xref: /openbmc/linux/kernel/rcu/tree.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include <linux/context_tracking.h>
66 #include "../time/tick-internal.h"
67 
68 #include "tree.h"
69 #include "rcu.h"
70 
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
73 #endif
74 #define MODULE_PARAM_PREFIX "rcutree."
75 
76 /* Data structures. */
77 
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
79 	.gpwrap = true,
80 #ifdef CONFIG_RCU_NOCB_CPU
81 	.cblist.flags = SEGCBLIST_RCU_CORE,
82 #endif
83 };
84 static struct rcu_state rcu_state = {
85 	.level = { &rcu_state.node[0] },
86 	.gp_state = RCU_GP_IDLE,
87 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
88 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
89 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
90 	.name = RCU_NAME,
91 	.abbr = RCU_ABBR,
92 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
95 };
96 
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
104 #endif
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
155 
156 /*
157  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
158  * real-time priority(enabling/disabling) is controlled by
159  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
160  */
161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
162 module_param(kthread_prio, int, 0444);
163 
164 /* Delay in jiffies for grace-period initialization delays, debug only. */
165 
166 static int gp_preinit_delay;
167 module_param(gp_preinit_delay, int, 0444);
168 static int gp_init_delay;
169 module_param(gp_init_delay, int, 0444);
170 static int gp_cleanup_delay;
171 module_param(gp_cleanup_delay, int, 0444);
172 
173 // Add delay to rcu_read_unlock() for strict grace periods.
174 static int rcu_unlock_delay;
175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
176 module_param(rcu_unlock_delay, int, 0444);
177 #endif
178 
179 /*
180  * This rcu parameter is runtime-read-only. It reflects
181  * a minimum allowed number of objects which can be cached
182  * per-CPU. Object size is equal to one page. This value
183  * can be changed at boot time.
184  */
185 static int rcu_min_cached_objs = 5;
186 module_param(rcu_min_cached_objs, int, 0444);
187 
188 // A page shrinker can ask for pages to be freed to make them
189 // available for other parts of the system. This usually happens
190 // under low memory conditions, and in that case we should also
191 // defer page-cache filling for a short time period.
192 //
193 // The default value is 5 seconds, which is long enough to reduce
194 // interference with the shrinker while it asks other systems to
195 // drain their caches.
196 static int rcu_delay_page_cache_fill_msec = 5000;
197 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
198 
199 /* Retrieve RCU kthreads priority for rcutorture */
200 int rcu_get_gp_kthreads_prio(void)
201 {
202 	return kthread_prio;
203 }
204 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
205 
206 /*
207  * Number of grace periods between delays, normalized by the duration of
208  * the delay.  The longer the delay, the more the grace periods between
209  * each delay.  The reason for this normalization is that it means that,
210  * for non-zero delays, the overall slowdown of grace periods is constant
211  * regardless of the duration of the delay.  This arrangement balances
212  * the need for long delays to increase some race probabilities with the
213  * need for fast grace periods to increase other race probabilities.
214  */
215 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
216 
217 /*
218  * Compute the mask of online CPUs for the specified rcu_node structure.
219  * This will not be stable unless the rcu_node structure's ->lock is
220  * held, but the bit corresponding to the current CPU will be stable
221  * in most contexts.
222  */
223 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 {
225 	return READ_ONCE(rnp->qsmaskinitnext);
226 }
227 
228 /*
229  * Is the CPU corresponding to the specified rcu_data structure online
230  * from RCU's perspective?  This perspective is given by that structure's
231  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
232  */
233 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
234 {
235 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
236 }
237 
238 /*
239  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
240  * permit this function to be invoked without holding the root rcu_node
241  * structure's ->lock, but of course results can be subject to change.
242  */
243 static int rcu_gp_in_progress(void)
244 {
245 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
246 }
247 
248 /*
249  * Return the number of callbacks queued on the specified CPU.
250  * Handles both the nocbs and normal cases.
251  */
252 static long rcu_get_n_cbs_cpu(int cpu)
253 {
254 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
255 
256 	if (rcu_segcblist_is_enabled(&rdp->cblist))
257 		return rcu_segcblist_n_cbs(&rdp->cblist);
258 	return 0;
259 }
260 
261 void rcu_softirq_qs(void)
262 {
263 	rcu_qs();
264 	rcu_preempt_deferred_qs(current);
265 	rcu_tasks_qs(current, false);
266 }
267 
268 /*
269  * Reset the current CPU's ->dynticks counter to indicate that the
270  * newly onlined CPU is no longer in an extended quiescent state.
271  * This will either leave the counter unchanged, or increment it
272  * to the next non-quiescent value.
273  *
274  * The non-atomic test/increment sequence works because the upper bits
275  * of the ->dynticks counter are manipulated only by the corresponding CPU,
276  * or when the corresponding CPU is offline.
277  */
278 static void rcu_dynticks_eqs_online(void)
279 {
280 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
281 		return;
282 	ct_state_inc(RCU_DYNTICKS_IDX);
283 }
284 
285 /*
286  * Snapshot the ->dynticks counter with full ordering so as to allow
287  * stable comparison of this counter with past and future snapshots.
288  */
289 static int rcu_dynticks_snap(int cpu)
290 {
291 	smp_mb();  // Fundamental RCU ordering guarantee.
292 	return ct_dynticks_cpu_acquire(cpu);
293 }
294 
295 /*
296  * Return true if the snapshot returned from rcu_dynticks_snap()
297  * indicates that RCU is in an extended quiescent state.
298  */
299 static bool rcu_dynticks_in_eqs(int snap)
300 {
301 	return !(snap & RCU_DYNTICKS_IDX);
302 }
303 
304 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
305 bool rcu_is_idle_cpu(int cpu)
306 {
307 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu));
308 }
309 
310 /*
311  * Return true if the CPU corresponding to the specified rcu_data
312  * structure has spent some time in an extended quiescent state since
313  * rcu_dynticks_snap() returned the specified snapshot.
314  */
315 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
316 {
317 	return snap != rcu_dynticks_snap(rdp->cpu);
318 }
319 
320 /*
321  * Return true if the referenced integer is zero while the specified
322  * CPU remains within a single extended quiescent state.
323  */
324 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
325 {
326 	int snap;
327 
328 	// If not quiescent, force back to earlier extended quiescent state.
329 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
330 	smp_rmb(); // Order ->dynticks and *vp reads.
331 	if (READ_ONCE(*vp))
332 		return false;  // Non-zero, so report failure;
333 	smp_rmb(); // Order *vp read and ->dynticks re-read.
334 
335 	// If still in the same extended quiescent state, we are good!
336 	return snap == ct_dynticks_cpu(cpu);
337 }
338 
339 /*
340  * Let the RCU core know that this CPU has gone through the scheduler,
341  * which is a quiescent state.  This is called when the need for a
342  * quiescent state is urgent, so we burn an atomic operation and full
343  * memory barriers to let the RCU core know about it, regardless of what
344  * this CPU might (or might not) do in the near future.
345  *
346  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
347  *
348  * The caller must have disabled interrupts and must not be idle.
349  */
350 notrace void rcu_momentary_dyntick_idle(void)
351 {
352 	int seq;
353 
354 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
355 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
356 	/* It is illegal to call this from idle state. */
357 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
358 	rcu_preempt_deferred_qs(current);
359 }
360 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
361 
362 /**
363  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
364  *
365  * If the current CPU is idle and running at a first-level (not nested)
366  * interrupt, or directly, from idle, return true.
367  *
368  * The caller must have at least disabled IRQs.
369  */
370 static int rcu_is_cpu_rrupt_from_idle(void)
371 {
372 	long nesting;
373 
374 	/*
375 	 * Usually called from the tick; but also used from smp_function_call()
376 	 * for expedited grace periods. This latter can result in running from
377 	 * the idle task, instead of an actual IPI.
378 	 */
379 	lockdep_assert_irqs_disabled();
380 
381 	/* Check for counter underflows */
382 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
383 			 "RCU dynticks_nesting counter underflow!");
384 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
385 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
386 
387 	/* Are we at first interrupt nesting level? */
388 	nesting = ct_dynticks_nmi_nesting();
389 	if (nesting > 1)
390 		return false;
391 
392 	/*
393 	 * If we're not in an interrupt, we must be in the idle task!
394 	 */
395 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
396 
397 	/* Does CPU appear to be idle from an RCU standpoint? */
398 	return ct_dynticks_nesting() == 0;
399 }
400 
401 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
402 				// Maximum callbacks per rcu_do_batch ...
403 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
404 static long blimit = DEFAULT_RCU_BLIMIT;
405 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
406 static long qhimark = DEFAULT_RCU_QHIMARK;
407 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
408 static long qlowmark = DEFAULT_RCU_QLOMARK;
409 #define DEFAULT_RCU_QOVLD_MULT 2
410 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
411 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
412 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
413 
414 module_param(blimit, long, 0444);
415 module_param(qhimark, long, 0444);
416 module_param(qlowmark, long, 0444);
417 module_param(qovld, long, 0444);
418 
419 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
420 static ulong jiffies_till_next_fqs = ULONG_MAX;
421 static bool rcu_kick_kthreads;
422 static int rcu_divisor = 7;
423 module_param(rcu_divisor, int, 0644);
424 
425 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
426 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
427 module_param(rcu_resched_ns, long, 0644);
428 
429 /*
430  * How long the grace period must be before we start recruiting
431  * quiescent-state help from rcu_note_context_switch().
432  */
433 static ulong jiffies_till_sched_qs = ULONG_MAX;
434 module_param(jiffies_till_sched_qs, ulong, 0444);
435 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
436 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
437 
438 /*
439  * Make sure that we give the grace-period kthread time to detect any
440  * idle CPUs before taking active measures to force quiescent states.
441  * However, don't go below 100 milliseconds, adjusted upwards for really
442  * large systems.
443  */
444 static void adjust_jiffies_till_sched_qs(void)
445 {
446 	unsigned long j;
447 
448 	/* If jiffies_till_sched_qs was specified, respect the request. */
449 	if (jiffies_till_sched_qs != ULONG_MAX) {
450 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
451 		return;
452 	}
453 	/* Otherwise, set to third fqs scan, but bound below on large system. */
454 	j = READ_ONCE(jiffies_till_first_fqs) +
455 		      2 * READ_ONCE(jiffies_till_next_fqs);
456 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
457 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
458 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
459 	WRITE_ONCE(jiffies_to_sched_qs, j);
460 }
461 
462 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
463 {
464 	ulong j;
465 	int ret = kstrtoul(val, 0, &j);
466 
467 	if (!ret) {
468 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
469 		adjust_jiffies_till_sched_qs();
470 	}
471 	return ret;
472 }
473 
474 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
475 {
476 	ulong j;
477 	int ret = kstrtoul(val, 0, &j);
478 
479 	if (!ret) {
480 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
481 		adjust_jiffies_till_sched_qs();
482 	}
483 	return ret;
484 }
485 
486 static const struct kernel_param_ops first_fqs_jiffies_ops = {
487 	.set = param_set_first_fqs_jiffies,
488 	.get = param_get_ulong,
489 };
490 
491 static const struct kernel_param_ops next_fqs_jiffies_ops = {
492 	.set = param_set_next_fqs_jiffies,
493 	.get = param_get_ulong,
494 };
495 
496 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
497 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
498 module_param(rcu_kick_kthreads, bool, 0644);
499 
500 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
501 static int rcu_pending(int user);
502 
503 /*
504  * Return the number of RCU GPs completed thus far for debug & stats.
505  */
506 unsigned long rcu_get_gp_seq(void)
507 {
508 	return READ_ONCE(rcu_state.gp_seq);
509 }
510 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
511 
512 /*
513  * Return the number of RCU expedited batches completed thus far for
514  * debug & stats.  Odd numbers mean that a batch is in progress, even
515  * numbers mean idle.  The value returned will thus be roughly double
516  * the cumulative batches since boot.
517  */
518 unsigned long rcu_exp_batches_completed(void)
519 {
520 	return rcu_state.expedited_sequence;
521 }
522 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
523 
524 /*
525  * Return the root node of the rcu_state structure.
526  */
527 static struct rcu_node *rcu_get_root(void)
528 {
529 	return &rcu_state.node[0];
530 }
531 
532 /*
533  * Send along grace-period-related data for rcutorture diagnostics.
534  */
535 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
536 			    unsigned long *gp_seq)
537 {
538 	switch (test_type) {
539 	case RCU_FLAVOR:
540 		*flags = READ_ONCE(rcu_state.gp_flags);
541 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
542 		break;
543 	default:
544 		break;
545 	}
546 }
547 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
548 
549 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
550 /*
551  * An empty function that will trigger a reschedule on
552  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
553  */
554 static void late_wakeup_func(struct irq_work *work)
555 {
556 }
557 
558 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
559 	IRQ_WORK_INIT(late_wakeup_func);
560 
561 /*
562  * If either:
563  *
564  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
565  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
566  *
567  * In these cases the late RCU wake ups aren't supported in the resched loops and our
568  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
569  * get re-enabled again.
570  */
571 noinstr void rcu_irq_work_resched(void)
572 {
573 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
574 
575 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
576 		return;
577 
578 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
579 		return;
580 
581 	instrumentation_begin();
582 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
583 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
584 	}
585 	instrumentation_end();
586 }
587 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
588 
589 #ifdef CONFIG_PROVE_RCU
590 /**
591  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
592  */
593 void rcu_irq_exit_check_preempt(void)
594 {
595 	lockdep_assert_irqs_disabled();
596 
597 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
598 			 "RCU dynticks_nesting counter underflow/zero!");
599 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
600 			 DYNTICK_IRQ_NONIDLE,
601 			 "Bad RCU  dynticks_nmi_nesting counter\n");
602 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
603 			 "RCU in extended quiescent state!");
604 }
605 #endif /* #ifdef CONFIG_PROVE_RCU */
606 
607 #ifdef CONFIG_NO_HZ_FULL
608 /**
609  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
610  *
611  * The scheduler tick is not normally enabled when CPUs enter the kernel
612  * from nohz_full userspace execution.  After all, nohz_full userspace
613  * execution is an RCU quiescent state and the time executing in the kernel
614  * is quite short.  Except of course when it isn't.  And it is not hard to
615  * cause a large system to spend tens of seconds or even minutes looping
616  * in the kernel, which can cause a number of problems, include RCU CPU
617  * stall warnings.
618  *
619  * Therefore, if a nohz_full CPU fails to report a quiescent state
620  * in a timely manner, the RCU grace-period kthread sets that CPU's
621  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
622  * exception will invoke this function, which will turn on the scheduler
623  * tick, which will enable RCU to detect that CPU's quiescent states,
624  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
625  * The tick will be disabled once a quiescent state is reported for
626  * this CPU.
627  *
628  * Of course, in carefully tuned systems, there might never be an
629  * interrupt or exception.  In that case, the RCU grace-period kthread
630  * will eventually cause one to happen.  However, in less carefully
631  * controlled environments, this function allows RCU to get what it
632  * needs without creating otherwise useless interruptions.
633  */
634 void __rcu_irq_enter_check_tick(void)
635 {
636 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
637 
638 	// If we're here from NMI there's nothing to do.
639 	if (in_nmi())
640 		return;
641 
642 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
643 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
644 
645 	if (!tick_nohz_full_cpu(rdp->cpu) ||
646 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
647 	    READ_ONCE(rdp->rcu_forced_tick)) {
648 		// RCU doesn't need nohz_full help from this CPU, or it is
649 		// already getting that help.
650 		return;
651 	}
652 
653 	// We get here only when not in an extended quiescent state and
654 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
655 	// already watching and (2) The fact that we are in an interrupt
656 	// handler and that the rcu_node lock is an irq-disabled lock
657 	// prevents self-deadlock.  So we can safely recheck under the lock.
658 	// Note that the nohz_full state currently cannot change.
659 	raw_spin_lock_rcu_node(rdp->mynode);
660 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
661 		// A nohz_full CPU is in the kernel and RCU needs a
662 		// quiescent state.  Turn on the tick!
663 		WRITE_ONCE(rdp->rcu_forced_tick, true);
664 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
665 	}
666 	raw_spin_unlock_rcu_node(rdp->mynode);
667 }
668 #endif /* CONFIG_NO_HZ_FULL */
669 
670 /*
671  * Check to see if any future non-offloaded RCU-related work will need
672  * to be done by the current CPU, even if none need be done immediately,
673  * returning 1 if so.  This function is part of the RCU implementation;
674  * it is -not- an exported member of the RCU API.  This is used by
675  * the idle-entry code to figure out whether it is safe to disable the
676  * scheduler-clock interrupt.
677  *
678  * Just check whether or not this CPU has non-offloaded RCU callbacks
679  * queued.
680  */
681 int rcu_needs_cpu(void)
682 {
683 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
684 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
685 }
686 
687 /*
688  * If any sort of urgency was applied to the current CPU (for example,
689  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
690  * to get to a quiescent state, disable it.
691  */
692 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
693 {
694 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
695 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
696 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
697 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
698 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
699 		WRITE_ONCE(rdp->rcu_forced_tick, false);
700 	}
701 }
702 
703 /**
704  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
705  *
706  * Return true if RCU is watching the running CPU, which means that this
707  * CPU can safely enter RCU read-side critical sections.  In other words,
708  * if the current CPU is not in its idle loop or is in an interrupt or
709  * NMI handler, return true.
710  *
711  * Make notrace because it can be called by the internal functions of
712  * ftrace, and making this notrace removes unnecessary recursion calls.
713  */
714 notrace bool rcu_is_watching(void)
715 {
716 	bool ret;
717 
718 	preempt_disable_notrace();
719 	ret = !rcu_dynticks_curr_cpu_in_eqs();
720 	preempt_enable_notrace();
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(rcu_is_watching);
724 
725 /*
726  * If a holdout task is actually running, request an urgent quiescent
727  * state from its CPU.  This is unsynchronized, so migrations can cause
728  * the request to go to the wrong CPU.  Which is OK, all that will happen
729  * is that the CPU's next context switch will be a bit slower and next
730  * time around this task will generate another request.
731  */
732 void rcu_request_urgent_qs_task(struct task_struct *t)
733 {
734 	int cpu;
735 
736 	barrier();
737 	cpu = task_cpu(t);
738 	if (!task_curr(t))
739 		return; /* This task is not running on that CPU. */
740 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
741 }
742 
743 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
744 
745 /*
746  * Is the current CPU online as far as RCU is concerned?
