1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 .gpwrap = true, 80 #ifdef CONFIG_RCU_NOCB_CPU 81 .cblist.flags = SEGCBLIST_RCU_CORE, 82 #endif 83 }; 84 static struct rcu_state rcu_state = { 85 .level = { &rcu_state.node[0] }, 86 .gp_state = RCU_GP_IDLE, 87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 148 static void invoke_rcu_core(void); 149 static void rcu_report_exp_rdp(struct rcu_data *rdp); 150 static void sync_sched_exp_online_cleanup(int cpu); 151 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 152 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 153 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 154 static bool rcu_init_invoked(void); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 157 158 /* 159 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 160 * real-time priority(enabling/disabling) is controlled by 161 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 162 */ 163 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 164 module_param(kthread_prio, int, 0444); 165 166 /* Delay in jiffies for grace-period initialization delays, debug only. */ 167 168 static int gp_preinit_delay; 169 module_param(gp_preinit_delay, int, 0444); 170 static int gp_init_delay; 171 module_param(gp_init_delay, int, 0444); 172 static int gp_cleanup_delay; 173 module_param(gp_cleanup_delay, int, 0444); 174 175 // Add delay to rcu_read_unlock() for strict grace periods. 176 static int rcu_unlock_delay; 177 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 178 module_param(rcu_unlock_delay, int, 0444); 179 #endif 180 181 /* 182 * This rcu parameter is runtime-read-only. It reflects 183 * a minimum allowed number of objects which can be cached 184 * per-CPU. Object size is equal to one page. This value 185 * can be changed at boot time. 186 */ 187 static int rcu_min_cached_objs = 5; 188 module_param(rcu_min_cached_objs, int, 0444); 189 190 // A page shrinker can ask for pages to be freed to make them 191 // available for other parts of the system. This usually happens 192 // under low memory conditions, and in that case we should also 193 // defer page-cache filling for a short time period. 194 // 195 // The default value is 5 seconds, which is long enough to reduce 196 // interference with the shrinker while it asks other systems to 197 // drain their caches. 198 static int rcu_delay_page_cache_fill_msec = 5000; 199 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 200 201 /* Retrieve RCU kthreads priority for rcutorture */ 202 int rcu_get_gp_kthreads_prio(void) 203 { 204 return kthread_prio; 205 } 206 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 207 208 /* 209 * Number of grace periods between delays, normalized by the duration of 210 * the delay. The longer the delay, the more the grace periods between 211 * each delay. The reason for this normalization is that it means that, 212 * for non-zero delays, the overall slowdown of grace periods is constant 213 * regardless of the duration of the delay. This arrangement balances 214 * the need for long delays to increase some race probabilities with the 215 * need for fast grace periods to increase other race probabilities. 216 */ 217 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 218 219 /* 220 * Return true if an RCU grace period is in progress. The READ_ONCE()s 221 * permit this function to be invoked without holding the root rcu_node 222 * structure's ->lock, but of course results can be subject to change. 223 */ 224 static int rcu_gp_in_progress(void) 225 { 226 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 227 } 228 229 /* 230 * Return the number of callbacks queued on the specified CPU. 231 * Handles both the nocbs and normal cases. 232 */ 233 static long rcu_get_n_cbs_cpu(int cpu) 234 { 235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 236 237 if (rcu_segcblist_is_enabled(&rdp->cblist)) 238 return rcu_segcblist_n_cbs(&rdp->cblist); 239 return 0; 240 } 241 242 void rcu_softirq_qs(void) 243 { 244 rcu_qs(); 245 rcu_preempt_deferred_qs(current); 246 rcu_tasks_qs(current, false); 247 } 248 249 /* 250 * Reset the current CPU's ->dynticks counter to indicate that the 251 * newly onlined CPU is no longer in an extended quiescent state. 252 * This will either leave the counter unchanged, or increment it 253 * to the next non-quiescent value. 254 * 255 * The non-atomic test/increment sequence works because the upper bits 256 * of the ->dynticks counter are manipulated only by the corresponding CPU, 257 * or when the corresponding CPU is offline. 258 */ 259 static void rcu_dynticks_eqs_online(void) 260 { 261 if (ct_dynticks() & RCU_DYNTICKS_IDX) 262 return; 263 ct_state_inc(RCU_DYNTICKS_IDX); 264 } 265 266 /* 267 * Snapshot the ->dynticks counter with full ordering so as to allow 268 * stable comparison of this counter with past and future snapshots. 269 */ 270 static int rcu_dynticks_snap(int cpu) 271 { 272 smp_mb(); // Fundamental RCU ordering guarantee. 273 return ct_dynticks_cpu_acquire(cpu); 274 } 275 276 /* 277 * Return true if the snapshot returned from rcu_dynticks_snap() 278 * indicates that RCU is in an extended quiescent state. 279 */ 280 static bool rcu_dynticks_in_eqs(int snap) 281 { 282 return !(snap & RCU_DYNTICKS_IDX); 283 } 284 285 /* 286 * Return true if the CPU corresponding to the specified rcu_data 287 * structure has spent some time in an extended quiescent state since 288 * rcu_dynticks_snap() returned the specified snapshot. 289 */ 290 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 291 { 292 return snap != rcu_dynticks_snap(rdp->cpu); 293 } 294 295 /* 296 * Return true if the referenced integer is zero while the specified 297 * CPU remains within a single extended quiescent state. 298 */ 299 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 300 { 301 int snap; 302 303 // If not quiescent, force back to earlier extended quiescent state. 304 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 305 smp_rmb(); // Order ->dynticks and *vp reads. 306 if (READ_ONCE(*vp)) 307 return false; // Non-zero, so report failure; 308 smp_rmb(); // Order *vp read and ->dynticks re-read. 309 310 // If still in the same extended quiescent state, we are good! 311 return snap == ct_dynticks_cpu(cpu); 312 } 313 314 /* 315 * Let the RCU core know that this CPU has gone through the scheduler, 316 * which is a quiescent state. This is called when the need for a 317 * quiescent state is urgent, so we burn an atomic operation and full 318 * memory barriers to let the RCU core know about it, regardless of what 319 * this CPU might (or might not) do in the near future. 320 * 321 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 322 * 323 * The caller must have disabled interrupts and must not be idle. 324 */ 325 notrace void rcu_momentary_dyntick_idle(void) 326 { 327 int seq; 328 329 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 330 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 331 /* It is illegal to call this from idle state. */ 332 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 333 rcu_preempt_deferred_qs(current); 334 } 335 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 336 337 /** 338 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 339 * 340 * If the current CPU is idle and running at a first-level (not nested) 341 * interrupt, or directly, from idle, return true. 342 * 343 * The caller must have at least disabled IRQs. 344 */ 345 static int rcu_is_cpu_rrupt_from_idle(void) 346 { 347 long nesting; 348 349 /* 350 * Usually called from the tick; but also used from smp_function_call() 351 * for expedited grace periods. This latter can result in running from 352 * the idle task, instead of an actual IPI. 353 */ 354 lockdep_assert_irqs_disabled(); 355 356 /* Check for counter underflows */ 357 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 358 "RCU dynticks_nesting counter underflow!"); 359 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 360 "RCU dynticks_nmi_nesting counter underflow/zero!"); 361 362 /* Are we at first interrupt nesting level? */ 363 nesting = ct_dynticks_nmi_nesting(); 364 if (nesting > 1) 365 return false; 366 367 /* 368 * If we're not in an interrupt, we must be in the idle task! 369 */ 370 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 371 372 /* Does CPU appear to be idle from an RCU standpoint? */ 373 return ct_dynticks_nesting() == 0; 374 } 375 376 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 377 // Maximum callbacks per rcu_do_batch ... 378 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 379 static long blimit = DEFAULT_RCU_BLIMIT; 380 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 381 static long qhimark = DEFAULT_RCU_QHIMARK; 382 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 383 static long qlowmark = DEFAULT_RCU_QLOMARK; 384 #define DEFAULT_RCU_QOVLD_MULT 2 385 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 386 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 387 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 388 389 module_param(blimit, long, 0444); 390 module_param(qhimark, long, 0444); 391 module_param(qlowmark, long, 0444); 392 module_param(qovld, long, 0444); 393 394 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 395 static ulong jiffies_till_next_fqs = ULONG_MAX; 396 static bool rcu_kick_kthreads; 397 static int rcu_divisor = 7; 398 module_param(rcu_divisor, int, 0644); 399 400 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 401 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 402 module_param(rcu_resched_ns, long, 0644); 403 404 /* 405 * How long the grace period must be before we start recruiting 406 * quiescent-state help from rcu_note_context_switch(). 407 */ 408 static ulong jiffies_till_sched_qs = ULONG_MAX; 409 module_param(jiffies_till_sched_qs, ulong, 0444); 410 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 411 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 412 413 /* 414 * Make sure that we give the grace-period kthread time to detect any 415 * idle CPUs before taking active measures to force quiescent states. 416 * However, don't go below 100 milliseconds, adjusted upwards for really 417 * large systems. 418 */ 419 static void adjust_jiffies_till_sched_qs(void) 420 { 421 unsigned long j; 422 423 /* If jiffies_till_sched_qs was specified, respect the request. */ 424 if (jiffies_till_sched_qs != ULONG_MAX) { 425 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 426 return; 427 } 428 /* Otherwise, set to third fqs scan, but bound below on large system. */ 429 j = READ_ONCE(jiffies_till_first_fqs) + 430 2 * READ_ONCE(jiffies_till_next_fqs); 431 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 432 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 433 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 434 WRITE_ONCE(jiffies_to_sched_qs, j); 435 } 436 437 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 438 { 439 ulong j; 440 int ret = kstrtoul(val, 0, &j); 441 442 if (!ret) { 443 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 444 adjust_jiffies_till_sched_qs(); 445 } 446 return ret; 447 } 448 449 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 450 { 451 ulong j; 452 int ret = kstrtoul(val, 0, &j); 453 454 if (!ret) { 455 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 456 adjust_jiffies_till_sched_qs(); 457 } 458 return ret; 459 } 460 461 static const struct kernel_param_ops first_fqs_jiffies_ops = { 462 .set = param_set_first_fqs_jiffies, 463 .get = param_get_ulong, 464 }; 465 466 static const struct kernel_param_ops next_fqs_jiffies_ops = { 467 .set = param_set_next_fqs_jiffies, 468 .get = param_get_ulong, 469 }; 470 471 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 472 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 473 module_param(rcu_kick_kthreads, bool, 0644); 474 475 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 476 static int rcu_pending(int user); 477 478 /* 479 * Return the number of RCU GPs completed thus far for debug & stats. 480 */ 481 unsigned long rcu_get_gp_seq(void) 482 { 483 return READ_ONCE(rcu_state.gp_seq); 484 } 485 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 486 487 /* 488 * Return the number of RCU expedited batches completed thus far for 489 * debug & stats. Odd numbers mean that a batch is in progress, even 490 * numbers mean idle. The value returned will thus be roughly double 491 * the cumulative batches since boot. 492 */ 493 unsigned long rcu_exp_batches_completed(void) 494 { 495 return rcu_state.expedited_sequence; 496 } 497 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 498 499 /* 500 * Return the root node of the rcu_state structure. 501 */ 502 static struct rcu_node *rcu_get_root(void) 503 { 504 return &rcu_state.node[0]; 505 } 506 507 /* 508 * Send along grace-period-related data for rcutorture diagnostics. 509 */ 510 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 511 unsigned long *gp_seq) 512 { 513 switch (test_type) { 514 case RCU_FLAVOR: 515 *flags = READ_ONCE(rcu_state.gp_flags); 516 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 517 break; 518 default: 519 break; 520 } 521 } 522 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 523 524 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 525 /* 526 * An empty function that will trigger a reschedule on 527 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 528 */ 529 static void late_wakeup_func(struct irq_work *work) 530 { 531 } 532 533 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 534 IRQ_WORK_INIT(late_wakeup_func); 535 536 /* 537 * If either: 538 * 539 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 540 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 541 * 542 * In these cases the late RCU wake ups aren't supported in the resched loops and our 543 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 544 * get re-enabled again. 545 */ 546 noinstr void rcu_irq_work_resched(void) 547 { 548 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 549 550 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 551 return; 552 553 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 554 return; 555 556 instrumentation_begin(); 557 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 558 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 559 } 560 instrumentation_end(); 561 } 562 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 563 564 #ifdef CONFIG_PROVE_RCU 565 /** 566 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 567 */ 568 void rcu_irq_exit_check_preempt(void) 569 { 570 lockdep_assert_irqs_disabled(); 571 572 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 573 "RCU dynticks_nesting counter underflow/zero!"); 574 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 575 DYNTICK_IRQ_NONIDLE, 576 "Bad RCU dynticks_nmi_nesting counter\n"); 577 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 578 "RCU in extended quiescent state!"); 579 } 580 #endif /* #ifdef CONFIG_PROVE_RCU */ 581 582 #ifdef CONFIG_NO_HZ_FULL 583 /** 584 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 585 * 586 * The scheduler tick is not normally enabled when CPUs enter the kernel 587 * from nohz_full userspace execution. After all, nohz_full userspace 588 * execution is an RCU quiescent state and the time executing in the kernel 589 * is quite short. Except of course when it isn't. And it is not hard to 590 * cause a large system to spend tens of seconds or even minutes looping 591 * in the kernel, which can cause a number of problems, include RCU CPU 592 * stall warnings. 593 * 594 * Therefore, if a nohz_full CPU fails to report a quiescent state 595 * in a timely manner, the RCU grace-period kthread sets that CPU's 596 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 597 * exception will invoke this function, which will turn on the scheduler 598 * tick, which will enable RCU to detect that CPU's quiescent states, 599 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 600 * The tick will be disabled once a quiescent state is reported for 601 * this CPU. 602 * 603 * Of course, in carefully tuned systems, there might never be an 604 * interrupt or exception. In that case, the RCU grace-period kthread 605 * will eventually cause one to happen. However, in less carefully 606 * controlled environments, this function allows RCU to get what it 607 * needs without creating otherwise useless interruptions. 608 */ 609 void __rcu_irq_enter_check_tick(void) 610 { 611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 612 613 // If we're here from NMI there's nothing to do. 614 if (in_nmi()) 615 return; 616 617 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 618 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 619 620 if (!tick_nohz_full_cpu(rdp->cpu) || 621 !READ_ONCE(rdp->rcu_urgent_qs) || 622 READ_ONCE(rdp->rcu_forced_tick)) { 623 // RCU doesn't need nohz_full help from this CPU, or it is 624 // already getting that help. 625 return; 626 } 627 628 // We get here only when not in an extended quiescent state and 629 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 630 // already watching and (2) The fact that we are in an interrupt 631 // handler and that the rcu_node lock is an irq-disabled lock 632 // prevents self-deadlock. So we can safely recheck under the lock. 633 // Note that the nohz_full state currently cannot change. 634 raw_spin_lock_rcu_node(rdp->mynode); 635 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 636 // A nohz_full CPU is in the kernel and RCU needs a 637 // quiescent state. Turn on the tick! 638 WRITE_ONCE(rdp->rcu_forced_tick, true); 639 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 640 } 641 raw_spin_unlock_rcu_node(rdp->mynode); 642 } 643 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 644 #endif /* CONFIG_NO_HZ_FULL */ 645 646 /* 647 * Check to see if any future non-offloaded RCU-related work will need 648 * to be done by the current CPU, even if none need be done immediately, 649 * returning 1 if so. This function is part of the RCU implementation; 650 * it is -not- an exported member of the RCU API. This is used by 651 * the idle-entry code to figure out whether it is safe to disable the 652 * scheduler-clock interrupt. 653 * 654 * Just check whether or not this CPU has non-offloaded RCU callbacks 655 * queued. 656 */ 657 int rcu_needs_cpu(void) 658 { 659 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 660 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 661 } 662 663 /* 664 * If any sort of urgency was applied to the current CPU (for example, 665 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 666 * to get to a quiescent state, disable it. 667 */ 668 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 669 { 670 raw_lockdep_assert_held_rcu_node(rdp->mynode); 671 WRITE_ONCE(rdp->rcu_urgent_qs, false); 672 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 673 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 674 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 675 WRITE_ONCE(rdp->rcu_forced_tick, false); 676 } 677 } 678 679 /** 680 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 681 * 682 * Return true if RCU is watching the running CPU, which means that this 683 * CPU can safely enter RCU read-side critical sections. In other words, 684 * if the current CPU is not in its idle loop or is in an interrupt or 685 * NMI handler, return true. 686 * 687 * Make notrace because it can be called by the internal functions of 688 * ftrace, and making this notrace removes unnecessary recursion calls. 689 */ 690 notrace bool rcu_is_watching(void) 691 { 692 bool ret; 693 694 preempt_disable_notrace(); 695 ret = !rcu_dynticks_curr_cpu_in_eqs(); 696 preempt_enable_notrace(); 697 return ret; 698 } 699 EXPORT_SYMBOL_GPL(rcu_is_watching); 700 701 /* 702 * If a holdout task is actually running, request an urgent quiescent 703 * state from its CPU. This is unsynchronized, so migrations can cause 704 * the request to go to the wrong CPU. Which is OK, all that will happen 705 * is that the CPU's next context switch will be a bit slower and next 706 * time around this task will generate another request. 707 */ 708 void rcu_request_urgent_qs_task(struct task_struct *t) 709 { 710 int cpu; 711 712 barrier(); 713 cpu = task_cpu(t); 714 if (!task_curr(t)) 715 return; /* This task is not running on that CPU. */ 716 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 717 } 718 719 /* 720 * When trying to report a quiescent state on behalf of some other CPU, 721 * it is our responsibility to check for and handle potential overflow 722 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 723 * After all, the CPU might be in deep idle state, and thus executing no 724 * code whatsoever. 725 */ 726 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 727 { 728 raw_lockdep_assert_held_rcu_node(rnp); 729 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 730 rnp->gp_seq)) 731 WRITE_ONCE(rdp->gpwrap, true); 732 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 733 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 734 } 735 736 /* 737 * Snapshot the specified CPU's dynticks counter so that we can later 738 * credit them with an implicit quiescent state. Return 1 if this CPU 739 * is in dynticks idle mode, which is an extended quiescent state. 