1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include <trace/events/rcu.h> 62 63 #include "rcu.h" 64 65 MODULE_ALIAS("rcutree"); 66 #ifdef MODULE_PARAM_PREFIX 67 #undef MODULE_PARAM_PREFIX 68 #endif 69 #define MODULE_PARAM_PREFIX "rcutree." 70 71 /* Data structures. */ 72 73 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 74 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 75 76 /* 77 * In order to export the rcu_state name to the tracing tools, it 78 * needs to be added in the __tracepoint_string section. 79 * This requires defining a separate variable tp_<sname>_varname 80 * that points to the string being used, and this will allow 81 * the tracing userspace tools to be able to decipher the string 82 * address to the matching string. 83 */ 84 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 85 static char sname##_varname[] = #sname; \ 86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ 87 struct rcu_state sname##_state = { \ 88 .level = { &sname##_state.node[0] }, \ 89 .call = cr, \ 90 .fqs_state = RCU_GP_IDLE, \ 91 .gpnum = 0UL - 300UL, \ 92 .completed = 0UL - 300UL, \ 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 95 .orphan_donetail = &sname##_state.orphan_donelist, \ 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ 98 .name = sname##_varname, \ 99 .abbr = sabbr, \ 100 }; \ 101 DEFINE_PER_CPU(struct rcu_data, sname##_data) 102 103 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 104 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 105 106 static struct rcu_state *rcu_state; 107 LIST_HEAD(rcu_struct_flavors); 108 109 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 114 NUM_RCU_LVL_0, 115 NUM_RCU_LVL_1, 116 NUM_RCU_LVL_2, 117 NUM_RCU_LVL_3, 118 NUM_RCU_LVL_4, 119 }; 120 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 121 122 /* 123 * The rcu_scheduler_active variable transitions from zero to one just 124 * before the first task is spawned. So when this variable is zero, RCU 125 * can assume that there is but one task, allowing RCU to (for example) 126 * optimize synchronize_sched() to a simple barrier(). When this variable 127 * is one, RCU must actually do all the hard work required to detect real 128 * grace periods. This variable is also used to suppress boot-time false 129 * positives from lockdep-RCU error checking. 130 */ 131 int rcu_scheduler_active __read_mostly; 132 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 133 134 /* 135 * The rcu_scheduler_fully_active variable transitions from zero to one 136 * during the early_initcall() processing, which is after the scheduler 137 * is capable of creating new tasks. So RCU processing (for example, 138 * creating tasks for RCU priority boosting) must be delayed until after 139 * rcu_scheduler_fully_active transitions from zero to one. We also 140 * currently delay invocation of any RCU callbacks until after this point. 141 * 142 * It might later prove better for people registering RCU callbacks during 143 * early boot to take responsibility for these callbacks, but one step at 144 * a time. 145 */ 146 static int rcu_scheduler_fully_active __read_mostly; 147 148 #ifdef CONFIG_RCU_BOOST 149 150 /* 151 * Control variables for per-CPU and per-rcu_node kthreads. These 152 * handle all flavors of RCU. 153 */ 154 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 155 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 156 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 157 DEFINE_PER_CPU(char, rcu_cpu_has_work); 158 159 #endif /* #ifdef CONFIG_RCU_BOOST */ 160 161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 162 static void invoke_rcu_core(void); 163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 164 165 /* 166 * Track the rcutorture test sequence number and the update version 167 * number within a given test. The rcutorture_testseq is incremented 168 * on every rcutorture module load and unload, so has an odd value 169 * when a test is running. The rcutorture_vernum is set to zero 170 * when rcutorture starts and is incremented on each rcutorture update. 171 * These variables enable correlating rcutorture output with the 172 * RCU tracing information. 173 */ 174 unsigned long rcutorture_testseq; 175 unsigned long rcutorture_vernum; 176 177 /* 178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 179 * permit this function to be invoked without holding the root rcu_node 180 * structure's ->lock, but of course results can be subject to change. 181 */ 182 static int rcu_gp_in_progress(struct rcu_state *rsp) 183 { 184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 185 } 186 187 /* 188 * Note a quiescent state. Because we do not need to know 189 * how many quiescent states passed, just if there was at least 190 * one since the start of the grace period, this just sets a flag. 191 * The caller must have disabled preemption. 192 */ 193 void rcu_sched_qs(int cpu) 194 { 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); 196 197 if (rdp->passed_quiesce == 0) 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); 199 rdp->passed_quiesce = 1; 200 } 201 202 void rcu_bh_qs(int cpu) 203 { 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); 205 206 if (rdp->passed_quiesce == 0) 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); 208 rdp->passed_quiesce = 1; 209 } 210 211 /* 212 * Note a context switch. This is a quiescent state for RCU-sched, 213 * and requires special handling for preemptible RCU. 214 * The caller must have disabled preemption. 215 */ 216 void rcu_note_context_switch(int cpu) 217 { 218 trace_rcu_utilization(TPS("Start context switch")); 219 rcu_sched_qs(cpu); 220 rcu_preempt_note_context_switch(cpu); 221 trace_rcu_utilization(TPS("End context switch")); 222 } 223 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 224 225 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 227 .dynticks = ATOMIC_INIT(1), 228 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 230 .dynticks_idle = ATOMIC_INIT(1), 231 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 232 }; 233 234 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 235 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 236 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 237 238 module_param(blimit, long, 0444); 239 module_param(qhimark, long, 0444); 240 module_param(qlowmark, long, 0444); 241 242 static ulong jiffies_till_first_fqs = ULONG_MAX; 243 static ulong jiffies_till_next_fqs = ULONG_MAX; 244 245 module_param(jiffies_till_first_fqs, ulong, 0644); 246 module_param(jiffies_till_next_fqs, ulong, 0644); 247 248 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 249 struct rcu_data *rdp); 250 static void force_qs_rnp(struct rcu_state *rsp, 251 int (*f)(struct rcu_data *rsp, bool *isidle, 252 unsigned long *maxj), 253 bool *isidle, unsigned long *maxj); 254 static void force_quiescent_state(struct rcu_state *rsp); 255 static int rcu_pending(int cpu); 256 257 /* 258 * Return the number of RCU-sched batches processed thus far for debug & stats. 259 */ 260 long rcu_batches_completed_sched(void) 261 { 262 return rcu_sched_state.completed; 263 } 264 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 265 266 /* 267 * Return the number of RCU BH batches processed thus far for debug & stats. 268 */ 269 long rcu_batches_completed_bh(void) 270 { 271 return rcu_bh_state.completed; 272 } 273 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 274 275 /* 276 * Force a quiescent state for RCU BH. 277 */ 278 void rcu_bh_force_quiescent_state(void) 279 { 280 force_quiescent_state(&rcu_bh_state); 281 } 282 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 283 284 /* 285 * Record the number of times rcutorture tests have been initiated and 286 * terminated. This information allows the debugfs tracing stats to be 287 * correlated to the rcutorture messages, even when the rcutorture module 288 * is being repeatedly loaded and unloaded. In other words, we cannot 289 * store this state in rcutorture itself. 290 */ 291 void rcutorture_record_test_transition(void) 292 { 293 rcutorture_testseq++; 294 rcutorture_vernum = 0; 295 } 296 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 297 298 /* 299 * Record the number of writer passes through the current rcutorture test. 300 * This is also used to correlate debugfs tracing stats with the rcutorture 301 * messages. 302 */ 303 void rcutorture_record_progress(unsigned long vernum) 304 { 305 rcutorture_vernum++; 306 } 307 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 308 309 /* 310 * Force a quiescent state for RCU-sched. 311 */ 312 void rcu_sched_force_quiescent_state(void) 313 { 314 force_quiescent_state(&rcu_sched_state); 315 } 316 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 317 318 /* 319 * Does the CPU have callbacks ready to be invoked? 320 */ 321 static int 322 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 323 { 324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 325 rdp->nxttail[RCU_DONE_TAIL] != NULL; 326 } 327 328 /* 329 * Does the current CPU require a not-yet-started grace period? 330 * The caller must have disabled interrupts to prevent races with 331 * normal callback registry. 332 */ 333 static int 334 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 335 { 336 int i; 337 338 if (rcu_gp_in_progress(rsp)) 339 return 0; /* No, a grace period is already in progress. */ 340 if (rcu_nocb_needs_gp(rsp)) 341 return 1; /* Yes, a no-CBs CPU needs one. */ 342 if (!rdp->nxttail[RCU_NEXT_TAIL]) 343 return 0; /* No, this is a no-CBs (or offline) CPU. */ 344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 345 return 1; /* Yes, this CPU has newly registered callbacks. */ 346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 349 rdp->nxtcompleted[i])) 350 return 1; /* Yes, CBs for future grace period. */ 351 return 0; /* No grace period needed. */ 352 } 353 354 /* 355 * Return the root node of the specified rcu_state structure. 356 */ 357 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 358 { 359 return &rsp->node[0]; 360 } 361 362 /* 363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 364 * 365 * If the new value of the ->dynticks_nesting counter now is zero, 366 * we really have entered idle, and must do the appropriate accounting. 367 * The caller must have disabled interrupts. 368 */ 369 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, 370 bool user) 371 { 372 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 373 if (!user && !is_idle_task(current)) { 374 struct task_struct *idle __maybe_unused = 375 idle_task(smp_processor_id()); 376 377 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 378 ftrace_dump(DUMP_ORIG); 379 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 380 current->pid, current->comm, 381 idle->pid, idle->comm); /* must be idle task! */ 382 } 383 rcu_prepare_for_idle(smp_processor_id()); 384 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 385 smp_mb__before_atomic_inc(); /* See above. */ 386 atomic_inc(&rdtp->dynticks); 387 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */ 388 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 389 390 /* 391 * It is illegal to enter an extended quiescent state while 392 * in an RCU read-side critical section. 393 */ 394 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 395 "Illegal idle entry in RCU read-side critical section."); 396 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 397 "Illegal idle entry in RCU-bh read-side critical section."); 398 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 399 "Illegal idle entry in RCU-sched read-side critical section."); 400 } 401 402 /* 403 * Enter an RCU extended quiescent state, which can be either the 404 * idle loop or adaptive-tickless usermode execution. 405 */ 406 static void rcu_eqs_enter(bool user) 407 { 408 long long oldval; 409 struct rcu_dynticks *rdtp; 410 411 rdtp = this_cpu_ptr(&rcu_dynticks); 412 oldval = rdtp->dynticks_nesting; 413 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 414 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) 415 rdtp->dynticks_nesting = 0; 416 else 417 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 418 rcu_eqs_enter_common(rdtp, oldval, user); 419 } 420 421 /** 422 * rcu_idle_enter - inform RCU that current CPU is entering idle 423 * 424 * Enter idle mode, in other words, -leave- the mode in which RCU 425 * read-side critical sections can occur. (Though RCU read-side 426 * critical sections can occur in irq handlers in idle, a possibility 427 * handled by irq_enter() and irq_exit().) 428 * 429 * We crowbar the ->dynticks_nesting field to zero to allow for 430 * the possibility of usermode upcalls having messed up our count 431 * of interrupt nesting level during the prior busy period. 432 */ 433 void rcu_idle_enter(void) 434 { 435 unsigned long flags; 436 437 local_irq_save(flags); 438 rcu_eqs_enter(false); 439 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); 440 local_irq_restore(flags); 441 } 442 EXPORT_SYMBOL_GPL(rcu_idle_enter); 443 444 #ifdef CONFIG_RCU_USER_QS 445 /** 446 * rcu_user_enter - inform RCU that we are resuming userspace. 447 * 448 * Enter RCU idle mode right before resuming userspace. No use of RCU 449 * is permitted between this call and rcu_user_exit(). This way the 450 * CPU doesn't need to maintain the tick for RCU maintenance purposes 451 * when the CPU runs in userspace. 452 */ 453 void rcu_user_enter(void) 454 { 455 rcu_eqs_enter(1); 456 } 457 #endif /* CONFIG_RCU_USER_QS */ 458 459 /** 460 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 461 * 462 * Exit from an interrupt handler, which might possibly result in entering 463 * idle mode, in other words, leaving the mode in which read-side critical 464 * sections can occur. 465 * 466 * This code assumes that the idle loop never does anything that might 467 * result in unbalanced calls to irq_enter() and irq_exit(). If your 468 * architecture violates this assumption, RCU will give you what you 469 * deserve, good and hard. But very infrequently and irreproducibly. 470 * 471 * Use things like work queues to work around this limitation. 472 * 473 * You have been warned. 