747  *
748  * Disable preemption to avoid false positives that could otherwise
749  * happen due to the current CPU number being sampled, this task being
750  * preempted, its old CPU being taken offline, resuming on some other CPU,
751  * then determining that its old CPU is now offline.
752  *
753  * Disable checking if in an NMI handler because we cannot safely
754  * report errors from NMI handlers anyway.  In addition, it is OK to use
755  * RCU on an offline processor during initial boot, hence the check for
756  * rcu_scheduler_fully_active.
757  */
758 bool rcu_lockdep_current_cpu_online(void)
759 {
760 	struct rcu_data *rdp;
761 	bool ret = false;
762 
763 	if (in_nmi() || !rcu_scheduler_fully_active)
764 		return true;
765 	preempt_disable_notrace();
766 	rdp = this_cpu_ptr(&rcu_data);
767 	/*
768 	 * Strictly, we care here about the case where the current CPU is
769 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
770 	 * not being up to date. So arch_spin_is_locked() might have a
771 	 * false positive if it's held by some *other* CPU, but that's
772 	 * OK because that just means a false *negative* on the warning.
773 	 */
774 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
775 		ret = true;
776 	preempt_enable_notrace();
777 	return ret;
778 }
779 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
780 
781 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
782 
783 /*
784  * When trying to report a quiescent state on behalf of some other CPU,
785  * it is our responsibility to check for and handle potential overflow
786  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
787  * After all, the CPU might be in deep idle state, and thus executing no
788  * code whatsoever.
789  */
790 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
791 {
792 	raw_lockdep_assert_held_rcu_node(rnp);
793 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
794 			 rnp->gp_seq))
795 		WRITE_ONCE(rdp->gpwrap, true);
796 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
797 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
798 }
799 
800 /*
801  * Snapshot the specified CPU's dynticks counter so that we can later
802  * credit them with an implicit quiescent state.  Return 1 if this CPU
803  * is in dynticks idle mode, which is an extended quiescent state.
804  */
805 static int dyntick_save_progress_counter(struct rcu_data *rdp)
806 {
807 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
808 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
809 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
810 		rcu_gpnum_ovf(rdp->mynode, rdp);
811 		return 1;
812 	}
813 	return 0;
814 }
815 
816 /*
817  * Return true if the specified CPU has passed through a quiescent
818  * state by virtue of being in or having passed through an dynticks
819  * idle state since the last call to dyntick_save_progress_counter()
820  * for this same CPU, or by virtue of having been offline.
821  */
822 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
823 {
824 	unsigned long jtsq;
825 	struct rcu_node *rnp = rdp->mynode;
826 
827 	/*
828 	 * If the CPU passed through or entered a dynticks idle phase with
829 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
830 	 * already acknowledged the request to pass through a quiescent
831 	 * state.  Either way, that CPU cannot possibly be in an RCU
832 	 * read-side critical section that started before the beginning
833 	 * of the current RCU grace period.
834 	 */
835 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
836 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
837 		rcu_gpnum_ovf(rnp, rdp);
838 		return 1;
839 	}
840 
841 	/*
842 	 * Complain if a CPU that is considered to be offline from RCU's
843 	 * perspective has not yet reported a quiescent state.  After all,
844 	 * the offline CPU should have reported a quiescent state during
845 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
846 	 * if it ran concurrently with either the CPU going offline or the
847 	 * last task on a leaf rcu_node structure exiting its RCU read-side
848 	 * critical section while all CPUs corresponding to that structure
849 	 * are offline.  This added warning detects bugs in any of these
850 	 * code paths.
851 	 *
852 	 * The rcu_node structure's ->lock is held here, which excludes
853 	 * the relevant portions the CPU-hotplug code, the grace-period
854 	 * initialization code, and the rcu_read_unlock() code paths.
855 	 *
856 	 * For more detail, please refer to the "Hotplug CPU" section
857 	 * of RCU's Requirements documentation.
858 	 */
859 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
860 		struct rcu_node *rnp1;
861 
862 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
863 			__func__, rnp->grplo, rnp->grphi, rnp->level,
864 			(long)rnp->gp_seq, (long)rnp->completedqs);
865 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
866 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
867 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
868 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
869 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
870 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
871 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
872 		return 1; /* Break things loose after complaining. */
873 	}
874 
875 	/*
876 	 * A CPU running for an extended time within the kernel can
877 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
878 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
879 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
880 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
881 	 * variable are safe because the assignments are repeated if this
882 	 * CPU failed to pass through a quiescent state.  This code
883 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
884 	 * is set way high.
885 	 */
886 	jtsq = READ_ONCE(jiffies_to_sched_qs);
887 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
888 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
889 	     time_after(jiffies, rcu_state.jiffies_resched) ||
890 	     rcu_state.cbovld)) {
891 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
892 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
893 		smp_store_release(&rdp->rcu_urgent_qs, true);
894 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
895 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
896 	}
897 
898 	/*
899 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
900 	 * The above code handles this, but only for straight cond_resched().
901 	 * And some in-kernel loops check need_resched() before calling
902 	 * cond_resched(), which defeats the above code for CPUs that are
903 	 * running in-kernel with scheduling-clock interrupts disabled.
904 	 * So hit them over the head with the resched_cpu() hammer!
905 	 */
906 	if (tick_nohz_full_cpu(rdp->cpu) &&
907 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
908 	     rcu_state.cbovld)) {
909 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
910 		resched_cpu(rdp->cpu);
911 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
912 	}
913 
914 	/*
915 	 * If more than halfway to RCU CPU stall-warning time, invoke
916 	 * resched_cpu() more frequently to try to loosen things up a bit.
917 	 * Also check to see if the CPU is getting hammered with interrupts,
918 	 * but only once per grace period, just to keep the IPIs down to
919 	 * a dull roar.
920 	 */
921 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
922 		if (time_after(jiffies,
923 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
924 			resched_cpu(rdp->cpu);
925 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
926 		}
927 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
928 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
929 		    (rnp->ffmask & rdp->grpmask)) {
930 			rdp->rcu_iw_pending = true;
931 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
932 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
933 		}
934 	}
935 
936 	return 0;
937 }
938 
939 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
940 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
941 			      unsigned long gp_seq_req, const char *s)
942 {
943 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
944 				      gp_seq_req, rnp->level,
945 				      rnp->grplo, rnp->grphi, s);
946 }
947 
948 /*
949  * rcu_start_this_gp - Request the start of a particular grace period
950  * @rnp_start: The leaf node of the CPU from which to start.
951  * @rdp: The rcu_data corresponding to the CPU from which to start.
952  * @gp_seq_req: The gp_seq of the grace period to start.
953  *
954  * Start the specified grace period, as needed to handle newly arrived
955  * callbacks.  The required future grace periods are recorded in each
956  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
957  * is reason to awaken the grace-period kthread.
958  *
959  * The caller must hold the specified rcu_node structure's ->lock, which
960  * is why the caller is responsible for waking the grace-period kthread.
961  *
962  * Returns true if the GP thread needs to be awakened else false.
963  */
964 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
965 			      unsigned long gp_seq_req)
966 {
967 	bool ret = false;
968 	struct rcu_node *rnp;
969 
970 	/*
971 	 * Use funnel locking to either acquire the root rcu_node
972 	 * structure's lock or bail out if the need for this grace period
973 	 * has already been recorded -- or if that grace period has in
974 	 * fact already started.  If there is already a grace period in
975 	 * progress in a non-leaf node, no recording is needed because the
976 	 * end of the grace period will scan the leaf rcu_node structures.
977 	 * Note that rnp_start->lock must not be released.
978 	 */
979 	raw_lockdep_assert_held_rcu_node(rnp_start);
980 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
981 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
982 		if (rnp != rnp_start)
983 			raw_spin_lock_rcu_node(rnp);
984 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
985 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
986 		    (rnp != rnp_start &&
987 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
988 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
989 					  TPS("Prestarted"));
990 			goto unlock_out;
991 		}
992 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
993 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
994 			/*
995 			 * We just marked the leaf or internal node, and a
996 			 * grace period is in progress, which means that
997 			 * rcu_gp_cleanup() will see the marking.  Bail to
998 			 * reduce contention.
999 			 */
1000 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1001 					  TPS("Startedleaf"));
1002 			goto unlock_out;
1003 		}
1004 		if (rnp != rnp_start && rnp->parent != NULL)
1005 			raw_spin_unlock_rcu_node(rnp);
1006 		if (!rnp->parent)
1007 			break;  /* At root, and perhaps also leaf. */
1008 	}
1009 
1010 	/* If GP already in progress, just leave, otherwise start one. */
1011 	if (rcu_gp_in_progress()) {
1012 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1013 		goto unlock_out;
1014 	}
1015 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1016 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1017 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1018 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1019 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1020 		goto unlock_out;
1021 	}
1022 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1023 	ret = true;  /* Caller must wake GP kthread. */
1024 unlock_out:
1025 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1026 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1027 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1028 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1029 	}
1030 	if (rnp != rnp_start)
1031 		raw_spin_unlock_rcu_node(rnp);
1032 	return ret;
1033 }
1034 
1035 /*
1036  * Clean up any old requests for the just-ended grace period.  Also return
1037  * whether any additional grace periods have been requested.
1038  */
1039 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1040 {
1041 	bool needmore;
1042 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1043 
1044 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1045 	if (!needmore)
1046 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1047 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1048 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1049 	return needmore;
1050 }
1051 
1052 /*
1053  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1054  * interrupt or softirq handler, in which case we just might immediately
1055  * sleep upon return, resulting in a grace-period hang), and don't bother
1056  * awakening when there is nothing for the grace-period kthread to do
1057  * (as in several CPUs raced to awaken, we lost), and finally don't try
1058  * to awaken a kthread that has not yet been created.  If all those checks
1059  * are passed, track some debug information and awaken.
1060  *
1061  * So why do the self-wakeup when in an interrupt or softirq handler
1062  * in the grace-period kthread's context?  Because the kthread might have
1063  * been interrupted just as it was going to sleep, and just after the final
1064  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1065  * is required, and is therefore supplied.
1066  */
1067 static void rcu_gp_kthread_wake(void)
1068 {
1069 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1070 
1071 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1072 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1073 		return;
1074 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1075 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1076 	swake_up_one(&rcu_state.gp_wq);
1077 }
1078 
1079 /*
1080  * If there is room, assign a ->gp_seq number to any callbacks on this
1081  * CPU that have not already been assigned.  Also accelerate any callbacks
1082  * that were previously assigned a ->gp_seq number that has since proven
1083  * to be too conservative, which can happen if callbacks get assigned a
1084  * ->gp_seq number while RCU is idle, but with reference to a non-root
1085  * rcu_node structure.  This function is idempotent, so it does not hurt
1086  * to call it repeatedly.  Returns an flag saying that we should awaken
1087  * the RCU grace-period kthread.
1088  *
1089  * The caller must hold rnp->lock with interrupts disabled.
1090  */
1091 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1092 {
1093 	unsigned long gp_seq_req;
1094 	bool ret = false;
1095 
1096 	rcu_lockdep_assert_cblist_protected(rdp);
1097 	raw_lockdep_assert_held_rcu_node(rnp);
1098 
1099 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1100 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1101 		return false;
1102 
1103 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1104 
1105 	/*
1106 	 * Callbacks are often registered with incomplete grace-period
1107 	 * information.  Something about the fact that getting exact
1108 	 * information requires acquiring a global lock...  RCU therefore
1109 	 * makes a conservative estimate of the grace period number at which
1110 	 * a given callback will become ready to invoke.	The following
1111 	 * code checks this estimate and improves it when possible, thus
1112 	 * accelerating callback invocation to an earlier grace-period
1113 	 * number.
1114 	 */
1115 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1116 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1117 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1118 
1119 	/* Trace depending on how much we were able to accelerate. */
1120 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1121 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1122 	else
1123 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1124 
1125 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1126 
1127 	return ret;
1128 }
1129 
1130 /*
1131  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1132  * rcu_node structure's ->lock be held.  It consults the cached value
1133  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1134  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1135  * while holding the leaf rcu_node structure's ->lock.
1136  */
1137 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1138 					struct rcu_data *rdp)
1139 {
1140 	unsigned long c;
1141 	bool needwake;
1142 
1143 	rcu_lockdep_assert_cblist_protected(rdp);
1144 	c = rcu_seq_snap(&rcu_state.gp_seq);
1145 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1146 		/* Old request still live, so mark recent callbacks. */
1147 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1148 		return;
1149 	}
1150 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1151 	needwake = rcu_accelerate_cbs(rnp, rdp);
1152 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1153 	if (needwake)
1154 		rcu_gp_kthread_wake();
1155 }
1156 
1157 /*
1158  * Move any callbacks whose grace period has completed to the
1159  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1160  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1161  * sublist.  This function is idempotent, so it does not hurt to
1162  * invoke it repeatedly.  As long as it is not invoked -too- often...
1163  * Returns true if the RCU grace-period kthread needs to be awakened.
1164  *
1165  * The caller must hold rnp->lock with interrupts disabled.
1166  */
1167 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1168 {
1169 	rcu_lockdep_assert_cblist_protected(rdp);
1170 	raw_lockdep_assert_held_rcu_node(rnp);
1171 
1172 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1173 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1174 		return false;
1175 
1176 	/*
1177 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1178 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1179 	 */
1180 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1181 
1182 	/* Classify any remaining callbacks. */
1183 	return rcu_accelerate_cbs(rnp, rdp);
1184 }
1185 
1186 /*
1187  * Move and classify callbacks, but only if doing so won't require
1188  * that the RCU grace-period kthread be awakened.
1189  */
1190 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1191 						  struct rcu_data *rdp)
1192 {
1193 	rcu_lockdep_assert_cblist_protected(rdp);
1194 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1195 		return;
1196 	// The grace period cannot end while we hold the rcu_node lock.
1197 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1198 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1199 	raw_spin_unlock_rcu_node(rnp);
1200 }
1201 
1202 /*
1203  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1204  * quiescent state.  This is intended to be invoked when the CPU notices
1205  * a new grace period.
1206  */
1207 static void rcu_strict_gp_check_qs(void)
1208 {
1209 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1210 		rcu_read_lock();
1211 		rcu_read_unlock();
1212 	}
1213 }
1214 
1215 /*
1216  * Update CPU-local rcu_data state to record the beginnings and ends of
1217  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1218  * structure corresponding to the current CPU, and must have irqs disabled.
1219  * Returns true if the grace-period kthread needs to be awakened.
1220  */
1221 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1222 {
1223 	bool ret = false;
1224 	bool need_qs;
1225 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1226 
1227 	raw_lockdep_assert_held_rcu_node(rnp);
1228 
1229 	if (rdp->gp_seq == rnp->gp_seq)
1230 		return false; /* Nothing to do. */
1231 
1232 	/* Handle the ends of any preceding grace periods first. */
1233 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1234 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1235 		if (!offloaded)
1236 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1237 		rdp->core_needs_qs = false;
1238 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1239 	} else {
1240 		if (!offloaded)
1241 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1242 		if (rdp->core_needs_qs)
1243 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1244 	}
1245 
1246 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1247 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1248 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1249 		/*
1250 		 * If the current grace period is waiting for this CPU,
1251 		 * set up to detect a quiescent state, otherwise don't
1252 		 * go looking for one.
1253 		 */
1254 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1255 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1256 		rdp->cpu_no_qs.b.norm = need_qs;
1257 		rdp->core_needs_qs = need_qs;
1258 		zero_cpu_stall_ticks(rdp);
1259 	}
1260 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1261 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1262 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1263 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1264 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1265 	WRITE_ONCE(rdp->gpwrap, false);
1266 	rcu_gpnum_ovf(rnp, rdp);
1267 	return ret;
1268 }
1269 
1270 static void note_gp_changes(struct rcu_data *rdp)
1271 {
1272 	unsigned long flags;
1273 	bool needwake;
1274 	struct rcu_node *rnp;
1275 
1276 	local_irq_save(flags);
1277 	rnp = rdp->mynode;
1278 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1279 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1280 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1281 		local_irq_restore(flags);
1282 		return;
1283 	}
1284 	needwake = __note_gp_changes(rnp, rdp);
1285 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1286 	rcu_strict_gp_check_qs();
1287 	if (needwake)
1288 		rcu_gp_kthread_wake();
1289 }
1290 
1291 static atomic_t *rcu_gp_slow_suppress;
1292 
1293 /* Register a counter to suppress debugging grace-period delays. */
1294 void rcu_gp_slow_register(atomic_t *rgssp)
1295 {
1296 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1297 
1298 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1299 }
1300 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1301 
1302 /* Unregister a counter, with NULL for not caring which. */
1303 void rcu_gp_slow_unregister(atomic_t *rgssp)
1304 {
1305 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1306 
1307 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1310 
1311 static bool rcu_gp_slow_is_suppressed(void)
1312 {
1313 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1314 
1315 	return rgssp && atomic_read(rgssp);
1316 }
1317 
1318 static void rcu_gp_slow(int delay)
1319 {
1320 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1321 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1322 		schedule_timeout_idle(delay);
1323 }
1324 
1325 static unsigned long sleep_duration;
1326 
1327 /* Allow rcutorture to stall the grace-period kthread. */
1328 void rcu_gp_set_torture_wait(int duration)
1329 {
1330 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1331 		WRITE_ONCE(sleep_duration, duration);
1332 }
1333 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1334 
1335 /* Actually implement the aforementioned wait. */
1336 static void rcu_gp_torture_wait(void)
1337 {
1338 	unsigned long duration;
1339 
1340 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1341 		return;
1342 	duration = xchg(&sleep_duration, 0UL);
1343 	if (duration > 0) {
1344 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1345 		schedule_timeout_idle(duration);
1346 		pr_alert("%s: Wait complete\n", __func__);
1347 	}
1348 }
1349 
1350 /*
1351  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1352  * processing.
1353  */
1354 static void rcu_strict_gp_boundary(void *unused)
1355 {
1356 	invoke_rcu_core();
1357 }
1358 
1359 // Has rcu_init() been invoked?  This is used (for example) to determine
1360 // whether spinlocks may be acquired safely.
1361 static bool rcu_init_invoked(void)
1362 {
1363 	return !!rcu_state.n_online_cpus;
1364 }
1365 
1366 // Make the polled API aware of the beginning of a grace period.
1367 static void rcu_poll_gp_seq_start(unsigned long *snap)
1368 {
1369 	struct rcu_node *rnp = rcu_get_root();
1370 
1371 	if (rcu_init_invoked())
1372 		raw_lockdep_assert_held_rcu_node(rnp);
1373 
1374 	// If RCU was idle, note beginning of GP.