740 */ 741 static int dyntick_save_progress_counter(struct rcu_data *rdp) 742 { 743 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 744 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 745 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 746 rcu_gpnum_ovf(rdp->mynode, rdp); 747 return 1; 748 } 749 return 0; 750 } 751 752 /* 753 * Return true if the specified CPU has passed through a quiescent 754 * state by virtue of being in or having passed through an dynticks 755 * idle state since the last call to dyntick_save_progress_counter() 756 * for this same CPU, or by virtue of having been offline. 757 */ 758 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 759 { 760 unsigned long jtsq; 761 struct rcu_node *rnp = rdp->mynode; 762 763 /* 764 * If the CPU passed through or entered a dynticks idle phase with 765 * no active irq/NMI handlers, then we can safely pretend that the CPU 766 * already acknowledged the request to pass through a quiescent 767 * state. Either way, that CPU cannot possibly be in an RCU 768 * read-side critical section that started before the beginning 769 * of the current RCU grace period. 770 */ 771 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 772 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 773 rcu_gpnum_ovf(rnp, rdp); 774 return 1; 775 } 776 777 /* 778 * Complain if a CPU that is considered to be offline from RCU's 779 * perspective has not yet reported a quiescent state. After all, 780 * the offline CPU should have reported a quiescent state during 781 * the CPU-offline process, or, failing that, by rcu_gp_init() 782 * if it ran concurrently with either the CPU going offline or the 783 * last task on a leaf rcu_node structure exiting its RCU read-side 784 * critical section while all CPUs corresponding to that structure 785 * are offline. This added warning detects bugs in any of these 786 * code paths. 787 * 788 * The rcu_node structure's ->lock is held here, which excludes 789 * the relevant portions the CPU-hotplug code, the grace-period 790 * initialization code, and the rcu_read_unlock() code paths. 791 * 792 * For more detail, please refer to the "Hotplug CPU" section 793 * of RCU's Requirements documentation. 794 */ 795 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 796 struct rcu_node *rnp1; 797 798 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 799 __func__, rnp->grplo, rnp->grphi, rnp->level, 800 (long)rnp->gp_seq, (long)rnp->completedqs); 801 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 802 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 803 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 804 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 805 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 806 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 807 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 808 return 1; /* Break things loose after complaining. */ 809 } 810 811 /* 812 * A CPU running for an extended time within the kernel can 813 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 814 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 815 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 816 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 817 * variable are safe because the assignments are repeated if this 818 * CPU failed to pass through a quiescent state. This code 819 * also checks .jiffies_resched in case jiffies_to_sched_qs 820 * is set way high. 821 */ 822 jtsq = READ_ONCE(jiffies_to_sched_qs); 823 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 824 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 825 time_after(jiffies, rcu_state.jiffies_resched) || 826 rcu_state.cbovld)) { 827 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 828 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 829 smp_store_release(&rdp->rcu_urgent_qs, true); 830 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 831 WRITE_ONCE(rdp->rcu_urgent_qs, true); 832 } 833 834 /* 835 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 836 * The above code handles this, but only for straight cond_resched(). 837 * And some in-kernel loops check need_resched() before calling 838 * cond_resched(), which defeats the above code for CPUs that are 839 * running in-kernel with scheduling-clock interrupts disabled. 840 * So hit them over the head with the resched_cpu() hammer! 841 */ 842 if (tick_nohz_full_cpu(rdp->cpu) && 843 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 844 rcu_state.cbovld)) { 845 WRITE_ONCE(rdp->rcu_urgent_qs, true); 846 resched_cpu(rdp->cpu); 847 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 848 } 849 850 /* 851 * If more than halfway to RCU CPU stall-warning time, invoke 852 * resched_cpu() more frequently to try to loosen things up a bit. 853 * Also check to see if the CPU is getting hammered with interrupts, 854 * but only once per grace period, just to keep the IPIs down to 855 * a dull roar. 856 */ 857 if (time_after(jiffies, rcu_state.jiffies_resched)) { 858 if (time_after(jiffies, 859 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 860 resched_cpu(rdp->cpu); 861 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 862 } 863 if (IS_ENABLED(CONFIG_IRQ_WORK) && 864 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 865 (rnp->ffmask & rdp->grpmask)) { 866 rdp->rcu_iw_pending = true; 867 rdp->rcu_iw_gp_seq = rnp->gp_seq; 868 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 869 } 870 871 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 872 int cpu = rdp->cpu; 873 struct rcu_snap_record *rsrp; 874 struct kernel_cpustat *kcsp; 875 876 kcsp = &kcpustat_cpu(cpu); 877 878 rsrp = &rdp->snap_record; 879 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 880 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 881 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 882 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 883 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 884 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 885 rsrp->jiffies = jiffies; 886 rsrp->gp_seq = rdp->gp_seq; 887 } 888 } 889 890 return 0; 891 } 892 893 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 894 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 895 unsigned long gp_seq_req, const char *s) 896 { 897 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 898 gp_seq_req, rnp->level, 899 rnp->grplo, rnp->grphi, s); 900 } 901 902 /* 903 * rcu_start_this_gp - Request the start of a particular grace period 904 * @rnp_start: The leaf node of the CPU from which to start. 905 * @rdp: The rcu_data corresponding to the CPU from which to start. 906 * @gp_seq_req: The gp_seq of the grace period to start. 907 * 908 * Start the specified grace period, as needed to handle newly arrived 909 * callbacks. The required future grace periods are recorded in each 910 * rcu_node structure's ->gp_seq_needed field. Returns true if there 911 * is reason to awaken the grace-period kthread. 912 * 913 * The caller must hold the specified rcu_node structure's ->lock, which 914 * is why the caller is responsible for waking the grace-period kthread. 915 * 916 * Returns true if the GP thread needs to be awakened else false. 917 */ 918 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 919 unsigned long gp_seq_req) 920 { 921 bool ret = false; 922 struct rcu_node *rnp; 923 924 /* 925 * Use funnel locking to either acquire the root rcu_node 926 * structure's lock or bail out if the need for this grace period 927 * has already been recorded -- or if that grace period has in 928 * fact already started. If there is already a grace period in 929 * progress in a non-leaf node, no recording is needed because the 930 * end of the grace period will scan the leaf rcu_node structures. 931 * Note that rnp_start->lock must not be released. 932 */ 933 raw_lockdep_assert_held_rcu_node(rnp_start); 934 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 935 for (rnp = rnp_start; 1; rnp = rnp->parent) { 936 if (rnp != rnp_start) 937 raw_spin_lock_rcu_node(rnp); 938 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 939 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 940 (rnp != rnp_start && 941 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 942 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 943 TPS("Prestarted")); 944 goto unlock_out; 945 } 946 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 947 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 948 /* 949 * We just marked the leaf or internal node, and a 950 * grace period is in progress, which means that 951 * rcu_gp_cleanup() will see the marking. Bail to 952 * reduce contention. 953 */ 954 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 955 TPS("Startedleaf")); 956 goto unlock_out; 957 } 958 if (rnp != rnp_start && rnp->parent != NULL) 959 raw_spin_unlock_rcu_node(rnp); 960 if (!rnp->parent) 961 break; /* At root, and perhaps also leaf. */ 962 } 963 964 /* If GP already in progress, just leave, otherwise start one. */ 965 if (rcu_gp_in_progress()) { 966 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 967 goto unlock_out; 968 } 969 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 970 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 971 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 972 if (!READ_ONCE(rcu_state.gp_kthread)) { 973 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 974 goto unlock_out; 975 } 976 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 977 ret = true; /* Caller must wake GP kthread. */ 978 unlock_out: 979 /* Push furthest requested GP to leaf node and rcu_data structure. */ 980 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 981 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 982 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 983 } 984 if (rnp != rnp_start) 985 raw_spin_unlock_rcu_node(rnp); 986 return ret; 987 } 988 989 /* 990 * Clean up any old requests for the just-ended grace period. Also return 991 * whether any additional grace periods have been requested. 992 */ 993 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 994 { 995 bool needmore; 996 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 997 998 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 999 if (!needmore) 1000 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1001 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1002 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1003 return needmore; 1004 } 1005 1006 /* 1007 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1008 * interrupt or softirq handler, in which case we just might immediately 1009 * sleep upon return, resulting in a grace-period hang), and don't bother 1010 * awakening when there is nothing for the grace-period kthread to do 1011 * (as in several CPUs raced to awaken, we lost), and finally don't try 1012 * to awaken a kthread that has not yet been created. If all those checks 1013 * are passed, track some debug information and awaken. 1014 * 1015 * So why do the self-wakeup when in an interrupt or softirq handler 1016 * in the grace-period kthread's context? Because the kthread might have 1017 * been interrupted just as it was going to sleep, and just after the final 1018 * pre-sleep check of the awaken condition. In this case, a wakeup really 1019 * is required, and is therefore supplied. 1020 */ 1021 static void rcu_gp_kthread_wake(void) 1022 { 1023 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1024 1025 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1026 !READ_ONCE(rcu_state.gp_flags) || !t) 1027 return; 1028 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1029 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1030 swake_up_one(&rcu_state.gp_wq); 1031 } 1032 1033 /* 1034 * If there is room, assign a ->gp_seq number to any callbacks on this 1035 * CPU that have not already been assigned. Also accelerate any callbacks 1036 * that were previously assigned a ->gp_seq number that has since proven 1037 * to be too conservative, which can happen if callbacks get assigned a 1038 * ->gp_seq number while RCU is idle, but with reference to a non-root 1039 * rcu_node structure. This function is idempotent, so it does not hurt 1040 * to call it repeatedly. Returns an flag saying that we should awaken 1041 * the RCU grace-period kthread. 1042 * 1043 * The caller must hold rnp->lock with interrupts disabled. 1044 */ 1045 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1046 { 1047 unsigned long gp_seq_req; 1048 bool ret = false; 1049 1050 rcu_lockdep_assert_cblist_protected(rdp); 1051 raw_lockdep_assert_held_rcu_node(rnp); 1052 1053 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1054 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1055 return false; 1056 1057 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1058 1059 /* 1060 * Callbacks are often registered with incomplete grace-period 1061 * information. Something about the fact that getting exact 1062 * information requires acquiring a global lock... RCU therefore 1063 * makes a conservative estimate of the grace period number at which 1064 * a given callback will become ready to invoke. The following 1065 * code checks this estimate and improves it when possible, thus 1066 * accelerating callback invocation to an earlier grace-period 1067 * number. 1068 */ 1069 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1070 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1071 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1072 1073 /* Trace depending on how much we were able to accelerate. */ 1074 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1075 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1076 else 1077 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1078 1079 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1080 1081 return ret; 1082 } 1083 1084 /* 1085 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1086 * rcu_node structure's ->lock be held. It consults the cached value 1087 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1088 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1089 * while holding the leaf rcu_node structure's ->lock. 1090 */ 1091 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1092 struct rcu_data *rdp) 1093 { 1094 unsigned long c; 1095 bool needwake; 1096 1097 rcu_lockdep_assert_cblist_protected(rdp); 1098 c = rcu_seq_snap(&rcu_state.gp_seq); 1099 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1100 /* Old request still live, so mark recent callbacks. */ 1101 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1102 return; 1103 } 1104 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1105 needwake = rcu_accelerate_cbs(rnp, rdp); 1106 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1107 if (needwake) 1108 rcu_gp_kthread_wake(); 1109 } 1110 1111 /* 1112 * Move any callbacks whose grace period has completed to the 1113 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1114 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1115 * sublist. This function is idempotent, so it does not hurt to 1116 * invoke it repeatedly. As long as it is not invoked -too- often... 1117 * Returns true if the RCU grace-period kthread needs to be awakened. 1118 * 1119 * The caller must hold rnp->lock with interrupts disabled. 1120 */ 1121 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1122 { 1123 rcu_lockdep_assert_cblist_protected(rdp); 1124 raw_lockdep_assert_held_rcu_node(rnp); 1125 1126 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1127 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1128 return false; 1129 1130 /* 1131 * Find all callbacks whose ->gp_seq numbers indicate that they 1132 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1133 */ 1134 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1135 1136 /* Classify any remaining callbacks. */ 1137 return rcu_accelerate_cbs(rnp, rdp); 1138 } 1139 1140 /* 1141 * Move and classify callbacks, but only if doing so won't require 1142 * that the RCU grace-period kthread be awakened. 1143 */ 1144 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1145 struct rcu_data *rdp) 1146 { 1147 rcu_lockdep_assert_cblist_protected(rdp); 1148 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1149 return; 1150 // The grace period cannot end while we hold the rcu_node lock. 1151 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1152 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1153 raw_spin_unlock_rcu_node(rnp); 1154 } 1155 1156 /* 1157 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1158 * quiescent state. This is intended to be invoked when the CPU notices 1159 * a new grace period. 1160 */ 1161 static void rcu_strict_gp_check_qs(void) 1162 { 1163 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1164 rcu_read_lock(); 1165 rcu_read_unlock(); 1166 } 1167 } 1168 1169 /* 1170 * Update CPU-local rcu_data state to record the beginnings and ends of 1171 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1172 * structure corresponding to the current CPU, and must have irqs disabled. 1173 * Returns true if the grace-period kthread needs to be awakened. 1174 */ 1175 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1176 { 1177 bool ret = false; 1178 bool need_qs; 1179 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1180 1181 raw_lockdep_assert_held_rcu_node(rnp); 1182 1183 if (rdp->gp_seq == rnp->gp_seq) 1184 return false; /* Nothing to do. */ 1185 1186 /* Handle the ends of any preceding grace periods first. */ 1187 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1188 unlikely(READ_ONCE(rdp->gpwrap))) { 1189 if (!offloaded) 1190 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1191 rdp->core_needs_qs = false; 1192 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1193 } else { 1194 if (!offloaded) 1195 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1196 if (rdp->core_needs_qs) 1197 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1198 } 1199 1200 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1201 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1202 unlikely(READ_ONCE(rdp->gpwrap))) { 1203 /* 1204 * If the current grace period is waiting for this CPU, 1205 * set up to detect a quiescent state, otherwise don't 1206 * go looking for one. 1207 */ 1208 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1209 need_qs = !!(rnp->qsmask & rdp->grpmask); 1210 rdp->cpu_no_qs.b.norm = need_qs; 1211 rdp->core_needs_qs = need_qs; 1212 zero_cpu_stall_ticks(rdp); 1213 } 1214 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1215 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1216 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1217 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1218 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1219 WRITE_ONCE(rdp->gpwrap, false); 1220 rcu_gpnum_ovf(rnp, rdp); 1221 return ret; 1222 } 1223 1224 static void note_gp_changes(struct rcu_data *rdp) 1225 { 1226 unsigned long flags; 1227 bool needwake; 1228 struct rcu_node *rnp; 1229 1230 local_irq_save(flags); 1231 rnp = rdp->mynode; 1232 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1233 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1234 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1235 local_irq_restore(flags); 1236 return; 1237 } 1238 needwake = __note_gp_changes(rnp, rdp); 1239 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1240 rcu_strict_gp_check_qs(); 1241 if (needwake) 1242 rcu_gp_kthread_wake(); 1243 } 1244 1245 static atomic_t *rcu_gp_slow_suppress; 1246 1247 /* Register a counter to suppress debugging grace-period delays. */ 1248 void rcu_gp_slow_register(atomic_t *rgssp) 1249 { 1250 WARN_ON_ONCE(rcu_gp_slow_suppress); 1251 1252 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1253 } 1254 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1255 1256 /* Unregister a counter, with NULL for not caring which. */ 1257 void rcu_gp_slow_unregister(atomic_t *rgssp) 1258 { 1259 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1260 1261 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1262 } 1263 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1264 1265 static bool rcu_gp_slow_is_suppressed(void) 1266 { 1267 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1268 1269 return rgssp && atomic_read(rgssp); 1270 } 1271 1272 static void rcu_gp_slow(int delay) 1273 { 1274 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1275 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1276 schedule_timeout_idle(delay); 1277 } 1278 1279 static unsigned long sleep_duration; 1280 1281 /* Allow rcutorture to stall the grace-period kthread. */ 1282 void rcu_gp_set_torture_wait(int duration) 1283 { 1284 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1285 WRITE_ONCE(sleep_duration, duration); 1286 } 1287 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1288 1289 /* Actually implement the aforementioned wait. */ 1290 static void rcu_gp_torture_wait(void) 1291 { 1292 unsigned long duration; 1293 1294 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1295 return; 1296 duration = xchg(&sleep_duration, 0UL); 1297 if (duration > 0) { 1298 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1299 schedule_timeout_idle(duration); 1300 pr_alert("%s: Wait complete\n", __func__); 1301 } 1302 } 1303 1304 /* 1305 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1306 * processing. 1307 */ 1308 static void rcu_strict_gp_boundary(void *unused) 1309 { 1310 invoke_rcu_core(); 1311 } 1312 1313 // Make the polled API aware of the beginning of a grace period. 