474 */ 475 void rcu_irq_exit(void) 476 { 477 unsigned long flags; 478 long long oldval; 479 struct rcu_dynticks *rdtp; 480 481 local_irq_save(flags); 482 rdtp = this_cpu_ptr(&rcu_dynticks); 483 oldval = rdtp->dynticks_nesting; 484 rdtp->dynticks_nesting--; 485 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 486 if (rdtp->dynticks_nesting) 487 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 488 else 489 rcu_eqs_enter_common(rdtp, oldval, true); 490 rcu_sysidle_enter(rdtp, 1); 491 local_irq_restore(flags); 492 } 493 494 /* 495 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 496 * 497 * If the new value of the ->dynticks_nesting counter was previously zero, 498 * we really have exited idle, and must do the appropriate accounting. 499 * The caller must have disabled interrupts. 500 */ 501 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, 502 int user) 503 { 504 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */ 505 atomic_inc(&rdtp->dynticks); 506 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 507 smp_mb__after_atomic_inc(); /* See above. */ 508 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 509 rcu_cleanup_after_idle(smp_processor_id()); 510 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 511 if (!user && !is_idle_task(current)) { 512 struct task_struct *idle __maybe_unused = 513 idle_task(smp_processor_id()); 514 515 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 516 oldval, rdtp->dynticks_nesting); 517 ftrace_dump(DUMP_ORIG); 518 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 519 current->pid, current->comm, 520 idle->pid, idle->comm); /* must be idle task! */ 521 } 522 } 523 524 /* 525 * Exit an RCU extended quiescent state, which can be either the 526 * idle loop or adaptive-tickless usermode execution. 527 */ 528 static void rcu_eqs_exit(bool user) 529 { 530 struct rcu_dynticks *rdtp; 531 long long oldval; 532 533 rdtp = this_cpu_ptr(&rcu_dynticks); 534 oldval = rdtp->dynticks_nesting; 535 WARN_ON_ONCE(oldval < 0); 536 if (oldval & DYNTICK_TASK_NEST_MASK) 537 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 538 else 539 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 540 rcu_eqs_exit_common(rdtp, oldval, user); 541 } 542 543 /** 544 * rcu_idle_exit - inform RCU that current CPU is leaving idle 545 * 546 * Exit idle mode, in other words, -enter- the mode in which RCU 547 * read-side critical sections can occur. 548 * 549 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 550 * allow for the possibility of usermode upcalls messing up our count 551 * of interrupt nesting level during the busy period that is just 552 * now starting. 553 */ 554 void rcu_idle_exit(void) 555 { 556 unsigned long flags; 557 558 local_irq_save(flags); 559 rcu_eqs_exit(false); 560 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); 561 local_irq_restore(flags); 562 } 563 EXPORT_SYMBOL_GPL(rcu_idle_exit); 564 565 #ifdef CONFIG_RCU_USER_QS 566 /** 567 * rcu_user_exit - inform RCU that we are exiting userspace. 568 * 569 * Exit RCU idle mode while entering the kernel because it can 570 * run a RCU read side critical section anytime. 571 */ 572 void rcu_user_exit(void) 573 { 574 rcu_eqs_exit(1); 575 } 576 #endif /* CONFIG_RCU_USER_QS */ 577 578 /** 579 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 580 * 581 * Enter an interrupt handler, which might possibly result in exiting 582 * idle mode, in other words, entering the mode in which read-side critical 583 * sections can occur. 584 * 585 * Note that the Linux kernel is fully capable of entering an interrupt 586 * handler that it never exits, for example when doing upcalls to 587 * user mode! This code assumes that the idle loop never does upcalls to 588 * user mode. If your architecture does do upcalls from the idle loop (or 589 * does anything else that results in unbalanced calls to the irq_enter() 590 * and irq_exit() functions), RCU will give you what you deserve, good 591 * and hard. But very infrequently and irreproducibly. 592 * 593 * Use things like work queues to work around this limitation. 594 * 595 * You have been warned. 596 */ 597 void rcu_irq_enter(void) 598 { 599 unsigned long flags; 600 struct rcu_dynticks *rdtp; 601 long long oldval; 602 603 local_irq_save(flags); 604 rdtp = this_cpu_ptr(&rcu_dynticks); 605 oldval = rdtp->dynticks_nesting; 606 rdtp->dynticks_nesting++; 607 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 608 if (oldval) 609 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 610 else 611 rcu_eqs_exit_common(rdtp, oldval, true); 612 rcu_sysidle_exit(rdtp, 1); 613 local_irq_restore(flags); 614 } 615 616 /** 617 * rcu_nmi_enter - inform RCU of entry to NMI context 618 * 619 * If the CPU was idle with dynamic ticks active, and there is no 620 * irq handler running, this updates rdtp->dynticks_nmi to let the 621 * RCU grace-period handling know that the CPU is active. 622 */ 623 void rcu_nmi_enter(void) 624 { 625 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 626 627 if (rdtp->dynticks_nmi_nesting == 0 && 628 (atomic_read(&rdtp->dynticks) & 0x1)) 629 return; 630 rdtp->dynticks_nmi_nesting++; 631 smp_mb__before_atomic_inc(); /* Force delay from prior write. */ 632 atomic_inc(&rdtp->dynticks); 633 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 634 smp_mb__after_atomic_inc(); /* See above. */ 635 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 636 } 637 638 /** 639 * rcu_nmi_exit - inform RCU of exit from NMI context 640 * 641 * If the CPU was idle with dynamic ticks active, and there is no 642 * irq handler running, this updates rdtp->dynticks_nmi to let the 643 * RCU grace-period handling know that the CPU is no longer active. 644 */ 645 void rcu_nmi_exit(void) 646 { 647 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 648 649 if (rdtp->dynticks_nmi_nesting == 0 || 650 --rdtp->dynticks_nmi_nesting != 0) 651 return; 652 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 653 smp_mb__before_atomic_inc(); /* See above. */ 654 atomic_inc(&rdtp->dynticks); 655 smp_mb__after_atomic_inc(); /* Force delay to next write. */ 656 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 657 } 658 659 /** 660 * __rcu_is_watching - are RCU read-side critical sections safe? 661 * 662 * Return true if RCU is watching the running CPU, which means that 663 * this CPU can safely enter RCU read-side critical sections. Unlike 664 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 665 * least disabled preemption. 666 */ 667 bool notrace __rcu_is_watching(void) 668 { 669 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 670 } 671 672 /** 673 * rcu_is_watching - see if RCU thinks that the current CPU is idle 674 * 675 * If the current CPU is in its idle loop and is neither in an interrupt 676 * or NMI handler, return true. 677 */ 678 bool notrace rcu_is_watching(void) 679 { 680 int ret; 681 682 preempt_disable(); 683 ret = __rcu_is_watching(); 684 preempt_enable(); 685 return ret; 686 } 687 EXPORT_SYMBOL_GPL(rcu_is_watching); 688 689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 690 691 /* 692 * Is the current CPU online? Disable preemption to avoid false positives 693 * that could otherwise happen due to the current CPU number being sampled, 694 * this task being preempted, its old CPU being taken offline, resuming 695 * on some other CPU, then determining that its old CPU is now offline. 696 * It is OK to use RCU on an offline processor during initial boot, hence 697 * the check for rcu_scheduler_fully_active. Note also that it is OK 698 * for a CPU coming online to use RCU for one jiffy prior to marking itself 699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 700 * offline to continue to use RCU for one jiffy after marking itself 701 * offline in the cpu_online_mask. This leniency is necessary given the 702 * non-atomic nature of the online and offline processing, for example, 703 * the fact that a CPU enters the scheduler after completing the CPU_DYING 704 * notifiers. 705 * 706 * This is also why RCU internally marks CPUs online during the 707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 708 * 709 * Disable checking if in an NMI handler because we cannot safely report 710 * errors from NMI handlers anyway. 711 */ 712 bool rcu_lockdep_current_cpu_online(void) 713 { 714 struct rcu_data *rdp; 715 struct rcu_node *rnp; 716 bool ret; 717 718 if (in_nmi()) 719 return 1; 720 preempt_disable(); 721 rdp = this_cpu_ptr(&rcu_sched_data); 722 rnp = rdp->mynode; 723 ret = (rdp->grpmask & rnp->qsmaskinit) || 724 !rcu_scheduler_fully_active; 725 preempt_enable(); 726 return ret; 727 } 728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 729 730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 731 732 /** 733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 734 * 735 * If the current CPU is idle or running at a first-level (not nested) 736 * interrupt from idle, return true. The caller must have at least 737 * disabled preemption. 738 */ 739 static int rcu_is_cpu_rrupt_from_idle(void) 740 { 741 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 742 } 743 744 /* 745 * Snapshot the specified CPU's dynticks counter so that we can later 746 * credit them with an implicit quiescent state. Return 1 if this CPU 747 * is in dynticks idle mode, which is an extended quiescent state. 748 */ 749 static int dyntick_save_progress_counter(struct rcu_data *rdp, 750 bool *isidle, unsigned long *maxj) 751 { 752 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 753 rcu_sysidle_check_cpu(rdp, isidle, maxj); 754 return (rdp->dynticks_snap & 0x1) == 0; 755 } 756 757 /* 758 * Return true if the specified CPU has passed through a quiescent 759 * state by virtue of being in or having passed through an dynticks 760 * idle state since the last call to dyntick_save_progress_counter() 761 * for this same CPU, or by virtue of having been offline. 762 */ 763 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 764 bool *isidle, unsigned long *maxj) 765 { 766 unsigned int curr; 767 unsigned int snap; 768 769 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 770 snap = (unsigned int)rdp->dynticks_snap; 771 772 /* 773 * If the CPU passed through or entered a dynticks idle phase with 774 * no active irq/NMI handlers, then we can safely pretend that the CPU 775 * already acknowledged the request to pass through a quiescent 776 * state. Either way, that CPU cannot possibly be in an RCU 777 * read-side critical section that started before the beginning 778 * of the current RCU grace period. 779 */ 780 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 781 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 782 rdp->dynticks_fqs++; 783 return 1; 784 } 785 786 /* 787 * Check for the CPU being offline, but only if the grace period 788 * is old enough. We don't need to worry about the CPU changing 789 * state: If we see it offline even once, it has been through a 790 * quiescent state. 791 * 792 * The reason for insisting that the grace period be at least 793 * one jiffy old is that CPUs that are not quite online and that 794 * have just gone offline can still execute RCU read-side critical 795 * sections. 796 */ 797 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 798 return 0; /* Grace period is not old enough. */ 799 barrier(); 800 if (cpu_is_offline(rdp->cpu)) { 801 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 802 rdp->offline_fqs++; 803 return 1; 804 } 805 806 /* 807 * There is a possibility that a CPU in adaptive-ticks state 808 * might run in the kernel with the scheduling-clock tick disabled 809 * for an extended time period. Invoke rcu_kick_nohz_cpu() to 810 * force the CPU to restart the scheduling-clock tick in this 811 * CPU is in this state. 812 */ 813 rcu_kick_nohz_cpu(rdp->cpu); 814 815 return 0; 816 } 817 818 static void record_gp_stall_check_time(struct rcu_state *rsp) 819 { 820 unsigned long j = ACCESS_ONCE(jiffies); 821 822 rsp->gp_start = j; 823 smp_wmb(); /* Record start time before stall time. */ 824 rsp->jiffies_stall = j + rcu_jiffies_till_stall_check(); 825 } 826 827 /* 828 * Dump stacks of all tasks running on stalled CPUs. This is a fallback 829 * for architectures that do not implement trigger_all_cpu_backtrace(). 830 * The NMI-triggered stack traces are more accurate because they are 831 * printed by the target CPU. 832 */ 833 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 834 { 835 int cpu; 836 unsigned long flags; 837 struct rcu_node *rnp; 838 839 rcu_for_each_leaf_node(rsp, rnp) { 840 raw_spin_lock_irqsave(&rnp->lock, flags); 841 if (rnp->qsmask != 0) { 842 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 843 if (rnp->qsmask & (1UL << cpu)) 844 dump_cpu_task(rnp->grplo + cpu); 845 } 846 raw_spin_unlock_irqrestore(&rnp->lock, flags); 847 } 848 } 849 850 static void print_other_cpu_stall(struct rcu_state *rsp) 851 { 852 int cpu; 853 long delta; 854 unsigned long flags; 855 int ndetected = 0; 856 struct rcu_node *rnp = rcu_get_root(rsp); 857 long totqlen = 0; 858 859 /* Only let one CPU complain about others per time interval. */ 860 861 raw_spin_lock_irqsave(&rnp->lock, flags); 862 delta = jiffies - rsp->jiffies_stall; 863 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 864 raw_spin_unlock_irqrestore(&rnp->lock, flags); 865 return; 866 } 867 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 868 raw_spin_unlock_irqrestore(&rnp->lock, flags); 869 870 /* 871 * OK, time to rat on our buddy... 872 * See Documentation/RCU/stallwarn.txt for info on how to debug 873 * RCU CPU stall warnings. 874 */ 875 pr_err("INFO: %s detected stalls on CPUs/tasks:", 876 rsp->name); 877 print_cpu_stall_info_begin(); 878 rcu_for_each_leaf_node(rsp, rnp) { 879 raw_spin_lock_irqsave(&rnp->lock, flags); 880 ndetected += rcu_print_task_stall(rnp); 881 if (rnp->qsmask != 0) { 882 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 883 if (rnp->qsmask & (1UL << cpu)) { 884 print_cpu_stall_info(rsp, 885 rnp->grplo + cpu); 886 ndetected++; 887 } 888 } 889 raw_spin_unlock_irqrestore(&rnp->lock, flags); 890 } 891 892 /* 893 * Now rat on any tasks that got kicked up to the root rcu_node 894 * due to CPU offlining. 