xref: /openbmc/linux/kernel/rcu/tree.c (revision 81de3bf3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * Steal a bit from the bottom of ->dynticks for idle entry/exit
74  * control.  Initially this is for TLB flushing.
75  */
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 struct rcu_state rcu_state = {
88 	.level = { &rcu_state.node[0] },
89 	.gp_state = RCU_GP_IDLE,
90 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 	.name = RCU_NAME,
93 	.abbr = RCU_ABBR,
94 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98 
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 
154 /* rcuc/rcub kthread realtime priority */
155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
156 module_param(kthread_prio, int, 0444);
157 
158 /* Delay in jiffies for grace-period initialization delays, debug only. */
159 
160 static int gp_preinit_delay;
161 module_param(gp_preinit_delay, int, 0444);
162 static int gp_init_delay;
163 module_param(gp_init_delay, int, 0444);
164 static int gp_cleanup_delay;
165 module_param(gp_cleanup_delay, int, 0444);
166 
167 /* Retrieve RCU kthreads priority for rcutorture */
168 int rcu_get_gp_kthreads_prio(void)
169 {
170 	return kthread_prio;
171 }
172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
173 
174 /*
175  * Number of grace periods between delays, normalized by the duration of
176  * the delay.  The longer the delay, the more the grace periods between
177  * each delay.  The reason for this normalization is that it means that,
178  * for non-zero delays, the overall slowdown of grace periods is constant
179  * regardless of the duration of the delay.  This arrangement balances
180  * the need for long delays to increase some race probabilities with the
181  * need for fast grace periods to increase other race probabilities.
182  */
183 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
184 
185 /*
186  * Compute the mask of online CPUs for the specified rcu_node structure.
187  * This will not be stable unless the rcu_node structure's ->lock is
188  * held, but the bit corresponding to the current CPU will be stable
189  * in most contexts.
190  */
191 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
192 {
193 	return READ_ONCE(rnp->qsmaskinitnext);
194 }
195 
196 /*
197  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
198  * permit this function to be invoked without holding the root rcu_node
199  * structure's ->lock, but of course results can be subject to change.
200  */
201 static int rcu_gp_in_progress(void)
202 {
203 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
204 }
205 
206 /*
207  * Return the number of callbacks queued on the specified CPU.
208  * Handles both the nocbs and normal cases.
209  */
210 static long rcu_get_n_cbs_cpu(int cpu)
211 {
212 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
213 
214 	if (rcu_segcblist_is_enabled(&rdp->cblist))
215 		return rcu_segcblist_n_cbs(&rdp->cblist);
216 	return 0;
217 }
218 
219 void rcu_softirq_qs(void)
220 {
221 	rcu_qs();
222 	rcu_preempt_deferred_qs(current);
223 }
224 
225 /*
226  * Record entry into an extended quiescent state.  This is only to be
227  * called when not already in an extended quiescent state.
228  */
229 static void rcu_dynticks_eqs_enter(void)
230 {
231 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
232 	int seq;
233 
234 	/*
235 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
236 	 * critical sections, and we also must force ordering with the
237 	 * next idle sojourn.
238 	 */
239 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
240 	/* Better be in an extended quiescent state! */
241 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
242 		     (seq & RCU_DYNTICK_CTRL_CTR));
243 	/* Better not have special action (TLB flush) pending! */
244 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
245 		     (seq & RCU_DYNTICK_CTRL_MASK));
246 }
247 
248 /*
249  * Record exit from an extended quiescent state.  This is only to be
250  * called from an extended quiescent state.
251  */
252 static void rcu_dynticks_eqs_exit(void)
253 {
254 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
255 	int seq;
256 
257 	/*
258 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
259 	 * and we also must force ordering with the next RCU read-side
260 	 * critical section.
261 	 */
262 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
263 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 		     !(seq & RCU_DYNTICK_CTRL_CTR));
265 	if (seq & RCU_DYNTICK_CTRL_MASK) {
266 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
267 		smp_mb__after_atomic(); /* _exit after clearing mask. */
268 		/* Prefer duplicate flushes to losing a flush. */
269 		rcu_eqs_special_exit();
270 	}
271 }
272 
273 /*
274  * Reset the current CPU's ->dynticks counter to indicate that the
275  * newly onlined CPU is no longer in an extended quiescent state.
276  * This will either leave the counter unchanged, or increment it
277  * to the next non-quiescent value.
278  *
279  * The non-atomic test/increment sequence works because the upper bits
280  * of the ->dynticks counter are manipulated only by the corresponding CPU,
281  * or when the corresponding CPU is offline.
282  */
283 static void rcu_dynticks_eqs_online(void)
284 {
285 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
286 
287 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
288 		return;
289 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 }
291 
292 /*
293  * Is the current CPU in an extended quiescent state?
294  *
295  * No ordering, as we are sampling CPU-local information.
296  */
297 bool rcu_dynticks_curr_cpu_in_eqs(void)
298 {
299 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
300 
301 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
302 }
303 
304 /*
305  * Snapshot the ->dynticks counter with full ordering so as to allow
306  * stable comparison of this counter with past and future snapshots.
307  */
308 int rcu_dynticks_snap(struct rcu_data *rdp)
309 {
310 	int snap = atomic_add_return(0, &rdp->dynticks);
311 
312 	return snap & ~RCU_DYNTICK_CTRL_MASK;
313 }
314 
315 /*
316  * Return true if the snapshot returned from rcu_dynticks_snap()
317  * indicates that RCU is in an extended quiescent state.
318  */
319 static bool rcu_dynticks_in_eqs(int snap)
320 {
321 	return !(snap & RCU_DYNTICK_CTRL_CTR);
322 }
323 
324 /*
325  * Return true if the CPU corresponding to the specified rcu_data
326  * structure has spent some time in an extended quiescent state since
327  * rcu_dynticks_snap() returned the specified snapshot.
328  */
329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
330 {
331 	return snap != rcu_dynticks_snap(rdp);
332 }
333 
334 /*
335  * Set the special (bottom) bit of the specified CPU so that it
336  * will take special action (such as flushing its TLB) on the
337  * next exit from an extended quiescent state.  Returns true if
338  * the bit was successfully set, or false if the CPU was not in
339  * an extended quiescent state.
340  */
341 bool rcu_eqs_special_set(int cpu)
342 {
343 	int old;
344 	int new;
345 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
346 
347 	do {
348 		old = atomic_read(&rdp->dynticks);
349 		if (old & RCU_DYNTICK_CTRL_CTR)
350 			return false;
351 		new = old | RCU_DYNTICK_CTRL_MASK;
352 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
353 	return true;
354 }
355 
356 /*
357  * Let the RCU core know that this CPU has gone through the scheduler,
358  * which is a quiescent state.  This is called when the need for a
359  * quiescent state is urgent, so we burn an atomic operation and full
360  * memory barriers to let the RCU core know about it, regardless of what
361  * this CPU might (or might not) do in the near future.
362  *
363  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
364  *
365  * The caller must have disabled interrupts and must not be idle.
366  */
367 void rcu_momentary_dyntick_idle(void)
368 {
369 	int special;
370 
371 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
372 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
373 				    &this_cpu_ptr(&rcu_data)->dynticks);
374 	/* It is illegal to call this from idle state. */
375 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
376 	rcu_preempt_deferred_qs(current);
377 }
378 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
379 
380 /**
381  * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
382  *
383  * If the current CPU is idle and running at a first-level (not nested)
384  * interrupt from idle, return true.  The caller must have at least
385  * disabled preemption.
386  */
387 static int rcu_is_cpu_rrupt_from_idle(void)
388 {
389 	/* Called only from within the scheduling-clock interrupt */
390 	lockdep_assert_in_irq();
391 
392 	/* Check for counter underflows */
393 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
394 			 "RCU dynticks_nesting counter underflow!");
395 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
396 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
397 
398 	/* Are we at first interrupt nesting level? */
399 	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
400 		return false;
401 
402 	/* Does CPU appear to be idle from an RCU standpoint? */
403 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
404 }
405 
406 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
407 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
408 static long blimit = DEFAULT_RCU_BLIMIT;
409 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
410 static long qhimark = DEFAULT_RCU_QHIMARK;
411 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
412 static long qlowmark = DEFAULT_RCU_QLOMARK;
413 
414 module_param(blimit, long, 0444);
415 module_param(qhimark, long, 0444);
416 module_param(qlowmark, long, 0444);
417 
418 static ulong jiffies_till_first_fqs = ULONG_MAX;
419 static ulong jiffies_till_next_fqs = ULONG_MAX;
420 static bool rcu_kick_kthreads;
421 static int rcu_divisor = 7;
422 module_param(rcu_divisor, int, 0644);
423 
424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
426 module_param(rcu_resched_ns, long, 0644);
427 
428 /*
429  * How long the grace period must be before we start recruiting
430  * quiescent-state help from rcu_note_context_switch().
431  */
432 static ulong jiffies_till_sched_qs = ULONG_MAX;
433 module_param(jiffies_till_sched_qs, ulong, 0444);
434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
436 
437 /*
438  * Make sure that we give the grace-period kthread time to detect any
439  * idle CPUs before taking active measures to force quiescent states.
440  * However, don't go below 100 milliseconds, adjusted upwards for really
441  * large systems.
442  */
443 static void adjust_jiffies_till_sched_qs(void)
444 {
445 	unsigned long j;
446 
447 	/* If jiffies_till_sched_qs was specified, respect the request. */
448 	if (jiffies_till_sched_qs != ULONG_MAX) {
449 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
450 		return;
451 	}
452 	/* Otherwise, set to third fqs scan, but bound below on large system. */
453 	j = READ_ONCE(jiffies_till_first_fqs) +
454 		      2 * READ_ONCE(jiffies_till_next_fqs);
455 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
456 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
457 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
458 	WRITE_ONCE(jiffies_to_sched_qs, j);
459 }
460 
461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
462 {
463 	ulong j;
464 	int ret = kstrtoul(val, 0, &j);
465 
466 	if (!ret) {
467 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
468 		adjust_jiffies_till_sched_qs();
469 	}
470 	return ret;
471 }
472 
473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
474 {
475 	ulong j;
476 	int ret = kstrtoul(val, 0, &j);
477 
478 	if (!ret) {
479 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
480 		adjust_jiffies_till_sched_qs();
481 	}
482 	return ret;
483 }
484 
485 static struct kernel_param_ops first_fqs_jiffies_ops = {
486 	.set = param_set_first_fqs_jiffies,
487 	.get = param_get_ulong,
488 };
489 
490 static struct kernel_param_ops next_fqs_jiffies_ops = {
491 	.set = param_set_next_fqs_jiffies,
492 	.get = param_get_ulong,
493 };
494 
495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
497 module_param(rcu_kick_kthreads, bool, 0644);
498 
499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
500 static int rcu_pending(int user);
501 
502 /*
503  * Return the number of RCU GPs completed thus far for debug & stats.
504  */
505 unsigned long rcu_get_gp_seq(void)
506 {
507 	return READ_ONCE(rcu_state.gp_seq);
508 }
509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
510 
511 /*
512  * Return the number of RCU expedited batches completed thus far for
513  * debug & stats.  Odd numbers mean that a batch is in progress, even
514  * numbers mean idle.  The value returned will thus be roughly double
515  * the cumulative batches since boot.
516  */
517 unsigned long rcu_exp_batches_completed(void)
518 {
519 	return rcu_state.expedited_sequence;
520 }
521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
522 
523 /*
524  * Return the root node of the rcu_state structure.
525  */
526 static struct rcu_node *rcu_get_root(void)
527 {
528 	return &rcu_state.node[0];
529 }
530 
531 /*
532  * Convert a ->gp_state value to a character string.
533  */
534 static const char *gp_state_getname(short gs)
535 {
536 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
537 		return "???";
538 	return gp_state_names[gs];
539 }
540 
541 /*
542  * Send along grace-period-related data for rcutorture diagnostics.
543  */
544 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
545 			    unsigned long *gp_seq)
546 {
547 	switch (test_type) {
548 	case RCU_FLAVOR:
549 		*flags = READ_ONCE(rcu_state.gp_flags);
550 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
551 		break;
552 	default:
553 		break;
554 	}
555 }
556 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
557 
558 /*
559  * Enter an RCU extended quiescent state, which can be either the
560  * idle loop or adaptive-tickless usermode execution.
561  *
562  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
563  * the possibility of usermode upcalls having messed up our count
564  * of interrupt nesting level during the prior busy period.
565  */
566 static void rcu_eqs_enter(bool user)
567 {
568 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
569 
570 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
571 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
572 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
573 		     rdp->dynticks_nesting == 0);
574 	if (rdp->dynticks_nesting != 1) {
575 		rdp->dynticks_nesting--;
576 		return;
577 	}
578 
579 	lockdep_assert_irqs_disabled();
580 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
581 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
582 	rdp = this_cpu_ptr(&rcu_data);
583 	do_nocb_deferred_wakeup(rdp);
584 	rcu_prepare_for_idle();
585 	rcu_preempt_deferred_qs(current);
586 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
587 	rcu_dynticks_eqs_enter();
588 	rcu_dynticks_task_enter();
589 }
590 
591 /**
592  * rcu_idle_enter - inform RCU that current CPU is entering idle
593  *
594  * Enter idle mode, in other words, -leave- the mode in which RCU
595  * read-side critical sections can occur.  (Though RCU read-side
596  * critical sections can occur in irq handlers in idle, a possibility
597  * handled by irq_enter() and irq_exit().)
598  *
599  * If you add or remove a call to rcu_idle_enter(), be sure to test with
600  * CONFIG_RCU_EQS_DEBUG=y.
601  */
602 void rcu_idle_enter(void)
603 {
604 	lockdep_assert_irqs_disabled();
605 	rcu_eqs_enter(false);
606 }
607 
608 #ifdef CONFIG_NO_HZ_FULL
609 /**
610  * rcu_user_enter - inform RCU that we are resuming userspace.