1375 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1376 		rcu_seq_start(&rcu_state.gp_seq_polled);
1377 
1378 	// Either way, record current state.
1379 	*snap = rcu_state.gp_seq_polled;
1380 }
1381 
1382 // Make the polled API aware of the end of a grace period.
1383 static void rcu_poll_gp_seq_end(unsigned long *snap)
1384 {
1385 	struct rcu_node *rnp = rcu_get_root();
1386 
1387 	if (rcu_init_invoked())
1388 		raw_lockdep_assert_held_rcu_node(rnp);
1389 
1390 	// If the previously noted GP is still in effect, record the
1391 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1392 	// problems.
1393 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1394 		rcu_seq_end(&rcu_state.gp_seq_polled);
1395 		rcu_state.gp_seq_polled_snap = 0;
1396 		rcu_state.gp_seq_polled_exp_snap = 0;
1397 	} else {
1398 		*snap = 0;
1399 	}
1400 }
1401 
1402 // Make the polled API aware of the beginning of a grace period, but
1403 // where caller does not hold the root rcu_node structure's lock.
1404 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1405 {
1406 	struct rcu_node *rnp = rcu_get_root();
1407 
1408 	if (rcu_init_invoked()) {
1409 		lockdep_assert_irqs_enabled();
1410 		raw_spin_lock_irq_rcu_node(rnp);
1411 	}
1412 	rcu_poll_gp_seq_start(snap);
1413 	if (rcu_init_invoked())
1414 		raw_spin_unlock_irq_rcu_node(rnp);
1415 }
1416 
1417 // Make the polled API aware of the end of a grace period, but where
1418 // caller does not hold the root rcu_node structure's lock.
1419 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1420 {
1421 	struct rcu_node *rnp = rcu_get_root();
1422 
1423 	if (rcu_init_invoked()) {
1424 		lockdep_assert_irqs_enabled();
1425 		raw_spin_lock_irq_rcu_node(rnp);
1426 	}
1427 	rcu_poll_gp_seq_end(snap);
1428 	if (rcu_init_invoked())
1429 		raw_spin_unlock_irq_rcu_node(rnp);
1430 }
1431 
1432 /*
1433  * Initialize a new grace period.  Return false if no grace period required.
1434  */
1435 static noinline_for_stack bool rcu_gp_init(void)
1436 {
1437 	unsigned long flags;
1438 	unsigned long oldmask;
1439 	unsigned long mask;
1440 	struct rcu_data *rdp;
1441 	struct rcu_node *rnp = rcu_get_root();
1442 
1443 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1444 	raw_spin_lock_irq_rcu_node(rnp);
1445 	if (!READ_ONCE(rcu_state.gp_flags)) {
1446 		/* Spurious wakeup, tell caller to go back to sleep.  */
1447 		raw_spin_unlock_irq_rcu_node(rnp);
1448 		return false;
1449 	}
1450 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1451 
1452 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1453 		/*
1454 		 * Grace period already in progress, don't start another.
1455 		 * Not supposed to be able to happen.
1456 		 */
1457 		raw_spin_unlock_irq_rcu_node(rnp);
1458 		return false;
1459 	}
1460 
1461 	/* Advance to a new grace period and initialize state. */
1462 	record_gp_stall_check_time();
1463 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1464 	rcu_seq_start(&rcu_state.gp_seq);
1465 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1466 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1467 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1468 	raw_spin_unlock_irq_rcu_node(rnp);
1469 
1470 	/*
1471 	 * Apply per-leaf buffered online and offline operations to
1472 	 * the rcu_node tree. Note that this new grace period need not
1473 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1474 	 * offlining path, when combined with checks in this function,
1475 	 * will handle CPUs that are currently going offline or that will
1476 	 * go offline later.  Please also refer to "Hotplug CPU" section
1477 	 * of RCU's Requirements documentation.
1478 	 */
1479 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1480 	/* Exclude CPU hotplug operations. */
1481 	rcu_for_each_leaf_node(rnp) {
1482 		local_irq_save(flags);
1483 		arch_spin_lock(&rcu_state.ofl_lock);
1484 		raw_spin_lock_rcu_node(rnp);
1485 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1486 		    !rnp->wait_blkd_tasks) {
1487 			/* Nothing to do on this leaf rcu_node structure. */
1488 			raw_spin_unlock_rcu_node(rnp);
1489 			arch_spin_unlock(&rcu_state.ofl_lock);
1490 			local_irq_restore(flags);
1491 			continue;
1492 		}
1493 
1494 		/* Record old state, apply changes to ->qsmaskinit field. */
1495 		oldmask = rnp->qsmaskinit;
1496 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1497 
1498 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499 		if (!oldmask != !rnp->qsmaskinit) {
1500 			if (!oldmask) { /* First online CPU for rcu_node. */
1501 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502 					rcu_init_new_rnp(rnp);
1503 			} else if (rcu_preempt_has_tasks(rnp)) {
1504 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1505 			} else { /* Last offline CPU and can propagate. */
1506 				rcu_cleanup_dead_rnp(rnp);
1507 			}
1508 		}
1509 
1510 		/*
1511 		 * If all waited-on tasks from prior grace period are
1512 		 * done, and if all this rcu_node structure's CPUs are
1513 		 * still offline, propagate up the rcu_node tree and
1514 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1515 		 * rcu_node structure's CPUs has since come back online,
1516 		 * simply clear ->wait_blkd_tasks.
1517 		 */
1518 		if (rnp->wait_blkd_tasks &&
1519 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520 			rnp->wait_blkd_tasks = false;
1521 			if (!rnp->qsmaskinit)
1522 				rcu_cleanup_dead_rnp(rnp);
1523 		}
1524 
1525 		raw_spin_unlock_rcu_node(rnp);
1526 		arch_spin_unlock(&rcu_state.ofl_lock);
1527 		local_irq_restore(flags);
1528 	}
1529 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1530 
1531 	/*
1532 	 * Set the quiescent-state-needed bits in all the rcu_node
1533 	 * structures for all currently online CPUs in breadth-first
1534 	 * order, starting from the root rcu_node structure, relying on the
1535 	 * layout of the tree within the rcu_state.node[] array.  Note that
1536 	 * other CPUs will access only the leaves of the hierarchy, thus
1537 	 * seeing that no grace period is in progress, at least until the
1538 	 * corresponding leaf node has been initialized.
1539 	 *
1540 	 * The grace period cannot complete until the initialization
1541 	 * process finishes, because this kthread handles both.
1542 	 */
1543 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1544 	rcu_for_each_node_breadth_first(rnp) {
1545 		rcu_gp_slow(gp_init_delay);
1546 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1547 		rdp = this_cpu_ptr(&rcu_data);
1548 		rcu_preempt_check_blocked_tasks(rnp);
1549 		rnp->qsmask = rnp->qsmaskinit;
1550 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1551 		if (rnp == rdp->mynode)
1552 			(void)__note_gp_changes(rnp, rdp);
1553 		rcu_preempt_boost_start_gp(rnp);
1554 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1555 					    rnp->level, rnp->grplo,
1556 					    rnp->grphi, rnp->qsmask);
1557 		/* Quiescent states for tasks on any now-offline CPUs. */
1558 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1559 		rnp->rcu_gp_init_mask = mask;
1560 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1561 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1562 		else
1563 			raw_spin_unlock_irq_rcu_node(rnp);
1564 		cond_resched_tasks_rcu_qs();
1565 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1566 	}
1567 
1568 	// If strict, make all CPUs aware of new grace period.
1569 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1570 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1571 
1572 	return true;
1573 }
1574 
1575 /*
1576  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1577  * time.
1578  */
1579 static bool rcu_gp_fqs_check_wake(int *gfp)
1580 {
1581 	struct rcu_node *rnp = rcu_get_root();
1582 
1583 	// If under overload conditions, force an immediate FQS scan.
1584 	if (*gfp & RCU_GP_FLAG_OVLD)
1585 		return true;
1586 
1587 	// Someone like call_rcu() requested a force-quiescent-state scan.
1588 	*gfp = READ_ONCE(rcu_state.gp_flags);
1589 	if (*gfp & RCU_GP_FLAG_FQS)
1590 		return true;
1591 
1592 	// The current grace period has completed.
1593 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1594 		return true;
1595 
1596 	return false;
1597 }
1598 
1599 /*
1600  * Do one round of quiescent-state forcing.
1601  */
1602 static void rcu_gp_fqs(bool first_time)
1603 {
1604 	struct rcu_node *rnp = rcu_get_root();
1605 
1606 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1607 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1608 	if (first_time) {
1609 		/* Collect dyntick-idle snapshots. */
1610 		force_qs_rnp(dyntick_save_progress_counter);
1611 	} else {
1612 		/* Handle dyntick-idle and offline CPUs. */
1613 		force_qs_rnp(rcu_implicit_dynticks_qs);
1614 	}
1615 	/* Clear flag to prevent immediate re-entry. */
1616 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1617 		raw_spin_lock_irq_rcu_node(rnp);
1618 		WRITE_ONCE(rcu_state.gp_flags,
1619 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1620 		raw_spin_unlock_irq_rcu_node(rnp);
1621 	}
1622 }
1623 
1624 /*
1625  * Loop doing repeated quiescent-state forcing until the grace period ends.
1626  */
1627 static noinline_for_stack void rcu_gp_fqs_loop(void)
1628 {
1629 	bool first_gp_fqs = true;
1630 	int gf = 0;
1631 	unsigned long j;
1632 	int ret;
1633 	struct rcu_node *rnp = rcu_get_root();
1634 
1635 	j = READ_ONCE(jiffies_till_first_fqs);
1636 	if (rcu_state.cbovld)
1637 		gf = RCU_GP_FLAG_OVLD;
1638 	ret = 0;
1639 	for (;;) {
1640 		if (rcu_state.cbovld) {
1641 			j = (j + 2) / 3;
1642 			if (j <= 0)
1643 				j = 1;
1644 		}
1645 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1646 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1647 			/*
1648 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1649 			 * update; required for stall checks.
1650 			 */
1651 			smp_wmb();
1652 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1653 				   jiffies + (j ? 3 * j : 2));
1654 		}
1655 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1656 				       TPS("fqswait"));
1657 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1658 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1659 				 rcu_gp_fqs_check_wake(&gf), j);
1660 		rcu_gp_torture_wait();
1661 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1662 		/* Locking provides needed memory barriers. */
1663 		/*
1664 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1665 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1666 		 * is required only for single-node rcu_node trees because readers blocking
1667 		 * the current grace period are queued only on leaf rcu_node structures.
1668 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1669 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1670 		 * the corresponding leaf nodes have passed through their quiescent state.
1671 		 */
1672 		if (!READ_ONCE(rnp->qsmask) &&
1673 		    !rcu_preempt_blocked_readers_cgp(rnp))
1674 			break;
1675 		/* If time for quiescent-state forcing, do it. */
1676 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1677 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1678 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1679 					       TPS("fqsstart"));
1680 			rcu_gp_fqs(first_gp_fqs);
1681 			gf = 0;
1682 			if (first_gp_fqs) {
1683 				first_gp_fqs = false;
1684 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1685 			}
1686 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1687 					       TPS("fqsend"));
1688 			cond_resched_tasks_rcu_qs();
1689 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1690 			ret = 0; /* Force full wait till next FQS. */
1691 			j = READ_ONCE(jiffies_till_next_fqs);
1692 		} else {
1693 			/* Deal with stray signal. */
1694 			cond_resched_tasks_rcu_qs();
1695 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1696 			WARN_ON(signal_pending(current));
1697 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1698 					       TPS("fqswaitsig"));
1699 			ret = 1; /* Keep old FQS timing. */
1700 			j = jiffies;
1701 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1702 				j = 1;
1703 			else
1704 				j = rcu_state.jiffies_force_qs - j;
1705 			gf = 0;
1706 		}
1707 	}
1708 }
1709 
1710 /*
1711  * Clean up after the old grace period.
1712  */
1713 static noinline void rcu_gp_cleanup(void)
1714 {
1715 	int cpu;
1716 	bool needgp = false;
1717 	unsigned long gp_duration;
1718 	unsigned long new_gp_seq;
1719 	bool offloaded;
1720 	struct rcu_data *rdp;
1721 	struct rcu_node *rnp = rcu_get_root();
1722 	struct swait_queue_head *sq;
1723 
1724 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1725 	raw_spin_lock_irq_rcu_node(rnp);
1726 	rcu_state.gp_end = jiffies;
1727 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1728 	if (gp_duration > rcu_state.gp_max)
1729 		rcu_state.gp_max = gp_duration;
1730 
1731 	/*
1732 	 * We know the grace period is complete, but to everyone else
1733 	 * it appears to still be ongoing.  But it is also the case
1734 	 * that to everyone else it looks like there is nothing that
1735 	 * they can do to advance the grace period.  It is therefore
1736 	 * safe for us to drop the lock in order to mark the grace
1737 	 * period as completed in all of the rcu_node structures.
1738 	 */
1739 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1740 	raw_spin_unlock_irq_rcu_node(rnp);
1741 
1742 	/*
1743 	 * Propagate new ->gp_seq value to rcu_node structures so that
1744 	 * other CPUs don't have to wait until the start of the next grace
1745 	 * period to process their callbacks.  This also avoids some nasty
1746 	 * RCU grace-period initialization races by forcing the end of
1747 	 * the current grace period to be completely recorded in all of
1748 	 * the rcu_node structures before the beginning of the next grace
1749 	 * period is recorded in any of the rcu_node structures.
1750 	 */
1751 	new_gp_seq = rcu_state.gp_seq;
1752 	rcu_seq_end(&new_gp_seq);
1753 	rcu_for_each_node_breadth_first(rnp) {
1754 		raw_spin_lock_irq_rcu_node(rnp);
1755 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1756 			dump_blkd_tasks(rnp, 10);
1757 		WARN_ON_ONCE(rnp->qsmask);
1758 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1759 		if (!rnp->parent)
1760 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1761 		rdp = this_cpu_ptr(&rcu_data);
1762 		if (rnp == rdp->mynode)
1763 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1764 		/* smp_mb() provided by prior unlock-lock pair. */
1765 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1766 		// Reset overload indication for CPUs no longer overloaded
1767 		if (rcu_is_leaf_node(rnp))
1768 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1769 				rdp = per_cpu_ptr(&rcu_data, cpu);
1770 				check_cb_ovld_locked(rdp, rnp);
1771 			}
1772 		sq = rcu_nocb_gp_get(rnp);
1773 		raw_spin_unlock_irq_rcu_node(rnp);
1774 		rcu_nocb_gp_cleanup(sq);
1775 		cond_resched_tasks_rcu_qs();
1776 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1777 		rcu_gp_slow(gp_cleanup_delay);
1778 	}
1779 	rnp = rcu_get_root();
1780 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1781 
1782 	/* Declare grace period done, trace first to use old GP number. */
1783 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1784 	rcu_seq_end(&rcu_state.gp_seq);
1785 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1786 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1787 	/* Check for GP requests since above loop. */
1788 	rdp = this_cpu_ptr(&rcu_data);
1789 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1790 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1791 				  TPS("CleanupMore"));
1792 		needgp = true;
1793 	}
1794 	/* Advance CBs to reduce false positives below. */
1795 	offloaded = rcu_rdp_is_offloaded(rdp);
1796 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1797 
1798 		// We get here if a grace period was needed (“needgp”)
1799 		// and the above call to rcu_accelerate_cbs() did not set
1800 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1801 		// the need for another grace period).  The purpose
1802 		// of the “offloaded” check is to avoid invoking
1803 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1804 		// hold the ->nocb_lock needed to safely access an offloaded
1805 		// ->cblist.  We do not want to acquire that lock because
1806 		// it can be heavily contended during callback floods.
1807 
1808 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1809 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1810 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1811 	} else {
1812 
1813 		// We get here either if there is no need for an
1814 		// additional grace period or if rcu_accelerate_cbs() has
1815 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1816 		// So all we need to do is to clear all of the other
1817 		// ->gp_flags bits.
1818 
1819 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1820 	}
1821 	raw_spin_unlock_irq_rcu_node(rnp);
1822 
1823 	// If strict, make all CPUs aware of the end of the old grace period.
1824 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1825 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1826 }
1827 
1828 /*
1829  * Body of kthread that handles grace periods.
1830  */
1831 static int __noreturn rcu_gp_kthread(void *unused)
1832 {
1833 	rcu_bind_gp_kthread();
1834 	for (;;) {
1835 
1836 		/* Handle grace-period start. */
1837 		for (;;) {
1838 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1839 					       TPS("reqwait"));
1840 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1841 			swait_event_idle_exclusive(rcu_state.gp_wq,
1842 					 READ_ONCE(rcu_state.gp_flags) &
1843 					 RCU_GP_FLAG_INIT);
1844 			rcu_gp_torture_wait();
1845 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1846 			/* Locking provides needed memory barrier. */
1847 			if (rcu_gp_init())
1848 				break;
1849 			cond_resched_tasks_rcu_qs();
1850 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1851 			WARN_ON(signal_pending(current));
1852 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1853 					       TPS("reqwaitsig"));
1854 		}
1855 
1856 		/* Handle quiescent-state forcing. */
1857 		rcu_gp_fqs_loop();
1858 
1859 		/* Handle grace-period end. */
1860 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1861 		rcu_gp_cleanup();
1862 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1863 	}
1864 }
1865 
1866 /*
1867  * Report a full set of quiescent states to the rcu_state data structure.
1868  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1869  * another grace period is required.  Whether we wake the grace-period
1870  * kthread or it awakens itself for the next round of quiescent-state
1871  * forcing, that kthread will clean up after the just-completed grace
1872  * period.  Note that the caller must hold rnp->lock, which is released
1873  * before return.
1874  */
1875 static void rcu_report_qs_rsp(unsigned long flags)
1876 	__releases(rcu_get_root()->lock)
1877 {
1878 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1879 	WARN_ON_ONCE(!rcu_gp_in_progress());
1880 	WRITE_ONCE(rcu_state.gp_flags,
1881 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1882 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1883 	rcu_gp_kthread_wake();
1884 }
1885 
1886 /*
1887  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1888  * Allows quiescent states for a group of CPUs to be reported at one go
1889  * to the specified rcu_node structure, though all the CPUs in the group
1890  * must be represented by the same rcu_node structure (which need not be a
1891  * leaf rcu_node structure, though it often will be).  The gps parameter
1892  * is the grace-period snapshot, which means that the quiescent states
1893  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1894  * must be held upon entry, and it is released before return.