895 */ 896 rnp = rcu_get_root(rsp); 897 raw_spin_lock_irqsave(&rnp->lock, flags); 898 ndetected += rcu_print_task_stall(rnp); 899 raw_spin_unlock_irqrestore(&rnp->lock, flags); 900 901 print_cpu_stall_info_end(); 902 for_each_possible_cpu(cpu) 903 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 904 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n", 905 smp_processor_id(), (long)(jiffies - rsp->gp_start), 906 rsp->gpnum, rsp->completed, totqlen); 907 if (ndetected == 0) 908 pr_err("INFO: Stall ended before state dump start\n"); 909 else if (!trigger_all_cpu_backtrace()) 910 rcu_dump_cpu_stacks(rsp); 911 912 /* Complain about tasks blocking the grace period. */ 913 914 rcu_print_detail_task_stall(rsp); 915 916 force_quiescent_state(rsp); /* Kick them all. */ 917 } 918 919 /* 920 * This function really isn't for public consumption, but RCU is special in 921 * that context switches can allow the state machine to make progress. 922 */ 923 extern void resched_cpu(int cpu); 924 925 static void print_cpu_stall(struct rcu_state *rsp) 926 { 927 int cpu; 928 unsigned long flags; 929 struct rcu_node *rnp = rcu_get_root(rsp); 930 long totqlen = 0; 931 932 /* 933 * OK, time to rat on ourselves... 934 * See Documentation/RCU/stallwarn.txt for info on how to debug 935 * RCU CPU stall warnings. 936 */ 937 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 938 print_cpu_stall_info_begin(); 939 print_cpu_stall_info(rsp, smp_processor_id()); 940 print_cpu_stall_info_end(); 941 for_each_possible_cpu(cpu) 942 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 943 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n", 944 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen); 945 if (!trigger_all_cpu_backtrace()) 946 dump_stack(); 947 948 raw_spin_lock_irqsave(&rnp->lock, flags); 949 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) 950 rsp->jiffies_stall = jiffies + 951 3 * rcu_jiffies_till_stall_check() + 3; 952 raw_spin_unlock_irqrestore(&rnp->lock, flags); 953 954 /* 955 * Attempt to revive the RCU machinery by forcing a context switch. 956 * 957 * A context switch would normally allow the RCU state machine to make 958 * progress and it could be we're stuck in kernel space without context 959 * switches for an entirely unreasonable amount of time. 960 */ 961 resched_cpu(smp_processor_id()); 962 } 963 964 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 965 { 966 unsigned long completed; 967 unsigned long gpnum; 968 unsigned long gps; 969 unsigned long j; 970 unsigned long js; 971 struct rcu_node *rnp; 972 973 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 974 return; 975 j = ACCESS_ONCE(jiffies); 976 977 /* 978 * Lots of memory barriers to reject false positives. 979 * 980 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 981 * then rsp->gp_start, and finally rsp->completed. These values 982 * are updated in the opposite order with memory barriers (or 983 * equivalent) during grace-period initialization and cleanup. 984 * Now, a false positive can occur if we get an new value of 985 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 986 * the memory barriers, the only way that this can happen is if one 987 * grace period ends and another starts between these two fetches. 988 * Detect this by comparing rsp->completed with the previous fetch 989 * from rsp->gpnum. 990 * 991 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 992 * and rsp->gp_start suffice to forestall false positives. 993 */ 994 gpnum = ACCESS_ONCE(rsp->gpnum); 995 smp_rmb(); /* Pick up ->gpnum first... */ 996 js = ACCESS_ONCE(rsp->jiffies_stall); 997 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 998 gps = ACCESS_ONCE(rsp->gp_start); 999 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1000 completed = ACCESS_ONCE(rsp->completed); 1001 if (ULONG_CMP_GE(completed, gpnum) || 1002 ULONG_CMP_LT(j, js) || 1003 ULONG_CMP_GE(gps, js)) 1004 return; /* No stall or GP completed since entering function. */ 1005 rnp = rdp->mynode; 1006 if (rcu_gp_in_progress(rsp) && 1007 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1008 1009 /* We haven't checked in, so go dump stack. */ 1010 print_cpu_stall(rsp); 1011 1012 } else if (rcu_gp_in_progress(rsp) && 1013 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1014 1015 /* They had a few time units to dump stack, so complain. */ 1016 print_other_cpu_stall(rsp); 1017 } 1018 } 1019 1020 /** 1021 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1022 * 1023 * Set the stall-warning timeout way off into the future, thus preventing 1024 * any RCU CPU stall-warning messages from appearing in the current set of 1025 * RCU grace periods. 1026 * 1027 * The caller must disable hard irqs. 1028 */ 1029 void rcu_cpu_stall_reset(void) 1030 { 1031 struct rcu_state *rsp; 1032 1033 for_each_rcu_flavor(rsp) 1034 rsp->jiffies_stall = jiffies + ULONG_MAX / 2; 1035 } 1036 1037 /* 1038 * Initialize the specified rcu_data structure's callback list to empty. 1039 */ 1040 static void init_callback_list(struct rcu_data *rdp) 1041 { 1042 int i; 1043 1044 if (init_nocb_callback_list(rdp)) 1045 return; 1046 rdp->nxtlist = NULL; 1047 for (i = 0; i < RCU_NEXT_SIZE; i++) 1048 rdp->nxttail[i] = &rdp->nxtlist; 1049 } 1050 1051 /* 1052 * Determine the value that ->completed will have at the end of the 1053 * next subsequent grace period. This is used to tag callbacks so that 1054 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1055 * been dyntick-idle for an extended period with callbacks under the 1056 * influence of RCU_FAST_NO_HZ. 1057 * 1058 * The caller must hold rnp->lock with interrupts disabled. 1059 */ 1060 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1061 struct rcu_node *rnp) 1062 { 1063 /* 1064 * If RCU is idle, we just wait for the next grace period. 1065 * But we can only be sure that RCU is idle if we are looking 1066 * at the root rcu_node structure -- otherwise, a new grace 1067 * period might have started, but just not yet gotten around 1068 * to initializing the current non-root rcu_node structure. 1069 */ 1070 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1071 return rnp->completed + 1; 1072 1073 /* 1074 * Otherwise, wait for a possible partial grace period and 1075 * then the subsequent full grace period. 1076 */ 1077 return rnp->completed + 2; 1078 } 1079 1080 /* 1081 * Trace-event helper function for rcu_start_future_gp() and 1082 * rcu_nocb_wait_gp(). 1083 */ 1084 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1085 unsigned long c, const char *s) 1086 { 1087 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1088 rnp->completed, c, rnp->level, 1089 rnp->grplo, rnp->grphi, s); 1090 } 1091 1092 /* 1093 * Start some future grace period, as needed to handle newly arrived 1094 * callbacks. The required future grace periods are recorded in each 1095 * rcu_node structure's ->need_future_gp field. 1096 * 1097 * The caller must hold the specified rcu_node structure's ->lock. 1098 */ 1099 static unsigned long __maybe_unused 1100 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp) 1101 { 1102 unsigned long c; 1103 int i; 1104 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1105 1106 /* 1107 * Pick up grace-period number for new callbacks. If this 1108 * grace period is already marked as needed, return to the caller. 1109 */ 1110 c = rcu_cbs_completed(rdp->rsp, rnp); 1111 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1112 if (rnp->need_future_gp[c & 0x1]) { 1113 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1114 return c; 1115 } 1116 1117 /* 1118 * If either this rcu_node structure or the root rcu_node structure 1119 * believe that a grace period is in progress, then we must wait 1120 * for the one following, which is in "c". Because our request 1121 * will be noticed at the end of the current grace period, we don't 1122 * need to explicitly start one. 1123 */ 1124 if (rnp->gpnum != rnp->completed || 1125 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) { 1126 rnp->need_future_gp[c & 0x1]++; 1127 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1128 return c; 1129 } 1130 1131 /* 1132 * There might be no grace period in progress. If we don't already 1133 * hold it, acquire the root rcu_node structure's lock in order to 1134 * start one (if needed). 1135 */ 1136 if (rnp != rnp_root) 1137 raw_spin_lock(&rnp_root->lock); 1138 1139 /* 1140 * Get a new grace-period number. If there really is no grace 1141 * period in progress, it will be smaller than the one we obtained 1142 * earlier. Adjust callbacks as needed. Note that even no-CBs 1143 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1144 */ 1145 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1146 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1147 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1148 rdp->nxtcompleted[i] = c; 1149 1150 /* 1151 * If the needed for the required grace period is already 1152 * recorded, trace and leave. 1153 */ 1154 if (rnp_root->need_future_gp[c & 0x1]) { 1155 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1156 goto unlock_out; 1157 } 1158 1159 /* Record the need for the future grace period. */ 1160 rnp_root->need_future_gp[c & 0x1]++; 1161 1162 /* If a grace period is not already in progress, start one. */ 1163 if (rnp_root->gpnum != rnp_root->completed) { 1164 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1165 } else { 1166 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1167 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1168 } 1169 unlock_out: 1170 if (rnp != rnp_root) 1171 raw_spin_unlock(&rnp_root->lock); 1172 return c; 1173 } 1174 1175 /* 1176 * Clean up any old requests for the just-ended grace period. Also return 1177 * whether any additional grace periods have been requested. Also invoke 1178 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1179 * waiting for this grace period to complete. 1180 */ 1181 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1182 { 1183 int c = rnp->completed; 1184 int needmore; 1185 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1186 1187 rcu_nocb_gp_cleanup(rsp, rnp); 1188 rnp->need_future_gp[c & 0x1] = 0; 1189 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1190 trace_rcu_future_gp(rnp, rdp, c, 1191 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1192 return needmore; 1193 } 1194 1195 /* 1196 * If there is room, assign a ->completed number to any callbacks on 1197 * this CPU that have not already been assigned. Also accelerate any 1198 * callbacks that were previously assigned a ->completed number that has 1199 * since proven to be too conservative, which can happen if callbacks get 1200 * assigned a ->completed number while RCU is idle, but with reference to 1201 * a non-root rcu_node structure. This function is idempotent, so it does 1202 * not hurt to call it repeatedly. 1203 * 1204 * The caller must hold rnp->lock with interrupts disabled. 1205 */ 1206 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1207 struct rcu_data *rdp) 1208 { 1209 unsigned long c; 1210 int i; 1211 1212 /* If the CPU has no callbacks, nothing to do. */ 1213 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1214 return; 1215 1216 /* 1217 * Starting from the sublist containing the callbacks most 1218 * recently assigned a ->completed number and working down, find the 1219 * first sublist that is not assignable to an upcoming grace period. 1220 * Such a sublist has something in it (first two tests) and has 1221 * a ->completed number assigned that will complete sooner than 1222 * the ->completed number for newly arrived callbacks (last test). 1223 * 1224 * The key point is that any later sublist can be assigned the 1225 * same ->completed number as the newly arrived callbacks, which 1226 * means that the callbacks in any of these later sublist can be 1227 * grouped into a single sublist, whether or not they have already 1228 * been assigned a ->completed number. 1229 */ 1230 c = rcu_cbs_completed(rsp, rnp); 1231 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1232 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1233 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1234 break; 1235 1236 /* 1237 * If there are no sublist for unassigned callbacks, leave. 1238 * At the same time, advance "i" one sublist, so that "i" will 1239 * index into the sublist where all the remaining callbacks should 1240 * be grouped into. 1241 */ 1242 if (++i >= RCU_NEXT_TAIL) 1243 return; 1244 1245 /* 1246 * Assign all subsequent callbacks' ->completed number to the next 1247 * full grace period and group them all in the sublist initially 1248 * indexed by "i". 1249 */ 1250 for (; i <= RCU_NEXT_TAIL; i++) { 1251 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1252 rdp->nxtcompleted[i] = c; 1253 } 1254 /* Record any needed additional grace periods. */ 1255 rcu_start_future_gp(rnp, rdp); 1256 1257 /* Trace depending on how much we were able to accelerate. */ 1258 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1259 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1260 else 1261 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1262 } 1263 1264 /* 1265 * Move any callbacks whose grace period has completed to the 1266 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1267 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1268 * sublist. This function is idempotent, so it does not hurt to 1269 * invoke it repeatedly. As long as it is not invoked -too- often... 1270 * 1271 * The caller must hold rnp->lock with interrupts disabled. 1272 */ 1273 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1274 struct rcu_data *rdp) 1275 { 1276 int i, j; 1277 1278 /* If the CPU has no callbacks, nothing to do. */ 1279 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1280 return; 1281 1282 /* 1283 * Find all callbacks whose ->completed numbers indicate that they 1284 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1285 */ 1286 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1287 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1288 break; 1289 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1290 } 1291 /* Clean up any sublist tail pointers that were misordered above. */ 1292 for (j = RCU_WAIT_TAIL; j < i; j++) 1293 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1294 1295 /* Copy down callbacks to fill in empty sublists. */ 1296 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1297 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1298 break; 1299 rdp->nxttail[j] = rdp->nxttail[i]; 1300 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1301 } 1302 1303 /* Classify any remaining callbacks. */ 1304 rcu_accelerate_cbs(rsp, rnp, rdp); 1305 } 1306 1307 /* 1308 * Update CPU-local rcu_data state to record the beginnings and ends of 1309 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1310 * structure corresponding to the current CPU, and must have irqs disabled. 