611  *
612  * Enter RCU idle mode right before resuming userspace.  No use of RCU
613  * is permitted between this call and rcu_user_exit(). This way the
614  * CPU doesn't need to maintain the tick for RCU maintenance purposes
615  * when the CPU runs in userspace.
616  *
617  * If you add or remove a call to rcu_user_enter(), be sure to test with
618  * CONFIG_RCU_EQS_DEBUG=y.
619  */
620 void rcu_user_enter(void)
621 {
622 	lockdep_assert_irqs_disabled();
623 	rcu_eqs_enter(true);
624 }
625 #endif /* CONFIG_NO_HZ_FULL */
626 
627 /*
628  * If we are returning from the outermost NMI handler that interrupted an
629  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
630  * to let the RCU grace-period handling know that the CPU is back to
631  * being RCU-idle.
632  *
633  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
634  * with CONFIG_RCU_EQS_DEBUG=y.
635  */
636 static __always_inline void rcu_nmi_exit_common(bool irq)
637 {
638 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
639 
640 	/*
641 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
642 	 * (We are exiting an NMI handler, so RCU better be paying attention
643 	 * to us!)
644 	 */
645 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
646 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
647 
648 	/*
649 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
650 	 * leave it in non-RCU-idle state.
651 	 */
652 	if (rdp->dynticks_nmi_nesting != 1) {
653 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
654 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
655 			   rdp->dynticks_nmi_nesting - 2);
656 		return;
657 	}
658 
659 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
660 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
661 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
662 
663 	if (irq)
664 		rcu_prepare_for_idle();
665 
666 	rcu_dynticks_eqs_enter();
667 
668 	if (irq)
669 		rcu_dynticks_task_enter();
670 }
671 
672 /**
673  * rcu_nmi_exit - inform RCU of exit from NMI context
674  *
675  * If you add or remove a call to rcu_nmi_exit(), be sure to test
676  * with CONFIG_RCU_EQS_DEBUG=y.
677  */
678 void rcu_nmi_exit(void)
679 {
680 	rcu_nmi_exit_common(false);
681 }
682 
683 /**
684  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
685  *
686  * Exit from an interrupt handler, which might possibly result in entering
687  * idle mode, in other words, leaving the mode in which read-side critical
688  * sections can occur.  The caller must have disabled interrupts.
689  *
690  * This code assumes that the idle loop never does anything that might
691  * result in unbalanced calls to irq_enter() and irq_exit().  If your
692  * architecture's idle loop violates this assumption, RCU will give you what
693  * you deserve, good and hard.  But very infrequently and irreproducibly.
694  *
695  * Use things like work queues to work around this limitation.
696  *
697  * You have been warned.
698  *
699  * If you add or remove a call to rcu_irq_exit(), be sure to test with
700  * CONFIG_RCU_EQS_DEBUG=y.
701  */
702 void rcu_irq_exit(void)
703 {
704 	lockdep_assert_irqs_disabled();
705 	rcu_nmi_exit_common(true);
706 }
707 
708 /*
709  * Wrapper for rcu_irq_exit() where interrupts are enabled.
710  *
711  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
712  * with CONFIG_RCU_EQS_DEBUG=y.
713  */
714 void rcu_irq_exit_irqson(void)
715 {
716 	unsigned long flags;
717 
718 	local_irq_save(flags);
719 	rcu_irq_exit();
720 	local_irq_restore(flags);
721 }
722 
723 /*
724  * Exit an RCU extended quiescent state, which can be either the
725  * idle loop or adaptive-tickless usermode execution.
726  *
727  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
728  * allow for the possibility of usermode upcalls messing up our count of
729  * interrupt nesting level during the busy period that is just now starting.
730  */
731 static void rcu_eqs_exit(bool user)
732 {
733 	struct rcu_data *rdp;
734 	long oldval;
735 
736 	lockdep_assert_irqs_disabled();
737 	rdp = this_cpu_ptr(&rcu_data);
738 	oldval = rdp->dynticks_nesting;
739 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
740 	if (oldval) {
741 		rdp->dynticks_nesting++;
742 		return;
743 	}
744 	rcu_dynticks_task_exit();
745 	rcu_dynticks_eqs_exit();
746 	rcu_cleanup_after_idle();
747 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
748 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
749 	WRITE_ONCE(rdp->dynticks_nesting, 1);
750 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
751 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
752 }
753 
754 /**
755  * rcu_idle_exit - inform RCU that current CPU is leaving idle
756  *
757  * Exit idle mode, in other words, -enter- the mode in which RCU
758  * read-side critical sections can occur.
759  *
760  * If you add or remove a call to rcu_idle_exit(), be sure to test with
761  * CONFIG_RCU_EQS_DEBUG=y.
762  */
763 void rcu_idle_exit(void)
764 {
765 	unsigned long flags;
766 
767 	local_irq_save(flags);
768 	rcu_eqs_exit(false);
769 	local_irq_restore(flags);
770 }
771 
772 #ifdef CONFIG_NO_HZ_FULL
773 /**
774  * rcu_user_exit - inform RCU that we are exiting userspace.
775  *
776  * Exit RCU idle mode while entering the kernel because it can
777  * run a RCU read side critical section anytime.
778  *
779  * If you add or remove a call to rcu_user_exit(), be sure to test with
780  * CONFIG_RCU_EQS_DEBUG=y.
781  */
782 void rcu_user_exit(void)
783 {
784 	rcu_eqs_exit(1);
785 }
786 #endif /* CONFIG_NO_HZ_FULL */
787 
788 /**
789  * rcu_nmi_enter_common - inform RCU of entry to NMI context
790  * @irq: Is this call from rcu_irq_enter?
791  *
792  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
793  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
794  * that the CPU is active.  This implementation permits nested NMIs, as
795  * long as the nesting level does not overflow an int.  (You will probably
796  * run out of stack space first.)
797  *
798  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
799  * with CONFIG_RCU_EQS_DEBUG=y.
800  */
801 static __always_inline void rcu_nmi_enter_common(bool irq)
802 {
803 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
804 	long incby = 2;
805 
806 	/* Complain about underflow. */
807 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
808 
809 	/*
810 	 * If idle from RCU viewpoint, atomically increment ->dynticks
811 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
812 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
813 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
814 	 * to be in the outermost NMI handler that interrupted an RCU-idle
815 	 * period (observation due to Andy Lutomirski).
816 	 */
817 	if (rcu_dynticks_curr_cpu_in_eqs()) {
818 
819 		if (irq)
820 			rcu_dynticks_task_exit();
821 
822 		rcu_dynticks_eqs_exit();
823 
824 		if (irq)
825 			rcu_cleanup_after_idle();
826 
827 		incby = 1;
828 	} else if (tick_nohz_full_cpu(rdp->cpu) &&
829 		   rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE &&
830 		   READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
831 		rdp->rcu_forced_tick = true;
832 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
833 	}
834 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
835 			  rdp->dynticks_nmi_nesting,
836 			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
837 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
838 		   rdp->dynticks_nmi_nesting + incby);
839 	barrier();
840 }
841 
842 /**
843  * rcu_nmi_enter - inform RCU of entry to NMI context
844  */
845 void rcu_nmi_enter(void)
846 {
847 	rcu_nmi_enter_common(false);
848 }
849 NOKPROBE_SYMBOL(rcu_nmi_enter);
850 
851 /**
852  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
853  *
854  * Enter an interrupt handler, which might possibly result in exiting
855  * idle mode, in other words, entering the mode in which read-side critical
856  * sections can occur.  The caller must have disabled interrupts.
857  *
858  * Note that the Linux kernel is fully capable of entering an interrupt
859  * handler that it never exits, for example when doing upcalls to user mode!
860  * This code assumes that the idle loop never does upcalls to user mode.
861  * If your architecture's idle loop does do upcalls to user mode (or does
862  * anything else that results in unbalanced calls to the irq_enter() and
863  * irq_exit() functions), RCU will give you what you deserve, good and hard.
864  * But very infrequently and irreproducibly.
865  *
866  * Use things like work queues to work around this limitation.
867  *
868  * You have been warned.
869  *
870  * If you add or remove a call to rcu_irq_enter(), be sure to test with
871  * CONFIG_RCU_EQS_DEBUG=y.
872  */
873 void rcu_irq_enter(void)
874 {
875 	lockdep_assert_irqs_disabled();
876 	rcu_nmi_enter_common(true);
877 }
878 
879 /*
880  * Wrapper for rcu_irq_enter() where interrupts are enabled.
881  *
882  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
883  * with CONFIG_RCU_EQS_DEBUG=y.
884  */
885 void rcu_irq_enter_irqson(void)
886 {
887 	unsigned long flags;
888 
889 	local_irq_save(flags);
890 	rcu_irq_enter();
891 	local_irq_restore(flags);
892 }
893 
894 /*
895  * If any sort of urgency was applied to the current CPU (for example,
896  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
897  * to get to a quiescent state, disable it.
898  */
899 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
900 {
901 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
902 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
903 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
904 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
905 		rdp->rcu_forced_tick = false;
906 	}
907 }
908 
909 /**
910  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
911  *
912  * Return true if RCU is watching the running CPU, which means that this
913  * CPU can safely enter RCU read-side critical sections.  In other words,
914  * if the current CPU is not in its idle loop or is in an interrupt or
915  * NMI handler, return true.
916  */
917 bool notrace rcu_is_watching(void)
918 {
919 	bool ret;
920 
921 	preempt_disable_notrace();
922 	ret = !rcu_dynticks_curr_cpu_in_eqs();
923 	preempt_enable_notrace();
924 	return ret;
925 }
926 EXPORT_SYMBOL_GPL(rcu_is_watching);
927 
928 /*
929  * If a holdout task is actually running, request an urgent quiescent
930  * state from its CPU.  This is unsynchronized, so migrations can cause
931  * the request to go to the wrong CPU.  Which is OK, all that will happen
932  * is that the CPU's next context switch will be a bit slower and next
933  * time around this task will generate another request.
934  */
935 void rcu_request_urgent_qs_task(struct task_struct *t)
936 {
937 	int cpu;
938 
939 	barrier();
940 	cpu = task_cpu(t);
941 	if (!task_curr(t))
942 		return; /* This task is not running on that CPU. */
943 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
944 }
945 
946 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
947 
948 /*
949  * Is the current CPU online as far as RCU is concerned?
950  *
951  * Disable preemption to avoid false positives that could otherwise
952  * happen due to the current CPU number being sampled, this task being
953  * preempted, its old CPU being taken offline, resuming on some other CPU,
954  * then determining that its old CPU is now offline.
955  *
956  * Disable checking if in an NMI handler because we cannot safely
957  * report errors from NMI handlers anyway.  In addition, it is OK to use
958  * RCU on an offline processor during initial boot, hence the check for
959  * rcu_scheduler_fully_active.
960  */
961 bool rcu_lockdep_current_cpu_online(void)
962 {
963 	struct rcu_data *rdp;
964 	struct rcu_node *rnp;
965 	bool ret = false;
966 
967 	if (in_nmi() || !rcu_scheduler_fully_active)
968 		return true;
969 	preempt_disable();
970 	rdp = this_cpu_ptr(&rcu_data);
971 	rnp = rdp->mynode;
972 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
973 		ret = true;
974 	preempt_enable();
975 	return ret;
976 }
977 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
978 
979 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
980 
981 /*
982  * We are reporting a quiescent state on behalf of some other CPU, so
983  * it is our responsibility to check for and handle potential overflow
984  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
985  * After all, the CPU might be in deep idle state, and thus executing no
986  * code whatsoever.
987  */
988 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
989 {
990 	raw_lockdep_assert_held_rcu_node(rnp);
991 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
992 			 rnp->gp_seq))
993 		WRITE_ONCE(rdp->gpwrap, true);
994 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
995 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
996 }
997 
998 /*
999  * Snapshot the specified CPU's dynticks counter so that we can later
1000  * credit them with an implicit quiescent state.  Return 1 if this CPU
1001  * is in dynticks idle mode, which is an extended quiescent state.
1002  */
1003 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1004 {
1005 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1006 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1007 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1008 		rcu_gpnum_ovf(rdp->mynode, rdp);
1009 		return 1;
1010 	}
1011 	return 0;
1012 }
1013 
1014 /*
1015  * Return true if the specified CPU has passed through a quiescent
1016  * state by virtue of being in or having passed through an dynticks
1017  * idle state since the last call to dyntick_save_progress_counter()
1018  * for this same CPU, or by virtue of having been offline.
1019  */
1020 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1021 {
1022 	unsigned long jtsq;
1023 	bool *rnhqp;
1024 	bool *ruqp;
1025 	struct rcu_node *rnp = rdp->mynode;
1026 
1027 	/*
1028 	 * If the CPU passed through or entered a dynticks idle phase with
1029 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1030 	 * already acknowledged the request to pass through a quiescent
1031 	 * state.  Either way, that CPU cannot possibly be in an RCU
1032 	 * read-side critical section that started before the beginning
1033 	 * of the current RCU grace period.
1034 	 */
1035 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1036 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1037 		rcu_gpnum_ovf(rnp, rdp);
1038 		return 1;
1039 	}
1040 
1041 	/* If waiting too long on an offline CPU, complain. */
1042 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1043 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1044 		bool onl;
1045 		struct rcu_node *rnp1;
1046 
1047 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1048 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1049 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1050 			(long)rnp->gp_seq, (long)rnp->completedqs);
1051 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1052 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1053 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1054 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1055 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1056 			__func__, rdp->cpu, ".o"[onl],
1057 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1058 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1059 		return 1; /* Break things loose after complaining. */
1060 	}
1061 
1062 	/*
1063 	 * A CPU running for an extended time within the kernel can
1064 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1065 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1066 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1067 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1068 	 * variable are safe because the assignments are repeated if this
1069 	 * CPU failed to pass through a quiescent state.  This code
1070 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1071 	 * is set way high.