1895  *
1896  * As a special case, if mask is zero, the bit-already-cleared check is
1897  * disabled.  This allows propagating quiescent state due to resumed tasks
1898  * during grace-period initialization.
1899  */
1900 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1901 			      unsigned long gps, unsigned long flags)
1902 	__releases(rnp->lock)
1903 {
1904 	unsigned long oldmask = 0;
1905 	struct rcu_node *rnp_c;
1906 
1907 	raw_lockdep_assert_held_rcu_node(rnp);
1908 
1909 	/* Walk up the rcu_node hierarchy. */
1910 	for (;;) {
1911 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1912 
1913 			/*
1914 			 * Our bit has already been cleared, or the
1915 			 * relevant grace period is already over, so done.
1916 			 */
1917 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1918 			return;
1919 		}
1920 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1921 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1922 			     rcu_preempt_blocked_readers_cgp(rnp));
1923 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1924 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1925 						 mask, rnp->qsmask, rnp->level,
1926 						 rnp->grplo, rnp->grphi,
1927 						 !!rnp->gp_tasks);
1928 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1929 
1930 			/* Other bits still set at this level, so done. */
1931 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1932 			return;
1933 		}
1934 		rnp->completedqs = rnp->gp_seq;
1935 		mask = rnp->grpmask;
1936 		if (rnp->parent == NULL) {
1937 
1938 			/* No more levels.  Exit loop holding root lock. */
1939 
1940 			break;
1941 		}
1942 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1943 		rnp_c = rnp;
1944 		rnp = rnp->parent;
1945 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1946 		oldmask = READ_ONCE(rnp_c->qsmask);
1947 	}
1948 
1949 	/*
1950 	 * Get here if we are the last CPU to pass through a quiescent
1951 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1952 	 * to clean up and start the next grace period if one is needed.
1953 	 */
1954 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1955 }
1956 
1957 /*
1958  * Record a quiescent state for all tasks that were previously queued
1959  * on the specified rcu_node structure and that were blocking the current
1960  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1961  * irqs disabled, and this lock is released upon return, but irqs remain
1962  * disabled.
1963  */
1964 static void __maybe_unused
1965 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1966 	__releases(rnp->lock)
1967 {
1968 	unsigned long gps;
1969 	unsigned long mask;
1970 	struct rcu_node *rnp_p;
1971 
1972 	raw_lockdep_assert_held_rcu_node(rnp);
1973 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1974 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1975 	    rnp->qsmask != 0) {
1976 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1977 		return;  /* Still need more quiescent states! */
1978 	}
1979 
1980 	rnp->completedqs = rnp->gp_seq;
1981 	rnp_p = rnp->parent;
1982 	if (rnp_p == NULL) {
1983 		/*
1984 		 * Only one rcu_node structure in the tree, so don't
1985 		 * try to report up to its nonexistent parent!
1986 		 */
1987 		rcu_report_qs_rsp(flags);
1988 		return;
1989 	}
1990 
1991 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1992 	gps = rnp->gp_seq;
1993 	mask = rnp->grpmask;
1994 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1995 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1996 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1997 }
1998 
1999 /*
2000  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2001  * structure.  This must be called from the specified CPU.
2002  */
2003 static void
2004 rcu_report_qs_rdp(struct rcu_data *rdp)
2005 {
2006 	unsigned long flags;
2007 	unsigned long mask;
2008 	bool needwake = false;
2009 	bool needacc = false;
2010 	struct rcu_node *rnp;
2011 
2012 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2013 	rnp = rdp->mynode;
2014 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2015 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2016 	    rdp->gpwrap) {
2017 
2018 		/*
2019 		 * The grace period in which this quiescent state was
2020 		 * recorded has ended, so don't report it upwards.
2021 		 * We will instead need a new quiescent state that lies
2022 		 * within the current grace period.
2023 		 */
2024 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2025 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2026 		return;
2027 	}
2028 	mask = rdp->grpmask;
2029 	rdp->core_needs_qs = false;
2030 	if ((rnp->qsmask & mask) == 0) {
2031 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2032 	} else {
2033 		/*
2034 		 * This GP can't end until cpu checks in, so all of our
2035 		 * callbacks can be processed during the next GP.
2036 		 *
2037 		 * NOCB kthreads have their own way to deal with that...
2038 		 */
2039 		if (!rcu_rdp_is_offloaded(rdp)) {
2040 			needwake = rcu_accelerate_cbs(rnp, rdp);
2041 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2042 			/*
2043 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2044 			 * if in the middle of a (de-)offloading process.
2045 			 */
2046 			needacc = true;
2047 		}
2048 
2049 		rcu_disable_urgency_upon_qs(rdp);
2050 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2051 		/* ^^^ Released rnp->lock */
2052 		if (needwake)
2053 			rcu_gp_kthread_wake();
2054 
2055 		if (needacc) {
2056 			rcu_nocb_lock_irqsave(rdp, flags);
2057 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2058 			rcu_nocb_unlock_irqrestore(rdp, flags);
2059 		}
2060 	}
2061 }
2062 
2063 /*
2064  * Check to see if there is a new grace period of which this CPU
2065  * is not yet aware, and if so, set up local rcu_data state for it.
2066  * Otherwise, see if this CPU has just passed through its first
2067  * quiescent state for this grace period, and record that fact if so.
2068  */
2069 static void
2070 rcu_check_quiescent_state(struct rcu_data *rdp)
2071 {
2072 	/* Check for grace-period ends and beginnings. */
2073 	note_gp_changes(rdp);
2074 
2075 	/*
2076 	 * Does this CPU still need to do its part for current grace period?
2077 	 * If no, return and let the other CPUs do their part as well.
2078 	 */
2079 	if (!rdp->core_needs_qs)
2080 		return;
2081 
2082 	/*
2083 	 * Was there a quiescent state since the beginning of the grace
2084 	 * period? If no, then exit and wait for the next call.
2085 	 */
2086 	if (rdp->cpu_no_qs.b.norm)
2087 		return;
2088 
2089 	/*
2090 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2091 	 * judge of that).
2092 	 */
2093 	rcu_report_qs_rdp(rdp);
2094 }
2095 
2096 /*
2097  * Near the end of the offline process.  Trace the fact that this CPU
2098  * is going offline.
2099  */
2100 int rcutree_dying_cpu(unsigned int cpu)
2101 {
2102 	bool blkd;
2103 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2104 	struct rcu_node *rnp = rdp->mynode;
2105 
2106 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2107 		return 0;
2108 
2109 	blkd = !!(rnp->qsmask & rdp->grpmask);
2110 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2111 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2112 	return 0;
2113 }
2114 
2115 /*
2116  * All CPUs for the specified rcu_node structure have gone offline,
2117  * and all tasks that were preempted within an RCU read-side critical
2118  * section while running on one of those CPUs have since exited their RCU
2119  * read-side critical section.  Some other CPU is reporting this fact with
2120  * the specified rcu_node structure's ->lock held and interrupts disabled.
2121  * This function therefore goes up the tree of rcu_node structures,
2122  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2123  * the leaf rcu_node structure's ->qsmaskinit field has already been
2124  * updated.
2125  *
2126  * This function does check that the specified rcu_node structure has
2127  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2128  * prematurely.  That said, invoking it after the fact will cost you
2129  * a needless lock acquisition.  So once it has done its work, don't
2130  * invoke it again.
2131  */
2132 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2133 {
2134 	long mask;
2135 	struct rcu_node *rnp = rnp_leaf;
2136 
2137 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2138 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2139 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2140 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2141 		return;
2142 	for (;;) {
2143 		mask = rnp->grpmask;
2144 		rnp = rnp->parent;
2145 		if (!rnp)
2146 			break;
2147 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2148 		rnp->qsmaskinit &= ~mask;
2149 		/* Between grace periods, so better already be zero! */
2150 		WARN_ON_ONCE(rnp->qsmask);
2151 		if (rnp->qsmaskinit) {
2152 			raw_spin_unlock_rcu_node(rnp);
2153 			/* irqs remain disabled. */
2154 			return;
2155 		}
2156 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2157 	}
2158 }
2159 
2160 /*
2161  * The CPU has been completely removed, and some other CPU is reporting
2162  * this fact from process context.  Do the remainder of the cleanup.
2163  * There can only be one CPU hotplug operation at a time, so no need for
2164  * explicit locking.
2165  */
2166 int rcutree_dead_cpu(unsigned int cpu)
2167 {
2168 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2169 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2170 
2171 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2172 		return 0;
2173 
2174 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2175 	/* Adjust any no-longer-needed kthreads. */
2176 	rcu_boost_kthread_setaffinity(rnp, -1);
2177 	// Stop-machine done, so allow nohz_full to disable tick.
2178 	tick_dep_clear(TICK_DEP_BIT_RCU);
2179 	return 0;
2180 }
2181 
2182 /*
2183  * Invoke any RCU callbacks that have made it to the end of their grace
2184  * period.  Throttle as specified by rdp->blimit.
2185  */
2186 static void rcu_do_batch(struct rcu_data *rdp)
2187 {
2188 	int div;
2189 	bool __maybe_unused empty;
2190 	unsigned long flags;
2191 	struct rcu_head *rhp;
2192 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2193 	long bl, count = 0;
2194 	long pending, tlimit = 0;
2195 
2196 	/* If no callbacks are ready, just return. */
2197 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2198 		trace_rcu_batch_start(rcu_state.name,
2199 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2200 		trace_rcu_batch_end(rcu_state.name, 0,
2201 				    !rcu_segcblist_empty(&rdp->cblist),
2202 				    need_resched(), is_idle_task(current),
2203 				    rcu_is_callbacks_kthread(rdp));
2204 		return;
2205 	}
2206 
2207 	/*
2208 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2209 	 * races with call_rcu() from interrupt handlers.  Leave the
2210 	 * callback counts, as rcu_barrier() needs to be conservative.
2211 	 */
2212 	rcu_nocb_lock_irqsave(rdp, flags);
2213 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2214 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2215 	div = READ_ONCE(rcu_divisor);
2216 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2217 	bl = max(rdp->blimit, pending >> div);
2218 	if (in_serving_softirq() && unlikely(bl > 100)) {
2219 		long rrn = READ_ONCE(rcu_resched_ns);
2220 
2221 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2222 		tlimit = local_clock() + rrn;
2223 	}
2224 	trace_rcu_batch_start(rcu_state.name,
2225 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2226 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2227 	if (rcu_rdp_is_offloaded(rdp))
2228 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2229 
2230 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2231 	rcu_nocb_unlock_irqrestore(rdp, flags);
2232 
2233 	/* Invoke callbacks. */
2234 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2235 	rhp = rcu_cblist_dequeue(&rcl);
2236 
2237 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2238 		rcu_callback_t f;
2239 
2240 		count++;
2241 		debug_rcu_head_unqueue(rhp);
2242 
2243 		rcu_lock_acquire(&rcu_callback_map);
2244 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2245 
2246 		f = rhp->func;
2247 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2248 		f(rhp);
2249 
2250 		rcu_lock_release(&rcu_callback_map);
2251 
2252 		/*
2253 		 * Stop only if limit reached and CPU has something to do.
2254 		 */
2255 		if (in_serving_softirq()) {
2256 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2257 				break;
2258 			/*
2259 			 * Make sure we don't spend too much time here and deprive other
2260 			 * softirq vectors of CPU cycles.
2261 			 */
2262 			if (unlikely(tlimit)) {
2263 				/* only call local_clock() every 32 callbacks */
2264 				if (likely((count & 31) || local_clock() < tlimit))
2265 					continue;
2266 				/* Exceeded the time limit, so leave. */
2267 				break;
2268 			}
2269 		} else {
2270 			local_bh_enable();
2271 			lockdep_assert_irqs_enabled();
2272 			cond_resched_tasks_rcu_qs();
2273 			lockdep_assert_irqs_enabled();
2274 			local_bh_disable();
2275 		}
2276 	}
2277 
2278 	rcu_nocb_lock_irqsave(rdp, flags);
2279 	rdp->n_cbs_invoked += count;
2280 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2281 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2282 
2283 	/* Update counts and requeue any remaining callbacks. */
2284 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2285 	rcu_segcblist_add_len(&rdp->cblist, -count);
2286 
2287 	/* Reinstate batch limit if we have worked down the excess. */
2288 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2289 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2290 		rdp->blimit = blimit;
2291 
2292 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2293 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2294 		rdp->qlen_last_fqs_check = 0;
2295 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2296 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2297 		rdp->qlen_last_fqs_check = count;
2298 
2299 	/*
2300 	 * The following usually indicates a double call_rcu().  To track
2301 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2302 	 */
2303 	empty = rcu_segcblist_empty(&rdp->cblist);
2304 	WARN_ON_ONCE(count == 0 && !empty);
2305 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2306 		     count != 0 && empty);
2307 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2308 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2309 
2310 	rcu_nocb_unlock_irqrestore(rdp, flags);
2311 
2312 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2313 }
2314 
2315 /*
2316  * This function is invoked from each scheduling-clock interrupt,
2317  * and checks to see if this CPU is in a non-context-switch quiescent
2318  * state, for example, user mode or idle loop.  It also schedules RCU
2319  * core processing.  If the current grace period has gone on too long,
2320  * it will ask the scheduler to manufacture a context switch for the sole
2321  * purpose of providing the needed quiescent state.
2322  */
2323 void rcu_sched_clock_irq(int user)
2324 {
2325 	unsigned long j;
2326 
2327 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2328 		j = jiffies;
2329 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2330 		__this_cpu_write(rcu_data.last_sched_clock, j);
2331 	}
2332 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2333 	lockdep_assert_irqs_disabled();
2334 	raw_cpu_inc(rcu_data.ticks_this_gp);
2335 	/* The load-acquire pairs with the store-release setting to true. */
2336 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2337 		/* Idle and userspace execution already are quiescent states. */
2338 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2339 			set_tsk_need_resched(current);
2340 			set_preempt_need_resched();
2341 		}
2342 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2343 	}
2344 	rcu_flavor_sched_clock_irq(user);
2345 	if (rcu_pending(user))
2346 		invoke_rcu_core();
2347 	if (user || rcu_is_cpu_rrupt_from_idle())
2348 		rcu_note_voluntary_context_switch(current);
2349 	lockdep_assert_irqs_disabled();
2350 
2351 	trace_rcu_utilization(TPS("End scheduler-tick"));
2352 }
2353 
2354 /*
2355  * Scan the leaf rcu_node structures.  For each structure on which all
2356  * CPUs have reported a quiescent state and on which there are tasks
2357  * blocking the current grace period, initiate RCU priority boosting.
2358  * Otherwise, invoke the specified function to check dyntick state for
2359  * each CPU that has not yet reported a quiescent state.
2360  */
2361 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2362 {
2363 	int cpu;
2364 	unsigned long flags;
2365 	unsigned long mask;
2366 	struct rcu_data *rdp;
2367 	struct rcu_node *rnp;
2368 
2369 	rcu_state.cbovld = rcu_state.cbovldnext;
2370 	rcu_state.cbovldnext = false;
2371 	rcu_for_each_leaf_node(rnp) {
2372 		cond_resched_tasks_rcu_qs();
2373 		mask = 0;
2374 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2375 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2376 		if (rnp->qsmask == 0) {
2377 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2378 				/*
2379 				 * No point in scanning bits because they
2380 				 * are all zero.  But we might need to
2381 				 * priority-boost blocked readers.
2382 				 */
2383 				rcu_initiate_boost(rnp, flags);
2384 				/* rcu_initiate_boost() releases rnp->lock */
2385 				continue;
2386 			}
2387 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2388 			continue;
2389 		}
2390 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2391 			rdp = per_cpu_ptr(&rcu_data, cpu);
2392 			if (f(rdp)) {
2393 				mask |= rdp->grpmask;
2394 				rcu_disable_urgency_upon_qs(rdp);
2395 			}
2396 		}
2397 		if (mask != 0) {
2398 			/* Idle/offline CPUs, report (releases rnp->lock). */
2399 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2400 		} else {
2401 			/* Nothing to do here, so just drop the lock. */
2402 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403 		}
2404 	}
2405 }
2406 
2407 /*
2408  * Force quiescent states on reluctant CPUs, and also detect which
2409  * CPUs are in dyntick-idle mode.
2410  */
2411 void rcu_force_quiescent_state(void)
2412 {
2413 	unsigned long flags;
2414 	bool ret;
2415 	struct rcu_node *rnp;
2416 	struct rcu_node *rnp_old = NULL;
2417 
2418 	/* Funnel through hierarchy to reduce memory contention. */
2419 	rnp = __this_cpu_read(rcu_data.mynode);
2420 	for (; rnp != NULL; rnp = rnp->parent) {
2421 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2422 		       !raw_spin_trylock(&rnp->fqslock);
2423 		if (rnp_old != NULL)
2424 			raw_spin_unlock(&rnp_old->fqslock);
2425 		if (ret)
2426 			return;
2427 		rnp_old = rnp;
2428 	}
2429 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2430 
2431 	/* Reached the root of the rcu_node tree, acquire lock. */
2432 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2433 	raw_spin_unlock(&rnp_old->fqslock);
2434 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2435 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2436 		return;  /* Someone beat us to it. */
2437 	}
2438 	WRITE_ONCE(rcu_state.gp_flags,
2439 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2440 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2441 	rcu_gp_kthread_wake();
2442 }
2443 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2444 
2445 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2446 // grace periods.
2447 static void strict_work_handler(struct work_struct *work)
2448 {
2449 	rcu_read_lock();
2450 	rcu_read_unlock();
2451 }
2452 
2453 /* Perform RCU core processing work for the current CPU.  */
2454 static __latent_entropy void rcu_core(void)
2455 {
2456 	unsigned long flags;
2457 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2458 	struct rcu_node *rnp = rdp->mynode;
2459 	/*
2460 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2461 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2462 	 * on this CPU and the below condition must be considered volatile.
2463 	 * However if we race with:
2464 	 *
2465 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2466 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2467 	 *                 call rcu_nocb_lock() if that happens.
2468 	 *
2469 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2470 	 *                 processing. This is fine because the early stage
2471 	 *                 of deoffloading invokes rcu_core() after setting
2472 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2473 	 *                 what could have been dismissed without the need to wait
2474 	 *                 for the next rcu_pending() check in the next jiffy.