1314 static void rcu_poll_gp_seq_start(unsigned long *snap) 1315 { 1316 struct rcu_node *rnp = rcu_get_root(); 1317 1318 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1319 raw_lockdep_assert_held_rcu_node(rnp); 1320 1321 // If RCU was idle, note beginning of GP. 1322 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1323 rcu_seq_start(&rcu_state.gp_seq_polled); 1324 1325 // Either way, record current state. 1326 *snap = rcu_state.gp_seq_polled; 1327 } 1328 1329 // Make the polled API aware of the end of a grace period. 1330 static void rcu_poll_gp_seq_end(unsigned long *snap) 1331 { 1332 struct rcu_node *rnp = rcu_get_root(); 1333 1334 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1335 raw_lockdep_assert_held_rcu_node(rnp); 1336 1337 // If the previously noted GP is still in effect, record the 1338 // end of that GP. Either way, zero counter to avoid counter-wrap 1339 // problems. 1340 if (*snap && *snap == rcu_state.gp_seq_polled) { 1341 rcu_seq_end(&rcu_state.gp_seq_polled); 1342 rcu_state.gp_seq_polled_snap = 0; 1343 rcu_state.gp_seq_polled_exp_snap = 0; 1344 } else { 1345 *snap = 0; 1346 } 1347 } 1348 1349 // Make the polled API aware of the beginning of a grace period, but 1350 // where caller does not hold the root rcu_node structure's lock. 1351 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1352 { 1353 unsigned long flags; 1354 struct rcu_node *rnp = rcu_get_root(); 1355 1356 if (rcu_init_invoked()) { 1357 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1358 lockdep_assert_irqs_enabled(); 1359 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1360 } 1361 rcu_poll_gp_seq_start(snap); 1362 if (rcu_init_invoked()) 1363 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1364 } 1365 1366 // Make the polled API aware of the end of a grace period, but where 1367 // caller does not hold the root rcu_node structure's lock. 1368 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1369 { 1370 unsigned long flags; 1371 struct rcu_node *rnp = rcu_get_root(); 1372 1373 if (rcu_init_invoked()) { 1374 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1375 lockdep_assert_irqs_enabled(); 1376 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1377 } 1378 rcu_poll_gp_seq_end(snap); 1379 if (rcu_init_invoked()) 1380 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1381 } 1382 1383 /* 1384 * Initialize a new grace period. Return false if no grace period required. 1385 */ 1386 static noinline_for_stack bool rcu_gp_init(void) 1387 { 1388 unsigned long flags; 1389 unsigned long oldmask; 1390 unsigned long mask; 1391 struct rcu_data *rdp; 1392 struct rcu_node *rnp = rcu_get_root(); 1393 1394 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1395 raw_spin_lock_irq_rcu_node(rnp); 1396 if (!READ_ONCE(rcu_state.gp_flags)) { 1397 /* Spurious wakeup, tell caller to go back to sleep. */ 1398 raw_spin_unlock_irq_rcu_node(rnp); 1399 return false; 1400 } 1401 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1402 1403 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1404 /* 1405 * Grace period already in progress, don't start another. 1406 * Not supposed to be able to happen. 1407 */ 1408 raw_spin_unlock_irq_rcu_node(rnp); 1409 return false; 1410 } 1411 1412 /* Advance to a new grace period and initialize state. */ 1413 record_gp_stall_check_time(); 1414 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1415 rcu_seq_start(&rcu_state.gp_seq); 1416 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1417 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1418 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1419 raw_spin_unlock_irq_rcu_node(rnp); 1420 1421 /* 1422 * Apply per-leaf buffered online and offline operations to 1423 * the rcu_node tree. Note that this new grace period need not 1424 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1425 * offlining path, when combined with checks in this function, 1426 * will handle CPUs that are currently going offline or that will 1427 * go offline later. Please also refer to "Hotplug CPU" section 1428 * of RCU's Requirements documentation. 1429 */ 1430 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1431 /* Exclude CPU hotplug operations. */ 1432 rcu_for_each_leaf_node(rnp) { 1433 local_irq_save(flags); 1434 arch_spin_lock(&rcu_state.ofl_lock); 1435 raw_spin_lock_rcu_node(rnp); 1436 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1437 !rnp->wait_blkd_tasks) { 1438 /* Nothing to do on this leaf rcu_node structure. */ 1439 raw_spin_unlock_rcu_node(rnp); 1440 arch_spin_unlock(&rcu_state.ofl_lock); 1441 local_irq_restore(flags); 1442 continue; 1443 } 1444 1445 /* Record old state, apply changes to ->qsmaskinit field. */ 1446 oldmask = rnp->qsmaskinit; 1447 rnp->qsmaskinit = rnp->qsmaskinitnext; 1448 1449 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1450 if (!oldmask != !rnp->qsmaskinit) { 1451 if (!oldmask) { /* First online CPU for rcu_node. */ 1452 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1453 rcu_init_new_rnp(rnp); 1454 } else if (rcu_preempt_has_tasks(rnp)) { 1455 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1456 } else { /* Last offline CPU and can propagate. */ 1457 rcu_cleanup_dead_rnp(rnp); 1458 } 1459 } 1460 1461 /* 1462 * If all waited-on tasks from prior grace period are 1463 * done, and if all this rcu_node structure's CPUs are 1464 * still offline, propagate up the rcu_node tree and 1465 * clear ->wait_blkd_tasks. Otherwise, if one of this 1466 * rcu_node structure's CPUs has since come back online, 1467 * simply clear ->wait_blkd_tasks. 1468 */ 1469 if (rnp->wait_blkd_tasks && 1470 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1471 rnp->wait_blkd_tasks = false; 1472 if (!rnp->qsmaskinit) 1473 rcu_cleanup_dead_rnp(rnp); 1474 } 1475 1476 raw_spin_unlock_rcu_node(rnp); 1477 arch_spin_unlock(&rcu_state.ofl_lock); 1478 local_irq_restore(flags); 1479 } 1480 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1481 1482 /* 1483 * Set the quiescent-state-needed bits in all the rcu_node 1484 * structures for all currently online CPUs in breadth-first 1485 * order, starting from the root rcu_node structure, relying on the 1486 * layout of the tree within the rcu_state.node[] array. Note that 1487 * other CPUs will access only the leaves of the hierarchy, thus 1488 * seeing that no grace period is in progress, at least until the 1489 * corresponding leaf node has been initialized. 1490 * 1491 * The grace period cannot complete until the initialization 1492 * process finishes, because this kthread handles both. 1493 */ 1494 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1495 rcu_for_each_node_breadth_first(rnp) { 1496 rcu_gp_slow(gp_init_delay); 1497 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1498 rdp = this_cpu_ptr(&rcu_data); 1499 rcu_preempt_check_blocked_tasks(rnp); 1500 rnp->qsmask = rnp->qsmaskinit; 1501 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1502 if (rnp == rdp->mynode) 1503 (void)__note_gp_changes(rnp, rdp); 1504 rcu_preempt_boost_start_gp(rnp); 1505 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1506 rnp->level, rnp->grplo, 1507 rnp->grphi, rnp->qsmask); 1508 /* Quiescent states for tasks on any now-offline CPUs. */ 1509 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1510 rnp->rcu_gp_init_mask = mask; 1511 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1512 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1513 else 1514 raw_spin_unlock_irq_rcu_node(rnp); 1515 cond_resched_tasks_rcu_qs(); 1516 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1517 } 1518 1519 // If strict, make all CPUs aware of new grace period. 1520 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1521 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1522 1523 return true; 1524 } 1525 1526 /* 1527 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1528 * time. 1529 */ 1530 static bool rcu_gp_fqs_check_wake(int *gfp) 1531 { 1532 struct rcu_node *rnp = rcu_get_root(); 1533 1534 // If under overload conditions, force an immediate FQS scan. 1535 if (*gfp & RCU_GP_FLAG_OVLD) 1536 return true; 1537 1538 // Someone like call_rcu() requested a force-quiescent-state scan. 1539 *gfp = READ_ONCE(rcu_state.gp_flags); 1540 if (*gfp & RCU_GP_FLAG_FQS) 1541 return true; 1542 1543 // The current grace period has completed. 1544 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1545 return true; 1546 1547 return false; 1548 } 1549 1550 /* 1551 * Do one round of quiescent-state forcing. 1552 */ 1553 static void rcu_gp_fqs(bool first_time) 1554 { 1555 struct rcu_node *rnp = rcu_get_root(); 1556 1557 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1558 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1559 if (first_time) { 1560 /* Collect dyntick-idle snapshots. */ 1561 force_qs_rnp(dyntick_save_progress_counter); 1562 } else { 1563 /* Handle dyntick-idle and offline CPUs. */ 1564 force_qs_rnp(rcu_implicit_dynticks_qs); 1565 } 1566 /* Clear flag to prevent immediate re-entry. */ 1567 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1568 raw_spin_lock_irq_rcu_node(rnp); 1569 WRITE_ONCE(rcu_state.gp_flags, 1570 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1571 raw_spin_unlock_irq_rcu_node(rnp); 1572 } 1573 } 1574 1575 /* 1576 * Loop doing repeated quiescent-state forcing until the grace period ends. 1577 */ 1578 static noinline_for_stack void rcu_gp_fqs_loop(void) 1579 { 1580 bool first_gp_fqs = true; 1581 int gf = 0; 1582 unsigned long j; 1583 int ret; 1584 struct rcu_node *rnp = rcu_get_root(); 1585 1586 j = READ_ONCE(jiffies_till_first_fqs); 1587 if (rcu_state.cbovld) 1588 gf = RCU_GP_FLAG_OVLD; 1589 ret = 0; 1590 for (;;) { 1591 if (rcu_state.cbovld) { 1592 j = (j + 2) / 3; 1593 if (j <= 0) 1594 j = 1; 1595 } 1596 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1597 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1598 /* 1599 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1600 * update; required for stall checks. 1601 */ 1602 smp_wmb(); 1603 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1604 jiffies + (j ? 3 * j : 2)); 1605 } 1606 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1607 TPS("fqswait")); 1608 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1609 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1610 rcu_gp_fqs_check_wake(&gf), j); 1611 rcu_gp_torture_wait(); 1612 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1613 /* Locking provides needed memory barriers. */ 1614 /* 1615 * Exit the loop if the root rcu_node structure indicates that the grace period 1616 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1617 * is required only for single-node rcu_node trees because readers blocking 1618 * the current grace period are queued only on leaf rcu_node structures. 1619 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1620 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1621 * the corresponding leaf nodes have passed through their quiescent state. 1622 */ 1623 if (!READ_ONCE(rnp->qsmask) && 1624 !rcu_preempt_blocked_readers_cgp(rnp)) 1625 break; 1626 /* If time for quiescent-state forcing, do it. */ 1627 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1628 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1629 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1630 TPS("fqsstart")); 1631 rcu_gp_fqs(first_gp_fqs); 1632 gf = 0; 1633 if (first_gp_fqs) { 1634 first_gp_fqs = false; 1635 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1636 } 1637 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1638 TPS("fqsend")); 1639 cond_resched_tasks_rcu_qs(); 1640 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1641 ret = 0; /* Force full wait till next FQS. */ 1642 j = READ_ONCE(jiffies_till_next_fqs); 1643 } else { 1644 /* Deal with stray signal. */ 1645 cond_resched_tasks_rcu_qs(); 1646 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1647 WARN_ON(signal_pending(current)); 1648 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1649 TPS("fqswaitsig")); 1650 ret = 1; /* Keep old FQS timing. */ 1651 j = jiffies; 1652 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1653 j = 1; 1654 else 1655 j = rcu_state.jiffies_force_qs - j; 1656 gf = 0; 1657 } 1658 } 1659 } 1660 1661 /* 1662 * Clean up after the old grace period. 1663 */ 1664 static noinline void rcu_gp_cleanup(void) 1665 { 1666 int cpu; 1667 bool needgp = false; 1668 unsigned long gp_duration; 1669 unsigned long new_gp_seq; 1670 bool offloaded; 1671 struct rcu_data *rdp; 1672 struct rcu_node *rnp = rcu_get_root(); 1673 struct swait_queue_head *sq; 1674 1675 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1676 raw_spin_lock_irq_rcu_node(rnp); 1677 rcu_state.gp_end = jiffies; 1678 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1679 if (gp_duration > rcu_state.gp_max) 1680 rcu_state.gp_max = gp_duration; 1681 1682 /* 1683 * We know the grace period is complete, but to everyone else 1684 * it appears to still be ongoing. But it is also the case 1685 * that to everyone else it looks like there is nothing that 1686 * they can do to advance the grace period. It is therefore 1687 * safe for us to drop the lock in order to mark the grace 1688 * period as completed in all of the rcu_node structures. 1689 */ 1690 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1691 raw_spin_unlock_irq_rcu_node(rnp); 1692 1693 /* 1694 * Propagate new ->gp_seq value to rcu_node structures so that 1695 * other CPUs don't have to wait until the start of the next grace 1696 * period to process their callbacks. This also avoids some nasty 1697 * RCU grace-period initialization races by forcing the end of 1698 * the current grace period to be completely recorded in all of 1699 * the rcu_node structures before the beginning of the next grace 1700 * period is recorded in any of the rcu_node structures. 1701 */ 1702 new_gp_seq = rcu_state.gp_seq; 1703 rcu_seq_end(&new_gp_seq); 1704 rcu_for_each_node_breadth_first(rnp) { 1705 raw_spin_lock_irq_rcu_node(rnp); 1706 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1707 dump_blkd_tasks(rnp, 10); 1708 WARN_ON_ONCE(rnp->qsmask); 1709 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1710 if (!rnp->parent) 1711 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1712 rdp = this_cpu_ptr(&rcu_data); 1713 if (rnp == rdp->mynode) 1714 needgp = __note_gp_changes(rnp, rdp) || needgp; 1715 /* smp_mb() provided by prior unlock-lock pair. */ 1716 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1717 // Reset overload indication for CPUs no longer overloaded 1718 if (rcu_is_leaf_node(rnp)) 1719 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1720 rdp = per_cpu_ptr(&rcu_data, cpu); 1721 check_cb_ovld_locked(rdp, rnp); 1722 } 1723 sq = rcu_nocb_gp_get(rnp); 1724 raw_spin_unlock_irq_rcu_node(rnp); 1725 rcu_nocb_gp_cleanup(sq); 1726 cond_resched_tasks_rcu_qs(); 1727 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1728 rcu_gp_slow(gp_cleanup_delay); 1729 } 1730 rnp = rcu_get_root(); 1731 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1732 1733 /* Declare grace period done, trace first to use old GP number. */ 1734 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1735 rcu_seq_end(&rcu_state.gp_seq); 1736 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1737 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1738 /* Check for GP requests since above loop. */ 1739 rdp = this_cpu_ptr(&rcu_data); 1740 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1741 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1742 TPS("CleanupMore")); 1743 needgp = true; 1744 } 1745 /* Advance CBs to reduce false positives below. */ 1746 offloaded = rcu_rdp_is_offloaded(rdp); 1747 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1748 1749 // We get here if a grace period was needed (“needgp”) 1750 // and the above call to rcu_accelerate_cbs() did not set 1751 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1752 // the need for another grace period). The purpose 1753 // of the “offloaded” check is to avoid invoking 1754 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1755 // hold the ->nocb_lock needed to safely access an offloaded 1756 // ->cblist. We do not want to acquire that lock because 1757 // it can be heavily contended during callback floods. 1758 1759 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1760 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1761 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1762 } else { 1763 1764 // We get here either if there is no need for an 1765 // additional grace period or if rcu_accelerate_cbs() has 1766 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1767 // So all we need to do is to clear all of the other 1768 // ->gp_flags bits. 1769 1770 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1771 } 1772 raw_spin_unlock_irq_rcu_node(rnp); 1773 1774 // If strict, make all CPUs aware of the end of the old grace period. 1775 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1776 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1777 } 1778 1779 /* 1780 * Body of kthread that handles grace periods. 1781 */ 1782 static int __noreturn rcu_gp_kthread(void *unused) 1783 { 1784 rcu_bind_gp_kthread(); 1785 for (;;) { 1786 1787 /* Handle grace-period start. */ 1788 for (;;) { 1789 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1790 TPS("reqwait")); 1791 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1792 swait_event_idle_exclusive(rcu_state.gp_wq, 1793 READ_ONCE(rcu_state.gp_flags) & 1794 RCU_GP_FLAG_INIT); 1795 rcu_gp_torture_wait(); 1796 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1797 /* Locking provides needed memory barrier. */ 1798 if (rcu_gp_init()) 1799 break; 1800 cond_resched_tasks_rcu_qs(); 1801 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1802 WARN_ON(signal_pending(current)); 1803 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1804 TPS("reqwaitsig")); 1805 } 1806 1807 /* Handle quiescent-state forcing. */ 1808 rcu_gp_fqs_loop(); 1809 1810 /* Handle grace-period end. */ 1811 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1812 rcu_gp_cleanup(); 1813 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1814 } 1815 } 1816 1817 /* 1818 * Report a full set of quiescent states to the rcu_state data structure. 1819 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1820 * another grace period is required. Whether we wake the grace-period 1821 * kthread or it awakens itself for the next round of quiescent-state 1822 * forcing, that kthread will clean up after the just-completed grace 1823 * period. Note that the caller must hold rnp->lock, which is released 1824 * before return. 1825 */ 1826 static void rcu_report_qs_rsp(unsigned long flags) 1827 __releases(rcu_get_root()->lock) 1828 { 1829 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1830 WARN_ON_ONCE(!rcu_gp_in_progress()); 1831 WRITE_ONCE(rcu_state.gp_flags, 1832 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1833 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1834 rcu_gp_kthread_wake(); 1835 } 1836 1837 /* 1838 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1839 * Allows quiescent states for a group of CPUs to be reported at one go 1840 * to the specified rcu_node structure, though all the CPUs in the group 1841 * must be represented by the same rcu_node structure (which need not be a 1842 * leaf rcu_node structure, though it often will be). The gps parameter 1843 * is the grace-period snapshot, which means that the quiescent states 1844 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1845 * must be held upon entry, and it is released before return. 1846 * 1847 * As a special case, if mask is zero, the bit-already-cleared check is 1848 * disabled. This allows propagating quiescent state due to resumed tasks 1849 * during grace-period initialization. 1850 */ 1851 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1852 unsigned long gps, unsigned long flags) 1853 __releases(rnp->lock) 1854 { 1855 unsigned long oldmask = 0; 1856 struct rcu_node *rnp_c; 1857 1858 raw_lockdep_assert_held_rcu_node(rnp); 1859 1860 /* Walk up the rcu_node hierarchy. */ 1861 for (;;) { 1862 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1863 1864 /* 1865 * Our bit has already been cleared, or the 1866 * relevant grace period is already over, so done. 1867 */ 1868 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1869 return; 1870 } 1871 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1872 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1873 rcu_preempt_blocked_readers_cgp(rnp)); 1874 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1875 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1876 mask, rnp->qsmask, rnp->level, 1877 rnp->grplo, rnp->grphi, 1878 !!rnp->gp_tasks); 1879 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1880 1881 /* Other bits still set at this level, so done. */ 1882 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1883 return; 1884 } 1885 rnp->completedqs = rnp->gp_seq; 1886 mask = rnp->grpmask; 1887 if (rnp->parent == NULL) { 1888 1889 /* No more levels. Exit loop holding root lock. */ 1890 1891 break; 1892 } 1893 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1894 rnp_c = rnp; 1895 rnp = rnp->parent; 1896 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1897 oldmask = READ_ONCE(rnp_c->qsmask); 1898 } 1899 1900 /* 1901 * Get here if we are the last CPU to pass through a quiescent 1902 * state for this grace period. Invoke rcu_report_qs_rsp() 1903 * to clean up and start the next grace period if one is needed. 