1072 	 */
1073 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1074 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1075 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1076 	if (!READ_ONCE(*rnhqp) &&
1077 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1078 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1079 		WRITE_ONCE(*rnhqp, true);
1080 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1081 		smp_store_release(ruqp, true);
1082 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1083 		WRITE_ONCE(*ruqp, true);
1084 	}
1085 
1086 	/*
1087 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1088 	 * The above code handles this, but only for straight cond_resched().
1089 	 * And some in-kernel loops check need_resched() before calling
1090 	 * cond_resched(), which defeats the above code for CPUs that are
1091 	 * running in-kernel with scheduling-clock interrupts disabled.
1092 	 * So hit them over the head with the resched_cpu() hammer!
1093 	 */
1094 	if (tick_nohz_full_cpu(rdp->cpu) &&
1095 		   time_after(jiffies,
1096 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1097 		WRITE_ONCE(*ruqp, true);
1098 		resched_cpu(rdp->cpu);
1099 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1100 	}
1101 
1102 	/*
1103 	 * If more than halfway to RCU CPU stall-warning time, invoke
1104 	 * resched_cpu() more frequently to try to loosen things up a bit.
1105 	 * Also check to see if the CPU is getting hammered with interrupts,
1106 	 * but only once per grace period, just to keep the IPIs down to
1107 	 * a dull roar.
1108 	 */
1109 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1110 		if (time_after(jiffies,
1111 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1112 			resched_cpu(rdp->cpu);
1113 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1114 		}
1115 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1116 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1117 		    (rnp->ffmask & rdp->grpmask)) {
1118 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1119 			rdp->rcu_iw_pending = true;
1120 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1121 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1122 		}
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1129 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1130 			      unsigned long gp_seq_req, const char *s)
1131 {
1132 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1133 				      rnp->level, rnp->grplo, rnp->grphi, s);
1134 }
1135 
1136 /*
1137  * rcu_start_this_gp - Request the start of a particular grace period
1138  * @rnp_start: The leaf node of the CPU from which to start.
1139  * @rdp: The rcu_data corresponding to the CPU from which to start.
1140  * @gp_seq_req: The gp_seq of the grace period to start.
1141  *
1142  * Start the specified grace period, as needed to handle newly arrived
1143  * callbacks.  The required future grace periods are recorded in each
1144  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1145  * is reason to awaken the grace-period kthread.
1146  *
1147  * The caller must hold the specified rcu_node structure's ->lock, which
1148  * is why the caller is responsible for waking the grace-period kthread.
1149  *
1150  * Returns true if the GP thread needs to be awakened else false.
1151  */
1152 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1153 			      unsigned long gp_seq_req)
1154 {
1155 	bool ret = false;
1156 	struct rcu_node *rnp;
1157 
1158 	/*
1159 	 * Use funnel locking to either acquire the root rcu_node
1160 	 * structure's lock or bail out if the need for this grace period
1161 	 * has already been recorded -- or if that grace period has in
1162 	 * fact already started.  If there is already a grace period in
1163 	 * progress in a non-leaf node, no recording is needed because the
1164 	 * end of the grace period will scan the leaf rcu_node structures.
1165 	 * Note that rnp_start->lock must not be released.
1166 	 */
1167 	raw_lockdep_assert_held_rcu_node(rnp_start);
1168 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1169 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1170 		if (rnp != rnp_start)
1171 			raw_spin_lock_rcu_node(rnp);
1172 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1173 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1174 		    (rnp != rnp_start &&
1175 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1176 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1177 					  TPS("Prestarted"));
1178 			goto unlock_out;
1179 		}
1180 		rnp->gp_seq_needed = gp_seq_req;
1181 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1182 			/*
1183 			 * We just marked the leaf or internal node, and a
1184 			 * grace period is in progress, which means that
1185 			 * rcu_gp_cleanup() will see the marking.  Bail to
1186 			 * reduce contention.
1187 			 */
1188 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1189 					  TPS("Startedleaf"));
1190 			goto unlock_out;
1191 		}
1192 		if (rnp != rnp_start && rnp->parent != NULL)
1193 			raw_spin_unlock_rcu_node(rnp);
1194 		if (!rnp->parent)
1195 			break;  /* At root, and perhaps also leaf. */
1196 	}
1197 
1198 	/* If GP already in progress, just leave, otherwise start one. */
1199 	if (rcu_gp_in_progress()) {
1200 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1201 		goto unlock_out;
1202 	}
1203 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1204 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1205 	rcu_state.gp_req_activity = jiffies;
1206 	if (!rcu_state.gp_kthread) {
1207 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1208 		goto unlock_out;
1209 	}
1210 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1211 	ret = true;  /* Caller must wake GP kthread. */
1212 unlock_out:
1213 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1214 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1215 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1216 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1217 	}
1218 	if (rnp != rnp_start)
1219 		raw_spin_unlock_rcu_node(rnp);
1220 	return ret;
1221 }
1222 
1223 /*
1224  * Clean up any old requests for the just-ended grace period.  Also return
1225  * whether any additional grace periods have been requested.
1226  */
1227 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1228 {
1229 	bool needmore;
1230 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1231 
1232 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1233 	if (!needmore)
1234 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1235 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1236 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1237 	return needmore;
1238 }
1239 
1240 /*
1241  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1242  * an interrupt or softirq handler), and don't bother awakening when there
1243  * is nothing for the grace-period kthread to do (as in several CPUs raced
1244  * to awaken, and we lost), and finally don't try to awaken a kthread that
1245  * has not yet been created.  If all those checks are passed, track some
1246  * debug information and awaken.
1247  *
1248  * So why do the self-wakeup when in an interrupt or softirq handler
1249  * in the grace-period kthread's context?  Because the kthread might have
1250  * been interrupted just as it was going to sleep, and just after the final
1251  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1252  * is required, and is therefore supplied.
1253  */
1254 static void rcu_gp_kthread_wake(void)
1255 {
1256 	if ((current == rcu_state.gp_kthread &&
1257 	     !in_irq() && !in_serving_softirq()) ||
1258 	    !READ_ONCE(rcu_state.gp_flags) ||
1259 	    !rcu_state.gp_kthread)
1260 		return;
1261 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1262 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1263 	swake_up_one(&rcu_state.gp_wq);
1264 }
1265 
1266 /*
1267  * If there is room, assign a ->gp_seq number to any callbacks on this
1268  * CPU that have not already been assigned.  Also accelerate any callbacks
1269  * that were previously assigned a ->gp_seq number that has since proven
1270  * to be too conservative, which can happen if callbacks get assigned a
1271  * ->gp_seq number while RCU is idle, but with reference to a non-root
1272  * rcu_node structure.  This function is idempotent, so it does not hurt
1273  * to call it repeatedly.  Returns an flag saying that we should awaken
1274  * the RCU grace-period kthread.
1275  *
1276  * The caller must hold rnp->lock with interrupts disabled.
1277  */
1278 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1279 {
1280 	unsigned long gp_seq_req;
1281 	bool ret = false;
1282 
1283 	rcu_lockdep_assert_cblist_protected(rdp);
1284 	raw_lockdep_assert_held_rcu_node(rnp);
1285 
1286 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1287 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1288 		return false;
1289 
1290 	/*
1291 	 * Callbacks are often registered with incomplete grace-period
1292 	 * information.  Something about the fact that getting exact
1293 	 * information requires acquiring a global lock...  RCU therefore
1294 	 * makes a conservative estimate of the grace period number at which
1295 	 * a given callback will become ready to invoke.	The following
1296 	 * code checks this estimate and improves it when possible, thus
1297 	 * accelerating callback invocation to an earlier grace-period
1298 	 * number.
1299 	 */
1300 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1301 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1302 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1303 
1304 	/* Trace depending on how much we were able to accelerate. */
1305 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1306 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1307 	else
1308 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1314  * rcu_node structure's ->lock be held.  It consults the cached value
1315  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1316  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1317  * while holding the leaf rcu_node structure's ->lock.
1318  */
1319 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1320 					struct rcu_data *rdp)
1321 {
1322 	unsigned long c;
1323 	bool needwake;
1324 
1325 	rcu_lockdep_assert_cblist_protected(rdp);
1326 	c = rcu_seq_snap(&rcu_state.gp_seq);
1327 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1328 		/* Old request still live, so mark recent callbacks. */
1329 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1330 		return;
1331 	}
1332 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1333 	needwake = rcu_accelerate_cbs(rnp, rdp);
1334 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1335 	if (needwake)
1336 		rcu_gp_kthread_wake();
1337 }
1338 
1339 /*
1340  * Move any callbacks whose grace period has completed to the
1341  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1342  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1343  * sublist.  This function is idempotent, so it does not hurt to
1344  * invoke it repeatedly.  As long as it is not invoked -too- often...
1345  * Returns true if the RCU grace-period kthread needs to be awakened.
1346  *
1347  * The caller must hold rnp->lock with interrupts disabled.
1348  */
1349 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1350 {
1351 	rcu_lockdep_assert_cblist_protected(rdp);
1352 	raw_lockdep_assert_held_rcu_node(rnp);
1353 
1354 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1355 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1356 		return false;
1357 
1358 	/*
1359 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1360 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1361 	 */
1362 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1363 
1364 	/* Classify any remaining callbacks. */
1365 	return rcu_accelerate_cbs(rnp, rdp);
1366 }
1367 
1368 /*
1369  * Move and classify callbacks, but only if doing so won't require
1370  * that the RCU grace-period kthread be awakened.
1371  */
1372 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1373 						  struct rcu_data *rdp)
1374 {
1375 	rcu_lockdep_assert_cblist_protected(rdp);
1376 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1377 	    !raw_spin_trylock_rcu_node(rnp))
1378 		return;
1379 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1380 	raw_spin_unlock_rcu_node(rnp);
1381 }
1382 
1383 /*
1384  * Update CPU-local rcu_data state to record the beginnings and ends of
1385  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1386  * structure corresponding to the current CPU, and must have irqs disabled.
1387  * Returns true if the grace-period kthread needs to be awakened.
1388  */
1389 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1390 {
1391 	bool ret = false;
1392 	bool need_gp;
1393 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1394 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1395 
1396 	raw_lockdep_assert_held_rcu_node(rnp);
1397 
1398 	if (rdp->gp_seq == rnp->gp_seq)
1399 		return false; /* Nothing to do. */
1400 
1401 	/* Handle the ends of any preceding grace periods first. */
1402 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1403 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1404 		if (!offloaded)
1405 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1406 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1407 	} else {
1408 		if (!offloaded)
1409 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1410 	}
1411 
1412 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1413 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1414 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1415 		/*
1416 		 * If the current grace period is waiting for this CPU,
1417 		 * set up to detect a quiescent state, otherwise don't
1418 		 * go looking for one.
1419 		 */
1420 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1421 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1422 		rdp->cpu_no_qs.b.norm = need_gp;
1423 		rdp->core_needs_qs = need_gp;
1424 		zero_cpu_stall_ticks(rdp);
1425 	}
1426 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1427 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1428 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1429 	WRITE_ONCE(rdp->gpwrap, false);
1430 	rcu_gpnum_ovf(rnp, rdp);
1431 	return ret;
1432 }
1433 
1434 static void note_gp_changes(struct rcu_data *rdp)
1435 {
1436 	unsigned long flags;
1437 	bool needwake;
1438 	struct rcu_node *rnp;
1439 
1440 	local_irq_save(flags);
1441 	rnp = rdp->mynode;
1442 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1443 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1444 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1445 		local_irq_restore(flags);
1446 		return;
1447 	}
1448 	needwake = __note_gp_changes(rnp, rdp);
1449 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1450 	if (needwake)
1451 		rcu_gp_kthread_wake();
1452 }
1453 
1454 static void rcu_gp_slow(int delay)
1455 {
1456 	if (delay > 0 &&
1457 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1458 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1459 		schedule_timeout_uninterruptible(delay);
1460 }
1461 
1462 /*
1463  * Initialize a new grace period.  Return false if no grace period required.
1464  */
1465 static bool rcu_gp_init(void)
1466 {
1467 	unsigned long flags;
1468 	unsigned long oldmask;
1469 	unsigned long mask;
1470 	struct rcu_data *rdp;
1471 	struct rcu_node *rnp = rcu_get_root();
1472 
1473 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1474 	raw_spin_lock_irq_rcu_node(rnp);
1475 	if (!READ_ONCE(rcu_state.gp_flags)) {
1476 		/* Spurious wakeup, tell caller to go back to sleep.  */
1477 		raw_spin_unlock_irq_rcu_node(rnp);
1478 		return false;
1479 	}
1480 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1481 
1482 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1483 		/*
1484 		 * Grace period already in progress, don't start another.
1485 		 * Not supposed to be able to happen.
1486 		 */
1487 		raw_spin_unlock_irq_rcu_node(rnp);
1488 		return false;
1489 	}
1490 
1491 	/* Advance to a new grace period and initialize state. */
1492 	record_gp_stall_check_time();
1493 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1494 	rcu_seq_start(&rcu_state.gp_seq);
1495 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1496 	raw_spin_unlock_irq_rcu_node(rnp);
1497 
1498 	/*
1499 	 * Apply per-leaf buffered online and offline operations to the
1500 	 * rcu_node tree.  Note that this new grace period need not wait
1501 	 * for subsequent online CPUs, and that quiescent-state forcing
1502 	 * will handle subsequent offline CPUs.