2475 	 */
2476 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2477 
2478 	if (cpu_is_offline(smp_processor_id()))
2479 		return;
2480 	trace_rcu_utilization(TPS("Start RCU core"));
2481 	WARN_ON_ONCE(!rdp->beenonline);
2482 
2483 	/* Report any deferred quiescent states if preemption enabled. */
2484 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2485 		rcu_preempt_deferred_qs(current);
2486 	} else if (rcu_preempt_need_deferred_qs(current)) {
2487 		set_tsk_need_resched(current);
2488 		set_preempt_need_resched();
2489 	}
2490 
2491 	/* Update RCU state based on any recent quiescent states. */
2492 	rcu_check_quiescent_state(rdp);
2493 
2494 	/* No grace period and unregistered callbacks? */
2495 	if (!rcu_gp_in_progress() &&
2496 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2497 		rcu_nocb_lock_irqsave(rdp, flags);
2498 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2499 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2500 		rcu_nocb_unlock_irqrestore(rdp, flags);
2501 	}
2502 
2503 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2504 
2505 	/* If there are callbacks ready, invoke them. */
2506 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2507 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2508 		rcu_do_batch(rdp);
2509 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2510 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2511 			invoke_rcu_core();
2512 	}
2513 
2514 	/* Do any needed deferred wakeups of rcuo kthreads. */
2515 	do_nocb_deferred_wakeup(rdp);
2516 	trace_rcu_utilization(TPS("End RCU core"));
2517 
2518 	// If strict GPs, schedule an RCU reader in a clean environment.
2519 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2520 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2521 }
2522 
2523 static void rcu_core_si(struct softirq_action *h)
2524 {
2525 	rcu_core();
2526 }
2527 
2528 static void rcu_wake_cond(struct task_struct *t, int status)
2529 {
2530 	/*
2531 	 * If the thread is yielding, only wake it when this
2532 	 * is invoked from idle
2533 	 */
2534 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2535 		wake_up_process(t);
2536 }
2537 
2538 static void invoke_rcu_core_kthread(void)
2539 {
2540 	struct task_struct *t;
2541 	unsigned long flags;
2542 
2543 	local_irq_save(flags);
2544 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2545 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2546 	if (t != NULL && t != current)
2547 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2548 	local_irq_restore(flags);
2549 }
2550 
2551 /*
2552  * Wake up this CPU's rcuc kthread to do RCU core processing.
2553  */
2554 static void invoke_rcu_core(void)
2555 {
2556 	if (!cpu_online(smp_processor_id()))
2557 		return;
2558 	if (use_softirq)
2559 		raise_softirq(RCU_SOFTIRQ);
2560 	else
2561 		invoke_rcu_core_kthread();
2562 }
2563 
2564 static void rcu_cpu_kthread_park(unsigned int cpu)
2565 {
2566 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2567 }
2568 
2569 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2570 {
2571 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2572 }
2573 
2574 /*
2575  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2576  * the RCU softirq used in configurations of RCU that do not support RCU
2577  * priority boosting.
2578  */
2579 static void rcu_cpu_kthread(unsigned int cpu)
2580 {
2581 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2582 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2583 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2584 	int spincnt;
2585 
2586 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2587 	for (spincnt = 0; spincnt < 10; spincnt++) {
2588 		WRITE_ONCE(*j, jiffies);
2589 		local_bh_disable();
2590 		*statusp = RCU_KTHREAD_RUNNING;
2591 		local_irq_disable();
2592 		work = *workp;
2593 		*workp = 0;
2594 		local_irq_enable();
2595 		if (work)
2596 			rcu_core();
2597 		local_bh_enable();
2598 		if (*workp == 0) {
2599 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2600 			*statusp = RCU_KTHREAD_WAITING;
2601 			return;
2602 		}
2603 	}
2604 	*statusp = RCU_KTHREAD_YIELDING;
2605 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2606 	schedule_timeout_idle(2);
2607 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2608 	*statusp = RCU_KTHREAD_WAITING;
2609 	WRITE_ONCE(*j, jiffies);
2610 }
2611 
2612 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2613 	.store			= &rcu_data.rcu_cpu_kthread_task,
2614 	.thread_should_run	= rcu_cpu_kthread_should_run,
2615 	.thread_fn		= rcu_cpu_kthread,
2616 	.thread_comm		= "rcuc/%u",
2617 	.setup			= rcu_cpu_kthread_setup,
2618 	.park			= rcu_cpu_kthread_park,
2619 };
2620 
2621 /*
2622  * Spawn per-CPU RCU core processing kthreads.
2623  */
2624 static int __init rcu_spawn_core_kthreads(void)
2625 {
2626 	int cpu;
2627 
2628 	for_each_possible_cpu(cpu)
2629 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2630 	if (use_softirq)
2631 		return 0;
2632 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2633 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2634 	return 0;
2635 }
2636 
2637 /*
2638  * Handle any core-RCU processing required by a call_rcu() invocation.
2639  */
2640 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2641 			    unsigned long flags)
2642 {
2643 	/*
2644 	 * If called from an extended quiescent state, invoke the RCU
2645 	 * core in order to force a re-evaluation of RCU's idleness.
2646 	 */
2647 	if (!rcu_is_watching())
2648 		invoke_rcu_core();
2649 
2650 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2651 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2652 		return;
2653 
2654 	/*
2655 	 * Force the grace period if too many callbacks or too long waiting.
2656 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2657 	 * if some other CPU has recently done so.  Also, don't bother
2658 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2659 	 * is the only one waiting for a grace period to complete.
2660 	 */
2661 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2662 		     rdp->qlen_last_fqs_check + qhimark)) {
2663 
2664 		/* Are we ignoring a completed grace period? */
2665 		note_gp_changes(rdp);
2666 
2667 		/* Start a new grace period if one not already started. */
2668 		if (!rcu_gp_in_progress()) {
2669 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2670 		} else {
2671 			/* Give the grace period a kick. */
2672 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2673 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2674 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2675 				rcu_force_quiescent_state();
2676 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2677 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2678 		}
2679 	}
2680 }
2681 
2682 /*
2683  * RCU callback function to leak a callback.
2684  */
2685 static void rcu_leak_callback(struct rcu_head *rhp)
2686 {
2687 }
2688 
2689 /*
2690  * Check and if necessary update the leaf rcu_node structure's
2691  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2692  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2693  * structure's ->lock.
2694  */
2695 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2696 {
2697 	raw_lockdep_assert_held_rcu_node(rnp);
2698 	if (qovld_calc <= 0)
2699 		return; // Early boot and wildcard value set.
2700 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2701 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2702 	else
2703 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2704 }
2705 
2706 /*
2707  * Check and if necessary update the leaf rcu_node structure's
2708  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2709  * number of queued RCU callbacks.  No locks need be held, but the
2710  * caller must have disabled interrupts.
2711  *
2712  * Note that this function ignores the possibility that there are a lot
2713  * of callbacks all of which have already seen the end of their respective
2714  * grace periods.  This omission is due to the need for no-CBs CPUs to
2715  * be holding ->nocb_lock to do this check, which is too heavy for a
2716  * common-case operation.
2717  */
2718 static void check_cb_ovld(struct rcu_data *rdp)
2719 {
2720 	struct rcu_node *const rnp = rdp->mynode;
2721 
2722 	if (qovld_calc <= 0 ||
2723 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2724 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2725 		return; // Early boot wildcard value or already set correctly.
2726 	raw_spin_lock_rcu_node(rnp);
2727 	check_cb_ovld_locked(rdp, rnp);
2728 	raw_spin_unlock_rcu_node(rnp);
2729 }
2730 
2731 /**
2732  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2733  * @head: structure to be used for queueing the RCU updates.
2734  * @func: actual callback function to be invoked after the grace period
2735  *
2736  * The callback function will be invoked some time after a full grace
2737  * period elapses, in other words after all pre-existing RCU read-side
2738  * critical sections have completed.  However, the callback function
2739  * might well execute concurrently with RCU read-side critical sections
2740  * that started after call_rcu() was invoked.
2741  *
2742  * RCU read-side critical sections are delimited by rcu_read_lock()
2743  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2744  * v5.0 and later, regions of code across which interrupts, preemption,
2745  * or softirqs have been disabled also serve as RCU read-side critical
2746  * sections.  This includes hardware interrupt handlers, softirq handlers,
2747  * and NMI handlers.
2748  *
2749  * Note that all CPUs must agree that the grace period extended beyond
2750  * all pre-existing RCU read-side critical section.  On systems with more
2751  * than one CPU, this means that when "func()" is invoked, each CPU is
2752  * guaranteed to have executed a full memory barrier since the end of its
2753  * last RCU read-side critical section whose beginning preceded the call
2754  * to call_rcu().  It also means that each CPU executing an RCU read-side
2755  * critical section that continues beyond the start of "func()" must have
2756  * executed a memory barrier after the call_rcu() but before the beginning
2757  * of that RCU read-side critical section.  Note that these guarantees
2758  * include CPUs that are offline, idle, or executing in user mode, as
2759  * well as CPUs that are executing in the kernel.
2760  *
2761  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2762  * resulting RCU callback function "func()", then both CPU A and CPU B are
2763  * guaranteed to execute a full memory barrier during the time interval
2764  * between the call to call_rcu() and the invocation of "func()" -- even
2765  * if CPU A and CPU B are the same CPU (but again only if the system has
2766  * more than one CPU).
2767  *
2768  * Implementation of these memory-ordering guarantees is described here:
2769  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2770  */
2771 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2772 {
2773 	static atomic_t doublefrees;
2774 	unsigned long flags;
2775 	struct rcu_data *rdp;
2776 	bool was_alldone;
2777 
2778 	/* Misaligned rcu_head! */
2779 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2780 
2781 	if (debug_rcu_head_queue(head)) {
2782 		/*
2783 		 * Probable double call_rcu(), so leak the callback.
2784 		 * Use rcu:rcu_callback trace event to find the previous
2785 		 * time callback was passed to call_rcu().
2786 		 */
2787 		if (atomic_inc_return(&doublefrees) < 4) {
2788 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2789 			mem_dump_obj(head);
2790 		}
2791 		WRITE_ONCE(head->func, rcu_leak_callback);
2792 		return;
2793 	}
2794 	head->func = func;
2795 	head->next = NULL;
2796 	kasan_record_aux_stack_noalloc(head);
2797 	local_irq_save(flags);
2798 	rdp = this_cpu_ptr(&rcu_data);
2799 
2800 	/* Add the callback to our list. */
2801 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2802 		// This can trigger due to call_rcu() from offline CPU:
2803 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2804 		WARN_ON_ONCE(!rcu_is_watching());
2805 		// Very early boot, before rcu_init().  Initialize if needed
2806 		// and then drop through to queue the callback.
2807 		if (rcu_segcblist_empty(&rdp->cblist))
2808 			rcu_segcblist_init(&rdp->cblist);
2809 	}
2810 
2811 	check_cb_ovld(rdp);
2812 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2813 		return; // Enqueued onto ->nocb_bypass, so just leave.
2814 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2815 	rcu_segcblist_enqueue(&rdp->cblist, head);
2816 	if (__is_kvfree_rcu_offset((unsigned long)func))
2817 		trace_rcu_kvfree_callback(rcu_state.name, head,
2818 					 (unsigned long)func,
2819 					 rcu_segcblist_n_cbs(&rdp->cblist));
2820 	else
2821 		trace_rcu_callback(rcu_state.name, head,
2822 				   rcu_segcblist_n_cbs(&rdp->cblist));
2823 
2824 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2825 
2826 	/* Go handle any RCU core processing required. */
2827 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2828 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2829 	} else {
2830 		__call_rcu_core(rdp, head, flags);
2831 		local_irq_restore(flags);
2832 	}
2833 }
2834 EXPORT_SYMBOL_GPL(call_rcu);
2835 
2836 
2837 /* Maximum number of jiffies to wait before draining a batch. */
2838 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2839 #define KFREE_N_BATCHES 2
2840 #define FREE_N_CHANNELS 2
2841 
2842 /**
2843  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2844  * @nr_records: Number of active pointers in the array
2845  * @next: Next bulk object in the block chain
2846  * @records: Array of the kvfree_rcu() pointers
2847  */
2848 struct kvfree_rcu_bulk_data {
2849 	unsigned long nr_records;
2850 	struct kvfree_rcu_bulk_data *next;
2851 	void *records[];
2852 };
2853 
2854 /*
2855  * This macro defines how many entries the "records" array
2856  * will contain. It is based on the fact that the size of
2857  * kvfree_rcu_bulk_data structure becomes exactly one page.
2858  */
2859 #define KVFREE_BULK_MAX_ENTR \
2860 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2861 
2862 /**
2863  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2864  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2865  * @head_free: List of kfree_rcu() objects waiting for a grace period
2866  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2867  * @krcp: Pointer to @kfree_rcu_cpu structure
2868  */
2869 
2870 struct kfree_rcu_cpu_work {
2871 	struct rcu_work rcu_work;
2872 	struct rcu_head *head_free;
2873 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2874 	struct kfree_rcu_cpu *krcp;
2875 };
2876 
2877 /**
2878  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2879  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2880  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2881  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2882  * @lock: Synchronize access to this structure
2883  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2884  * @initialized: The @rcu_work fields have been initialized
2885  * @count: Number of objects for which GP not started
2886  * @bkvcache:
2887  *	A simple cache list that contains objects for reuse purpose.
2888  *	In order to save some per-cpu space the list is singular.
2889  *	Even though it is lockless an access has to be protected by the
2890  *	per-cpu lock.
2891  * @page_cache_work: A work to refill the cache when it is empty
2892  * @backoff_page_cache_fill: Delay cache refills
2893  * @work_in_progress: Indicates that page_cache_work is running
2894  * @hrtimer: A hrtimer for scheduling a page_cache_work
2895  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2896  *
2897  * This is a per-CPU structure.  The reason that it is not included in
2898  * the rcu_data structure is to permit this code to be extracted from
2899  * the RCU files.  Such extraction could allow further optimization of
2900  * the interactions with the slab allocators.
2901  */
2902 struct kfree_rcu_cpu {
2903 	struct rcu_head *head;
2904 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2905 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2906 	raw_spinlock_t lock;
2907 	struct delayed_work monitor_work;
2908 	bool initialized;
2909 	int count;
2910 
2911 	struct delayed_work page_cache_work;
2912 	atomic_t backoff_page_cache_fill;
2913 	atomic_t work_in_progress;
2914 	struct hrtimer hrtimer;
2915 
2916 	struct llist_head bkvcache;
2917 	int nr_bkv_objs;
2918 };
2919 
2920 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2921 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2922 };
2923 
2924 static __always_inline void
2925 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2926 {
2927 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2928 	int i;
2929 
2930 	for (i = 0; i < bhead->nr_records; i++)
2931 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2932 #endif
2933 }
2934 
2935 static inline struct kfree_rcu_cpu *
2936 krc_this_cpu_lock(unsigned long *flags)
2937 {
2938 	struct kfree_rcu_cpu *krcp;
2939 
2940 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2941 	krcp = this_cpu_ptr(&krc);
2942 	raw_spin_lock(&krcp->lock);
2943 
2944 	return krcp;
2945 }
2946 
2947 static inline void
2948 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2949 {
2950 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2951 }
2952 
2953 static inline struct kvfree_rcu_bulk_data *
2954 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2955 {
2956 	if (!krcp->nr_bkv_objs)
2957 		return NULL;
2958 
2959 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2960 	return (struct kvfree_rcu_bulk_data *)
2961 		llist_del_first(&krcp->bkvcache);
2962 }
2963 
2964 static inline bool
2965 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2966 	struct kvfree_rcu_bulk_data *bnode)
2967 {
2968 	// Check the limit.
2969 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2970 		return false;
2971 
2972 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2973 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2974 	return true;
2975 }
2976 
2977 static int
2978 drain_page_cache(struct kfree_rcu_cpu *krcp)
2979 {
2980 	unsigned long flags;
2981 	struct llist_node *page_list, *pos, *n;
2982 	int freed = 0;
2983 
2984 	raw_spin_lock_irqsave(&krcp->lock, flags);
2985 	page_list = llist_del_all(&krcp->bkvcache);
2986 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
2987 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2988 
2989 	llist_for_each_safe(pos, n, page_list) {
2990 		free_page((unsigned long)pos);
2991 		freed++;
2992 	}
2993 
2994 	return freed;
2995 }
2996 
2997 /*
2998  * This function is invoked in workqueue context after a grace period.
2999  * It frees all the objects queued on ->bkvhead_free or ->head_free.
3000  */
3001 static void kfree_rcu_work(struct work_struct *work)
3002 {
3003 	unsigned long flags;
3004 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3005 	struct rcu_head *head, *next;
3006 	struct kfree_rcu_cpu *krcp;
3007 	struct kfree_rcu_cpu_work *krwp;
3008 	int i, j;
3009 
3010 	krwp = container_of(to_rcu_work(work),
3011 			    struct kfree_rcu_cpu_work, rcu_work);
3012 	krcp = krwp->krcp;
3013 
3014 	raw_spin_lock_irqsave(&krcp->lock, flags);
3015 	// Channels 1 and 2.
3016 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3017 		bkvhead[i] = krwp->bkvhead_free[i];
3018 		krwp->bkvhead_free[i] = NULL;
3019 	}
3020 
3021 	// Channel 3.
3022 	head = krwp->head_free;
3023 	krwp->head_free = NULL;
3024 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3025 
3026 	// Handle the first two channels.
3027 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3028 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3029 			bnext = bkvhead[i]->next;
3030 			debug_rcu_bhead_unqueue(bkvhead[i]);
3031 
3032 			rcu_lock_acquire(&rcu_callback_map);
3033 			if (i == 0) { // kmalloc() / kfree().
3034 				trace_rcu_invoke_kfree_bulk_callback(
3035 					rcu_state.name, bkvhead[i]->nr_records,
3036 					bkvhead[i]->records);
3037 
3038 				kfree_bulk(bkvhead[i]->nr_records,
3039 					bkvhead[i]->records);
3040 			} else { // vmalloc() / vfree().
