 	}
4408 }
4409 
4410 /*
4411  * Helper function for rcu_init() that initializes one rcu_state structure.
4412  */
4413 static void __init rcu_init_one(struct rcu_state *rsp)
4414 {
4415 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4416 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4417 	static const char * const exp[] = RCU_EXP_NAME_INIT;
4418 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4419 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4420 	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4421 	static u8 fl_mask = 0x1;
4422 
4423 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4424 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4425 	int cpustride = 1;
4426 	int i;
4427 	int j;
4428 	struct rcu_node *rnp;
4429 
4430 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4431 
4432 	/* Silence gcc 4.8 false positive about array index out of range. */
4433 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4434 		panic("rcu_init_one: rcu_num_lvls out of range");
4435 
4436 	/* Initialize the level-tracking arrays. */
4437 
4438 	for (i = 0; i < rcu_num_lvls; i++)
4439 		levelcnt[i] = num_rcu_lvl[i];
4440 	for (i = 1; i < rcu_num_lvls; i++)
4441 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4442 	rcu_init_levelspread(levelspread, levelcnt);
4443 	rsp->flavor_mask = fl_mask;
4444 	fl_mask <<= 1;
4445 
4446 	/* Initialize the elements themselves, starting from the leaves. */
4447 
4448 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4449 		cpustride *= levelspread[i];
4450 		rnp = rsp->level[i];
4451 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4452 			raw_spin_lock_init(&rnp->lock);
4453 			lockdep_set_class_and_name(&rnp->lock,
4454 						   &rcu_node_class[i], buf[i]);
4455 			raw_spin_lock_init(&rnp->fqslock);
4456 			lockdep_set_class_and_name(&rnp->fqslock,
4457 						   &rcu_fqs_class[i], fqs[i]);
4458 			rnp->gpnum = rsp->gpnum;
4459 			rnp->completed = rsp->completed;
4460 			rnp->qsmask = 0;
4461 			rnp->qsmaskinit = 0;
4462 			rnp->grplo = j * cpustride;
4463 			rnp->grphi = (j + 1) * cpustride - 1;
4464 			if (rnp->grphi >= nr_cpu_ids)
4465 				rnp->grphi = nr_cpu_ids - 1;
4466 			if (i == 0) {
4467 				rnp->grpnum = 0;
4468 				rnp->grpmask = 0;
4469 				rnp->parent = NULL;
4470 			} else {
4471 				rnp->grpnum = j % levelspread[i - 1];
4472 				rnp->grpmask = 1UL << rnp->grpnum;
4473 				rnp->parent = rsp->level[i - 1] +
4474 					      j / levelspread[i - 1];
4475 			}
4476 			rnp->level = i;
4477 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4478 			rcu_init_one_nocb(rnp);
4479 			mutex_init(&rnp->exp_funnel_mutex);
4480 			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4481 						   &rcu_exp_class[i], exp[i]);
4482 		}
4483 	}
4484 
4485 	init_waitqueue_head(&rsp->gp_wq);
4486 	init_waitqueue_head(&rsp->expedited_wq);
4487 	rnp = rsp->level[rcu_num_lvls - 1];
4488 	for_each_possible_cpu(i) {
4489 		while (i > rnp->grphi)
4490 			rnp++;
4491 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4492 		rcu_boot_init_percpu_data(i, rsp);
4493 	}
4494 	list_add(&rsp->flavors, &rcu_struct_flavors);
4495 }
4496 
4497 /*
4498  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4499  * replace the definitions in tree.h because those are needed to size
4500  * the ->node array in the rcu_state structure.
4501  */
4502 static void __init rcu_init_geometry(void)
4503 {
4504 	ulong d;
4505 	int i;
4506 	int rcu_capacity[RCU_NUM_LVLS];
4507 
4508 	/*
4509 	 * Initialize any unspecified boot parameters.
4510 	 * The default values of jiffies_till_first_fqs and
4511 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4512 	 * value, which is a function of HZ, then adding one for each
4513 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4514 	 */
4515 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4516 	if (jiffies_till_first_fqs == ULONG_MAX)
4517 		jiffies_till_first_fqs = d;
4518 	if (jiffies_till_next_fqs == ULONG_MAX)
4519 		jiffies_till_next_fqs = d;
4520 
4521 	/* If the compile-time values are accurate, just leave. */
4522 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4523 	    nr_cpu_ids == NR_CPUS)
4524 		return;
4525 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4526 		rcu_fanout_leaf, nr_cpu_ids);
4527 
4528 	/*
4529 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4530 	 * and cannot exceed the number of bits in the rcu_node masks.
4531 	 * Complain and fall back to the compile-time values if this
4532 	 * limit is exceeded.
4533 	 */
4534 	if (rcu_fanout_leaf < 2 ||
4535 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4536 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4537 		WARN_ON(1);
4538 		return;
4539 	}
4540 
4541 	/*
4542 	 * Compute number of nodes that can be handled an rcu_node tree
4543 	 * with the given number of levels.
4544 	 */
4545 	rcu_capacity[0] = rcu_fanout_leaf;
4546 	for (i = 1; i < RCU_NUM_LVLS; i++)
4547 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4548 
4549 	/*
4550 	 * The tree must be able to accommodate the configured number of CPUs.
4551 	 * If this limit is exceeded, fall back to the compile-time values.
4552 	 */
4553 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4554 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4555 		WARN_ON(1);
4556 		return;
4557 	}
4558 
4559 	/* Calculate the number of levels in the tree. */
4560 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4561 	}
4562 	rcu_num_lvls = i + 1;
4563 
4564 	/* Calculate the number of rcu_nodes at each level of the tree. */
4565 	for (i = 0; i < rcu_num_lvls; i++) {
4566 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4567 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4568 	}
4569 
4570 	/* Calculate the total number of rcu_node structures. */
4571 	rcu_num_nodes = 0;
4572 	for (i = 0; i < rcu_num_lvls; i++)
4573 		rcu_num_nodes += num_rcu_lvl[i];
4574 }
4575 
4576 /*
4577  * Dump out the structure of the rcu_node combining tree associated
4578  * with the rcu_state structure referenced by rsp.
4579  */
4580 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4581 {
4582 	int level = 0;
4583 	struct rcu_node *rnp;
4584 
4585 	pr_info("rcu_node tree layout dump\n");
4586 	pr_info(" ");
4587 	rcu_for_each_node_breadth_first(rsp, rnp) {
4588 		if (rnp->level != level) {
4589 			pr_cont("\n");
4590 			pr_info(" ");
4591 			level = rnp->level;
4592 		}
4593 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4594 	}
4595 	pr_cont("\n");
4596 }
4597 
4598 void __init rcu_init(void)
4599 {
4600 	int cpu;
4601 
4602 	rcu_early_boot_tests();
4603 
4604 	rcu_bootup_announce();
4605 	rcu_init_geometry();
4606 	rcu_init_one(&rcu_bh_state);
4607 	rcu_init_one(&rcu_sched_state);
4608 	if (dump_tree)
4609 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4610 	__rcu_init_preempt();
4611 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4612 
4613 	/*
4614 	 * We don't need protection against CPU-hotplug here because
4615 	 * this is called early in boot, before either interrupts
4616 	 * or the scheduler are operational.
4617 	 */
4618 	cpu_notifier(rcu_cpu_notify, 0);
4619 	pm_notifier(rcu_pm_notify, 0);
4620 	for_each_online_cpu(cpu)
4621 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4622 }
4623 
4624 #include "tree_plugin.h"
4625