1503 	 */
1504 	rcu_state.gp_state = RCU_GP_ONOFF;
1505 	rcu_for_each_leaf_node(rnp) {
1506 		raw_spin_lock(&rcu_state.ofl_lock);
1507 		raw_spin_lock_irq_rcu_node(rnp);
1508 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1509 		    !rnp->wait_blkd_tasks) {
1510 			/* Nothing to do on this leaf rcu_node structure. */
1511 			raw_spin_unlock_irq_rcu_node(rnp);
1512 			raw_spin_unlock(&rcu_state.ofl_lock);
1513 			continue;
1514 		}
1515 
1516 		/* Record old state, apply changes to ->qsmaskinit field. */
1517 		oldmask = rnp->qsmaskinit;
1518 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1519 
1520 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1521 		if (!oldmask != !rnp->qsmaskinit) {
1522 			if (!oldmask) { /* First online CPU for rcu_node. */
1523 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1524 					rcu_init_new_rnp(rnp);
1525 			} else if (rcu_preempt_has_tasks(rnp)) {
1526 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1527 			} else { /* Last offline CPU and can propagate. */
1528 				rcu_cleanup_dead_rnp(rnp);
1529 			}
1530 		}
1531 
1532 		/*
1533 		 * If all waited-on tasks from prior grace period are
1534 		 * done, and if all this rcu_node structure's CPUs are
1535 		 * still offline, propagate up the rcu_node tree and
1536 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1537 		 * rcu_node structure's CPUs has since come back online,
1538 		 * simply clear ->wait_blkd_tasks.
1539 		 */
1540 		if (rnp->wait_blkd_tasks &&
1541 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1542 			rnp->wait_blkd_tasks = false;
1543 			if (!rnp->qsmaskinit)
1544 				rcu_cleanup_dead_rnp(rnp);
1545 		}
1546 
1547 		raw_spin_unlock_irq_rcu_node(rnp);
1548 		raw_spin_unlock(&rcu_state.ofl_lock);
1549 	}
1550 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1551 
1552 	/*
1553 	 * Set the quiescent-state-needed bits in all the rcu_node
1554 	 * structures for all currently online CPUs in breadth-first
1555 	 * order, starting from the root rcu_node structure, relying on the
1556 	 * layout of the tree within the rcu_state.node[] array.  Note that
1557 	 * other CPUs will access only the leaves of the hierarchy, thus
1558 	 * seeing that no grace period is in progress, at least until the
1559 	 * corresponding leaf node has been initialized.
1560 	 *
1561 	 * The grace period cannot complete until the initialization
1562 	 * process finishes, because this kthread handles both.
1563 	 */
1564 	rcu_state.gp_state = RCU_GP_INIT;
1565 	rcu_for_each_node_breadth_first(rnp) {
1566 		rcu_gp_slow(gp_init_delay);
1567 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1568 		rdp = this_cpu_ptr(&rcu_data);
1569 		rcu_preempt_check_blocked_tasks(rnp);
1570 		rnp->qsmask = rnp->qsmaskinit;
1571 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1572 		if (rnp == rdp->mynode)
1573 			(void)__note_gp_changes(rnp, rdp);
1574 		rcu_preempt_boost_start_gp(rnp);
1575 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1576 					    rnp->level, rnp->grplo,
1577 					    rnp->grphi, rnp->qsmask);
1578 		/* Quiescent states for tasks on any now-offline CPUs. */
1579 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1580 		rnp->rcu_gp_init_mask = mask;
1581 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1582 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1583 		else
1584 			raw_spin_unlock_irq_rcu_node(rnp);
1585 		cond_resched_tasks_rcu_qs();
1586 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1587 	}
1588 
1589 	return true;
1590 }
1591 
1592 /*
1593  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1594  * time.
1595  */
1596 static bool rcu_gp_fqs_check_wake(int *gfp)
1597 {
1598 	struct rcu_node *rnp = rcu_get_root();
1599 
1600 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1601 	*gfp = READ_ONCE(rcu_state.gp_flags);
1602 	if (*gfp & RCU_GP_FLAG_FQS)
1603 		return true;
1604 
1605 	/* The current grace period has completed. */
1606 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1607 		return true;
1608 
1609 	return false;
1610 }
1611 
1612 /*
1613  * Do one round of quiescent-state forcing.
1614  */
1615 static void rcu_gp_fqs(bool first_time)
1616 {
1617 	struct rcu_node *rnp = rcu_get_root();
1618 
1619 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1620 	rcu_state.n_force_qs++;
1621 	if (first_time) {
1622 		/* Collect dyntick-idle snapshots. */
1623 		force_qs_rnp(dyntick_save_progress_counter);
1624 	} else {
1625 		/* Handle dyntick-idle and offline CPUs. */
1626 		force_qs_rnp(rcu_implicit_dynticks_qs);
1627 	}
1628 	/* Clear flag to prevent immediate re-entry. */
1629 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1630 		raw_spin_lock_irq_rcu_node(rnp);
1631 		WRITE_ONCE(rcu_state.gp_flags,
1632 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1633 		raw_spin_unlock_irq_rcu_node(rnp);
1634 	}
1635 }
1636 
1637 /*
1638  * Loop doing repeated quiescent-state forcing until the grace period ends.
1639  */
1640 static void rcu_gp_fqs_loop(void)
1641 {
1642 	bool first_gp_fqs;
1643 	int gf;
1644 	unsigned long j;
1645 	int ret;
1646 	struct rcu_node *rnp = rcu_get_root();
1647 
1648 	first_gp_fqs = true;
1649 	j = READ_ONCE(jiffies_till_first_fqs);
1650 	ret = 0;
1651 	for (;;) {
1652 		if (!ret) {
1653 			rcu_state.jiffies_force_qs = jiffies + j;
1654 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1655 				   jiffies + (j ? 3 * j : 2));
1656 		}
1657 		trace_rcu_grace_period(rcu_state.name,
1658 				       READ_ONCE(rcu_state.gp_seq),
1659 				       TPS("fqswait"));
1660 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1661 		ret = swait_event_idle_timeout_exclusive(
1662 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1663 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1664 		/* Locking provides needed memory barriers. */
1665 		/* If grace period done, leave loop. */
1666 		if (!READ_ONCE(rnp->qsmask) &&
1667 		    !rcu_preempt_blocked_readers_cgp(rnp))
1668 			break;
1669 		/* If time for quiescent-state forcing, do it. */
1670 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1671 		    (gf & RCU_GP_FLAG_FQS)) {
1672 			trace_rcu_grace_period(rcu_state.name,
1673 					       READ_ONCE(rcu_state.gp_seq),
1674 					       TPS("fqsstart"));
1675 			rcu_gp_fqs(first_gp_fqs);
1676 			first_gp_fqs = false;
1677 			trace_rcu_grace_period(rcu_state.name,
1678 					       READ_ONCE(rcu_state.gp_seq),
1679 					       TPS("fqsend"));
1680 			cond_resched_tasks_rcu_qs();
1681 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1682 			ret = 0; /* Force full wait till next FQS. */
1683 			j = READ_ONCE(jiffies_till_next_fqs);
1684 		} else {
1685 			/* Deal with stray signal. */
1686 			cond_resched_tasks_rcu_qs();
1687 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1688 			WARN_ON(signal_pending(current));
1689 			trace_rcu_grace_period(rcu_state.name,
1690 					       READ_ONCE(rcu_state.gp_seq),
1691 					       TPS("fqswaitsig"));
1692 			ret = 1; /* Keep old FQS timing. */
1693 			j = jiffies;
1694 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1695 				j = 1;
1696 			else
1697 				j = rcu_state.jiffies_force_qs - j;
1698 		}
1699 	}
1700 }
1701 
1702 /*
1703  * Clean up after the old grace period.
1704  */
1705 static void rcu_gp_cleanup(void)
1706 {
1707 	unsigned long gp_duration;
1708 	bool needgp = false;
1709 	unsigned long new_gp_seq;
1710 	bool offloaded;
1711 	struct rcu_data *rdp;
1712 	struct rcu_node *rnp = rcu_get_root();
1713 	struct swait_queue_head *sq;
1714 
1715 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1716 	raw_spin_lock_irq_rcu_node(rnp);
1717 	rcu_state.gp_end = jiffies;
1718 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1719 	if (gp_duration > rcu_state.gp_max)
1720 		rcu_state.gp_max = gp_duration;
1721 
1722 	/*
1723 	 * We know the grace period is complete, but to everyone else
1724 	 * it appears to still be ongoing.  But it is also the case
1725 	 * that to everyone else it looks like there is nothing that
1726 	 * they can do to advance the grace period.  It is therefore
1727 	 * safe for us to drop the lock in order to mark the grace
1728 	 * period as completed in all of the rcu_node structures.
1729 	 */
1730 	raw_spin_unlock_irq_rcu_node(rnp);
1731 
1732 	/*
1733 	 * Propagate new ->gp_seq value to rcu_node structures so that
1734 	 * other CPUs don't have to wait until the start of the next grace
1735 	 * period to process their callbacks.  This also avoids some nasty
1736 	 * RCU grace-period initialization races by forcing the end of
1737 	 * the current grace period to be completely recorded in all of
1738 	 * the rcu_node structures before the beginning of the next grace
1739 	 * period is recorded in any of the rcu_node structures.
1740 	 */
1741 	new_gp_seq = rcu_state.gp_seq;
1742 	rcu_seq_end(&new_gp_seq);
1743 	rcu_for_each_node_breadth_first(rnp) {
1744 		raw_spin_lock_irq_rcu_node(rnp);
1745 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1746 			dump_blkd_tasks(rnp, 10);
1747 		WARN_ON_ONCE(rnp->qsmask);
1748 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1749 		rdp = this_cpu_ptr(&rcu_data);
1750 		if (rnp == rdp->mynode)
1751 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1752 		/* smp_mb() provided by prior unlock-lock pair. */
1753 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1754 		sq = rcu_nocb_gp_get(rnp);
1755 		raw_spin_unlock_irq_rcu_node(rnp);
1756 		rcu_nocb_gp_cleanup(sq);
1757 		cond_resched_tasks_rcu_qs();
1758 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1759 		rcu_gp_slow(gp_cleanup_delay);
1760 	}
1761 	rnp = rcu_get_root();
1762 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1763 
1764 	/* Declare grace period done, trace first to use old GP number. */
1765 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1766 	rcu_seq_end(&rcu_state.gp_seq);
1767 	rcu_state.gp_state = RCU_GP_IDLE;
1768 	/* Check for GP requests since above loop. */
1769 	rdp = this_cpu_ptr(&rcu_data);
1770 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1771 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1772 				  TPS("CleanupMore"));
1773 		needgp = true;
1774 	}
1775 	/* Advance CBs to reduce false positives below. */
1776 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1777 		    rcu_segcblist_is_offloaded(&rdp->cblist);
1778 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1779 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1780 		rcu_state.gp_req_activity = jiffies;
1781 		trace_rcu_grace_period(rcu_state.name,
1782 				       READ_ONCE(rcu_state.gp_seq),
1783 				       TPS("newreq"));
1784 	} else {
1785 		WRITE_ONCE(rcu_state.gp_flags,
1786 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1787 	}
1788 	raw_spin_unlock_irq_rcu_node(rnp);
1789 }
1790 
1791 /*
1792  * Body of kthread that handles grace periods.
1793  */
1794 static int __noreturn rcu_gp_kthread(void *unused)
1795 {
1796 	rcu_bind_gp_kthread();
1797 	for (;;) {
1798 
1799 		/* Handle grace-period start. */
1800 		for (;;) {
1801 			trace_rcu_grace_period(rcu_state.name,
1802 					       READ_ONCE(rcu_state.gp_seq),
1803 					       TPS("reqwait"));
1804 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1805 			swait_event_idle_exclusive(rcu_state.gp_wq,
1806 					 READ_ONCE(rcu_state.gp_flags) &
1807 					 RCU_GP_FLAG_INIT);
1808 			rcu_state.gp_state = RCU_GP_DONE_GPS;
1809 			/* Locking provides needed memory barrier. */
1810 			if (rcu_gp_init())
1811 				break;
1812 			cond_resched_tasks_rcu_qs();
1813 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1814 			WARN_ON(signal_pending(current));
1815 			trace_rcu_grace_period(rcu_state.name,
1816 					       READ_ONCE(rcu_state.gp_seq),
1817 					       TPS("reqwaitsig"));
1818 		}
1819 
1820 		/* Handle quiescent-state forcing. */
1821 		rcu_gp_fqs_loop();
1822 
1823 		/* Handle grace-period end. */
1824 		rcu_state.gp_state = RCU_GP_CLEANUP;
1825 		rcu_gp_cleanup();
1826 		rcu_state.gp_state = RCU_GP_CLEANED;
1827 	}
1828 }
1829 
1830 /*
1831  * Report a full set of quiescent states to the rcu_state data structure.
1832  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1833  * another grace period is required.  Whether we wake the grace-period
1834  * kthread or it awakens itself for the next round of quiescent-state
1835  * forcing, that kthread will clean up after the just-completed grace
1836  * period.  Note that the caller must hold rnp->lock, which is released
1837  * before return.
1838  */
1839 static void rcu_report_qs_rsp(unsigned long flags)
1840 	__releases(rcu_get_root()->lock)
1841 {
1842 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1843 	WARN_ON_ONCE(!rcu_gp_in_progress());
1844 	WRITE_ONCE(rcu_state.gp_flags,
1845 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1846 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1847 	rcu_gp_kthread_wake();
1848 }
1849 
1850 /*
1851  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1852  * Allows quiescent states for a group of CPUs to be reported at one go
1853  * to the specified rcu_node structure, though all the CPUs in the group
1854  * must be represented by the same rcu_node structure (which need not be a
1855  * leaf rcu_node structure, though it often will be).  The gps parameter
1856  * is the grace-period snapshot, which means that the quiescent states
1857  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1858  * must be held upon entry, and it is released before return.
1859  *
1860  * As a special case, if mask is zero, the bit-already-cleared check is
1861  * disabled.  This allows propagating quiescent state due to resumed tasks
1862  * during grace-period initialization.
1863  */
1864 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1865 			      unsigned long gps, unsigned long flags)
1866 	__releases(rnp->lock)
1867 {
1868 	unsigned long oldmask = 0;
1869 	struct rcu_node *rnp_c;
1870 
1871 	raw_lockdep_assert_held_rcu_node(rnp);
1872 
1873 	/* Walk up the rcu_node hierarchy. */
1874 	for (;;) {
1875 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1876 
1877 			/*
1878 			 * Our bit has already been cleared, or the
1879 			 * relevant grace period is already over, so done.