1311 */ 1312 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) 1313 { 1314 /* Handle the ends of any preceding grace periods first. */ 1315 if (rdp->completed == rnp->completed) { 1316 1317 /* No grace period end, so just accelerate recent callbacks. */ 1318 rcu_accelerate_cbs(rsp, rnp, rdp); 1319 1320 } else { 1321 1322 /* Advance callbacks. */ 1323 rcu_advance_cbs(rsp, rnp, rdp); 1324 1325 /* Remember that we saw this grace-period completion. */ 1326 rdp->completed = rnp->completed; 1327 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1328 } 1329 1330 if (rdp->gpnum != rnp->gpnum) { 1331 /* 1332 * If the current grace period is waiting for this CPU, 1333 * set up to detect a quiescent state, otherwise don't 1334 * go looking for one. 1335 */ 1336 rdp->gpnum = rnp->gpnum; 1337 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1338 rdp->passed_quiesce = 0; 1339 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1340 zero_cpu_stall_ticks(rdp); 1341 } 1342 } 1343 1344 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1345 { 1346 unsigned long flags; 1347 struct rcu_node *rnp; 1348 1349 local_irq_save(flags); 1350 rnp = rdp->mynode; 1351 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1352 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ 1353 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1354 local_irq_restore(flags); 1355 return; 1356 } 1357 __note_gp_changes(rsp, rnp, rdp); 1358 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1359 } 1360 1361 /* 1362 * Initialize a new grace period. Return 0 if no grace period required. 1363 */ 1364 static int rcu_gp_init(struct rcu_state *rsp) 1365 { 1366 struct rcu_data *rdp; 1367 struct rcu_node *rnp = rcu_get_root(rsp); 1368 1369 rcu_bind_gp_kthread(); 1370 raw_spin_lock_irq(&rnp->lock); 1371 if (rsp->gp_flags == 0) { 1372 /* Spurious wakeup, tell caller to go back to sleep. */ 1373 raw_spin_unlock_irq(&rnp->lock); 1374 return 0; 1375 } 1376 rsp->gp_flags = 0; /* Clear all flags: New grace period. */ 1377 1378 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1379 /* 1380 * Grace period already in progress, don't start another. 1381 * Not supposed to be able to happen. 1382 */ 1383 raw_spin_unlock_irq(&rnp->lock); 1384 return 0; 1385 } 1386 1387 /* Advance to a new grace period and initialize state. */ 1388 record_gp_stall_check_time(rsp); 1389 smp_wmb(); /* Record GP times before starting GP. */ 1390 rsp->gpnum++; 1391 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1392 raw_spin_unlock_irq(&rnp->lock); 1393 1394 /* Exclude any concurrent CPU-hotplug operations. */ 1395 mutex_lock(&rsp->onoff_mutex); 1396 1397 /* 1398 * Set the quiescent-state-needed bits in all the rcu_node 1399 * structures for all currently online CPUs in breadth-first order, 1400 * starting from the root rcu_node structure, relying on the layout 1401 * of the tree within the rsp->node[] array. Note that other CPUs 1402 * will access only the leaves of the hierarchy, thus seeing that no 1403 * grace period is in progress, at least until the corresponding 1404 * leaf node has been initialized. In addition, we have excluded 1405 * CPU-hotplug operations. 1406 * 1407 * The grace period cannot complete until the initialization 1408 * process finishes, because this kthread handles both. 1409 */ 1410 rcu_for_each_node_breadth_first(rsp, rnp) { 1411 raw_spin_lock_irq(&rnp->lock); 1412 rdp = this_cpu_ptr(rsp->rda); 1413 rcu_preempt_check_blocked_tasks(rnp); 1414 rnp->qsmask = rnp->qsmaskinit; 1415 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1416 WARN_ON_ONCE(rnp->completed != rsp->completed); 1417 ACCESS_ONCE(rnp->completed) = rsp->completed; 1418 if (rnp == rdp->mynode) 1419 __note_gp_changes(rsp, rnp, rdp); 1420 rcu_preempt_boost_start_gp(rnp); 1421 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1422 rnp->level, rnp->grplo, 1423 rnp->grphi, rnp->qsmask); 1424 raw_spin_unlock_irq(&rnp->lock); 1425 #ifdef CONFIG_PROVE_RCU_DELAY 1426 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 && 1427 system_state == SYSTEM_RUNNING) 1428 udelay(200); 1429 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ 1430 cond_resched(); 1431 } 1432 1433 mutex_unlock(&rsp->onoff_mutex); 1434 return 1; 1435 } 1436 1437 /* 1438 * Do one round of quiescent-state forcing. 1439 */ 1440 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1441 { 1442 int fqs_state = fqs_state_in; 1443 bool isidle = false; 1444 unsigned long maxj; 1445 struct rcu_node *rnp = rcu_get_root(rsp); 1446 1447 rsp->n_force_qs++; 1448 if (fqs_state == RCU_SAVE_DYNTICK) { 1449 /* Collect dyntick-idle snapshots. */ 1450 if (is_sysidle_rcu_state(rsp)) { 1451 isidle = 1; 1452 maxj = jiffies - ULONG_MAX / 4; 1453 } 1454 force_qs_rnp(rsp, dyntick_save_progress_counter, 1455 &isidle, &maxj); 1456 rcu_sysidle_report_gp(rsp, isidle, maxj); 1457 fqs_state = RCU_FORCE_QS; 1458 } else { 1459 /* Handle dyntick-idle and offline CPUs. */ 1460 isidle = 0; 1461 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1462 } 1463 /* Clear flag to prevent immediate re-entry. */ 1464 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1465 raw_spin_lock_irq(&rnp->lock); 1466 rsp->gp_flags &= ~RCU_GP_FLAG_FQS; 1467 raw_spin_unlock_irq(&rnp->lock); 1468 } 1469 return fqs_state; 1470 } 1471 1472 /* 1473 * Clean up after the old grace period. 1474 */ 1475 static void rcu_gp_cleanup(struct rcu_state *rsp) 1476 { 1477 unsigned long gp_duration; 1478 int nocb = 0; 1479 struct rcu_data *rdp; 1480 struct rcu_node *rnp = rcu_get_root(rsp); 1481 1482 raw_spin_lock_irq(&rnp->lock); 1483 gp_duration = jiffies - rsp->gp_start; 1484 if (gp_duration > rsp->gp_max) 1485 rsp->gp_max = gp_duration; 1486 1487 /* 1488 * We know the grace period is complete, but to everyone else 1489 * it appears to still be ongoing. But it is also the case 1490 * that to everyone else it looks like there is nothing that 1491 * they can do to advance the grace period. It is therefore 1492 * safe for us to drop the lock in order to mark the grace 1493 * period as completed in all of the rcu_node structures. 1494 */ 1495 raw_spin_unlock_irq(&rnp->lock); 1496 1497 /* 1498 * Propagate new ->completed value to rcu_node structures so 1499 * that other CPUs don't have to wait until the start of the next 1500 * grace period to process their callbacks. This also avoids 1501 * some nasty RCU grace-period initialization races by forcing 1502 * the end of the current grace period to be completely recorded in 1503 * all of the rcu_node structures before the beginning of the next 1504 * grace period is recorded in any of the rcu_node structures. 1505 */ 1506 rcu_for_each_node_breadth_first(rsp, rnp) { 1507 raw_spin_lock_irq(&rnp->lock); 1508 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1509 rdp = this_cpu_ptr(rsp->rda); 1510 if (rnp == rdp->mynode) 1511 __note_gp_changes(rsp, rnp, rdp); 1512 nocb += rcu_future_gp_cleanup(rsp, rnp); 1513 raw_spin_unlock_irq(&rnp->lock); 1514 cond_resched(); 1515 } 1516 rnp = rcu_get_root(rsp); 1517 raw_spin_lock_irq(&rnp->lock); 1518 rcu_nocb_gp_set(rnp, nocb); 1519 1520 rsp->completed = rsp->gpnum; /* Declare grace period done. */ 1521 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1522 rsp->fqs_state = RCU_GP_IDLE; 1523 rdp = this_cpu_ptr(rsp->rda); 1524 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */ 1525 if (cpu_needs_another_gp(rsp, rdp)) { 1526 rsp->gp_flags = RCU_GP_FLAG_INIT; 1527 trace_rcu_grace_period(rsp->name, 1528 ACCESS_ONCE(rsp->gpnum), 1529 TPS("newreq")); 1530 } 1531 raw_spin_unlock_irq(&rnp->lock); 1532 } 1533 1534 /* 1535 * Body of kthread that handles grace periods. 1536 */ 1537 static int __noreturn rcu_gp_kthread(void *arg) 1538 { 1539 int fqs_state; 1540 int gf; 1541 unsigned long j; 1542 int ret; 1543 struct rcu_state *rsp = arg; 1544 struct rcu_node *rnp = rcu_get_root(rsp); 1545 1546 for (;;) { 1547 1548 /* Handle grace-period start. */ 1549 for (;;) { 1550 trace_rcu_grace_period(rsp->name, 1551 ACCESS_ONCE(rsp->gpnum), 1552 TPS("reqwait")); 1553 wait_event_interruptible(rsp->gp_wq, 1554 ACCESS_ONCE(rsp->gp_flags) & 1555 RCU_GP_FLAG_INIT); 1556 if (rcu_gp_init(rsp)) 1557 break; 1558 cond_resched(); 1559 flush_signals(current); 1560 trace_rcu_grace_period(rsp->name, 1561 ACCESS_ONCE(rsp->gpnum), 1562 TPS("reqwaitsig")); 1563 } 1564 1565 /* Handle quiescent-state forcing. */ 1566 fqs_state = RCU_SAVE_DYNTICK; 1567 j = jiffies_till_first_fqs; 1568 if (j > HZ) { 1569 j = HZ; 1570 jiffies_till_first_fqs = HZ; 1571 } 1572 ret = 0; 1573 for (;;) { 1574 if (!ret) 1575 rsp->jiffies_force_qs = jiffies + j; 1576 trace_rcu_grace_period(rsp->name, 1577 ACCESS_ONCE(rsp->gpnum), 1578 TPS("fqswait")); 1579 ret = wait_event_interruptible_timeout(rsp->gp_wq, 1580 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 1581 RCU_GP_FLAG_FQS) || 1582 (!ACCESS_ONCE(rnp->qsmask) && 1583 !rcu_preempt_blocked_readers_cgp(rnp)), 1584 j); 1585 /* If grace period done, leave loop. */ 1586 if (!ACCESS_ONCE(rnp->qsmask) && 1587 !rcu_preempt_blocked_readers_cgp(rnp)) 1588 break; 1589 /* If time for quiescent-state forcing, do it. */ 1590 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 1591 (gf & RCU_GP_FLAG_FQS)) { 1592 trace_rcu_grace_period(rsp->name, 1593 ACCESS_ONCE(rsp->gpnum), 1594 TPS("fqsstart")); 1595 fqs_state = rcu_gp_fqs(rsp, fqs_state); 1596 trace_rcu_grace_period(rsp->name, 1597 ACCESS_ONCE(rsp->gpnum), 1598 TPS("fqsend")); 1599 cond_resched(); 1600 } else { 1601 /* Deal with stray signal. */ 1602 cond_resched(); 1603 flush_signals(current); 1604 trace_rcu_grace_period(rsp->name, 1605 ACCESS_ONCE(rsp->gpnum), 1606 TPS("fqswaitsig")); 1607 } 1608 j = jiffies_till_next_fqs; 1609 if (j > HZ) { 1610 j = HZ; 1611 jiffies_till_next_fqs = HZ; 1612 } else if (j < 1) { 1613 j = 1; 1614 jiffies_till_next_fqs = 1; 1615 } 1616 } 1617 1618 /* Handle grace-period end. */ 1619 rcu_gp_cleanup(rsp); 1620 } 1621 } 1622 1623 static void rsp_wakeup(struct irq_work *work) 1624 { 1625 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work); 1626 1627 /* Wake up rcu_gp_kthread() to start the grace period. */ 1628 wake_up(&rsp->gp_wq); 1629 } 1630 1631 /* 1632 * Start a new RCU grace period if warranted, re-initializing the hierarchy 1633 * in preparation for detecting the next grace period. The caller must hold 1634 * the root node's ->lock and hard irqs must be disabled. 1635 * 1636 * Note that it is legal for a dying CPU (which is marked as offline) to 1637 * invoke this function. This can happen when the dying CPU reports its 1638 * quiescent state. 1639 */ 1640 static void 1641 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 1642 struct rcu_data *rdp) 1643 { 1644 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 1645 /* 1646 * Either we have not yet spawned the grace-period 1647 * task, this CPU does not need another grace period, 1648 * or a grace period is already in progress. 1649 * Either way, don't start a new grace period. 1650 */ 1651 return; 1652 } 1653 rsp->gp_flags = RCU_GP_FLAG_INIT; 1654 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 1655 TPS("newreq")); 1656 1657 /* 1658 * We can't do wakeups while holding the rnp->lock, as that 1659 * could cause possible deadlocks with the rq->lock. Defer 1660 * the wakeup to interrupt context. And don't bother waking 1661 * up the running kthread. 1662 */ 1663 if (current != rsp->gp_kthread) 1664 irq_work_queue(&rsp->wakeup_work); 1665 } 1666 1667 /* 1668 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 1669 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 1670 * is invoked indirectly from rcu_advance_cbs(), which would result in 1671 * endless recursion -- or would do so if it wasn't for the self-deadlock 1672 * that is encountered beforehand. 1673 */ 1674 static void 1675 rcu_start_gp(struct rcu_state *rsp) 1676 { 1677 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1678 struct rcu_node *rnp = rcu_get_root(rsp); 1679 1680 /* 1681 * If there is no grace period in progress right now, any 1682 * callbacks we have up to this point will be satisfied by the 1683 * next grace period. Also, advancing the callbacks reduces the 1684 * probability of false positives from cpu_needs_another_gp() 1685 * resulting in pointless grace periods. So, advance callbacks 1686 * then start the grace period! 1687 */ 1688 rcu_advance_cbs(rsp, rnp, rdp); 1689 rcu_start_gp_advanced(rsp, rnp, rdp); 1690 } 1691 1692 /* 1693 * Report a full set of quiescent states to the specified rcu_state 1694 * data structure. This involves cleaning up after the prior grace 1695 * period and letting rcu_start_gp() start up the next grace period 1696 * if one is needed. Note that the caller must hold rnp->lock, which 1697 * is released before return. 1698 */ 1699 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 1700 __releases(rcu_get_root(rsp)->lock) 1701 { 1702 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 1703 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 1704 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 1705 } 1706 1707 /* 1708 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1709 * Allows quiescent states for a group of CPUs to be reported at one go 1710 * to the specified rcu_node structure, though all the CPUs in the group 1711 * must be represented by the same rcu_node structure (which need not be 1712 * a leaf rcu_node structure, though it often will be). That structure's 1713 * lock must be held upon entry, and it is released before return. 1714 */ 1715 static void 1716 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 1717 struct rcu_node *rnp, unsigned long flags) 1718 __releases(rnp->lock) 1719 { 1720 struct rcu_node *rnp_c; 1721 1722 /* Walk up the rcu_node hierarchy. */ 1723 for (;;) { 1724 if (!