1904 */ 1905 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1906 } 1907 1908 /* 1909 * Record a quiescent state for all tasks that were previously queued 1910 * on the specified rcu_node structure and that were blocking the current 1911 * RCU grace period. The caller must hold the corresponding rnp->lock with 1912 * irqs disabled, and this lock is released upon return, but irqs remain 1913 * disabled. 1914 */ 1915 static void __maybe_unused 1916 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1917 __releases(rnp->lock) 1918 { 1919 unsigned long gps; 1920 unsigned long mask; 1921 struct rcu_node *rnp_p; 1922 1923 raw_lockdep_assert_held_rcu_node(rnp); 1924 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1925 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1926 rnp->qsmask != 0) { 1927 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1928 return; /* Still need more quiescent states! */ 1929 } 1930 1931 rnp->completedqs = rnp->gp_seq; 1932 rnp_p = rnp->parent; 1933 if (rnp_p == NULL) { 1934 /* 1935 * Only one rcu_node structure in the tree, so don't 1936 * try to report up to its nonexistent parent! 1937 */ 1938 rcu_report_qs_rsp(flags); 1939 return; 1940 } 1941 1942 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1943 gps = rnp->gp_seq; 1944 mask = rnp->grpmask; 1945 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1946 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1947 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1948 } 1949 1950 /* 1951 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1952 * structure. This must be called from the specified CPU. 1953 */ 1954 static void 1955 rcu_report_qs_rdp(struct rcu_data *rdp) 1956 { 1957 unsigned long flags; 1958 unsigned long mask; 1959 bool needacc = false; 1960 struct rcu_node *rnp; 1961 1962 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 1963 rnp = rdp->mynode; 1964 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1965 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1966 rdp->gpwrap) { 1967 1968 /* 1969 * The grace period in which this quiescent state was 1970 * recorded has ended, so don't report it upwards. 1971 * We will instead need a new quiescent state that lies 1972 * within the current grace period. 1973 */ 1974 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1975 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1976 return; 1977 } 1978 mask = rdp->grpmask; 1979 rdp->core_needs_qs = false; 1980 if ((rnp->qsmask & mask) == 0) { 1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1982 } else { 1983 /* 1984 * This GP can't end until cpu checks in, so all of our 1985 * callbacks can be processed during the next GP. 1986 * 1987 * NOCB kthreads have their own way to deal with that... 1988 */ 1989 if (!rcu_rdp_is_offloaded(rdp)) { 1990 /* 1991 * The current GP has not yet ended, so it 1992 * should not be possible for rcu_accelerate_cbs() 1993 * to return true. So complain, but don't awaken. 1994 */ 1995 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 1996 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 1997 /* 1998 * ...but NOCB kthreads may miss or delay callbacks acceleration 1999 * if in the middle of a (de-)offloading process. 2000 */ 2001 needacc = true; 2002 } 2003 2004 rcu_disable_urgency_upon_qs(rdp); 2005 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2006 /* ^^^ Released rnp->lock */ 2007 2008 if (needacc) { 2009 rcu_nocb_lock_irqsave(rdp, flags); 2010 rcu_accelerate_cbs_unlocked(rnp, rdp); 2011 rcu_nocb_unlock_irqrestore(rdp, flags); 2012 } 2013 } 2014 } 2015 2016 /* 2017 * Check to see if there is a new grace period of which this CPU 2018 * is not yet aware, and if so, set up local rcu_data state for it. 2019 * Otherwise, see if this CPU has just passed through its first 2020 * quiescent state for this grace period, and record that fact if so. 2021 */ 2022 static void 2023 rcu_check_quiescent_state(struct rcu_data *rdp) 2024 { 2025 /* Check for grace-period ends and beginnings. */ 2026 note_gp_changes(rdp); 2027 2028 /* 2029 * Does this CPU still need to do its part for current grace period? 2030 * If no, return and let the other CPUs do their part as well. 2031 */ 2032 if (!rdp->core_needs_qs) 2033 return; 2034 2035 /* 2036 * Was there a quiescent state since the beginning of the grace 2037 * period? If no, then exit and wait for the next call. 2038 */ 2039 if (rdp->cpu_no_qs.b.norm) 2040 return; 2041 2042 /* 2043 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2044 * judge of that). 2045 */ 2046 rcu_report_qs_rdp(rdp); 2047 } 2048 2049 /* 2050 * Invoke any RCU callbacks that have made it to the end of their grace 2051 * period. Throttle as specified by rdp->blimit. 2052 */ 2053 static void rcu_do_batch(struct rcu_data *rdp) 2054 { 2055 int div; 2056 bool __maybe_unused empty; 2057 unsigned long flags; 2058 struct rcu_head *rhp; 2059 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2060 long bl, count = 0; 2061 long pending, tlimit = 0; 2062 2063 /* If no callbacks are ready, just return. */ 2064 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2065 trace_rcu_batch_start(rcu_state.name, 2066 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2067 trace_rcu_batch_end(rcu_state.name, 0, 2068 !rcu_segcblist_empty(&rdp->cblist), 2069 need_resched(), is_idle_task(current), 2070 rcu_is_callbacks_kthread(rdp)); 2071 return; 2072 } 2073 2074 /* 2075 * Extract the list of ready callbacks, disabling IRQs to prevent 2076 * races with call_rcu() from interrupt handlers. Leave the 2077 * callback counts, as rcu_barrier() needs to be conservative. 2078 */ 2079 rcu_nocb_lock_irqsave(rdp, flags); 2080 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2081 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2082 div = READ_ONCE(rcu_divisor); 2083 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2084 bl = max(rdp->blimit, pending >> div); 2085 if (in_serving_softirq() && unlikely(bl > 100)) { 2086 long rrn = READ_ONCE(rcu_resched_ns); 2087 2088 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2089 tlimit = local_clock() + rrn; 2090 } 2091 trace_rcu_batch_start(rcu_state.name, 2092 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2093 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2094 if (rcu_rdp_is_offloaded(rdp)) 2095 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2096 2097 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2098 rcu_nocb_unlock_irqrestore(rdp, flags); 2099 2100 /* Invoke callbacks. */ 2101 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2102 rhp = rcu_cblist_dequeue(&rcl); 2103 2104 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2105 rcu_callback_t f; 2106 2107 count++; 2108 debug_rcu_head_unqueue(rhp); 2109 2110 rcu_lock_acquire(&rcu_callback_map); 2111 trace_rcu_invoke_callback(rcu_state.name, rhp); 2112 2113 f = rhp->func; 2114 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2115 f(rhp); 2116 2117 rcu_lock_release(&rcu_callback_map); 2118 2119 /* 2120 * Stop only if limit reached and CPU has something to do. 2121 */ 2122 if (in_serving_softirq()) { 2123 if (count >= bl && (need_resched() || !is_idle_task(current))) 2124 break; 2125 /* 2126 * Make sure we don't spend too much time here and deprive other 2127 * softirq vectors of CPU cycles. 2128 */ 2129 if (unlikely(tlimit)) { 2130 /* only call local_clock() every 32 callbacks */ 2131 if (likely((count & 31) || local_clock() < tlimit)) 2132 continue; 2133 /* Exceeded the time limit, so leave. */ 2134 break; 2135 } 2136 } else { 2137 // In rcuoc context, so no worries about depriving 2138 // other softirq vectors of CPU cycles. 2139 local_bh_enable(); 2140 lockdep_assert_irqs_enabled(); 2141 cond_resched_tasks_rcu_qs(); 2142 lockdep_assert_irqs_enabled(); 2143 local_bh_disable(); 2144 } 2145 } 2146 2147 rcu_nocb_lock_irqsave(rdp, flags); 2148 rdp->n_cbs_invoked += count; 2149 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2150 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2151 2152 /* Update counts and requeue any remaining callbacks. */ 2153 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2154 rcu_segcblist_add_len(&rdp->cblist, -count); 2155 2156 /* Reinstate batch limit if we have worked down the excess. */ 2157 count = rcu_segcblist_n_cbs(&rdp->cblist); 2158 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2159 rdp->blimit = blimit; 2160 2161 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2162 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2163 rdp->qlen_last_fqs_check = 0; 2164 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2165 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2166 rdp->qlen_last_fqs_check = count; 2167 2168 /* 2169 * The following usually indicates a double call_rcu(). To track 2170 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2171 */ 2172 empty = rcu_segcblist_empty(&rdp->cblist); 2173 WARN_ON_ONCE(count == 0 && !empty); 2174 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2175 count != 0 && empty); 2176 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2177 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2178 2179 rcu_nocb_unlock_irqrestore(rdp, flags); 2180 2181 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2182 } 2183 2184 /* 2185 * This function is invoked from each scheduling-clock interrupt, 2186 * and checks to see if this CPU is in a non-context-switch quiescent 2187 * state, for example, user mode or idle loop. It also schedules RCU 2188 * core processing. If the current grace period has gone on too long, 2189 * it will ask the scheduler to manufacture a context switch for the sole 2190 * purpose of providing the needed quiescent state. 2191 */ 2192 void rcu_sched_clock_irq(int user) 2193 { 2194 unsigned long j; 2195 2196 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2197 j = jiffies; 2198 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2199 __this_cpu_write(rcu_data.last_sched_clock, j); 2200 } 2201 trace_rcu_utilization(TPS("Start scheduler-tick")); 2202 lockdep_assert_irqs_disabled(); 2203 raw_cpu_inc(rcu_data.ticks_this_gp); 2204 /* The load-acquire pairs with the store-release setting to true. */ 2205 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2206 /* Idle and userspace execution already are quiescent states. */ 2207 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2208 set_tsk_need_resched(current); 2209 set_preempt_need_resched(); 2210 } 2211 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2212 } 2213 rcu_flavor_sched_clock_irq(user); 2214 if (rcu_pending(user)) 2215 invoke_rcu_core(); 2216 if (user || rcu_is_cpu_rrupt_from_idle()) 2217 rcu_note_voluntary_context_switch(current); 2218 lockdep_assert_irqs_disabled(); 2219 2220 trace_rcu_utilization(TPS("End scheduler-tick")); 2221 } 2222 2223 /* 2224 * Scan the leaf rcu_node structures. For each structure on which all 2225 * CPUs have reported a quiescent state and on which there are tasks 2226 * blocking the current grace period, initiate RCU priority boosting. 2227 * Otherwise, invoke the specified function to check dyntick state for 2228 * each CPU that has not yet reported a quiescent state. 2229 */ 2230 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2231 { 2232 int cpu; 2233 unsigned long flags; 2234 unsigned long mask; 2235 struct rcu_data *rdp; 2236 struct rcu_node *rnp; 2237 2238 rcu_state.cbovld = rcu_state.cbovldnext; 2239 rcu_state.cbovldnext = false; 2240 rcu_for_each_leaf_node(rnp) { 2241 cond_resched_tasks_rcu_qs(); 2242 mask = 0; 2243 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2244 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2245 if (rnp->qsmask == 0) { 2246 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2247 /* 2248 * No point in scanning bits because they 2249 * are all zero. But we might need to 2250 * priority-boost blocked readers. 2251 */ 2252 rcu_initiate_boost(rnp, flags); 2253 /* rcu_initiate_boost() releases rnp->lock */ 2254 continue; 2255 } 2256 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2257 continue; 2258 } 2259 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2260 rdp = per_cpu_ptr(&rcu_data, cpu); 2261 if (f(rdp)) { 2262 mask |= rdp->grpmask; 2263 rcu_disable_urgency_upon_qs(rdp); 2264 } 2265 } 2266 if (mask != 0) { 2267 /* Idle/offline CPUs, report (releases rnp->lock). */ 2268 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2269 } else { 2270 /* Nothing to do here, so just drop the lock. */ 2271 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2272 } 2273 } 2274 } 2275 2276 /* 2277 * Force quiescent states on reluctant CPUs, and also detect which 2278 * CPUs are in dyntick-idle mode. 2279 */ 2280 void rcu_force_quiescent_state(void) 2281 { 2282 unsigned long flags; 2283 bool ret; 2284 struct rcu_node *rnp; 2285 struct rcu_node *rnp_old = NULL; 2286 2287 /* Funnel through hierarchy to reduce memory contention. */ 2288 rnp = raw_cpu_read(rcu_data.mynode); 2289 for (; rnp != NULL; rnp = rnp->parent) { 2290 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2291 !raw_spin_trylock(&rnp->fqslock); 2292 if (rnp_old != NULL) 2293 raw_spin_unlock(&rnp_old->fqslock); 2294 if (ret) 2295 return; 2296 rnp_old = rnp; 2297 } 2298 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2299 2300 /* Reached the root of the rcu_node tree, acquire lock. */ 2301 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2302 raw_spin_unlock(&rnp_old->fqslock); 2303 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2304 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2305 return; /* Someone beat us to it. */ 2306 } 2307 WRITE_ONCE(rcu_state.gp_flags, 2308 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2309 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2310 rcu_gp_kthread_wake(); 2311 } 2312 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2313 2314 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2315 // grace periods. 2316 static void strict_work_handler(struct work_struct *work) 2317 { 2318 rcu_read_lock(); 2319 rcu_read_unlock(); 2320 } 2321 2322 /* Perform RCU core processing work for the current CPU. */ 2323 static __latent_entropy void rcu_core(void) 2324 { 2325 unsigned long flags; 2326 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2327 struct rcu_node *rnp = rdp->mynode; 2328 /* 2329 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2330 * Therefore this function can race with concurrent NOCB (de-)offloading 2331 * on this CPU and the below condition must be considered volatile. 2332 * However if we race with: 2333 * 2334 * _ Offloading: In the worst case we accelerate or process callbacks 2335 * concurrently with NOCB kthreads. We are guaranteed to 2336 * call rcu_nocb_lock() if that happens. 2337 * 2338 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2339 * processing. This is fine because the early stage 2340 * of deoffloading invokes rcu_core() after setting 2341 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2342 * what could have been dismissed without the need to wait 2343 * for the next rcu_pending() check in the next jiffy. 2344 */ 2345 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2346 2347 if (cpu_is_offline(smp_processor_id())) 2348 return; 2349 trace_rcu_utilization(TPS("Start RCU core")); 2350 WARN_ON_ONCE(!rdp->beenonline); 2351 2352 /* Report any deferred quiescent states if preemption enabled. */ 2353 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2354 rcu_preempt_deferred_qs(current); 2355 } else if (rcu_preempt_need_deferred_qs(current)) { 2356 set_tsk_need_resched(current); 2357 set_preempt_need_resched(); 2358 } 2359 2360 /* Update RCU state based on any recent quiescent states. */ 2361 rcu_check_quiescent_state(rdp); 2362 2363 /* No grace period and unregistered callbacks? */ 2364 if (!rcu_gp_in_progress() && 2365 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2366 rcu_nocb_lock_irqsave(rdp, flags); 2367 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2368 rcu_accelerate_cbs_unlocked(rnp, rdp); 2369 rcu_nocb_unlock_irqrestore(rdp, flags); 2370 } 2371 2372 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2373 2374 /* If there are callbacks ready, invoke them. */ 2375 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2376 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2377 rcu_do_batch(rdp); 2378 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2379 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2380 invoke_rcu_core(); 2381 } 2382 2383 /* Do any needed deferred wakeups of rcuo kthreads. */ 2384 do_nocb_deferred_wakeup(rdp); 2385 trace_rcu_utilization(TPS("End RCU core")); 2386 2387 // If strict GPs, schedule an RCU reader in a clean environment. 2388 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2389 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2390 } 2391 2392 static void rcu_core_si(struct softirq_action *h) 2393 { 2394 rcu_core(); 2395 } 2396 2397 static void rcu_wake_cond(struct task_struct *t, int status) 2398 { 2399 /* 2400 * If the thread is yielding, only wake it when this 2401 * is invoked from idle 2402 */ 2403 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2404 wake_up_process(t); 2405 } 2406 2407 static void invoke_rcu_core_kthread(void) 2408 { 2409 struct task_struct *t; 2410 unsigned long flags; 2411 2412 local_irq_save(flags); 2413 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2414 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2415 if (t != NULL && t != current) 2416 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2417 local_irq_restore(flags); 2418 } 2419 2420 /* 2421 * Wake up this CPU's rcuc kthread to do RCU core processing. 2422 */ 2423 static void invoke_rcu_core(void) 2424 { 2425 if (!cpu_online(smp_processor_id())) 2426 return; 2427 if (use_softirq) 2428 raise_softirq(RCU_SOFTIRQ); 2429 else 2430 invoke_rcu_core_kthread(); 2431 } 2432 2433 static void rcu_cpu_kthread_park(unsigned int cpu) 2434 { 2435 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2436 } 2437 2438 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2439 { 2440 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2441 } 2442 2443 /* 2444 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2445 * the RCU softirq used in configurations of RCU that do not support RCU 2446 * priority boosting. 2447 */ 2448 static void rcu_cpu_kthread(unsigned int cpu) 2449 { 2450 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2451 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2452 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2453 int spincnt; 2454 2455 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2456 for (spincnt = 0; spincnt < 10; spincnt++) { 2457 WRITE_ONCE(*j, jiffies); 2458 local_bh_disable(); 2459 *statusp = RCU_KTHREAD_RUNNING; 2460 local_irq_disable(); 2461 work = *workp; 2462 *workp = 0; 2463 local_irq_enable(); 2464 if (work) 2465 rcu_core(); 2466 local_bh_enable(); 2467 if (*workp == 0) { 2468 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2469 *statusp = RCU_KTHREAD_WAITING; 2470 return; 2471 } 2472 } 2473 *statusp = RCU_KTHREAD_YIELDING; 2474 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2475 schedule_timeout_idle(2); 2476 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2477 *statusp = RCU_KTHREAD_WAITING; 2478 WRITE_ONCE(*j, jiffies); 2479 } 2480 2481 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2482 .store = &rcu_data.rcu_cpu_kthread_task, 2483 .thread_should_run = rcu_cpu_kthread_should_run, 2484 .thread_fn = rcu_cpu_kthread, 2485 .thread_comm = "rcuc/%u", 2486 .setup = rcu_cpu_kthread_setup, 2487 .park = rcu_cpu_kthread_park, 2488 }; 2489 2490 /* 2491 * Spawn per-CPU RCU core processing kthreads. 2492 */ 2493 static int __init rcu_spawn_core_kthreads(void) 2494 { 2495 int cpu; 2496 2497 for_each_possible_cpu(cpu) 2498 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2499 if (use_softirq) 2500 return 0; 2501 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2502 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2503 return 0; 2504 } 2505 2506 /* 2507 * Handle any core-RCU processing required by a call_rcu() invocation. 2508 */ 2509 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2510 unsigned long flags) 2511 { 2512 /* 2513 * If called from an extended quiescent state, invoke the RCU 2514 * core in order to force a re-evaluation of RCU's idleness. 2515 */ 2516 if (!rcu_is_watching()) 2517 invoke_rcu_core(); 2518 2519 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2520 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2521 return; 2522 2523 /* 2524 * Force the grace period if too many callbacks or too long waiting. 2525 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2526 * if some other CPU has recently done so. Also, don't bother 2527 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2528 * is the only one waiting for a grace period to complete. 2529 */ 2530 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2531 rdp->qlen_last_fqs_check + qhimark)) { 2532 2533 /* Are we ignoring a completed grace period? */ 2534 note_gp_changes(rdp); 2535 2536 /* Start a new grace period if one not already started. */ 2537 if (!rcu_gp_in_progress()) { 2538 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2539 } else { 2540 /* Give the grace period a kick. */ 2541 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2542 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2543 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2544 rcu_force_quiescent_state(); 2545 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2546 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2547 } 2548 } 2549 } 2550 2551 /* 2552 * RCU callback function to leak a callback. 