1880 			 */
1881 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1882 			return;
1883 		}
1884 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1885 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1886 			     rcu_preempt_blocked_readers_cgp(rnp));
1887 		rnp->qsmask &= ~mask;
1888 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1889 						 mask, rnp->qsmask, rnp->level,
1890 						 rnp->grplo, rnp->grphi,
1891 						 !!rnp->gp_tasks);
1892 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1893 
1894 			/* Other bits still set at this level, so done. */
1895 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1896 			return;
1897 		}
1898 		rnp->completedqs = rnp->gp_seq;
1899 		mask = rnp->grpmask;
1900 		if (rnp->parent == NULL) {
1901 
1902 			/* No more levels.  Exit loop holding root lock. */
1903 
1904 			break;
1905 		}
1906 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1907 		rnp_c = rnp;
1908 		rnp = rnp->parent;
1909 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1910 		oldmask = rnp_c->qsmask;
1911 	}
1912 
1913 	/*
1914 	 * Get here if we are the last CPU to pass through a quiescent
1915 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1916 	 * to clean up and start the next grace period if one is needed.
1917 	 */
1918 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1919 }
1920 
1921 /*
1922  * Record a quiescent state for all tasks that were previously queued
1923  * on the specified rcu_node structure and that were blocking the current
1924  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1925  * irqs disabled, and this lock is released upon return, but irqs remain
1926  * disabled.
1927  */
1928 static void __maybe_unused
1929 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1930 	__releases(rnp->lock)
1931 {
1932 	unsigned long gps;
1933 	unsigned long mask;
1934 	struct rcu_node *rnp_p;
1935 
1936 	raw_lockdep_assert_held_rcu_node(rnp);
1937 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1938 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1939 	    rnp->qsmask != 0) {
1940 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941 		return;  /* Still need more quiescent states! */
1942 	}
1943 
1944 	rnp->completedqs = rnp->gp_seq;
1945 	rnp_p = rnp->parent;
1946 	if (rnp_p == NULL) {
1947 		/*
1948 		 * Only one rcu_node structure in the tree, so don't
1949 		 * try to report up to its nonexistent parent!
1950 		 */
1951 		rcu_report_qs_rsp(flags);
1952 		return;
1953 	}
1954 
1955 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1956 	gps = rnp->gp_seq;
1957 	mask = rnp->grpmask;
1958 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1959 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1960 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1961 }
1962 
1963 /*
1964  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1965  * structure.  This must be called from the specified CPU.
1966  */
1967 static void
1968 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1969 {
1970 	unsigned long flags;
1971 	unsigned long mask;
1972 	bool needwake = false;
1973 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1974 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1975 	struct rcu_node *rnp;
1976 
1977 	rnp = rdp->mynode;
1978 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1979 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1980 	    rdp->gpwrap) {
1981 
1982 		/*
1983 		 * The grace period in which this quiescent state was
1984 		 * recorded has ended, so don't report it upwards.
1985 		 * We will instead need a new quiescent state that lies
1986 		 * within the current grace period.
1987 		 */
1988 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1989 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1990 		return;
1991 	}
1992 	mask = rdp->grpmask;
1993 	if ((rnp->qsmask & mask) == 0) {
1994 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1995 	} else {
1996 		/*
1997 		 * This GP can't end until cpu checks in, so all of our
1998 		 * callbacks can be processed during the next GP.
1999 		 */
2000 		if (!offloaded)
2001 			needwake = rcu_accelerate_cbs(rnp, rdp);
2002 
2003 		rcu_disable_urgency_upon_qs(rdp);
2004 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2005 		/* ^^^ Released rnp->lock */
2006 		if (needwake)
2007 			rcu_gp_kthread_wake();
2008 	}
2009 }
2010 
2011 /*
2012  * Check to see if there is a new grace period of which this CPU
2013  * is not yet aware, and if so, set up local rcu_data state for it.
2014  * Otherwise, see if this CPU has just passed through its first
2015  * quiescent state for this grace period, and record that fact if so.
2016  */
2017 static void
2018 rcu_check_quiescent_state(struct rcu_data *rdp)
2019 {
2020 	/* Check for grace-period ends and beginnings. */
2021 	note_gp_changes(rdp);
2022 
2023 	/*
2024 	 * Does this CPU still need to do its part for current grace period?
2025 	 * If no, return and let the other CPUs do their part as well.
2026 	 */
2027 	if (!rdp->core_needs_qs)
2028 		return;
2029 
2030 	/*
2031 	 * Was there a quiescent state since the beginning of the grace
2032 	 * period? If no, then exit and wait for the next call.
2033 	 */
2034 	if (rdp->cpu_no_qs.b.norm)
2035 		return;
2036 
2037 	/*
2038 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2039 	 * judge of that).
2040 	 */
2041 	rcu_report_qs_rdp(rdp->cpu, rdp);
2042 }
2043 
2044 /*
2045  * Near the end of the offline process.  Trace the fact that this CPU
2046  * is going offline.
2047  */
2048 int rcutree_dying_cpu(unsigned int cpu)
2049 {
2050 	bool blkd;
2051 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2052 	struct rcu_node *rnp = rdp->mynode;
2053 
2054 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2055 		return 0;
2056 
2057 	blkd = !!(rnp->qsmask & rdp->grpmask);
2058 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2059 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2060 	return 0;
2061 }
2062 
2063 /*
2064  * All CPUs for the specified rcu_node structure have gone offline,
2065  * and all tasks that were preempted within an RCU read-side critical
2066  * section while running on one of those CPUs have since exited their RCU
2067  * read-side critical section.  Some other CPU is reporting this fact with
2068  * the specified rcu_node structure's ->lock held and interrupts disabled.
2069  * This function therefore goes up the tree of rcu_node structures,
2070  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2071  * the leaf rcu_node structure's ->qsmaskinit field has already been
2072  * updated.
2073  *
2074  * This function does check that the specified rcu_node structure has
2075  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2076  * prematurely.  That said, invoking it after the fact will cost you
2077  * a needless lock acquisition.  So once it has done its work, don't
2078  * invoke it again.
2079  */
2080 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2081 {
2082 	long mask;
2083 	struct rcu_node *rnp = rnp_leaf;
2084 
2085 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2086 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2087 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2088 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2089 		return;
2090 	for (;;) {
2091 		mask = rnp->grpmask;
2092 		rnp = rnp->parent;
2093 		if (!rnp)
2094 			break;
2095 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2096 		rnp->qsmaskinit &= ~mask;
2097 		/* Between grace periods, so better already be zero! */
2098 		WARN_ON_ONCE(rnp->qsmask);
2099 		if (rnp->qsmaskinit) {
2100 			raw_spin_unlock_rcu_node(rnp);
2101 			/* irqs remain disabled. */
2102 			return;
2103 		}
2104 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2105 	}
2106 }
2107 
2108 /*
2109  * The CPU has been completely removed, and some other CPU is reporting
2110  * this fact from process context.  Do the remainder of the cleanup.
2111  * There can only be one CPU hotplug operation at a time, so no need for
2112  * explicit locking.
2113  */
2114 int rcutree_dead_cpu(unsigned int cpu)
2115 {
2116 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2117 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2118 
2119 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2120 		return 0;
2121 
2122 	/* Adjust any no-longer-needed kthreads. */
2123 	rcu_boost_kthread_setaffinity(rnp, -1);
2124 	/* Do any needed no-CB deferred wakeups from this CPU. */
2125 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2126 
2127 	// Stop-machine done, so allow nohz_full to disable tick.
2128 	tick_dep_clear(TICK_DEP_BIT_RCU);
2129 	return 0;
2130 }
2131 
2132 /*
2133  * Invoke any RCU callbacks that have made it to the end of their grace
2134  * period.  Thottle as specified by rdp->blimit.
2135  */
2136 static void rcu_do_batch(struct rcu_data *rdp)
2137 {
2138 	unsigned long flags;
2139 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2140 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2141 	struct rcu_head *rhp;
2142 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2143 	long bl, count;
2144 	long pending, tlimit = 0;
2145 
2146 	/* If no callbacks are ready, just return. */
2147 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2148 		trace_rcu_batch_start(rcu_state.name,
2149 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2150 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2151 		trace_rcu_batch_end(rcu_state.name, 0,
2152 				    !rcu_segcblist_empty(&rdp->cblist),
2153 				    need_resched(), is_idle_task(current),
2154 				    rcu_is_callbacks_kthread());
2155 		return;
2156 	}
2157 
2158 	/*
2159 	 * Extract the list of ready callbacks, disabling to prevent
2160 	 * races with call_rcu() from interrupt handlers.  Leave the
2161 	 * callback counts, as rcu_barrier() needs to be conservative.
2162 	 */
2163 	local_irq_save(flags);
2164 	rcu_nocb_lock(rdp);
2165 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2166 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2167 	bl = max(rdp->blimit, pending >> rcu_divisor);
2168 	if (unlikely(bl > 100))
2169 		tlimit = local_clock() + rcu_resched_ns;
2170 	trace_rcu_batch_start(rcu_state.name,
2171 			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2172 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2173 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2174 	if (offloaded)
2175 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2176 	rcu_nocb_unlock_irqrestore(rdp, flags);
2177 
2178 	/* Invoke callbacks. */
2179 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2180 	rhp = rcu_cblist_dequeue(&rcl);
2181 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2182 		debug_rcu_head_unqueue(rhp);
2183 		if (__rcu_reclaim(rcu_state.name, rhp))
2184 			rcu_cblist_dequeued_lazy(&rcl);
2185 		/*
2186 		 * Stop only if limit reached and CPU has something to do.
2187 		 * Note: The rcl structure counts down from zero.
2188 		 */
2189 		if (-rcl.len >= bl && !offloaded &&
2190 		    (need_resched() ||
2191 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2192 			break;
2193 		if (unlikely(tlimit)) {
2194 			/* only call local_clock() every 32 callbacks */
2195 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2196 				continue;
2197 			/* Exceeded the time limit, so leave. */
2198 			break;
2199 		}
2200 		if (offloaded) {
2201 			WARN_ON_ONCE(in_serving_softirq());
2202 			local_bh_enable();
2203 			lockdep_assert_irqs_enabled();
2204 			cond_resched_tasks_rcu_qs();
2205 			lockdep_assert_irqs_enabled();
2206 			local_bh_disable();
2207 		}
2208 	}
2209 
2210 	local_irq_save(flags);
2211 	rcu_nocb_lock(rdp);
2212 	count = -rcl.len;
2213 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2214 			    is_idle_task(current), rcu_is_callbacks_kthread());
2215 
2216 	/* Update counts and requeue any remaining callbacks. */
2217 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2218 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2219 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2220 
2221 	/* Reinstate batch limit if we have worked down the excess. */
2222 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2223 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2224 		rdp->blimit = blimit;
2225 
2226 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2227 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2228 		rdp->qlen_last_fqs_check = 0;
2229 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2230 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2231 		rdp->qlen_last_fqs_check = count;
2232 
2233 	/*
2234 	 * The following usually indicates a double call_rcu().  To track
2235 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2236 	 */
2237 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2238 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2239 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2240 
2241 	rcu_nocb_unlock_irqrestore(rdp, flags);
2242 
2243 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2244 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2245 		invoke_rcu_core();
2246 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2247 }
2248 
2249 /*
2250  * This function is invoked from each scheduling-clock interrupt,
2251  * and checks to see if this CPU is in a non-context-switch quiescent
2252  * state, for example, user mode or idle loop.  It also schedules RCU
2253  * core processing.  If the current grace period has gone on too long,
2254  * it will ask the scheduler to manufacture a context switch for the sole
2255  * purpose of providing a providing the needed quiescent state.
2256  */
2257 void rcu_sched_clock_irq(int user)
2258 {
2259 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2260 	raw_cpu_inc(rcu_data.ticks_this_gp);
2261 	/* The load-acquire pairs with the store-release setting to true. */
2262 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2263 		/* Idle and userspace execution already are quiescent states. */
2264 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2265 			set_tsk_need_resched(current);
2266 			set_preempt_need_resched();
2267 		}
2268 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2269 	}
2270 	rcu_flavor_sched_clock_irq(user);
2271 	if (rcu_pending(user))
2272 		invoke_rcu_core();
2273 
2274 	trace_rcu_utilization(TPS("End scheduler-tick"));
2275 }
2276 
2277 /*
2278  * Scan the leaf rcu_node structures.  For each structure on which all
2279  * CPUs have reported a quiescent state and on which there are tasks
2280  * blocking the current grace period, initiate RCU priority boosting.
2281  * Otherwise, invoke the specified function to check dyntick state for
2282  * each CPU that has not yet reported a quiescent state.
2283  */
2284 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2285 {
2286 	int cpu;
2287 	unsigned long flags;
2288 	unsigned long mask;
2289 	struct rcu_data *rdp;
2290 	struct rcu_node *rnp;
2291 
2292 	rcu_for_each_leaf_node(rnp) {
2293 		cond_resched_tasks_rcu_qs();
2294 		mask = 0;
2295 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2296 		if (rnp->qsmask == 0) {
2297 			if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2298 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2299 				/*
2300 				 * No point in scanning bits because they
2301 				 * are all zero.  But we might need to
2302 				 * priority-boost blocked readers.
2303 				 */
2304 				rcu_initiate_boost(rnp, flags);
2305 				/* rcu_initiate_boost() releases rnp->lock */
2306 				continue;
2307 			}
2308 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2309 			continue;
2310 		}
2311 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2312 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2313 			if ((rnp->qsmask & bit) != 0) {
2314 				rdp = per_cpu_ptr(&rcu_data, cpu);
2315 				if (f(rdp)) {
2316 					mask |= bit;
2317 					rcu_disable_urgency_upon_qs(rdp);
2318 				}
2319 			}
2320 		}
2321 		if (mask != 0) {
2322 			/* Idle/offline CPUs, report (releases rnp->lock). */
2323 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2324 		} else {
2325 			/* Nothing to do here, so just drop the lock. */
2326 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2327 		}
2328 	}
2329 }
2330 
2331 /*
2332  * Force quiescent states on reluctant CPUs, and also detect which
2333  * CPUs are in dyntick-idle mode.