(rnp->qsmask & mask)) { 1725 1726 /* Our bit has already been cleared, so done. */ 1727 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1728 return; 1729 } 1730 rnp->qsmask &= ~mask; 1731 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 1732 mask, rnp->qsmask, rnp->level, 1733 rnp->grplo, rnp->grphi, 1734 !!rnp->gp_tasks); 1735 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1736 1737 /* Other bits still set at this level, so done. */ 1738 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1739 return; 1740 } 1741 mask = rnp->grpmask; 1742 if (rnp->parent == NULL) { 1743 1744 /* No more levels. Exit loop holding root lock. */ 1745 1746 break; 1747 } 1748 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1749 rnp_c = rnp; 1750 rnp = rnp->parent; 1751 raw_spin_lock_irqsave(&rnp->lock, flags); 1752 WARN_ON_ONCE(rnp_c->qsmask); 1753 } 1754 1755 /* 1756 * Get here if we are the last CPU to pass through a quiescent 1757 * state for this grace period. Invoke rcu_report_qs_rsp() 1758 * to clean up and start the next grace period if one is needed. 1759 */ 1760 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 1761 } 1762 1763 /* 1764 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1765 * structure. This must be either called from the specified CPU, or 1766 * called when the specified CPU is known to be offline (and when it is 1767 * also known that no other CPU is concurrently trying to help the offline 1768 * CPU). The lastcomp argument is used to make sure we are still in the 1769 * grace period of interest. We don't want to end the current grace period 1770 * based on quiescent states detected in an earlier grace period! 1771 */ 1772 static void 1773 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 1774 { 1775 unsigned long flags; 1776 unsigned long mask; 1777 struct rcu_node *rnp; 1778 1779 rnp = rdp->mynode; 1780 raw_spin_lock_irqsave(&rnp->lock, flags); 1781 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || 1782 rnp->completed == rnp->gpnum) { 1783 1784 /* 1785 * The grace period in which this quiescent state was 1786 * recorded has ended, so don't report it upwards. 1787 * We will instead need a new quiescent state that lies 1788 * within the current grace period. 1789 */ 1790 rdp->passed_quiesce = 0; /* need qs for new gp. */ 1791 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1792 return; 1793 } 1794 mask = rdp->grpmask; 1795 if ((rnp->qsmask & mask) == 0) { 1796 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1797 } else { 1798 rdp->qs_pending = 0; 1799 1800 /* 1801 * This GP can't end until cpu checks in, so all of our 1802 * callbacks can be processed during the next GP. 1803 */ 1804 rcu_accelerate_cbs(rsp, rnp, rdp); 1805 1806 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 1807 } 1808 } 1809 1810 /* 1811 * Check to see if there is a new grace period of which this CPU 1812 * is not yet aware, and if so, set up local rcu_data state for it. 1813 * Otherwise, see if this CPU has just passed through its first 1814 * quiescent state for this grace period, and record that fact if so. 1815 */ 1816 static void 1817 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 1818 { 1819 /* Check for grace-period ends and beginnings. */ 1820 note_gp_changes(rsp, rdp); 1821 1822 /* 1823 * Does this CPU still need to do its part for current grace period? 1824 * If no, return and let the other CPUs do their part as well. 1825 */ 1826 if (!rdp->qs_pending) 1827 return; 1828 1829 /* 1830 * Was there a quiescent state since the beginning of the grace 1831 * period? If no, then exit and wait for the next call. 1832 */ 1833 if (!rdp->passed_quiesce) 1834 return; 1835 1836 /* 1837 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 1838 * judge of that). 1839 */ 1840 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 1841 } 1842 1843 #ifdef CONFIG_HOTPLUG_CPU 1844 1845 /* 1846 * Send the specified CPU's RCU callbacks to the orphanage. The 1847 * specified CPU must be offline, and the caller must hold the 1848 * ->orphan_lock. 1849 */ 1850 static void 1851 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 1852 struct rcu_node *rnp, struct rcu_data *rdp) 1853 { 1854 /* No-CBs CPUs do not have orphanable callbacks. */ 1855 if (rcu_is_nocb_cpu(rdp->cpu)) 1856 return; 1857 1858 /* 1859 * Orphan the callbacks. First adjust the counts. This is safe 1860 * because _rcu_barrier() excludes CPU-hotplug operations, so it 1861 * cannot be running now. Thus no memory barrier is required. 1862 */ 1863 if (rdp->nxtlist != NULL) { 1864 rsp->qlen_lazy += rdp->qlen_lazy; 1865 rsp->qlen += rdp->qlen; 1866 rdp->n_cbs_orphaned += rdp->qlen; 1867 rdp->qlen_lazy = 0; 1868 ACCESS_ONCE(rdp->qlen) = 0; 1869 } 1870 1871 /* 1872 * Next, move those callbacks still needing a grace period to 1873 * the orphanage, where some other CPU will pick them up. 1874 * Some of the callbacks might have gone partway through a grace 1875 * period, but that is too bad. They get to start over because we 1876 * cannot assume that grace periods are synchronized across CPUs. 1877 * We don't bother updating the ->nxttail[] array yet, instead 1878 * we just reset the whole thing later on. 1879 */ 1880 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 1881 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 1882 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 1883 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 1884 } 1885 1886 /* 1887 * Then move the ready-to-invoke callbacks to the orphanage, 1888 * where some other CPU will pick them up. These will not be 1889 * required to pass though another grace period: They are done. 1890 */ 1891 if (rdp->nxtlist != NULL) { 1892 *rsp->orphan_donetail = rdp->nxtlist; 1893 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 1894 } 1895 1896 /* Finally, initialize the rcu_data structure's list to empty. */ 1897 init_callback_list(rdp); 1898 } 1899 1900 /* 1901 * Adopt the RCU callbacks from the specified rcu_state structure's 1902 * orphanage. The caller must hold the ->orphan_lock. 1903 */ 1904 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) 1905 { 1906 int i; 1907 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 1908 1909 /* No-CBs CPUs are handled specially. */ 1910 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp)) 1911 return; 1912 1913 /* Do the accounting first. */ 1914 rdp->qlen_lazy += rsp->qlen_lazy; 1915 rdp->qlen += rsp->qlen; 1916 rdp->n_cbs_adopted += rsp->qlen; 1917 if (rsp->qlen_lazy != rsp->qlen) 1918 rcu_idle_count_callbacks_posted(); 1919 rsp->qlen_lazy = 0; 1920 rsp->qlen = 0; 1921 1922 /* 1923 * We do not need a memory barrier here because the only way we 1924 * can get here if there is an rcu_barrier() in flight is if 1925 * we are the task doing the rcu_barrier(). 1926 */ 1927 1928 /* First adopt the ready-to-invoke callbacks. */ 1929 if (rsp->orphan_donelist != NULL) { 1930 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 1931 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 1932 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 1933 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 1934 rdp->nxttail[i] = rsp->orphan_donetail; 1935 rsp->orphan_donelist = NULL; 1936 rsp->orphan_donetail = &rsp->orphan_donelist; 1937 } 1938 1939 /* And then adopt the callbacks that still need a grace period. */ 1940 if (rsp->orphan_nxtlist != NULL) { 1941 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 1942 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 1943 rsp->orphan_nxtlist = NULL; 1944 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 1945 } 1946 } 1947 1948 /* 1949 * Trace the fact that this CPU is going offline. 1950 */ 1951 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 1952 { 1953 RCU_TRACE(unsigned long mask); 1954 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 1955 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 1956 1957 RCU_TRACE(mask = rdp->grpmask); 1958 trace_rcu_grace_period(rsp->name, 1959 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 1960 TPS("cpuofl")); 1961 } 1962 1963 /* 1964 * The CPU has been completely removed, and some other CPU is reporting 1965 * this fact from process context. Do the remainder of the cleanup, 1966 * including orphaning the outgoing CPU's RCU callbacks, and also 1967 * adopting them. There can only be one CPU hotplug operation at a time, 1968 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 1969 */ 1970 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 1971 { 1972 unsigned long flags; 1973 unsigned long mask; 1974 int need_report = 0; 1975 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1976 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 1977 1978 /* Adjust any no-longer-needed kthreads. */ 1979 rcu_boost_kthread_setaffinity(rnp, -1); 1980 1981 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ 1982 1983 /* Exclude any attempts to start a new grace period. */ 1984 mutex_lock(&rsp->onoff_mutex); 1985 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 1986 1987 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 1988 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 1989 rcu_adopt_orphan_cbs(rsp); 1990 1991 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 1992 mask = rdp->grpmask; /* rnp->grplo is constant. */ 1993 do { 1994 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1995 rnp->qsmaskinit &= ~mask; 1996 if (rnp->qsmaskinit != 0) { 1997 if (rnp != rdp->mynode) 1998 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1999 break; 2000 } 2001 if (rnp == rdp->mynode) 2002 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 2003 else 2004 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2005 mask = rnp->grpmask; 2006 rnp = rnp->parent; 2007 } while (rnp != NULL); 2008 2009 /* 2010 * We still hold the leaf rcu_node structure lock here, and 2011 * irqs are still disabled. The reason for this subterfuge is 2012 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock 2013 * held leads to deadlock. 2014 */ 2015 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ 2016 rnp = rdp->mynode; 2017 if (need_report & RCU_OFL_TASKS_NORM_GP) 2018 rcu_report_unblock_qs_rnp(rnp, flags); 2019 else 2020 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2021 if (need_report & RCU_OFL_TASKS_EXP_GP) 2022 rcu_report_exp_rnp(rsp, rnp, true); 2023 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2024 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2025 cpu, rdp->qlen, rdp->nxtlist); 2026 init_callback_list(rdp); 2027 /* Disallow further callbacks on this CPU. */ 2028 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2029 mutex_unlock(&rsp->onoff_mutex); 2030 } 2031 2032 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2033 2034 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2035 { 2036 } 2037 2038 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2039 { 2040 } 2041 2042 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2043 2044 /* 2045 * Invoke any RCU callbacks that have made it to the end of their grace 2046 * period. Thottle as specified by rdp->blimit. 2047 */ 2048 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2049 { 2050 unsigned long flags; 2051 struct rcu_head *next, *list, **tail; 2052 long bl, count, count_lazy; 2053 int i; 2054 2055 /* If no callbacks are ready, just return. */ 2056 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2057 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2058 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2059 need_resched(), is_idle_task(current), 2060 rcu_is_callbacks_kthread()); 2061 return; 2062 } 2063 2064 /* 2065 * Extract the list of ready callbacks, disabling to prevent 2066 * races with call_rcu() from interrupt handlers. 2067 */ 2068 local_irq_save(flags); 2069 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2070 bl = rdp->blimit; 2071 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2072 list = rdp->nxtlist; 2073 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2074 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2075 tail = rdp->nxttail[RCU_DONE_TAIL]; 2076 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2077 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2078 rdp->nxttail[i] = &rdp->nxtlist; 2079 local_irq_restore(flags); 2080 2081 /* Invoke callbacks. */ 2082 count = count_lazy = 0; 2083 while (list) { 2084 next = list->next; 2085 prefetch(next); 2086 debug_rcu_head_unqueue(list); 2087 if (__rcu_reclaim(rsp->name, list)) 2088 count_lazy++; 2089 list = next; 2090 /* Stop only if limit reached and CPU has something to do. */ 2091 if (++count >= bl && 2092 (need_resched() || 2093 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2094 break; 2095 } 2096 2097 local_irq_save(flags); 2098 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2099 is_idle_task(current), 2100 rcu_is_callbacks_kthread()); 2101 2102 /* Update count, and requeue any remaining callbacks. */ 2103 if (list != NULL) { 2104 *tail = rdp->nxtlist; 2105 rdp->nxtlist = list; 2106 for (i = 0; i < RCU_NEXT_SIZE; i++) 2107 if (&rdp->nxtlist == rdp->nxttail[i]) 2108 rdp->nxttail[i] = tail; 2109 else 2110 break; 2111 } 2112 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2113 rdp->qlen_lazy -= count_lazy; 2114 ACCESS_ONCE(rdp->qlen) -= count; 2115 rdp->n_cbs_invoked += count; 2116 2117 /* Reinstate batch limit if we have worked down the excess. */ 2118 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2119 rdp->blimit = blimit; 2120 2121 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2122 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2123 rdp->qlen_last_fqs_check = 0; 2124 rdp->n_force_qs_snap = rsp->n_force_qs; 2125 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2126 rdp->qlen_last_fqs_check = rdp->qlen; 2127 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2128 2129 local_irq_restore(flags); 2130 2131 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2132 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2133 invoke_rcu_core(); 2134 } 2135 2136 /* 2137 * Check to see if this CPU is in a non-context-switch quiescent state 2138 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2139 * Also schedule RCU core processing. 2140 * 2141 * This function must be called from hardirq context. It is normally 2142 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2143 * false, there is no point in invoking rcu_check_callbacks(). 2144 */ 2145 void rcu_check_callbacks(int cpu, int user) 2146 { 2147 trace_rcu_utilization(TPS("Start scheduler-tick")); 2148 increment_cpu_stall_ticks(); 2149 if (user || rcu_is_cpu_rrupt_from_idle()) { 2150 2151 /* 2152 * Get here if this CPU took its interrupt from user 2153 * mode or from the idle loop, and if this is not a 2154 * nested interrupt. In this case, the CPU is in 2155 * a quiescent state, so note it. 2156 * 2157 * No memory barrier is required here because both 2158 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2159 * variables that other CPUs neither access nor modify, 2160 * at least not while the corresponding CPU is online. 