2553 */ 2554 static void rcu_leak_callback(struct rcu_head *rhp) 2555 { 2556 } 2557 2558 /* 2559 * Check and if necessary update the leaf rcu_node structure's 2560 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2561 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2562 * structure's ->lock. 2563 */ 2564 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2565 { 2566 raw_lockdep_assert_held_rcu_node(rnp); 2567 if (qovld_calc <= 0) 2568 return; // Early boot and wildcard value set. 2569 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2570 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2571 else 2572 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2573 } 2574 2575 /* 2576 * Check and if necessary update the leaf rcu_node structure's 2577 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2578 * number of queued RCU callbacks. No locks need be held, but the 2579 * caller must have disabled interrupts. 2580 * 2581 * Note that this function ignores the possibility that there are a lot 2582 * of callbacks all of which have already seen the end of their respective 2583 * grace periods. This omission is due to the need for no-CBs CPUs to 2584 * be holding ->nocb_lock to do this check, which is too heavy for a 2585 * common-case operation. 2586 */ 2587 static void check_cb_ovld(struct rcu_data *rdp) 2588 { 2589 struct rcu_node *const rnp = rdp->mynode; 2590 2591 if (qovld_calc <= 0 || 2592 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2593 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2594 return; // Early boot wildcard value or already set correctly. 2595 raw_spin_lock_rcu_node(rnp); 2596 check_cb_ovld_locked(rdp, rnp); 2597 raw_spin_unlock_rcu_node(rnp); 2598 } 2599 2600 static void 2601 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2602 { 2603 static atomic_t doublefrees; 2604 unsigned long flags; 2605 bool lazy; 2606 struct rcu_data *rdp; 2607 bool was_alldone; 2608 2609 /* Misaligned rcu_head! */ 2610 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2611 2612 if (debug_rcu_head_queue(head)) { 2613 /* 2614 * Probable double call_rcu(), so leak the callback. 2615 * Use rcu:rcu_callback trace event to find the previous 2616 * time callback was passed to call_rcu(). 2617 */ 2618 if (atomic_inc_return(&doublefrees) < 4) { 2619 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2620 mem_dump_obj(head); 2621 } 2622 WRITE_ONCE(head->func, rcu_leak_callback); 2623 return; 2624 } 2625 head->func = func; 2626 head->next = NULL; 2627 kasan_record_aux_stack_noalloc(head); 2628 local_irq_save(flags); 2629 rdp = this_cpu_ptr(&rcu_data); 2630 lazy = lazy_in && !rcu_async_should_hurry(); 2631 2632 /* Add the callback to our list. */ 2633 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2634 // This can trigger due to call_rcu() from offline CPU: 2635 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2636 WARN_ON_ONCE(!rcu_is_watching()); 2637 // Very early boot, before rcu_init(). Initialize if needed 2638 // and then drop through to queue the callback. 2639 if (rcu_segcblist_empty(&rdp->cblist)) 2640 rcu_segcblist_init(&rdp->cblist); 2641 } 2642 2643 check_cb_ovld(rdp); 2644 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2645 return; // Enqueued onto ->nocb_bypass, so just leave. 2646 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2647 rcu_segcblist_enqueue(&rdp->cblist, head); 2648 if (__is_kvfree_rcu_offset((unsigned long)func)) 2649 trace_rcu_kvfree_callback(rcu_state.name, head, 2650 (unsigned long)func, 2651 rcu_segcblist_n_cbs(&rdp->cblist)); 2652 else 2653 trace_rcu_callback(rcu_state.name, head, 2654 rcu_segcblist_n_cbs(&rdp->cblist)); 2655 2656 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2657 2658 /* Go handle any RCU core processing required. */ 2659 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2660 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2661 } else { 2662 __call_rcu_core(rdp, head, flags); 2663 local_irq_restore(flags); 2664 } 2665 } 2666 2667 #ifdef CONFIG_RCU_LAZY 2668 /** 2669 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2670 * flush all lazy callbacks (including the new one) to the main ->cblist while 2671 * doing so. 2672 * 2673 * @head: structure to be used for queueing the RCU updates. 2674 * @func: actual callback function to be invoked after the grace period 2675 * 2676 * The callback function will be invoked some time after a full grace 2677 * period elapses, in other words after all pre-existing RCU read-side 2678 * critical sections have completed. 2679 * 2680 * Use this API instead of call_rcu() if you don't want the callback to be 2681 * invoked after very long periods of time, which can happen on systems without 2682 * memory pressure and on systems which are lightly loaded or mostly idle. 2683 * This function will cause callbacks to be invoked sooner than later at the 2684 * expense of extra power. Other than that, this function is identical to, and 2685 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2686 * ordering and other functionality. 2687 */ 2688 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2689 { 2690 return __call_rcu_common(head, func, false); 2691 } 2692 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2693 #endif 2694 2695 /** 2696 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2697 * By default the callbacks are 'lazy' and are kept hidden from the main 2698 * ->cblist to prevent starting of grace periods too soon. 2699 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2700 * 2701 * @head: structure to be used for queueing the RCU updates. 2702 * @func: actual callback function to be invoked after the grace period 2703 * 2704 * The callback function will be invoked some time after a full grace 2705 * period elapses, in other words after all pre-existing RCU read-side 2706 * critical sections have completed. However, the callback function 2707 * might well execute concurrently with RCU read-side critical sections 2708 * that started after call_rcu() was invoked. 2709 * 2710 * RCU read-side critical sections are delimited by rcu_read_lock() 2711 * and rcu_read_unlock(), and may be nested. In addition, but only in 2712 * v5.0 and later, regions of code across which interrupts, preemption, 2713 * or softirqs have been disabled also serve as RCU read-side critical 2714 * sections. This includes hardware interrupt handlers, softirq handlers, 2715 * and NMI handlers. 2716 * 2717 * Note that all CPUs must agree that the grace period extended beyond 2718 * all pre-existing RCU read-side critical section. On systems with more 2719 * than one CPU, this means that when "func()" is invoked, each CPU is 2720 * guaranteed to have executed a full memory barrier since the end of its 2721 * last RCU read-side critical section whose beginning preceded the call 2722 * to call_rcu(). It also means that each CPU executing an RCU read-side 2723 * critical section that continues beyond the start of "func()" must have 2724 * executed a memory barrier after the call_rcu() but before the beginning 2725 * of that RCU read-side critical section. Note that these guarantees 2726 * include CPUs that are offline, idle, or executing in user mode, as 2727 * well as CPUs that are executing in the kernel. 2728 * 2729 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2730 * resulting RCU callback function "func()", then both CPU A and CPU B are 2731 * guaranteed to execute a full memory barrier during the time interval 2732 * between the call to call_rcu() and the invocation of "func()" -- even 2733 * if CPU A and CPU B are the same CPU (but again only if the system has 2734 * more than one CPU). 2735 * 2736 * Implementation of these memory-ordering guarantees is described here: 2737 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2738 */ 2739 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2740 { 2741 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2742 } 2743 EXPORT_SYMBOL_GPL(call_rcu); 2744 2745 /* Maximum number of jiffies to wait before draining a batch. */ 2746 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2747 #define KFREE_N_BATCHES 2 2748 #define FREE_N_CHANNELS 2 2749 2750 /** 2751 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2752 * @list: List node. All blocks are linked between each other 2753 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2754 * @nr_records: Number of active pointers in the array 2755 * @records: Array of the kvfree_rcu() pointers 2756 */ 2757 struct kvfree_rcu_bulk_data { 2758 struct list_head list; 2759 unsigned long gp_snap; 2760 unsigned long nr_records; 2761 void *records[]; 2762 }; 2763 2764 /* 2765 * This macro defines how many entries the "records" array 2766 * will contain. It is based on the fact that the size of 2767 * kvfree_rcu_bulk_data structure becomes exactly one page. 2768 */ 2769 #define KVFREE_BULK_MAX_ENTR \ 2770 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2771 2772 /** 2773 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2774 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2775 * @head_free: List of kfree_rcu() objects waiting for a grace period 2776 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2777 * @krcp: Pointer to @kfree_rcu_cpu structure 2778 */ 2779 2780 struct kfree_rcu_cpu_work { 2781 struct rcu_work rcu_work; 2782 struct rcu_head *head_free; 2783 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2784 struct kfree_rcu_cpu *krcp; 2785 }; 2786 2787 /** 2788 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2789 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2790 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2791 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2792 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2793 * @lock: Synchronize access to this structure 2794 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2795 * @initialized: The @rcu_work fields have been initialized 2796 * @head_count: Number of objects in rcu_head singular list 2797 * @bulk_count: Number of objects in bulk-list 2798 * @bkvcache: 2799 * A simple cache list that contains objects for reuse purpose. 2800 * In order to save some per-cpu space the list is singular. 2801 * Even though it is lockless an access has to be protected by the 2802 * per-cpu lock. 2803 * @page_cache_work: A work to refill the cache when it is empty 2804 * @backoff_page_cache_fill: Delay cache refills 2805 * @work_in_progress: Indicates that page_cache_work is running 2806 * @hrtimer: A hrtimer for scheduling a page_cache_work 2807 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2808 * 2809 * This is a per-CPU structure. The reason that it is not included in 2810 * the rcu_data structure is to permit this code to be extracted from 2811 * the RCU files. Such extraction could allow further optimization of 2812 * the interactions with the slab allocators. 2813 */ 2814 struct kfree_rcu_cpu { 2815 // Objects queued on a linked list 2816 // through their rcu_head structures. 2817 struct rcu_head *head; 2818 unsigned long head_gp_snap; 2819 atomic_t head_count; 2820 2821 // Objects queued on a bulk-list. 2822 struct list_head bulk_head[FREE_N_CHANNELS]; 2823 atomic_t bulk_count[FREE_N_CHANNELS]; 2824 2825 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2826 raw_spinlock_t lock; 2827 struct delayed_work monitor_work; 2828 bool initialized; 2829 2830 struct delayed_work page_cache_work; 2831 atomic_t backoff_page_cache_fill; 2832 atomic_t work_in_progress; 2833 struct hrtimer hrtimer; 2834 2835 struct llist_head bkvcache; 2836 int nr_bkv_objs; 2837 }; 2838 2839 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2840 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2841 }; 2842 2843 static __always_inline void 2844 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2845 { 2846 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2847 int i; 2848 2849 for (i = 0; i < bhead->nr_records; i++) 2850 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2851 #endif 2852 } 2853 2854 static inline struct kfree_rcu_cpu * 2855 krc_this_cpu_lock(unsigned long *flags) 2856 { 2857 struct kfree_rcu_cpu *krcp; 2858 2859 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2860 krcp = this_cpu_ptr(&krc); 2861 raw_spin_lock(&krcp->lock); 2862 2863 return krcp; 2864 } 2865 2866 static inline void 2867 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2868 { 2869 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2870 } 2871 2872 static inline struct kvfree_rcu_bulk_data * 2873 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2874 { 2875 if (!krcp->nr_bkv_objs) 2876 return NULL; 2877 2878 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2879 return (struct kvfree_rcu_bulk_data *) 2880 llist_del_first(&krcp->bkvcache); 2881 } 2882 2883 static inline bool 2884 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2885 struct kvfree_rcu_bulk_data *bnode) 2886 { 2887 // Check the limit. 2888 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2889 return false; 2890 2891 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2892 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2893 return true; 2894 } 2895 2896 static int 2897 drain_page_cache(struct kfree_rcu_cpu *krcp) 2898 { 2899 unsigned long flags; 2900 struct llist_node *page_list, *pos, *n; 2901 int freed = 0; 2902 2903 raw_spin_lock_irqsave(&krcp->lock, flags); 2904 page_list = llist_del_all(&krcp->bkvcache); 2905 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2906 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2907 2908 llist_for_each_safe(pos, n, page_list) { 2909 free_page((unsigned long)pos); 2910 freed++; 2911 } 2912 2913 return freed; 2914 } 2915 2916 static void 2917 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 2918 struct kvfree_rcu_bulk_data *bnode, int idx) 2919 { 2920 unsigned long flags; 2921 int i; 2922 2923 debug_rcu_bhead_unqueue(bnode); 2924 2925 rcu_lock_acquire(&rcu_callback_map); 2926 if (idx == 0) { // kmalloc() / kfree(). 2927 trace_rcu_invoke_kfree_bulk_callback( 2928 rcu_state.name, bnode->nr_records, 2929 bnode->records); 2930 2931 kfree_bulk(bnode->nr_records, bnode->records); 2932 } else { // vmalloc() / vfree(). 2933 for (i = 0; i < bnode->nr_records; i++) { 2934 trace_rcu_invoke_kvfree_callback( 2935 rcu_state.name, bnode->records[i], 0); 2936 2937 vfree(bnode->records[i]); 2938 } 2939 } 2940 rcu_lock_release(&rcu_callback_map); 2941 2942 raw_spin_lock_irqsave(&krcp->lock, flags); 2943 if (put_cached_bnode(krcp, bnode)) 2944 bnode = NULL; 2945 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2946 2947 if (bnode) 2948 free_page((unsigned long) bnode); 2949 2950 cond_resched_tasks_rcu_qs(); 2951 } 2952 2953 static void 2954 kvfree_rcu_list(struct rcu_head *head) 2955 { 2956 struct rcu_head *next; 2957 2958 for (; head; head = next) { 2959 void *ptr = (void *) head->func; 2960 unsigned long offset = (void *) head - ptr; 2961 2962 next = head->next; 2963 debug_rcu_head_unqueue((struct rcu_head *)ptr); 2964 rcu_lock_acquire(&rcu_callback_map); 2965 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 2966 2967 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 2968 kvfree(ptr); 2969 2970 rcu_lock_release(&rcu_callback_map); 2971 cond_resched_tasks_rcu_qs(); 2972 } 2973 } 2974 2975 /* 2976 * This function is invoked in workqueue context after a grace period. 2977 * It frees all the objects queued on ->bulk_head_free or ->head_free. 2978 */ 2979 static void kfree_rcu_work(struct work_struct *work) 2980 { 2981 unsigned long flags; 2982 struct kvfree_rcu_bulk_data *bnode, *n; 2983 struct list_head bulk_head[FREE_N_CHANNELS]; 2984 struct rcu_head *head; 2985 struct kfree_rcu_cpu *krcp; 2986 struct kfree_rcu_cpu_work *krwp; 2987 int i; 2988 2989 krwp = container_of(to_rcu_work(work), 2990 struct kfree_rcu_cpu_work, rcu_work); 2991 krcp = krwp->krcp; 2992 2993 raw_spin_lock_irqsave(&krcp->lock, flags); 2994 // Channels 1 and 2. 2995 for (i = 0; i < FREE_N_CHANNELS; i++) 2996 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 2997 2998 // Channel 3. 2999 head = krwp->head_free; 3000 krwp->head_free = NULL; 3001 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3002 3003 // Handle the first two channels. 3004 for (i = 0; i < FREE_N_CHANNELS; i++) { 3005 // Start from the tail page, so a GP is likely passed for it. 3006 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3007 kvfree_rcu_bulk(krcp, bnode, i); 3008 } 3009 3010 /* 3011 * This is used when the "bulk" path can not be used for the 3012 * double-argument of kvfree_rcu(). This happens when the 3013 * page-cache is empty, which means that objects are instead 3014 * queued on a linked list through their rcu_head structures. 3015 * This list is named "Channel 3". 3016 */ 3017 kvfree_rcu_list(head); 3018 } 3019 3020 static bool 3021 need_offload_krc(struct kfree_rcu_cpu *krcp) 3022 { 3023 int i; 3024 3025 for (i = 0; i < FREE_N_CHANNELS; i++) 3026 if (!list_empty(&krcp->bulk_head[i])) 3027 return true; 3028 3029 return !!READ_ONCE(krcp->head); 3030 } 3031 3032 static bool 3033 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3034 { 3035 int i; 3036 3037 for (i = 0; i < FREE_N_CHANNELS; i++) 3038 if (!list_empty(&krwp->bulk_head_free[i])) 3039 return true; 3040 3041 return !!krwp->head_free; 3042 } 3043 3044 static int krc_count(struct kfree_rcu_cpu *krcp) 3045 { 3046 int sum = atomic_read(&krcp->head_count); 3047 int i; 3048 3049 for (i = 0; i < FREE_N_CHANNELS; i++) 3050 sum += atomic_read(&krcp->bulk_count[i]); 3051 3052 return sum; 3053 } 3054 3055 static void 3056 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3057 { 3058 long delay, delay_left; 3059 3060 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3061 if (delayed_work_pending(&krcp->monitor_work)) { 3062 delay_left = krcp->monitor_work.timer.expires - jiffies; 3063 if (delay < delay_left) 3064 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3065 return; 3066 } 3067 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3068 } 3069 3070 static void 3071 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3072 { 3073 struct list_head bulk_ready[FREE_N_CHANNELS]; 3074 struct kvfree_rcu_bulk_data *bnode, *n; 3075 struct rcu_head *head_ready = NULL; 3076 unsigned long flags; 3077 int i; 3078 3079 raw_spin_lock_irqsave(&krcp->lock, flags); 3080 for (i = 0; i < FREE_N_CHANNELS; i++) { 3081 INIT_LIST_HEAD(&bulk_ready[i]); 3082 3083 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3084 if (!poll_state_synchronize_rcu(bnode->gp_snap)) 3085 break; 3086 3087 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3088 list_move(&bnode->list, &bulk_ready[i]); 3089 } 3090 } 3091 3092 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3093 head_ready = krcp->head; 3094 atomic_set(&krcp->head_count, 0); 3095 WRITE_ONCE(krcp->head, NULL); 3096 } 3097 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3098 3099 for (i = 0; i < FREE_N_CHANNELS; i++) { 3100 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3101 kvfree_rcu_bulk(krcp, bnode, i); 3102 } 3103 3104 if (head_ready) 3105 kvfree_rcu_list(head_ready); 3106 } 3107 3108 /* 3109 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3110 */ 3111 static void kfree_rcu_monitor(struct work_struct *work) 3112 { 3113 struct kfree_rcu_cpu *krcp = container_of(work, 3114 struct kfree_rcu_cpu, monitor_work.work); 3115 unsigned long flags; 3116 int i, j; 3117 3118 // Drain ready for reclaim. 3119 kvfree_rcu_drain_ready(krcp); 3120 3121 raw_spin_lock_irqsave(&krcp->lock, flags); 3122 3123 // Attempt to start a new batch. 3124 for (i = 0; i < KFREE_N_BATCHES; i++) { 3125 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3126 3127 // Try to detach bulk_head or head and attach it, only when 3128 // all channels are free. Any channel is not free means at krwp 3129 // there is on-going rcu work to handle krwp's free business. 3130 if (need_wait_for_krwp_work(krwp)) 3131 continue; 3132 3133 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3134 if (need_offload_krc(krcp)) { 3135 // Channel 1 corresponds to the SLAB-pointer bulk path. 3136 // Channel 2 corresponds to vmalloc-pointer bulk path. 3137 for (j = 0; j < FREE_N_CHANNELS; j++) { 3138 if (list_empty(&krwp->bulk_head_free[j])) { 3139 atomic_set(&krcp->bulk_count[j], 0); 3140 list_replace_init(&krcp->bulk_head[j], 3141 &krwp->bulk_head_free[j]); 3142 } 3143 } 3144 3145 // Channel 3 corresponds to both SLAB and vmalloc 3146 // objects queued on the linked list. 3147 if (!krwp->head_free) { 3148 krwp->head_free = krcp->head; 3149 atomic_set(&krcp->head_count, 0); 3150 WRITE_ONCE(krcp->head, NULL); 3151 } 3152 3153 // One work is per one batch, so there are three 3154 // "free channels", the batch can handle. It can 3155 // be that the work is in the pending state when 3156 // channels have been detached following by each 3157 // other. 3158 queue_rcu_work(system_wq, &krwp->rcu_work); 3159 } 3160 } 3161 3162 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3163 3164 // If there is nothing to detach, it means that our job is 3165 // successfully done here. In case of having at least one 3166 // of the channels that is still busy we should rearm the 3167 // work to repeat an attempt. Because previous batches are 3168 // still in progress. 