2334  */
2335 void rcu_force_quiescent_state(void)
2336 {
2337 	unsigned long flags;
2338 	bool ret;
2339 	struct rcu_node *rnp;
2340 	struct rcu_node *rnp_old = NULL;
2341 
2342 	/* Funnel through hierarchy to reduce memory contention. */
2343 	rnp = __this_cpu_read(rcu_data.mynode);
2344 	for (; rnp != NULL; rnp = rnp->parent) {
2345 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2346 		       !raw_spin_trylock(&rnp->fqslock);
2347 		if (rnp_old != NULL)
2348 			raw_spin_unlock(&rnp_old->fqslock);
2349 		if (ret)
2350 			return;
2351 		rnp_old = rnp;
2352 	}
2353 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2354 
2355 	/* Reached the root of the rcu_node tree, acquire lock. */
2356 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2357 	raw_spin_unlock(&rnp_old->fqslock);
2358 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2359 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2360 		return;  /* Someone beat us to it. */
2361 	}
2362 	WRITE_ONCE(rcu_state.gp_flags,
2363 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2364 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2365 	rcu_gp_kthread_wake();
2366 }
2367 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2368 
2369 /* Perform RCU core processing work for the current CPU.  */
2370 static __latent_entropy void rcu_core(void)
2371 {
2372 	unsigned long flags;
2373 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2374 	struct rcu_node *rnp = rdp->mynode;
2375 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2376 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2377 
2378 	if (cpu_is_offline(smp_processor_id()))
2379 		return;
2380 	trace_rcu_utilization(TPS("Start RCU core"));
2381 	WARN_ON_ONCE(!rdp->beenonline);
2382 
2383 	/* Report any deferred quiescent states if preemption enabled. */
2384 	if (!(preempt_count() & PREEMPT_MASK)) {
2385 		rcu_preempt_deferred_qs(current);
2386 	} else if (rcu_preempt_need_deferred_qs(current)) {
2387 		set_tsk_need_resched(current);
2388 		set_preempt_need_resched();
2389 	}
2390 
2391 	/* Update RCU state based on any recent quiescent states. */
2392 	rcu_check_quiescent_state(rdp);
2393 
2394 	/* No grace period and unregistered callbacks? */
2395 	if (!rcu_gp_in_progress() &&
2396 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2397 		local_irq_save(flags);
2398 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2399 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2400 		local_irq_restore(flags);
2401 	}
2402 
2403 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2404 
2405 	/* If there are callbacks ready, invoke them. */
2406 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2407 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2408 		rcu_do_batch(rdp);
2409 
2410 	/* Do any needed deferred wakeups of rcuo kthreads. */
2411 	do_nocb_deferred_wakeup(rdp);
2412 	trace_rcu_utilization(TPS("End RCU core"));
2413 }
2414 
2415 static void rcu_core_si(struct softirq_action *h)
2416 {
2417 	rcu_core();
2418 }
2419 
2420 static void rcu_wake_cond(struct task_struct *t, int status)
2421 {
2422 	/*
2423 	 * If the thread is yielding, only wake it when this
2424 	 * is invoked from idle
2425 	 */
2426 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2427 		wake_up_process(t);
2428 }
2429 
2430 static void invoke_rcu_core_kthread(void)
2431 {
2432 	struct task_struct *t;
2433 	unsigned long flags;
2434 
2435 	local_irq_save(flags);
2436 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2437 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2438 	if (t != NULL && t != current)
2439 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2440 	local_irq_restore(flags);
2441 }
2442 
2443 /*
2444  * Wake up this CPU's rcuc kthread to do RCU core processing.
2445  */
2446 static void invoke_rcu_core(void)
2447 {
2448 	if (!cpu_online(smp_processor_id()))
2449 		return;
2450 	if (use_softirq)
2451 		raise_softirq(RCU_SOFTIRQ);
2452 	else
2453 		invoke_rcu_core_kthread();
2454 }
2455 
2456 static void rcu_cpu_kthread_park(unsigned int cpu)
2457 {
2458 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2459 }
2460 
2461 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2462 {
2463 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2464 }
2465 
2466 /*
2467  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2468  * the RCU softirq used in configurations of RCU that do not support RCU
2469  * priority boosting.
2470  */
2471 static void rcu_cpu_kthread(unsigned int cpu)
2472 {
2473 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2474 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2475 	int spincnt;
2476 
2477 	for (spincnt = 0; spincnt < 10; spincnt++) {
2478 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2479 		local_bh_disable();
2480 		*statusp = RCU_KTHREAD_RUNNING;
2481 		local_irq_disable();
2482 		work = *workp;
2483 		*workp = 0;
2484 		local_irq_enable();
2485 		if (work)
2486 			rcu_core();
2487 		local_bh_enable();
2488 		if (*workp == 0) {
2489 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2490 			*statusp = RCU_KTHREAD_WAITING;
2491 			return;
2492 		}
2493 	}
2494 	*statusp = RCU_KTHREAD_YIELDING;
2495 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2496 	schedule_timeout_interruptible(2);
2497 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2498 	*statusp = RCU_KTHREAD_WAITING;
2499 }
2500 
2501 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2502 	.store			= &rcu_data.rcu_cpu_kthread_task,
2503 	.thread_should_run	= rcu_cpu_kthread_should_run,
2504 	.thread_fn		= rcu_cpu_kthread,
2505 	.thread_comm		= "rcuc/%u",
2506 	.setup			= rcu_cpu_kthread_setup,
2507 	.park			= rcu_cpu_kthread_park,
2508 };
2509 
2510 /*
2511  * Spawn per-CPU RCU core processing kthreads.
2512  */
2513 static int __init rcu_spawn_core_kthreads(void)
2514 {
2515 	int cpu;
2516 
2517 	for_each_possible_cpu(cpu)
2518 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2519 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2520 		return 0;
2521 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2522 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2523 	return 0;
2524 }
2525 early_initcall(rcu_spawn_core_kthreads);
2526 
2527 /*
2528  * Handle any core-RCU processing required by a call_rcu() invocation.
2529  */
2530 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2531 			    unsigned long flags)
2532 {
2533 	/*
2534 	 * If called from an extended quiescent state, invoke the RCU
2535 	 * core in order to force a re-evaluation of RCU's idleness.
2536 	 */
2537 	if (!rcu_is_watching())
2538 		invoke_rcu_core();
2539 
2540 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2541 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2542 		return;
2543 
2544 	/*
2545 	 * Force the grace period if too many callbacks or too long waiting.
2546 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2547 	 * if some other CPU has recently done so.  Also, don't bother
2548 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2549 	 * is the only one waiting for a grace period to complete.
2550 	 */
2551 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2552 		     rdp->qlen_last_fqs_check + qhimark)) {
2553 
2554 		/* Are we ignoring a completed grace period? */
2555 		note_gp_changes(rdp);
2556 
2557 		/* Start a new grace period if one not already started. */
2558 		if (!rcu_gp_in_progress()) {
2559 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2560 		} else {
2561 			/* Give the grace period a kick. */
2562 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2563 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2564 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2565 				rcu_force_quiescent_state();
2566 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2567 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2568 		}
2569 	}
2570 }
2571 
2572 /*
2573  * RCU callback function to leak a callback.
2574  */
2575 static void rcu_leak_callback(struct rcu_head *rhp)
2576 {
2577 }
2578 
2579 /*
2580  * Helper function for call_rcu() and friends.  The cpu argument will
2581  * normally be -1, indicating "currently running CPU".  It may specify
2582  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2583  * is expected to specify a CPU.
2584  */
2585 static void
2586 __call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2587 {
2588 	unsigned long flags;
2589 	struct rcu_data *rdp;
2590 	bool was_alldone;
2591 
2592 	/* Misaligned rcu_head! */
2593 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2594 
2595 	if (debug_rcu_head_queue(head)) {
2596 		/*
2597 		 * Probable double call_rcu(), so leak the callback.
2598 		 * Use rcu:rcu_callback trace event to find the previous
2599 		 * time callback was passed to __call_rcu().
2600 		 */
2601 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2602 			  head, head->func);
2603 		WRITE_ONCE(head->func, rcu_leak_callback);
2604 		return;
2605 	}
2606 	head->func = func;
2607 	head->next = NULL;
2608 	local_irq_save(flags);
2609 	rdp = this_cpu_ptr(&rcu_data);
2610 
2611 	/* Add the callback to our list. */
2612 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2613 		// This can trigger due to call_rcu() from offline CPU:
2614 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2615 		WARN_ON_ONCE(!rcu_is_watching());
2616 		// Very early boot, before rcu_init().  Initialize if needed
2617 		// and then drop through to queue the callback.
2618 		if (rcu_segcblist_empty(&rdp->cblist))
2619 			rcu_segcblist_init(&rdp->cblist);
2620 	}
2621 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2622 		return; // Enqueued onto ->nocb_bypass, so just leave.
2623 	/* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2624 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2625 	if (__is_kfree_rcu_offset((unsigned long)func))
2626 		trace_rcu_kfree_callback(rcu_state.name, head,
2627 					 (unsigned long)func,
2628 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2629 					 rcu_segcblist_n_cbs(&rdp->cblist));
2630 	else
2631 		trace_rcu_callback(rcu_state.name, head,
2632 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2633 				   rcu_segcblist_n_cbs(&rdp->cblist));
2634 
2635 	/* Go handle any RCU core processing required. */
2636 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2637 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2638 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2639 	} else {
2640 		__call_rcu_core(rdp, head, flags);
2641 		local_irq_restore(flags);
2642 	}
2643 }
2644 
2645 /**
2646  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2647  * @head: structure to be used for queueing the RCU updates.
2648  * @func: actual callback function to be invoked after the grace period
2649  *
2650  * The callback function will be invoked some time after a full grace
2651  * period elapses, in other words after all pre-existing RCU read-side
2652  * critical sections have completed.  However, the callback function
2653  * might well execute concurrently with RCU read-side critical sections
2654  * that started after call_rcu() was invoked.  RCU read-side critical
2655  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2656  * may be nested.  In addition, regions of code across which interrupts,
2657  * preemption, or softirqs have been disabled also serve as RCU read-side
2658  * critical sections.  This includes hardware interrupt handlers, softirq
2659  * handlers, and NMI handlers.
2660  *
2661  * Note that all CPUs must agree that the grace period extended beyond
2662  * all pre-existing RCU read-side critical section.  On systems with more
2663  * than one CPU, this means that when "func()" is invoked, each CPU is
2664  * guaranteed to have executed a full memory barrier since the end of its
2665  * last RCU read-side critical section whose beginning preceded the call
2666  * to call_rcu().  It also means that each CPU executing an RCU read-side
2667  * critical section that continues beyond the start of "func()" must have
2668  * executed a memory barrier after the call_rcu() but before the beginning
2669  * of that RCU read-side critical section.  Note that these guarantees
2670  * include CPUs that are offline, idle, or executing in user mode, as
2671  * well as CPUs that are executing in the kernel.
2672  *
2673  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2674  * resulting RCU callback function "func()", then both CPU A and CPU B are
2675  * guaranteed to execute a full memory barrier during the time interval
2676  * between the call to call_rcu() and the invocation of "func()" -- even
2677  * if CPU A and CPU B are the same CPU (but again only if the system has
2678  * more than one CPU).
2679  */
2680 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2681 {
2682 	__call_rcu(head, func, 0);
2683 }
2684 EXPORT_SYMBOL_GPL(call_rcu);
2685 
2686 /*
2687  * Queue an RCU callback for lazy invocation after a grace period.
2688  * This will likely be later named something like "call_rcu_lazy()",
2689  * but this change will require some way of tagging the lazy RCU
2690  * callbacks in the list of pending callbacks. Until then, this
2691  * function may only be called from __kfree_rcu().
2692  */
2693 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2694 {
2695 	__call_rcu(head, func, 1);
2696 }
2697 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2698 
2699 /*
2700  * During early boot, any blocking grace-period wait automatically
2701  * implies a grace period.  Later on, this is never the case for PREEMPT.
2702  *
2703  * Howevr, because a context switch is a grace period for !PREEMPT, any
2704  * blocking grace-period wait automatically implies a grace period if
2705  * there is only one CPU online at any point time during execution of
2706  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2707  * occasionally incorrectly indicate that there are multiple CPUs online
2708  * when there was in fact only one the whole time, as this just adds some
2709  * overhead: RCU still operates correctly.
2710  */
2711 static int rcu_blocking_is_gp(void)
2712 {
2713 	int ret;
2714 
2715 	if (IS_ENABLED(CONFIG_PREEMPTION))
2716 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2717 	might_sleep();  /* Check for RCU read-side critical section. */
2718 	preempt_disable();
2719 	ret = num_online_cpus() <= 1;
2720 	preempt_enable();
2721 	return ret;
2722 }
2723 
2724 /**
2725  * synchronize_rcu - wait until a grace period has elapsed.
2726  *
2727  * Control will return to the caller some time after a full grace
2728  * period has elapsed, in other words after all currently executing RCU
2729  * read-side critical sections have completed.  Note, however, that
2730  * upon return from synchronize_rcu(), the caller might well be executing
2731  * concurrently with new RCU read-side critical sections that began while
2732  * synchronize_rcu() was waiting.  RCU read-side critical sections are
2733  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2734  * In addition, regions of code across which interrupts, preemption, or
2735  * softirqs have been disabled also serve as RCU read-side critical
2736  * sections.  This includes hardware interrupt handlers, softirq handlers,
2737  * and NMI handlers.
2738  *
2739  * Note that this guarantee implies further memory-ordering guarantees.