2161 */ 2162 2163 rcu_sched_qs(cpu); 2164 rcu_bh_qs(cpu); 2165 2166 } else if (!in_softirq()) { 2167 2168 /* 2169 * Get here if this CPU did not take its interrupt from 2170 * softirq, in other words, if it is not interrupting 2171 * a rcu_bh read-side critical section. This is an _bh 2172 * critical section, so note it. 2173 */ 2174 2175 rcu_bh_qs(cpu); 2176 } 2177 rcu_preempt_check_callbacks(cpu); 2178 if (rcu_pending(cpu)) 2179 invoke_rcu_core(); 2180 trace_rcu_utilization(TPS("End scheduler-tick")); 2181 } 2182 2183 /* 2184 * Scan the leaf rcu_node structures, processing dyntick state for any that 2185 * have not yet encountered a quiescent state, using the function specified. 2186 * Also initiate boosting for any threads blocked on the root rcu_node. 2187 * 2188 * The caller must have suppressed start of new grace periods. 2189 */ 2190 static void force_qs_rnp(struct rcu_state *rsp, 2191 int (*f)(struct rcu_data *rsp, bool *isidle, 2192 unsigned long *maxj), 2193 bool *isidle, unsigned long *maxj) 2194 { 2195 unsigned long bit; 2196 int cpu; 2197 unsigned long flags; 2198 unsigned long mask; 2199 struct rcu_node *rnp; 2200 2201 rcu_for_each_leaf_node(rsp, rnp) { 2202 cond_resched(); 2203 mask = 0; 2204 raw_spin_lock_irqsave(&rnp->lock, flags); 2205 if (!rcu_gp_in_progress(rsp)) { 2206 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2207 return; 2208 } 2209 if (rnp->qsmask == 0) { 2210 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 2211 continue; 2212 } 2213 cpu = rnp->grplo; 2214 bit = 1; 2215 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2216 if ((rnp->qsmask & bit) != 0) { 2217 if ((rnp->qsmaskinit & bit) != 0) 2218 *isidle = 0; 2219 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2220 mask |= bit; 2221 } 2222 } 2223 if (mask != 0) { 2224 2225 /* rcu_report_qs_rnp() releases rnp->lock. */ 2226 rcu_report_qs_rnp(mask, rsp, rnp, flags); 2227 continue; 2228 } 2229 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2230 } 2231 rnp = rcu_get_root(rsp); 2232 if (rnp->qsmask == 0) { 2233 raw_spin_lock_irqsave(&rnp->lock, flags); 2234 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ 2235 } 2236 } 2237 2238 /* 2239 * Force quiescent states on reluctant CPUs, and also detect which 2240 * CPUs are in dyntick-idle mode. 2241 */ 2242 static void force_quiescent_state(struct rcu_state *rsp) 2243 { 2244 unsigned long flags; 2245 bool ret; 2246 struct rcu_node *rnp; 2247 struct rcu_node *rnp_old = NULL; 2248 2249 /* Funnel through hierarchy to reduce memory contention. */ 2250 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; 2251 for (; rnp != NULL; rnp = rnp->parent) { 2252 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2253 !raw_spin_trylock(&rnp->fqslock); 2254 if (rnp_old != NULL) 2255 raw_spin_unlock(&rnp_old->fqslock); 2256 if (ret) { 2257 rsp->n_force_qs_lh++; 2258 return; 2259 } 2260 rnp_old = rnp; 2261 } 2262 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2263 2264 /* Reached the root of the rcu_node tree, acquire lock. */ 2265 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2266 raw_spin_unlock(&rnp_old->fqslock); 2267 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2268 rsp->n_force_qs_lh++; 2269 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2270 return; /* Someone beat us to it. */ 2271 } 2272 rsp->gp_flags |= RCU_GP_FLAG_FQS; 2273 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2274 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ 2275 } 2276 2277 /* 2278 * This does the RCU core processing work for the specified rcu_state 2279 * and rcu_data structures. This may be called only from the CPU to 2280 * whom the rdp belongs. 2281 */ 2282 static void 2283 __rcu_process_callbacks(struct rcu_state *rsp) 2284 { 2285 unsigned long flags; 2286 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 2287 2288 WARN_ON_ONCE(rdp->beenonline == 0); 2289 2290 /* Update RCU state based on any recent quiescent states. */ 2291 rcu_check_quiescent_state(rsp, rdp); 2292 2293 /* Does this CPU require a not-yet-started grace period? */ 2294 local_irq_save(flags); 2295 if (cpu_needs_another_gp(rsp, rdp)) { 2296 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2297 rcu_start_gp(rsp); 2298 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2299 } else { 2300 local_irq_restore(flags); 2301 } 2302 2303 /* If there are callbacks ready, invoke them. */ 2304 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2305 invoke_rcu_callbacks(rsp, rdp); 2306 } 2307 2308 /* 2309 * Do RCU core processing for the current CPU. 2310 */ 2311 static void rcu_process_callbacks(struct softirq_action *unused) 2312 { 2313 struct rcu_state *rsp; 2314 2315 if (cpu_is_offline(smp_processor_id())) 2316 return; 2317 trace_rcu_utilization(TPS("Start RCU core")); 2318 for_each_rcu_flavor(rsp) 2319 __rcu_process_callbacks(rsp); 2320 trace_rcu_utilization(TPS("End RCU core")); 2321 } 2322 2323 /* 2324 * Schedule RCU callback invocation. If the specified type of RCU 2325 * does not support RCU priority boosting, just do a direct call, 2326 * otherwise wake up the per-CPU kernel kthread. Note that because we 2327 * are running on the current CPU with interrupts disabled, the 2328 * rcu_cpu_kthread_task cannot disappear out from under us. 2329 */ 2330 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2331 { 2332 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2333 return; 2334 if (likely(!rsp->boost)) { 2335 rcu_do_batch(rsp, rdp); 2336 return; 2337 } 2338 invoke_rcu_callbacks_kthread(); 2339 } 2340 2341 static void invoke_rcu_core(void) 2342 { 2343 if (cpu_online(smp_processor_id())) 2344 raise_softirq(RCU_SOFTIRQ); 2345 } 2346 2347 /* 2348 * Handle any core-RCU processing required by a call_rcu() invocation. 2349 */ 2350 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2351 struct rcu_head *head, unsigned long flags) 2352 { 2353 /* 2354 * If called from an extended quiescent state, invoke the RCU 2355 * core in order to force a re-evaluation of RCU's idleness. 2356 */ 2357 if (!rcu_is_watching() && cpu_online(smp_processor_id())) 2358 invoke_rcu_core(); 2359 2360 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2361 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2362 return; 2363 2364 /* 2365 * Force the grace period if too many callbacks or too long waiting. 2366 * Enforce hysteresis, and don't invoke force_quiescent_state() 2367 * if some other CPU has recently done so. Also, don't bother 2368 * invoking force_quiescent_state() if the newly enqueued callback 2369 * is the only one waiting for a grace period to complete. 2370 */ 2371 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2372 2373 /* Are we ignoring a completed grace period? */ 2374 note_gp_changes(rsp, rdp); 2375 2376 /* Start a new grace period if one not already started. */ 2377 if (!rcu_gp_in_progress(rsp)) { 2378 struct rcu_node *rnp_root = rcu_get_root(rsp); 2379 2380 raw_spin_lock(&rnp_root->lock); 2381 rcu_start_gp(rsp); 2382 raw_spin_unlock(&rnp_root->lock); 2383 } else { 2384 /* Give the grace period a kick. */ 2385 rdp->blimit = LONG_MAX; 2386 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2387 *rdp->nxttail[RCU_DONE_TAIL] != head) 2388 force_quiescent_state(rsp); 2389 rdp->n_force_qs_snap = rsp->n_force_qs; 2390 rdp->qlen_last_fqs_check = rdp->qlen; 2391 } 2392 } 2393 } 2394 2395 /* 2396 * RCU callback function to leak a callback. 2397 */ 2398 static void rcu_leak_callback(struct rcu_head *rhp) 2399 { 2400 } 2401 2402 /* 2403 * Helper function for call_rcu() and friends. The cpu argument will 2404 * normally be -1, indicating "currently running CPU". It may specify 2405 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2406 * is expected to specify a CPU. 2407 */ 2408 static void 2409 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2410 struct rcu_state *rsp, int cpu, bool lazy) 2411 { 2412 unsigned long flags; 2413 struct rcu_data *rdp; 2414 2415 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ 2416 if (debug_rcu_head_queue(head)) { 2417 /* Probable double call_rcu(), so leak the callback. */ 2418 ACCESS_ONCE(head->func) = rcu_leak_callback; 2419 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2420 return; 2421 } 2422 head->func = func; 2423 head->next = NULL; 2424 2425 /* 2426 * Opportunistically note grace-period endings and beginnings. 2427 * Note that we might see a beginning right after we see an 2428 * end, but never vice versa, since this CPU has to pass through 2429 * a quiescent state betweentimes. 2430 */ 2431 local_irq_save(flags); 2432 rdp = this_cpu_ptr(rsp->rda); 2433 2434 /* Add the callback to our list. */ 2435 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2436 int offline; 2437 2438 if (cpu != -1) 2439 rdp = per_cpu_ptr(rsp->rda, cpu); 2440 offline = !__call_rcu_nocb(rdp, head, lazy); 2441 WARN_ON_ONCE(offline); 2442 /* _call_rcu() is illegal on offline CPU; leak the callback. */ 2443 local_irq_restore(flags); 2444 return; 2445 } 2446 ACCESS_ONCE(rdp->qlen)++; 2447 if (lazy) 2448 rdp->qlen_lazy++; 2449 else 2450 rcu_idle_count_callbacks_posted(); 2451 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 2452 *rdp->nxttail[RCU_NEXT_TAIL] = head; 2453 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 2454 2455 if (__is_kfree_rcu_offset((unsigned long)func)) 2456 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2457 rdp->qlen_lazy, rdp->qlen); 2458 else 2459 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 2460 2461 /* Go handle any RCU core processing required. */ 2462 __call_rcu_core(rsp, rdp, head, flags); 2463 local_irq_restore(flags); 2464 } 2465 2466 /* 2467 * Queue an RCU-sched callback for invocation after a grace period. 2468 */ 2469 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2470 { 2471 __call_rcu(head, func, &rcu_sched_state, -1, 0); 2472 } 2473 EXPORT_SYMBOL_GPL(call_rcu_sched); 2474 2475 /* 2476 * Queue an RCU callback for invocation after a quicker grace period. 2477 */ 2478 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2479 { 2480 __call_rcu(head, func, &rcu_bh_state, -1, 0); 2481 } 2482 EXPORT_SYMBOL_GPL(call_rcu_bh); 2483 2484 /* 2485 * Because a context switch is a grace period for RCU-sched and RCU-bh, 2486 * any blocking grace-period wait automatically implies a grace period 2487 * if there is only one CPU online at any point time during execution 2488 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 2489 * occasionally incorrectly indicate that there are multiple CPUs online 2490 * when there was in fact only one the whole time, as this just adds 2491 * some overhead: RCU still operates correctly. 2492 */ 2493 static inline int rcu_blocking_is_gp(void) 2494 { 2495 int ret; 2496 2497 might_sleep(); /* Check for RCU read-side critical section. */ 2498 preempt_disable(); 2499 ret = num_online_cpus() <= 1; 2500 preempt_enable(); 2501 return ret; 2502 } 2503 2504 /** 2505 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 2506 * 2507 * Control will return to the caller some time after a full rcu-sched 2508 * grace period has elapsed, in other words after all currently executing 2509 * rcu-sched read-side critical sections have completed. These read-side 2510 * critical sections are delimited by rcu_read_lock_sched() and 2511 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 2512 * local_irq_disable(), and so on may be used in place of 2513 * rcu_read_lock_sched(). 2514 * 2515 * This means that all preempt_disable code sequences, including NMI and 2516 * non-threaded hardware-interrupt handlers, in progress on entry will 2517 * have completed before this primitive returns. However, this does not 2518 * guarantee that softirq handlers will have completed, since in some 2519 * kernels, these handlers can run in process context, and can block. 2520 * 2521 * Note that this guarantee implies further memory-ordering guarantees. 2522 * On systems with more than one CPU, when synchronize_sched() returns, 2523 * each CPU is guaranteed to have executed a full memory barrier since the 2524 * end of its last RCU-sched read-side critical section whose beginning 2525 * preceded the call to synchronize_sched(). In addition, each CPU having 2526 * an RCU read-side critical section that extends beyond the return from 2527 * synchronize_sched() is guaranteed to have executed a full memory barrier 2528 * after the beginning of synchronize_sched() and before the beginning of 2529 * that RCU read-side critical section. Note that these guarantees include 2530 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2531 * that are executing in the kernel. 2532 * 2533 * Furthermore, if CPU A invoked synchronize_sched(), which returned 2534 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2535 * to have executed a full memory barrier during the execution of 2536 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 2537 * again only if the system has more than one CPU). 2538 * 2539 * This primitive provides the guarantees made by the (now removed) 2540 * synchronize_kernel() API. In contrast, synchronize_rcu() only 2541 * guarantees that rcu_read_lock() sections will have completed. 2542 * In "classic RCU", these two guarantees happen to be one and 2543 * the same, but can differ in realtime RCU implementations. 2544 */ 2545 void synchronize_sched(void) 2546 { 2547 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2548 !lock_is_held(&rcu_lock_map) && 2549 !lock_is_held(&rcu_sched_lock_map), 2550 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 2551 if (rcu_blocking_is_gp()) 2552 return; 2553 if (rcu_expedited) 2554 synchronize_sched_expedited(); 2555 else 2556 wait_rcu_gp(call_rcu_sched); 2557 } 2558 EXPORT_SYMBOL_GPL(synchronize_sched); 2559 2560 /** 2561 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 2562 * 2563 * Control will return to the caller some time after a full rcu_bh grace 2564 * period has elapsed, in other words after all currently executing rcu_bh 2565 * read-side critical sections have completed. RCU read-side critical 2566 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 2567 * and may be nested. 