3169 if (need_offload_krc(krcp)) 3170 schedule_delayed_monitor_work(krcp); 3171 } 3172 3173 static enum hrtimer_restart 3174 schedule_page_work_fn(struct hrtimer *t) 3175 { 3176 struct kfree_rcu_cpu *krcp = 3177 container_of(t, struct kfree_rcu_cpu, hrtimer); 3178 3179 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3180 return HRTIMER_NORESTART; 3181 } 3182 3183 static void fill_page_cache_func(struct work_struct *work) 3184 { 3185 struct kvfree_rcu_bulk_data *bnode; 3186 struct kfree_rcu_cpu *krcp = 3187 container_of(work, struct kfree_rcu_cpu, 3188 page_cache_work.work); 3189 unsigned long flags; 3190 int nr_pages; 3191 bool pushed; 3192 int i; 3193 3194 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3195 1 : rcu_min_cached_objs; 3196 3197 for (i = 0; i < nr_pages; i++) { 3198 bnode = (struct kvfree_rcu_bulk_data *) 3199 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3200 3201 if (!bnode) 3202 break; 3203 3204 raw_spin_lock_irqsave(&krcp->lock, flags); 3205 pushed = put_cached_bnode(krcp, bnode); 3206 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3207 3208 if (!pushed) { 3209 free_page((unsigned long) bnode); 3210 break; 3211 } 3212 } 3213 3214 atomic_set(&krcp->work_in_progress, 0); 3215 atomic_set(&krcp->backoff_page_cache_fill, 0); 3216 } 3217 3218 static void 3219 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3220 { 3221 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3222 !atomic_xchg(&krcp->work_in_progress, 1)) { 3223 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3224 queue_delayed_work(system_wq, 3225 &krcp->page_cache_work, 3226 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3227 } else { 3228 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3229 krcp->hrtimer.function = schedule_page_work_fn; 3230 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3231 } 3232 } 3233 } 3234 3235 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3236 // state specified by flags. If can_alloc is true, the caller must 3237 // be schedulable and not be holding any locks or mutexes that might be 3238 // acquired by the memory allocator or anything that it might invoke. 3239 // Returns true if ptr was successfully recorded, else the caller must 3240 // use a fallback. 3241 static inline bool 3242 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3243 unsigned long *flags, void *ptr, bool can_alloc) 3244 { 3245 struct kvfree_rcu_bulk_data *bnode; 3246 int idx; 3247 3248 *krcp = krc_this_cpu_lock(flags); 3249 if (unlikely(!(*krcp)->initialized)) 3250 return false; 3251 3252 idx = !!is_vmalloc_addr(ptr); 3253 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3254 struct kvfree_rcu_bulk_data, list); 3255 3256 /* Check if a new block is required. */ 3257 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3258 bnode = get_cached_bnode(*krcp); 3259 if (!bnode && can_alloc) { 3260 krc_this_cpu_unlock(*krcp, *flags); 3261 3262 // __GFP_NORETRY - allows a light-weight direct reclaim 3263 // what is OK from minimizing of fallback hitting point of 3264 // view. Apart of that it forbids any OOM invoking what is 3265 // also beneficial since we are about to release memory soon. 3266 // 3267 // __GFP_NOMEMALLOC - prevents from consuming of all the 3268 // memory reserves. Please note we have a fallback path. 3269 // 3270 // __GFP_NOWARN - it is supposed that an allocation can 3271 // be failed under low memory or high memory pressure 3272 // scenarios. 3273 bnode = (struct kvfree_rcu_bulk_data *) 3274 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3275 *krcp = krc_this_cpu_lock(flags); 3276 } 3277 3278 if (!bnode) 3279 return false; 3280 3281 // Initialize the new block and attach it. 3282 bnode->nr_records = 0; 3283 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3284 } 3285 3286 // Finally insert and update the GP for this page. 3287 bnode->records[bnode->nr_records++] = ptr; 3288 bnode->gp_snap = get_state_synchronize_rcu(); 3289 atomic_inc(&(*krcp)->bulk_count[idx]); 3290 3291 return true; 3292 } 3293 3294 /* 3295 * Queue a request for lazy invocation of the appropriate free routine 3296 * after a grace period. Please note that three paths are maintained, 3297 * two for the common case using arrays of pointers and a third one that 3298 * is used only when the main paths cannot be used, for example, due to 3299 * memory pressure. 3300 * 3301 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3302 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3303 * be free'd in workqueue context. This allows us to: batch requests together to 3304 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3305 */ 3306 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3307 { 3308 unsigned long flags; 3309 struct kfree_rcu_cpu *krcp; 3310 bool success; 3311 3312 /* 3313 * Please note there is a limitation for the head-less 3314 * variant, that is why there is a clear rule for such 3315 * objects: it can be used from might_sleep() context 3316 * only. For other places please embed an rcu_head to 3317 * your data. 3318 */ 3319 if (!head) 3320 might_sleep(); 3321 3322 // Queue the object but don't yet schedule the batch. 3323 if (debug_rcu_head_queue(ptr)) { 3324 // Probable double kfree_rcu(), just leak. 3325 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3326 __func__, head); 3327 3328 // Mark as success and leave. 3329 return; 3330 } 3331 3332 kasan_record_aux_stack_noalloc(ptr); 3333 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3334 if (!success) { 3335 run_page_cache_worker(krcp); 3336 3337 if (head == NULL) 3338 // Inline if kvfree_rcu(one_arg) call. 3339 goto unlock_return; 3340 3341 head->func = ptr; 3342 head->next = krcp->head; 3343 WRITE_ONCE(krcp->head, head); 3344 atomic_inc(&krcp->head_count); 3345 3346 // Take a snapshot for this krcp. 3347 krcp->head_gp_snap = get_state_synchronize_rcu(); 3348 success = true; 3349 } 3350 3351 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3352 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3353 schedule_delayed_monitor_work(krcp); 3354 3355 unlock_return: 3356 krc_this_cpu_unlock(krcp, flags); 3357 3358 /* 3359 * Inline kvfree() after synchronize_rcu(). We can do 3360 * it from might_sleep() context only, so the current 3361 * CPU can pass the QS state. 3362 */ 3363 if (!success) { 3364 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3365 synchronize_rcu(); 3366 kvfree(ptr); 3367 } 3368 } 3369 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3370 3371 static unsigned long 3372 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3373 { 3374 int cpu; 3375 unsigned long count = 0; 3376 3377 /* Snapshot count of all CPUs */ 3378 for_each_possible_cpu(cpu) { 3379 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3380 3381 count += krc_count(krcp); 3382 count += READ_ONCE(krcp->nr_bkv_objs); 3383 atomic_set(&krcp->backoff_page_cache_fill, 1); 3384 } 3385 3386 return count == 0 ? SHRINK_EMPTY : count; 3387 } 3388 3389 static unsigned long 3390 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3391 { 3392 int cpu, freed = 0; 3393 3394 for_each_possible_cpu(cpu) { 3395 int count; 3396 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3397 3398 count = krc_count(krcp); 3399 count += drain_page_cache(krcp); 3400 kfree_rcu_monitor(&krcp->monitor_work.work); 3401 3402 sc->nr_to_scan -= count; 3403 freed += count; 3404 3405 if (sc->nr_to_scan <= 0) 3406 break; 3407 } 3408 3409 return freed == 0 ? SHRINK_STOP : freed; 3410 } 3411 3412 static struct shrinker kfree_rcu_shrinker = { 3413 .count_objects = kfree_rcu_shrink_count, 3414 .scan_objects = kfree_rcu_shrink_scan, 3415 .batch = 0, 3416 .seeks = DEFAULT_SEEKS, 3417 }; 3418 3419 void __init kfree_rcu_scheduler_running(void) 3420 { 3421 int cpu; 3422 3423 for_each_possible_cpu(cpu) { 3424 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3425 3426 if (need_offload_krc(krcp)) 3427 schedule_delayed_monitor_work(krcp); 3428 } 3429 } 3430 3431 /* 3432 * During early boot, any blocking grace-period wait automatically 3433 * implies a grace period. 3434 * 3435 * Later on, this could in theory be the case for kernels built with 3436 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3437 * is not a common case. Furthermore, this optimization would cause 3438 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3439 * grace-period optimization is ignored once the scheduler is running. 3440 */ 3441 static int rcu_blocking_is_gp(void) 3442 { 3443 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3444 might_sleep(); 3445 return false; 3446 } 3447 return true; 3448 } 3449 3450 /** 3451 * synchronize_rcu - wait until a grace period has elapsed. 3452 * 3453 * Control will return to the caller some time after a full grace 3454 * period has elapsed, in other words after all currently executing RCU 3455 * read-side critical sections have completed. Note, however, that 3456 * upon return from synchronize_rcu(), the caller might well be executing 3457 * concurrently with new RCU read-side critical sections that began while 3458 * synchronize_rcu() was waiting. 3459 * 3460 * RCU read-side critical sections are delimited by rcu_read_lock() 3461 * and rcu_read_unlock(), and may be nested. In addition, but only in 3462 * v5.0 and later, regions of code across which interrupts, preemption, 3463 * or softirqs have been disabled also serve as RCU read-side critical 3464 * sections. This includes hardware interrupt handlers, softirq handlers, 3465 * and NMI handlers. 3466 * 3467 * Note that this guarantee implies further memory-ordering guarantees. 3468 * On systems with more than one CPU, when synchronize_rcu() returns, 3469 * each CPU is guaranteed to have executed a full memory barrier since 3470 * the end of its last RCU read-side critical section whose beginning 3471 * preceded the call to synchronize_rcu(). In addition, each CPU having 3472 * an RCU read-side critical section that extends beyond the return from 3473 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3474 * after the beginning of synchronize_rcu() and before the beginning of 3475 * that RCU read-side critical section. Note that these guarantees include 3476 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3477 * that are executing in the kernel. 3478 * 3479 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3480 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3481 * to have executed a full memory barrier during the execution of 3482 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3483 * again only if the system has more than one CPU). 3484 * 3485 * Implementation of these memory-ordering guarantees is described here: 3486 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3487 */ 3488 void synchronize_rcu(void) 3489 { 3490 unsigned long flags; 3491 struct rcu_node *rnp; 3492 3493 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3494 lock_is_held(&rcu_lock_map) || 3495 lock_is_held(&rcu_sched_lock_map), 3496 "Illegal synchronize_rcu() in RCU read-side critical section"); 3497 if (!rcu_blocking_is_gp()) { 3498 if (rcu_gp_is_expedited()) 3499 synchronize_rcu_expedited(); 3500 else 3501 wait_rcu_gp(call_rcu_hurry); 3502 return; 3503 } 3504 3505 // Context allows vacuous grace periods. 3506 // Note well that this code runs with !PREEMPT && !SMP. 3507 // In addition, all code that advances grace periods runs at 3508 // process level. Therefore, this normal GP overlaps with other 3509 // normal GPs only by being fully nested within them, which allows 3510 // reuse of ->gp_seq_polled_snap. 3511 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3512 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3513 3514 // Update the normal grace-period counters to record 3515 // this grace period, but only those used by the boot CPU. 3516 // The rcu_scheduler_starting() will take care of the rest of 3517 // these counters. 3518 local_irq_save(flags); 3519 WARN_ON_ONCE(num_online_cpus() > 1); 3520 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3521 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3522 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3523 local_irq_restore(flags); 3524 } 3525 EXPORT_SYMBOL_GPL(synchronize_rcu); 3526 3527 /** 3528 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3529 * @rgosp: Place to put state cookie 3530 * 3531 * Stores into @rgosp a value that will always be treated by functions 3532 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3533 * has already completed. 3534 */ 3535 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3536 { 3537 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3538 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3539 } 3540 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3541 3542 /** 3543 * get_state_synchronize_rcu - Snapshot current RCU state 3544 * 3545 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3546 * or poll_state_synchronize_rcu() to determine whether or not a full 3547 * grace period has elapsed in the meantime. 3548 */ 3549 unsigned long get_state_synchronize_rcu(void) 3550 { 3551 /* 3552 * Any prior manipulation of RCU-protected data must happen 3553 * before the load from ->gp_seq. 3554 */ 3555 smp_mb(); /* ^^^ */ 3556 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3557 } 3558 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3559 3560 /** 3561 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3562 * @rgosp: location to place combined normal/expedited grace-period state 3563 * 3564 * Places the normal and expedited grace-period states in @rgosp. This 3565 * state value can be passed to a later call to cond_synchronize_rcu_full() 3566 * or poll_state_synchronize_rcu_full() to determine whether or not a 3567 * grace period (whether normal or expedited) has elapsed in the meantime. 3568 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3569 * long, but is guaranteed to see all grace periods. In contrast, the 3570 * combined state occupies less memory, but can sometimes fail to take 3571 * grace periods into account. 3572 * 3573 * This does not guarantee that the needed grace period will actually 3574 * start. 3575 */ 3576 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3577 { 3578 struct rcu_node *rnp = rcu_get_root(); 3579 3580 /* 3581 * Any prior manipulation of RCU-protected data must happen 3582 * before the loads from ->gp_seq and ->expedited_sequence. 3583 */ 3584 smp_mb(); /* ^^^ */ 3585 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3586 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3587 } 3588 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3589 3590 /* 3591 * Helper function for start_poll_synchronize_rcu() and 3592 * start_poll_synchronize_rcu_full(). 3593 */ 3594 static void start_poll_synchronize_rcu_common(void) 3595 { 3596 unsigned long flags; 3597 bool needwake; 3598 struct rcu_data *rdp; 3599 struct rcu_node *rnp; 3600 3601 lockdep_assert_irqs_enabled(); 3602 local_irq_save(flags); 3603 rdp = this_cpu_ptr(&rcu_data); 3604 rnp = rdp->mynode; 3605 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3606 // Note it is possible for a grace period to have elapsed between 3607 // the above call to get_state_synchronize_rcu() and the below call 3608 // to rcu_seq_snap. This is OK, the worst that happens is that we 3609 // get a grace period that no one needed. These accesses are ordered 3610 // by smp_mb(), and we are accessing them in the opposite order 3611 // from which they are updated at grace-period start, as required. 3612 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3613 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3614 if (needwake) 3615 rcu_gp_kthread_wake(); 3616 } 3617 3618 /** 3619 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3620 * 3621 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3622 * or poll_state_synchronize_rcu() to determine whether or not a full 3623 * grace period has elapsed in the meantime. If the needed grace period 3624 * is not already slated to start, notifies RCU core of the need for that 3625 * grace period. 3626 * 3627 * Interrupts must be enabled for the case where it is necessary to awaken 3628 * the grace-period kthread. 3629 */ 3630 unsigned long start_poll_synchronize_rcu(void) 3631 { 3632 unsigned long gp_seq = get_state_synchronize_rcu(); 3633 3634 start_poll_synchronize_rcu_common(); 3635 return gp_seq; 3636 } 3637 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3638 3639 /** 3640 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3641 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3642 * 3643 * Places the normal and expedited grace-period states in *@rgos. This 3644 * state value can be passed to a later call to cond_synchronize_rcu_full() 3645 * or poll_state_synchronize_rcu_full() to determine whether or not a 3646 * grace period (whether normal or expedited) has elapsed in the meantime. 3647 * If the needed grace period is not already slated to start, notifies 3648 * RCU core of the need for that grace period. 3649 * 3650 * Interrupts must be enabled for the case where it is necessary to awaken 3651 * the grace-period kthread. 3652 */ 3653 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3654 { 3655 get_state_synchronize_rcu_full(rgosp); 3656 3657 start_poll_synchronize_rcu_common(); 3658 } 3659 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3660 3661 /** 3662 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3663 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3664 * 3665 * If a full RCU grace period has elapsed since the earlier call from 3666 * which @oldstate was obtained, return @true, otherwise return @false. 3667 * If @false is returned, it is the caller's responsibility to invoke this 3668 * function later on until it does return @true. Alternatively, the caller 3669 * can explicitly wait for a grace period, for example, by passing @oldstate 3670 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3671 * on the one hand or by directly invoking either synchronize_rcu() or 3672 * synchronize_rcu_expedited() on the other. 3673 * 3674 * Yes, this function does not take counter wrap into account. 3675 * But counter wrap is harmless. If the counter wraps, we have waited for 3676 * more than a billion grace periods (and way more on a 64-bit system!). 3677 * Those needing to keep old state values for very long time periods 3678 * (many hours even on 32-bit systems) should check them occasionally and 3679 * either refresh them or set a flag indicating that the grace period has 3680 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3681 * to get a guaranteed-completed grace-period state. 3682 * 3683 * In addition, because oldstate compresses the grace-period state for 3684 * both normal and expedited grace periods into a single unsigned long, 3685 * it can miss a grace period when synchronize_rcu() runs concurrently 3686 * with synchronize_rcu_expedited(). If this is unacceptable, please 3687 * instead use the _full() variant of these polling APIs. 3688 * 3689 * This function provides the same memory-ordering guarantees that 3690 * would be provided by a synchronize_rcu() that was invoked at the call 3691 * to the function that provided @oldstate, and that returned at the end 3692 * of this function. 3693 */ 3694 bool poll_state_synchronize_rcu(unsigned long oldstate) 3695 { 3696 if (oldstate == RCU_GET_STATE_COMPLETED || 3697 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3698 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3699 return true; 3700 } 3701 return false; 3702 } 3703 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3704 3705 /** 3706 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3707 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3708 * 3709 * If a full RCU grace period has elapsed since the earlier call from 3710 * which *rgosp was obtained, return @true, otherwise return @false. 3711 * If @false is returned, it is the caller's responsibility to invoke this 3712 * function later on until it does return @true. Alternatively, the caller 3713 * can explicitly wait for a grace period, for example, by passing @rgosp 3714 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3715 * 3716 * Yes, this function does not take counter wrap into account. 3717 * But counter wrap is harmless. If the counter wraps, we have waited 3718 * for more than a billion grace periods (and way more on a 64-bit 3719 * system!). Those needing to keep rcu_gp_oldstate values for very 3720 * long time periods (many hours even on 32-bit systems) should check 3721 * them occasionally and either refresh them or set a flag indicating 3722 * that the grace period has completed. Alternatively, they can use 3723 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3724 * grace-period state. 3725 * 3726 * This function provides the same memory-ordering guarantees that would 3727 * be provided by a synchronize_rcu() that was invoked at the call to 3728 * the function that provided @rgosp, and that returned at the end of this 3729 * function. And this guarantee requires that the root rcu_node structure's 3730 * ->gp_seq field be checked instead of that of the rcu_state structure. 3731 * The problem is that the just-ending grace-period's callbacks can be 3732 * invoked between the time that the root rcu_node structure's ->gp_seq 3733 * field is updated and the time that the rcu_state structure's ->gp_seq 3734 * field is updated. Therefore, if a single synchronize_rcu() is to 3735 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3736 * then the root rcu_node structure is the one that needs to be polled. 