2740  * On systems with more than one CPU, when synchronize_rcu() returns,
2741  * each CPU is guaranteed to have executed a full memory barrier since
2742  * the end of its last RCU read-side critical section whose beginning
2743  * preceded the call to synchronize_rcu().  In addition, each CPU having
2744  * an RCU read-side critical section that extends beyond the return from
2745  * synchronize_rcu() is guaranteed to have executed a full memory barrier
2746  * after the beginning of synchronize_rcu() and before the beginning of
2747  * that RCU read-side critical section.  Note that these guarantees include
2748  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2749  * that are executing in the kernel.
2750  *
2751  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2752  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2753  * to have executed a full memory barrier during the execution of
2754  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2755  * again only if the system has more than one CPU).
2756  */
2757 void synchronize_rcu(void)
2758 {
2759 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2760 			 lock_is_held(&rcu_lock_map) ||
2761 			 lock_is_held(&rcu_sched_lock_map),
2762 			 "Illegal synchronize_rcu() in RCU read-side critical section");
2763 	if (rcu_blocking_is_gp())
2764 		return;
2765 	if (rcu_gp_is_expedited())
2766 		synchronize_rcu_expedited();
2767 	else
2768 		wait_rcu_gp(call_rcu);
2769 }
2770 EXPORT_SYMBOL_GPL(synchronize_rcu);
2771 
2772 /**
2773  * get_state_synchronize_rcu - Snapshot current RCU state
2774  *
2775  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2776  * to determine whether or not a full grace period has elapsed in the
2777  * meantime.
2778  */
2779 unsigned long get_state_synchronize_rcu(void)
2780 {
2781 	/*
2782 	 * Any prior manipulation of RCU-protected data must happen
2783 	 * before the load from ->gp_seq.
2784 	 */
2785 	smp_mb();  /* ^^^ */
2786 	return rcu_seq_snap(&rcu_state.gp_seq);
2787 }
2788 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2789 
2790 /**
2791  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2792  *
2793  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2794  *
2795  * If a full RCU grace period has elapsed since the earlier call to
2796  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2797  * synchronize_rcu() to wait for a full grace period.
2798  *
2799  * Yes, this function does not take counter wrap into account.  But
2800  * counter wrap is harmless.  If the counter wraps, we have waited for
2801  * more than 2 billion grace periods (and way more on a 64-bit system!),
2802  * so waiting for one additional grace period should be just fine.
2803  */
2804 void cond_synchronize_rcu(unsigned long oldstate)
2805 {
2806 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2807 		synchronize_rcu();
2808 	else
2809 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2810 }
2811 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2812 
2813 /*
2814  * Check to see if there is any immediate RCU-related work to be done by
2815  * the current CPU, returning 1 if so and zero otherwise.  The checks are
2816  * in order of increasing expense: checks that can be carried out against
2817  * CPU-local state are performed first.  However, we must check for CPU
2818  * stalls first, else we might not get a chance.
2819  */
2820 static int rcu_pending(int user)
2821 {
2822 	bool gp_in_progress;
2823 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2824 	struct rcu_node *rnp = rdp->mynode;
2825 
2826 	/* Check for CPU stalls, if enabled. */
2827 	check_cpu_stall(rdp);
2828 
2829 	/* Does this CPU need a deferred NOCB wakeup? */
2830 	if (rcu_nocb_need_deferred_wakeup(rdp))
2831 		return 1;
2832 
2833 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
2834 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
2835 		return 0;
2836 
2837 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2838 	gp_in_progress = rcu_gp_in_progress();
2839 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
2840 		return 1;
2841 
2842 	/* Does this CPU have callbacks ready to invoke? */
2843 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2844 		return 1;
2845 
2846 	/* Has RCU gone idle with this CPU needing another grace period? */
2847 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
2848 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2849 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2850 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2851 		return 1;
2852 
2853 	/* Have RCU grace period completed or started?  */
2854 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2855 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2856 		return 1;
2857 
2858 	/* nothing to do */
2859 	return 0;
2860 }
2861 
2862 /*
2863  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2864  * the compiler is expected to optimize this away.
2865  */
2866 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2867 {
2868 	trace_rcu_barrier(rcu_state.name, s, cpu,
2869 			  atomic_read(&rcu_state.barrier_cpu_count), done);
2870 }
2871 
2872 /*
2873  * RCU callback function for rcu_barrier().  If we are last, wake
2874  * up the task executing rcu_barrier().
2875  */
2876 static void rcu_barrier_callback(struct rcu_head *rhp)
2877 {
2878 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2879 		rcu_barrier_trace(TPS("LastCB"), -1,
2880 				  rcu_state.barrier_sequence);
2881 		complete(&rcu_state.barrier_completion);
2882 	} else {
2883 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2884 	}
2885 }
2886 
2887 /*
2888  * Called with preemption disabled, and from cross-cpu IRQ context.
2889  */
2890 static void rcu_barrier_func(void *unused)
2891 {
2892 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2893 
2894 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2895 	rdp->barrier_head.func = rcu_barrier_callback;
2896 	debug_rcu_head_queue(&rdp->barrier_head);
2897 	rcu_nocb_lock(rdp);
2898 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2899 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2900 		atomic_inc(&rcu_state.barrier_cpu_count);
2901 	} else {
2902 		debug_rcu_head_unqueue(&rdp->barrier_head);
2903 		rcu_barrier_trace(TPS("IRQNQ"), -1,
2904 				  rcu_state.barrier_sequence);
2905 	}
2906 	rcu_nocb_unlock(rdp);
2907 }
2908 
2909 /**
2910  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2911  *
2912  * Note that this primitive does not necessarily wait for an RCU grace period
2913  * to complete.  For example, if there are no RCU callbacks queued anywhere
2914  * in the system, then rcu_barrier() is within its rights to return
2915  * immediately, without waiting for anything, much less an RCU grace period.
2916  */
2917 void rcu_barrier(void)
2918 {
2919 	int cpu;
2920 	struct rcu_data *rdp;
2921 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2922 
2923 	rcu_barrier_trace(TPS("Begin"), -1, s);
2924 
2925 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2926 	mutex_lock(&rcu_state.barrier_mutex);
2927 
2928 	/* Did someone else do our work for us? */
2929 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2930 		rcu_barrier_trace(TPS("EarlyExit"), -1,
2931 				  rcu_state.barrier_sequence);
2932 		smp_mb(); /* caller's subsequent code after above check. */
2933 		mutex_unlock(&rcu_state.barrier_mutex);
2934 		return;
2935 	}
2936 
2937 	/* Mark the start of the barrier operation. */
2938 	rcu_seq_start(&rcu_state.barrier_sequence);
2939 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2940 
2941 	/*
2942 	 * Initialize the count to one rather than to zero in order to
2943 	 * avoid a too-soon return to zero in case of a short grace period
2944 	 * (or preemption of this task).  Exclude CPU-hotplug operations
2945 	 * to ensure that no offline CPU has callbacks queued.
2946 	 */
2947 	init_completion(&rcu_state.barrier_completion);
2948 	atomic_set(&rcu_state.barrier_cpu_count, 1);
2949 	get_online_cpus();
2950 
2951 	/*
2952 	 * Force each CPU with callbacks to register a new callback.
2953 	 * When that callback is invoked, we will know that all of the
2954 	 * corresponding CPU's preceding callbacks have been invoked.
2955 	 */
2956 	for_each_possible_cpu(cpu) {
2957 		rdp = per_cpu_ptr(&rcu_data, cpu);
2958 		if (!cpu_online(cpu) &&
2959 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
2960 			continue;
2961 		if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2962 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
2963 					  rcu_state.barrier_sequence);
2964 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2965 		} else {
2966 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2967 					  rcu_state.barrier_sequence);
2968 		}
2969 	}
2970 	put_online_cpus();
2971 
2972 	/*
2973 	 * Now that we have an rcu_barrier_callback() callback on each
2974 	 * CPU, and thus each counted, remove the initial count.
2975 	 */
2976 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2977 		complete(&rcu_state.barrier_completion);
2978 
2979 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2980 	wait_for_completion(&rcu_state.barrier_completion);
2981 
2982 	/* Mark the end of the barrier operation. */
2983 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2984 	rcu_seq_end(&rcu_state.barrier_sequence);
2985 
2986 	/* Other rcu_barrier() invocations can now safely proceed. */
2987 	mutex_unlock(&rcu_state.barrier_mutex);
2988 }
2989 EXPORT_SYMBOL_GPL(rcu_barrier);
2990 
2991 /*
2992  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2993  * first CPU in a given leaf rcu_node structure coming online.  The caller
2994  * must hold the corresponding leaf rcu_node ->lock with interrrupts
2995  * disabled.
2996  */
2997 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2998 {
2999 	long mask;
3000 	long oldmask;
3001 	struct rcu_node *rnp = rnp_leaf;
3002 
3003 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3004 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3005 	for (;;) {
3006 		mask = rnp->grpmask;
3007 		rnp = rnp->parent;
3008 		if (rnp == NULL)
3009 			return;
3010 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3011 		oldmask = rnp->qsmaskinit;
3012 		rnp->qsmaskinit |= mask;
3013 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3014 		if (oldmask)
3015 			return;
3016 	}
3017 }
3018 
3019 /*
3020  * Do boot-time initialization of a CPU's per-CPU RCU data.
3021  */
3022 static void __init
3023 rcu_boot_init_percpu_data(int cpu)
3024 {
3025 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3026 
3027 	/* Set up local state, ensuring consistent view of global state. */
3028 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3029 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3030 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3031 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3032 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3033 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3034 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3035 	rdp->cpu = cpu;
3036 	rcu_boot_init_nocb_percpu_data(rdp);
3037 }
3038 
3039 /*
3040  * Invoked early in the CPU-online process, when pretty much all services
3041  * are available.  The incoming CPU is not present.
3042  *
3043  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3044  * offline event can be happening at a given time.  Note also that we can
3045  * accept some slop in the rsp->gp_seq access due to the fact that this
3046  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3047  * And any offloaded callbacks are being numbered elsewhere.
3048  */
3049 int rcutree_prepare_cpu(unsigned int cpu)
3050 {
3051 	unsigned long flags;
3052 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3053 	struct rcu_node *rnp = rcu_get_root();
3054 
3055 	/* Set up local state, ensuring consistent view of global state. */
3056 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3057 	rdp->qlen_last_fqs_check = 0;
3058 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3059 	rdp->blimit = blimit;
3060 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3061 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3062 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3063 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3064 	rcu_dynticks_eqs_online();
3065 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3066 
3067 	/*
3068 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3069 	 * propagation up the rcu_node tree will happen at the beginning
3070 	 * of the next grace period.
3071 	 */
3072 	rnp = rdp->mynode;
3073 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3074 	rdp->beenonline = true;	 /* We have now been online. */
3075 	rdp->gp_seq = rnp->gp_seq;
3076 	rdp->gp_seq_needed = rnp->gp_seq;
3077 	rdp->cpu_no_qs.b.norm = true;
3078 	rdp->core_needs_qs = false;
3079 	rdp->rcu_iw_pending = false;
3080 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3081 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3082 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3083 	rcu_prepare_kthreads(cpu);
3084 	rcu_spawn_cpu_nocb_kthread(cpu);
3085 
3086 	return 0;
3087 }
3088 
3089 /*
3090  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3091  */
3092 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3093 {
3094 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3095 
3096 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3097 }
3098 
3099 /*
3100  * Near the end of the CPU-online process.  Pretty much all services
3101  * enabled, and the CPU is now very much alive.
3102  */
3103 int rcutree_online_cpu(unsigned int cpu)
3104 {
3105 	unsigned long flags;
3106 	struct rcu_data *rdp;
3107 	struct rcu_node *rnp;
3108 
3109 	rdp = per_cpu_ptr(&rcu_data, cpu);
3110 	rnp = rdp->mynode;
3111 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3112 	rnp->ffmask |= rdp->grpmask;
3113 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3114 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3115 		return 0; /* Too early in boot for scheduler work. */
3116 	sync_sched_exp_online_cleanup(cpu);
3117 	rcutree_affinity_setting(cpu, -1);
3118 
3119 	// Stop-machine done, so allow nohz_full to disable tick.
3120 	tick_dep_clear(TICK_DEP_BIT_RCU);
3121 	return 0;
3122 }
3123 
3124 /*
3125  * Near the beginning of the process.  The CPU is still very much alive
3126  * with pretty much all services enabled.
3127  */
3128 int rcutree_offline_cpu(unsigned int cpu)
3129 {
3130 	unsigned long flags;
3131 	struct rcu_data *rdp;
3132 	struct rcu_node *rnp;
3133 
3134 	rdp = per_cpu_ptr(&rcu_data, cpu);
3135 	rnp = rdp->mynode;
3136 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3137 	rnp->ffmask &= ~rdp->grpmask;
3138 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3139 
3140 	rcutree_affinity_setting(cpu, cpu);
3141 
3142 	// nohz_full CPUs need the tick for stop-machine to work quickly
3143 	tick_dep_set(TICK_DEP_BIT_RCU);
3144 	return 0;
3145 }
3146 
3147 static DEFINE_PER_CPU(int, rcu_cpu_started);
3148 
3149 /*
3150  * Mark the specified CPU as being online so that subsequent grace periods
3151  * (both expedited and normal) will wait on it.  Note that this means that
3152  * incoming CPUs are not allowed to use RCU read-side critical sections
3153  * until this function is called.  Failing to observe this restriction
3154  * will result in lockdep splats.
3155  *
3156  * Note that this function is special in that it is invoked directly
3157  * from the incoming CPU rather than from the cpuhp_step mechanism.
3158  * This is because this function must be invoked at a precise location.