3041 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3042 					trace_rcu_invoke_kvfree_callback(
3043 						rcu_state.name,
3044 						bkvhead[i]->records[j], 0);
3045 
3046 					vfree(bkvhead[i]->records[j]);
3047 				}
3048 			}
3049 			rcu_lock_release(&rcu_callback_map);
3050 
3051 			raw_spin_lock_irqsave(&krcp->lock, flags);
3052 			if (put_cached_bnode(krcp, bkvhead[i]))
3053 				bkvhead[i] = NULL;
3054 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3055 
3056 			if (bkvhead[i])
3057 				free_page((unsigned long) bkvhead[i]);
3058 
3059 			cond_resched_tasks_rcu_qs();
3060 		}
3061 	}
3062 
3063 	/*
3064 	 * This is used when the "bulk" path can not be used for the
3065 	 * double-argument of kvfree_rcu().  This happens when the
3066 	 * page-cache is empty, which means that objects are instead
3067 	 * queued on a linked list through their rcu_head structures.
3068 	 * This list is named "Channel 3".
3069 	 */
3070 	for (; head; head = next) {
3071 		unsigned long offset = (unsigned long)head->func;
3072 		void *ptr = (void *)head - offset;
3073 
3074 		next = head->next;
3075 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3076 		rcu_lock_acquire(&rcu_callback_map);
3077 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3078 
3079 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3080 			kvfree(ptr);
3081 
3082 		rcu_lock_release(&rcu_callback_map);
3083 		cond_resched_tasks_rcu_qs();
3084 	}
3085 }
3086 
3087 static bool
3088 need_offload_krc(struct kfree_rcu_cpu *krcp)
3089 {
3090 	int i;
3091 
3092 	for (i = 0; i < FREE_N_CHANNELS; i++)
3093 		if (krcp->bkvhead[i])
3094 			return true;
3095 
3096 	return !!krcp->head;
3097 }
3098 
3099 static void
3100 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3101 {
3102 	long delay, delay_left;
3103 
3104 	delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3105 	if (delayed_work_pending(&krcp->monitor_work)) {
3106 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3107 		if (delay < delay_left)
3108 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3109 		return;
3110 	}
3111 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3112 }
3113 
3114 /*
3115  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3116  */
3117 static void kfree_rcu_monitor(struct work_struct *work)
3118 {
3119 	struct kfree_rcu_cpu *krcp = container_of(work,
3120 		struct kfree_rcu_cpu, monitor_work.work);
3121 	unsigned long flags;
3122 	int i, j;
3123 
3124 	raw_spin_lock_irqsave(&krcp->lock, flags);
3125 
3126 	// Attempt to start a new batch.
3127 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3128 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3129 
3130 		// Try to detach bkvhead or head and attach it over any
3131 		// available corresponding free channel. It can be that
3132 		// a previous RCU batch is in progress, it means that
3133 		// immediately to queue another one is not possible so
3134 		// in that case the monitor work is rearmed.
3135 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3136 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3137 				(krcp->head && !krwp->head_free)) {
3138 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3139 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3140 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3141 				if (!krwp->bkvhead_free[j]) {
3142 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3143 					krcp->bkvhead[j] = NULL;
3144 				}
3145 			}
3146 
3147 			// Channel 3 corresponds to both SLAB and vmalloc
3148 			// objects queued on the linked list.
3149 			if (!krwp->head_free) {
3150 				krwp->head_free = krcp->head;
3151 				krcp->head = NULL;
3152 			}
3153 
3154 			WRITE_ONCE(krcp->count, 0);
3155 
3156 			// One work is per one batch, so there are three
3157 			// "free channels", the batch can handle. It can
3158 			// be that the work is in the pending state when
3159 			// channels have been detached following by each
3160 			// other.
3161 			queue_rcu_work(system_wq, &krwp->rcu_work);
3162 		}
3163 	}
3164 
3165 	// If there is nothing to detach, it means that our job is
3166 	// successfully done here. In case of having at least one
3167 	// of the channels that is still busy we should rearm the
3168 	// work to repeat an attempt. Because previous batches are
3169 	// still in progress.
3170 	if (need_offload_krc(krcp))
3171 		schedule_delayed_monitor_work(krcp);
3172 
3173 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3174 }
3175 
3176 static enum hrtimer_restart
3177 schedule_page_work_fn(struct hrtimer *t)
3178 {
3179 	struct kfree_rcu_cpu *krcp =
3180 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3181 
3182 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3183 	return HRTIMER_NORESTART;
3184 }
3185 
3186 static void fill_page_cache_func(struct work_struct *work)
3187 {
3188 	struct kvfree_rcu_bulk_data *bnode;
3189 	struct kfree_rcu_cpu *krcp =
3190 		container_of(work, struct kfree_rcu_cpu,
3191 			page_cache_work.work);
3192 	unsigned long flags;
3193 	int nr_pages;
3194 	bool pushed;
3195 	int i;
3196 
3197 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3198 		1 : rcu_min_cached_objs;
3199 
3200 	for (i = 0; i < nr_pages; i++) {
3201 		bnode = (struct kvfree_rcu_bulk_data *)
3202 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3203 
3204 		if (!bnode)
3205 			break;
3206 
3207 		raw_spin_lock_irqsave(&krcp->lock, flags);
3208 		pushed = put_cached_bnode(krcp, bnode);
3209 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3210 
3211 		if (!pushed) {
3212 			free_page((unsigned long) bnode);
3213 			break;
3214 		}
3215 	}
3216 
3217 	atomic_set(&krcp->work_in_progress, 0);
3218 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3219 }
3220 
3221 static void
3222 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3223 {
3224 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3225 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3226 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3227 			queue_delayed_work(system_wq,
3228 				&krcp->page_cache_work,
3229 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3230 		} else {
3231 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3232 			krcp->hrtimer.function = schedule_page_work_fn;
3233 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3234 		}
3235 	}
3236 }
3237 
3238 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3239 // state specified by flags.  If can_alloc is true, the caller must
3240 // be schedulable and not be holding any locks or mutexes that might be
3241 // acquired by the memory allocator or anything that it might invoke.
3242 // Returns true if ptr was successfully recorded, else the caller must
3243 // use a fallback.
3244 static inline bool
3245 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3246 	unsigned long *flags, void *ptr, bool can_alloc)
3247 {
3248 	struct kvfree_rcu_bulk_data *bnode;
3249 	int idx;
3250 
3251 	*krcp = krc_this_cpu_lock(flags);
3252 	if (unlikely(!(*krcp)->initialized))
3253 		return false;
3254 
3255 	idx = !!is_vmalloc_addr(ptr);
3256 
3257 	/* Check if a new block is required. */
3258 	if (!(*krcp)->bkvhead[idx] ||
3259 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3260 		bnode = get_cached_bnode(*krcp);
3261 		if (!bnode && can_alloc) {
3262 			krc_this_cpu_unlock(*krcp, *flags);
3263 
3264 			// __GFP_NORETRY - allows a light-weight direct reclaim
3265 			// what is OK from minimizing of fallback hitting point of
3266 			// view. Apart of that it forbids any OOM invoking what is
3267 			// also beneficial since we are about to release memory soon.
3268 			//
3269 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3270 			// memory reserves. Please note we have a fallback path.
3271 			//
3272 			// __GFP_NOWARN - it is supposed that an allocation can
3273 			// be failed under low memory or high memory pressure
3274 			// scenarios.
3275 			bnode = (struct kvfree_rcu_bulk_data *)
3276 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3277 			*krcp = krc_this_cpu_lock(flags);
3278 		}
3279 
3280 		if (!bnode)
3281 			return false;
3282 
3283 		/* Initialize the new block. */
3284 		bnode->nr_records = 0;
3285 		bnode->next = (*krcp)->bkvhead[idx];
3286 
3287 		/* Attach it to the head. */
3288 		(*krcp)->bkvhead[idx] = bnode;
3289 	}
3290 
3291 	/* Finally insert. */
3292 	(*krcp)->bkvhead[idx]->records
3293 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3294 
3295 	return true;
3296 }
3297 
3298 /*
3299  * Queue a request for lazy invocation of the appropriate free routine
3300  * after a grace period.  Please note that three paths are maintained,
3301  * two for the common case using arrays of pointers and a third one that
3302  * is used only when the main paths cannot be used, for example, due to
3303  * memory pressure.
3304  *
3305  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3306  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3307  * be free'd in workqueue context. This allows us to: batch requests together to
3308  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3309  */
3310 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3311 {
3312 	unsigned long flags;
3313 	struct kfree_rcu_cpu *krcp;
3314 	bool success;
3315 	void *ptr;
3316 
3317 	if (head) {
3318 		ptr = (void *) head - (unsigned long) func;
3319 	} else {
3320 		/*
3321 		 * Please note there is a limitation for the head-less
3322 		 * variant, that is why there is a clear rule for such
3323 		 * objects: it can be used from might_sleep() context
3324 		 * only. For other places please embed an rcu_head to
3325 		 * your data.
3326 		 */
3327 		might_sleep();
3328 		ptr = (unsigned long *) func;
3329 	}
3330 
3331 	// Queue the object but don't yet schedule the batch.
3332 	if (debug_rcu_head_queue(ptr)) {
3333 		// Probable double kfree_rcu(), just leak.
3334 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3335 			  __func__, head);
3336 
3337 		// Mark as success and leave.
3338 		return;
3339 	}
3340 
3341 	kasan_record_aux_stack_noalloc(ptr);
3342 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3343 	if (!success) {
3344 		run_page_cache_worker(krcp);
3345 
3346 		if (head == NULL)
3347 			// Inline if kvfree_rcu(one_arg) call.
3348 			goto unlock_return;
3349 
3350 		head->func = func;
3351 		head->next = krcp->head;
3352 		krcp->head = head;
3353 		success = true;
3354 	}
3355 
3356 	WRITE_ONCE(krcp->count, krcp->count + 1);
3357 
3358 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3359 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3360 		schedule_delayed_monitor_work(krcp);
3361 
3362 unlock_return:
3363 	krc_this_cpu_unlock(krcp, flags);
3364 
3365 	/*
3366 	 * Inline kvfree() after synchronize_rcu(). We can do
3367 	 * it from might_sleep() context only, so the current
3368 	 * CPU can pass the QS state.
3369 	 */
3370 	if (!success) {
3371 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3372 		synchronize_rcu();
3373 		kvfree(ptr);
3374 	}
3375 }
3376 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3377 
3378 static unsigned long
3379 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3380 {
3381 	int cpu;
3382 	unsigned long count = 0;
3383 
3384 	/* Snapshot count of all CPUs */
3385 	for_each_possible_cpu(cpu) {
3386 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3387 
3388 		count += READ_ONCE(krcp->count);
3389 		count += READ_ONCE(krcp->nr_bkv_objs);
3390 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3391 	}
3392 
3393 	return count == 0 ? SHRINK_EMPTY : count;
3394 }
3395 
3396 static unsigned long
3397 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3398 {
3399 	int cpu, freed = 0;
3400 
3401 	for_each_possible_cpu(cpu) {
3402 		int count;
3403 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3404 
3405 		count = krcp->count;
3406 		count += drain_page_cache(krcp);
3407 		kfree_rcu_monitor(&krcp->monitor_work.work);
3408 
3409 		sc->nr_to_scan -= count;
3410 		freed += count;
3411 
3412 		if (sc->nr_to_scan <= 0)
3413 			break;
3414 	}
3415 
3416 	return freed == 0 ? SHRINK_STOP : freed;
3417 }
3418 
3419 static struct shrinker kfree_rcu_shrinker = {
3420 	.count_objects = kfree_rcu_shrink_count,
3421 	.scan_objects = kfree_rcu_shrink_scan,
3422 	.batch = 0,
3423 	.seeks = DEFAULT_SEEKS,
3424 };
3425 
3426 void __init kfree_rcu_scheduler_running(void)
3427 {
3428 	int cpu;
3429 	unsigned long flags;
3430 
3431 	for_each_possible_cpu(cpu) {
3432 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3433 
3434 		raw_spin_lock_irqsave(&krcp->lock, flags);
3435 		if (need_offload_krc(krcp))
3436 			schedule_delayed_monitor_work(krcp);
3437 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3438 	}
3439 }
3440 
3441 /*
3442  * During early boot, any blocking grace-period wait automatically
3443  * implies a grace period.
3444  *
3445  * Later on, this could in theory be the case for kernels built with
3446  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3447  * is not a common case.  Furthermore, this optimization would cause
3448  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3449  * grace-period optimization is ignored once the scheduler is running.
3450  */
3451 static int rcu_blocking_is_gp(void)
3452 {
3453 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3454 		return false;
3455 	might_sleep();  /* Check for RCU read-side critical section. */
3456 	return true;
3457 }
3458 
3459 /**
3460  * synchronize_rcu - wait until a grace period has elapsed.
3461  *
3462  * Control will return to the caller some time after a full grace
3463  * period has elapsed, in other words after all currently executing RCU
3464  * read-side critical sections have completed.  Note, however, that
3465  * upon return from synchronize_rcu(), the caller might well be executing
3466  * concurrently with new RCU read-side critical sections that began while
3467  * synchronize_rcu() was waiting.
3468  *
3469  * RCU read-side critical sections are delimited by rcu_read_lock()
3470  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3471  * v5.0 and later, regions of code across which interrupts, preemption,
3472  * or softirqs have been disabled also serve as RCU read-side critical
3473  * sections.  This includes hardware interrupt handlers, softirq handlers,
3474  * and NMI handlers.
3475  *
3476  * Note that this guarantee implies further memory-ordering guarantees.
3477  * On systems with more than one CPU, when synchronize_rcu() returns,
3478  * each CPU is guaranteed to have executed a full memory barrier since
3479  * the end of its last RCU read-side critical section whose beginning
3480  * preceded the call to synchronize_rcu().  In addition, each CPU having
3481  * an RCU read-side critical section that extends beyond the return from
3482  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3483  * after the beginning of synchronize_rcu() and before the beginning of
3484  * that RCU read-side critical section.  Note that these guarantees include
3485  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3486  * that are executing in the kernel.
3487  *
3488  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3489  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3490  * to have executed a full memory barrier during the execution of
3491  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3492  * again only if the system has more than one CPU).
3493  *
3494  * Implementation of these memory-ordering guarantees is described here:
3495  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3496  */
3497 void synchronize_rcu(void)
3498 {
3499 	unsigned long flags;
3500 	struct rcu_node *rnp;
3501 
3502 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3503 			 lock_is_held(&rcu_lock_map) ||
3504 			 lock_is_held(&rcu_sched_lock_map),
3505 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3506 	if (!rcu_blocking_is_gp()) {
3507 		if (rcu_gp_is_expedited())
3508 			synchronize_rcu_expedited();
3509 		else
3510 			wait_rcu_gp(call_rcu);
3511 		return;
3512 	}
3513 
3514 	// Context allows vacuous grace periods.
3515 	// Note well that this code runs with !PREEMPT && !SMP.
3516 	// In addition, all code that advances grace periods runs at
3517 	// process level.  Therefore, this normal GP overlaps with other
3518 	// normal GPs only by being fully nested within them, which allows
3519 	// reuse of ->gp_seq_polled_snap.
3520 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3521 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3522 
3523 	// Update the normal grace-period counters to record
3524 	// this grace period, but only those used by the boot CPU.
3525 	// The rcu_scheduler_starting() will take care of the rest of
3526 	// these counters.
3527 	local_irq_save(flags);
3528 	WARN_ON_ONCE(num_online_cpus() > 1);
3529 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3530 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3531 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3532 	local_irq_restore(flags);
3533 }
3534 EXPORT_SYMBOL_GPL(synchronize_rcu);
3535 
3536 /**
3537  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3538  * @rgosp: Place to put state cookie
3539  *
3540  * Stores into @rgosp a value that will always be treated by functions
3541  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3542  * has already completed.
3543  */
3544 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3545 {
3546 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3547 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3548 }
3549 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3550 
3551 /**
3552  * get_state_synchronize_rcu - Snapshot current RCU state
3553  *
3554  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3555  * or poll_state_synchronize_rcu() to determine whether or not a full
3556  * grace period has elapsed in the meantime.
3557  */
3558 unsigned long get_state_synchronize_rcu(void)
3559 {
3560 	/*
3561 	 * Any prior manipulation of RCU-protected data must happen
3562 	 * before the load from ->gp_seq.
3563 	 */
3564 	smp_mb();  /* ^^^ */
3565 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3566 }
3567 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3568 
3569 /**
3570  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3571  * @rgosp: location to place combined normal/expedited grace-period state
3572  *
3573  * Places the normal and expedited grace-period states in @rgosp.  This
3574  * state value can be passed to a later call to cond_synchronize_rcu_full()
3575  * or poll_state_synchronize_rcu_full() to determine whether or not a
3576  * grace period (whether normal or expedited) has elapsed in the meantime.
3577  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3578  * long, but is guaranteed to see all grace periods.  In contrast, the
3579  * combined state occupies less memory, but can sometimes fail to take
3580  * grace periods into account.
3581  *
3582  * This does not guarantee that the needed grace period will actually
3583  * start.
3584  */
3585 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3586 {
3587 	struct rcu_node *rnp = rcu_get_root();
3588 
3589 	/*
3590 	 * Any prior manipulation of RCU-protected data must happen
3591 	 * before the loads from ->gp_seq and ->expedited_sequence.
3592 	 */
3593 	smp_mb();  /* ^^^ */
3594 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3595 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3596 }
3597 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3598 
3599 /*
3600  * Helper function for start_poll_synchronize_rcu() and
3601  * start_poll_synchronize_rcu_full().
3602  */
3603 static void start_poll_synchronize_rcu_common(void)
3604 {
3605 	unsigned long flags;
3606 	bool needwake;
3607 	struct rcu_data *rdp;
3608 	struct rcu_node *rnp;
3609 
3610 	lockdep_assert_irqs_enabled();
3611 	local_irq_save(flags);
3612 	rdp = this_cpu_ptr(&rcu_data);
3613 	rnp = rdp->mynode;
3614 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3615 	// Note it is possible for a grace period to have elapsed between
3616 	// the above call to get_state_synchronize_rcu() and the below call
3617 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3618 	// get a grace period that no one needed.  These accesses are ordered
3619 	// by smp_mb(), and we are accessing them in the opposite order
3620 	// from which they are updated at grace-period start, as required.
3621 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3622 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3623 	if (needwake)
3624 		rcu_gp_kthread_wake();
3625 }
3626 
3627 /**
3628  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3629  *
3630  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3631  * or poll_state_synchronize_rcu() to determine whether or not a full
3632  * grace period has elapsed in the meantime.  If the needed grace period
3633  * is not already slated to start, notifies RCU core of the need for that
3634  * grace period.
3635  *
3636  * Interrupts must be enabled for the case where it is necessary to awaken
3637  * the grace-period kthread.