3737 */ 3738 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3739 { 3740 struct rcu_node *rnp = rcu_get_root(); 3741 3742 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3743 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3744 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3745 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3746 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3747 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3748 return true; 3749 } 3750 return false; 3751 } 3752 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3753 3754 /** 3755 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3756 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3757 * 3758 * If a full RCU grace period has elapsed since the earlier call to 3759 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3760 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3761 * 3762 * Yes, this function does not take counter wrap into account. 3763 * But counter wrap is harmless. If the counter wraps, we have waited for 3764 * more than 2 billion grace periods (and way more on a 64-bit system!), 3765 * so waiting for a couple of additional grace periods should be just fine. 3766 * 3767 * This function provides the same memory-ordering guarantees that 3768 * would be provided by a synchronize_rcu() that was invoked at the call 3769 * to the function that provided @oldstate and that returned at the end 3770 * of this function. 3771 */ 3772 void cond_synchronize_rcu(unsigned long oldstate) 3773 { 3774 if (!poll_state_synchronize_rcu(oldstate)) 3775 synchronize_rcu(); 3776 } 3777 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3778 3779 /** 3780 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3781 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3782 * 3783 * If a full RCU grace period has elapsed since the call to 3784 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3785 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3786 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3787 * for a full grace period. 3788 * 3789 * Yes, this function does not take counter wrap into account. 3790 * But counter wrap is harmless. If the counter wraps, we have waited for 3791 * more than 2 billion grace periods (and way more on a 64-bit system!), 3792 * so waiting for a couple of additional grace periods should be just fine. 3793 * 3794 * This function provides the same memory-ordering guarantees that 3795 * would be provided by a synchronize_rcu() that was invoked at the call 3796 * to the function that provided @rgosp and that returned at the end of 3797 * this function. 3798 */ 3799 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3800 { 3801 if (!poll_state_synchronize_rcu_full(rgosp)) 3802 synchronize_rcu(); 3803 } 3804 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3805 3806 /* 3807 * Check to see if there is any immediate RCU-related work to be done by 3808 * the current CPU, returning 1 if so and zero otherwise. The checks are 3809 * in order of increasing expense: checks that can be carried out against 3810 * CPU-local state are performed first. However, we must check for CPU 3811 * stalls first, else we might not get a chance. 3812 */ 3813 static int rcu_pending(int user) 3814 { 3815 bool gp_in_progress; 3816 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3817 struct rcu_node *rnp = rdp->mynode; 3818 3819 lockdep_assert_irqs_disabled(); 3820 3821 /* Check for CPU stalls, if enabled. */ 3822 check_cpu_stall(rdp); 3823 3824 /* Does this CPU need a deferred NOCB wakeup? */ 3825 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3826 return 1; 3827 3828 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3829 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3830 return 0; 3831 3832 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3833 gp_in_progress = rcu_gp_in_progress(); 3834 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3835 return 1; 3836 3837 /* Does this CPU have callbacks ready to invoke? */ 3838 if (!rcu_rdp_is_offloaded(rdp) && 3839 rcu_segcblist_ready_cbs(&rdp->cblist)) 3840 return 1; 3841 3842 /* Has RCU gone idle with this CPU needing another grace period? */ 3843 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3844 !rcu_rdp_is_offloaded(rdp) && 3845 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3846 return 1; 3847 3848 /* Have RCU grace period completed or started? */ 3849 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3850 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3851 return 1; 3852 3853 /* nothing to do */ 3854 return 0; 3855 } 3856 3857 /* 3858 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3859 * the compiler is expected to optimize this away. 3860 */ 3861 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3862 { 3863 trace_rcu_barrier(rcu_state.name, s, cpu, 3864 atomic_read(&rcu_state.barrier_cpu_count), done); 3865 } 3866 3867 /* 3868 * RCU callback function for rcu_barrier(). If we are last, wake 3869 * up the task executing rcu_barrier(). 3870 * 3871 * Note that the value of rcu_state.barrier_sequence must be captured 3872 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3873 * other CPUs might count the value down to zero before this CPU gets 3874 * around to invoking rcu_barrier_trace(), which might result in bogus 3875 * data from the next instance of rcu_barrier(). 3876 */ 3877 static void rcu_barrier_callback(struct rcu_head *rhp) 3878 { 3879 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3880 3881 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3882 rcu_barrier_trace(TPS("LastCB"), -1, s); 3883 complete(&rcu_state.barrier_completion); 3884 } else { 3885 rcu_barrier_trace(TPS("CB"), -1, s); 3886 } 3887 } 3888 3889 /* 3890 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3891 */ 3892 static void rcu_barrier_entrain(struct rcu_data *rdp) 3893 { 3894 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3895 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3896 bool wake_nocb = false; 3897 bool was_alldone = false; 3898 3899 lockdep_assert_held(&rcu_state.barrier_lock); 3900 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3901 return; 3902 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3903 rdp->barrier_head.func = rcu_barrier_callback; 3904 debug_rcu_head_queue(&rdp->barrier_head); 3905 rcu_nocb_lock(rdp); 3906 /* 3907 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3908 * queue. This way we don't wait for bypass timer that can reach seconds 3909 * if it's fully lazy. 3910 */ 3911 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3912 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3913 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3914 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3915 atomic_inc(&rcu_state.barrier_cpu_count); 3916 } else { 3917 debug_rcu_head_unqueue(&rdp->barrier_head); 3918 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3919 } 3920 rcu_nocb_unlock(rdp); 3921 if (wake_nocb) 3922 wake_nocb_gp(rdp, false); 3923 smp_store_release(&rdp->barrier_seq_snap, gseq); 3924 } 3925 3926 /* 3927 * Called with preemption disabled, and from cross-cpu IRQ context. 3928 */ 3929 static void rcu_barrier_handler(void *cpu_in) 3930 { 3931 uintptr_t cpu = (uintptr_t)cpu_in; 3932 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3933 3934 lockdep_assert_irqs_disabled(); 3935 WARN_ON_ONCE(cpu != rdp->cpu); 3936 WARN_ON_ONCE(cpu != smp_processor_id()); 3937 raw_spin_lock(&rcu_state.barrier_lock); 3938 rcu_barrier_entrain(rdp); 3939 raw_spin_unlock(&rcu_state.barrier_lock); 3940 } 3941 3942 /** 3943 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3944 * 3945 * Note that this primitive does not necessarily wait for an RCU grace period 3946 * to complete. For example, if there are no RCU callbacks queued anywhere 3947 * in the system, then rcu_barrier() is within its rights to return 3948 * immediately, without waiting for anything, much less an RCU grace period. 3949 */ 3950 void rcu_barrier(void) 3951 { 3952 uintptr_t cpu; 3953 unsigned long flags; 3954 unsigned long gseq; 3955 struct rcu_data *rdp; 3956 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3957 3958 rcu_barrier_trace(TPS("Begin"), -1, s); 3959 3960 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3961 mutex_lock(&rcu_state.barrier_mutex); 3962 3963 /* Did someone else do our work for us? */ 3964 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3965 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3966 smp_mb(); /* caller's subsequent code after above check. */ 3967 mutex_unlock(&rcu_state.barrier_mutex); 3968 return; 3969 } 3970 3971 /* Mark the start of the barrier operation. */ 3972 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3973 rcu_seq_start(&rcu_state.barrier_sequence); 3974 gseq = rcu_state.barrier_sequence; 3975 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3976 3977 /* 3978 * Initialize the count to two rather than to zero in order 3979 * to avoid a too-soon return to zero in case of an immediate 3980 * invocation of the just-enqueued callback (or preemption of 3981 * this task). Exclude CPU-hotplug operations to ensure that no 3982 * offline non-offloaded CPU has callbacks queued. 3983 */ 3984 init_completion(&rcu_state.barrier_completion); 3985 atomic_set(&rcu_state.barrier_cpu_count, 2); 3986 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3987 3988 /* 3989 * Force each CPU with callbacks to register a new callback. 3990 * When that callback is invoked, we will know that all of the 3991 * corresponding CPU's preceding callbacks have been invoked. 3992 */ 3993 for_each_possible_cpu(cpu) { 3994 rdp = per_cpu_ptr(&rcu_data, cpu); 3995 retry: 3996 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3997 continue; 3998 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3999 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4000 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4001 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4002 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4003 continue; 4004 } 4005 if (!rcu_rdp_cpu_online(rdp)) { 4006 rcu_barrier_entrain(rdp); 4007 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4008 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4009 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4010 continue; 4011 } 4012 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4013 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4014 schedule_timeout_uninterruptible(1); 4015 goto retry; 4016 } 4017 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4018 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4019 } 4020 4021 /* 4022 * Now that we have an rcu_barrier_callback() callback on each 4023 * CPU, and thus each counted, remove the initial count. 4024 */ 4025 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4026 complete(&rcu_state.barrier_completion); 4027 4028 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4029 wait_for_completion(&rcu_state.barrier_completion); 4030 4031 /* Mark the end of the barrier operation. */ 4032 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4033 rcu_seq_end(&rcu_state.barrier_sequence); 4034 gseq = rcu_state.barrier_sequence; 4035 for_each_possible_cpu(cpu) { 4036 rdp = per_cpu_ptr(&rcu_data, cpu); 4037 4038 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4039 } 4040 4041 /* Other rcu_barrier() invocations can now safely proceed. */ 4042 mutex_unlock(&rcu_state.barrier_mutex); 4043 } 4044 EXPORT_SYMBOL_GPL(rcu_barrier); 4045 4046 /* 4047 * Compute the mask of online CPUs for the specified rcu_node structure. 4048 * This will not be stable unless the rcu_node structure's ->lock is 4049 * held, but the bit corresponding to the current CPU will be stable 4050 * in most contexts. 4051 */ 4052 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4053 { 4054 return READ_ONCE(rnp->qsmaskinitnext); 4055 } 4056 4057 /* 4058 * Is the CPU corresponding to the specified rcu_data structure online 4059 * from RCU's perspective? This perspective is given by that structure's 4060 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4061 */ 4062 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4063 { 4064 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4065 } 4066 4067 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4068 4069 /* 4070 * Is the current CPU online as far as RCU is concerned? 4071 * 4072 * Disable preemption to avoid false positives that could otherwise 4073 * happen due to the current CPU number being sampled, this task being 4074 * preempted, its old CPU being taken offline, resuming on some other CPU, 4075 * then determining that its old CPU is now offline. 4076 * 4077 * Disable checking if in an NMI handler because we cannot safely 4078 * report errors from NMI handlers anyway. In addition, it is OK to use 4079 * RCU on an offline processor during initial boot, hence the check for 4080 * rcu_scheduler_fully_active. 4081 */ 4082 bool rcu_lockdep_current_cpu_online(void) 4083 { 4084 struct rcu_data *rdp; 4085 bool ret = false; 4086 4087 if (in_nmi() || !rcu_scheduler_fully_active) 4088 return true; 4089 preempt_disable_notrace(); 4090 rdp = this_cpu_ptr(&rcu_data); 4091 /* 4092 * Strictly, we care here about the case where the current CPU is 4093 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 4094 * not being up to date. So arch_spin_is_locked() might have a 4095 * false positive if it's held by some *other* CPU, but that's 4096 * OK because that just means a false *negative* on the warning. 4097 */ 4098 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4099 ret = true; 4100 preempt_enable_notrace(); 4101 return ret; 4102 } 4103 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4104 4105 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4106 4107 // Has rcu_init() been invoked? This is used (for example) to determine 4108 // whether spinlocks may be acquired safely. 4109 static bool rcu_init_invoked(void) 4110 { 4111 return !!rcu_state.n_online_cpus; 4112 } 4113 4114 /* 4115 * Near the end of the offline process. Trace the fact that this CPU 4116 * is going offline. 4117 */ 4118 int rcutree_dying_cpu(unsigned int cpu) 4119 { 4120 bool blkd; 4121 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4122 struct rcu_node *rnp = rdp->mynode; 4123 4124 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4125 return 0; 4126 4127 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4128 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4129 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4130 return 0; 4131 } 4132 4133 /* 4134 * All CPUs for the specified rcu_node structure have gone offline, 4135 * and all tasks that were preempted within an RCU read-side critical 4136 * section while running on one of those CPUs have since exited their RCU 4137 * read-side critical section. Some other CPU is reporting this fact with 4138 * the specified rcu_node structure's ->lock held and interrupts disabled. 4139 * This function therefore goes up the tree of rcu_node structures, 4140 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4141 * the leaf rcu_node structure's ->qsmaskinit field has already been 4142 * updated. 4143 * 4144 * This function does check that the specified rcu_node structure has 4145 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4146 * prematurely. That said, invoking it after the fact will cost you 4147 * a needless lock acquisition. So once it has done its work, don't 4148 * invoke it again. 4149 */ 4150 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4151 { 4152 long mask; 4153 struct rcu_node *rnp = rnp_leaf; 4154 4155 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4156 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4157 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4158 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4159 return; 4160 for (;;) { 4161 mask = rnp->grpmask; 4162 rnp = rnp->parent; 4163 if (!rnp) 4164 break; 4165 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4166 rnp->qsmaskinit &= ~mask; 4167 /* Between grace periods, so better already be zero! */ 4168 WARN_ON_ONCE(rnp->qsmask); 4169 if (rnp->qsmaskinit) { 4170 raw_spin_unlock_rcu_node(rnp); 4171 /* irqs remain disabled. */ 4172 return; 4173 } 4174 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4175 } 4176 } 4177 4178 /* 4179 * The CPU has been completely removed, and some other CPU is reporting 4180 * this fact from process context. Do the remainder of the cleanup. 4181 * There can only be one CPU hotplug operation at a time, so no need for 4182 * explicit locking. 4183 */ 4184 int rcutree_dead_cpu(unsigned int cpu) 4185 { 4186 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4187 return 0; 4188 4189 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4190 // Stop-machine done, so allow nohz_full to disable tick. 4191 tick_dep_clear(TICK_DEP_BIT_RCU); 4192 return 0; 4193 } 4194 4195 /* 4196 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4197 * first CPU in a given leaf rcu_node structure coming online. The caller 4198 * must hold the corresponding leaf rcu_node ->lock with interrupts 4199 * disabled. 4200 */ 4201 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4202 { 4203 long mask; 4204 long oldmask; 4205 struct rcu_node *rnp = rnp_leaf; 4206 4207 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4208 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4209 for (;;) { 4210 mask = rnp->grpmask; 4211 rnp = rnp->parent; 4212 if (rnp == NULL) 4213 return; 4214 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4215 oldmask = rnp->qsmaskinit; 4216 rnp->qsmaskinit |= mask; 4217 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4218 if (oldmask) 4219 return; 4220 } 4221 } 4222 4223 /* 4224 * Do boot-time initialization of a CPU's per-CPU RCU data. 4225 */ 4226 static void __init 4227 rcu_boot_init_percpu_data(int cpu) 4228 { 4229 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4230 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4231 4232 /* Set up local state, ensuring consistent view of global state. */ 4233 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4234 INIT_WORK(&rdp->strict_work, strict_work_handler); 4235 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4236 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4237 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4238 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4239 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4240 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4241 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4242 rdp->last_sched_clock = jiffies; 4243 rdp->cpu = cpu; 4244 rcu_boot_init_nocb_percpu_data(rdp); 4245 } 4246 4247 /* 4248 * Invoked early in the CPU-online process, when pretty much all services 4249 * are available. The incoming CPU is not present. 4250 * 4251 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4252 * offline event can be happening at a given time. Note also that we can 4253 * accept some slop in the rsp->gp_seq access due to the fact that this 4254 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4255 * And any offloaded callbacks are being numbered elsewhere. 4256 */ 4257 int rcutree_prepare_cpu(unsigned int cpu) 4258 { 4259 unsigned long flags; 4260 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4261 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4262 struct rcu_node *rnp = rcu_get_root(); 4263 4264 /* Set up local state, ensuring consistent view of global state. */ 4265 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4266 rdp->qlen_last_fqs_check = 0; 4267 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4268 rdp->blimit = blimit; 4269 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4270 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4271 4272 /* 4273 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4274 * (re-)initialized. 4275 */ 4276 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4277 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4278 4279 /* 4280 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4281 * propagation up the rcu_node tree will happen at the beginning 4282 * of the next grace period. 4283 */ 4284 rnp = rdp->mynode; 4285 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4286 rdp->beenonline = true; /* We have now been online. */ 4287 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4288 rdp->gp_seq_needed = rdp->gp_seq; 4289 rdp->cpu_no_qs.b.norm = true; 4290 rdp->core_needs_qs = false; 4291 rdp->rcu_iw_pending = false; 4292 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4293 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4294 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4296 rcu_spawn_one_boost_kthread(rnp); 4297 rcu_spawn_cpu_nocb_kthread(cpu); 4298 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4299 4300 return 0; 4301 } 4302 4303 /* 4304 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4305 */ 4306 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4307 { 4308 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4309 4310 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4311 } 4312 4313 /* 4314 * Near the end of the CPU-online process. Pretty much all services 4315 * enabled, and the CPU is now very much alive. 