3159  */
3160 void rcu_cpu_starting(unsigned int cpu)
3161 {
3162 	unsigned long flags;
3163 	unsigned long mask;
3164 	int nbits;
3165 	unsigned long oldmask;
3166 	struct rcu_data *rdp;
3167 	struct rcu_node *rnp;
3168 
3169 	if (per_cpu(rcu_cpu_started, cpu))
3170 		return;
3171 
3172 	per_cpu(rcu_cpu_started, cpu) = 1;
3173 
3174 	rdp = per_cpu_ptr(&rcu_data, cpu);
3175 	rnp = rdp->mynode;
3176 	mask = rdp->grpmask;
3177 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3178 	rnp->qsmaskinitnext |= mask;
3179 	oldmask = rnp->expmaskinitnext;
3180 	rnp->expmaskinitnext |= mask;
3181 	oldmask ^= rnp->expmaskinitnext;
3182 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3183 	/* Allow lockless access for expedited grace periods. */
3184 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3185 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3186 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3187 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3188 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3189 		rcu_disable_urgency_upon_qs(rdp);
3190 		/* Report QS -after- changing ->qsmaskinitnext! */
3191 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3192 	} else {
3193 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3194 	}
3195 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3196 }
3197 
3198 #ifdef CONFIG_HOTPLUG_CPU
3199 /*
3200  * The outgoing function has no further need of RCU, so remove it from
3201  * the rcu_node tree's ->qsmaskinitnext bit masks.
3202  *
3203  * Note that this function is special in that it is invoked directly
3204  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3205  * This is because this function must be invoked at a precise location.
3206  */
3207 void rcu_report_dead(unsigned int cpu)
3208 {
3209 	unsigned long flags;
3210 	unsigned long mask;
3211 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3212 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3213 
3214 	/* QS for any half-done expedited grace period. */
3215 	preempt_disable();
3216 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3217 	preempt_enable();
3218 	rcu_preempt_deferred_qs(current);
3219 
3220 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3221 	mask = rdp->grpmask;
3222 	raw_spin_lock(&rcu_state.ofl_lock);
3223 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3224 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3225 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3226 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3227 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3228 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3229 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3230 	}
3231 	rnp->qsmaskinitnext &= ~mask;
3232 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3233 	raw_spin_unlock(&rcu_state.ofl_lock);
3234 
3235 	per_cpu(rcu_cpu_started, cpu) = 0;
3236 }
3237 
3238 /*
3239  * The outgoing CPU has just passed through the dying-idle state, and we
3240  * are being invoked from the CPU that was IPIed to continue the offline
3241  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3242  */
3243 void rcutree_migrate_callbacks(int cpu)
3244 {
3245 	unsigned long flags;
3246 	struct rcu_data *my_rdp;
3247 	struct rcu_node *my_rnp;
3248 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3249 	bool needwake;
3250 
3251 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3252 	    rcu_segcblist_empty(&rdp->cblist))
3253 		return;  /* No callbacks to migrate. */
3254 
3255 	local_irq_save(flags);
3256 	my_rdp = this_cpu_ptr(&rcu_data);
3257 	my_rnp = my_rdp->mynode;
3258 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3259 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3260 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3261 	/* Leverage recent GPs and set GP for new callbacks. */
3262 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3263 		   rcu_advance_cbs(my_rnp, my_rdp);
3264 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3265 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3266 	rcu_segcblist_disable(&rdp->cblist);
3267 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3268 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3269 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3270 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3271 		__call_rcu_nocb_wake(my_rdp, true, flags);
3272 	} else {
3273 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3274 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3275 	}
3276 	if (needwake)
3277 		rcu_gp_kthread_wake();
3278 	lockdep_assert_irqs_enabled();
3279 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3280 		  !rcu_segcblist_empty(&rdp->cblist),
3281 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3282 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3283 		  rcu_segcblist_first_cb(&rdp->cblist));
3284 }
3285 #endif
3286 
3287 /*
3288  * On non-huge systems, use expedited RCU grace periods to make suspend
3289  * and hibernation run faster.
3290  */
3291 static int rcu_pm_notify(struct notifier_block *self,
3292 			 unsigned long action, void *hcpu)
3293 {
3294 	switch (action) {
3295 	case PM_HIBERNATION_PREPARE:
3296 	case PM_SUSPEND_PREPARE:
3297 		rcu_expedite_gp();
3298 		break;
3299 	case PM_POST_HIBERNATION:
3300 	case PM_POST_SUSPEND:
3301 		rcu_unexpedite_gp();
3302 		break;
3303 	default:
3304 		break;
3305 	}
3306 	return NOTIFY_OK;
3307 }
3308 
3309 /*
3310  * Spawn the kthreads that handle RCU's grace periods.
3311  */
3312 static int __init rcu_spawn_gp_kthread(void)
3313 {
3314 	unsigned long flags;
3315 	int kthread_prio_in = kthread_prio;
3316 	struct rcu_node *rnp;
3317 	struct sched_param sp;
3318 	struct task_struct *t;
3319 
3320 	/* Force priority into range. */
3321 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3322 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3323 		kthread_prio = 2;
3324 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3325 		kthread_prio = 1;
3326 	else if (kthread_prio < 0)
3327 		kthread_prio = 0;
3328 	else if (kthread_prio > 99)
3329 		kthread_prio = 99;
3330 
3331 	if (kthread_prio != kthread_prio_in)
3332 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3333 			 kthread_prio, kthread_prio_in);
3334 
3335 	rcu_scheduler_fully_active = 1;
3336 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3337 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3338 		return 0;
3339 	if (kthread_prio) {
3340 		sp.sched_priority = kthread_prio;
3341 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3342 	}
3343 	rnp = rcu_get_root();
3344 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3345 	rcu_state.gp_kthread = t;
3346 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3347 	wake_up_process(t);
3348 	rcu_spawn_nocb_kthreads();
3349 	rcu_spawn_boost_kthreads();
3350 	return 0;
3351 }
3352 early_initcall(rcu_spawn_gp_kthread);
3353 
3354 /*
3355  * This function is invoked towards the end of the scheduler's
3356  * initialization process.  Before this is called, the idle task might
3357  * contain synchronous grace-period primitives (during which time, this idle
3358  * task is booting the system, and such primitives are no-ops).  After this
3359  * function is called, any synchronous grace-period primitives are run as
3360  * expedited, with the requesting task driving the grace period forward.
3361  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3362  * runtime RCU functionality.
3363  */
3364 void rcu_scheduler_starting(void)
3365 {
3366 	WARN_ON(num_online_cpus() != 1);
3367 	WARN_ON(nr_context_switches() > 0);
3368 	rcu_test_sync_prims();
3369 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3370 	rcu_test_sync_prims();
3371 }
3372 
3373 /*
3374  * Helper function for rcu_init() that initializes the rcu_state structure.
3375  */
3376 static void __init rcu_init_one(void)
3377 {
3378 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3379 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3380 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3381 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3382 
3383 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3384 	int cpustride = 1;
3385 	int i;
3386 	int j;
3387 	struct rcu_node *rnp;
3388 
3389 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3390 
3391 	/* Silence gcc 4.8 false positive about array index out of range. */
3392 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3393 		panic("rcu_init_one: rcu_num_lvls out of range");
3394 
3395 	/* Initialize the level-tracking arrays. */
3396 
3397 	for (i = 1; i < rcu_num_lvls; i++)
3398 		rcu_state.level[i] =
3399 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3400 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3401 
3402 	/* Initialize the elements themselves, starting from the leaves. */
3403 
3404 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3405 		cpustride *= levelspread[i];
3406 		rnp = rcu_state.level[i];
3407 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3408 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3409 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3410 						   &rcu_node_class[i], buf[i]);
3411 			raw_spin_lock_init(&rnp->fqslock);
3412 			lockdep_set_class_and_name(&rnp->fqslock,
3413 						   &rcu_fqs_class[i], fqs[i]);
3414 			rnp->gp_seq = rcu_state.gp_seq;
3415 			rnp->gp_seq_needed = rcu_state.gp_seq;
3416 			rnp->completedqs = rcu_state.gp_seq;
3417 			rnp->qsmask = 0;
3418 			rnp->qsmaskinit = 0;
3419 			rnp->grplo = j * cpustride;
3420 			rnp->grphi = (j + 1) * cpustride - 1;
3421 			if (rnp->grphi >= nr_cpu_ids)
3422 				rnp->grphi = nr_cpu_ids - 1;
3423 			if (i == 0) {
3424 				rnp->grpnum = 0;
3425 				rnp->grpmask = 0;
3426 				rnp->parent = NULL;
3427 			} else {
3428 				rnp->grpnum = j % levelspread[i - 1];
3429 				rnp->grpmask = BIT(rnp->grpnum);
3430 				rnp->parent = rcu_state.level[i - 1] +
3431 					      j / levelspread[i - 1];
3432 			}
3433 			rnp->level = i;
3434 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3435 			rcu_init_one_nocb(rnp);
3436 			init_waitqueue_head(&rnp->exp_wq[0]);
3437 			init_waitqueue_head(&rnp->exp_wq[1]);
3438 			init_waitqueue_head(&rnp->exp_wq[2]);
3439 			init_waitqueue_head(&rnp->exp_wq[3]);
3440 			spin_lock_init(&rnp->exp_lock);
3441 		}
3442 	}
3443 
3444 	init_swait_queue_head(&rcu_state.gp_wq);
3445 	init_swait_queue_head(&rcu_state.expedited_wq);
3446 	rnp = rcu_first_leaf_node();
3447 	for_each_possible_cpu(i) {
3448 		while (i > rnp->grphi)
3449 			rnp++;
3450 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3451 		rcu_boot_init_percpu_data(i);
3452 	}
3453 }
3454 
3455 /*
3456  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3457  * replace the definitions in tree.h because those are needed to size
3458  * the ->node array in the rcu_state structure.
3459  */
3460 static void __init rcu_init_geometry(void)
3461 {
3462 	ulong d;
3463 	int i;
3464 	int rcu_capacity[RCU_NUM_LVLS];
3465 
3466 	/*
3467 	 * Initialize any unspecified boot parameters.
3468 	 * The default values of jiffies_till_first_fqs and
3469 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3470 	 * value, which is a function of HZ, then adding one for each
3471 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3472 	 */
3473 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3474 	if (jiffies_till_first_fqs == ULONG_MAX)
3475 		jiffies_till_first_fqs = d;
3476 	if (jiffies_till_next_fqs == ULONG_MAX)
3477 		jiffies_till_next_fqs = d;
3478 	adjust_jiffies_till_sched_qs();
3479 
3480 	/* If the compile-time values are accurate, just leave. */
3481 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3482 	    nr_cpu_ids == NR_CPUS)
3483 		return;
3484 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3485 		rcu_fanout_leaf, nr_cpu_ids);
3486 
3487 	/*
3488 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3489 	 * and cannot exceed the number of bits in the rcu_node masks.
3490 	 * Complain and fall back to the compile-time values if this
3491 	 * limit is exceeded.
3492 	 */
3493 	if (rcu_fanout_leaf < 2 ||
3494 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3495 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3496 		WARN_ON(1);
3497 		return;
3498 	}
3499 
3500 	/*
3501 	 * Compute number of nodes that can be handled an rcu_node tree
3502 	 * with the given number of levels.
3503 	 */
3504 	rcu_capacity[0] = rcu_fanout_leaf;
3505 	for (i = 1; i < RCU_NUM_LVLS; i++)
3506 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3507 
3508 	/*
3509 	 * The tree must be able to accommodate the configured number of CPUs.
3510 	 * If this limit is exceeded, fall back to the compile-time values.
3511 	 */
3512 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3513 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3514 		WARN_ON(1);
3515 		return;
3516 	}
3517 
3518 	/* Calculate the number of levels in the tree. */
3519 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3520 	}
3521 	rcu_num_lvls = i + 1;
3522 
3523 	/* Calculate the number of rcu_nodes at each level of the tree. */
3524 	for (i = 0; i < rcu_num_lvls; i++) {
3525 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3526 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3527 	}
3528 
3529 	/* Calculate the total number of rcu_node structures. */
3530 	rcu_num_nodes = 0;
3531 	for (i = 0; i < rcu_num_lvls; i++)
3532 		rcu_num_nodes += num_rcu_lvl[i];
3533 }
3534 
3535 /*
3536  * Dump out the structure of the rcu_node combining tree associated
3537  * with the rcu_state structure.
3538  */
3539 static void __init rcu_dump_rcu_node_tree(void)
3540 {
3541 	int level = 0;
3542 	struct rcu_node *rnp;
3543 
3544 	pr_info("rcu_node tree layout dump\n");
3545 	pr_info(" ");
3546 	rcu_for_each_node_breadth_first(rnp) {
3547 		if (rnp->level != level) {
3548 			pr_cont("\n");
3549 			pr_info(" ");
3550 			level = rnp->level;
3551 		}
3552 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3553 	}
3554 	pr_cont("\n");
3555 }
3556 
3557 struct workqueue_struct *rcu_gp_wq;
3558 struct workqueue_struct *rcu_par_gp_wq;
3559 
3560 void __init rcu_init(void)
3561 {
3562 	int cpu;
3563 
3564 	rcu_early_boot_tests();
3565 
3566 	rcu_bootup_announce();
3567 	rcu_init_geometry();
3568 	rcu_init_one();
3569 	if (dump_tree)
3570 		rcu_dump_rcu_node_tree();
3571 	if (use_softirq)
3572 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3573 
3574 	/*
3575 	 * We don't need protection against CPU-hotplug here because
3576 	 * this is called early in boot, before either interrupts
3577 	 * or the scheduler are operational.
3578 	 */
3579 	pm_notifier(rcu_pm_notify, 0);
3580 	for_each_online_cpu(cpu) {
3581 		rcutree_prepare_cpu(cpu);
3582 		rcu_cpu_starting(cpu);
3583 		rcutree_online_cpu(cpu);
3584 	}
3585 
3586 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3587 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3588 	WARN_ON(!rcu_gp_wq);
3589 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3590 	WARN_ON(!rcu_par_gp_wq);
3591 	srcu_init();
3592 }
3593 
3594 #include "tree_stall.h"
3595 #include "tree_exp.h"
3596 #include "tree_plugin.h"
3597