3638  */
3639 unsigned long start_poll_synchronize_rcu(void)
3640 {
3641 	unsigned long gp_seq = get_state_synchronize_rcu();
3642 
3643 	start_poll_synchronize_rcu_common();
3644 	return gp_seq;
3645 }
3646 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3647 
3648 /**
3649  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3650  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3651  *
3652  * Places the normal and expedited grace-period states in *@rgos.  This
3653  * state value can be passed to a later call to cond_synchronize_rcu_full()
3654  * or poll_state_synchronize_rcu_full() to determine whether or not a
3655  * grace period (whether normal or expedited) has elapsed in the meantime.
3656  * If the needed grace period is not already slated to start, notifies
3657  * RCU core of the need for that grace period.
3658  *
3659  * Interrupts must be enabled for the case where it is necessary to awaken
3660  * the grace-period kthread.
3661  */
3662 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3663 {
3664 	get_state_synchronize_rcu_full(rgosp);
3665 
3666 	start_poll_synchronize_rcu_common();
3667 }
3668 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3669 
3670 /**
3671  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3672  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3673  *
3674  * If a full RCU grace period has elapsed since the earlier call from
3675  * which @oldstate was obtained, return @true, otherwise return @false.
3676  * If @false is returned, it is the caller's responsibility to invoke this
3677  * function later on until it does return @true.  Alternatively, the caller
3678  * can explicitly wait for a grace period, for example, by passing @oldstate
3679  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3680  *
3681  * Yes, this function does not take counter wrap into account.
3682  * But counter wrap is harmless.  If the counter wraps, we have waited for
3683  * more than a billion grace periods (and way more on a 64-bit system!).
3684  * Those needing to keep old state values for very long time periods
3685  * (many hours even on 32-bit systems) should check them occasionally and
3686  * either refresh them or set a flag indicating that the grace period has
3687  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3688  * to get a guaranteed-completed grace-period state.
3689  *
3690  * This function provides the same memory-ordering guarantees that
3691  * would be provided by a synchronize_rcu() that was invoked at the call
3692  * to the function that provided @oldstate, and that returned at the end
3693  * of this function.
3694  */
3695 bool poll_state_synchronize_rcu(unsigned long oldstate)
3696 {
3697 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3698 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3699 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3700 		return true;
3701 	}
3702 	return false;
3703 }
3704 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3705 
3706 /**
3707  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3708  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3709  *
3710  * If a full RCU grace period has elapsed since the earlier call from
3711  * which *rgosp was obtained, return @true, otherwise return @false.
3712  * If @false is returned, it is the caller's responsibility to invoke this
3713  * function later on until it does return @true.  Alternatively, the caller
3714  * can explicitly wait for a grace period, for example, by passing @rgosp
3715  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3716  *
3717  * Yes, this function does not take counter wrap into account.
3718  * But counter wrap is harmless.  If the counter wraps, we have waited
3719  * for more than a billion grace periods (and way more on a 64-bit
3720  * system!).  Those needing to keep rcu_gp_oldstate values for very
3721  * long time periods (many hours even on 32-bit systems) should check
3722  * them occasionally and either refresh them or set a flag indicating
3723  * that the grace period has completed.  Alternatively, they can use
3724  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3725  * grace-period state.
3726  *
3727  * This function provides the same memory-ordering guarantees that would
3728  * be provided by a synchronize_rcu() that was invoked at the call to
3729  * the function that provided @rgosp, and that returned at the end of this
3730  * function.  And this guarantee requires that the root rcu_node structure's
3731  * ->gp_seq field be checked instead of that of the rcu_state structure.
3732  * The problem is that the just-ending grace-period's callbacks can be
3733  * invoked between the time that the root rcu_node structure's ->gp_seq
3734  * field is updated and the time that the rcu_state structure's ->gp_seq
3735  * field is updated.  Therefore, if a single synchronize_rcu() is to
3736  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3737  * then the root rcu_node structure is the one that needs to be polled.
3738  */
3739 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3740 {
3741 	struct rcu_node *rnp = rcu_get_root();
3742 
3743 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3744 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3745 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3746 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3747 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3748 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3749 		return true;
3750 	}
3751 	return false;
3752 }
3753 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3754 
3755 /**
3756  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3757  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3758  *
3759  * If a full RCU grace period has elapsed since the earlier call to
3760  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3761  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3762  *
3763  * Yes, this function does not take counter wrap into account.
3764  * But counter wrap is harmless.  If the counter wraps, we have waited for
3765  * more than 2 billion grace periods (and way more on a 64-bit system!),
3766  * so waiting for a couple of additional grace periods should be just fine.
3767  *
3768  * This function provides the same memory-ordering guarantees that
3769  * would be provided by a synchronize_rcu() that was invoked at the call
3770  * to the function that provided @oldstate and that returned at the end
3771  * of this function.
3772  */
3773 void cond_synchronize_rcu(unsigned long oldstate)
3774 {
3775 	if (!poll_state_synchronize_rcu(oldstate))
3776 		synchronize_rcu();
3777 }
3778 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3779 
3780 /**
3781  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3782  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3783  *
3784  * If a full RCU grace period has elapsed since the call to
3785  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3786  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3787  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3788  * for a full grace period.
3789  *
3790  * Yes, this function does not take counter wrap into account.
3791  * But counter wrap is harmless.  If the counter wraps, we have waited for
3792  * more than 2 billion grace periods (and way more on a 64-bit system!),
3793  * so waiting for a couple of additional grace periods should be just fine.
3794  *
3795  * This function provides the same memory-ordering guarantees that
3796  * would be provided by a synchronize_rcu() that was invoked at the call
3797  * to the function that provided @rgosp and that returned at the end of
3798  * this function.
3799  */
3800 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3801 {
3802 	if (!poll_state_synchronize_rcu_full(rgosp))
3803 		synchronize_rcu();
3804 }
3805 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3806 
3807 /*
3808  * Check to see if there is any immediate RCU-related work to be done by
3809  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3810  * in order of increasing expense: checks that can be carried out against
3811  * CPU-local state are performed first.  However, we must check for CPU
3812  * stalls first, else we might not get a chance.
3813  */
3814 static int rcu_pending(int user)
3815 {
3816 	bool gp_in_progress;
3817 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3818 	struct rcu_node *rnp = rdp->mynode;
3819 
3820 	lockdep_assert_irqs_disabled();
3821 
3822 	/* Check for CPU stalls, if enabled. */
3823 	check_cpu_stall(rdp);
3824 
3825 	/* Does this CPU need a deferred NOCB wakeup? */
3826 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3827 		return 1;
3828 
3829 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3830 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3831 		return 0;
3832 
3833 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3834 	gp_in_progress = rcu_gp_in_progress();
3835 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3836 		return 1;
3837 
3838 	/* Does this CPU have callbacks ready to invoke? */
3839 	if (!rcu_rdp_is_offloaded(rdp) &&
3840 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3841 		return 1;
3842 
3843 	/* Has RCU gone idle with this CPU needing another grace period? */
3844 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3845 	    !rcu_rdp_is_offloaded(rdp) &&
3846 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3847 		return 1;
3848 
3849 	/* Have RCU grace period completed or started?  */
3850 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3851 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3852 		return 1;
3853 
3854 	/* nothing to do */
3855 	return 0;
3856 }
3857 
3858 /*
3859  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3860  * the compiler is expected to optimize this away.
3861  */
3862 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3863 {
3864 	trace_rcu_barrier(rcu_state.name, s, cpu,
3865 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3866 }
3867 
3868 /*
3869  * RCU callback function for rcu_barrier().  If we are last, wake
3870  * up the task executing rcu_barrier().
3871  *
3872  * Note that the value of rcu_state.barrier_sequence must be captured
3873  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3874  * other CPUs might count the value down to zero before this CPU gets
3875  * around to invoking rcu_barrier_trace(), which might result in bogus
3876  * data from the next instance of rcu_barrier().
3877  */
3878 static void rcu_barrier_callback(struct rcu_head *rhp)
3879 {
3880 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3881 
3882 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3883 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3884 		complete(&rcu_state.barrier_completion);
3885 	} else {
3886 		rcu_barrier_trace(TPS("CB"), -1, s);
3887 	}
3888 }
3889 
3890 /*
3891  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3892  */
3893 static void rcu_barrier_entrain(struct rcu_data *rdp)
3894 {
3895 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3896 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3897 
3898 	lockdep_assert_held(&rcu_state.barrier_lock);
3899 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3900 		return;
3901 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3902 	rdp->barrier_head.func = rcu_barrier_callback;
3903 	debug_rcu_head_queue(&rdp->barrier_head);
3904 	rcu_nocb_lock(rdp);
3905 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3906 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3907 		atomic_inc(&rcu_state.barrier_cpu_count);
3908 	} else {
3909 		debug_rcu_head_unqueue(&rdp->barrier_head);
3910 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3911 	}
3912 	rcu_nocb_unlock(rdp);
3913 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3914 }
3915 
3916 /*
3917  * Called with preemption disabled, and from cross-cpu IRQ context.
3918  */
3919 static void rcu_barrier_handler(void *cpu_in)
3920 {
3921 	uintptr_t cpu = (uintptr_t)cpu_in;
3922 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3923 
3924 	lockdep_assert_irqs_disabled();
3925 	WARN_ON_ONCE(cpu != rdp->cpu);
3926 	WARN_ON_ONCE(cpu != smp_processor_id());
3927 	raw_spin_lock(&rcu_state.barrier_lock);
3928 	rcu_barrier_entrain(rdp);
3929 	raw_spin_unlock(&rcu_state.barrier_lock);
3930 }
3931 
3932 /**
3933  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3934  *
3935  * Note that this primitive does not necessarily wait for an RCU grace period
3936  * to complete.  For example, if there are no RCU callbacks queued anywhere
3937  * in the system, then rcu_barrier() is within its rights to return
3938  * immediately, without waiting for anything, much less an RCU grace period.
3939  */
3940 void rcu_barrier(void)
3941 {
3942 	uintptr_t cpu;
3943 	unsigned long flags;
3944 	unsigned long gseq;
3945 	struct rcu_data *rdp;
3946 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3947 
3948 	rcu_barrier_trace(TPS("Begin"), -1, s);
3949 
3950 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3951 	mutex_lock(&rcu_state.barrier_mutex);
3952 
3953 	/* Did someone else do our work for us? */
3954 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3955 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
3956 		smp_mb(); /* caller's subsequent code after above check. */
3957 		mutex_unlock(&rcu_state.barrier_mutex);
3958 		return;
3959 	}
3960 
3961 	/* Mark the start of the barrier operation. */
3962 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3963 	rcu_seq_start(&rcu_state.barrier_sequence);
3964 	gseq = rcu_state.barrier_sequence;
3965 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3966 
3967 	/*
3968 	 * Initialize the count to two rather than to zero in order
3969 	 * to avoid a too-soon return to zero in case of an immediate
3970 	 * invocation of the just-enqueued callback (or preemption of
3971 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3972 	 * offline non-offloaded CPU has callbacks queued.
3973 	 */
3974 	init_completion(&rcu_state.barrier_completion);
3975 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3976 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3977 
3978 	/*
3979 	 * Force each CPU with callbacks to register a new callback.
3980 	 * When that callback is invoked, we will know that all of the
3981 	 * corresponding CPU's preceding callbacks have been invoked.
3982 	 */
3983 	for_each_possible_cpu(cpu) {
3984 		rdp = per_cpu_ptr(&rcu_data, cpu);
3985 retry:
3986 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
3987 			continue;
3988 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3989 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
3990 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3991 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3992 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
3993 			continue;
3994 		}
3995 		if (!rcu_rdp_cpu_online(rdp)) {
3996 			rcu_barrier_entrain(rdp);
3997 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3998 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3999 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4000 			continue;
4001 		}
4002 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4003 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4004 			schedule_timeout_uninterruptible(1);
4005 			goto retry;
4006 		}
4007 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4008 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4009 	}
4010 
4011 	/*
4012 	 * Now that we have an rcu_barrier_callback() callback on each
4013 	 * CPU, and thus each counted, remove the initial count.
4014 	 */
4015 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4016 		complete(&rcu_state.barrier_completion);
4017 
4018 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4019 	wait_for_completion(&rcu_state.barrier_completion);
4020 
4021 	/* Mark the end of the barrier operation. */
4022 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4023 	rcu_seq_end(&rcu_state.barrier_sequence);
4024 	gseq = rcu_state.barrier_sequence;
4025 	for_each_possible_cpu(cpu) {
4026 		rdp = per_cpu_ptr(&rcu_data, cpu);
4027 
4028 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4029 	}
4030 
4031 	/* Other rcu_barrier() invocations can now safely proceed. */
4032 	mutex_unlock(&rcu_state.barrier_mutex);
4033 }
4034 EXPORT_SYMBOL_GPL(rcu_barrier);
4035 
4036 /*
4037  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4038  * first CPU in a given leaf rcu_node structure coming online.  The caller
4039  * must hold the corresponding leaf rcu_node ->lock with interrupts
4040  * disabled.
4041  */
4042 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4043 {
4044 	long mask;
4045 	long oldmask;
4046 	struct rcu_node *rnp = rnp_leaf;
4047 
4048 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4049 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4050 	for (;;) {
4051 		mask = rnp->grpmask;
4052 		rnp = rnp->parent;
4053 		if (rnp == NULL)
4054 			return;
4055 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4056 		oldmask = rnp->qsmaskinit;
4057 		rnp->qsmaskinit |= mask;
4058 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4059 		if (oldmask)
4060 			return;
4061 	}
4062 }
4063 
4064 /*
4065  * Do boot-time initialization of a CPU's per-CPU RCU data.
4066  */
4067 static void __init
4068 rcu_boot_init_percpu_data(int cpu)
4069 {
4070 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4071 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4072 
4073 	/* Set up local state, ensuring consistent view of global state. */
4074 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4075 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4076 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4077 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4078 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4079 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4080 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4081 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4082 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4083 	rdp->last_sched_clock = jiffies;
4084 	rdp->cpu = cpu;
4085 	rcu_boot_init_nocb_percpu_data(rdp);
4086 }
4087 
4088 /*
4089  * Invoked early in the CPU-online process, when pretty much all services
4090  * are available.  The incoming CPU is not present.
4091  *
4092  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4093  * offline event can be happening at a given time.  Note also that we can
4094  * accept some slop in the rsp->gp_seq access due to the fact that this
4095  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4096  * And any offloaded callbacks are being numbered elsewhere.
4097  */
4098 int rcutree_prepare_cpu(unsigned int cpu)
4099 {
4100 	unsigned long flags;
4101 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4102 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4103 	struct rcu_node *rnp = rcu_get_root();
4104 
4105 	/* Set up local state, ensuring consistent view of global state. */
4106 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4107 	rdp->qlen_last_fqs_check = 0;
4108 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4109 	rdp->blimit = blimit;
4110 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4111 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4112 
4113 	/*
4114 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4115 	 * (re-)initialized.
4116 	 */
4117 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4118 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4119 
4120 	/*
4121 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4122 	 * propagation up the rcu_node tree will happen at the beginning
4123 	 * of the next grace period.
4124 	 */
4125 	rnp = rdp->mynode;
4126 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4127 	rdp->beenonline = true;	 /* We have now been online. */
4128 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4129 	rdp->gp_seq_needed = rdp->gp_seq;
4130 	rdp->cpu_no_qs.b.norm = true;
4131 	rdp->core_needs_qs = false;
4132 	rdp->rcu_iw_pending = false;
4133 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4134 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4135 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4136 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4137 	rcu_spawn_one_boost_kthread(rnp);
4138 	rcu_spawn_cpu_nocb_kthread(cpu);
4139 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4140 
4141 	return 0;
4142 }
4143 
4144 /*
4145  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4146  */
4147 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4148 {
4149 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4150 
4151 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4152 }
4153 
4154 /*
4155  * Near the end of the CPU-online process.  Pretty much all services
4156  * enabled, and the CPU is now very much alive.
4157  */
4158 int rcutree_online_cpu(unsigned int cpu)
4159 {
4160 	unsigned long flags;
4161 	struct rcu_data *rdp;
4162 	struct rcu_node *rnp;
4163 
4164 	rdp = per_cpu_ptr(&rcu_data, cpu);
4165 	rnp = rdp->mynode;
4166 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4167 	rnp->ffmask |= rdp->grpmask;
4168 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4169 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4170 		return 0; /* Too early in boot for scheduler work. */
4171 	sync_sched_exp_online_cleanup(cpu);
4172 	rcutree_affinity_setting(cpu, -1);
4173 
4174 	// Stop-machine done, so allow nohz_full to disable tick.
4175 	tick_dep_clear(TICK_DEP_BIT_RCU);
4176 	return 0;
4177 }
4178 
4179 /*
4180  * Near the beginning of the process.  The CPU is still very much alive
4181  * with pretty much all services enabled.
4182  */
4183 int rcutree_offline_cpu(unsigned int cpu)
4184 {
4185 	unsigned long flags;
4186 	struct rcu_data *rdp;
4187 	struct rcu_node *rnp;
4188 
4189 	rdp = per_cpu_ptr(&rcu_data, cpu);
4190 	rnp = rdp->mynode;
4191 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4192 	rnp->ffmask &= ~rdp->grpmask;
4193 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4194 
4195 	rcutree_affinity_setting(cpu, cpu);
4196 
4197 	// nohz_full CPUs need the tick for stop-machine to work quickly
4198 	tick_dep_set(TICK_DEP_BIT_RCU);
4199 	return 0;
4200 }
4201 
4202 /*
4203  * Mark the specified CPU as being online so that subsequent grace periods
4204  * (both expedited and normal) will wait on it.  Note that this means that
4205  * incoming CPUs are not allowed to use RCU read-side critical sections
4206  * until this function is called.  Failing to observe this restriction
4207  * will result in lockdep splats.
4208  *
4209  * Note that this function is special in that it is invoked directly
4210  * from the incoming CPU rather than from the cpuhp_step mechanism.
4211  * This is because this function must be invoked at a precise location.