2568 * 2569 * See the description of synchronize_sched() for more detailed information 2570 * on memory ordering guarantees. 2571 */ 2572 void synchronize_rcu_bh(void) 2573 { 2574 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2575 !lock_is_held(&rcu_lock_map) && 2576 !lock_is_held(&rcu_sched_lock_map), 2577 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 2578 if (rcu_blocking_is_gp()) 2579 return; 2580 if (rcu_expedited) 2581 synchronize_rcu_bh_expedited(); 2582 else 2583 wait_rcu_gp(call_rcu_bh); 2584 } 2585 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 2586 2587 static int synchronize_sched_expedited_cpu_stop(void *data) 2588 { 2589 /* 2590 * There must be a full memory barrier on each affected CPU 2591 * between the time that try_stop_cpus() is called and the 2592 * time that it returns. 2593 * 2594 * In the current initial implementation of cpu_stop, the 2595 * above condition is already met when the control reaches 2596 * this point and the following smp_mb() is not strictly 2597 * necessary. Do smp_mb() anyway for documentation and 2598 * robustness against future implementation changes. 2599 */ 2600 smp_mb(); /* See above comment block. */ 2601 return 0; 2602 } 2603 2604 /** 2605 * synchronize_sched_expedited - Brute-force RCU-sched grace period 2606 * 2607 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 2608 * approach to force the grace period to end quickly. This consumes 2609 * significant time on all CPUs and is unfriendly to real-time workloads, 2610 * so is thus not recommended for any sort of common-case code. In fact, 2611 * if you are using synchronize_sched_expedited() in a loop, please 2612 * restructure your code to batch your updates, and then use a single 2613 * synchronize_sched() instead. 2614 * 2615 * Note that it is illegal to call this function while holding any lock 2616 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 2617 * to call this function from a CPU-hotplug notifier. Failing to observe 2618 * these restriction will result in deadlock. 2619 * 2620 * This implementation can be thought of as an application of ticket 2621 * locking to RCU, with sync_sched_expedited_started and 2622 * sync_sched_expedited_done taking on the roles of the halves 2623 * of the ticket-lock word. Each task atomically increments 2624 * sync_sched_expedited_started upon entry, snapshotting the old value, 2625 * then attempts to stop all the CPUs. If this succeeds, then each 2626 * CPU will have executed a context switch, resulting in an RCU-sched 2627 * grace period. We are then done, so we use atomic_cmpxchg() to 2628 * update sync_sched_expedited_done to match our snapshot -- but 2629 * only if someone else has not already advanced past our snapshot. 2630 * 2631 * On the other hand, if try_stop_cpus() fails, we check the value 2632 * of sync_sched_expedited_done. If it has advanced past our 2633 * initial snapshot, then someone else must have forced a grace period 2634 * some time after we took our snapshot. In this case, our work is 2635 * done for us, and we can simply return. Otherwise, we try again, 2636 * but keep our initial snapshot for purposes of checking for someone 2637 * doing our work for us. 2638 * 2639 * If we fail too many times in a row, we fall back to synchronize_sched(). 2640 */ 2641 void synchronize_sched_expedited(void) 2642 { 2643 long firstsnap, s, snap; 2644 int trycount = 0; 2645 struct rcu_state *rsp = &rcu_sched_state; 2646 2647 /* 2648 * If we are in danger of counter wrap, just do synchronize_sched(). 2649 * By allowing sync_sched_expedited_started to advance no more than 2650 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 2651 * that more than 3.5 billion CPUs would be required to force a 2652 * counter wrap on a 32-bit system. Quite a few more CPUs would of 2653 * course be required on a 64-bit system. 2654 */ 2655 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 2656 (ulong)atomic_long_read(&rsp->expedited_done) + 2657 ULONG_MAX / 8)) { 2658 synchronize_sched(); 2659 atomic_long_inc(&rsp->expedited_wrap); 2660 return; 2661 } 2662 2663 /* 2664 * Take a ticket. Note that atomic_inc_return() implies a 2665 * full memory barrier. 2666 */ 2667 snap = atomic_long_inc_return(&rsp->expedited_start); 2668 firstsnap = snap; 2669 get_online_cpus(); 2670 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 2671 2672 /* 2673 * Each pass through the following loop attempts to force a 2674 * context switch on each CPU. 2675 */ 2676 while (try_stop_cpus(cpu_online_mask, 2677 synchronize_sched_expedited_cpu_stop, 2678 NULL) == -EAGAIN) { 2679 put_online_cpus(); 2680 atomic_long_inc(&rsp->expedited_tryfail); 2681 2682 /* Check to see if someone else did our work for us. */ 2683 s = atomic_long_read(&rsp->expedited_done); 2684 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 2685 /* ensure test happens before caller kfree */ 2686 smp_mb__before_atomic_inc(); /* ^^^ */ 2687 atomic_long_inc(&rsp->expedited_workdone1); 2688 return; 2689 } 2690 2691 /* No joy, try again later. Or just synchronize_sched(). */ 2692 if (trycount++ < 10) { 2693 udelay(trycount * num_online_cpus()); 2694 } else { 2695 wait_rcu_gp(call_rcu_sched); 2696 atomic_long_inc(&rsp->expedited_normal); 2697 return; 2698 } 2699 2700 /* Recheck to see if someone else did our work for us. */ 2701 s = atomic_long_read(&rsp->expedited_done); 2702 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 2703 /* ensure test happens before caller kfree */ 2704 smp_mb__before_atomic_inc(); /* ^^^ */ 2705 atomic_long_inc(&rsp->expedited_workdone2); 2706 return; 2707 } 2708 2709 /* 2710 * Refetching sync_sched_expedited_started allows later 2711 * callers to piggyback on our grace period. We retry 2712 * after they started, so our grace period works for them, 2713 * and they started after our first try, so their grace 2714 * period works for us. 2715 */ 2716 get_online_cpus(); 2717 snap = atomic_long_read(&rsp->expedited_start); 2718 smp_mb(); /* ensure read is before try_stop_cpus(). */ 2719 } 2720 atomic_long_inc(&rsp->expedited_stoppedcpus); 2721 2722 /* 2723 * Everyone up to our most recent fetch is covered by our grace 2724 * period. Update the counter, but only if our work is still 2725 * relevant -- which it won't be if someone who started later 2726 * than we did already did their update. 2727 */ 2728 do { 2729 atomic_long_inc(&rsp->expedited_done_tries); 2730 s = atomic_long_read(&rsp->expedited_done); 2731 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 2732 /* ensure test happens before caller kfree */ 2733 smp_mb__before_atomic_inc(); /* ^^^ */ 2734 atomic_long_inc(&rsp->expedited_done_lost); 2735 break; 2736 } 2737 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 2738 atomic_long_inc(&rsp->expedited_done_exit); 2739 2740 put_online_cpus(); 2741 } 2742 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 2743 2744 /* 2745 * Check to see if there is any immediate RCU-related work to be done 2746 * by the current CPU, for the specified type of RCU, returning 1 if so. 2747 * The checks are in order of increasing expense: checks that can be 2748 * carried out against CPU-local state are performed first. However, 2749 * we must check for CPU stalls first, else we might not get a chance. 2750 */ 2751 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 2752 { 2753 struct rcu_node *rnp = rdp->mynode; 2754 2755 rdp->n_rcu_pending++; 2756 2757 /* Check for CPU stalls, if enabled. */ 2758 check_cpu_stall(rsp, rdp); 2759 2760 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2761 if (rcu_scheduler_fully_active && 2762 rdp->qs_pending && !rdp->passed_quiesce) { 2763 rdp->n_rp_qs_pending++; 2764 } else if (rdp->qs_pending && rdp->passed_quiesce) { 2765 rdp->n_rp_report_qs++; 2766 return 1; 2767 } 2768 2769 /* Does this CPU have callbacks ready to invoke? */ 2770 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 2771 rdp->n_rp_cb_ready++; 2772 return 1; 2773 } 2774 2775 /* Has RCU gone idle with this CPU needing another grace period? */ 2776 if (cpu_needs_another_gp(rsp, rdp)) { 2777 rdp->n_rp_cpu_needs_gp++; 2778 return 1; 2779 } 2780 2781 /* Has another RCU grace period completed? */ 2782 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 2783 rdp->n_rp_gp_completed++; 2784 return 1; 2785 } 2786 2787 /* Has a new RCU grace period started? */ 2788 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ 2789 rdp->n_rp_gp_started++; 2790 return 1; 2791 } 2792 2793 /* nothing to do */ 2794 rdp->n_rp_need_nothing++; 2795 return 0; 2796 } 2797 2798 /* 2799 * Check to see if there is any immediate RCU-related work to be done 2800 * by the current CPU, returning 1 if so. This function is part of the 2801 * RCU implementation; it is -not- an exported member of the RCU API. 2802 */ 2803 static int rcu_pending(int cpu) 2804 { 2805 struct rcu_state *rsp; 2806 2807 for_each_rcu_flavor(rsp) 2808 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) 2809 return 1; 2810 return 0; 2811 } 2812 2813 /* 2814 * Return true if the specified CPU has any callback. If all_lazy is 2815 * non-NULL, store an indication of whether all callbacks are lazy. 2816 * (If there are no callbacks, all of them are deemed to be lazy.) 2817 */ 2818 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy) 2819 { 2820 bool al = true; 2821 bool hc = false; 2822 struct rcu_data *rdp; 2823 struct rcu_state *rsp; 2824 2825 for_each_rcu_flavor(rsp) { 2826 rdp = per_cpu_ptr(rsp->rda, cpu); 2827 if (!rdp->nxtlist) 2828 continue; 2829 hc = true; 2830 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 2831 al = false; 2832 break; 2833 } 2834 } 2835 if (all_lazy) 2836 *all_lazy = al; 2837 return hc; 2838 } 2839 2840 /* 2841 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 2842 * the compiler is expected to optimize this away. 2843 */ 2844 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 2845 int cpu, unsigned long done) 2846 { 2847 trace_rcu_barrier(rsp->name, s, cpu, 2848 atomic_read(&rsp->barrier_cpu_count), done); 2849 } 2850 2851 /* 2852 * RCU callback function for _rcu_barrier(). If we are last, wake 2853 * up the task executing _rcu_barrier(). 2854 */ 2855 static void rcu_barrier_callback(struct rcu_head *rhp) 2856 { 2857 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 2858 struct rcu_state *rsp = rdp->rsp; 2859 2860 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 2861 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 2862 complete(&rsp->barrier_completion); 2863 } else { 2864 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 2865 } 2866 } 2867 2868 /* 2869 * Called with preemption disabled, and from cross-cpu IRQ context. 2870 */ 2871 static void rcu_barrier_func(void *type) 2872 { 2873 struct rcu_state *rsp = type; 2874 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); 2875 2876 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 2877 atomic_inc(&rsp->barrier_cpu_count); 2878 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 2879 } 2880 2881 /* 2882 * Orchestrate the specified type of RCU barrier, waiting for all 2883 * RCU callbacks of the specified type to complete. 2884 */ 2885 static void _rcu_barrier(struct rcu_state *rsp) 2886 { 2887 int cpu; 2888 struct rcu_data *rdp; 2889 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 2890 unsigned long snap_done; 2891 2892 _rcu_barrier_trace(rsp, "Begin", -1, snap); 2893 2894 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 2895 mutex_lock(&rsp->barrier_mutex); 2896 2897 /* 2898 * Ensure that all prior references, including to ->n_barrier_done, 2899 * are ordered before the _rcu_barrier() machinery. 2900 */ 2901 smp_mb(); /* See above block comment. */ 2902 2903 /* 2904 * Recheck ->n_barrier_done to see if others did our work for us. 2905 * This means checking ->n_barrier_done for an even-to-odd-to-even 2906 * transition. The "if" expression below therefore rounds the old 2907 * value up to the next even number and adds two before comparing. 2908 */ 2909 snap_done = rsp->n_barrier_done; 2910 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 2911 2912 /* 2913 * If the value in snap is odd, we needed to wait for the current 2914 * rcu_barrier() to complete, then wait for the next one, in other 2915 * words, we need the value of snap_done to be three larger than 2916 * the value of snap. On the other hand, if the value in snap is 2917 * even, we only had to wait for the next rcu_barrier() to complete, 2918 * in other words, we need the value of snap_done to be only two 2919 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 2920 * this for us (thank you, Linus!). 2921 */ 2922 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 2923 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 2924 smp_mb(); /* caller's subsequent code after above check. */ 2925 mutex_unlock(&rsp->barrier_mutex); 2926 return; 2927 } 2928 2929 /* 2930 * Increment ->n_barrier_done to avoid duplicate work. Use 2931 * ACCESS_ONCE() to prevent the compiler from speculating 2932 * the increment to precede the early-exit check. 2933 */ 2934 ACCESS_ONCE(rsp->n_barrier_done)++; 2935 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 2936 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 2937 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 2938 2939 /* 2940 * Initialize the count to one rather than to zero in order to 2941 * avoid a too-soon return to zero in case of a short grace period 2942 * (or preemption of this task). Exclude CPU-hotplug operations 2943 * to ensure that no offline CPU has callbacks queued. 2944 */ 2945 init_completion(&rsp->barrier_completion); 2946 atomic_set(&rsp->barrier_cpu_count, 1); 2947 get_online_cpus(); 2948 2949 /* 2950 * Force each CPU with callbacks to register a new callback. 2951 * When that callback is invoked, we will know that all of the 2952 * corresponding CPU's preceding callbacks have been invoked. 2953 */ 2954 for_each_possible_cpu(cpu) { 2955 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 2956 continue; 2957 rdp = per_cpu_ptr(rsp->rda, cpu); 2958 if (rcu_is_nocb_cpu(cpu)) { 2959 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 2960 rsp->n_barrier_done); 2961 atomic_inc(&rsp->barrier_cpu_count); 2962 __call_rcu(&rdp->barrier_head, rcu_barrier_callback, 2963 rsp, cpu, 0); 2964 } else if (ACCESS_ONCE(rdp->qlen)) { 2965 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 2966 rsp->n_barrier_done); 2967 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 2968 } else { 2969 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 2970 rsp->n_barrier_done); 2971 } 2972 } 2973 put_online_cpus(); 2974 2975 /* 2976 * Now that we have an rcu_barrier_callback() callback on each 2977 * CPU, and thus each counted, remove the initial count. 