4316 */ 4317 int rcutree_online_cpu(unsigned int cpu) 4318 { 4319 unsigned long flags; 4320 struct rcu_data *rdp; 4321 struct rcu_node *rnp; 4322 4323 rdp = per_cpu_ptr(&rcu_data, cpu); 4324 rnp = rdp->mynode; 4325 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4326 rnp->ffmask |= rdp->grpmask; 4327 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4328 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4329 return 0; /* Too early in boot for scheduler work. */ 4330 sync_sched_exp_online_cleanup(cpu); 4331 rcutree_affinity_setting(cpu, -1); 4332 4333 // Stop-machine done, so allow nohz_full to disable tick. 4334 tick_dep_clear(TICK_DEP_BIT_RCU); 4335 return 0; 4336 } 4337 4338 /* 4339 * Near the beginning of the process. The CPU is still very much alive 4340 * with pretty much all services enabled. 4341 */ 4342 int rcutree_offline_cpu(unsigned int cpu) 4343 { 4344 unsigned long flags; 4345 struct rcu_data *rdp; 4346 struct rcu_node *rnp; 4347 4348 rdp = per_cpu_ptr(&rcu_data, cpu); 4349 rnp = rdp->mynode; 4350 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4351 rnp->ffmask &= ~rdp->grpmask; 4352 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4353 4354 rcutree_affinity_setting(cpu, cpu); 4355 4356 // nohz_full CPUs need the tick for stop-machine to work quickly 4357 tick_dep_set(TICK_DEP_BIT_RCU); 4358 return 0; 4359 } 4360 4361 /* 4362 * Mark the specified CPU as being online so that subsequent grace periods 4363 * (both expedited and normal) will wait on it. Note that this means that 4364 * incoming CPUs are not allowed to use RCU read-side critical sections 4365 * until this function is called. Failing to observe this restriction 4366 * will result in lockdep splats. 4367 * 4368 * Note that this function is special in that it is invoked directly 4369 * from the incoming CPU rather than from the cpuhp_step mechanism. 4370 * This is because this function must be invoked at a precise location. 4371 */ 4372 void rcu_cpu_starting(unsigned int cpu) 4373 { 4374 unsigned long flags; 4375 unsigned long mask; 4376 struct rcu_data *rdp; 4377 struct rcu_node *rnp; 4378 bool newcpu; 4379 4380 rdp = per_cpu_ptr(&rcu_data, cpu); 4381 if (rdp->cpu_started) 4382 return; 4383 rdp->cpu_started = true; 4384 4385 rnp = rdp->mynode; 4386 mask = rdp->grpmask; 4387 local_irq_save(flags); 4388 arch_spin_lock(&rcu_state.ofl_lock); 4389 rcu_dynticks_eqs_online(); 4390 raw_spin_lock(&rcu_state.barrier_lock); 4391 raw_spin_lock_rcu_node(rnp); 4392 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4393 raw_spin_unlock(&rcu_state.barrier_lock); 4394 newcpu = !(rnp->expmaskinitnext & mask); 4395 rnp->expmaskinitnext |= mask; 4396 /* Allow lockless access for expedited grace periods. */ 4397 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4398 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4399 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4400 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4401 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4402 4403 /* An incoming CPU should never be blocking a grace period. */ 4404 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4405 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4406 unsigned long flags2; 4407 4408 local_irq_save(flags2); 4409 rcu_disable_urgency_upon_qs(rdp); 4410 /* Report QS -after- changing ->qsmaskinitnext! */ 4411 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); 4412 } else { 4413 raw_spin_unlock_rcu_node(rnp); 4414 } 4415 arch_spin_unlock(&rcu_state.ofl_lock); 4416 local_irq_restore(flags); 4417 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4418 } 4419 4420 /* 4421 * The outgoing function has no further need of RCU, so remove it from 4422 * the rcu_node tree's ->qsmaskinitnext bit masks. 4423 * 4424 * Note that this function is special in that it is invoked directly 4425 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4426 * This is because this function must be invoked at a precise location. 4427 */ 4428 void rcu_report_dead(unsigned int cpu) 4429 { 4430 unsigned long flags, seq_flags; 4431 unsigned long mask; 4432 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4433 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4434 4435 // Do any dangling deferred wakeups. 4436 do_nocb_deferred_wakeup(rdp); 4437 4438 rcu_preempt_deferred_qs(current); 4439 4440 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4441 mask = rdp->grpmask; 4442 local_irq_save(seq_flags); 4443 arch_spin_lock(&rcu_state.ofl_lock); 4444 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4445 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4446 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4447 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4448 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4449 rcu_disable_urgency_upon_qs(rdp); 4450 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4451 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4452 } 4453 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4455 arch_spin_unlock(&rcu_state.ofl_lock); 4456 local_irq_restore(seq_flags); 4457 4458 rdp->cpu_started = false; 4459 } 4460 4461 #ifdef CONFIG_HOTPLUG_CPU 4462 /* 4463 * The outgoing CPU has just passed through the dying-idle state, and we 4464 * are being invoked from the CPU that was IPIed to continue the offline 4465 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4466 */ 4467 void rcutree_migrate_callbacks(int cpu) 4468 { 4469 unsigned long flags; 4470 struct rcu_data *my_rdp; 4471 struct rcu_node *my_rnp; 4472 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4473 bool needwake; 4474 4475 if (rcu_rdp_is_offloaded(rdp) || 4476 rcu_segcblist_empty(&rdp->cblist)) 4477 return; /* No callbacks to migrate. */ 4478 4479 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4480 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4481 rcu_barrier_entrain(rdp); 4482 my_rdp = this_cpu_ptr(&rcu_data); 4483 my_rnp = my_rdp->mynode; 4484 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4485 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4486 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4487 /* Leverage recent GPs and set GP for new callbacks. */ 4488 needwake = rcu_advance_cbs(my_rnp, rdp) || 4489 rcu_advance_cbs(my_rnp, my_rdp); 4490 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4491 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4492 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4493 rcu_segcblist_disable(&rdp->cblist); 4494 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4495 check_cb_ovld_locked(my_rdp, my_rnp); 4496 if (rcu_rdp_is_offloaded(my_rdp)) { 4497 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4498 __call_rcu_nocb_wake(my_rdp, true, flags); 4499 } else { 4500 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4501 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4502 } 4503 if (needwake) 4504 rcu_gp_kthread_wake(); 4505 lockdep_assert_irqs_enabled(); 4506 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4507 !rcu_segcblist_empty(&rdp->cblist), 4508 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4509 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4510 rcu_segcblist_first_cb(&rdp->cblist)); 4511 } 4512 #endif 4513 4514 /* 4515 * On non-huge systems, use expedited RCU grace periods to make suspend 4516 * and hibernation run faster. 4517 */ 4518 static int rcu_pm_notify(struct notifier_block *self, 4519 unsigned long action, void *hcpu) 4520 { 4521 switch (action) { 4522 case PM_HIBERNATION_PREPARE: 4523 case PM_SUSPEND_PREPARE: 4524 rcu_async_hurry(); 4525 rcu_expedite_gp(); 4526 break; 4527 case PM_POST_HIBERNATION: 4528 case PM_POST_SUSPEND: 4529 rcu_unexpedite_gp(); 4530 rcu_async_relax(); 4531 break; 4532 default: 4533 break; 4534 } 4535 return NOTIFY_OK; 4536 } 4537 4538 #ifdef CONFIG_RCU_EXP_KTHREAD 4539 struct kthread_worker *rcu_exp_gp_kworker; 4540 struct kthread_worker *rcu_exp_par_gp_kworker; 4541 4542 static void __init rcu_start_exp_gp_kworkers(void) 4543 { 4544 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4545 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4546 struct sched_param param = { .sched_priority = kthread_prio }; 4547 4548 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4549 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4550 pr_err("Failed to create %s!\n", gp_kworker_name); 4551 return; 4552 } 4553 4554 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4555 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4556 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4557 kthread_destroy_worker(rcu_exp_gp_kworker); 4558 return; 4559 } 4560 4561 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4562 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4563 ¶m); 4564 } 4565 4566 static inline void rcu_alloc_par_gp_wq(void) 4567 { 4568 } 4569 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4570 struct workqueue_struct *rcu_par_gp_wq; 4571 4572 static void __init rcu_start_exp_gp_kworkers(void) 4573 { 4574 } 4575 4576 static inline void rcu_alloc_par_gp_wq(void) 4577 { 4578 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4579 WARN_ON(!rcu_par_gp_wq); 4580 } 4581 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4582 4583 /* 4584 * Spawn the kthreads that handle RCU's grace periods. 4585 */ 4586 static int __init rcu_spawn_gp_kthread(void) 4587 { 4588 unsigned long flags; 4589 struct rcu_node *rnp; 4590 struct sched_param sp; 4591 struct task_struct *t; 4592 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4593 4594 rcu_scheduler_fully_active = 1; 4595 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4596 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4597 return 0; 4598 if (kthread_prio) { 4599 sp.sched_priority = kthread_prio; 4600 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4601 } 4602 rnp = rcu_get_root(); 4603 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4604 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4605 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4606 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4607 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4608 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4609 wake_up_process(t); 4610 /* This is a pre-SMP initcall, we expect a single CPU */ 4611 WARN_ON(num_online_cpus() > 1); 4612 /* 4613 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4614 * due to rcu_scheduler_fully_active. 4615 */ 4616 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4617 rcu_spawn_one_boost_kthread(rdp->mynode); 4618 rcu_spawn_core_kthreads(); 4619 /* Create kthread worker for expedited GPs */ 4620 rcu_start_exp_gp_kworkers(); 4621 return 0; 4622 } 4623 early_initcall(rcu_spawn_gp_kthread); 4624 4625 /* 4626 * This function is invoked towards the end of the scheduler's 4627 * initialization process. Before this is called, the idle task might 4628 * contain synchronous grace-period primitives (during which time, this idle 4629 * task is booting the system, and such primitives are no-ops). After this 4630 * function is called, any synchronous grace-period primitives are run as 4631 * expedited, with the requesting task driving the grace period forward. 4632 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4633 * runtime RCU functionality. 4634 */ 4635 void rcu_scheduler_starting(void) 4636 { 4637 unsigned long flags; 4638 struct rcu_node *rnp; 4639 4640 WARN_ON(num_online_cpus() != 1); 4641 WARN_ON(nr_context_switches() > 0); 4642 rcu_test_sync_prims(); 4643 4644 // Fix up the ->gp_seq counters. 4645 local_irq_save(flags); 4646 rcu_for_each_node_breadth_first(rnp) 4647 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4648 local_irq_restore(flags); 4649 4650 // Switch out of early boot mode. 4651 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4652 rcu_test_sync_prims(); 4653 } 4654 4655 /* 4656 * Helper function for rcu_init() that initializes the rcu_state structure. 4657 */ 4658 static void __init rcu_init_one(void) 4659 { 4660 static const char * const buf[] = RCU_NODE_NAME_INIT; 4661 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4662 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4663 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4664 4665 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4666 int cpustride = 1; 4667 int i; 4668 int j; 4669 struct rcu_node *rnp; 4670 4671 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4672 4673 /* Silence gcc 4.8 false positive about array index out of range. */ 4674 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4675 panic("rcu_init_one: rcu_num_lvls out of range"); 4676 4677 /* Initialize the level-tracking arrays. */ 4678 4679 for (i = 1; i < rcu_num_lvls; i++) 4680 rcu_state.level[i] = 4681 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4682 rcu_init_levelspread(levelspread, num_rcu_lvl); 4683 4684 /* Initialize the elements themselves, starting from the leaves. */ 4685 4686 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4687 cpustride *= levelspread[i]; 4688 rnp = rcu_state.level[i]; 4689 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4690 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4691 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4692 &rcu_node_class[i], buf[i]); 4693 raw_spin_lock_init(&rnp->fqslock); 4694 lockdep_set_class_and_name(&rnp->fqslock, 4695 &rcu_fqs_class[i], fqs[i]); 4696 rnp->gp_seq = rcu_state.gp_seq; 4697 rnp->gp_seq_needed = rcu_state.gp_seq; 4698 rnp->completedqs = rcu_state.gp_seq; 4699 rnp->qsmask = 0; 4700 rnp->qsmaskinit = 0; 4701 rnp->grplo = j * cpustride; 4702 rnp->grphi = (j + 1) * cpustride - 1; 4703 if (rnp->grphi >= nr_cpu_ids) 4704 rnp->grphi = nr_cpu_ids - 1; 4705 if (i == 0) { 4706 rnp->grpnum = 0; 4707 rnp->grpmask = 0; 4708 rnp->parent = NULL; 4709 } else { 4710 rnp->grpnum = j % levelspread[i - 1]; 4711 rnp->grpmask = BIT(rnp->grpnum); 4712 rnp->parent = rcu_state.level[i - 1] + 4713 j / levelspread[i - 1]; 4714 } 4715 rnp->level = i; 4716 INIT_LIST_HEAD(&rnp->blkd_tasks); 4717 rcu_init_one_nocb(rnp); 4718 init_waitqueue_head(&rnp->exp_wq[0]); 4719 init_waitqueue_head(&rnp->exp_wq[1]); 4720 init_waitqueue_head(&rnp->exp_wq[2]); 4721 init_waitqueue_head(&rnp->exp_wq[3]); 4722 spin_lock_init(&rnp->exp_lock); 4723 mutex_init(&rnp->boost_kthread_mutex); 4724 raw_spin_lock_init(&rnp->exp_poll_lock); 4725 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4726 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4727 } 4728 } 4729 4730 init_swait_queue_head(&rcu_state.gp_wq); 4731 init_swait_queue_head(&rcu_state.expedited_wq); 4732 rnp = rcu_first_leaf_node(); 4733 for_each_possible_cpu(i) { 4734 while (i > rnp->grphi) 4735 rnp++; 4736 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4737 rcu_boot_init_percpu_data(i); 4738 } 4739 } 4740 4741 /* 4742 * Force priority from the kernel command-line into range. 4743 */ 4744 static void __init sanitize_kthread_prio(void) 4745 { 4746 int kthread_prio_in = kthread_prio; 4747 4748 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4749 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4750 kthread_prio = 2; 4751 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4752 kthread_prio = 1; 4753 else if (kthread_prio < 0) 4754 kthread_prio = 0; 4755 else if (kthread_prio > 99) 4756 kthread_prio = 99; 4757 4758 if (kthread_prio != kthread_prio_in) 4759 pr_alert("%s: Limited prio to %d from %d\n", 4760 __func__, kthread_prio, kthread_prio_in); 4761 } 4762 4763 /* 4764 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4765 * replace the definitions in tree.h because those are needed to size 4766 * the ->node array in the rcu_state structure. 4767 */ 4768 void rcu_init_geometry(void) 4769 { 4770 ulong d; 4771 int i; 4772 static unsigned long old_nr_cpu_ids; 4773 int rcu_capacity[RCU_NUM_LVLS]; 4774 static bool initialized; 4775 4776 if (initialized) { 4777 /* 4778 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4779 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4780 */ 4781 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4782 return; 4783 } 4784 4785 old_nr_cpu_ids = nr_cpu_ids; 4786 initialized = true; 4787 4788 /* 4789 * Initialize any unspecified boot parameters. 4790 * The default values of jiffies_till_first_fqs and 4791 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4792 * value, which is a function of HZ, then adding one for each 4793 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4794 */ 4795 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4796 if (jiffies_till_first_fqs == ULONG_MAX) 4797 jiffies_till_first_fqs = d; 4798 if (jiffies_till_next_fqs == ULONG_MAX) 4799 jiffies_till_next_fqs = d; 4800 adjust_jiffies_till_sched_qs(); 4801 4802 /* If the compile-time values are accurate, just leave. */ 4803 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4804 nr_cpu_ids == NR_CPUS) 4805 return; 4806 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4807 rcu_fanout_leaf, nr_cpu_ids); 4808 4809 /* 4810 * The boot-time rcu_fanout_leaf parameter must be at least two 4811 * and cannot exceed the number of bits in the rcu_node masks. 4812 * Complain and fall back to the compile-time values if this 4813 * limit is exceeded. 4814 */ 4815 if (rcu_fanout_leaf < 2 || 4816 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4817 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4818 WARN_ON(1); 4819 return; 4820 } 4821 4822 /* 4823 * Compute number of nodes that can be handled an rcu_node tree 4824 * with the given number of levels. 4825 */ 4826 rcu_capacity[0] = rcu_fanout_leaf; 4827 for (i = 1; i < RCU_NUM_LVLS; i++) 4828 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4829 4830 /* 4831 * The tree must be able to accommodate the configured number of CPUs. 4832 * If this limit is exceeded, fall back to the compile-time values. 4833 */ 4834 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4835 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4836 WARN_ON(1); 4837 return; 4838 } 4839 4840 /* Calculate the number of levels in the tree. */ 4841 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4842 } 4843 rcu_num_lvls = i + 1; 4844 4845 /* Calculate the number of rcu_nodes at each level of the tree. */ 4846 for (i = 0; i < rcu_num_lvls; i++) { 4847 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4848 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4849 } 4850 4851 /* Calculate the total number of rcu_node structures. */ 4852 rcu_num_nodes = 0; 4853 for (i = 0; i < rcu_num_lvls; i++) 4854 rcu_num_nodes += num_rcu_lvl[i]; 4855 } 4856 4857 /* 4858 * Dump out the structure of the rcu_node combining tree associated 4859 * with the rcu_state structure. 4860 */ 4861 static void __init rcu_dump_rcu_node_tree(void) 4862 { 4863 int level = 0; 4864 struct rcu_node *rnp; 4865 4866 pr_info("rcu_node tree layout dump\n"); 4867 pr_info(" "); 4868 rcu_for_each_node_breadth_first(rnp) { 4869 if (rnp->level != level) { 4870 pr_cont("\n"); 4871 pr_info(" "); 4872 level = rnp->level; 4873 } 4874 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4875 } 4876 pr_cont("\n"); 4877 } 4878 4879 struct workqueue_struct *rcu_gp_wq; 4880 4881 static void __init kfree_rcu_batch_init(void) 4882 { 4883 int cpu; 4884 int i, j; 4885 4886 /* Clamp it to [0:100] seconds interval. */ 4887 if (rcu_delay_page_cache_fill_msec < 0 || 4888 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4889 4890 rcu_delay_page_cache_fill_msec = 4891 clamp(rcu_delay_page_cache_fill_msec, 0, 4892 (int) (100 * MSEC_PER_SEC)); 4893 4894 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4895 rcu_delay_page_cache_fill_msec); 4896 } 4897 4898 for_each_possible_cpu(cpu) { 4899 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4900 4901 for (i = 0; i < KFREE_N_BATCHES; i++) { 4902 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4903 krcp->krw_arr[i].krcp = krcp; 4904 4905 for (j = 0; j < FREE_N_CHANNELS; j++) 4906 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 4907 } 4908 4909 for (i = 0; i < FREE_N_CHANNELS; i++) 4910 INIT_LIST_HEAD(&krcp->bulk_head[i]); 4911 4912 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4913 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4914 krcp->initialized = true; 4915 } 4916 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4917 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4918 } 4919 4920 void __init rcu_init(void) 4921 { 4922 int cpu = smp_processor_id(); 4923 4924 rcu_early_boot_tests(); 4925 4926 kfree_rcu_batch_init(); 4927 rcu_bootup_announce(); 4928 sanitize_kthread_prio(); 4929 rcu_init_geometry(); 4930 rcu_init_one(); 4931 if (dump_tree) 4932 rcu_dump_rcu_node_tree(); 4933 if (use_softirq) 4934 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4935 4936 /* 4937 * We don't need protection against CPU-hotplug here because 4938 * this is called early in boot, before either interrupts 4939 * or the scheduler are operational. 4940 */ 4941 pm_notifier(rcu_pm_notify, 0); 4942 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4943 rcutree_prepare_cpu(cpu); 4944 rcu_cpu_starting(cpu); 4945 rcutree_online_cpu(cpu); 4946 4947 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4948 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4949 WARN_ON(!rcu_gp_wq); 4950 rcu_alloc_par_gp_wq(); 4951 4952 /* Fill in default value for rcutree.qovld boot parameter. */ 4953 /* -After- the rcu_node ->lock fields are initialized! */ 4954 if (qovld < 0) 4955 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4956 else 4957 qovld_calc = qovld; 4958 4959 // Kick-start in case any polled grace periods started early. 4960 (void)start_poll_synchronize_rcu_expedited(); 4961 4962 rcu_test_sync_prims(); 4963 } 4964 4965 #include "tree_stall.h" 4966 #include "tree_exp.h" 4967 #include "tree_nocb.h" 4968 #include "tree_plugin.h" 4969