4212  */
4213 void rcu_cpu_starting(unsigned int cpu)
4214 {
4215 	unsigned long flags;
4216 	unsigned long mask;
4217 	struct rcu_data *rdp;
4218 	struct rcu_node *rnp;
4219 	bool newcpu;
4220 
4221 	rdp = per_cpu_ptr(&rcu_data, cpu);
4222 	if (rdp->cpu_started)
4223 		return;
4224 	rdp->cpu_started = true;
4225 
4226 	rnp = rdp->mynode;
4227 	mask = rdp->grpmask;
4228 	local_irq_save(flags);
4229 	arch_spin_lock(&rcu_state.ofl_lock);
4230 	rcu_dynticks_eqs_online();
4231 	raw_spin_lock(&rcu_state.barrier_lock);
4232 	raw_spin_lock_rcu_node(rnp);
4233 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4234 	raw_spin_unlock(&rcu_state.barrier_lock);
4235 	newcpu = !(rnp->expmaskinitnext & mask);
4236 	rnp->expmaskinitnext |= mask;
4237 	/* Allow lockless access for expedited grace periods. */
4238 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4239 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4240 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4241 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4242 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4243 
4244 	/* An incoming CPU should never be blocking a grace period. */
4245 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4246 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4247 		unsigned long flags2;
4248 
4249 		local_irq_save(flags2);
4250 		rcu_disable_urgency_upon_qs(rdp);
4251 		/* Report QS -after- changing ->qsmaskinitnext! */
4252 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4253 	} else {
4254 		raw_spin_unlock_rcu_node(rnp);
4255 	}
4256 	arch_spin_unlock(&rcu_state.ofl_lock);
4257 	local_irq_restore(flags);
4258 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4259 }
4260 
4261 /*
4262  * The outgoing function has no further need of RCU, so remove it from
4263  * the rcu_node tree's ->qsmaskinitnext bit masks.
4264  *
4265  * Note that this function is special in that it is invoked directly
4266  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4267  * This is because this function must be invoked at a precise location.
4268  */
4269 void rcu_report_dead(unsigned int cpu)
4270 {
4271 	unsigned long flags, seq_flags;
4272 	unsigned long mask;
4273 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4274 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4275 
4276 	// Do any dangling deferred wakeups.
4277 	do_nocb_deferred_wakeup(rdp);
4278 
4279 	/* QS for any half-done expedited grace period. */
4280 	rcu_report_exp_rdp(rdp);
4281 	rcu_preempt_deferred_qs(current);
4282 
4283 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4284 	mask = rdp->grpmask;
4285 	local_irq_save(seq_flags);
4286 	arch_spin_lock(&rcu_state.ofl_lock);
4287 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4288 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4289 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4290 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4291 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4292 		rcu_disable_urgency_upon_qs(rdp);
4293 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4294 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4295 	}
4296 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4297 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4298 	arch_spin_unlock(&rcu_state.ofl_lock);
4299 	local_irq_restore(seq_flags);
4300 
4301 	rdp->cpu_started = false;
4302 }
4303 
4304 #ifdef CONFIG_HOTPLUG_CPU
4305 /*
4306  * The outgoing CPU has just passed through the dying-idle state, and we
4307  * are being invoked from the CPU that was IPIed to continue the offline
4308  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4309  */
4310 void rcutree_migrate_callbacks(int cpu)
4311 {
4312 	unsigned long flags;
4313 	struct rcu_data *my_rdp;
4314 	struct rcu_node *my_rnp;
4315 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4316 	bool needwake;
4317 
4318 	if (rcu_rdp_is_offloaded(rdp) ||
4319 	    rcu_segcblist_empty(&rdp->cblist))
4320 		return;  /* No callbacks to migrate. */
4321 
4322 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4323 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4324 	rcu_barrier_entrain(rdp);
4325 	my_rdp = this_cpu_ptr(&rcu_data);
4326 	my_rnp = my_rdp->mynode;
4327 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4328 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4329 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4330 	/* Leverage recent GPs and set GP for new callbacks. */
4331 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4332 		   rcu_advance_cbs(my_rnp, my_rdp);
4333 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4334 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4335 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4336 	rcu_segcblist_disable(&rdp->cblist);
4337 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4338 	check_cb_ovld_locked(my_rdp, my_rnp);
4339 	if (rcu_rdp_is_offloaded(my_rdp)) {
4340 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4341 		__call_rcu_nocb_wake(my_rdp, true, flags);
4342 	} else {
4343 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4344 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4345 	}
4346 	if (needwake)
4347 		rcu_gp_kthread_wake();
4348 	lockdep_assert_irqs_enabled();
4349 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4350 		  !rcu_segcblist_empty(&rdp->cblist),
4351 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4352 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4353 		  rcu_segcblist_first_cb(&rdp->cblist));
4354 }
4355 #endif
4356 
4357 /*
4358  * On non-huge systems, use expedited RCU grace periods to make suspend
4359  * and hibernation run faster.
4360  */
4361 static int rcu_pm_notify(struct notifier_block *self,
4362 			 unsigned long action, void *hcpu)
4363 {
4364 	switch (action) {
4365 	case PM_HIBERNATION_PREPARE:
4366 	case PM_SUSPEND_PREPARE:
4367 		rcu_expedite_gp();
4368 		break;
4369 	case PM_POST_HIBERNATION:
4370 	case PM_POST_SUSPEND:
4371 		rcu_unexpedite_gp();
4372 		break;
4373 	default:
4374 		break;
4375 	}
4376 	return NOTIFY_OK;
4377 }
4378 
4379 #ifdef CONFIG_RCU_EXP_KTHREAD
4380 struct kthread_worker *rcu_exp_gp_kworker;
4381 struct kthread_worker *rcu_exp_par_gp_kworker;
4382 
4383 static void __init rcu_start_exp_gp_kworkers(void)
4384 {
4385 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4386 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4387 	struct sched_param param = { .sched_priority = kthread_prio };
4388 
4389 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4390 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4391 		pr_err("Failed to create %s!\n", gp_kworker_name);
4392 		return;
4393 	}
4394 
4395 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4396 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4397 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4398 		kthread_destroy_worker(rcu_exp_gp_kworker);
4399 		return;
4400 	}
4401 
4402 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4403 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4404 				   &param);
4405 }
4406 
4407 static inline void rcu_alloc_par_gp_wq(void)
4408 {
4409 }
4410 #else /* !CONFIG_RCU_EXP_KTHREAD */
4411 struct workqueue_struct *rcu_par_gp_wq;
4412 
4413 static void __init rcu_start_exp_gp_kworkers(void)
4414 {
4415 }
4416 
4417 static inline void rcu_alloc_par_gp_wq(void)
4418 {
4419 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4420 	WARN_ON(!rcu_par_gp_wq);
4421 }
4422 #endif /* CONFIG_RCU_EXP_KTHREAD */
4423 
4424 /*
4425  * Spawn the kthreads that handle RCU's grace periods.
4426  */
4427 static int __init rcu_spawn_gp_kthread(void)
4428 {
4429 	unsigned long flags;
4430 	struct rcu_node *rnp;
4431 	struct sched_param sp;
4432 	struct task_struct *t;
4433 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4434 
4435 	rcu_scheduler_fully_active = 1;
4436 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4437 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4438 		return 0;
4439 	if (kthread_prio) {
4440 		sp.sched_priority = kthread_prio;
4441 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4442 	}
4443 	rnp = rcu_get_root();
4444 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4445 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4446 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4447 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4448 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4449 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4450 	wake_up_process(t);
4451 	/* This is a pre-SMP initcall, we expect a single CPU */
4452 	WARN_ON(num_online_cpus() > 1);
4453 	/*
4454 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4455 	 * due to rcu_scheduler_fully_active.
4456 	 */
4457 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4458 	rcu_spawn_one_boost_kthread(rdp->mynode);
4459 	rcu_spawn_core_kthreads();
4460 	/* Create kthread worker for expedited GPs */
4461 	rcu_start_exp_gp_kworkers();
4462 	return 0;
4463 }
4464 early_initcall(rcu_spawn_gp_kthread);
4465 
4466 /*
4467  * This function is invoked towards the end of the scheduler's
4468  * initialization process.  Before this is called, the idle task might
4469  * contain synchronous grace-period primitives (during which time, this idle
4470  * task is booting the system, and such primitives are no-ops).  After this
4471  * function is called, any synchronous grace-period primitives are run as
4472  * expedited, with the requesting task driving the grace period forward.
4473  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4474  * runtime RCU functionality.
4475  */
4476 void rcu_scheduler_starting(void)
4477 {
4478 	unsigned long flags;
4479 	struct rcu_node *rnp;
4480 
4481 	WARN_ON(num_online_cpus() != 1);
4482 	WARN_ON(nr_context_switches() > 0);
4483 	rcu_test_sync_prims();
4484 
4485 	// Fix up the ->gp_seq counters.
4486 	local_irq_save(flags);
4487 	rcu_for_each_node_breadth_first(rnp)
4488 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4489 	local_irq_restore(flags);
4490 
4491 	// Switch out of early boot mode.
4492 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4493 	rcu_test_sync_prims();
4494 }
4495 
4496 /*
4497  * Helper function for rcu_init() that initializes the rcu_state structure.
4498  */
4499 static void __init rcu_init_one(void)
4500 {
4501 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4502 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4503 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4504 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4505 
4506 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4507 	int cpustride = 1;
4508 	int i;
4509 	int j;
4510 	struct rcu_node *rnp;
4511 
4512 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4513 
4514 	/* Silence gcc 4.8 false positive about array index out of range. */
4515 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4516 		panic("rcu_init_one: rcu_num_lvls out of range");
4517 
4518 	/* Initialize the level-tracking arrays. */
4519 
4520 	for (i = 1; i < rcu_num_lvls; i++)
4521 		rcu_state.level[i] =
4522 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4523 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4524 
4525 	/* Initialize the elements themselves, starting from the leaves. */
4526 
4527 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4528 		cpustride *= levelspread[i];
4529 		rnp = rcu_state.level[i];
4530 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4531 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4532 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4533 						   &rcu_node_class[i], buf[i]);
4534 			raw_spin_lock_init(&rnp->fqslock);
4535 			lockdep_set_class_and_name(&rnp->fqslock,
4536 						   &rcu_fqs_class[i], fqs[i]);
4537 			rnp->gp_seq = rcu_state.gp_seq;
4538 			rnp->gp_seq_needed = rcu_state.gp_seq;
4539 			rnp->completedqs = rcu_state.gp_seq;
4540 			rnp->qsmask = 0;
4541 			rnp->qsmaskinit = 0;
4542 			rnp->grplo = j * cpustride;
4543 			rnp->grphi = (j + 1) * cpustride - 1;
4544 			if (rnp->grphi >= nr_cpu_ids)
4545 				rnp->grphi = nr_cpu_ids - 1;
4546 			if (i == 0) {
4547 				rnp->grpnum = 0;
4548 				rnp->grpmask = 0;
4549 				rnp->parent = NULL;
4550 			} else {
4551 				rnp->grpnum = j % levelspread[i - 1];
4552 				rnp->grpmask = BIT(rnp->grpnum);
4553 				rnp->parent = rcu_state.level[i - 1] +
4554 					      j / levelspread[i - 1];
4555 			}
4556 			rnp->level = i;
4557 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4558 			rcu_init_one_nocb(rnp);
4559 			init_waitqueue_head(&rnp->exp_wq[0]);
4560 			init_waitqueue_head(&rnp->exp_wq[1]);
4561 			init_waitqueue_head(&rnp->exp_wq[2]);
4562 			init_waitqueue_head(&rnp->exp_wq[3]);
4563 			spin_lock_init(&rnp->exp_lock);
4564 			mutex_init(&rnp->boost_kthread_mutex);
4565 			raw_spin_lock_init(&rnp->exp_poll_lock);
4566 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4567 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4568 		}
4569 	}
4570 
4571 	init_swait_queue_head(&rcu_state.gp_wq);
4572 	init_swait_queue_head(&rcu_state.expedited_wq);
4573 	rnp = rcu_first_leaf_node();
4574 	for_each_possible_cpu(i) {
4575 		while (i > rnp->grphi)
4576 			rnp++;
4577 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4578 		rcu_boot_init_percpu_data(i);
4579 	}
4580 }
4581 
4582 /*
4583  * Force priority from the kernel command-line into range.
4584  */
4585 static void __init sanitize_kthread_prio(void)
4586 {
4587 	int kthread_prio_in = kthread_prio;
4588 
4589 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4590 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4591 		kthread_prio = 2;
4592 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4593 		kthread_prio = 1;
4594 	else if (kthread_prio < 0)
4595 		kthread_prio = 0;
4596 	else if (kthread_prio > 99)
4597 		kthread_prio = 99;
4598 
4599 	if (kthread_prio != kthread_prio_in)
4600 		pr_alert("%s: Limited prio to %d from %d\n",
4601 			 __func__, kthread_prio, kthread_prio_in);
4602 }
4603 
4604 /*
4605  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4606  * replace the definitions in tree.h because those are needed to size
4607  * the ->node array in the rcu_state structure.
4608  */
4609 void rcu_init_geometry(void)
4610 {
4611 	ulong d;
4612 	int i;
4613 	static unsigned long old_nr_cpu_ids;
4614 	int rcu_capacity[RCU_NUM_LVLS];
4615 	static bool initialized;
4616 
4617 	if (initialized) {
4618 		/*
4619 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4620 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4621 		 */
4622 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4623 		return;
4624 	}
4625 
4626 	old_nr_cpu_ids = nr_cpu_ids;
4627 	initialized = true;
4628 
4629 	/*
4630 	 * Initialize any unspecified boot parameters.
4631 	 * The default values of jiffies_till_first_fqs and
4632 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4633 	 * value, which is a function of HZ, then adding one for each
4634 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4635 	 */
4636 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4637 	if (jiffies_till_first_fqs == ULONG_MAX)
4638 		jiffies_till_first_fqs = d;
4639 	if (jiffies_till_next_fqs == ULONG_MAX)
4640 		jiffies_till_next_fqs = d;
4641 	adjust_jiffies_till_sched_qs();
4642 
4643 	/* If the compile-time values are accurate, just leave. */
4644 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4645 	    nr_cpu_ids == NR_CPUS)
4646 		return;
4647 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4648 		rcu_fanout_leaf, nr_cpu_ids);
4649 
4650 	/*
4651 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4652 	 * and cannot exceed the number of bits in the rcu_node masks.
4653 	 * Complain and fall back to the compile-time values if this
4654 	 * limit is exceeded.
4655 	 */
4656 	if (rcu_fanout_leaf < 2 ||
4657 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4658 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4659 		WARN_ON(1);
4660 		return;
4661 	}
4662 
4663 	/*
4664 	 * Compute number of nodes that can be handled an rcu_node tree
4665 	 * with the given number of levels.
4666 	 */
4667 	rcu_capacity[0] = rcu_fanout_leaf;
4668 	for (i = 1; i < RCU_NUM_LVLS; i++)
4669 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4670 
4671 	/*
4672 	 * The tree must be able to accommodate the configured number of CPUs.
4673 	 * If this limit is exceeded, fall back to the compile-time values.
4674 	 */
4675 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4676 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4677 		WARN_ON(1);
4678 		return;
4679 	}
4680 
4681 	/* Calculate the number of levels in the tree. */
4682 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4683 	}
4684 	rcu_num_lvls = i + 1;
4685 
4686 	/* Calculate the number of rcu_nodes at each level of the tree. */
4687 	for (i = 0; i < rcu_num_lvls; i++) {
4688 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4689 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4690 	}
4691 
4692 	/* Calculate the total number of rcu_node structures. */
4693 	rcu_num_nodes = 0;
4694 	for (i = 0; i < rcu_num_lvls; i++)
4695 		rcu_num_nodes += num_rcu_lvl[i];
4696 }
4697 
4698 /*
4699  * Dump out the structure of the rcu_node combining tree associated
4700  * with the rcu_state structure.
4701  */
4702 static void __init rcu_dump_rcu_node_tree(void)
4703 {
4704 	int level = 0;
4705 	struct rcu_node *rnp;
4706 
4707 	pr_info("rcu_node tree layout dump\n");
4708 	pr_info(" ");
4709 	rcu_for_each_node_breadth_first(rnp) {
4710 		if (rnp->level != level) {
4711 			pr_cont("\n");
4712 			pr_info(" ");
4713 			level = rnp->level;
4714 		}
4715 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4716 	}
4717 	pr_cont("\n");
4718 }
4719 
4720 struct workqueue_struct *rcu_gp_wq;
4721 
4722 static void __init kfree_rcu_batch_init(void)
4723 {
4724 	int cpu;
4725 	int i;
4726 
4727 	/* Clamp it to [0:100] seconds interval. */
4728 	if (rcu_delay_page_cache_fill_msec < 0 ||
4729 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4730 
4731 		rcu_delay_page_cache_fill_msec =
4732 			clamp(rcu_delay_page_cache_fill_msec, 0,
4733 				(int) (100 * MSEC_PER_SEC));
4734 
4735 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4736 			rcu_delay_page_cache_fill_msec);
4737 	}
4738 
4739 	for_each_possible_cpu(cpu) {
4740 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4741 
4742 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4743 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4744 			krcp->krw_arr[i].krcp = krcp;
4745 		}
4746 
4747 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4748 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4749 		krcp->initialized = true;
4750 	}
4751 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4752 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4753 }
4754 
4755 void __init rcu_init(void)
4756 {
4757 	int cpu = smp_processor_id();
4758 
4759 	rcu_early_boot_tests();
4760 
4761 	kfree_rcu_batch_init();
4762 	rcu_bootup_announce();
4763 	sanitize_kthread_prio();
4764 	rcu_init_geometry();
4765 	rcu_init_one();
4766 	if (dump_tree)
4767 		rcu_dump_rcu_node_tree();
4768 	if (use_softirq)
4769 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4770 
4771 	/*
4772 	 * We don't need protection against CPU-hotplug here because
4773 	 * this is called early in boot, before either interrupts
4774 	 * or the scheduler are operational.
4775 	 */
4776 	pm_notifier(rcu_pm_notify, 0);
4777 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4778 	rcutree_prepare_cpu(cpu);
4779 	rcu_cpu_starting(cpu);
4780 	rcutree_online_cpu(cpu);
4781 
4782 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4783 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4784 	WARN_ON(!rcu_gp_wq);
4785 	rcu_alloc_par_gp_wq();
4786 
4787 	/* Fill in default value for rcutree.qovld boot parameter. */
4788 	/* -After- the rcu_node ->lock fields are initialized! */
4789 	if (qovld < 0)
4790 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4791 	else
4792 		qovld_calc = qovld;
4793 
4794 	// Kick-start any polled grace periods that started early.
4795 	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4796 		(void)start_poll_synchronize_rcu_expedited();
4797 }
4798 
4799 #include "tree_stall.h"
4800 #include "tree_exp.h"
4801 #include "tree_nocb.h"
4802 #include "tree_plugin.h"
4803