2978 */ 2979 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 2980 complete(&rsp->barrier_completion); 2981 2982 /* Increment ->n_barrier_done to prevent duplicate work. */ 2983 smp_mb(); /* Keep increment after above mechanism. */ 2984 ACCESS_ONCE(rsp->n_barrier_done)++; 2985 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 2986 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 2987 smp_mb(); /* Keep increment before caller's subsequent code. */ 2988 2989 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 2990 wait_for_completion(&rsp->barrier_completion); 2991 2992 /* Other rcu_barrier() invocations can now safely proceed. */ 2993 mutex_unlock(&rsp->barrier_mutex); 2994 } 2995 2996 /** 2997 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 2998 */ 2999 void rcu_barrier_bh(void) 3000 { 3001 _rcu_barrier(&rcu_bh_state); 3002 } 3003 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3004 3005 /** 3006 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3007 */ 3008 void rcu_barrier_sched(void) 3009 { 3010 _rcu_barrier(&rcu_sched_state); 3011 } 3012 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3013 3014 /* 3015 * Do boot-time initialization of a CPU's per-CPU RCU data. 3016 */ 3017 static void __init 3018 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3019 { 3020 unsigned long flags; 3021 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3022 struct rcu_node *rnp = rcu_get_root(rsp); 3023 3024 /* Set up local state, ensuring consistent view of global state. */ 3025 raw_spin_lock_irqsave(&rnp->lock, flags); 3026 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3027 init_callback_list(rdp); 3028 rdp->qlen_lazy = 0; 3029 ACCESS_ONCE(rdp->qlen) = 0; 3030 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3031 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3032 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3033 rdp->cpu = cpu; 3034 rdp->rsp = rsp; 3035 rcu_boot_init_nocb_percpu_data(rdp); 3036 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3037 } 3038 3039 /* 3040 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3041 * offline event can be happening at a given time. Note also that we 3042 * can accept some slop in the rsp->completed access due to the fact 3043 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3044 */ 3045 static void 3046 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) 3047 { 3048 unsigned long flags; 3049 unsigned long mask; 3050 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3051 struct rcu_node *rnp = rcu_get_root(rsp); 3052 3053 /* Exclude new grace periods. */ 3054 mutex_lock(&rsp->onoff_mutex); 3055 3056 /* Set up local state, ensuring consistent view of global state. */ 3057 raw_spin_lock_irqsave(&rnp->lock, flags); 3058 rdp->beenonline = 1; /* We have now been online. */ 3059 rdp->preemptible = preemptible; 3060 rdp->qlen_last_fqs_check = 0; 3061 rdp->n_force_qs_snap = rsp->n_force_qs; 3062 rdp->blimit = blimit; 3063 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3064 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3065 rcu_sysidle_init_percpu_data(rdp->dynticks); 3066 atomic_set(&rdp->dynticks->dynticks, 3067 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3068 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3069 3070 /* Add CPU to rcu_node bitmasks. */ 3071 rnp = rdp->mynode; 3072 mask = rdp->grpmask; 3073 do { 3074 /* Exclude any attempts to start a new GP on small systems. */ 3075 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3076 rnp->qsmaskinit |= mask; 3077 mask = rnp->grpmask; 3078 if (rnp == rdp->mynode) { 3079 /* 3080 * If there is a grace period in progress, we will 3081 * set up to wait for it next time we run the 3082 * RCU core code. 3083 */ 3084 rdp->gpnum = rnp->completed; 3085 rdp->completed = rnp->completed; 3086 rdp->passed_quiesce = 0; 3087 rdp->qs_pending = 0; 3088 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3089 } 3090 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 3091 rnp = rnp->parent; 3092 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 3093 local_irq_restore(flags); 3094 3095 mutex_unlock(&rsp->onoff_mutex); 3096 } 3097 3098 static void rcu_prepare_cpu(int cpu) 3099 { 3100 struct rcu_state *rsp; 3101 3102 for_each_rcu_flavor(rsp) 3103 rcu_init_percpu_data(cpu, rsp, 3104 strcmp(rsp->name, "rcu_preempt") == 0); 3105 } 3106 3107 /* 3108 * Handle CPU online/offline notification events. 3109 */ 3110 static int rcu_cpu_notify(struct notifier_block *self, 3111 unsigned long action, void *hcpu) 3112 { 3113 long cpu = (long)hcpu; 3114 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); 3115 struct rcu_node *rnp = rdp->mynode; 3116 struct rcu_state *rsp; 3117 3118 trace_rcu_utilization(TPS("Start CPU hotplug")); 3119 switch (action) { 3120 case CPU_UP_PREPARE: 3121 case CPU_UP_PREPARE_FROZEN: 3122 rcu_prepare_cpu(cpu); 3123 rcu_prepare_kthreads(cpu); 3124 break; 3125 case CPU_ONLINE: 3126 case CPU_DOWN_FAILED: 3127 rcu_boost_kthread_setaffinity(rnp, -1); 3128 break; 3129 case CPU_DOWN_PREPARE: 3130 rcu_boost_kthread_setaffinity(rnp, cpu); 3131 break; 3132 case CPU_DYING: 3133 case CPU_DYING_FROZEN: 3134 for_each_rcu_flavor(rsp) 3135 rcu_cleanup_dying_cpu(rsp); 3136 break; 3137 case CPU_DEAD: 3138 case CPU_DEAD_FROZEN: 3139 case CPU_UP_CANCELED: 3140 case CPU_UP_CANCELED_FROZEN: 3141 for_each_rcu_flavor(rsp) 3142 rcu_cleanup_dead_cpu(cpu, rsp); 3143 break; 3144 default: 3145 break; 3146 } 3147 trace_rcu_utilization(TPS("End CPU hotplug")); 3148 return NOTIFY_OK; 3149 } 3150 3151 static int rcu_pm_notify(struct notifier_block *self, 3152 unsigned long action, void *hcpu) 3153 { 3154 switch (action) { 3155 case PM_HIBERNATION_PREPARE: 3156 case PM_SUSPEND_PREPARE: 3157 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3158 rcu_expedited = 1; 3159 break; 3160 case PM_POST_HIBERNATION: 3161 case PM_POST_SUSPEND: 3162 rcu_expedited = 0; 3163 break; 3164 default: 3165 break; 3166 } 3167 return NOTIFY_OK; 3168 } 3169 3170 /* 3171 * Spawn the kthread that handles this RCU flavor's grace periods. 3172 */ 3173 static int __init rcu_spawn_gp_kthread(void) 3174 { 3175 unsigned long flags; 3176 struct rcu_node *rnp; 3177 struct rcu_state *rsp; 3178 struct task_struct *t; 3179 3180 for_each_rcu_flavor(rsp) { 3181 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); 3182 BUG_ON(IS_ERR(t)); 3183 rnp = rcu_get_root(rsp); 3184 raw_spin_lock_irqsave(&rnp->lock, flags); 3185 rsp->gp_kthread = t; 3186 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3187 rcu_spawn_nocb_kthreads(rsp); 3188 } 3189 return 0; 3190 } 3191 early_initcall(rcu_spawn_gp_kthread); 3192 3193 /* 3194 * This function is invoked towards the end of the scheduler's initialization 3195 * process. Before this is called, the idle task might contain 3196 * RCU read-side critical sections (during which time, this idle 3197 * task is booting the system). After this function is called, the 3198 * idle tasks are prohibited from containing RCU read-side critical 3199 * sections. This function also enables RCU lockdep checking. 3200 */ 3201 void rcu_scheduler_starting(void) 3202 { 3203 WARN_ON(num_online_cpus() != 1); 3204 WARN_ON(nr_context_switches() > 0); 3205 rcu_scheduler_active = 1; 3206 } 3207 3208 /* 3209 * Compute the per-level fanout, either using the exact fanout specified 3210 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3211 */ 3212 #ifdef CONFIG_RCU_FANOUT_EXACT 3213 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3214 { 3215 int i; 3216 3217 for (i = rcu_num_lvls - 1; i > 0; i--) 3218 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3219 rsp->levelspread[0] = rcu_fanout_leaf; 3220 } 3221 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 3222 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3223 { 3224 int ccur; 3225 int cprv; 3226 int i; 3227 3228 cprv = nr_cpu_ids; 3229 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3230 ccur = rsp->levelcnt[i]; 3231 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3232 cprv = ccur; 3233 } 3234 } 3235 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 3236 3237 /* 3238 * Helper function for rcu_init() that initializes one rcu_state structure. 3239 */ 3240 static void __init rcu_init_one(struct rcu_state *rsp, 3241 struct rcu_data __percpu *rda) 3242 { 3243 static char *buf[] = { "rcu_node_0", 3244 "rcu_node_1", 3245 "rcu_node_2", 3246 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3247 static char *fqs[] = { "rcu_node_fqs_0", 3248 "rcu_node_fqs_1", 3249 "rcu_node_fqs_2", 3250 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3251 int cpustride = 1; 3252 int i; 3253 int j; 3254 struct rcu_node *rnp; 3255 3256 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3257 3258 /* Silence gcc 4.8 warning about array index out of range. */ 3259 if (rcu_num_lvls > RCU_NUM_LVLS) 3260 panic("rcu_init_one: rcu_num_lvls overflow"); 3261 3262 /* Initialize the level-tracking arrays. */ 3263 3264 for (i = 0; i < rcu_num_lvls; i++) 3265 rsp->levelcnt[i] = num_rcu_lvl[i]; 3266 for (i = 1; i < rcu_num_lvls; i++) 3267 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3268 rcu_init_levelspread(rsp); 3269 3270 /* Initialize the elements themselves, starting from the leaves. */ 3271 3272 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3273 cpustride *= rsp->levelspread[i]; 3274 rnp = rsp->level[i]; 3275 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3276 raw_spin_lock_init(&rnp->lock); 3277 lockdep_set_class_and_name(&rnp->lock, 3278 &rcu_node_class[i], buf[i]); 3279 raw_spin_lock_init(&rnp->fqslock); 3280 lockdep_set_class_and_name(&rnp->fqslock, 3281 &rcu_fqs_class[i], fqs[i]); 3282 rnp->gpnum = rsp->gpnum; 3283 rnp->completed = rsp->completed; 3284 rnp->qsmask = 0; 3285 rnp->qsmaskinit = 0; 3286 rnp->grplo = j * cpustride; 3287 rnp->grphi = (j + 1) * cpustride - 1; 3288 if (rnp->grphi >= NR_CPUS) 3289 rnp->grphi = NR_CPUS - 1; 3290 if (i == 0) { 3291 rnp->grpnum = 0; 3292 rnp->grpmask = 0; 3293 rnp->parent = NULL; 3294 } else { 3295 rnp->grpnum = j % rsp->levelspread[i - 1]; 3296 rnp->grpmask = 1UL << rnp->grpnum; 3297 rnp->parent = rsp->level[i - 1] + 3298 j / rsp->levelspread[i - 1]; 3299 } 3300 rnp->level = i; 3301 INIT_LIST_HEAD(&rnp->blkd_tasks); 3302 rcu_init_one_nocb(rnp); 3303 } 3304 } 3305 3306 rsp->rda = rda; 3307 init_waitqueue_head(&rsp->gp_wq); 3308 init_irq_work(&rsp->wakeup_work, rsp_wakeup); 3309 rnp = rsp->level[rcu_num_lvls - 1]; 3310 for_each_possible_cpu(i) { 3311 while (i > rnp->grphi) 3312 rnp++; 3313 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3314 rcu_boot_init_percpu_data(i, rsp); 3315 } 3316 list_add(&rsp->flavors, &rcu_struct_flavors); 3317 } 3318 3319 /* 3320 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3321 * replace the definitions in tree.h because those are needed to size 3322 * the ->node array in the rcu_state structure. 3323 */ 3324 static void __init rcu_init_geometry(void) 3325 { 3326 ulong d; 3327 int i; 3328 int j; 3329 int n = nr_cpu_ids; 3330 int rcu_capacity[MAX_RCU_LVLS + 1]; 3331 3332 /* 3333 * Initialize any unspecified boot parameters. 3334 * The default values of jiffies_till_first_fqs and 3335 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3336 * value, which is a function of HZ, then adding one for each 3337 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3338 */ 3339 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3340 if (jiffies_till_first_fqs == ULONG_MAX) 3341 jiffies_till_first_fqs = d; 3342 if (jiffies_till_next_fqs == ULONG_MAX) 3343 jiffies_till_next_fqs = d; 3344 3345 /* If the compile-time values are accurate, just leave. */ 3346 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 3347 nr_cpu_ids == NR_CPUS) 3348 return; 3349 3350 /* 3351 * Compute number of nodes that can be handled an rcu_node tree 3352 * with the given number of levels. Setting rcu_capacity[0] makes 3353 * some of the arithmetic easier. 3354 */ 3355 rcu_capacity[0] = 1; 3356 rcu_capacity[1] = rcu_fanout_leaf; 3357 for (i = 2; i <= MAX_RCU_LVLS; i++) 3358 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 3359 3360 /* 3361 * The boot-time rcu_fanout_leaf parameter is only permitted 3362 * to increase the leaf-level fanout, not decrease it. Of course, 3363 * the leaf-level fanout cannot exceed the number of bits in 3364 * the rcu_node masks. Finally, the tree must be able to accommodate 3365 * the configured number of CPUs. Complain and fall back to the 3366 * compile-time values if these limits are exceeded. 3367 */ 3368 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 3369 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 3370 n > rcu_capacity[MAX_RCU_LVLS]) { 3371 WARN_ON(1); 3372 return; 3373 } 3374 3375 /* Calculate the number of rcu_nodes at each level of the tree. */ 3376 for (i = 1; i <= MAX_RCU_LVLS; i++) 3377 if (n <= rcu_capacity[i]) { 3378 for (j = 0; j <= i; j++) 3379 num_rcu_lvl[j] = 3380 DIV_ROUND_UP(n, rcu_capacity[i - j]); 3381 rcu_num_lvls = i; 3382 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 3383 num_rcu_lvl[j] = 0; 3384 break; 3385 } 3386 3387 /* Calculate the total number of rcu_node structures. */ 3388 rcu_num_nodes = 0; 3389 for (i = 0; i <= MAX_RCU_LVLS; i++) 3390 rcu_num_nodes += num_rcu_lvl[i]; 3391 rcu_num_nodes -= n; 3392 } 3393 3394 void __init rcu_init(void) 3395 { 3396 int cpu; 3397 3398 rcu_bootup_announce(); 3399 rcu_init_geometry(); 3400 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 3401 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 3402 __rcu_init_preempt(); 3403 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3404 3405 /* 3406 * We don't need protection against CPU-hotplug here because 3407 * this is called early in boot, before either interrupts 3408 * or the scheduler are operational. 3409 */ 3410 cpu_notifier(rcu_cpu_notify, 0); 3411 pm_notifier(rcu_pm_notify, 0); 3412 for_each_online_cpu(cpu) 3413 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 3414 } 3415 3416 #include "tree_plugin.h" 3417